JP3318649B2 - Measurement data processing apparatus and method - Google Patents
Measurement data processing apparatus and methodInfo
- Publication number
- JP3318649B2 JP3318649B2 JP23864094A JP23864094A JP3318649B2 JP 3318649 B2 JP3318649 B2 JP 3318649B2 JP 23864094 A JP23864094 A JP 23864094A JP 23864094 A JP23864094 A JP 23864094A JP 3318649 B2 JP3318649 B2 JP 3318649B2
- Authority
- JP
- Japan
- Prior art keywords
- measurement
- voltage
- curve
- value
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は測定データ処理装置およ
び方法に係り、温度調節計や温度指示計等の制御装置に
おいて、例えば温度センサーから入力した測定電圧に対
応する換算温度を出力する温度入力部としての測定デー
タ処理装置およびこれに用いる測定データ処理方法の改
良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measurement data processing device and method, and more particularly, to a control device such as a temperature controller or a temperature indicator, for example, a temperature input for outputting a converted temperature corresponding to a measurement voltage input from a temperature sensor. The present invention relates to a measurement data processing device as a unit and an improvement of a measurement data processing method used therein.
【0002】[0002]
【従来の技術】従来、この種の測定データ処理装置とし
ては、例えば熱電対からの等電圧間隔毎の測定電圧E
(n)、E(n+1)、E(n+2)……に対応する温
度T(n)、T(n+1)、T(n+2)……を予め測
定記憶しておき、任意の測定電圧E(i)については前
後の測定電圧E(n)、E(n+1)、E(n+2)…
…から推測演算する、いわゆる直線近似法を用いてい
た。なお符号nは、熱電対の測定範囲における測定箇所
数である。2. Description of the Related Art Conventionally, as a measurement data processing apparatus of this type, for example, a measurement voltage E at equal voltage intervals from a thermocouple is used.
(N), E (n + 1), E (n + 2)... Corresponding to the temperatures T (n), T (n + 1), T (n + 2). ) Means the measurement voltages E (n), E (n + 1), E (n + 2) before and after ...
, A so-called linear approximation method is used. Symbol n is the number of measurement points in the measurement range of the thermocouple.
【0003】すなわち、図6に示すように、K型熱電対
の測定電圧(横軸)に対する温度(縦軸)変化が曲線
(実線)のように変化するとき、測定電圧E(n)とE
(n+1)間の任意の測定電圧E(i)に対する温度T
(i)’は、一点鎖線のように曲線に近似した直線か
ら、次の(1)式で近似的に演算していた。 T(i)’=〔T(n+1)−T(n)〕/〔E(n+1)−E(n)〕 ×〔E(i)−E(n)〕+T(n) …(1)That is, as shown in FIG. 6, when a change in temperature (vertical axis) with respect to a measured voltage (horizontal axis) of a K-type thermocouple changes as a curve (solid line), the measured voltages E (n) and E (n)
Temperature T for any measured voltage E (i) during (n + 1)
(I) ′ is approximately calculated by the following equation (1) from a straight line approximating a curve like a one-dot chain line. T (i) ′ = [T (n + 1) −T (n)] / [E (n + 1) −E (n)] × [E (i) −E (n)] + T (n) (1)
【0004】この直線近似法では、予め記憶した測定電
圧E(n)、E(n+1)、E(n+2)と同じ測定電
圧は正確に測定可能であるが、測定電圧E(n)、E
(n+1)、E(n+2)前後の任意の測定電圧に対応
する温度は、演算した近似温度と真の温度との間に誤差
[T(i)’−T(i)]が生じるものの、測定電圧間
隔を狭くすれば誤差は小さくなると考えられる。つま
り、測定電圧と温度の関係データを多数記憶すれば、誤
差を問題ない程度にまで小さくすることが可能であっ
た。In this linear approximation method, the same measurement voltages as the previously stored measurement voltages E (n), E (n + 1) and E (n + 2) can be measured accurately, but the measurement voltages E (n) and E (n)
The temperature corresponding to an arbitrary measurement voltage around (n + 1) and E (n + 2) is measured although an error [T (i) ′ − T (i)] occurs between the calculated approximate temperature and the true temperature. It is considered that the error decreases as the voltage interval decreases. That is, if a large number of relationship data between the measured voltage and the temperature are stored, the error can be reduced to a level that does not cause any problem.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、このよ
うに直線近似法を用いた測定データ処理装置では、次の
ような問題点があった。すなわち、最近の制御装置で
は、熱電対や測温抵抗体について多数の種類を交換接続
可能に構成し、ユーザがそれら温度センサーを交換接続
しても対応が可能なようにする傾向にあるが、個々の温
度センサーは測定電圧と温度の関係データが互いに異な
るから、予め温度センサー毎の測定電圧と温度の関係デ
ータを記憶させ、搭載したソフトウェア等によって温度
センサーの交換接続に合せてワンタッチで切換え動作可
能に構成していた。However, the measurement data processing device using the linear approximation method has the following problems. In other words, in recent control devices, many types of thermocouples and resistance temperature detectors are configured to be exchangeable and connectable, and even if the user exchanges and connects these temperature sensors, there is a tendency to respond. Since each temperature sensor has different measurement voltage and temperature relation data, the measurement voltage and temperature relation data for each temperature sensor is stored in advance, and one-touch switching operation is performed by the installed software etc. according to the exchange connection of the temperature sensor. It was configured to be possible.
【0006】ところが、このような測定データ処理装置
では、各温度センサー毎の多数の関係データを記憶させ
ると、膨大な量の記憶容量が必要となるため、実際には
例えばK型熱電対を例にすれば、1500μV(約40
℃)毎と言った比較的粗い間隔で温度データを記憶し、
測定電圧と温度の関係データの記憶数を限定する必要が
あった。そのため、予め記憶した測定電圧E(n)、E
(n+1)、E(n+2)……については問題ないが、
これ以外の任意の測定電圧E(i)については換算温度
T(i)’と真の温度T(i)との間に無視できない誤
差が生じ易い欠点がある。However, in such a measurement data processing apparatus, when a large number of related data for each temperature sensor is stored, an enormous amount of storage capacity is required. In practice, for example, a K-type thermocouple is used as an example. In this case, 1500 μV (approximately 40
℃) The temperature data is stored at relatively coarse intervals
It was necessary to limit the number of stored relation data between the measured voltage and the temperature. Therefore, the measurement voltages E (n), E
(N + 1), E (n + 2) ...
Any other measurement voltage E (i) has a disadvantage that a non-negligible error easily occurs between the converted temperature T (i) ′ and the true temperature T (i).
【0007】本発明はそのような従来の欠点を解決する
ためになされたもので、予め測定する測定電圧数を増加
させることなく、任意の測定電圧に対応する測定値誤差
を小さく抑えた高精度の測定データ処理装置および方法
の提供を目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve such a conventional drawback, and is intended to provide a high-precision method capable of minimizing a measurement value error corresponding to an arbitrary measurement voltage without increasing the number of measurement voltages to be measured in advance. It is an object of the present invention to provide a measurement data processing device and method.
【0008】[0008]
【課題を解決するための手段】このような課題を解決す
るために本発明の測定データ処理装置は、制御量の変化
に応じて曲線的に変化する測定値を電圧測定する測定手
段と、等間隔毎の測定電圧とこれに対応する換算値との
対応データを予め記憶するデータ記憶手段と、等間隔毎
の隣合う測定電圧間を1区間とし、その測定手段からの
任意の測定電圧を間に含む区間とこれに連続する区間の
2区間の両端の測定電圧をその曲線上にて直線で接続し
たとき、その任意の測定電圧に対応する直線上の換算値
T(i)’と、その2区間の中間の測定電圧に対応する
直線上の換算値T(n+1)’と上記曲線上の変換値と
の差Tzとを上記対応データから演算するとともに、そ
の直線上の換算値T(i)’を誤差Δtで補正演算する
2区間折線演算手段と、その2区間の中間の測定電圧を
XY軸のゼロ点とした2次関数曲線を用い、任意の測定
電圧に対応する上記直線上の換算値T(i)’とその2
次関数曲線上の値との上記誤差ΔTを上記差Tzから演
算する2次関数曲線演算手段とを有している。In order to solve such a problem, a measurement data processing apparatus according to the present invention comprises a measuring means for measuring a voltage of a measured value which changes in a curve according to a change of a control amount. A data storage means for storing in advance the corresponding data of the measured voltage at each interval and the corresponding value corresponding thereto; a section between adjacent measured voltages at equal intervals as one section, and an arbitrary measured voltage from the measuring means as an interval; When the measured voltages at both ends of the section including the section and the section continuous to the section are connected by a straight line on the curve, a converted value T (i) ′ on a straight line corresponding to the arbitrary measured voltage, The conversion value T (n + 1) ′ on the straight line corresponding to the measured voltage in the middle of the two sections and the difference Tz between the conversion value on the curve are calculated from the corresponding data, and the conversion value T (i on the straight line is calculated. ) 'Is corrected by an error Δt, The intermediate measurement voltage of the two sections with a quadratic function curve with the zero point of the XY axis, converted value on the straight line corresponding to an arbitrary measurement voltage T (i) 'and Part 2
A quadratic function curve calculating means for calculating the error ΔT from the value on the quadratic function curve from the difference Tz.
【0009】また、本発明の測定データ処理方法は、制
御量の変化に応じて曲線的に変化する測定値を電圧測定
する一方、等間隔毎のその測定電圧に対応する変換値と
の対応データを予め記憶しておき、等間隔毎の隣合うそ
の測定電圧間を1区間とし、測定した任意の測定電圧を
間に含む区間とこれに連続する区間の2区間の両端のそ
れら測定電圧を上記曲線上にて直線で接続したとき、任
意の測定電圧に対応するその直線上の変換値T(i)’
と、上記2区間の中間の測定電圧に対応する直線上の変
換値T(n+1)’と曲線上の変換値との差Tzとを上
記記憶対応データから演算し、その2区間の中間の測定
電圧をXY軸上のゼロ点とした2次関数曲線を用い、任
意の測定電圧に対応する上記直線上の換算値T(i)’
とその2次関数曲線上の値との誤差ΔTをその差Tzか
ら演算し、上記直線上の変換値T(i)’をその誤差Δ
tを用いて補正演算する点を特徴とする。Further, according to the measurement data processing method of the present invention, a voltage value of a measured value which changes in a curve according to a change of a control amount is measured, and data corresponding to a converted value corresponding to the measured voltage at regular intervals are measured. Is stored in advance, the interval between adjacent measured voltages at equal intervals is defined as one section, and the measured voltages at both ends of a section including an arbitrary measured voltage measured and a section following the section are defined as the above. When connected by a straight line on a curve, the converted value T (i) ′ on the straight line corresponding to an arbitrary measured voltage
And the difference Tz between the converted value T (n + 1) ′ on the straight line corresponding to the measured voltage in the middle of the two sections and the converted value on the curve are calculated from the stored correspondence data. Using a quadratic function curve in which the voltage is a zero point on the XY axes, the converted value T (i) ′ on the straight line corresponding to an arbitrary measured voltage
Is calculated from the difference Tz, and the conversion value T (i) ′ on the straight line is calculated as the error Δ
It is characterized in that a correction operation is performed using t.
【0010】[0010]
【作用】このような手段を有する本発明の測定データ処
理装置では、2区間折線演算手段が、測定手段から入力
した任意の測定電圧について、この測定電圧を含む区間
とこれに隣合う2区間における両端の測定電圧によって
直線を想定し、任意の測定電圧に対応するその直線上の
換算値T(i)’と、2区間の中間の測定電圧に対応す
る直線上の換算値T(n+1)’と上記曲線上の変換値
との差Tzとを演算する。In the measurement data processing apparatus according to the present invention having such a means, the two-section broken line calculating means determines whether an arbitrary measurement voltage input from the measurement means is divided into a section including the measurement voltage and two sections adjacent thereto. Assuming a straight line based on the measured voltages at both ends, a converted value T (i) ′ on the straight line corresponding to an arbitrary measured voltage and a converted value T (n + 1) ′ on a straight line corresponding to a measured voltage in the middle of two sections. And the difference Tz between the above and the converted value on the curve.
【0011】そして、2次関数曲線演算手段が、2区間
の中間の測定電圧をXY軸上のゼロ点とした2次関数曲
線を用いて、任意の測定電圧に対応する換算値T
(i)’とその2次関数曲線上の値との誤差ΔTをその
差Tzから演算し、更に、2区間折線演算手段がその任
意の測定電圧に対応する換算値T(i)’を誤差ΔTで
補正して出力する。Then, the quadratic function curve calculating means uses a quadratic function curve with the measured voltage in the middle of the two sections as a zero point on the XY axes to calculate a converted value T corresponding to an arbitrary measured voltage.
(I) 'calculates an error ΔT between the value on the quadratic function curve from the difference Tz, and furthermore, the two-section broken line calculating means calculates a converted value T (i)' corresponding to the arbitrary measured voltage by an error. The output is corrected by ΔT.
【0012】[0012]
【実施例】以下本発明の実施例を図面を参照して説明す
る。なお、本発明に係る測定データ処理方法は測定デー
タ処理装置の中で説明する。図1は、本発明に係る測定
データ処理装置の一実施例を示すブロック図である。図
1において、測定手段1は、図示しない温度センサー例
えば熱電対や測温抵抗体によって制御量に応じた直流測
定電圧を増幅したり、A/D変換してデジタル量に変換
して後述する測定電圧E(i)を出力する公知のもので
あり、2区間折線演算手段3および2次関数曲線演算手
段5に接続されている。Embodiments of the present invention will be described below with reference to the drawings. The measurement data processing method according to the present invention will be described in the measurement data processing device. FIG. 1 is a block diagram showing one embodiment of a measurement data processing device according to the present invention. In FIG. 1, a measuring means 1 amplifies a DC measurement voltage corresponding to a control amount by a temperature sensor (not shown), for example, a thermocouple or a resistance temperature detector, or converts the voltage into a digital amount by A / D conversion and performs measurement described later. It is a known device that outputs the voltage E (i), and is connected to the two-section broken line calculation means 3 and the quadratic function curve calculation means 5.
【0013】データ記憶手段7は、複数種類の温度セン
サーについて、図2に示すように、予め一定電圧間隔
(EM)で測定した測定電圧E(n)、E(n+1)、
E(n+2)……とそれに対応する温度(換算値)T
(n)、T(n+1)、T(n+2)……の換算表を対
応データテーブルとして複数記憶するものである。な
お、図2中の実線は測定電圧に対する温度曲線である。As shown in FIG. 2, the data storage means 7 measures the measured voltages E (n), E (n + 1), E (n + 1), which are measured in advance at a constant voltage interval (EM), as shown in FIG.
E (n + 2) ... and the corresponding temperature (converted value) T
A plurality of conversion tables of (n), T (n + 1), T (n + 2)... Are stored as corresponding data tables. Note that the solid line in FIG. 2 is a temperature curve with respect to the measured voltage.
【0014】しかも、データ記憶手段7は、隣合う測定
電圧E(n)とE(n+1)の間、E(n+1)とE
(n+2)……の間を各々1区間としたとき、2区間折
線演算手段3の指示により、任意の測定電圧E(i)を
含む区間とこれに隣合う連続した区間の2区間について
の測定電圧E(n)、E(n+1)、E(n+2)……
とそれに対応する温度T(n)、T(n+1)、T(n
+2)……を2区間折線演算手段3へ出力する機能を有
している。In addition, the data storage means 7 stores E (n + 1) and E (n + 1) between adjacent measurement voltages E (n) and E (n + 1).
(N + 2)... Are defined as one section, and two sections are measured in accordance with an instruction from the two-section broken line calculating means 3, including a section including an arbitrary measurement voltage E (i) and a continuous section adjacent thereto. Voltages E (n), E (n + 1), E (n + 2) ...
And the corresponding temperatures T (n), T (n + 1), T (n
+2)... To the two-section broken line calculating means 3.
【0015】2区間折線演算手段3は、任意の測定電圧
E(i)について、これを含む区間とこれに隣合う2区
間についての測定電圧E(n)、E(n+1)、E(n
+2)……とそれに対応する温度T(n)、T(n+
1)、T(n+2)……をデータ記憶手段7から入力
し、図2の一点鎖線に示すように、2区間の両端の測定
電圧E(n)とE(n+2)を結ぶ直線を上記直線上に
想定する機能を有している。The two-section broken line calculating means 3 calculates the measurement voltages E (n), E (n + 1), E (n) for an arbitrary measurement voltage E (i) for an interval including the arbitrary measurement voltage E and for two intervals adjacent thereto.
+2)... And corresponding temperatures T (n) and T (n +
1), T (n + 2)... Are input from the data storage means 7, and a straight line connecting the measured voltages E (n) and E (n + 2) at both ends of the two sections is defined as It has the functions assumed above.
【0016】2区間折線演算手段3は、2区間の中間点
である測定電圧E(n+1)に対応する直線上の温度T
(n+1)’と測定電圧E(n+1)に対応する温度T
(n+1)との差Tz、並びに任意の測定電圧E(i)
に対応する直線上の温度T(i)’を演算するととも
に、後述する誤差ΔTを温度T(i)’に加算して補正
し、E(i)に対する測定温度T(i)を出力する機能
を有している。The two-section broken line calculating means 3 calculates a temperature T on a straight line corresponding to the measured voltage E (n + 1) which is an intermediate point of the two sections.
(N + 1) ′ and the temperature T corresponding to the measured voltage E (n + 1)
(N + 1) and any measured voltage E (i)
A function of calculating a temperature T (i) ′ on a straight line corresponding to the above equation, adding an error ΔT described later to the temperature T (i) ′, correcting the temperature, and outputting a measured temperature T (i) with respect to E (i). have.
【0017】2次関数曲線演算手段5は、データ記憶手
段7から2区間折線演算手段3を介して測定電圧E
(n)、E(n+1)、E(n+1)、E(n+2)…
…とそれに対応する温度T(n)、T(n+1)、T
(n+2)……を入力し、図3に示すように、図2のE
(n)とE(n+2)間の曲線を、2区間の中間の測定
電圧E(n+1)をXY軸のゼロ点とした2次関数曲線
に置き換え、測定電圧E(i)における上記直線上の温
度T(i)’と、2次関数曲線上の値との差ΔTを演算
して2区間折線演算手段3へ出力する機能を有してい
る。The quadratic function curve calculating means 5 receives the measured voltage E from the data storage means 7 via the two-section broken line calculating means 3.
(N), E (n + 1), E (n + 1), E (n + 2) ...
... and the corresponding temperatures T (n), T (n + 1), T
(N + 2)..., And as shown in FIG.
The curve between (n) and E (n + 2) is replaced by a quadratic function curve with the measured voltage E (n + 1) in the middle of the two sections as the zero point on the XY axis, It has a function of calculating the difference ΔT between the temperature T (i) ′ and the value on the quadratic function curve and outputting the calculated difference ΔT to the two-section broken line calculating means 3.
【0018】そして、2区間折線演算手段3は、任意の
測定電圧E(i)に対応する直線上の温度T(i)’に
誤差ΔTを加算補正し、E(i)に対する測定温度T
(i)を近似的に出力するものである。The two-section broken line calculating means 3 adds and corrects an error ΔT to a temperature T (i) ′ on a straight line corresponding to an arbitrary measured voltage E (i), and calculates a measured temperature T (E) for E (i).
(I) is output approximately.
【0019】次に、本発明の測定データ処理方法を、そ
の装置の動作説明とともに図2および図3を用いて説明
する。図2において、測定電圧E(n)とE(n+1)
間の任意の測定電圧E(i)に対する温度T(i)は、
次の(a)〜(f)のようにして近似的に高精度で求め
ることができる。Next, the measurement data processing method of the present invention will be described with reference to FIGS. In FIG. 2, measured voltages E (n) and E (n + 1)
The temperature T (i) for any measured voltage E (i) between
As shown in the following (a) to (f), it can be obtained approximately with high accuracy.
【0020】(a)まず、2区間折線演算手段3にて測
定電圧E(i)を含む区間nを次の(2)式で演算し、
データ記憶手段7から該当区間および隣接する区間の測
定電圧E(n)、E(n+1)、E(n+2)……とこ
れに対応する温度T(n)、T(n+1)、T(n+
2)……を2区間折線演算手段3に取り込む。 n=〔E(i)−E(0)〕/EM …(2) [ここでE(0)はn=0の時の初期固定電圧、EMは
区間の等電圧幅である。](A) First, the section n including the measured voltage E (i) is calculated by the following section (2) by the two-section broken line calculating means 3,
The measured voltages E (n), E (n + 1), E (n + 2)... And the corresponding temperatures T (n), T (n + 1), T (n +
2) ... are taken into the two-section broken line calculating means 3. n = [E (i) −E (0)] / EM (2) [where E (0) is the initial fixed voltage when n = 0, and EM is the equal voltage width of the section. ]
【0021】(b)次いで、2区間折線演算手段3に
て、図2のように2区間である測定電圧E(n)とE
(n+2)間を接続した直線を曲線上に想定し、この直
線の中間点である測定電圧E(n+1)に対する直線上
の温度T(n+1)’を求め、測定電圧E(n+1)に
対する温度T(n+1)とその温度T(n+1)’との
差Tzを次の(3)式から演算する。 Tz=T(n+1)’−T(n+1) =〔T(n+2)−T(n)〕/〔E(n+2)−E(n)〕×〔E(n +1)−E(n)〕+T(n)−T(n+1) …(3)(B) Next, the two-section broken-line calculating means 3 measures the measured voltages E (n) and E in two sections as shown in FIG.
A straight line connecting (n + 2) is assumed on the curve, and a temperature T (n + 1) ′ on the straight line with respect to the measured voltage E (n + 1), which is an intermediate point of the straight line, is obtained, and the temperature T with respect to the measured voltage E (n + 1) is obtained. The difference Tz between (n + 1) and the temperature T (n + 1) ′ is calculated from the following equation (3). Tz = T (n + 1) ′ − T (n + 1) = [T (n + 2) −T (n)] / [E (n + 2) −E (n)] × [E (n + 1) −E (n)] + T (N) -T (n + 1) (3)
【0022】(c)さらに、2次関数曲線演算手段5に
て、図2中の2区間である測定電圧E(n)とE(n+
2)間の曲線部分を、差Tzと電圧間隔EMを用いた次
の(4)式で図3のような2次関数f(x)に置き換え
る。 f(x)=(Tz/EM2)X2 …(4)(C) Further, the quadratic function curve calculating means 5 measures the measured voltages E (n) and E (n +
The curve portion between 2) is replaced with a quadratic function f (x) as shown in FIG. 3 by the following equation (4) using the difference Tz and the voltage interval EM. f (x) = (Tz / EM 2 ) X 2 (4)
【0023】(d)さらにまた、2次関数曲線演算手段
にて(4)式の2次関数に値を代入し、差Tzに対する
2次関数曲線との差ΔTを求める。これは(5)式で示
される。 ΔT=Tz−(Tz/EM2)〔E(i)−E(n)−EM〕2 …(5)(D) Further, the value is substituted into the quadratic function of the equation (4) by the quadratic function curve calculating means, and the difference ΔT between the difference Tz and the quadratic function curve is obtained. This is shown by equation (5). ΔT = Tz− (Tz / EM 2 ) [E (i) −E (n) −EM] 2 (5)
【0024】(e)次に、測定電圧E(i)に対して一
点鎖線で直線近似した値T(i)’を次の(6)式から
求める。 T(i)’={〔T(n+2)−T(n)〕/〔E(n+2)−E(n)〕} ×〔E(i)−E(n)〕+T(n) …(6)(E) Next, a value T (i) ′ obtained by linearly approximating the measured voltage E (i) with a dashed line is obtained from the following equation (6). T (i) ′ = {[T (n + 2) −T (n)] / [E (n + 2) −E (n)]} × [E (i) −E (n)] + T (n) (6) )
【0025】(f)そして、2区間折線演算手段3に
て、次の(7)式を用いてT(i)’からΔTを差し引
くと、求めるT(i)を近似的に算出できる。 T(i)=T(i)’−ΔT …(7)(F) Then, by subtracting ΔT from T (i) ′ using the following equation (7) in the two-section broken line calculating means 3, the calculated T (i) can be approximately calculated. T (i) = T (i) ′ − ΔT (7)
【0026】このように、本発明では、曲線的に変化す
る測定電圧について、等間隔毎の隣合う測定電圧E
(n)とE(n+1)間、E(n+1)とE(n+2)
間……を各々1区間とし、任意の測定電圧E(i)を間
に含む区間とこれに連続する2区間の両端の測定電圧を
直線で結び、任意の測定電圧E(i)に対応する直線上
の温度T(i)’と、2区間の中間点E(n+1)に対
応するその直線上の温度T(n+1)’とその曲線上の
温度T(n+1)との差Tzとを演算し、2区間の中間
点E(n+1)をXY軸のゼロ点とした2次関数曲線を
用いて任意の測定電圧E(i)に対応する温度T
(i)’と2次関数曲線上の値との誤差ΔTをその差T
zから演算し、電圧E(i)に対する温度T(i)’
に、その誤差ΔTを加算演算してE(i)に対する温度
T(i)として補正出力するので、任意の測定電圧E
(i)に対して高精度の変換温度T(i)が得られる。As described above, according to the present invention, with respect to the measurement voltage that changes in a curve, adjacent measurement voltages E at equal intervals are used.
(N) and E (n + 1), E (n + 1) and E (n + 2)
... Are defined as one section, and a section including an arbitrary measurement voltage E (i) and measurement voltages at both ends of two consecutive sections are connected by a straight line, and correspond to an arbitrary measurement voltage E (i). The temperature T (i) ′ on the straight line and the difference Tz between the temperature T (n + 1) ′ on the straight line corresponding to the intermediate point E (n + 1) of the two sections and the temperature T (n + 1) on the curve are calculated. And a temperature T corresponding to an arbitrary measured voltage E (i) using a quadratic function curve in which an intermediate point E (n + 1) of the two sections is set to a zero point on the XY axis.
(I) The error ΔT between '′ and the value on the quadratic function curve
z, the temperature T (i) ′ with respect to the voltage E (i)
And the error ΔT is added and corrected and output as the temperature T (i) with respect to E (i).
A highly accurate conversion temperature T (i) is obtained with respect to (i).
【0027】しかも、上述した(1)式〜(7)式を予
め記憶しておき、従来と同様な等間隔毎の測定電圧E
(n)、E(n+1)、E(n+1)、E(n+2)…
…を用いて高精度の補正が可能であるから、狭い測定間
隔で測定電圧を測定記憶する必要がなく、従来以上の測
定精度であっても記憶容量を節約できる。In addition, the above-described equations (1) to (7) are stored in advance, and the measured voltages E at regular intervals as in the prior art are measured.
(N), E (n + 1), E (n + 1), E (n + 2) ...
Can be used for highly accurate correction, so that it is not necessary to measure and store the measurement voltage at narrow measurement intervals, and the storage capacity can be saved even if the measurement accuracy is higher than before.
【0028】図4は、K型熱電対について0〜130
2.9℃の範囲を1500μV(約40℃)毎の等間隔
電圧で測定したときの測定精度を、従来例と比較したも
のである。なお、横軸を測定温度、縦軸を真値に対する
測定誤差を示したものであり、誤差の上下限の点線は±
0.1℃を示している。図4において実線は、本願によ
る測定誤差、点線は従来例による測定誤差であり、実線
および点線とも一定間隔で誤差0となっているが、その
点が電圧対温度データを記憶しているデータ部分であ
る。FIG. 4 shows the K-type thermocouple from 0 to 130.
This is a comparison of the measurement accuracy when measuring in the range of 2.9 ° C. with an equal-interval voltage of every 1500 μV (about 40 ° C.) to the conventional example. The horizontal axis shows the measurement temperature, and the vertical axis shows the measurement error with respect to the true value.
0.1 ° C. is indicated. In FIG. 4, the solid line is a measurement error according to the present application, and the dotted line is a measurement error according to the conventional example. Both the solid line and the dotted line have an error of 0 at regular intervals, and the point is a data portion storing voltage versus temperature data. It is.
【0029】この図4によれば、従来例の点線では全体
的に誤差が大きく、特に測定レンジの下部と上部では、
測定誤差が非常に大きく±0.1℃の誤差以上になって
いるものもある。それに対して本願では、測定レンジの
下部で比較的大きい誤差がでているが、全体的にかなり
小さい誤差で測定データを処理することができることが
わかる。According to FIG. 4, the dotted line of the conventional example has a large error as a whole, and especially at the lower and upper parts of the measurement range.
In some cases, the measurement error is very large and exceeds ± 0.1 ° C. On the other hand, in the present application, although a relatively large error occurs in the lower part of the measurement range, it can be seen that the measurement data can be processed with a relatively small error as a whole.
【0030】また、図5は、T型熱電対について0〜4
02.1℃の範囲について1500μV(約40℃)毎
の等間隔電圧で測定したときの測定精度を、従来例と比
較したものであり、同様に従来例より誤差が小さく抑え
られているのが分る。FIG. 5 is a graph showing the T-type thermocouple in the range of 0 to 4;
The measurement accuracy when the measurement is performed at an equal interval voltage of 1500 μV (approximately 40 ° C.) in the range of 02 ° C. is compared with the conventional example, and similarly, the error is suppressed to be smaller than the conventional example. I understand.
【0031】[0031]
【発明の効果】以上説明したように本発明の測定データ
処理装置は、曲線的に変化する測定値を電圧測定する測
定手段と、等間隔毎の測定電圧とこれに対応する換算値
との対応データを予め記憶するデータ記憶手段と、等間
隔毎の隣合う測定電圧間を1区間とし、任意の測定電圧
を間に含む区間とこれに連続する2区間の両端の測定電
圧をその曲線上にて直線で接続したとき、その任意の測
定電圧に対応する直線上の換算値T(i)’と、その2
区間の中間の測定電圧に対応する直線上の換算値T(n
+1)’と上記曲線上の変換値との差Tzとを上記記憶
対応データから演算し、かつその直線上の換算値T
(i)’を誤差Δtで補正演算する2区間折線演算手段
と、その2区間の中間の測定電圧をXY軸のゼロ点とし
た2次関数曲線を用い、任意の測定電圧に対応する上記
直線上の換算値T(i)’とその2次関数曲線上の値と
の上記誤差ΔTを上記差Tzから演算する2次関数曲線
演算手段とを有して構成した。また、本発明の測定デー
タ処理方法では、曲線的に変化する測定電圧について、
等間隔毎に対応する変換値との対応データを予め記憶
し、等間隔毎の隣合う測定電圧間を各々1区間とし、任
意の測定電圧を間に含む区間とこれに連続する2区間の
両端の測定電圧間を直線で結び、任意の測定電圧に対応
するその直線上の変換値と、その2区間の中間点に対応
する直線上の変換値T(n+1)’と曲線上の変換値T
(n+1)との差Tzを上記記憶対応データから演算
し、2区間の中間点をXY軸のゼロ点とした2次関数曲
線を用い、任意の測定電圧に対する2次関数曲線上の値
との誤差ΔTをその差Tzから演算し、この誤差ΔTで
変換値T(i)’を補正して任意の測定電圧に対する変
換値T(i)として出力するよう構成した。そのため、
任意の測定電圧に対応する測定値誤差を小さく抑えるこ
とが可能であるうえ、予め測定する測定電圧の記憶数を
増加させることがない。従って、最近の制御装置のよう
に機能が増加し、多数の熱電対や測温抵抗体を交換接続
可能に構成するとともに搭載したソフトウェア等によっ
てワンタッチで切換え動作可能にした場合でも、本発明
の測定データ処理装置を用いれば、記憶容量を増加させ
ずに従来と同程度又はそれ以上の高い精度の測定が可能
であり、制御装置の小型化、高精度化に対応できるし、
記憶容量を測定データ以外のデータに使用可能となり、
他の機能の充実を図ることができる。As described above, the measurement data processing apparatus according to the present invention comprises a measuring means for measuring the voltage of a measured value which changes in a curve, and the correspondence between the measured voltage at equal intervals and the corresponding converted value. A data storage means for storing data in advance, and an interval between adjacent measurement voltages at equal intervals are defined as one section, and a section including an arbitrary measurement voltage and two sections continuous with the measurement voltage at both ends are plotted on the curve. Is connected by a straight line, the converted value T (i) ′ on the straight line corresponding to the arbitrary measured voltage, and 2
Conversion value T (n on a straight line corresponding to the measured voltage in the middle of the section
+1) ′ and the difference Tz between the conversion value on the curve and the conversion value T on the straight line.
(I) Two-section broken line calculating means for correcting '′ with an error Δt, and the above-mentioned straight line corresponding to an arbitrary measured voltage using a quadratic function curve in which a measured voltage in the middle of the two sections is set to a zero point on the XY axis. And a quadratic function curve calculating means for calculating the error ΔT between the above converted value T (i) ′ and the value on the quadratic function curve from the difference Tz. Further, in the measurement data processing method of the present invention, for the measurement voltage that changes in a curve,
Data corresponding to the conversion values corresponding to each equal interval is stored in advance, and each interval between adjacent measurement voltages at each equal interval is defined as one section, and both ends of a section including an arbitrary measurement voltage and two sections continuous with this section Are connected by a straight line, the converted value on the straight line corresponding to an arbitrary measured voltage, the converted value T (n + 1) ′ on the straight line corresponding to the midpoint of the two sections, and the converted value T on the curve
The difference Tz from (n + 1) is calculated from the stored correspondence data, and a quadratic function curve in which the midpoint of the two sections is the zero point on the XY axis is used. An error ΔT is calculated from the difference Tz, the converted value T (i) ′ is corrected by the error ΔT, and is output as a converted value T (i) for an arbitrary measured voltage. for that reason,
The measurement value error corresponding to an arbitrary measurement voltage can be reduced, and the number of stored measurement voltages to be measured in advance does not increase. Therefore, even if the function is increased as in a recent control device, and a large number of thermocouples and resistance temperature detectors are configured to be exchangeable and connectable, and the switching operation can be performed with one touch by the installed software or the like, the measurement of the present invention can be performed. If a data processing device is used, it is possible to measure with the same or higher accuracy as before without increasing the storage capacity, and it is possible to cope with miniaturization and high accuracy of the control device,
The storage capacity can be used for data other than measurement data,
Other functions can be enhanced.
【図1】本発明に係る測定データ処理装置の一実施例を
示すブロック図である。FIG. 1 is a block diagram showing one embodiment of a measurement data processing device according to the present invention.
【図2】図1の測定データ処理装置の動作および本発明
に係る方法を説明するための測定電圧と換算値(温度)
の関係を示す特性図である。FIG. 2 shows a measured voltage and a converted value (temperature) for explaining the operation of the measured data processing apparatus of FIG. 1 and the method according to the present invention.
FIG. 4 is a characteristic diagram showing the relationship of FIG.
【図3】本発明に係る測定データ処理装置および方法に
おける2次関数曲線を説明するための図である。FIG. 3 is a diagram for explaining a quadratic function curve in the measurement data processing device and method according to the present invention.
【図4】本発明の測定データ処理装置および方法による
測定誤差を従来例とともに示す図である。FIG. 4 is a diagram showing a measurement error by a measurement data processing apparatus and method of the present invention together with a conventional example.
【図5】本発明の測定データ処理装置および方法による
測定誤差を従来例とともに示す別の図である。FIG. 5 is another diagram showing a measurement error by the measurement data processing apparatus and method of the present invention together with a conventional example.
【図6】従来の測定データ処理装置による測定電圧から
対応する変換値(温度)へ変換する手法を説明する図で
ある。FIG. 6 is a diagram illustrating a method of converting a measured voltage by a conventional measurement data processing device into a corresponding converted value (temperature).
1 測定手段 3 2区間折線演算手段 5 2次関数曲線演算手段 7 データ記憶手段 DESCRIPTION OF SYMBOLS 1 Measurement means 3 2-section broken line calculation means 5 Quadratic function curve calculation means 7 Data storage means
Claims (2)
測定値を電圧測定する測定手段と、 等間隔毎の前記測定電圧に対応する変換値との対応デー
タを予め記憶するデータ記憶手段と、 等間隔毎の隣合う前記測定電圧間を1区間とし、前記測
定手段からの任意の測定電圧を間に含む区間とこれに連
続する区間の2区間の両端の前記測定電圧を前記曲線上
にて直線で接続したとき、前記任意の測定電圧に対応す
る前記直線上の変換値T(i)’と、前記2区間の中間
の前記測定電圧に対応する前記直線上の変換値T(n+
1)’と前記曲線上の変換値との差Tzとを前記対応デ
ータから演算し、前記直線上の変換値T(i)’を誤差
Δtで補正演算する2区間折線演算手段と、 前記2区間の中間の前記測定電圧をXY軸上のゼロ点と
した2次関数曲線を用い、前記任意の測定電圧に対応す
る前記直線上の前記換算値T(i)’と前記2次関数曲
線上の値との前記誤差ΔTを前記差Tzから演算する2
次関数曲線演算手段と、 を具備することを特徴する測定データ処理装置。1. A measuring means for measuring a voltage of a measured value which changes in a curve according to a change of a control amount, and a data storing means for storing in advance corresponding data of conversion values corresponding to the measured voltage at regular intervals. The interval between the adjacent measurement voltages at equal intervals is defined as one section, and the measurement voltages at both ends of a section including an arbitrary measurement voltage from the measurement means and a section following the section are defined on the curve. , A conversion value T (i) ′ on the straight line corresponding to the arbitrary measurement voltage and a conversion value T (n + n) on the straight line corresponding to the measurement voltage in the middle of the two sections.
1) a two-segment broken line calculating means for calculating a difference Tz between the converted value on the curve and the converted value on the curve from the corresponding data, and correcting the converted value T (i) 'on the straight line with an error Δt; Using a quadratic function curve in which the measured voltage in the middle of the section is the zero point on the XY axes, the converted value T (i) ′ on the straight line corresponding to the arbitrary measured voltage and the quadratic function curve To calculate the error ΔT from the value of
A measurement data processing device comprising: a quadratic function curve calculating means.
測定値を電圧測定し、 等間隔毎の前記測定電圧に対応する変換値との対応デー
タを予め記憶し、 等間隔毎の隣合う前記測定電圧間を1区間とし、測定し
た任意の測定電圧を間に含む区間とこれに連続する区間
の2区間の両端の前記測定電圧を前記曲線上にて直線で
接続したとき、前記任意の測定電圧に対応する前記直線
上の変換値T(i)’と、前記2区間の中間の前記測定
電圧に対応する前記直線上の変換値T(n+1)’と前
記曲線上の変換値との差Tzとを前記記憶対応データか
ら演算し、 前記2区間の中間の前記測定電圧をXY軸上のゼロ点と
した2次関数曲線を用い、前記任意の測定電圧に対応す
る前記直線上の前記換算値T(i)’と前記2次関数曲
線上の値との誤差ΔTを前記差Tzから演算し、 前記直線上の変換値T(i)’を前記誤差Δtを用いて
補正演算する、 ことを特徴とする測定データ処理方法。2. A voltage measurement is performed on a measured value that changes in a curve according to a change in a control amount, data corresponding to a converted value corresponding to the measured voltage at equal intervals is stored in advance, and adjacent data at equal intervals are stored. The interval between the matched measurement voltages is defined as one section, and when the measurement voltages at both ends of a section including an arbitrary measurement voltage measured and a section continuous with the measurement voltage are connected by a straight line on the curve, the arbitrary , The conversion value T (n + 1) ′ on the straight line corresponding to the measured voltage in the middle of the two sections, and the conversion value on the curve. From the stored correspondence data, and using a quadratic function curve with the measured voltage in the middle of the two sections as a zero point on the XY axes, using the quadratic function curve corresponding to the arbitrary measured voltage The error ΔT between the converted value T (i) ′ and the value on the quadratic function curve is Calculated from the difference Tz, which correction operation using the error Δt of the straight line of the conversion value T (i) ', the measurement data processing method characterized by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23864094A JP3318649B2 (en) | 1994-09-07 | 1994-09-07 | Measurement data processing apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23864094A JP3318649B2 (en) | 1994-09-07 | 1994-09-07 | Measurement data processing apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0875499A JPH0875499A (en) | 1996-03-22 |
JP3318649B2 true JP3318649B2 (en) | 2002-08-26 |
Family
ID=17033148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23864094A Expired - Fee Related JP3318649B2 (en) | 1994-09-07 | 1994-09-07 | Measurement data processing apparatus and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3318649B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002107387A (en) * | 2000-09-28 | 2002-04-10 | Tempearl Ind Co Ltd | Current value detecting method and current value detecting device |
KR101306407B1 (en) * | 2012-05-17 | 2013-09-09 | 홍윤기 | Temperature measuring method using piezoresistive pressure sensor and temperature measuring device |
-
1994
- 1994-09-07 JP JP23864094A patent/JP3318649B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0875499A (en) | 1996-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6889152B2 (en) | Method and apparatus for economical drift compensation in high resolution measurements | |
US6651020B2 (en) | Method and apparatus for economical drift compensation in high resolution measurements | |
US6334093B1 (en) | Method and apparatus for economical drift compensation in high resolution difference measurements and exemplary low cost, high resolution differential digital thermometer | |
BRPI0210883B1 (en) | System and method for compensating for errors introduced in power monitoring systems by a data acquisition section | |
JPS6343005B2 (en) | ||
JPH02136754A (en) | Method and apparatus for measuring fine electrical signal | |
KR910001240B1 (en) | Checking machine of power | |
JP3026949B2 (en) | Encoder offset correction circuit | |
JP3318649B2 (en) | Measurement data processing apparatus and method | |
KR100909660B1 (en) | Error compensator of sensor measurement circuit and its method | |
US5663643A (en) | Position detecting apparatus using offset calculated from sum of three-phase signals | |
JPH0361125B2 (en) | ||
JP3725641B2 (en) | Hysteresis error compensation method and weighing device with the function | |
JP6865911B1 (en) | Analog-to-digital converter and analog-to-digital converter control program | |
JP3070308B2 (en) | Heat detector | |
JPH11118617A (en) | Temperature controller | |
JP3699772B2 (en) | Servo controller A / D converter | |
EP2887034B1 (en) | Semiconductor integrated circuit for calculating the temperature of an object | |
JP2822829B2 (en) | Signal input device | |
JPH06100626B2 (en) | Resistance temperature detector circuit | |
JPH0497618A (en) | Oscillator | |
JPH0585842B2 (en) | ||
KR101073973B1 (en) | Thermo-couple signal error correction device | |
JPH0658265B2 (en) | Temperature measuring device | |
JPH0653830A (en) | Method for automatically calibrating non-linear sensor connecting circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080621 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080621 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090621 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090621 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090621 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100621 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100621 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110621 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110621 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110621 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |