WO2020253536A1 - 双连接重建立中数据的处理方法及装置 - Google Patents

双连接重建立中数据的处理方法及装置 Download PDF

Info

Publication number
WO2020253536A1
WO2020253536A1 PCT/CN2020/094178 CN2020094178W WO2020253536A1 WO 2020253536 A1 WO2020253536 A1 WO 2020253536A1 CN 2020094178 W CN2020094178 W CN 2020094178W WO 2020253536 A1 WO2020253536 A1 WO 2020253536A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
source
establishment
air interface
target
Prior art date
Application number
PCT/CN2020/094178
Other languages
English (en)
French (fr)
Inventor
王军涛
杜高鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20826460.6A priority Critical patent/EP3979699A4/en
Publication of WO2020253536A1 publication Critical patent/WO2020253536A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • H04W40/36Modification of an existing route due to handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer

Definitions

  • the present application relates to the field of communications, and in particular, to a method and device for processing data in dual connection re-establishment.
  • R15 introduces MR-DC (Dual Connectivity) dual-connectivity networking.
  • the dual-connectivity technology makes full use of the wireless air interface resources of different stations (same standard or different standards) to improve the user experience rate.
  • Using macro/micro networking to improve spectrum efficiency and load balancing a terminal that supports dual connectivity can connect to two LTE/NR base stations at the same time, increasing the throughput of a single user.
  • the reconfiguration fails on the wireless air interface, it will cause service packet loss. In this case, the network side needs to minimize service packet loss to ensure service experience.
  • the failure of the downlink air interface will trigger the re-establishment process of the UE.
  • the re-establishment process includes: ordinary re-establishment and handover process re-establishment; the difference between the two lies in whether the handover process is interleaved during the re-establishment process. If there is, the handover process is re-established, otherwise it is ordinary re-establishment.
  • users have already experienced data back transmission before re-establishment, but there is no effective solution to the problem of how to control data back transmission after re-establishment.
  • the embodiments of the present application provide a method and device for processing data in dual connection re-establishment.
  • a method for processing data in dual connection re-establishment includes: when the air interface reconfiguration fails and the UE carries the source physical cell identity PCI and re-establishes to the source-side master node MN, The node SN receives the request message sent by the source-side MN, where the request message is used to instruct the SN to transfer back the data that was returned from the source-side MN to the target-side MN to the source-side MN again The SN obtains the data from the target-side MN in response to the request message, and transmits the data back to the source-side MN.
  • a device for processing data in dual connection re-establishment which is applied to the side of the secondary node SN and includes: a receiving module for reconfiguration on the air interface and the UE carries the source physical cell identity PCI
  • a request message sent by the source-side MN is received, where the request message is used to indicate that the SN will be transmitted back from the source-side MN to the target-side MN
  • the data is transmitted back to the source-side MN again;
  • a processing module configured to obtain the data from the target-side MN in response to the request message, and back-transmit the data to the source-side MN.
  • a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • an electronic device including a memory and a processor, the memory is stored with a computer program, and the processor is configured to run the computer program to execute any of the above Steps in the method embodiment.
  • Figure 1 is a flowchart of a data processing method in dual connection re-establishment according to an embodiment of the present application
  • Fig. 3 is a schematic diagram of data reverse transmission of dual-connection ordinary re-establishment according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of data back transmission in the process of adding dual connections according to an embodiment of the present application
  • Fig. 5 is a data backhaul of a dual-connection handover process according to an optional embodiment of the present application
  • Fig. 6 is a schematic diagram of a data path during a handover process of the same SN in an MN according to an optional embodiment of the present application;
  • FIG. 7 is a schematic diagram of a data back-transmission path of the intra-MN mobility process according to an optional embodiment of the present application.
  • FIG. 8 is a schematic diagram of a data back-transmission process of an intra-MN mobility process according to an optional embodiment of the present application.
  • FIG. 9 is a schematic diagram of a data reverse transmission path of an inter-MN mobility process according to an optional embodiment of the present application.
  • FIG. 10 is a schematic diagram of a data backhaul flow of an inter-MN mobility process according to an optional embodiment of the present application.
  • Fig. 11 is a schematic diagram of a data backhaul path of a mobility process between MeNB and eNB according to an optional embodiment of the present application;
  • FIG. 12 is a schematic diagram of a data backhaul procedure of a mobility process between MeNB and eNB according to an optional embodiment of the present application;
  • FIG. 13 is a schematic diagram of a data backhaul path of a mobility process between an eNB and a MeNB according to an optional embodiment of the present application;
  • FIG. 14 is a schematic diagram of a data backhaul procedure of a mobility process between an eNB and a MeNB according to an optional embodiment of the present application;
  • 15 is a structural block diagram of a data processing device in dual connection re-establishment according to an embodiment of the present application.
  • Fig. 16 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • the UE In the dual-connection networking scenario, the UE is establishing dual connections, especially when the air interface reconfiguration fails during the dual connection process, or the air interface reconfiguration fails during the mobility process, triggering the re-establishment process, and the current standard protocol process cannot instruct the base station to perform When the data is reversed again, the target side cannot confirm and identify the reverse transmission path, resulting in data packet loss.
  • the mobility in the current 4G or 5G standard is between two stations, and there is no problem of unrecognizable data reverse transmission path, and 4G and 5G dual connection bearers may have more than two base station entities for data reverse transmission, thus increasing the reverse transmission. Difficulty in identifying the transmission path. Through the embodiments of the present application, packet loss during the re-establishment process can be reduced, and the service experience of the user in the dual connection process is guaranteed.
  • FIG. 1 is a flowchart of the method for processing data in dual connection re-establishment according to an embodiment of the present application. As shown in FIG. 1, the process includes The following steps:
  • Step S102 In the case where the air interface reconfiguration fails and the UE carries the source physical cell identity PCI and re-establishes to the source-side master node MN, the secondary node SN receives the request message sent by the source-side MN, where the request message is used to indicate that the SN will be used by the source The data transmitted back from the side MN to the target side MN is back transmitted to the source side MN again;
  • step S104 the SN obtains data from the target MN in response to the request message, and transmits the data back to the source MN.
  • the secondary node SN receives the request message sent by the source side MN, where the request message is Yu instructs the SN to return the data back transmitted from the source side MN to the target side MN to the source side MN again, and the SN obtains the data from the target side MN in response to the request message and transmits the data back to the source side MN, thereby solving the related problems.
  • the technology there is no problem of how to control the data back transmission again after re-establishment, which achieves the effect of reducing user data packet loss and ensuring the continuity of back transmission data.
  • EN-DC refers to the dual connection between 4G wireless access network and 5G NR
  • NE-DC refers to the dual connection between 5G NR and 4G wireless access network
  • NGEN-DC refers to the 4G wireless connection under the 5G core network.
  • NR-DC refers to the dual link between 5G wireless access network and 5G wireless access network.
  • the data involved in this application is pre-buffered data, where the pre-buffered data includes: data buffered between wireless access networks, and/or data buffered between wireless access networks and the UE.
  • data buffering includes two aspects: data buffering between radio access networks (RAN1->RAN2), and data buffering between radio access networks and UEs. According to the buffering, as much data as possible the amount.
  • RAN1 can be eNB, gNB, or ng-eNB.
  • the method of this embodiment before the air interface reconfiguration fails, the method of this embodiment further includes a data back transmission.
  • This time data back transmission includes three application scenarios:
  • Application Scenario 1 Dual connection normal re-establishment of data back transmission, the process includes the following steps:
  • ordinary dual-connectivity bearers mainly refer to users who have established dual-connectivity bearers, but RRC (Radio Resource Control) re-establishment is triggered due to the air interface.
  • RRC Radio Resource Control
  • the network side needs to delete the SN and restore the PCell.
  • SRB1 re-activation security, and deleting SN requires data back transmission to MN (Master Node).
  • MN Master Node
  • Step S302 the UE establishes a dual connectivity service bearer
  • Step S304 the air interface triggers re-establishment
  • Step S306 the secondary node SN is deleted
  • Step S308 the data is transmitted back from SN to MN;
  • Step S310 the service is re-established
  • Step S312 adding a secondary node SN.
  • Application Scenario 2 The data reverse transmission process of the dual connection adding process, the method steps of the process include:
  • MCG bearer, SCG bearer and Split bearer data node backhaul scenarios include:
  • the re-establishment in the process of adding SN means that when the base station configures the UE for dual connection, the base station has already sent back data transmission to the SN secondary node, but the UE triggers the service re-establishment during the effective process of the air interface SCG configuration. .
  • the data needs to be transmitted back from SN to MN.
  • the MN restores the SRB1 of the PCell and reactivates the security. Deleting the SN requires data to be transmitted back to the MN.
  • the method steps of the data reverse transmission process of the dual connection adding process include:
  • Step S402 the base station triggers the establishment of a dual connection service, and the MN adds an SN;
  • Step S404 the user data is transmitted back from MN to SN;
  • Step S406 the air interface triggers SCG resource reconfiguration
  • Step S408 the air interface triggers re-establishment to the target side
  • Step S410 delete the secondary node SN
  • Step S412 data is transmitted back from SN to MN;
  • Step S414 the service is re-established
  • Application Scenario 3 It is the data reverse transmission process of the dual-connection handover process.
  • the method steps of this process include:
  • the data reverse transfer process of the dual-connection handover process that is, the user establishes a dual-connection bearer, and mobility is triggered for some reason, the air interface sends a reconfiguration message, and the target side bears configuration information.
  • the target side has not received the reconfiguration complete message, it has received the reestablishment request message, indicating that the air interface reconfiguration failed.
  • the re-establishment process of the handover process includes three types: re-establishment to the target side, re-establishment to the source side, and re-establishment to the third-party cell.
  • the re-establishment request carries the PCI of the target cell, it indicates that the UE configuration resource on the air interface of the target-side cell takes effect. If the service is re-established on the target side. Because the data on the target side has been reversed, the data on the target side will not be lost when re-established.
  • the re-establishment request carries the PCI of the source side cell, it indicates that the UE and the target side have failed, and the service needs to be re-established on the source side.
  • back transmission there is no suitable time in the related technology to trigger the data back transmission from the target side to the source side again. Therefore, in this scenario, there will be business packet loss if the data is not back transmitted, which affects the user experience.
  • the method steps of the data reverse transmission process of the dual-connection handover process include:
  • Step S502 the UE establishes a dual connectivity service bearer
  • Step S504 the air interface triggers mobility handover
  • Step S506 the secondary node SN is deleted, and the data is transmitted back to the MN;
  • Step S508 the air interface triggers re-establishment
  • Step S510 the data is transmitted back to the re-established target side
  • Step S512 the service is re-established
  • Step S514 Add a secondary node.
  • the MN notifies the SN to trigger the re-establishment of the reconfiguration failure, and the SN performs rollback processing.
  • the new configuration does not take effect and the old configuration is used.
  • the protocol defines the same mobility process that carries the SN, and the process can be modified by triggering the SN.
  • the service bearer is based on the DRB (Data Resource Bearer) level and does not reach the link level.
  • the SN modification process establishes a new bearer with the target MN, while retaining the old bearer, and transmits the bearer from the source side to the target side according to the DRB level. If the air interface fails, the MN again requests to send the SN modification request to reverse the data, but the SN maintains the link with the two MNs at the same time, the SN cannot distinguish the target link or the source link, and the SN can no longer distinguish how to reverse the data.
  • DRB Data Resource Bearer
  • this optional implementation manner proposes data reverse transmission identification during the re-establishment process, that is, the SN modification request message adds the chain re-establishment identifier and carries the reverse transmission address.
  • the resource failure rollback process is performed, and the back-transmission data received by the target SN is back-transmitted to the source side again. That is to say, during the re-establishment of the dual connection, the access network elements exchange data link identifiers for reverse transmission.
  • the SN modification message adds a re-establishment identification cell as shown in Table 1:
  • the SN release message adds a re-establishment identification cell, as shown in Table 2:
  • Solution 1 Cell1 (MN1) saves two copies of data during the mobility process, and fails during the handover execution process and re-established to the source side, the cached data can be restored to the user service data, and the target side is not used and then transferred back.
  • Scheme 2 Data reverse transmission
  • the MN sends an SN modification message to the SN, instructing the SN to reverse the received reverse transmission data to the source MN again.
  • Figure 8 shows the intra-MN mobility process Schematic diagram of the data reverse transmission process.
  • the data reverse transmission path 1 the data reverse transmission path from the source side to the target side during the execution of the handover.
  • Data reverse transmission path 2 The data reverse transmission path from the target side to the source side during the execution of the switch. Data reverse path for rollback when reconfiguration fails.
  • MN1 Cell1
  • MN2 Cell2
  • the UE carries the source PCI and re-establishes it to the source side Cell1.
  • the network side needs to Establish business on the source side.
  • the reverse data transmitted to Cell2 needs to be transmitted to Cell1 again to reduce data packet loss.
  • Solution 1 Cell1 (MN1) saves two copies of data during the mobility process, and fails during the handover execution process and re-established to the source side, the cached data can be restored to the user service data, and the target side is not used and then transferred back.
  • Solution 2 Data reverse transmission
  • the MN sends an SN modification message or similar equivalent processing message (such as handover request, etc.) to the SN, instructing the SN to reverse the received data back to the source Cell1 ,
  • Figure 10 is a schematic diagram of the data back-transmission process of the mobility process between MNs.
  • FIG. 9 it is the data reverse transmission process of the mobility process between MNs, where the data reverse transmission path 1: the data reverse transmission path from the source side to the target side during the execution of the handover. The data return path when the switch is successful.
  • Data reverse transmission path 2 The data reverse transmission path from the target side to the source side during the execution of the switch. Data reverse path for rollback when reconfiguration fails.
  • Solution 1 Cell1 (MeNB1) saves two copies of data during the mobility process. If the handover fails during the execution process and is re-established to the source side, the buffered data can be used to restore user service data, and the target side is not required to transfer the data back.
  • Solution 2 Data reverse transmission
  • the MN sends an SN release message or a similar equivalent processing message (such as handover request, etc.) to the SN, instructing the SN to reverse the received data back to the source Cell1 .
  • FIG. 12 is a schematic diagram of the data back transmission process of the mobility process between the MeNB and the eNB.
  • the SN release request has been triggered before the MeNB handover, and the MN informs the SN to stop issuing over the air interface. If the reverse transmission address is carried, the data is transmitted back to the MN.
  • the MeNB continues to send the SN release request message, carrying the new backhaul address, and the TeNB continues to send the received backhaul data to the MeNB after receiving the message.
  • the data back transmission path 1 the data back transmission path from the source side to the target side during the handover execution process.
  • Data reverse transmission path 2 The data reverse transmission path from the target side to the source side during the execution of the switch. Data reverse path for rollback when reconfiguration fails.
  • the user data has been transmitted back from Cell1 (MeNB1) to Cell2 (eNB2).
  • the UE carries the source PCI and re-establishes to the source side Cell1, and the network side needs to establish it on the source side business.
  • the reverse data transmitted to Cell2 needs to be transmitted to Cell1 again to reduce data packet loss.
  • Solution 1 Cell1 (MeNB) saves two copies of data during the mobility process. If the handover fails during the execution process and is re-established to the source side, the buffered data can be restored to the user service data, and the target side is not used and then transferred back.
  • Cell1 MeNB
  • FIG. 14 is a schematic diagram of the data backhaul flow of the mobility process between the eNB and the MeNB.
  • the eNB triggers a handover request to the MeNB, and the MeNB receives the initiation of the SN release flow.
  • the MeNB informs the SN to stop issuing over the air interface, and if it carries the reverse transmission address, the data is transmitted back to the MN.
  • the MeNB continues to send the SN release request message, carrying the new backhaul address, and the TeNB continues to send the received backhaul data to the MeNB after receiving the message.
  • Figure 13 shows the data reverse transmission process of the mobility process between eNB and MeNB, where data reverse transmission path 1: the data reverse transmission path from the source side to the target side during the execution of the handover. The data return path when the switch is successful.
  • Data reverse transmission path 2 The data reverse transmission path from the target side to the source side during the execution of the switch. Data reverse path for rollback when reconfiguration fails.
  • mobility handover includes at least: mobility handover with SN in MN, mobility handover without SN in MN, MN Mobility handover with SN between MNs, mobility handover without SN between MNs.
  • MN and MN Based on the interface (for example, X2/Xn and S1/Ng interface) division, MN and MN, between dual connection and single connection (MeNB/MgNB/Mng-eNB, and eNB, gNB, ng-eNB pairwise combination )
  • Mobility for example, mobility handover includes at least: NSA (Non-Stand Alone, specifically refers to the network element that can establish dual connections) to non-NSA (specifically refers to the network element that cannot establish dual connections).
  • NSA to NSA mobility handover mobility handover between MNs, X2 and S1 port type handover triggered between NSA and non-NSA.
  • this optional embodiment is suitable for dual connectivity and CA carrier aggregation scenarios, dual connectivity and other technology combination scenarios, and dual connectivity technology in LTE and its dual connectivity technology and other technology combination scenarios.
  • the method according to the above embodiment can be implemented by means of software plus the necessary general hardware platform, of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
  • the technical solution of this application essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to enable a terminal device (which can be a mobile phone, a computer, a server, or a network device, etc.) to execute the method described in each embodiment of the present application.
  • a device for processing data in dual connection re-establishment is also provided.
  • the device is used to implement the above-mentioned embodiments and preferred implementations, and what has been described will not be repeated.
  • the term "module" can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, hardware or a combination of software and hardware is also possible and conceived.
  • FIG. 15 is a structural block diagram of a data processing device in dual connection re-establishment according to an embodiment of the present application.
  • the device is applied to the side of the secondary node SN.
  • the device includes: a receiving module 1502, which is used to re-establish data on the air interface.
  • the request message sent by the source-side MN is received, where the request message is used to indicate that the SN will be used by the source-side master node
  • the data that the MN transmits back to the target-side MN is again transmitted back to the source-side MN;
  • the processing module 1504 is coupled to the receiving module 1502, and is configured to obtain the data from the target-side MN in response to the request message, and The data is transmitted back to the source-side MN.
  • EN-DC refers to the dual connection between 4G wireless access network and 5G NR
  • NE-DC refers to the dual connection between 5G NR and 4G wireless access network
  • NGEN-DC refers to the 4G wireless connection under the 5GC core network.
  • NR-DC refers to the dual link between 5G wireless access network and 5G wireless access network.
  • the data involved in this application is pre-buffered data, where the pre-buffered data includes: data buffered between the wireless access network, and/or data buffered between the wireless access network and the UE.
  • data buffering includes two aspects: data buffering between radio access networks (RAN1->RAN2), and data buffering between radio access networks and UEs. According to the buffering, as much data as possible the amount.
  • RAN1 can be eNB, gNB, or ng-eNB.
  • each of the above modules can be implemented by software or hardware.
  • it can be implemented in the following manner, but not limited to this: the above modules are all located in the same processor; or, the above modules are combined in any The forms are located in different processors.
  • the embodiment of the present application also provides a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in any of the foregoing method embodiments when running.
  • the foregoing storage medium may be configured to store a computer program for executing the following steps:
  • the foregoing storage medium may include, but is not limited to: U disk, Read-Only Memory (Read-Only Memory, ROM for short), Random Access Memory (Random Access Memory, RAM for short), Various media that can store computer programs, such as mobile hard disks, magnetic disks, or optical disks.
  • an embodiment of the present application further provides an electronic device, including a memory and a processor, the memory stores a computer program, and the processor is configured to run the computer program to perform any of the foregoing method implementations.
  • the steps in the example are described in detail below.
  • the aforementioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the aforementioned processor, and the input-output device is connected to the aforementioned processor.
  • the foregoing processor may be configured to execute the following steps through a computer program:
  • modules or steps of this application can be implemented by a general computing device, and they can be concentrated on a single computing device or distributed in a network composed of multiple computing devices.
  • they can be implemented with program codes executable by the computing device, so that they can be stored in the storage device for execution by the computing device, and in some cases, can be executed in a different order than here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种双连接重建立中数据的处理方法及装置,该方法包括:在空口重配失败且UE携带源物理小区标识PCI重建立到源侧主节点MN的情况下,辅节点SN接收所述源侧MN发送的请求消息,其中,所述请求消息用于指示所述SN将由所述源侧MN反传到所述目标侧MN的数据再次反传到所述源侧MN;所述SN响应于所述请求消息从目标侧MN获取所述数据,并将所述数据反传到所述源侧MN。

Description

双连接重建立中数据的处理方法及装置
相关申请的交叉引用
本申请基于申请号为201910522919.X、申请日为2019年6月17日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请涉及通信领域,具体而言,涉及一种双连接重建立中数据的处理方法及装置。
背景技术
R15引入了MR-DC(Dual Connectivity)双连接组网,双连接技术充分利用不同站(同制式或不同制式)的无线空口资源,提高用户体验速率。利用宏/微组网提高频谱效率和负载平衡,支持双连接的终端可以同时连接两个LTE/NR基站,增加单用户的吞吐量。但是无线空口一旦发生重配失败,就会导致业务丢包,在此情况下网络侧需要尽可能减少业务丢包,保证业务体验。
双连接业务过程中,由于下行空口失败,会触发UE在发生重建立流程。其中,重建立流程包括:普通重建立和切换过程的重建立;两者的别在于在重建立过程是否交织切换流程,如果有,则是切换过程重建立,否则是普通重建立。但在相关技术中,在重建立前用户已经发生数据反传,但对于重建立后如何控制数据再次反传的问题,目前尚未存在有效的解决方案。
发明内容
本申请实施例提供了一种双连接重建立中数据的处理方法及装置。
根据本申请的一个实施例,提供了一种双连接重建立中数据的处理方法,包括:在空口重配失败且UE携带源物理小区标识PCI重建立到源侧主节点MN的情况下,辅节点SN接收所述源侧MN发送的请求消息,其中,所述请求消息用于指示所述SN将由所述源侧MN反传到所述目标侧MN的数据再次反传到所述源侧MN;所述SN响应于所述请求消息从目标侧MN获取所述数据,并将 所述数据反传到所述源侧MN。
根据本申请的另一个实施例,提供了一种双连接重建立中数据的处理装置,应用于辅节点SN侧,包括:接收模块,用于在空口重配失败且UE携带源物理小区标识PCI重建立到源侧主节点MN的情况下,接收所述源侧MN发送的请求消息,其中,所述请求消息用于指示所述SN将由所述源侧MN反传到所述目标侧MN的数据再次反传到所述源侧MN;处理模块,用于响应于所述请求消息从目标侧MN获取所述数据,并将所述数据反传到所述源侧MN。
根据本申请的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本申请的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本申请实施例的双连接重建立中数据的处理方法的流程图;
图2是根据本申请实施例的数据缓存机制示意图;
图3是根据本申请实施例的双连接普通重建立数据反传示意图;
图4是根据本申请实施例双连接添加过程的数据反传示意图;
图5是根据本申请可选实施例的双连接切换过程的数据反传;
图6是根据本申请可选实施例的MN内相同SN切换过程中的数据路径示意图;
图7是根据本申请可选实施例的MN内移动性过程的数据反传路径的示意图;
图8是根据本申请可选实施例的MN内移动性过程的数据反传流程的示意图;
图9是根据本申请可选实施例的MN间移动性过程的数据反传路径的示意图;
图10是根据本申请可选实施例的MN间移动性过程的数据反传流程的示意图;
图11是根据本申请可选实施例的MeNB和eNB间移动性过程的数据反传路径的示意图;
图12是根据本申请可选实施例的MeNB和eNB间移动性过程的数据反传流程的示意图;
图13是根据本申请可选实施例的eNB和MeNB间移动性过程的数据反传路径的示意图;
图14是根据本申请可选实施例的eNB和MeNB间移动性过程的数据反传流程的示意图;
图15是根据本申请实施例的双连接重建立中数据的处理装置的结构框图;
图16是根据本申请实施例的电子装置的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在双连接组网场景下,UE在建立双连接,尤其是双连接过程中空口重配失败,或者移动性过程中空口重配失败,触发了重建立流程,而当前标准协议流程无法指示基站进行再次进行数据反传,目标侧也无法确认辨认反传路径,导致数据丢包。当前4G或者5G制式内的移动性是两个站之间的,不存在数据反传路径无法识别问题,而4G和5G双连接承载可能存在两个以上基站实体进行数据反传,因而增加了反传路径识别难度。通过本申请的实施例,可以减少重建立过程中的丢包,保证了用户双连接过程中的业务体验。
实施例1
在本实施例中提供了一种双连接重建立中数据的处理方法,图1是根据本申请实施例的双连接重建立中数据的处理方法的流程图,如图1所示,该流程 包括如下步骤:
步骤S102,在空口重配失败且UE携带源物理小区标识PCI重建立到源侧主节点MN的情况下,辅节点SN接收源侧MN发送的请求消息,其中,请求消息用于指示SN将由源侧MN反传到目标侧MN的数据再次反传到源侧MN;
步骤S104,SN响应于请求消息从目标侧MN获取数据,并将数据反传到源侧MN。
通过上述步骤S102和步骤S104,在空口重配失败且UE携带源物理小区标识PCI重建立到源侧主节点MN的情况下,辅节点SN接收源侧MN发送的请求消息,其中,请求消息用于指示SN将由源侧MN反传到目标侧MN的数据再次反传到源侧MN,而SN响应于请求消息从目标侧MN获取数据,并将数据反传到源侧MN,从而解决了相关技术中在重建立后不存在如何控制数据再次反传的问题,达到了减少用户数据丢包并且保证反传数据连续性的效果。
需要说明的是,本申请中涉及到的双连接的应用场景包括但不限于:EN-DC,NE-DC,NGEN-DC和NR-DC。当然也可以应用到通信系统其它领域。其中,E代表EUTRA,即4G无线接入网;N代表NR,即5G新无线网络;NG代表代表下一代网络,支持链接5GC核心网的eNB,即ng-eNB。因此,EN-DC就是指4G无线接入网与5G NR的双连接,NE-DC就是指5G NR与4G无线接入网的双连接,而NGEN-DC指连接5G核心网下的4G无线接入网与5G NR的双连接。NR-DC是指5G无线接入网与5G无线接入网的双链接。
此外,本本申请中涉及到的数据为预先缓存的数据,其中,预先缓存的数据包括:无线接入网络之间缓存的数据,和/或无线接入网络与UE之间缓存的数据。
由于无线空口的特殊性,随时都有可能发生失败。重建立场景下保存数据,可以做失败流程回滚,数据二次反传,无线侧尽可能减少业务中断可能。如图2所示,数据缓存包括两个方面,无线接入网络之间(RAN1->RAN2)的数据缓存,以及无线接入网络和UE之间的数据缓存,据缓存尽可能缓存多的数据量。
需要说明的是,RAN1可以是eNB,gNB,也可以是ng-eNB。
在本实施例的可选实施方式中,在空口重配失败之前,本实施例的方法还包括一次数据的反传,这次的数据反传包括三个应用场景:
应用场景一:双连接普通重建立数据反传,该过程包括以下步骤:
S1,触发UE建立双连接业务承载;
S2,在空口触发重建立之后,删除SN,并将数据由SN反传到源侧MN;
S3,在业务重建立完成之后,重新添加SN。
也就是说,普通的双连接承载主要是指用户已经建立了双连接承载,但是由于空口原因触发了RRC(Radio Resource Control,无线资源控制)重建立,此时网络侧需要删除SN,重新恢复PCell的SRB1,重新激活安全,而删除SN需要数据反传到MN(Master Node,主节点),如图3所示,该双连接普通重建立数据反传过程包括:
步骤S302,UE建立双连接业务承载;
步骤S304,空口触发重建立;
步骤S306,辅节点SN删除;
步骤S308,数据重SN到MN反传;
步骤S310,业务重建立;
步骤S312,添加辅节点SN。
应用场景二:双连接添加过程的数据反传过程,该过程的方法步骤包括:
S1,触发基站建立双连接业务,并触发源侧MN添加SN;
S2,将数据由源侧MN反传到SN;
S3,在空口SN添加重配过程中触发重建立到目标侧之后,删除SN,并将数据由SN反传到目标侧MN;
S4,在业务重建立完成之后,重新添加SN。
需要说明的是,在SN(Secondary Node,辅节点)添加和SN删除过程中,如果PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)锚点发生迁移,则数据需要从源侧反传到目标侧,保证业务数据的连续性,直到通知核心网更新下行变更地址,下行数据在目标侧生效。MCG承载,SCG承载和Split承载数据节点反传场景包括:
MN terminated bearer内;
SN terminated bearer内;
MN terminated bearer和SN terminated bearer之间;
因此,添加SN过程中的重建立,是指基站对UE进行双连接配置时,基站已经在给SN辅节点发送了数据反传,但在对空口SCG配置生效过程中,UE触发了业务重建立。此时数据需要再从SN反传到MN。MN重新恢复PCell的SRB1,重新激活安全,删除SN需要数据反传到MN。如图4所示,该双连接添加过程的数据反传过程的方法步骤包括:
步骤S402,基站触发建立双连接业务,MN添加SN;
步骤S404,用户数据从MN到SN反传;
步骤S406,空口触发SCG资源重配;
步骤S408,空口触发重建立到目标侧;
步骤S410,删除辅节点SN;
步骤S412,数据从SN到MN反传;
步骤S414,业务重建立;
步骤S416,添加SN。
应用场景三:为双连接切换过程的数据反传过程,该过程的方法步骤包括:
S1,触发UE建立双连接业务;
S2,在空口触发移动性切换之后,删除SN,并将数据由SN反传到目标侧MN;
S3,在空口触发重建立到目标侧之后,业务重建立完成,重新添加SN。
双连接切换过程的数据反传过程,即用户建立了双连接承载,由于某种原因触发了移动性,空口下发重配消息,目标侧承载配置信息。在目标侧还未收到重配完成消息时,收到了重建立请求消息,表明空口重配失败。切换过程的重建立过程包括了三种:重建立到目标侧,重建立到源侧,重建立到第三方小区。
如果重建立请求携带了目标小区PCI,则表明UE在目标侧小区空口配置资源生效,如果在目标侧重新建立业务。因为目标侧数据已经反传,因此重建立到目标侧数据不会丢包。
如果重建立请求携带了源侧小区PCI,则表明UE和目标侧失败,需要在源侧重新建立业务。在已经发生反传的场景下,相关技术中没有合适时机触发数据从目标侧再次反传到源侧,因此这种场景下不反传数据会存在业务丢包,影响用户体验。
如图5所示,该双连接切换过程的数据反传过程的方法步骤包括:
步骤S502,UE建立双连接业务承载;
步骤S504,空口触发移动性切换;
步骤S506,辅节点SN删除,数据反传到MN;
步骤S508,空口触发重建立;
步骤S510,数据反传到重建立目标侧;
步骤S512,业务重建立;
步骤S514,添加辅节点。
如图6所示,为MN内相同SN切换过程中的数据路径;其中,数据反传的重点在于重建立过程中的数据反传和目标资源释放流程,主要流程包括:
S1,MN通知SN重配失败触发的重建立,SN做回滚处理,新配置不生效,使用旧配置。
S2,SN需要做把接收的反传数据做备份。
S3,SN识别重建立场景后,先对反传数据继续反传给源侧,然后再释放资源。
下面结合本申请的可选实施方式对本案进行举例说明;在本可选实施方式中,以EN-DC场景下切换携带相同SN场景为例,其他双连接场景数据反传等同处理。在SN terminated bearer双连接触发重建立,同一SN数据再次反传失败场景主要有:
1)MN内移动性切换,同时目标SN不变。
2)MN间移动性切换,同时目标SN不变。
协议定义了相同携带SN的移动性过程,可以通过触发SN修改流程。但是SN双连接过程,业务承载是按照DRB(Data Resource Bearer,数据资源承载)级的,没有到链路级。在触发切换过程中,SN修改流程和目标MN建立新的承 载,同时保留老的承载,按照DRB级从源侧承载反传到目标侧。若是空口发生了失败,MN再次要求发送SN修改要求反传数据,但是SN同时和两个MN保持链路,SN区分不了目标链路,还是源链路,SN已经无法区分是如何反传数据。
因此,本可选实施方式提出了重建立过程的数据反传识别,即SN修改请求消息增加链重建立标识,并且携带反传地址。在SN识别重建立场景后,做资源失败回滚处理,把目标SN收到的反传数据再次反传给源侧。也就是说,在双连接重建过程中,接入网元之间交互有用于反传的数据链路标识。
SN修改消息增加重建立标识信元如表1所示:
Figure PCTCN2020094178-appb-000001
表1
SN释放消息增加重建立标识信元,如表2所示:
Figure PCTCN2020094178-appb-000002
表2
需要说明的是,若以其他消息名称替代,但表征相同功能和目的信元指示等同处理。
MN内切换过程的重建立过程:
MN内场景下,在变更过程中,用户数据已经从Cell1(MN1内)数据反传到Cell2(MN1内)。在空口业务发生失败场景下,UE携带源PCI重建立到了源侧 Cell1,网络侧需要在源侧建立业务。传递到Cell2的反传数据需要再次传递给Cell1,减少数据丢包,解决的方案有:
方案1:Cell1(MN1)在移动性过程中数据保存了两份,在切换执行过程发生失败,重建立到了源侧,则可以缓存的数据恢复用户业务数据,不用目标侧再反传过来。
方案2:数据反传按照图8中的方式1流程,MN给SN发送SN修改消息,指示SN对接收到的反传数据,再次反传给源MN,其中,图8为MN内移动性过程的数据反传流程示意图。
如图7所示,为MN内移动性过程的数据反传过程;其中,数据反传路径1:切换执行过程中,由源侧到目标侧的数据反传路径。切换成功的时候的数据反传路径。数据反传路径2:切换执行过程中,由目标侧到源侧的数据反传路径。重配失败回滚的数据反传路径。
MN间切换过程的重建立:
MN内场景下,在变更过程中,用户数据已经从Cell1(MN1)数据反传到Cell2(MN2),在空口业务发生失败场景下,UE携带源PCI重建立到了源侧Cell1,网络侧需要在源侧建立业务。传递到Cell2的反传数据需要再次传递给Cell1,减少数据丢包。解决方案有:
方案1:Cell1(MN1)在移动性过程中数据保存了两份,在切换执行过程发生失败,重建立到了源侧,则可以缓存的数据恢复用户业务数据,不用目标侧再反传过来。
方案2:数据反传按照图10的方式1流程,MN给SN发送SN修改消息或者类似等同处理消息(比如:切换请求等),指示SN对接收到的反传数据,再次反传给源Cell1,其中,图10是MN间移动性过程的数据反传流程示意图。
此外,如图9所示,为MN间移动性过程的数据反传过程,其中,数据反传路径1:切换执行过程中,由源侧到目标侧的数据反传路径。切换成功的时候的数据反传路径。数据反传路径2:切换执行过程中,由目标侧到源侧的数据反传路径。重配失败回滚的数据反传路径。
MeNB到eNB间切换过程的重建立:
MeNB到eNB切换过程中,用户数据已经从Cell1(MeNB1)数据反传到 Cell2(eNB2),在空口业务发生失败场景下,UE携带源PCI重建立到了源侧Cell1,网络侧需要在源侧建立业务。传递到Cell2的反传数据需要再次传递给Cell1,减少数据丢包。解决方案有:
方案1:Cell1(MeNB1)在移动性过程中数据保存了两份,在切换执行过程发生失败,重建立到了源侧,则可以缓存的数据恢复用户业务数据,不用目标侧再反传过来。
方案2:数据反传按照图12的方式1流程,MN给SN发送SN释放消息或者类似等同处理消息(比如:切换请求等),指示SN对接收到的反传数据,再次反传给源Cell1。其中,图12是MeNB和eNB间移动性过程的数据反传流程的示意图。MeNB切换前已经触发了SN释放请求,MN通知SN停止空口下发,如果携带了反传地址,则反传数据到MN。在空口触发重建立流程后,MeNB继续发送SN释放请求消息,携带新的反传地址,则TeNB收到消息后,把接收道到的反传数据继续发送给MeNB。
如图11所示,为MeNB和eNB间移动性过程的数据反传过程,其中,数据反传路径1:切换执行过程中,由源侧到目标侧的数据反传路径。切换成功的时候的数据反传路径。数据反传路径2:切换执行过程中,由目标侧到源侧的数据反传路径。重配失败回滚的数据反传路径。
eNB到MeNB间切换过程的重建立:
eNB到MeNB间切换场景,用户数据已经从Cell1(MeNB1)数据反传到Cell2(eNB2),在空口业务发生失败场景下,UE携带源PCI重建立到了源侧Cell1,网络侧需要在源侧建立业务。传递到Cell2的反传数据需要再次传递给Cell1,减少数据丢包。解决方案有:
方案1:Cell1(MeNB)在移动性过程中数据保存了两份,在切换执行过程发生失败,重建立到了源侧,则可以缓存的数据恢复用户业务数据,不用目标侧再反传过来。
方案2:数据反传按照图14的方式1流程,MN给SN发送SN释放消息或者其他类似等同处理消息(比如:切换请求等),指示SN对接收到的反传数据,再次反传给源MN。其中,图14是eNB和MeNB间移动性过程的数据反传流程的示意图,eNB触发到MeNB的切换请求,MeNB收到发起SN释放流程。MeNB 通知SN停止空口下发,如果携带了反传地址,则反传数据到MN。在空口触发重建立流程后,MeNB继续发送SN释放请求消息,携带新的反传地址,则TeNB收到消息后,把接收道到的反传数据继续发送给MeNB。
如图13所示为eNB和MeNB间移动性过程的数据反传过程,其中,数据反传路径1:切换执行过程中,由源侧到目标侧的数据反传路径。切换成功的时候的数据反传路径。数据反传路径2:切换执行过程中,由目标侧到源侧的数据反传路径。重配失败回滚的数据反传路径。
可见,在本可选实施方式中提出了双连接业务触发重建立过程中,如何在主节点和辅节点之间,甚至更多关联节点之前的数据存储,资源回滚,反传路径识别,数据反传等方式,其中,包括但不限于主节点内的带辅节点的移动性,主节点之间带辅节点之间的移动性,支持双连接小区和不支持双连接小区之间移动性等移动场景。具体地说,基于切换类型划分,MN带SN移动性包括SN变化和不变化场景,比如,移动性切换至少包括:MN内带SN的移动性切换,MN内不带SN的移动性切换,MN间带SN的移动性切换,MN间不带SN的移动性切换。而基于接口(比如,X2/Xn和S1/Ng接口)划分,MN和MN,双连接和单连接之间(MeNB/MgNB/Mng-eNB,和eNB,gNB,ng-eNB之间两两组合)的移动性,比如,移动性切换至少包括:NSA(Non-Stand Alone,特指能建立双连接的网元)到非NSA(特指不能建立双连接的网元)的移动性切换,非NSA到NSA的移动性切换,MN之间的移动性切换,NSA和非NSA间触发的X2和S1口类型切换。
需要说明的是,本可选实施方式适用于双连接和CA载波聚合场景,双连接和其他技术组合场景,以及LTE内的双连接技术及其双连接技术和其他技术组合场景。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
实施例2
在本实施例中还提供了一种双连接重建立中数据的处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图15是根据本申请实施例的双连接重建立中数据的处理装置的结构框图,该装置应用于辅节点SN侧,如图15所示,该装置包括:接收模块1502,用于在空口重配失败且UE携带源物理小区标识PCI重建立到源侧主节点MN的情况下,接收所述源侧MN发送的请求消息,其中,所述请求消息用于指示所述SN将由所述源侧MN反传到所述目标侧MN的数据再次反传到所述源侧MN;处理模块1504,与接收模块1502耦合连接,用于响应于所述请求消息从目标侧MN获取所述数据,并将所述数据反传到所述源侧MN。
需要说明的是,本申请中涉及到的双连接的应用场景包括但不限于:EN-DC,NE-DC,NGEN-DC和NR-DC。当然也可以应用到通信系统其它领域。其中,E代表EUTRA,即4G无线接入网;N代表NR,即5G新无线网络;NG代表代表下一网络,支持链接5GC侧4G无线接入网,即ng-eNB。因此,EN-DC就是指4G无线接入网与5G NR的双连接,NE-DC就是指5G NR与4G无线接入网的双连接,而NGEN-DC指连接5GC核心网下的4G无线接入网与5G NR的双连接。NR-DC是指5G无线接入网与5G无线接入网的双链接。
此外,本申请中涉及到的数据为预先缓存的数据,其中,预先缓存的数据包括:无线接入网络之间缓存的数据,和/或无线接入网络与UE之间缓存的数据。
由于无线空口的特殊性,随时都有可能发生失败。重建立场景下保存数据,可以做失败流程回滚,数据二次反传,无线侧尽可能减少业务中断可能。如图2所示,数据缓存包括两个方面,无线接入网络之间(RAN1->RAN2)的数据缓存,以及无线接入网络和UE之间的数据缓存,据缓存尽可能缓存多的数据量。
需要说明的是,RAN1可以是eNB,gNB,也可以是ng-eNB。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者, 可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
本申请的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序:
S1,在空口重配失败且UE携带源物理小区标识PCI重建立到源侧主节点MN的情况下,接收源侧MN发送的请求消息,其中,请求消息用于指示SN将由源侧MN反传到目标侧MN的数据再次反传到源侧MN;
S2,响应于请求消息从目标侧MN获取数据,并将数据反传到源侧MN。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
如图16所示,本申请的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
S1,在空口重配失败且UE携带源物理小区标识PCI重建立到源侧主节点MN的情况下,接收源侧MN发送的请求消息,其中,请求消息用于指示SN将由源侧MN反传到目标侧MN的数据再次反传到源侧MN;
S2,响应于请求消息从目标侧MN获取数据,并将数据反传到源侧MN。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请不限制于任何特定的硬件和软件结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种双连接重建立中数据的处理方法,包括:
    在空口重配失败且UE携带源物理小区标识PCI重建立到源侧主节点MN的情况下,辅节点SN接收所述源侧MN发送的请求消息,其中,所述请求消息用于指示所述SN将由所述源侧MN反传到目标侧MN的数据再次反传到所述源侧MN;
    所述SN响应于所述请求消息从目标侧MN获取所述数据,并将所述数据反传到所述源侧MN。
  2. 根据权利要求1所述的方法,其中,在空口重配失败之前,所述方法还包括:
    触发UE建立双连接业务承载;
    在空口触发重建立之后,删除所述SN,并将数据由所述SN反传到所述源侧MN;
    在业务重建立完成之后,重新添加所述SN。
  3. 根据权利要求1所述的方法,其中,在空口重配失败之前,所述方法还包括:
    触发基站建立双连接业务,并触发所述源侧MN添加所述SN;
    将数据由所述源侧MN反传到所述SN;
    在空口SN添加重配过程中触发重建立到目标侧之后,删除所述SN,并将数据由所述SN反传到所述目标侧MN;
    在业务重建立完成之后,重新添加所述SN。
  4. 根据权利要求1所述的方法,其中,在空口重配失败之前,所述方法还包括:
    触发UE建立双连接业务;
    在空口触发移动性切换之后,删除所述SN,并将数据由所述SN反传 到所述目标侧MN;
    在空口触发重建立到目标侧之后,业务重建立完成,重新添加所述SN。
  5. 根据权利要求4所述的方法,其中,所述移动性切换至少包括:MN内带SN的移动性切换,MN内不带SN的移动性切换,MN间带SN的移动性切换,MN间不带SN的移动性切换,NSA到非NSA的移动性切换,非NSA到NSA的移动性切换,MN之间的移动性切换,NSA和非NSA间触发的X2和S1口类型切换。
  6. 根据权利要求1所述的方法,其中,在双连接重建过程中,接入网元之间交互有用于反传的数据链路标识。
  7. 根据权利要求1至6任一项所述的方法,其中,所述数据为预先缓存的数据,其中,所述预先缓存的数据包括:无线接入网络之间缓存的数据,和/或无线接入网络与UE之间缓存的数据。
  8. 一种双连接重建立中数据的处理装置,应用于辅节点SN侧,包括:
    接收模块,用于在空口重配失败且UE携带源物理小区标识PCI重建立到源侧主节点MN的情况下,接收所述源侧MN发送的请求消息,其中,所述请求消息用于指示所述SN将由所述源侧MN反传到目标侧MN的数据再次反传到所述源侧MN;
    处理模块,用于响应于所述请求消息从目标侧MN获取所述数据,并将所述数据反传到所述源侧MN。
  9. 根据权利要求8所述的装置,其中,所述数据为预先缓存的数据,其中,所述预先缓存的数据包括:无线接入网络之间缓存的数据,和/或无线接入网络与UE之间缓存的数据。
  10. 一种存储介质,其中,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至7任一项中所述的方法。
  11. 一种电子装置,包括存储器和处理器,其中,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利 要求1至7任一项中所述的方法。
PCT/CN2020/094178 2019-06-17 2020-06-03 双连接重建立中数据的处理方法及装置 WO2020253536A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20826460.6A EP3979699A4 (en) 2019-06-17 2020-06-03 DATA PROCESSING METHOD AND DEVICE IN DUAL CONNECTIVITY RECOVERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910522919.XA CN112105092B (zh) 2019-06-17 2019-06-17 双连接重建立中数据的处理方法及装置
CN201910522919.X 2019-06-17

Publications (1)

Publication Number Publication Date
WO2020253536A1 true WO2020253536A1 (zh) 2020-12-24

Family

ID=73748539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094178 WO2020253536A1 (zh) 2019-06-17 2020-06-03 双连接重建立中数据的处理方法及装置

Country Status (3)

Country Link
EP (1) EP3979699A4 (zh)
CN (1) CN112105092B (zh)
WO (1) WO2020253536A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901900A (zh) * 2020-04-01 2020-11-06 中兴通讯股份有限公司 一种通信方法、装置、设备和存储介质
CN114765577B (zh) * 2021-01-14 2024-04-02 大唐移动通信设备有限公司 测量配置的指示方法、确定方法、装置、设备及存储介质
CN117279049A (zh) * 2022-06-15 2023-12-22 中兴通讯股份有限公司 切换控制方法、基站及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917409A (zh) * 2011-08-02 2013-02-06 中兴通讯股份有限公司 一种切换方法、基站及系统
CN107277874A (zh) * 2013-11-22 2017-10-20 索尼公司 通信系统中的电子装置和通信方法、计算机可读存储介质
US20180014237A1 (en) * 2015-01-16 2018-01-11 Samsung Electronics Co., Ltd. Handover method and apparatus
CN107690162A (zh) * 2016-08-03 2018-02-13 中兴通讯股份有限公司 小区连接失败的处理方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5069704B2 (ja) * 2009-02-02 2012-11-07 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及び無線基地局
WO2016065591A1 (en) * 2014-10-30 2016-05-06 Nokia Solutions And Networks Oy Control of communication using dual-connectivity mode description
CN107889172A (zh) * 2016-09-29 2018-04-06 中兴通讯股份有限公司 小区切换的方法、装置及系统
CN109618419B (zh) * 2018-12-19 2021-10-26 中兴通讯股份有限公司 一种用于支持双连接的安全处理方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102917409A (zh) * 2011-08-02 2013-02-06 中兴通讯股份有限公司 一种切换方法、基站及系统
CN107277874A (zh) * 2013-11-22 2017-10-20 索尼公司 通信系统中的电子装置和通信方法、计算机可读存储介质
US20180014237A1 (en) * 2015-01-16 2018-01-11 Samsung Electronics Co., Ltd. Handover method and apparatus
CN107690162A (zh) * 2016-08-03 2018-02-13 中兴通讯股份有限公司 小区连接失败的处理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3979699A4 *

Also Published As

Publication number Publication date
EP3979699A4 (en) 2022-08-10
CN112105092A (zh) 2020-12-18
CN112105092B (zh) 2024-03-15
EP3979699A1 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
US10750414B2 (en) System and method for handovers in a dual connectivity communications system
CN108990116B (zh) 一种移动切换的管理方法、装置及设备
KR102299118B1 (ko) 신규 무선 접속 기술에서의 중복 및 rlc 동작
EP3675579B1 (en) Data scheduling methods, apparatus and computer-readable mediums
CN114449603B (zh) 无线通信系统中的基站及由其执行的方法
WO2017124821A1 (zh) 一种实现承载切换的方法及终端和基站
CN103906152B (zh) 支持ue快速恢复的方法
CN112352451A (zh) 最小移动中断的小区切换方法
WO2020253536A1 (zh) 双连接重建立中数据的处理方法及装置
JP2017526302A (ja) 無線ネットワーク内の多重接続性
WO2019153139A1 (zh) 无线链路失败处理方法及相关产品
JP2020511842A (ja) ネットワーク接続の復旧方法、装置及び通信システム
JP2017508364A (ja) セカンダリ基地局及びマスター基地局によって実行される通信方法、並びに対応する基地局
CN108781376B (zh) 数据传输方法、用户设备及接入网设备
JPWO2020032129A1 (ja) 中継装置
JP2021531678A (ja) gNB−CU−UPにおける完全性保護のハンドリング
CN108400847B (zh) 数据传输方法及装置
WO2020015586A1 (zh) 控制信令的发送方法及装置、服务基站、存储介质
WO2017177950A1 (zh) 连接的建立方法、装置及系统
CN107438273B (zh) 承载转移中数据处理状态的确定方法及装置
US20230403623A1 (en) Managing sidelink information, configuration, and communication
WO2021129018A1 (zh) 网络连接的重建立方法及装置、存储介质、电子装置
WO2016101586A1 (zh) 一种基站切换方法、系统及相关装置、存储介质
CN110087304B (zh) 在通信系统中添加次要基站的方法和装置
WO2022151086A1 (zh) 集成的接入和回传的通信方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020826460

Country of ref document: EP

Effective date: 20211226