WO2020253429A1 - 微型有源矩阵式有机发光显示器及其制作方法 - Google Patents

微型有源矩阵式有机发光显示器及其制作方法 Download PDF

Info

Publication number
WO2020253429A1
WO2020253429A1 PCT/CN2020/090718 CN2020090718W WO2020253429A1 WO 2020253429 A1 WO2020253429 A1 WO 2020253429A1 CN 2020090718 W CN2020090718 W CN 2020090718W WO 2020253429 A1 WO2020253429 A1 WO 2020253429A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
pixel electrode
organic light
glass substrate
silicon wafer
Prior art date
Application number
PCT/CN2020/090718
Other languages
English (en)
French (fr)
Inventor
杨建兵
张阳
彭劲松
刘腾飞
马金阳
Original Assignee
南京国兆光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京国兆光电科技有限公司 filed Critical 南京国兆光电科技有限公司
Publication of WO2020253429A1 publication Critical patent/WO2020253429A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the invention relates to an OLED technology, in particular to an organic light-emitting diode display technology, in particular to a miniature active matrix organic light-emitting display and a manufacturing method thereof.
  • an organic light-emitting diode (OLED) display is a self-luminous display device that displays images by using light-emitting organic light-emitting diodes. Light is produced by controlling the energy generated when excitons fall back from an excited state. Excitons are generated by combining electrons and holes in the organic emission layer.
  • an organic light emitting diode display includes a transistor drive matrix and an organic light emitting diode display unit. Using monocrystalline silicon as the substrate to fabricate the transistor drive matrix, because monocrystalline silicon has a very high mobility, very high resolution can be achieved.
  • the display size of an organic light-emitting diode display manufactured using monocrystalline silicon as a substrate is usually less than 1 inch, and belongs to a miniature active matrix organic light-emitting diode display.
  • processes such as color filter films in LCD displays are usually used.
  • Organic light-emitting diode displays are susceptible to the influence of water and oxygen, etc., which will destroy the service life of organic light-emitting diodes. Therefore, in the OLED display manufacturing process, it is necessary to avoid the entry of water and oxygen, and at the same time, the OLED display needs to be protected from water and oxygen.
  • the existing structure cannot solve such problems well due to the influence of the process, which makes it difficult to improve the performance of the organic light emitting diode display and has a low service life, which affects its popularization and application.
  • the purpose of the present invention is to solve the problem that the existing organic light-emitting diodes need to prevent the influence of water and oxygen in the production process due to the structure limitation, which leads to the increase of manufacturing difficulty.
  • Light-emitting display ie micro AMOLED display.
  • a miniature active matrix organic light emitting display which includes a silicon wafer substrate 1 and a glass substrate 15. It is characterized in that a plurality of anode pixel electrodes 2 are fabricated on the silicon wafer substrate 1, and each anode pixel electrode 2 They are insulated from each other by an insulating layer 3, a device layer is fabricated on the anode pixel electrode 2, a film sealing layer for packaging is provided on the device layer, and a plurality of color photoresists are fabricated on the opposite side of the glass substrate 16 and the film sealing layer Layer 14, the color photoresist layers 14 are separated into independent units by the black matrix layer 15, the glass substrate 16 on the uppermost layer is connected to the silicon wafer substrate through the surrounding adhesive glue; the anode pixel electrode 2
  • the material is a high-reflectivity metal, the high-reflectivity metal is Al or Ag, and the total thickness of the anode pixel electrode (2) is between 60nm and 550nm; the anode pixel electrode 16 is formed through a patterning process The
  • the gap between the patterned pixel electrodes is between 0.3 ⁇ m and 1.5 ⁇ m.
  • a polymer insulating layer 3 is filled between the gaps.
  • the device layer is composed of a hole injection layer 4, a hole transport layer 5, a light emitting layer 6, an exciton blocking layer 7, an electron transport layer 8, an electron injection layer 9 and a cathode electrode layer 10 in sequence.
  • Sealing said film consists of three layers, a first layer is formed by thermal evaporation high refractive index layer, an organic compound and an inorganic compound layer, Alq3 layer composed of MoO 3, the thickness of 30nm ⁇ 100nm; the second layer is used
  • the thin film layer prepared by the plasma atomic layer deposition technology (PEALD) method, the thin film layer is Al 2 O 3 or TiO 3 , the thickness is 20 ⁇ 200nm;
  • the third layer is an organic polymer sealing layer, this sealing layer uses It is formed by spin coating or scratching or inkjet printing, and the film thickness is 300-800nm.
  • PEALD plasma atomic layer deposition technology
  • the present invention uses photolithography to make color filter layers and black matrix on the glass substrate 16.
  • the area of a single color filter layer is (3 ⁇ m ⁇ 5 ⁇ m) ⁇ (9 ⁇ m ⁇ 15 ⁇ m), which is consistent with the size of the pixel, and the thickness is about 0.5um ⁇ 1.5 ⁇ m;
  • the area of the black matrix is (0.3 ⁇ m ⁇ 1.5 ⁇ m) ⁇ (9 ⁇ m ⁇ 15 ⁇ m), which is consistent with the pixel interval, and the thickness is 0.5um ⁇ 1.5um.
  • the adhesive glue is first applied to the silicon substrate and controlled by a precision dispenser.
  • the width of the glue is 0.5mm ⁇ 1.5mm, and the thickness of the glue is 0.2um ⁇ 1.8um; use precision bonding equipment to precisely bond the silicon substrate and the color film glass substrate to achieve a one-to-one correspondence between the pixel electrode and the color filter layer.
  • the present invention can not only ensure that water and oxygen can be completely prevented from entering the device during the production process, but also can ensure the isolation of water and oxygen after the production is completed, thereby realizing the high reliability of the display.
  • the invention has simple structure, preparation method and long service life.
  • Figure 1 is a schematic diagram of the manufacturing process of the anode pixel electrode of the present invention
  • FIG. 2 is a schematic diagram of the comparison result of the water and oxygen barrier capacity of PEALD and ordinary ALD of the present invention.
  • FIG. 3 is a schematic diagram of the structure of the silicon substrate and the color filter film glass of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the miniature active matrix organic light emitting display of the present invention.
  • 1 is a silicon substrate
  • 2 is a pixel electrode
  • 3 is a polyimide
  • 4 is a hole injection layer
  • 5 is a hole transport layer
  • 6 is a light-emitting layer
  • 7 is an exciton barrier layer
  • 8 is an electron transport layer
  • 9 is an electron injection layer
  • 10 is a cathode electrode layer
  • 11 is a sealing layer I
  • 12 is a sealing layer II
  • 13 is a sealing layer III
  • 14 is a color photoresist layer
  • 15 is a black matrix layer
  • 16 is a glass substrate.
  • a miniature active matrix organic light-emitting display which is prepared by the following steps:
  • Anode pixel electrode production is: silicon wafer substrate cleaning, using sputtering method or electron beam evaporation method to deposit anode electrode, using dry etching method for anode pixel electrode patterning, the pixel area is (3 ⁇ m ⁇ 5 ⁇ m ) ⁇ (9 ⁇ m ⁇ 15 ⁇ m).
  • the material of the anode pixel electrode is a metal with high reflectivity, the metal with high reflectivity is Al or Ag, and the total thickness of the anode pixel electrode (2) is between 60 nm and 550 nm.
  • a polymer insulating layer such as polyimide, is further used for gap filling.
  • the OLED device layer is fabricated, including the hole injection layer, the hole transport layer, the light emitting layer, the exciton barrier layer, the electron transport layer, the electron injection layer, and the cathode Electrode layer. As shown in Figure 3.
  • the device layer is packaged.
  • the OLED structure uses a three-layer thin film sealing layer.
  • the first layer uses a transparent material with high refractive index and is formed by thermal evaporation. It is an organic compound layer: Alq 3 ; an inorganic compound layer: MoO 3 , thickness In 30nm ⁇ 100nm.
  • the second thin-film sealing layer can be prepared using a plasma atomic layer deposition (PEALD) method.
  • the thin-film layer is Al 2 O 3 or the like, and the thickness is 20-200 nm.
  • the third film sealing layer is an organic polymer sealing layer, and the sealing layer is formed by spin coating, scratching, or inkjet printing, and the thickness of the film is 300-600nm.
  • the blank glass substrate is cleaned, the red, green and blue color photoresist layers are spin-coated respectively, and the photolithography method is used for patterning. Finally, set the black matrix layer.
  • the area of a single color filter layer is between (3 ⁇ m ⁇ 5 ⁇ m) ⁇ (9 ⁇ m ⁇ 15 ⁇ m), which is consistent with the pixel size, and the thickness is 0.5um ⁇ 1.5um.
  • the area of the black matrix is (0.3 ⁇ m ⁇ 1.5 ⁇ m) ⁇ (9 ⁇ m ⁇ 15 ⁇ m), which is consistent with the pixel interval, and the thickness is 0.5um ⁇ 1.5um.
  • the device prepared by the above method is shown in Figure 4, which is mainly composed of a silicon wafer substrate 1, a pixel electrode 2, an insulating layer 3 (material is polyimide), a hole injection layer 4, a hole transport layer 5, and a light emitting layer 6.
  • a plurality of anode pixel electrodes 2 are fabricated on the silicon wafer substrate 1.
  • the material of the anode pixel electrode 2 is a metal with high reflectivity, the metal with high reflectivity is Al or Ag, and the total thickness of the anode pixel electrode 2 is 60nm ⁇ Between 550nm, the anode pixel electrode 15 undergoes a patterning process to form an independent pixel electrode.
  • the pixel area is between (3 ⁇ m ⁇ 5 ⁇ m) ⁇ (9 ⁇ m ⁇ 15 ⁇ m).
  • the patterning process can use dry etching.
  • the gap between the pixel electrodes after patterning is between 0.3 ⁇ m and 1.5 ⁇ m.
  • the gap is filled with a polymer insulating layer 3 so that the anode pixel electrodes 2 are mutually Insulation, a device layer is made on the anode pixel electrode 2.
  • the device layer consists of hole injection layer 4, hole transport layer 5, light emitting layer 6, exciton blocking layer 7, electron transport layer 8, electron injection layer 9 and cathode.
  • the electrode layer 10 is composed of a thin film sealing layer for packaging on the device layer.
  • the thin film sealing layer is composed of three layers.
  • the first layer is a high refractive index layer formed by thermal evaporation, composed of an organic compound layer Alq 3 and an inorganic compound layer MoO 3 , The thickness is between 30nm and 100nm;
  • the second layer is a thin film layer prepared by plasma atomic layer deposition (PEALD) method, the thin film layer is Al 2 O 3 , and the thickness is between 20 and 200nm;
  • the third layer It is an organic polymer sealing layer, which is formed by spin coating, scratching or inkjet printing, and the thickness of the film is 300-800nm.
  • a plurality of color photoresist layers 14 are fabricated on the opposite side of the glass substrate 16 and the film sealing layer. The color photoresist layers 14 are separated into independent units by the black matrix layer 15.
  • the color filter layer and the black matrix can use light.
  • the engraving method is made on the glass substrate 15.
  • the area of a single color filter layer is (3 ⁇ m ⁇ 5 ⁇ m) ⁇ (9 ⁇ m ⁇ 15 ⁇ m), which is consistent with the pixel size, and the thickness is about 0.5um ⁇ 1.5um;
  • the area of the black matrix is (0.3 ⁇ m ⁇ 1.5 ⁇ m) ⁇ (9 ⁇ m ⁇ 15 ⁇ m), consistent with pixel interval, thickness 0.5um ⁇ 1.5 ⁇ m.
  • the glass substrate 16 at the top layer is connected to the silicon wafer substrate through the surrounding adhesive glue.
  • the adhesive glue can be applied to the silicon substrate first, and the glue is controlled by a precision dispenser.
  • the glue width is 0.5 mm ⁇ 1.5mm, the thickness of the glue is 0.2um ⁇ 1.8um; precision bonding equipment is used to precisely bond the silicon substrate and the color film glass substrate to realize the one-to-one correspondence between the pixel electrode and the color filter layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种微型有源矩阵式有机发光显示器及其制作方法,其结构包括硅片衬底(1)和玻璃基板(16),其特征是在所述的硅片衬底(1)上制作有多个阳极像素电极(2),各阳极像素电极(2)之间通过绝缘层(3)相互绝缘和对间隙进行平坦化,在阳极像素电极(2)上制作有器件层,器件层上设有封装用薄膜密封层,在玻璃基板(16)与薄膜密封层相对的一面上制作有多个彩色光阻层(14),各彩色光阻层(14)之间通过黑矩阵层(15)分隔成独立单元,位于最上层的玻璃基板(16)通过四周的粘结胶与硅片衬底(1)贴合相连;本发明结构简单,制作方法,性能可靠,寿命长。

Description

微型有源矩阵式有机发光显示器及其制作方法 技术领域
本发明涉及一种OLED技术,尤其是一种有机发光二极管显示技术,具体地说是一种微型有源矩阵式有机发光显示器及其制作方法。
背景技术
众所周知,有机发光二极管(OLED)显示器是一种通过使用发光的有机发光二极管来显示图像的自发光显示装置。通过控制激子从激发态回落时产生的能量来产生光。通过电子和空穴在有机发射层中结合来产生激子。通常有机发光二极管显示器包括晶体管驱动矩阵和有机发光二极管显示单元。使用单晶硅作为衬底制作晶体管驱动矩阵,由于单晶硅具有非常高的迁移率,所以可以实现非常高的分辨率。使用单晶硅作为衬底制作的有机发光二极管显示器的显示尺寸通常小于1英寸,属于微型有源矩阵有机发光二极管显示器。为了实现微型有源矩阵有机发光二极管显示器的彩色化,通常使用LCD显示中的彩色滤光膜等工艺。有机发光二极管显示器易于受水氧等影响,会破坏有机发光二极管的使用寿命。因此在OLED显示器制造过程中,需要避免水氧的进入,同时需要对OLED显示器进行隔绝水氧保护。而现有的结构受工艺影响未能很好地解决此类问题,造成了有机发光二极管显示器性能难以改善,使用寿命不高,影响其推广应用。
发明内容
本发明的目的是针对现有的有机发光二极管由于受结构限制在生产过程中需要防止水氧影响导致制造难度增加的问题,发明一种可以完全避免水氧进入器件中的微型有源矩阵式有机发光显示器(即微型AMOLED显示器)。
本发明的技术方案是:
一种微型有源矩阵式有机发光显示器,它包括硅片衬底1和玻璃基板15,其特征是在所述的硅片衬底1上制作有多个阳极像素电极2,各阳极像素电极2之间通过绝缘层3相互绝缘,在阳极像素电极2上制作有器件层,器件层上设有封装用薄膜密封层,在玻璃基板16与薄膜密封层相对的一面上制作有多 个彩色光阻层14,各彩色光阻层14之间通过黑矩阵层15分隔成独立单元,位于最上层的玻璃基板16通过四周的粘结胶与硅片衬底贴合相连;所述的阳极像素电极2的材料为高反射率的金属,所述的高反射率金属为Al或Ag,阳极像素电极(2)的总厚度在60nm~550nm之间;所述的阳极像素电极16经过图形化工艺,形成独立的像素电极,像素面积为(3μm~5μm)×9μm~15μm)之间,所述的图形化工艺使用干法刻蚀工艺形成。
所述的图形化后的像素电极之间的间隙在0.3μm~1.5μm之间,为了防止间隙造成器件短路,间隙之间填装有聚合物绝缘层3。
所述的器件层依次由空穴注入层4、空穴传输层5、发光层6、激子阻隔层7、电子传输层8、电子注入层9和阴极电极层10组成。
所述的薄膜密封层由三层组成,第一层为热蒸发形成的高折射率层,由有机化合物层Alq3和无机化合物层MoO 3组成,厚度在30nm~100nm;所述第二层为使用等离子体原子层沉积技术(PEALD)方法制备的薄膜层,此薄膜层为Al 2O 3或TiO 3,厚度在20~200nm;所述的第三层为有机聚合物密封层,此密封层使用旋涂或刮图或喷墨打印方法形成,薄膜厚度在300~800nm。
本发明使用光刻的方法在玻璃基板16上制作彩色滤光层和黑矩阵,单个彩色滤光层的面积为(3μm~5μm)×(9μm~15μm)之间,与像素大小一致,厚度约0.5um~1.5μm;黑矩阵的面积为(0.3μm~1.5μm)×(9μm~15μm),与像素间隔一致,厚度0.5um~1.5um。
所述的硅片衬底1与玻璃基板贴合过程中,先在硅基板上涂上粘接胶,使用精密点胶机进行控制,胶的宽度0.5mm~1.5mm,胶的厚度0.2um~1.8um;使用精密贴合设备将硅基板与彩膜玻璃基板进行精密贴合,实现像素电极与彩色滤光层一一对应。
本发明的有益效果是:
本发明不仅能保证在生产过程中可以完全避免水氧进入器件中,同时也能保证制作完成后对水氧的隔绝,从而实现显示器的高可靠性。
本发明结构简单,制备方法,使用寿命长。
附图说明
图1是本发明的阳极像素电极制作过程示意图
图2是本发明的PEALD和普通ALD水氧阻隔能力比较结果示意图。
图3是本发明的硅基板结构和彩色滤光膜玻璃结构示意图。
图4是本发明的微型有源矩阵式有机发光显示器结构图示意图。
图中:1是硅片衬底,2是像素电极,3是polyimide,4是空穴注入层,5是空穴传输层,6是发光层,7是激子阻隔层,8是电子传输层,9是电子注入层,10是阴极电极层,11是密封层I,12是密封层II,13是密封层III,14是彩色光阻层,15是黑矩阵层,16为玻璃基板。
具体实施方式
下面结构附图和实施例对本发明作进一步的说明。
如图1-4所示。
一种微型有源矩阵式有机发光显示器,它采用以下步骤制备而成:
(一)阳极像素电极制作;过程为:硅片衬底清洗,使用溅射法或电子束蒸发法沉积阳极电极,使用干法刻蚀方法进行阳极像素电极图案化,像素面积为(3μm~5μm)×(9μm~15μm)之间。如图1所示。所述阳极像素电极的材料为高反射率的金属,所述的高反射率金属为Al或Ag,阳极像素电极(2)的总厚度在60nm~550nm之间。所述的阳极像素电极图案化形成之后,进一步使用聚合物绝缘层,如polyimide(聚酰亚胺)进行间隙填充。
(二)器件层的制作;阳极像素电极制作完成之后,进行OLED器件层的制作,包括空穴注入层、空穴传输层、发光层、激子阻隔层、电子传输层、电子注入层、阴极电极层。如图3。
(三)器件层的封装,OLED结构使用三层薄膜密封层,第一层使用高折射率的透明材料,使用热蒸发方法形成,为有机化合物层:Alq 3;无机化合物层:MoO 3,厚度在30nm~100nm。第二层薄膜密封层可以使用等离子体原子层沉积技术(PEALD)方法制备,此薄膜层为Al 2O 3等,厚度在20~200nm。第三层薄膜密封层为有机聚合物密封层,此密封层使用旋涂或刮图或喷墨打印等方法形成,薄膜厚度在300~600nm。
(四)彩色滤光层和黑矩阵层制作;对空白玻璃基板进行清洗,分别旋涂红绿蓝彩色光阻层,使用光刻方法进行图形化。最后再设置黑矩阵层。单个彩色滤光层的面积为(3μm~5μm)×(9μm~15μm)之间,与像素大小一 致,厚度0.5um~1.5um。黑矩阵的面积为(0.3μm~1.5μm)×(9μm~15μm),与像素间隔一致,厚度0.5um~1.5um。
(五)硅基板与彩色滤光膜玻璃基板贴合;先在硅片衬底上涂上粘接胶,使用精密点胶机进行控制,胶的宽度0.5mm~1.5mm,胶的厚度0.2um~1.8um。使用精密贴合设备将硅基板与彩色滤光膜玻璃进行精密贴合,贴合精度小于0.5μm,实现像素电极与彩色滤光层一一对应。同时,此彩色滤光膜玻璃也起到对微显示器件进行保护的作用。
由以上方法制备而成的器件如图4所示,它主要由硅片衬底1、像素电极2、绝缘层3(材质为polyimide)、空穴注入层4、空穴传输层5、发光层6、激子阻隔层7,电子传输层8、电子注入层9、阴极电机层10、密封层11、密封层12、密封层13、彩色光阻层14、黑矩阵层15和玻璃基板16组成。硅片衬底1上制作有多个阳极像素电极2,阳极像素电极2的材料为高反射率的金属,所述的高反射率金属为Al或Ag,阳极像素电极2的总厚度在60nm~550nm之间,所述的阳极像素电极15经过图形化工艺,形成独立的像素电极,像素面积为(3μm~5μm)×(9μm~15μm)之间,所述的图形化工艺可使用干法刻蚀工艺形成,图形化后的像素电极之间的间隙在0.3μm~1.5μm之间,为了防止间隙造成器件短路,间隙之间填装有聚合物绝缘层3以使阳极像素电极2之间相互绝缘,在阳极像素电极2上制作有器件层,器件层依次由空穴注入层4、空穴传输层5、发光层6、激子阻隔层7、电子传输层8、电子注入层9和阴极电极层10组成,器件层上设有封装用薄膜密封层,薄膜密封层由三层组成,第一层为热蒸发形成的高折射率层,由有机化合物层Alq 3和无机化合物层MoO 3组成,厚度在30nm~100nm;所述第二层为使用等离子体原子层沉积技术(PEALD)方法制备的薄膜层,此薄膜层为Al 2O 3,厚度在20~200nm;所述的第三层为有机聚合物密封层,此密封层使用旋涂或刮图或喷墨打印方法形成,薄膜厚度在300~800nm。在玻璃基板16与薄膜密封层相对的一面上制作有多个彩色光阻层14,各彩色光阻层14之间通过黑矩阵层15分隔成独立单元,彩色滤光层和黑矩阵可使用光刻的方法在玻璃基板15上制作,单个彩色滤光层的面积为(3μm~5μm)×(9μm~15μm)之间,与像素大小一致,厚度约0.5um~1.5um;黑矩阵的面积为(0.3μm~1.5μm)×(9μm~15μ m),与像素间隔一致,厚度0.5um~1.5μm。位于最上层的玻璃基板16通过四周的粘结胶与硅片衬底贴合相连贴合过程中,可先在硅基板上涂上粘接胶,使用精密点胶机进行控制,胶的宽度0.5mm~1.5mm,胶的厚度0.2um~1.8um;使用精密贴合设备将硅基板与彩膜玻璃基板进行精密贴合,实现像素电极与彩色滤光层一一对应。
本发明未涉及部分与现有技术相同或可采用现有技术加以实现。

Claims (3)

  1. 一种微型有源矩阵式有机发光显示器,它包括硅片衬底(1)和玻璃基板(16),其特征是在所述的硅片衬底(1)上制作有多个阳极像素电极(2),各阳极像素电极(2)之间通过绝缘层(3)相互绝缘和对间隙进行平坦化,在阳极像素电极(2)上制作有器件层,器件层上设有封装用薄膜密封层,在玻璃基板(16)与薄膜密封层相对的一面上制作有多个彩色光阻层(14),各彩色光阻层(14)之间通过黑矩阵层(15)分隔成独立单元,位于最上层的玻璃基板(16)通过四周的粘结胶与硅片衬底(1)贴合相连;所述的阳极像素电极(2)的材料为高反射率的金属,所述的高反射率金属为A1或Ag,阳极像素电极(2)的总厚度在60nm~550nm之间;所述的阳极像素电极(2)经过图形化工艺,形成独立的像素电极,像素面积为(3μm~5μm)×(9μm~15μm)之间,所述的图形化工艺使用干法刻蚀工艺形成;使用光刻的方法在玻璃基板(16)上制作彩色滤光层和黑矩阵,单个彩色滤光层的面积为(3μm~5μm)×(9μm~15μm)之间,与像素大小一致,厚度约0.5um~1.5μm;黑矩阵的面积为(0.3μm~1.5μm)×(9μm~15μm),与像素间隔一致,厚度0.5um~1.5um。
  2. 根据权利要求1所述的显示器,其特征是所述的图形化后的像素电极之间的间隙在0.3μm~1.5μm之间,为了防止间隙造成器件短路,同时保证电极的平坦化,间隙之间填装有聚合物绝缘层(3)。
  3. 根据权利要求1所述的显示器,其特征是所述的硅片衬底(1)与玻璃基板贴合过程中,先在硅基板上涂上粘接胶,使用精密点胶机进行控制,胶的宽度0.5mm~1.5mm,胶的厚度0.2um~1.8um;使用精密贴合设备将硅基板与彩膜玻璃基板进行精密贴合。
PCT/CN2020/090718 2019-06-17 2020-05-17 微型有源矩阵式有机发光显示器及其制作方法 WO2020253429A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910519704.2 2019-06-17
CN201910519704.2A CN110212115A (zh) 2019-06-17 2019-06-17 微型有源矩阵式有机发光显示器及其制作方法

Publications (1)

Publication Number Publication Date
WO2020253429A1 true WO2020253429A1 (zh) 2020-12-24

Family

ID=67792984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090718 WO2020253429A1 (zh) 2019-06-17 2020-05-17 微型有源矩阵式有机发光显示器及其制作方法

Country Status (2)

Country Link
CN (1) CN110212115A (zh)
WO (1) WO2020253429A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110212115A (zh) * 2019-06-17 2019-09-06 南京国兆光电科技有限公司 微型有源矩阵式有机发光显示器及其制作方法
CN110931535B (zh) * 2019-12-11 2023-03-10 安徽熙泰智能科技有限公司 一种Micro OLED结构及其制备方法
CN211654861U (zh) * 2019-12-13 2020-10-09 南京国兆光电科技有限公司 有源矩阵式有机发光显示器
CN113793908A (zh) * 2021-09-08 2021-12-14 南京国兆光电科技有限公司 一种硅基有源矩阵式有机发光显示器及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101882604A (zh) * 2010-06-29 2010-11-10 上海大学 一种有源矩阵驱动有机发光二极管的分立制造方法
CN104051494A (zh) * 2014-05-28 2014-09-17 中国电子科技集团公司第五十五研究所 微型有源矩阵式有机发光显示器及其制作方法
US8866170B2 (en) * 2010-12-30 2014-10-21 Samsung Display Co., Ltd. Light emitting diode display
CN107425127A (zh) * 2017-05-11 2017-12-01 安徽熙泰智能科技有限公司 一种硅基全彩oled微显示器件及其制备方法
CN109148718A (zh) * 2018-08-20 2019-01-04 武汉华星光电半导体显示技术有限公司 有机发光显示面板及其制造方法
CN110212115A (zh) * 2019-06-17 2019-09-06 南京国兆光电科技有限公司 微型有源矩阵式有机发光显示器及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101882604A (zh) * 2010-06-29 2010-11-10 上海大学 一种有源矩阵驱动有机发光二极管的分立制造方法
US8866170B2 (en) * 2010-12-30 2014-10-21 Samsung Display Co., Ltd. Light emitting diode display
CN104051494A (zh) * 2014-05-28 2014-09-17 中国电子科技集团公司第五十五研究所 微型有源矩阵式有机发光显示器及其制作方法
CN107425127A (zh) * 2017-05-11 2017-12-01 安徽熙泰智能科技有限公司 一种硅基全彩oled微显示器件及其制备方法
CN109148718A (zh) * 2018-08-20 2019-01-04 武汉华星光电半导体显示技术有限公司 有机发光显示面板及其制造方法
CN110212115A (zh) * 2019-06-17 2019-09-06 南京国兆光电科技有限公司 微型有源矩阵式有机发光显示器及其制作方法

Also Published As

Publication number Publication date
CN110212115A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
WO2020253429A1 (zh) 微型有源矩阵式有机发光显示器及其制作方法
US9978997B2 (en) Organic light emitting display device and method of fabricating the same
JP3724725B2 (ja) 表示装置の製造方法
US7834547B2 (en) Organic light emitting diode display device and method of fabricating the same
TWI539591B (zh) 有機電致發光裝置及其製造方法
CN100595931C (zh) 电致发光显示装置和用于电致发光显示装置的热转移给体膜
JP5906020B2 (ja) 有機発光ディスプレイ装置及びその製造方法
JP4483245B2 (ja) 有機発光素子およびその製造方法ならびに表示装置
KR20040081783A (ko) 유기 전기 발광 표시 장치 및 그 제조방법
TW200524467A (en) Organic light emitting device, manufacturing method thereof, and display unit
JP2010257957A (ja) 有機エレクトロルミネッセンス装置
JP2016072127A (ja) 有機el表示装置およびその製造方法、並びに電子機器
WO2021082146A1 (zh) 显示面板及其制造方法
CN104051494A (zh) 微型有源矩阵式有机发光显示器及其制作方法
WO2020215417A1 (zh) 显示面板及显示面板的制备方法
WO2018090444A1 (zh) Oled基板及其制作方法
WO2021114573A1 (zh) 一种硅基有源矩阵式有机发光显示器的反射阳极结构
JP2005149800A (ja) 表示装置およびその製造方法
US7839073B2 (en) Light-emitting display apparatus incorporating combined first and second auxiliary electrodes arranged at intervals and method of producing the same
JP4736284B2 (ja) 表示装置およびその製造方法
TW201423978A (zh) 顯示裝置及其製造方法
JP2009266803A (ja) 有機elディスプレイパネル及びその製造方法
JP4744862B2 (ja) 表示装置の製造方法
WO2021114574A1 (zh) 有源矩阵式有机发光显示器
WO2013150713A1 (ja) 有機el表示装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20825898

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20825898

Country of ref document: EP

Kind code of ref document: A1