WO2020253307A1 - 频谱资源分配方法及装置 - Google Patents

频谱资源分配方法及装置 Download PDF

Info

Publication number
WO2020253307A1
WO2020253307A1 PCT/CN2020/081941 CN2020081941W WO2020253307A1 WO 2020253307 A1 WO2020253307 A1 WO 2020253307A1 CN 2020081941 W CN2020081941 W CN 2020081941W WO 2020253307 A1 WO2020253307 A1 WO 2020253307A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
frequency
overlapping
coverage area
channel bandwidth
Prior art date
Application number
PCT/CN2020/081941
Other languages
English (en)
French (fr)
Inventor
张行健
徐涵
季晨荷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020253307A1 publication Critical patent/WO2020253307A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for allocating spectrum resources.
  • Wi-Fi wireless local area network
  • APs access points
  • Internet Internet
  • STAs workstations
  • APs access points
  • Internet Internet
  • One AP can be associated with multiple STAs. Compete for wireless air interface resources according to certain rules (here, wireless air interface resources mainly refer to AP channels). Therefore, these STAs are prone to conflict when competing for the AP's channel.
  • the 802.11 protocol uses a carrier sense multiple access (CSMA) method to avoid conflicts between multiple STAs.
  • CSMA carrier sense multiple access
  • each STA listens to whether the AP's channel is idle (referring to whether there are other STAs transmitting data on the channel). If the channel is idle, the STA transmits the data of the entire data packet on the channel; if the STA hears other STAs transmitting data on the channel at this time (indicating that the AP’s channel is busy at this time), the STA enters backoff Phase, that is, wait for other STAs to stop transmitting data in a random period of time, and then monitor again whether the channel will enter an idle state, and if so, transmit the data of the entire data packet when the channel is idle.
  • backoff Phase that is, wait for other STAs to stop transmitting data in a random period of time, and then monitor again whether the channel will enter an idle state, and if so, transmit the data of the entire data packet when the channel is idle.
  • any two APs overlap, if the frequency bands used by the two APs also overlap, one AP will affect the network delay of the other AP, and there will be co-channel interference.
  • the embodiments of the application provide a method and device for allocating spectrum resources, which can avoid co-channel interference between APs, enhance network reliability (reduce co-channel interference and delay), and provide service quality for large bandwidth and low delay application bearers Guaranteed.
  • an embodiment of the present application provides a method for allocating spectrum resources.
  • the method includes: a terminal device determines the first coverage of each first AP according to the physical parameters of each first AP among the M first access points AP Area, and then determine the second coverage area of the second AP according to the physical parameters of the second AP, and determine the first coverage area that overlaps the second coverage area among the M first coverage areas of the M first APs
  • the corresponding first AP is determined to be an overlapping AP to obtain at least one overlapping AP.
  • it is determined from the first frequency band available for the second AP to be allocated to the Frequency band used by the second AP.
  • M may be a natural number
  • the second AP may be any AP that has not allocated a frequency band
  • the frequency band allocated to the second AP does not overlap with the frequency band used by each overlapping AP.
  • a frequency band that does not overlap with the frequency band used by each overlapping AP is allocated to the second AP to avoid co-channel interference between APs. Enhance network reliability (reduce co-frequency interference and delay), and provide service quality guarantee for large bandwidth and low delay application bearers.
  • the terminal device may directly select a frequency band from the first frequency band available to the second AP and allocate it to the second AP for use.
  • the terminal device can directly select a frequency band from the first frequency band available to the second AP and allocate it to the second AP for use.
  • the method further includes: in accordance with the frequency bands used by each overlapping AP in the at least one overlapping AP, determining from the first frequency band available to the second AP to be allocated to Before the frequency band used by the second AP, the terminal device may determine the second frequency band to which the spectrum resource is to be allocated and the third frequency band in the second frequency band, and the third frequency band may be the frequency band used by the first device.
  • the terminal device may determine the third coverage area of the first device according to the physical parameters of the first device, and may detect whether the second coverage area of the second AP and the third coverage area of the first device overlap.
  • the second coverage area overlaps the third coverage area, it means that the second AP may cause interference to the first device, and the terminal device can determine that the first frequency band available to the second AP is in the second frequency band A frequency band that does not overlap with the third frequency band. If the second coverage area does not overlap with the third coverage area, it means that the second AP will not cause interference to the first device, and the terminal device can determine that the first frequency band available to the second AP is the second frequency band .
  • the second frequency band may be a frequency band controllable by the terminal device or a preset frequency band.
  • the working mode of the first device may be a first working mode
  • the working mode of the second AP may be a second working mode.
  • the portion of the second frequency band that does not overlap with the third frequency band is used as the frequency band available to the second AP, which can avoid the 2.
  • the interference of the AP to the first device ensures the normal communication of the first device.
  • directly using the second frequency band as the frequency band available for the second AP can improve the utilization of spectrum resources without causing interference.
  • the terminal device may first determine a fourth frequency band that does not overlap with the frequency band used by each overlapping AP in the at least one overlapping AP from the first frequency band available to the second AP, and then use the fourth frequency band Determine a frequency band and allocate it to the second AP.
  • the embodiment of the application selects a frequency band from the fourth frequency band that does not overlap the frequency bands used by each overlapping AP in the first frequency band and allocates it to the second AP for use, so as to avoid co-channel interference between the second AP and each overlapping AP .
  • the terminal device may receive a frequency allocation request, and the frequency allocation request may include the first channel bandwidth.
  • the terminal device determines a frequency band from the fourth frequency band and allocates it to the second AP, it can determine a frequency band from the fourth frequency band according to the first channel bandwidth and allocate it to the second AP.
  • the difference between the maximum frequency and the minimum frequency in the frequency band used for the second AP is less than or equal to the first channel bandwidth.
  • the first channel bandwidth may be determined by the second AP according to its own service requirements (or traffic requirements).
  • the frequency allocation request may also include an AP identifier, and the terminal device may use the AP identified by the AP identifier as the second AP.
  • the terminal device of the embodiment of the present application can allocate frequency bands for each AP as needed to meet the service requirements of each AP, thereby ensuring the service quality of each STA associated with the AP.
  • the difference between the maximum frequency and the minimum frequency in the frequency band used by any one of the M first APs is less than or equal to the second channel bandwidth.
  • the terminal device determines a frequency band from the fourth frequency band and allocates it to the second AP, it can determine a frequency band from the fourth frequency band according to the second channel bandwidth and allocate it to the second AP.
  • the difference between the maximum frequency and the minimum frequency in the frequency band used for the second AP is less than or equal to the second channel bandwidth.
  • the second channel bandwidth may be a channel bandwidth preset by the terminal device.
  • the foregoing physical parameters include antenna position, antenna orientation, antenna transmission power, and antenna propagation model.
  • the terminal device may receive a frequency adjustment request of a third AP, the frequency adjustment request includes a third channel bandwidth, and may assign the first coverage area corresponding to the first coverage area that overlaps with the coverage area of the third AP.
  • the AP is determined to be a regional overlapping AP to obtain at least one regional overlapping AP, and then according to the frequency band used by each regional overlapping AP in the at least one regional overlapping AP and the frequency band available to the third AP, the current used by the third AP can be adjusted Frequency band.
  • the third AP may be any first AP included in the foregoing M first APs, and the third channel bandwidth may be different from the channel bandwidth determined by the frequency band currently used by the third AP.
  • the difference between the maximum frequency and the minimum frequency in the frequency band used by the third AP after adjustment is less than or equal to the third channel bandwidth, and the frequency band used by the third AP after adjustment does not overlap with the frequency band used by each overlapping AP .
  • the third channel bandwidth may be determined by the third AP according to changes in its own service requirements or traffic requirements.
  • the AP in the embodiment of this application can submit a frequency adjustment request to the terminal device according to its actual situation (such as business conditions, traffic conditions, etc.), and the terminal device can adjust the frequency band currently used by the AP after receiving the frequency adjustment request. To adapt to AP's own business changes, so as to ensure the AP's service quality.
  • the terminal device may receive the registration request of the first device, and the registration request May include the physical parameters of the first device, and the physical parameters of the first device may be stored in the terminal device, so as to determine the second coverage area of the first device according to the physical parameters of the first device.
  • an embodiment of the present application provides a spectrum resource allocation device.
  • the spectrum resource allocation device includes a spectrum resource allocation method provided in the first aspect and/or any one of the possible implementations of the first aspect. Therefore, the beneficial effects (or advantages) of the spectrum resource allocation method provided in the first aspect can also be achieved.
  • an embodiment of the present application provides a terminal device, including a processor, a transceiver, and a memory, where the memory is used to store a computer program, the computer program includes program instructions, and when the processor runs the program instructions, Perform the spectrum resource allocation method of the first aspect described above.
  • inventions of the present application provide a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the spectrum resource allocation method of the first aspect.
  • an embodiment of the present application provides a chip including a processor.
  • the processor is configured to read and execute a computer program stored in the memory to execute the spectrum resource allocation method in any possible implementation manner of the first aspect.
  • the chip further includes a memory, and the memory and the processor are connected through a circuit or a wire.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information to be processed, and the processor obtains the data and/or information from the communication interface, processes the data and/or information, and outputs the processing result through the communication interface.
  • the communication interface can be an input and output interface.
  • processors and memory may be physically independent units, or the memory may also be integrated with the processor.
  • an embodiment of the present application provides a computer-readable storage medium, and the computer-readable storage medium stores computer program instructions.
  • the computer program instructions When the computer program instructions are run on the computer, the computer can execute the instructions in the first aspect. Spectrum resource allocation method.
  • the implementation of the embodiments of this application can avoid co-channel interference between APs on the one hand and enhance network reliability (reducing co-channel interference and delay); on the other hand, it can provide service quality guarantee for the bearer of large bandwidth and low delay applications.
  • Figure 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a spectrum resource allocation method provided by an embodiment of the present application
  • Fig. 3a is a schematic diagram of transmission loss varying with distance according to an embodiment of the present application.
  • Figure 3b is a schematic diagram of a third coverage area provided by an embodiment of the present application.
  • Figure 3c is a schematic diagram of a second coverage area provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a spectrum resource allocation device provided by an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • Figure 1 is a schematic diagram of an application scenario provided by an embodiment of the application.
  • Fig. 1 uses two APs as an example to illustrate the application scenario of the present application.
  • Figure 1 includes AP1 and AP2.
  • AP1 is associated with STA1, STA2, and STA3, respectively;
  • AP2 is associated with STA4 and STA5, respectively; in other words, STA1, STA2, and STA3 can access the Internet through AP1, and STA4 and STA5 can access through AP2 the Internet.
  • Each AP corresponds to a coverage area, and the STA associated with the AP must be within the coverage area of the AP to communicate with it.
  • the coverage area BSS1 of AP1 overlaps with the coverage area BSS2 of AP2. If the frequency bands used by AP1 and AP2 overlap (for example, the frequency band used by AP1 is 6.12GHz-6.14GHz, and the frequency band used by AP2 is 6.13GHz-6.15GHz, there is overlap between the frequency bands used by AP1 and AP2), which will cause AP1 Co-channel interference (or co-channel interference) occurs between AP2.
  • STA1 listens to whether the channel is free, because STA1 is in the overlapping area of coverage area BSS1 and coverage area BSS2 (the slash area in Figure 1) and is used by AP1 and AP2
  • the frequency bands overlap, so STA1 listens to the channels of AP1 and AP2 at the same time.
  • STA1 receives the channel busy information returned by AP2 first, the channel busy information returned by AP2 will trigger STA1 to enter the backoff phase. At this time, even if STA1 receives the channel idle information returned by AP1, STA1 cannot before the backoff time of STA1 arrives.
  • Occupy AP1's channel to transmit data that is, STA1 cannot communicate with AP1.
  • STA1 will listen to the channel again (at this time, it is still listening to two channels: AP1's channel and AP2's channel) to see if it is free, until STA1 listens to the channel free information returned by AP1, STA1 occupies AP1's channel to transmit data (that is, communicates with AP1).
  • STA1 will cause STA1 to wait longer to get the opportunity to transmit data, reduce the average data throughput of STAs associated with AP1, increase the network delay of STA1, and cannot guarantee large bandwidth and low delay applications on STA1 (Such as 4K video applications, augmented reality, virtual reality applications, etc.) quality of service.
  • the channel bandwidth of AP1 is 80MHz
  • the channel bandwidth of AP2 is 20MHz.
  • the 80MHz channel provided by AP1 is invalid because AP2 interferes with AP1, making STA1 unable to enjoy the advantages of high throughput and small delay brought by the high bandwidth of AP1.
  • this application proposes a spectrum resource allocation method that can avoid co-channel interference between APs, enhance network reliability (reduce co-frequency interference and delay), and provide bearers for large bandwidth and low delay applications Service quality assurance.
  • the AP in this application may include wireless routers, base stations, etc.; STA may include user terminals such as mobile phones, computers, and IPADs.
  • the spectrum resources involved in this application may refer to frequency bands, and the allocation of spectrum resources is the allocation of frequency bands. For example, if the spectrum resources provided by this application are the two frequency bands 5.925GHz-6.425GHz and 6.525GHz-6.875GHz, then this application allocates the two frequency bands 5.925GHz-6.425GHz and 6.525GHz-6.875GHz.
  • the spectrum resource allocation method provided in this application can be applied to terminal equipment, and the terminal device can be an automatic frequency control (AFC) system, or other devices that can implement the spectrum resource allocation method provided in this application.
  • the AFC may include at least two databases (such as an incumbent database and a secondary database) and a spectrum access control module.
  • the following will take a terminal device as an example to describe the spectrum resource allocation method provided in this application.
  • the spectrum resource allocation method provided by the embodiment of the present application may include the steps:
  • S201 Determine a second frequency band to be allocated spectrum resources and a third frequency band in the second frequency band.
  • the second frequency band of the spectrum resource to be allocated may be a frequency band controllable by the terminal device, such as 5.925GHz-6.425GHz and 6.525GHz-6.875GHz in the 6G frequency band.
  • One of the working modes can be authorized working mode (authorized working mode can refer to the working mode of authorized equipment), and the other working mode can be unlicensed working mode ( The unauthorized working mode may refer to the working mode of an unauthorized device).
  • Authorized equipment can refer to equipment that has been authorized by the state to use the designated frequency band; unlicensed equipment can refer to equipment that has not been authorized by the state to use the designated frequency band.
  • the priority of the frequency band used by the device in one working mode is higher than the priority of the frequency band used by the device in the other working mode .
  • the above-mentioned second frequency band may include a third frequency band
  • the third frequency band may be a frequency band used by the first device
  • the working mode of the first device may be the first working mode
  • the first working mode It may be the above-mentioned authorized working mode.
  • the first device may be the above-mentioned authorized device
  • the third frequency band may be a designated frequency band in the second frequency band.
  • the first device may be a ground fixed base station used to implement a fixed synchronous satellite service, or may be a base station used to implement a ground fixed point-to-point communication service.
  • user 1 can configure the parameters of the first device owned by user 1 after obtaining the frequency band designated by the country, such as configuring the frequency band used by the first device as a designated frequency band, and configuring the use of the designated frequency band Time limit etc.
  • the first device can be registered in the terminal device through the unified authorization system.
  • the terminal device receives the registration information of the first device through the unified authorization system, and can store the registration information of the first device in the terminal device (for example, in the existing information database of the terminal device).
  • the registration information may include the physical parameters of the first device and basic information of the first device.
  • the physical parameters of the first device may include the antenna position, antenna orientation, antenna transmission power, antenna propagation model, etc.
  • the basic information of the first device may include the identity of the first device, the frequency band used by the first device (that is, the authorized frequency band configured), the working mode of the first device (that is, the first working mode), and the first device The period of use of the frequency band used, etc.
  • the terminal device may determine the preset second frequency band of the spectrum resource to be allocated, and may obtain the third frequency band used by the first device from the existing information database of the terminal device.
  • all APs in the embodiments of the present application need to be registered on the terminal device.
  • each AP can send its physical parameters (including antenna position, antenna orientation, antenna transmission power, antenna propagation model, etc.) and basic information (including AP identification, etc.) to the terminal device through a registration request.
  • the terminal device After receiving the registration request of the AP, the terminal device can store the physical parameters and basic information of the AP carried in the registration request in the terminal device (for example, in the secondary information database of the terminal device).
  • the terminal device can select an AP among the APs that have been registered and have not allocated a frequency band as the second AP, and can extract the physical parameters of the second AP from the terminal device (such as a secondary information database), and then can be based on the first AP
  • the physical parameters of the second AP determine the coverage area of the second AP.
  • the terminal device may extract the physical parameters of the above-mentioned first device from the terminal device (such as an existing information database), and determine the coverage area of the first device according to the physical parameters of the first device.
  • the coverage area of the second AP may be used as the second coverage area
  • the coverage area of the first device may be used as the third coverage area.
  • the terminal device can detect whether the second coverage area overlaps the third coverage area. If the second coverage area overlaps the third coverage area, it means that the second AP may cause interference to the first device, and the terminal device can determine the frequency band that does not overlap the third frequency band in the second frequency band The first frequency band available to the second AP. Since the frequency band used by the first device is the third frequency band, the part of the second frequency band that does not overlap with the third frequency band is used as the frequency band available to the second AP, which can avoid the interference of the second AP to the first device and ensure that the first device Normal communication.
  • the terminal device can determine the second frequency band as the first available for the second AP.
  • Frequency band Since the coverage area does not overlap, there will be no problem of co-frequency interference.
  • the second frequency band is directly used as the frequency band available to the second AP.
  • the frequency band used by the first device can also be used by the second AP, that is, frequency reuse (or Channel multiplexing) can improve the utilization of spectrum resources without causing interference.
  • the coverage area overlap in the embodiment of the present application may include partial overlap and complete overlap of the coverage area.
  • the working mode of the second AP may be the second working mode, and the second working mode may be the above-mentioned unauthorized mode.
  • the working mode of all APs registered on the terminal device may be the second working mode.
  • the above-mentioned AP registered in the terminal device and not allocated a frequency band may send a frequency allocation request to the terminal device.
  • the terminal device can obtain the AP identification included in the frequency allocation request, and can determine the AP identified by the AP identification as the second AP.
  • the second AP may be the AP that sends the frequency allocation request.
  • the frequency allocation request can be encapsulated as a request message and sent to the terminal device.
  • the request message can also include the AP's hardware address (media access control address, MAC address), geographic location Information such as location and/or channel bandwidth.
  • the terminal device when it determines the coverage area of the first device according to the physical parameters of the first device and/or determines the coverage area of the second AP according to the physical parameters of the second AP, it may first Calculate the transmission loss (also called path loss or path loss or path loss) of the first device and/or the second AP using calculation methods based on empirical or ray tracing models such as the Cost-Hata propagation model and the Okumura-Hata propagation model. Transmission path loss). The terminal device can then calculate the maximum communication distance of the first device based on the maximum loss available for normal communication with the first device and the transmission loss of the first device, and then predict the first device based on the maximum communication distance of the first device Coverage area.
  • the transmission loss also called path loss or path loss or path loss
  • the terminal device can then calculate the maximum communication distance of the first device based on the maximum loss available for normal communication with the first device and the transmission loss of the first device, and then predict the first device based on the maximum communication distance of the first device Coverage area.
  • the terminal device can calculate the maximum communication distance of the second AP based on the maximum loss available for normal communication with the second AP and the transmission loss of the second AP, and then predict the second AP based on the maximum communication distance of the second AP.
  • Coverage area of AP Among them, the Cost-Hata propagation model and the Okumura-Hata propagation model are both researched on a large amount of test data to obtain the statistical characteristics of radio wave propagation, which are used for electromagnetic intensity attenuation (ie loss) calculation; the ray tracing model is the propagation of radio waves Perform theoretical analysis of characteristics to obtain the characteristics of radio wave propagation, and then combine the antenna orientation, direction pattern and antenna transmission power to calculate the electromagnetic intensity attenuation (or loss).
  • FIG. 3a is a schematic diagram of transmission loss varying with distance according to an embodiment of the application.
  • the horizontal axis in Figure 3a can represent the horizontal distance d (unit: km) between the first device and the receiving station, and the vertical axis can be the transmission loss L (unit: dB) ).
  • the horizontal axis of FIG. 3a may represent the horizontal distance d (unit: km) between the first AP and the STA, and the vertical axis may represent the transmission loss L (unit: dB).
  • Figure 3a shows the transmission loss under three different terrains: urban, suburban, and rural under carrier frequencies of 700MHz and 900MHz, respectively.
  • FIG. 3b is a schematic diagram of the third coverage area provided by an embodiment of the application.
  • the antenna of the first device is oriented at 30 degrees, and it is assumed that the antenna of the first device is a 60-degree sector antenna.
  • the terminal device may regard an area within 2 km of the horizontal distance from the first device as the coverage area of the first device (that is, the third coverage area, the oblique area in FIG. 3b).
  • FIG. 3c is a schematic diagram of the second coverage area provided by an embodiment of the application.
  • the antenna of the second AP is an omnidirectional antenna.
  • the terminal device may use an area within 1 km of the horizontal distance from the second AP as the coverage area of the second AP (that is, the second coverage area).
  • S204 Determine the first coverage area of each first AP according to the physical parameter of each first AP in the M first APs.
  • the above-mentioned first AP may be an AP that is registered in the terminal device and has allocated a frequency band.
  • the terminal device stores the physical parameters of each AP in the terminal device (for example, stored in the secondary information database of the terminal device). Therefore, the terminal device can extract the physical parameters of each first AP of the M first APs from the terminal device (or secondary information database), and then determine the coverage of each first AP according to the physical parameters of each first AP Area to get M coverage areas.
  • the embodiment of the present application takes the coverage area of the first AP as the first coverage area, and the terminal device determines M first coverage areas.
  • the physical parameters of the first AP may include the antenna position, antenna orientation, antenna transmission power, antenna propagation model, etc. of the first AP.
  • M can be a natural number.
  • the working mode of each of the M first APs may be the second working mode, and the second working mode may be the above-mentioned unauthorized mode.
  • M when M is 0, it means that there is no AP that has allocated a frequency band in the terminal device, and the terminal device can directly select a frequency band from the first frequency band available to the second AP determined above and allocate it to the second AP use.
  • M is a natural number greater than 0, it indicates that there are APs with allocated frequency bands in the terminal device, and the terminal device may perform step S205.
  • the terminal device when it determines the coverage area of each first AP according to the physical parameters of the above-mentioned first APs, it can first use the Cost-Hata propagation model, Okumura-Hata propagation model, etc. based on empirical or A calculation method based on deterministic analysis, such as a ray tracing model, calculates the transmission loss (also called path loss or transmission path loss) of each first AP.
  • the transmission loss also called path loss or transmission path loss
  • the terminal device may then calculate the maximum communication distance of each first AP based on the maximum loss available for normal communication with each first AP and the transmission loss of each first AP, and then predict the maximum communication distance of each first AP The coverage areas of the respective first APs, thereby obtaining M coverage areas corresponding to the M first APs (ie, M first coverage areas).
  • steps S201-step S203 in the embodiments of the present application can be executed before step S204, steps S201-step S203 can also be executed after step S204, and steps S201-step S203 can also be executed simultaneously with step S204 Execution, the embodiment of the present application does not limit the execution sequence of step S201 to step S203 and step S204.
  • S205 Determine the first AP corresponding to the first coverage area that overlaps with the second coverage area of the second AP as an overlapping AP to obtain at least one overlapping AP.
  • the above-mentioned second AP may be any AP that is registered on the terminal device and has not allocated a frequency band, or the second AP may be identified by the AP identifier carried in the frequency allocation request received by the terminal device AP.
  • the terminal device may obtain the second coverage area of the second AP obtained above, and may detect whether the second coverage area overlaps with each of the first coverage areas determined above. If the second coverage area overlaps with a certain first coverage area, it means that the second AP may interfere with the first AP corresponding to the first coverage area; if the second coverage area overlaps with a certain first coverage area. There is no overlap in a coverage area, which indicates that the second AP will not interfere with the first AP corresponding to a certain first coverage area.
  • the terminal device may detect that there is overlap with the second coverage area in the M first coverage areas determined above.
  • the first AP corresponding to the first coverage area of is determined as an overlapping AP, so as to obtain at least one overlapping AP. Since the first coverage area of the overlapping AP overlaps the second coverage area, the second AP may cause interference to the overlapping AP.
  • the terminal device may directly start from step S203 or step S203.
  • a frequency band among the determined first frequency bands available to the second AP is selected and allocated to the second AP.
  • the terminal device may also store the frequency band allocated to the second AP for use in the terminal device (such as storing In the secondary information database of the terminal equipment) to facilitate the management of spectrum resources.
  • the five first coverage areas are: a first coverage area a, a first coverage area b, a first coverage area c, a first coverage area d, and a first coverage area e.
  • the terminal device can respectively detect whether the first coverage area a and the second coverage area overlap, whether the first coverage area b overlaps with the second coverage area, whether the first coverage area c overlaps with the second coverage area, and the first coverage area Whether the area d and the second coverage area overlap and whether the first coverage area e and the second coverage area overlap. Assuming that among the five first coverage areas, only the first coverage area a and the first coverage area c overlap with the second coverage area.
  • the terminal device When detecting that the first coverage area a overlaps the second coverage area, the terminal device will The first AP corresponding to a coverage area a is regarded as an overlapping AP; when it is detected that the first coverage area c overlaps with the second coverage area, the first AP corresponding to the first coverage area c is regarded as another overlapping AP.
  • S206 Determine the frequency band allocated to the second AP from the first frequency band available to the second AP according to the frequency band used by each overlapping AP in the at least one overlapping AP.
  • the terminal device obtains the frequency bands used by each overlapping AP in the at least one overlapping AP determined above, and may use the frequency bands used by each overlapping AP to determine from the frequency bands used by the second AP determined above. It is determined in the first frequency band that a frequency band that does not overlap with the frequency bands used by the overlapping APs is allocated to the second AP. Specifically, the terminal device may first determine, from the first frequency band available to the second AP, a fourth frequency band that does not overlap with the frequency band used by each of the at least one overlapping AP.
  • the terminal device may calculate the intersection of the first frequency band and the frequency band used by each overlapping AP, and then subtract the intersection of the first frequency band and the frequency band used by each overlapping AP from the first frequency band to obtain the fourth frequency band.
  • the terminal device selects a frequency band from the fourth frequency band and allocates it to the second AP for use. Since the first coverage area of the overlapping AP overlaps with the second coverage area of the second AP, the second AP may interfere with the overlapping AP.
  • the first frequency band available to the second AP is compared with each A frequency band in which no overlapping APs overlap is allocated to the second AP, which can avoid co-frequency interference between the second AP and each overlapping AP, thereby enhancing network reliability (reducing delay).
  • the difference between the maximum frequency and the minimum frequency (ie, channel bandwidth) in the frequency band allocated to the second AP can be a preset value, or a value generated according to a preset channel bandwidth generation strategy, or a second AP
  • the embodiment of the present application may not limit the channel bandwidth of the second AP.
  • the non-overlapping frequency bands in the embodiment of the present application may mean that the intersection of the two frequency bands is empty.
  • the terminal device may extract the first channel bandwidth included in the received frequency allocation request.
  • a terminal device selects a frequency band from the fourth frequency band and allocates it to the second AP for use, it can detect whether there is a frequency band in the fourth frequency band where the difference between the maximum frequency and the minimum frequency is greater than or equal to the first channel bandwidth . If the difference between the maximum frequency and the minimum frequency of a frequency band in the fourth frequency band is greater than or equal to the bandwidth of the first channel, the terminal device can select a frequency from the fourth frequency band and the difference between the maximum frequency and the minimum frequency is equal to the first channel The frequency band of the bandwidth is allocated to the second AP.
  • the terminal device may have the maximum difference between the maximum frequency and the minimum frequency in the fourth frequency band (less than the first channel bandwidth).
  • a frequency band of the channel bandwidth) is allocated to the second AP.
  • the first channel bandwidth may be determined by the second AP according to its own service requirements (or traffic requirements).
  • the terminal device can calculate the intersection of the first frequency band 6.2GHz-6.425GHz and the overlapping AP1 frequency band 6.18GHz-6.23GHz; the terminal device can then calculate the first frequency band 6.2GHz-6.425GHz and the overlapping AP2 frequency band.
  • the intersection of 6.24GHz-6.34GHz is 6.24GHz-6.34GHz.
  • the terminal equipment subtracts the intersection 6.2GHz-6.23GHz and the intersection 6.24GHz-6.34GHz from the first frequency band 6.2GHz-6.425GHz, and obtains the fourth frequency band as 6.23GHz-6.24GHz and 6.34GHz-6.425GHz. Assume that the bandwidth of the first channel is 100 MHz.
  • the terminal device detects whether there is a frequency band in the fourth frequency band (6.23GHz-6.24GHz and 6.34GHz-6.425GHz) where the difference between the maximum frequency and the minimum frequency is greater than or equal to 100MHz of the first channel bandwidth.
  • the difference between the maximum frequency of 6.24GHz and the minimum frequency of 6.23GHz in the fourth frequency band of 6.23GHz-6.24GHz is 10MHz, which is less than the first channel bandwidth of 100MHz; the maximum frequency of 6.34GHz-6.425GHz of the fourth frequency band is 6.34GHz and the minimum frequency of 6.425
  • the difference in GHz is 85MHz, which is also less than the first channel bandwidth of 100MHz.
  • there is no frequency band in the fourth frequency band where the difference between the maximum frequency and the minimum frequency is greater than or equal to the bandwidth of the first channel and the terminal device allocates a frequency band with the largest difference (85MHz) between the maximum frequency and the minimum frequency in the fourth frequency band.
  • the second AP is used, that is, 6.34GHz-6.425GHz is allocated to the second AP.
  • the first channel bandwidth is 50 MHz. Since the difference between the maximum frequency of 6.24GHz and the minimum frequency of 6.23GHz in the fourth frequency band of 6.23GHz-6.24GHz is 10MHz, which is less than the first channel bandwidth of 50MHz; the maximum frequency of 6.34GHz-6.425GHz of the fourth frequency band is 6.34GHz and the minimum frequency of 6.425 The difference in GHz is 85MHz, which is greater than the first channel bandwidth of 50MHz.
  • the terminal device selects a frequency band from the fourth frequency band with the difference between the maximum frequency and the minimum frequency equal to 50 MHz of the first channel bandwidth Assigned to the second AP, such as selecting 6.35GHz-6.4GHz to be assigned to the second AP; or selecting 6.375GHz-6.425GHz to be assigned to the second AP, etc.
  • the frequency allocation request may also include spectrum lease time.
  • the terminal device selects a frequency band from the fourth frequency band and allocates it to the second AP for use, it calculates the spectrum failure of the second AP according to the time when the second AP starts to use the frequency band allocated by the terminal device and the spectrum lease time time. After the spectrum failure time arrives, the terminal device can reclaim the frequency band allocated to the second AP, that is, after the spectrum failure time arrives, the terminal device can allocate the frequency band previously allocated to the second AP for use by other APs. The second AP cannot continue to use this frequency band.
  • the spectrum lease time is 3 years
  • the time when the second AP starts to use the frequency band allocated by the terminal device is June 10, 2019, the spectrum expiration time of the second AP is June 10, 2022.
  • the terminal equipment can reclaim the frequency band 5.925GHz-5.975GHz, that is, the second AP cannot continue to use the frequency band 5.925GHz- 5.975GHz
  • terminal equipment can allocate the frequency band 5.925GHz-5.975GHz to other APs.
  • the second channel bandwidth (for example, the second channel bandwidth is 20 MHz) may be pre-stored in the terminal device.
  • the difference between the maximum frequency and the minimum frequency in the frequency band used by any one of the M first APs is less than or equal to the second channel bandwidth.
  • a terminal device selects a frequency band from the fourth frequency band and allocates it to the second AP for use, it can detect whether there is a frequency band in the fourth frequency band where the difference between the maximum frequency and the minimum frequency is greater than or equal to the second channel bandwidth .
  • the terminal device can select a maximum frequency and the minimum frequency from the fourth frequency band that the difference is equal to the second channel
  • the frequency band of the bandwidth is allocated to the second AP. If the difference between the maximum frequency and the minimum frequency of no frequency band in the fourth frequency band is greater than or equal to the second channel bandwidth, the terminal device may have the maximum difference between the maximum frequency and the minimum frequency in the fourth frequency band (less than the second channel bandwidth).
  • a frequency band of the channel bandwidth) is allocated to the second AP.
  • the terminal device may compare the frequency band allocated to the second AP with the physical parameters of the second AP (including antenna position, Antenna orientation, antenna transmission power, antenna propagation model, etc.) and basic information (including AP identification, etc.) are jointly stored in the terminal device (for example, stored in the secondary information database of the terminal device) to facilitate subsequent management of spectrum resources.
  • the terminal device (or the secondary information database) stores the frequency band used by the second AP, the physical parameters of the second AP, and the basic information of the second AP.
  • the second AP changes from an AP with an unallocated frequency band to an AP with an allocated frequency band, and the terminal device registers to the terminal device for the next one
  • the M first APs become M+1 first APs.
  • the terminal device after the terminal device allocates the frequency band used by the second AP to the second AP, if it detects that the second AP occupies a frequency band with a large bandwidth (for example, 100 MHz) for a long time, the second AP If the service volume on the second AP does not meet the conditions for using the large-bandwidth spectrum (for example, the service volume on the second AP is much smaller than the service volume that 100MHz can provide), the terminal device can adjust the size of the frequency band currently used by the second AP (for example, reduce the second AP). 2. The size of the frequency band currently used by the AP).
  • it may further include:
  • S207 Receive a frequency adjustment request from the third AP.
  • any one of the foregoing M first APs may send a frequency adjustment request to the terminal device.
  • the first AP that sends the frequency adjustment request to the terminal device is used as the third AP.
  • the terminal device may receive a frequency adjustment request sent by the third AP, and the frequency adjustment request may include the third channel bandwidth.
  • the third channel bandwidth may be determined by the third AP according to changes in service requirements (or traffic requirements) carried by the third AP.
  • the third channel bandwidth is different from the difference between the maximum frequency and the minimum frequency (that is, the channel bandwidth) in the frequency band currently used by the third AP.
  • the AP of the embodiment of the present application may submit a frequency adjustment request to the terminal device according to its actual situation (such as service conditions, traffic conditions, etc.) to adapt to the AP's own service changes, thereby ensuring the AP's service quality.
  • the frequency adjustment request may be encapsulated as a request message and sent to the terminal device.
  • M can be a natural number, and M can be greater than or equal to 1.
  • S208 Determine the first AP corresponding to the first coverage area that overlaps with the coverage area of the third AP as an area overlapping AP to obtain at least one area overlapping AP.
  • the terminal device may re-allocate the frequency band used by the third AP to the third AP.
  • the terminal device can obtain the coverage area of the third AP and the M-1 first coverage areas of the aforementioned M-1 first APs, and can detect the coverage area of the third AP and the M-1 first coverage areas Whether each first coverage area in the area overlaps.
  • the terminal device may be in the M-1 first coverage areas and the coverage area of the third AP
  • the first AP corresponding to the overlapping first coverage area is determined to be an area overlapping AP, so as to obtain at least one area overlapping AP.
  • the terminal device when the terminal device detects that there is no first coverage area that overlaps the coverage area of the third AP in the above-mentioned M-1 first coverage areas, the terminal device may obtain that the third AP is available A frequency band with a maximum frequency and a minimum frequency less than or equal to the third channel bandwidth can be directly selected from the frequency bands available to the third AP and allocated to the third AP for use.
  • S209 Adjust the frequency band currently used by the third AP according to the frequency band used by each of the at least one area overlapping AP and the frequency band available to the third AP.
  • the terminal device may obtain the frequency bands available to the third AP and the frequency bands used by the overlapping APs in the at least one area overlapping AP, and may use the frequency bands used by the overlapping APs in each area and the second AP.
  • the frequency band available to the third AP adjust the frequency band currently used by the third AP.
  • the terminal device may first determine, from the frequency bands available to the third AP, the fifth frequency band that does not overlap with the frequency bands used by the APs in each area.
  • the terminal device can then select a frequency band with a difference between the maximum frequency and the minimum frequency less than or equal to the third channel bandwidth from the fifth frequency band and allocate it to the third AP for use.
  • the frequency band used by the third AP after adjustment does not overlap with the frequency band used by each overlapping AP.
  • the aforementioned frequency adjustment request may also include a new spectrum lease time.
  • the terminal device calculates the new spectrum failure time of the third AP according to the time when the third AP starts to use the adjusted frequency band and the new spectrum lease time. After the new spectrum expiration time arrives, the terminal device may invalidate (or disable) the frequency band used after adjustment by the third AP.
  • the terminal device may store the frequency band used by the third AP after adjustment in the terminal device.
  • the terminal device first determines the first frequency band available to the second AP under the condition that the frequency band used by the first device is not interfered. It is then determined from the M first APs that there are overlapping APs that overlap the coverage area of the second AP. Finally, a frequency band that does not overlap with the frequency bands used by each overlapping AP is determined from the frequency bands available to the second AP and allocated to the second AP for use.
  • the coverage area of the AP overlaps, allocate completely non-overlapping frequency bands to the APs with overlapping coverage areas, which can avoid co-channel interference between APs, enhance network reliability (reduce co-frequency interference and delay), and achieve large bandwidth Low-latency application bearer provides service quality assurance.
  • the embodiment of the present application also provides corresponding devices and equipment.
  • FIG. 4 is a schematic structural diagram of a spectrum resource allocation device provided by an embodiment of the present application.
  • the spectrum resource allocation device 100 includes:
  • the first determining module 10 is configured to determine the first coverage area of each first AP among the M first access points AP according to the physical parameters of each first AP;
  • the second determining module 20 is configured to determine the first AP corresponding to the first coverage area that overlaps with the second coverage area of the second AP determined by the first determining module 10 as an overlapping AP to obtain at least one overlap AP;
  • the allocation module 30 is configured to determine the frequency band used by each overlapping AP in the at least one overlapping AP determined by the second determining module 20 from the first frequency band available to the second AP to be allocated to the second AP.
  • Frequency band where M is a natural number, and the frequency band allocated to the second AP does not overlap with the frequency band used by each overlapping AP.
  • the spectrum resource allocation device 100 further includes a third determining module 40 and a fourth determining module 50.
  • the third determining module 40 is configured to determine a second frequency band to be allocated spectrum resources and a third frequency band in the second frequency band, the third frequency band is a frequency band used by the first device, and the working mode of the first device is The first working mode.
  • the fourth determining module 50 is configured to determine that the first frequency band available for the second AP is the third determining module 40 when the second coverage area of the second AP overlaps with the third coverage area of the first device The determined second frequency band does not overlap with the third frequency band.
  • the fourth determining module 50 is further configured to determine that the first frequency band available for the second AP is the third determining module when the second coverage area of the second AP does not overlap with the third coverage area of the first device In the second frequency band determined by 40, the working mode of the second AP is the second working mode.
  • the aforementioned allocation module 30 includes a determination unit 301 and an allocation unit 302.
  • the determining unit 301 is configured to determine, from the first frequency band available to the second AP, a fourth frequency band that does not overlap with the frequency bands used by each overlapping AP in the at least one overlapping AP; the allocating unit 302 is configured to obtain A frequency band is determined in the fourth frequency band determined by the determining unit 301 and allocated to the second AP.
  • the spectrum resource allocation device 100 further includes a first receiving module 60.
  • the first receiving module 60 is configured to receive a frequency allocation request, and the frequency allocation request includes the first channel bandwidth.
  • the allocating unit 302 is specifically configured to: determine a frequency band from the fourth frequency band determined by the determining unit 301 according to the first channel bandwidth received by the first receiving module 60 and allocate it to the second AP for use, and allocate it to the The difference between the maximum frequency and the minimum frequency in the frequency band used by the second AP is less than or equal to the first channel bandwidth.
  • the difference between the maximum frequency and the minimum frequency in the frequency band used by any one of the M first APs is less than or equal to the second channel bandwidth.
  • the allocating unit 302 is further specifically configured to determine a frequency band from the fourth frequency band determined by the determining unit 301 according to the second channel bandwidth and allocate it to the second AP, and allocate it to the frequency band used by the second AP.
  • the difference between the maximum frequency and the minimum frequency is less than or equal to the second channel bandwidth.
  • the foregoing physical parameters include antenna position, antenna orientation, antenna transmission power, and antenna propagation model.
  • the spectrum resource allocation device 100 further includes a second receiving module 70 and an adjustment module 80.
  • the second receiving module 70 is configured to receive a frequency adjustment request of a third AP, where the third AP is any first AP included in the M first APs, the frequency adjustment request includes a third channel bandwidth, and the third AP The three-channel bandwidth is different from the channel bandwidth determined by the frequency band currently used by the third AP.
  • the above-mentioned second determining module 20 is further configured to determine the first AP corresponding to the first coverage area that overlaps with the coverage area of the third AP as an area overlapping AP to obtain at least one area overlapping AP.
  • the adjustment module 80 is configured to adjust the frequency band currently used by the third AP according to the frequency band used by each of the at least one area overlapping AP determined by the second determining module 20 and the frequency band available to the third AP, The difference between the maximum frequency and the minimum frequency in the frequency band used by the third AP after adjustment is less than or equal to the third channel bandwidth, and the frequency band used by the third AP after adjustment does not overlap with the frequency band used by each overlapping AP .
  • the first determination module 10, the second determination module 20, the allocation module 30, the third determination module 40, the fourth determination module 50, and/or the adjustment module 80 may be one module, such as a processing module .
  • the first receiving module 60 and/or the second receiving module 70 may also be a module, such as a transceiver module.
  • each module can also refer to the corresponding description of the terminal device in the method embodiment shown in FIG. 2 to execute the methods and functions performed by the terminal device in the foregoing embodiment.
  • FIG. 5 is a schematic structural diagram of a terminal device provided in an embodiment of the present application.
  • the terminal device 1000 provided by the embodiment of the present application includes a processor 1001, a memory 1002, a transceiver 1003, and a bus system 1004.
  • processor 1001, memory 1002, and transceiver 1003 are connected through a bus system 1004.
  • the aforementioned memory 1002 is used to store programs. Specifically, the program may include program code, and the program code includes computer operation instructions.
  • the memory 1002 includes but is not limited to random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (erasable programmable read only memory, EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM). Only one memory is shown in FIG. 5. Of course, the memory can also be set to multiple as required.
  • the memory 1002 may also be a memory in the processor 1001, which is not limited here.
  • the memory 1002 stores the following elements, executable modules, units, or data structures, or their subsets, or their extended sets:
  • Operating instructions including various operating instructions, used to implement various operations.
  • Operating system including various system programs, used to implement various basic services and process hardware-based tasks.
  • the foregoing processor 1001 controls the operation of the terminal device 1000.
  • the processor 1001 may be one or more central processing units (CPUs).
  • CPUs central processing units
  • the CPU may be a single-core CPU. It can also be a multi-core CPU.
  • bus system 1004 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • bus system 1004 may include a power bus, a control bus, and a status signal bus in addition to a data bus.
  • various buses are marked as the bus system 1004 in FIG. 5.
  • FIG. 5 is only schematically drawn.
  • the method of FIG. 2 provided in the foregoing embodiment of the present application or the terminal device of the foregoing embodiment may be applied to the processor 1001 or implemented by the processor 1001.
  • the processor 1001 may be an integrated circuit chip with data processing capabilities. In the implementation process, the steps of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1001 or instructions in the form of software.
  • the aforementioned processor 1001 may be a general-purpose processor, a digital signal processing (digital signal processing, DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • Other programmable logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory 1002, and the processor 1001 reads the data in the memory 1002, and executes the method steps of FIG. 2 or the terminal device described in the above embodiment in combination with its hardware.
  • the embodiments of the present application also provide a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the method steps of the terminal device described in FIG. 2.
  • An embodiment of the present application also provides a chip including a processor.
  • the processor is used to read and execute a computer program stored in the memory to execute the spectrum resource allocation method in any possible implementation manner in FIG. 2.
  • the chip further includes a memory, and the memory and the processor are connected through a circuit or a wire.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information to be processed, and the processor obtains the data and/or information from the communication interface, processes the data and/or information, and outputs the processing result through the communication interface.
  • the communication interface can be an input and output interface.
  • processors and memory may be physically independent units, or the memory may also be integrated with the processor.
  • the process can be completed by a computer program instructing relevant hardware.
  • the program can be stored in a computer readable storage medium. , May include the processes of the foregoing method embodiments.
  • the aforementioned storage media include: ROM or random storage RAM, magnetic disks or optical discs and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种频谱资源分配方法及装置,该方法包括:终端设备根据M个第一接入点AP中各个第一AP的物理参数,确定该各个第一AP的第一覆盖区域,再根据第二AP的物理参数确定该第二AP的第二覆盖区域,并将该各个第一AP的第一覆盖区域中与该第二覆盖区域存在重叠的第一覆盖区域所对应的第一AP确定为重叠AP,以得到至少一个重叠AP,最后根据该至少一个重叠AP中各个重叠AP所使用的频段,从该第二AP可用的第一频段中确定出分配给该第二AP使用的频段。采用本申请实施例,可以避免AP之间的同信道干扰,增强网络可靠性。

Description

频谱资源分配方法及装置
本申请要求于2019年6月19日提交中国专利局、申请号为201910529600.X、申请名称为“频谱资源分配方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种频谱资源分配方法及装置。
背景技术
目前,最常用的无线局域网(wireless local area network,WLAN)系统是Wi-Fi,Wi-Fi是基于IEEE 802.11系列标准,利用高频无线射频(如2.4GHz,5GHz,60GHz等频段的无线电磁波)作为传输介质的无线局域网。在一个WLAN网络中,多个工作站(station,STA)通过WLAN与接入点(access point,AP)关联,并通过AP接入互联网(Internet),一个AP可以关联多个STA,这些STA之间按照一定的规则竞争无线空口资源(这里无线空口资源主要指AP的信道)。因此,这些STA在竞争AP的信道时,很容易发生冲突。
其中,802.11协议使用载波侦听多路访问(carrier sense multiple access,CSMA)方法来避免多个STA之间的冲突。每个STA在发送数据之前,先侦听AP的信道是否空闲(指是否有其他STA在该信道上传输数据)。如果该信道空闲,则该STA在该信道上传输整个数据包的数据;如果此时该STA侦听到其他STA在该信道上传输数据(说明此时AP的信道忙碌),则该STA进入退避阶段,即在随机时间段内等待其他STA停止传输数据,而后再次侦听此信道是否将进入空闲状态,若是,则当该信道空闲时传输整个数据包的数据。
当任意两个AP的覆盖区域存在重叠时,如果这两个AP所使用的频段也重叠,一个AP将影响另一个AP的网络时延,同时存在同信道干扰。
发明内容
本申请实施例提供一种频谱资源分配方法及装置,可以避免AP之间的同信道干扰,增强网络可靠性(降低同频干扰与时延),从而为大带宽低时延应用承载提供服务质量保障。
第一方面,本申请实施例提供一种频谱资源分配方法,该方法包括:终端设备根据M个第一接入点AP中各个第一AP的物理参数,确定该各个第一AP的第一覆盖区域,再根据第二AP的物理参数确定该第二AP的第二覆盖区域,并将该M个第一AP的M个第一覆盖区域中与该第二覆盖区域存在重叠的第一覆盖区域所对应的第一AP确定为重叠AP,以得到至少一个重叠AP,最后根据该至少一个重叠AP中各个重叠AP所使用的频段,从该第二AP可用的第一频段中确定出分配给该第二AP使用的频段。其中,M可以为自然数,第二AP可以为未分配频段的任一AP,分配给该第二AP使用的频段与该各个重叠AP所使用的频段不重叠。本申请实施例在第二AP的覆盖区域与重叠AP的覆盖区域发生重叠时,为第二AP分配与各重叠AP所使用的频段完全不重叠的频段,可以避免AP之间的同信道干扰,增强网络可靠性(降低同频干扰与时延),为大带宽低时延应用承载提供服务质量保 障。可选的,当上述M为0时,终端设备可以直接从该第二AP可用的第一频段中选定一个频段并分配给该第二AP使用。
结合第一方面,在一种可能的实施方式中,若上述第二AP的第二覆盖区域与各个第一AP的第一覆盖区域均不重叠,说明该第二AP不会对该各个第一AP产生干扰,则终端设备可以直接从该第二AP可用的第一频段中选定一个频段并分配给该第二AP使用。
结合第一方面,在一种可能的实施方式中,该方法还包括:在根据该至少一个重叠AP中各个重叠AP所使用的频段,从该第二AP可用的第一频段中确定出分配给该第二AP使用的频段之前,终端设备可以确定待分配频谱资源的第二频段以及该第二频段中的第三频段,该第三频段可以为第一设备所使用的频段。终端设备可以根据该第一设备的物理参数确定该第一设备的第三覆盖区域,并可以检测该上述第二AP的第二覆盖区域与该第一设备的第三覆盖区域是否存在重叠。若该第二覆盖区域与该第三覆盖区域存在重叠,说明该第二AP可能会对该第一设备产生干扰,则终端设备可以确定该第二AP可用的第一频段为该第二频段中与该第三频段不重叠的频段。若该第二覆盖区域与该第三覆盖区域不存在重叠,说明该第二AP不会对该第一设备产生干扰,则终端设备可以确定该第二AP可用的第一频段为该第二频段。其中,该第二频段可以为终端设备可控制的频段或者预先设置的频段。该第一设备的工作模式可以为第一工作模式,该第二AP的工作模式可以为第二工作模式。本申请实施例在第二AP的第二覆盖区域与第一设备的第三覆盖区域发生重叠时,将第二频段中与第三频段不重叠的部分作为第二AP可用的频段,可以避免第二AP对第一设备的干扰,保证第一设备的正常通信。在第二AP的第二覆盖区域与第一设备的第三覆盖区域不重叠时,直接将第二频段作为第二AP可用的频段,可以在不产生干扰的情况下提高频谱资源的利用率。
结合第一方面,在一种可能的实施方式中,在根据该至少一个重叠AP中各个重叠AP所使用的频段,从该第二AP可用的第一频段中确定出分配给该第二AP使用的频段时,终端设备可以先从上述第二AP可用的第一频段中确定出与上述至少一个重叠AP中各个重叠AP所使用的频段均不重叠的第四频段,再从该第四频段中确定出一个频段并分配给该第二AP使用。本申请实施例从第一频段中与各个重叠AP所使用的频段不重叠的第四频段中选定一个频段并分配给第二AP使用,避免第二AP与各重叠AP之间的同信道干扰。
结合第一方面,在一种可能的实施方式中,终端设备可以接收频率分配请求,该频率分配请求可以包括第一信道带宽。终端设备在从该第四频段中确定出一个频段并分配给该第二AP使用时,可以根据该第一信道带宽从该第四频段中确定出一个频段并分配给该第二AP使用,分配给该第二AP使用的频段中最大频率与最小频率之差小于或等于该第一信道带宽。其中,第一信道带宽可以为上述第二AP根据自身的业务需求(或流量需求)所确定的。可选的,该频率分配请求中还可包括AP标识,终端设备可以将该AP标识所标识的AP作为第二AP。本申请实施例的终端设备可以为各AP按需分配频段,以满足各AP的业务需求,从而保障与AP关联的各STA的服务质量。
结合第一方面,在一种可能的实施方式中,上述M个第一AP中任一第一AP所使用的频段中最大频率与最小频率之差小于或等于第二信道带宽。终端设备在从该第四频段中确定出一个频段并分配给该第二AP使用时,可以根据该第二信道带宽从该第四频段中确 定出一个频段并分配给该第二AP使用,分配给该第二AP使用的频段中最大频率与最小频率之差小于或等于该第二信道带宽。该第二信道带宽可以为终端设备预先设置的信道带宽。
结合第一方面,在一种可能的实施方式中,上述物理参数包括天线位置、天线朝向、天线发送功率以及天线传播模型。
结合第一方面,在一种可能的实施方式中,上述M大于或等于1。该方法还包括:终端设备可以接收第三AP的频率调整请求,该频率调整请求包括第三信道带宽,并可以将与该第三AP的覆盖区域存在重叠的第一覆盖区域所对应的第一AP确定为区域重叠AP,以得到至少一个区域重叠AP,再可以根据该至少一个区域重叠AP中各个区域重叠AP所使用的频段以及该第三AP可用的频段,调整该第三AP当前使用的频段。其中,该第三AP可以为上述M个第一AP中包括的任一第一AP,该第三信道带宽可以与该第三AP当前使用的频段所确定的信道带宽不相同。该第三AP调整后所使用的频段中最大频率与最小频率之差小于或等于该第三信道带宽,该第三AP调整后所使用的频段与该各个区域重叠AP所使用的频段均不重叠。该第三信道带宽可以为该第三AP根据自身业务需求或流量需求的变化所确定的。本申请实施例的AP根据自身的实际情况(如业务情况、流量情况等)可以向终端设备提出频率调整请求,终端设备接收到该频率调整请求后可以对该A P当前使用的频段进行调整,以适应AP自身的业务变化,从而保证AP的服务质量。
结合第一方面,在一种可能的实施方式中,在确定待分配频谱资源的第二频段以及该第二频段中的第三频段之前,终端设备可以接收第一设备的注册请求,该注册请求中可以包括该第一设备的物理参数,并可以将该第一设备的物理参数存储在终端设备中,以便于根据该第一设备的物理参数确定该第一设备的第二覆盖区域。
第二方面,本申请实施例提供一种频谱资源分配装置,该频谱资源分配装置包括用于执行上述第一方面和/或第一方面的任意一种可能的实现方式所提供的频谱资源分配方法的单元和/或模块,因此也能实现第一方面提供的频谱资源分配方法所具备的有益效果(或优点)。
第三方面,本申请实施例提供一种终端设备,包括处理器、收发器和存储器,其中,该存储器用于存储计算机程序,该计算机程序包括程序指令,当该处理器运行该程序指令时,执行上述第一方面的频谱资源分配方法。
第四方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述第一方面的频谱资源分配方法。
第五方面,本申请实施例提供一种芯片,包括处理器。该处理器用于读取并执行存储器中存储的计算机程序,以执行上述第一方面的任意可能的实现方式中的频谱资源分配方法。可选的,该芯片还包括存储器,该存储器与该处理器通过电路或电线连接。进一步可选的,该芯片还包括通信接口,该处理器与该通信接口连接。该通信接口用于接收需要处理的数据和/或信息,该处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理,并通过该通信接口输出处理结果。该通信接口可以是输入输出接口。
可选的,上述的处理器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
第六方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储计算机程序指令,当该计算机程序指令在该计算机上运行时,使得该计算机执行上述第一方面中的频谱资源分配方法。
实施本申请实施例,一方面可以避免AP之间的同信道干扰,增强网络可靠性(降低同频干扰与时延);另一方面可以为大带宽低时延应用承载提供服务质量保障。
附图说明
图1是本申请实施例提供的应用场景的示意图;
图2是本申请实施例提供的频谱资源分配方法的一示意流程图;
图3a是本申请实施例提供的传输损耗随距离变化的示意图;
图3b是本申请实施例提供的第三覆盖区域的示意图;
图3c是本申请实施例提供的第二覆盖区域的示意图;
图4是本申请实施例提供的频谱资源分配装置的结构示意图;
图5是本申请实施例提供的终端设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
如图1所示,图1为本申请实施例提供的应用场景的示意图。其中,图1以2个AP为例对本申请的应用场景进行说明。图1中包括AP1和AP2,AP1分别与STA1、STA2以及STA3关联;AP2分别与STA4和STA5关联;换句话说,STA1、STA2以及STA3可以通过AP1接入互联网,STA4和STA5可以通过AP2接入互联网。每个AP都对应一个覆盖区域,与AP关联的STA必须在该AP的覆盖区域内才能与其进行通信,若与该AP关联的STA在该AP的覆盖区域外,则不能与该AP通信。图1中AP1的覆盖区域BSS1与AP2的覆盖区域BSS2存在重叠。如果AP1和AP2所使用的频段存在重叠(如AP1使用的频段为6.12GHz-6.14GHz,AP2使用的频段为6.13GHz-6.15GHz,此时AP1与AP2所使用的频段存在重叠),将导致AP1与AP2之间出现同频干扰(或同信道干扰)。具体地,如图1所示,STA1在发送数据之前,先侦听信道是否空闲,由于STA1处于覆盖区域BSS1和覆盖区域BSS2的重叠区域(如图1中斜线区域)且AP1和AP2所使用的频段存在重叠,所以STA1同时侦听AP1和AP2的信道。当STA1先接收到AP2返回的信道忙碌信息时,则AP2返回的信道忙碌信息将触发STA1进入退避阶段,此时即使STA1接收到AP1返回的信道空闲信息,在STA1的退避时间到达前,STA1不能占用AP1的信道传输数据,即STA1不能与AP1通信。当STA1的退避时间到达时,STA1会再次侦听信道(此时侦听的仍然是两个信道:AP1的信道和AP2的信道)是否空闲,直到STA1侦听到AP1返回的信道空闲信息时,STA1占用AP1的信道传输数据(即与AP1进行通信)。这一方面将导致STA1等待更长的时间才能获得传输数据的机会,降低了与AP1关联的STA的平均数据吞吐量,增加了STA1的网络时延,无法保证STA1上的大带宽低时延应用(如4K视频应用、增强现实、 虚拟现实应用等)的服务质量。另一方面,假设AP1的信道带宽为80MHz,AP2的信道带宽为20MHz。对于STA1,AP1所提供的80MHz信道是失效的,因为AP2对AP1产生了干扰,使得STA1无法享受AP1的高带宽带来的高吞吐量以及小时延的优势。
针对上述应用场景,本申请提出了一种频谱资源分配方法,可以避免AP之间的同信道干扰,增强网络可靠性(降低同频干扰与时延),从而为大带宽低时延应用承载提供服务质量保障。
在一些可行的实施方式中,本申请中的AP可以包括无线路由、基站等;STA可以包括手机、电脑、IPAD等用户终端。本申请所涉及的频谱资源可以指频段,频谱资源的分配即为频段的分配。例如,若本申请所提供的频谱资源为5.925GHz-6.425GHz和6.525GHz-6.875GHz这两个频段,则本申请针对5.925GHz-6.425GHz和6.525GHz-6.875GHz这两个频段进行分配。本申请提供的频谱资源分配方法可适用于终端设备中,该终端设备可以为自动频率控制系统(automatic frequency control,AFC),也可以为其他能够实现本申请提供的频谱资源分配方法的设备。其中,AFC可以包括至少两个数据库(如现有信息数据库(incumbent data base)和次级信息数据库(secondary data base))以及一个频谱接入控制模块。为便于描述,下面将以终端设备为例对本申请提供的频谱资源分配方法进行说明。
参见图2,图2是本申请实施例提供的频谱资源分配方法的一示意流程图。如图2所示,本申请实施例提供的频谱资源分配方法可包括步骤:
S201,确定待分配频谱资源的第二频段以及第二频段中的第三频段。
在一些可行的实施方式中,上述待分配频谱资源的第二频段可以为终端设备可控制的频段,比如6G频段中的5.925GHz-6.425GHz和6.525GHz-6.875GHz。该第二频段下可以存在两种不同工作模式的设备,其中一种工作模式可以为授权工作模式(授权工作模式可以指授权设备的工作模式),另一种工作模式可以为非授权工作模式(非授权工作模式可以指非授权设备的工作模式)。授权设备可以指被国家授予使用指定频段的设备;非授权设备可以指未被国家授予使用指定频段的设备。
在另一些可行的实施方式中,该第二频段下存在两种工作模式的设备,其中一种工作模式的设备所使用频段的优先级高于另一种工作模式的设备所使用频段的优先级。
在一些可行的实施方式中,上述第二频段中可以包括第三频段,第三频段可以为第一设备所使用的频段,第一设备的工作模式可以为第一工作模式,该第一工作模式可以为上述授权工作模式,换句话说,该第一设备可以为上述授权设备,该第三频段可以为该第二频段中的指定频段。在实际应用中,第一设备可以是用于实现固定同步卫星业务的地面固定基站,或者可以是用于实现地面固定点对点通信业务的基站。
在一些可行的实施方式中,用户1在拿到国家指定的频段后,可以对用户1所拥有的第一设备进行参数配置,比如配置第一设备使用的频段为指定频段,配置指定频段的使用期限等。在配置完成后,第一设备可以通过统一授权系统在终端设备中进行注册。终端设备通过统一授权系统接收该第一设备的注册信息,并可以将该第一设备的注册信息存储在终端设备中(比如存储在终端设备的现有信息数据库中)。该注册信息中可以包括第一设备 的物理参数和第一设备的基础信息,该第一设备的物理参数可以包括该第一设备的天线位置、天线朝向、天线发送功率、天线传播模型等;该第一设备的基础信息可以包括该第一设备的标识、该第一设备所使用的频段(即配置的授权频段)、该第一设备的工作模式(即第一工作模式)、该第一设备使用的频段的使用期限等。
在另一些可行的实施方式中,终端设备上注册的第一设备可以有多个,则上述第二频段中的第三频段也可以有多个,一个第一设备只能使用一个频段(这里指一个指定频段)。为便于描述,本申请实施例将以一个第一设备为例进行说明。终端设备可以确定预先设置的待分配频谱资源的第二频段,并可以从终端设备的现有信息数据库中获取该第一设备所使用的第三频段。
S202,若第二接入点AP的第二覆盖区域与第一设备的第三覆盖区域存在重叠,则确定第二AP可用的第一频段为第二频段中与第三频段不重叠的频段。
S203,若第二AP的第二覆盖区域与第一设备的第三覆盖区域不重叠,则确定第二AP可用的第一频段为第二频段。
在一些可行的实施方式中,本申请实施例中的所有AP均需要在终端设备上进行注册。每个AP在进行注册时,可以通过注册请求将AP自身的物理参数(包括天线位置、天线朝向、天线发送功率、天线传播模型等)以及基础信息(包括AP标识等)发送给终端设备。终端设备接收到AP的注册请求后,可以将注册请求中携带的AP的物理参数和基础信息存储在终端设备中(比如存储在终端设备的次级信息数据库中)。终端设备可以在已注册且未分配频段的AP中任选一个AP作为第二AP,并可以从该终端设备(如次级信息数据库)中提取该第二AP的物理参数,再可以根据该第二AP的物理参数确定该第二AP的覆盖区域。终端设备可以从该终端设备(如现有信息数据库)中提取上述第一设备的物理参数,并根据该第一设备的物理参数确定该第一设备的覆盖区域。为便于描述,本申请实施例可以将第二AP的覆盖区域作为第二覆盖区域,将第一设备的覆盖区域作为第三覆盖区域。终端设备可以检测该第二覆盖区域是否与该第三覆盖区域存在重叠。如果该第二覆盖区域与该第三覆盖区域存在重叠,说明该第二AP可能会对该第一设备产生干扰,则终端设备可以将上述第二频段中与上述第三频段不重叠的频段确定为该第二AP可用的第一频段。由于第一设备所使用的频段为第三频段,将第二频段中与第三频段不重叠的部分作为第二AP可用的频段,可以避免第二AP对第一设备的干扰,保证第一设备的正常通信。如果该第二覆盖区域与该第三覆盖区域不存在重叠,说明该第二AP不会对该第一设备产生干扰,则终端设备可以将上述第二频段确定为该第二AP可用的第一频段。由于覆盖区域不重叠不会出现同频干扰的问题,直接将第二频段作为第二AP可用的频段,此时第一设备所使用的频段也可以被第二AP使用,即频率复用(或信道复用),可以在不产生干扰的情况下提高频谱资源的利用率。其中,本申请实施例中的覆盖区域重叠可以包括覆盖区域的部分重叠和完全重叠两种。第二AP的工作模式可以为第二工作模式,该第二工作模式可以为上述非授权模式。本申请实施例中,注册在终端设备上的所有AP的工作模式均可为第二工作模式。
在另一些可行的实施方式中,上述注册在终端设备中且未分配频段的AP可以向终端设备发送频率分配请求。终端设备接收到该频率分配请求后,可以获取该频率分配请求中 包括的AP标识,并可以将该AP标识所标识的AP确定为第二AP。换句话说,第二AP可以为发送频率分配请求的AP。可选的,该频率分配请求可以封装为一个请求报文的形式发送给终端设备,该请求报文中除AP标识外,还可以包括AP的硬件地址(media access control address,MAC地址)、地理位置和/或信道带宽等信息。
在一些可行的实施方式中,终端设备在根据上述第一设备的物理参数确定该第一设备的覆盖区域和/或根据上述第二AP的物理参数确定该第二AP的覆盖区域时,首先可以采用Cost-Hata传播模型、Okumura-Hata传播模型等基于经验性或射线追踪模型等基于确定性分析的计算方法,计算该第一设备和/或该第二AP的传输损耗(也称路径损耗或传输路径损耗)。终端设备再可以根据与该第一设备正常通信可用的最大损耗以及该第一设备的传输损耗,计算该第一设备的最大通信距离,再根据该第一设备的最大通信距离预测该第一设备的覆盖区域。同理,终端设备可以根据与该第二AP正常通信可用的最大损耗以及该第二AP的传输损耗,计算该第二AP的最大通信距离,再根据该第二AP的最大通信距离预测该第二AP的覆盖区域。其中,Cost-Hata传播模型和Okumura-Hata传播模型均是通过对大量测试数据进行研究,得到电波传播的统计特性,从而用于电磁强度衰减(即损耗)计算;射线追踪模型是对电波的传播特性进行理论分析,得到电波传播的特性,再结合产生电波的天线朝向、方向图以及天线发送功率,来计算电磁强度的衰减(或损耗)。
如图3a所示,图3a为本申请实施例提供的传输损耗随距离变化的示意图。假设第一设备为地面固定点对点通信业务的基站,则图3a中横轴可以表示第一设备与接收台之间的水平距离d(单位:km),纵轴可以为传输损耗L(单位:dB)。或者图3a的横轴可以表示第一AP与STA之间的水平距离d(单位:km),纵轴可以为传输损耗L(单位:dB)。图3a分别示出了载波频率700MHz和900MHz下,城市、郊区、农村这3个不同地形下的传输损耗。假设第一设备正常通信可用的最大损耗为140dB,且第一设备所处的地形为城市地形,则在城市地形下最大损耗140dB对应的水平距离d为2km(千米),即第一设备的最大通信距离为2km。如图3b所示,图3b为本申请实施例提供的第三覆盖区域的示意图。如图3b所示,第一设备的天线朝向为30度,假设第一设备的天线为60度的扇形天线。终端设备可以将与第一设备的水平距离在2km内的区域作为该第一设备的覆盖区域(即第三覆盖区域,图3b中的斜线区域)。同理,假设第二AP正常通信可用的最大损耗为130dB,且第二AP所处的地形也为城市地形,则在城市地形下最大损耗130dB对应的水平距离d为1km(千米),即第二AP的最大通信距离为1km。如图3c所示,图3c为本申请实施例提供的第二覆盖区域的示意图。如图3c所示,假设第二AP的天线为全向天线。终端设备可以将与第二AP的水平距离在1km内的区域作为该第二AP的覆盖区域(即第二覆盖区域)。
S204,根据M个第一AP中各个第一AP的物理参数,确定各个第一AP的第一覆盖区域。
在一些可行的实施方式中,本申请实施例中的所有AP均需要在终端设备上进行注册。上述第一AP可以为注册在终端设备中且已分配频段的AP。由于每个AP在注册到终端设备上后,终端设备就将每个AP的物理参数存储在该终端设备(比如存储在终端设备的次级信息数据库)中。所以终端设备可以从该终端设备(或次级信息数据库)中提取M个第 一AP的各个第一AP的物理参数,再可以根据该各个第一AP的物理参数确定该各个第一AP的覆盖区域,以得到M个覆盖区域。为便于描述,本申请实施例将第一AP的覆盖区域作为第一覆盖区域,则终端设备确定出了M个第一覆盖区域。其中,该第一AP的物理参数可以包括该第一AP的天线位置、天线朝向、天线发送功率、天线传播模型等。其中,M可以为自然数。该M个第一AP中各个第一AP的工作模式均可以为第二工作模式,该第二工作模式可以为上述非授权模式。可选的,当M为0时,说明终端设备中不存在已分配频段的AP,则终端设备可以直接从上述确定出的第二AP可用的第一频段中选定一个频段分配给该第二AP使用。当M为大于0的自然数时,说明终端设备中存在已分配频段的AP,则终端设备可以执行步骤S205。
在一些可行的实施方式中,终端设备在根据上述各个第一AP的物理参数确定该各个第一AP的覆盖区域时,首先可以采用Cost-Hata传播模型、Okumura-Hata传播模型等基于经验性或射线追踪模型等基于确定性分析的计算方法,计算该各个第一AP的传输损耗(也称路径损耗或传输路径损耗)。终端设备再可以根据与该各个第一AP正常通信可用的最大损耗以及该各个第一AP的传输损耗,计算该各个第一AP的最大通信距离,再根据该各个第一AP的最大通信距离预测该各个第一AP的覆盖区域,从而得到M个第一AP对应的M个覆盖区域(即M个第一覆盖区域)。
在一些可行的实施方式中,本申请实施例中的步骤S201-步骤S203可以在步骤S204之前执行,步骤S201-步骤S203也可以在步骤S204之后执行,步骤S201-步骤S203还可以与步骤S204同时执行,本申请实施例对步骤S201-步骤S203与步骤S204的执行顺序不做限定。
S205,将与第二AP的第二覆盖区域存在重叠的第一覆盖区域所对应的第一AP确定为重叠AP,以得到至少一个重叠AP。
在一些可行的实施方式中,上述第二AP可以为注册到终端设备上且未分配频段的任一AP,或者该第二AP可以为终端设备接收到的频率分配请求中携带的AP标识所标识的AP。终端设备可以获取上述得到的第二AP的第二覆盖区域,并可以检测该第二覆盖区域与上述确定出的每个第一覆盖区域是否存在重叠。如果该第二覆盖区域与某个第一覆盖区域存在重叠,说明该第二AP可能会对该某个第一覆盖区域所对应的第一AP产生干扰;如果该第二覆盖区域与某个第一覆盖区域不存在重叠,说明该第二AP不会对该某个第一覆盖区域所对应的第一AP产生干扰。如果上述确定出的M个第一覆盖区域中存在与该第二覆盖区域重叠的第一覆盖区域,则终端设备可以将上述确定出的M个第一覆盖区域中与该第二覆盖区域存在重叠的第一覆盖区域所对应的第一AP确定为重叠AP,以得到至少一个重叠AP。由于重叠AP的第一覆盖区域与该第二覆盖区域存在重叠,所以第二AP可能会对重叠AP产生干扰。
在另一些可行的实施方式中,终端设备检测到上述确定出的M个第一覆盖区域中不存在与该第二覆盖区域重叠的第一覆盖区域时,终端设备可以直接从步骤S203或步骤S203确定出的第二AP可用的第一频段中选定一个频段分配给该第二AP使用。可选的,终端设备在将该第二AP可用的第一频段中的一个频段分配该第二AP使用后,还可以将分配给该第二AP使用的频段存储在该终端设备中(比如存储在终端设备的次级信息数据库),以便 于频谱资源的管理。
例如,假设M为5,5个第一覆盖区域分别为:第一覆盖区域a、第一覆盖区域b、第一覆盖区域c、第一覆盖区域d以及第一覆盖区域e。终端设备可以分别检测第一覆盖区域a与第二覆盖区域是否存在重叠,第一覆盖区域b与第二覆盖区域是否存在重叠、第一覆盖区域c与第二覆盖区域是否存在重叠,第一覆盖区域d与第二覆盖区域是否存在重叠以及第一覆盖区域e与第二覆盖区域是否存在重叠。假设5个第一覆盖区域中只有第一覆盖区域a和第一覆盖区域c与第二覆盖区域存在重叠,则终端设备在检测到第一覆盖区域a与第二覆盖区域重叠时,就将第一覆盖区域a所对应的第一AP作为一个重叠AP;在检测到第一覆盖区域c与第二覆盖区域重叠时,就将第一覆盖区域c所对应的第一AP作为另一个重叠AP。
S206,根据至少一个重叠AP中各个重叠AP所使用的频段,从第二AP可用的第一频段中确定出分配给第二AP使用的频段。
在一些可行的实施方式中,终端设备获取上述确定出的至少一个重叠AP中各个重叠AP所使用的频段,并可以根据该各个重叠AP所使用的频段,从上述确定出的第二AP可用的第一频段中确定出一个与该各个重叠AP所使用的频段均不重叠的频段分配给该第二AP使用。具体的,终端设备可以先从该第二AP可用的第一频段中确定出与该至少一个重叠AP中各个重叠AP所使用的频段均不重叠的第四频段。比如,终端设备可以计算第一频段与每个重叠AP所使用频段的交集,再可以从该第一频段中减去该第一频段与每个重叠AP所使用频段的交集,得到第四频段。终端设备再从该第四频段中选定一个频段并分配给该第二AP使用。由于重叠AP的第一覆盖区域与第二AP的第二覆盖区域存在重叠,则第二AP可能会对重叠AP产生干扰,所以本申请实施例通过将第二AP可用的第一频段中与各个重叠AP均不重叠的一个频段分配给该第二AP使用,可以避免第二AP与各个重叠AP之间的同频干扰,从而增强了网络可靠性(降低时延)。其中,分配给第二AP使用的频段中最大频率与最小频率之差(即信道带宽)可以为预设值,也可以为根据预先设置的信道带宽生成策略生成的值,还可以为第二AP指定的值,本申请实施例可以不对第二AP的信道带宽进行限定。本申请实施例中的频段不重叠可以指两个频段的交集为空。
在一些可行的实施方式中,终端设备可以提取上述接收到的频率分配请求中包括的第一信道带宽。终端设备在从上述第四频段中选定一个频段并分配给上述第二AP使用时,可以检测该第四频段中是否存在一个频段的最大频率与最小频率之差大于或等于该第一信道带宽。若该第四频段中存在一个频段的最大频率与最小频率之差大于或等于该第一信道带宽,则终端设备可以从该第四频段中选择一个最大频率与最小频率之差等于该第一信道带宽的频段分配给该第二AP使用。若该第四频段中不存在一个频段的最大频率与最小频率之差大于或等于该第一信道带宽,则终端设备可以将该第四频段中最大频率与最小频率之差最大(小于该第一信道带宽)的一个频段分配给该第二AP使用。其中,第一信道带宽可以为第二AP根据自身承载的业务需求(或流量需求)所确定的。
例如,假设至少一个重叠AP包括重叠AP1和重叠AP2,第二AP可用的第一频段为6.2GHz-6.425GHz。假设重叠AP1所使用的频段为6.18GHz-6.23GHz,重叠AP2所使用的频段为6.24GHz-6.34GHz。终端设备可以计算第一频段6.2GHz-6.425GHz与重叠AP1所使 用频段6.18GHz-6.23GHz的交集6.2GHz-6.23GHz;终端设备再可以计算第一频段6.2GHz-6.425GHz与重叠AP2所使用频段6.24GHz-6.34GHz的交集6.24GHz-6.34GHz。终端设备再从第一频段6.2GHz-6.425GHz中减去交集6.2GHz-6.23GHz以及交集6.24GHz-6.34GHz,得到第四频段为6.23GHz-6.24GHz和6.34GHz-6.425GHz。假设第一信道带宽为100MHz。终端设备检测第四频段(6.23GHz-6.24GHz和6.34GHz-6.425GHz)中是否存在一个频段的最大频率与最小频率之差大于或等于第一信道带宽100MHz。由于第四频段的6.23GHz-6.24GHz中最大频率6.24GHz与最小频率6.23GHz之差为10MHz,小于第一信道带宽100MHz;第四频段的6.34GHz-6.425GHz中最大频率6.34GHz与最小频率6.425GHz之差为85MHz,也小于第一信道带宽100MHz。此时第四频段中不存在一个频段的最大频率与最小频率之差大于或等于第一信道带宽,则终端设备将第四频段中最大频率与最小频率之差最大(85MHz)的一个频段分配给第二AP使用,即将6.34GHz-6.425GHz分配给第二AP使用。又如,假设第一信道带宽为50MHz。由于第四频段的6.23GHz-6.24GHz中最大频率6.24GHz与最小频率6.23GHz之差为10MHz,小于第一信道带宽50MHz;第四频段的6.34GHz-6.425GHz中最大频率6.34GHz与最小频率6.425GHz之差为85MHz,大于第一信道带宽50MHz。此时第四频段中存在一个频段的最大频率与最小频率之差大于或等于第一信道带宽,则终端设备从第四频段中选择一个最大频率与最小频率之差等于第一信道带宽50MHz的频段分配给第二AP使用,如选定6.35GHz-6.4GHz分配给第二AP使用;或选定6.375GHz-6.425GHz分配给第二AP使用等等。
可选的,上述频率分配请求中还可以包括频谱租约时间。终端设备在从上述第四频段中选定一个频段并分配给上述第二AP使用后,根据该第二AP开始使用终端设备分配的频段的时间以及频谱租约时间,计算该第二AP的频谱失效时间。在该频谱失效时间到达后,终端设备可以回收分配给该第二AP使用的频段,即该频谱失效时间到达后,终端设备可以将之前分配给该第二AP使用的频段分配给其他AP使用,而第二AP不能继续使用该频段。比如,假设频谱租约时间为3年,第二AP开始使用终端设备分配的频段的时间为2019年6月10日,则第二AP的频谱失效时间为2022年6月10日。假设终端设备分配给第二AP使用的频段为5.925GHz-5.975GHz,则从2022年6月10日起,终端设备可以回收频段5.925GHz-5.975GHz,即第二AP不能继续使用频段5.925GHz-5.975GHz,终端设备可以将频段5.925GHz-5.975GHz分配给其他AP使用。
在另一些可行的实施方式中,终端设备中可以预先存储第二信道带宽(比如第二信道带宽为20MHz)。上述M个第一AP的任一第一AP所使用的频段中最大频率与最小频率之差小于或等于该第二信道带宽。终端设备在从上述第四频段中选定一个频段并分配给上述第二AP使用时,可以检测该第四频段中是否存在一个频段的最大频率与最小频率之差大于或等于该第二信道带宽。若该第四频段中存在一个频段的最大频率与最小频率之差大于或等于该第二信道带宽,则终端设备可以从该第四频段中选择一个最大频率与最小频率之差等于该第二信道带宽的频段分配给该第二AP使用。若该第四频段中不存在一个频段的最大频率与最小频率之差大于或等于该第二信道带宽,则终端设备可以将该第四频段中最大频率与最小频率之差最大(小于该第二信道带宽)的一个频段分配给该第二AP使用。
在一些可行的实施方式中,终端设备在为上述第二AP分配该第二AP使用的频段后, 可以将分配给该第二AP使用的频段与该第二AP的物理参数(包括天线位置、天线朝向、天线发送功率、天线传播模型等)和基础信息(包括AP标识等)共同存储在终端设备中(比如存储在终端设备的次级信息数据库中),以便于后续频谱资源的管理。换句话说,终端设备(或次级信息数据库)中存储有第二AP所使用的频段、第二AP的物理参数以及第二AP的基础信息。可选的,终端设备将分配给该第二AP使用的频段存储下来之后,第二AP就从未分配频段的AP变为已分配频段的AP,则终端设备在为下一个注册到终端设备上且未分配频段的AP分配频段时,M个第一AP就变为M+1个第一AP。
在一些可行的实施方式中,终端设备在为上述第二AP分配该第二AP使用的频段后,若检测到该第二AP长时间占用大带宽(比如100MHz)的频段,而该第二AP上的业务量不满足使用大带宽频谱的条件(比如第二AP上的业务量远小于100MHz所能提供的业务量),则终端设备可以调整该第二AP当前使用的频段大小(比如减少第二AP当前使用的频段的大小)。
作为一个可选实施方式,还可以进一步包含:
S207,接收第三AP的频率调整请求。
在一些可行的实施方式中,上述M个第一AP中的任一第一AP可以向终端设备发送频率调整请求。为便于描述,本申请实施例将M个第一AP中向终端设备发送频率调整请求的第一AP作为第三AP。终端设备可以接收该第三AP发送的频率调整请求,该频率调整请求中可以包括第三信道带宽。其中,该第三信道带宽可以为该第三AP根据自身承载的业务需求(或流量需求)变化所确定的。该第三信道带宽与该第三AP当前使用的频段中最大频率与最小频率之差(即信道带宽)不相同。本申请实施例的AP根据自身的实际情况(如业务情况、流量情况等)可以向终端设备提出频率调整请求,以适应AP自身的业务变化,从而保证AP的服务质量。可选的,该频率调整请求可以封装为一个请求报文的形式发送给终端设备。其中,M可以为自然数,且M可以大于或等于1。
S208,将与第三AP的覆盖区域存在重叠的第一覆盖区域所对应的第一AP确定为区域重叠AP,以得到至少一个区域重叠AP。
在一些可行的实施方式中,终端设备在接收到上述第三AP的频率调整请求后,可以重新为该第三AP分配该第三AP使用的频段。具体的,由于该第三AP为上述M个第一AP中的任一第一AP,且上述步骤S204中已确定出该M个第一AP中各个第一AP的第一覆盖区域。所以终端设备可以获取该第三AP的覆盖区域以及上述M-1个第一AP的M-1个第一覆盖区域,并可以检测该第三AP的覆盖区域与该M-1个第一覆盖区域中每个第一覆盖区域是否存在重叠。如果该M-1个第一覆盖区域中存在与该第三AP的覆盖区域重叠的第一覆盖区域,则终端设备可以将该M-1个第一覆盖区域中与该第三AP的覆盖区域存在重叠的第一覆盖区域所对应的第一AP确定为区域重叠AP,以得到至少一个区域重叠AP。
在另一些可行的实施方式中,终端设备检测到上述M-1个第一覆盖区域中不存在与该第三AP的覆盖区域重叠的第一覆盖区域时,终端设备可以获取该第三AP可用的频段,并可以直接从该第三AP可用的频段中选定一个最大频率与最小频率之差小于或等于上述第三信道带宽的频段分配给该第三AP使用。
S209,根据至少一个区域重叠AP中各个区域重叠AP所使用的频段以及第三AP可用的频段,调整第三AP当前使用的频段。
在一些可行的实施方式中,终端设备可以获取上述第三AP可用的频段以及上述至少一个区域重叠AP中各个区域重叠AP所使用的频段,并可以根据各个区域重叠AP所使用的频段以及该第三AP可用的频段,调整该第三AP当前使用的频段。具体的,终端设备可以先从该第三AP可用的频段中确定出与该各个区域重叠AP所使用的频段均不重叠的第五频段。终端设备再可以从该第五频段中选定一个最大频率与最小频率之差小于或等于上述第三信道带宽的频段并分配给该第三AP使用。其中,该第三AP调整后所使用的频段与该各个区域重叠AP所使用的频段均不重叠。
在一些可行的实施方式中,上述频率调整请求还可以包括新的频谱租约时间。终端设备在调整该第三AP当前使用的频段后,根据该第三AP开始使用调整后的频段的时间以及新的频谱租约时间,计算该第三AP新的频谱失效时间。在该新的频谱失效时间到达后,终端设备可以使该第三AP调整后所使用的频段失效(或禁用)。
在一些可行的实施方式中,终端设备在调整该第三AP当前使用的频段后,可以将该第三AP调整后所使用的频段存储在终端设备中。
在本申请实施例中,终端设备先保证第一设备所使用的频段不受干扰的情况下,确定第二AP可用的第一频段。再从M个第一AP中确定出覆盖区域与该第二AP的覆盖区域存在重叠的重叠AP。最后从该第二AP可用的频段中确定出与各个重叠AP所使用的频段均不重叠的一个频段并分配给该第二AP使用。在AP的覆盖区域发生重叠时,为覆盖区域发生重叠的AP分配完全不重叠的频段,可以避免AP之间的同信道干扰,增强网络可靠性(降低同频干扰与时延),为大带宽低时延应用承载提供服务质量保障。
上述详细阐述了本申请实施例的频谱资源分配方法,为了便于更好地实施本申请实施例的上述方案,本申请实施例还提供了相应的装置和设备。
参见图4,图4是本申请实施例提供的频谱资源分配装置的结构示意图。如图4所示,该频谱资源分配装置100包括:
第一确定模块10,用于根据M个第一接入点AP中各个第一AP的物理参数,确定该各个第一AP的第一覆盖区域;
第二确定模块20,用于将该第一确定模块10确定出的与第二AP的第二覆盖区域存在重叠的第一覆盖区域所对应的第一AP确定为重叠AP,以得到至少一个重叠AP;
分配模块30,用于根据该第二确定模块20确定出的至少一个重叠AP中各个重叠AP所使用的频段,从该第二AP可用的第一频段中确定出分配给该第二AP使用的频段,其中M为自然数,分配给该第二AP使用的频段与该各个重叠AP所使用的频段均不重叠。
在一些可行的实施方式中,该频谱资源分配装置100还包括第三确定模块40以及第四确定模块50。该第三确定模块40,用于确定待分配频谱资源的第二频段以及该第二频段中的第三频段,该第三频段为第一设备所使用的频段,该第一设备的工作模式为第一工作模式。该第四确定模块50,用于当该第二AP的第二覆盖区域与该第一设备的第三覆盖区域存在重叠时,确定该第二AP可用的第一频段为该第三确定模块40确定出的第二频段中与 该第三频段不重叠的频段。该第四确定模块50,还用于当该第二AP的第二覆盖区域与该第一设备的第三覆盖区域不重叠时,确定该第二AP可用的第一频段为该第三确定模块40确定出的第二频段,其中该第二AP的工作模式为第二工作模式。
在一些可行的实施方式中,上述分配模块30包括确定单元301以及分配单元302。该确定单元301,用于从该第二AP可用的第一频段中确定出与该至少一个重叠AP中各个重叠AP所使用的频段均不重叠的第四频段;该分配单元302,用于从该确定单元301确定出的第四频段中确定出一个频段并分配给该第二AP使用。
在一些可行的实施方式中,该频谱资源分配装置100还包括第一接收模块60。该第一接收模块60,用于接收频率分配请求,该频率分配请求中包括第一信道带宽。上述分配单元302具体用于:根据该第一接收模块60接收到的第一信道带宽从上述确定单元301确定出的第四频段中确定出一个频段并分配给该第二AP使用,分配给该第二AP使用的频段中最大频率与最小频率之差小于或等于该第一信道带宽。
在一些可行的实施方式中,上述M个第一AP中任一第一AP所使用的频段中最大频率与最小频率之差小于或等于第二信道带宽。上述分配单元302还具体用于:根据该第二信道带宽从上述确定单元301确定出的第四频段中确定出一个频段并分配给该第二AP使用,分配给该第二AP使用的频段中最大频率与最小频率之差小于或等于该第二信道带宽。
在一些可行的实施方式中,上述物理参数包括天线位置、天线朝向、天线发送功率以及天线传播模型。
在一些可行的实施方式中,上述M大于或等于1。该频谱资源分配装置100还包括第二接收模块70以及调整模块80。该第二接收模块70,用于接收第三AP的频率调整请求,该第三AP为该M个第一AP中包括的任一第一AP,该频率调整请求包括第三信道带宽,该第三信道带宽与该第三AP当前使用的频段所确定的信道带宽不相同。上述第二确定模块20,还用于将与该第三AP的覆盖区域存在重叠的第一覆盖区域所对应的第一AP确定为区域重叠AP,以得到至少一个区域重叠AP。该调整模块80,用于根据该第二确定模块20确定出的至少一个区域重叠AP中各个区域重叠AP所使用的频段以及该第三AP可用的频段,调整该第三AP当前使用的频段,该第三AP调整后所使用的频段中最大频率与最小频率之差小于或等于该第三信道带宽,该第三AP调整后所使用的频段与该各个区域重叠AP所使用的频段均不重叠。
其中,上述第一确定模块10、上述第二确定模块20、上述分配模块30、上述第三确定模块40、上述第四确定模块50、和/或上述调整模块80可以为一个模块,如处理模块。上述第一接收模块60和/或上述第二接收模块70也可以为一个模块,如收发模块。
具体实现中,各个模块的实现还可以对应参照图2所示的方法实施例中终端设备的相应描述,执行上述实施例中终端设备所执行的方法和功能。
参见图5,图5是本申请实施例提供的终端设备的结构示意图。如图5所示,本申请实施例提供的终端设备1000包括处理器1001、存储器1002、收发器1003和总线系统1004。
其中,上述处理器1001、存储器1002和收发器1003通过总线系统1004连接。
上述存储器1002用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算 机操作指令。存储器1002包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)。图5中仅示出了一个存储器,当然,存储器也可以根据需要,设置为多个。存储器1002也可以是处理器1001中的存储器,在此不做限制。
存储器1002存储了如下的元素,可执行模块、单元或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
上述处理器1001控制终端设备1000的操作,处理器1001可以是一个或多个中央处理器(central processing unit,CPU),在处理器1001是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
具体的应用中,终端设备1000的各个组件通过总线系统1004耦合在一起,其中总线系统1004除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图5中将各种总线都标为总线系统1004。为便于表示,图5中仅是示意性画出。
上述本申请实施例提供的图2,或者上述实施例的终端设备的方法可以应用于处理器1001中,或者由处理器1001实现。处理器1001可能是一种集成电路芯片,具有数据处理能力。在实现过程中,上述方法的各步骤可以通过处理器1001中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1001可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1001读取存储器1002中的数据,结合其硬件执行图2,或者上述实施例所描述的终端设备的方法步骤。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2所描述的终端设备的方法步骤。
本申请实施例还提供一种芯片,包括处理器。该处理器用于读取并执行存储器中存储的计算机程序,以执行图2的任意可能的实现方式中的频谱资源分配方法。可选的,该芯片还包括存储器,该存储器与该处理器通过电路或电线连接。进一步可选的,该芯片还包括通信接口,该处理器与该通信接口连接。该通信接口用于接收需要处理的数据和/或信息,该处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理,并通过该通信接口输出处理结果。该通信接口可以是输入输出接口。
可选的,上述的处理器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种频谱资源分配方法,其特征在于,包括:
    根据M个第一接入点AP中各个第一AP的物理参数,确定所述各个第一AP的第一覆盖区域;
    将与第二AP的第二覆盖区域存在重叠的第一覆盖区域所对应的第一AP确定为重叠AP,以得到至少一个重叠AP;
    根据所述至少一个重叠AP中各个重叠AP所使用的频段,从所述第二AP可用的第一频段中确定出分配给所述第二AP使用的频段,其中M为自然数,分配给所述第二AP使用的频段与所述各个重叠AP所使用的频段均不重叠。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述至少一个重叠AP中各个重叠AP所使用的频段,从所述第二AP可用的第一频段中确定出分配给所述第二AP使用的频段之前,所述方法还包括:
    确定待分配频谱资源的第二频段以及所述第二频段中的第三频段,所述第三频段为第一设备所使用的频段,所述第一设备的工作模式为第一工作模式;
    若所述第二AP的第二覆盖区域与所述第一设备的第三覆盖区域存在重叠,则确定所述第二AP可用的第一频段为所述第二频段中与所述第三频段不重叠的频段;
    若所述第二AP的第二覆盖区域与所述第一设备的第三覆盖区域不重叠,则确定所述第二AP可用的第一频段为所述第二频段,其中所述第二AP的工作模式为第二工作模式。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述至少一个重叠AP中各个重叠AP所使用的频段,从所述第二AP可用的第一频段中确定出分配给所述第二AP使用的频段,包括:
    从所述第二AP可用的第一频段中确定出与所述至少一个重叠AP中各个重叠AP所使用的频段均不重叠的第四频段;
    从所述第四频段中确定出一个频段并分配给所述第二AP使用。
  4. 根据权利要求3所述的方法,其特征在于,所述根据M个第一接入点AP中各个第一AP的物理参数,确定所述各个第一AP的第一覆盖区域之前,所述方法还包括:
    接收频率分配请求,所述频率分配请求中包括第一信道带宽;
    所述从所述第四频段中确定出一个频段并分配给所述第二AP使用,包括:
    根据所述第一信道带宽从所述第四频段中确定出一个频段并分配给所述第二AP使用,分配给所述第二AP使用的频段中最大频率与最小频率之差小于或等于所述第一信道带宽。
  5. 根据权利要求3所述的方法,其特征在于,所述M个第一AP中任一第一AP所使用的频段中最大频率与最小频率之差小于或等于第二信道带宽;
    所述从所述第四频段中确定出一个频段并分配给所述第二AP使用,包括:
    根据所述第二信道带宽从所述第四频段中确定出一个频段并分配给所述第二AP使用,分配给所述第二AP使用的频段中最大频率与最小频率之差小于或等于所述第二信道带宽。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述物理参数包括天线位置、天线朝向、天线发送功率以及天线传播模型。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述M大于或等于1;
    所述方法还包括:
    接收第三AP的频率调整请求,所述第三AP为所述M个第一AP中包括的任一第一AP,所述频率调整请求包括第三信道带宽,所述第三信道带宽与所述第三AP当前使用的频段所确定的信道带宽不相同;
    将与所述第三AP的覆盖区域存在重叠的第一覆盖区域所对应的第一AP确定为区域重叠AP,以得到至少一个区域重叠AP;
    根据所述至少一个区域重叠AP中各个区域重叠AP所使用的频段以及所述第三AP可用的频段,调整所述第三AP当前使用的频段,所述第三AP调整后所使用的频段中最大频率与最小频率之差小于或等于所述第三信道带宽,所述第三AP调整后所使用的频段与所述各个区域重叠AP所使用的频段均不重叠。
  8. 一种频谱资源分配装置,其特征在于,包括:
    第一确定模块,用于根据M个第一接入点AP中各个第一AP的物理参数,确定所述各个第一AP的第一覆盖区域;
    第二确定模块,用于将所述第一确定模块确定出的与第二AP的第二覆盖区域存在重叠的第一覆盖区域所对应的第一AP确定为重叠AP,以得到至少一个重叠AP;
    分配模块,用于根据所述第二确定模块确定出的至少一个重叠AP中各个重叠AP所使用的频段,从所述第二AP可用的第一频段中确定出分配给所述第二AP使用的频段,其中M为自然数,分配给所述第二AP使用的频段与所述各个重叠AP所使用的频段均不重叠。
  9. 根据权利要求8所述的装置,其特征在于,所述装置还包括:
    第三确定模块,用于确定待分配频谱资源的第二频段以及所述第二频段中的第三频段,所述第三频段为第一设备所使用的频段,所述第一设备的工作模式为第一工作模式;
    第四确定模块,用于当所述第二AP的第二覆盖区域与所述第一设备的第三覆盖区域存在重叠时,确定所述第二AP可用的第一频段为所述第三确定模块确定出的第二频段中与所述第三频段不重叠的频段;
    所述第四确定模块,还用于当所述第二AP的第二覆盖区域与所述第一设备的第三覆盖区域不重叠时,确定所述第二AP可用的第一频段为所述第三确定模块确定出的第二频段,其中所述第二AP的工作模式为第二工作模式。
  10. 根据权利要求8或9所述的装置,其特征在于,所述分配模块包括:
    确定单元,用于从所述第二AP可用的第一频段中确定出与所述至少一个重叠AP中各个重叠AP所使用的频段均不重叠的第四频段;
    分配单元,用于从所述确定单元确定出的第四频段中确定出一个频段并分配给所述第二AP使用。
  11. 根据权利要求10所述的装置,其特征在于,所述装置还包括:
    第一接收模块,用于接收频率分配请求,所述频率分配请求中包括第一信道带宽;
    所述分配单元具体用于:
    根据所述第一接收模块接收到的第一信道带宽从所述确定单元确定出的第四频段中确定出一个频段并分配给所述第二AP使用,分配给所述第二AP使用的频段中最大频率与最小频率之差小于或等于所述第一信道带宽。
  12. 根据权利要求10所述的装置,其特征在于,所述M个第一AP中任一第一AP所使用的频段中最大频率与最小频率之差小于或等于第二信道带宽;
    所述分配单元还具体用于:
    根据所述第二信道带宽从所述确定单元确定出的第四频段中确定出一个频段并分配给所述第二AP使用,分配给所述第二AP使用的频段中最大频率与最小频率之差小于或等于所述第二信道带宽。
  13. 根据权利要求8-12任一项所述的装置,其特征在于,所述物理参数包括天线位置、天线朝向、天线发送功率以及天线传播模型。
  14. 根据权利要求8-13任一项所述的装置,其特征在于,所述M大于或等于1;
    所述装置还包括:
    第二接收模块,用于接收第三AP的频率调整请求,所述第三AP为所述M个第一AP中包括的任一第一AP,所述频率调整请求包括第三信道带宽,所述第三信道带宽与所述第三AP当前使用的频段所确定的信道带宽不相同;
    所述第二确定模块,还用于将与所述第三AP的覆盖区域存在重叠的第一覆盖区域所对应的第一AP确定为区域重叠AP,以得到至少一个区域重叠AP;
    调整模块,用于根据所述第二确定模块确定出的至少一个区域重叠AP中各个区域重叠AP所使用的频段以及所述第三AP可用的频段,调整所述第三AP当前使用的频段,所述第三AP调整后所使用的频段中最大频率与最小频率之差小于或等于所述第三信道带宽,所述第三AP调整后所使用的频段与所述各个区域重叠AP所使用的频段均不重叠。
  15. 一种终端设备,其特征在于,包括处理器、收发器和存储器,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,当所述处理器运行所述程序指令时,使所述终端设备执行如权利要求1-7任一项所述的方法。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储计算机程序指令,当所述计算机程序指令在所述计算机上运行时,使得所述计算机执行如权利要求1-7任一项所述的方法。
PCT/CN2020/081941 2019-06-19 2020-03-28 频谱资源分配方法及装置 WO2020253307A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910529600.XA CN112118580A (zh) 2019-06-19 2019-06-19 频谱资源分配方法及装置
CN201910529600.X 2019-06-19

Publications (1)

Publication Number Publication Date
WO2020253307A1 true WO2020253307A1 (zh) 2020-12-24

Family

ID=73795992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081941 WO2020253307A1 (zh) 2019-06-19 2020-03-28 频谱资源分配方法及装置

Country Status (2)

Country Link
CN (1) CN112118580A (zh)
WO (1) WO2020253307A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117793902A (zh) * 2023-12-29 2024-03-29 东莞市仁丰电子科技有限公司 一种5g微基站全向天线的多点接入智能分配方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730231A (zh) * 2008-10-10 2010-06-09 中兴通讯股份有限公司 一种部分频率复用的资源分配方法
US20140003353A1 (en) * 2012-06-27 2014-01-02 Adrian Paul Stephens Channel selection to minimize impact on existing networks
US20140177546A1 (en) * 2012-12-26 2014-06-26 Electronics And Telecommunications Research Institute Apparatus and method for avoiding interference between access points
CN104717679A (zh) * 2013-12-17 2015-06-17 北京神州泰岳软件股份有限公司 信号优化方法和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060209758A1 (en) * 2005-03-16 2006-09-21 Gemtek Systems, Inc. Methods and systems for roaming in 802.11 wireless networks
CN101159475B (zh) * 2007-11-02 2012-05-23 中兴通讯股份有限公司 用于ofdm系统中的抑制终端发射信号干扰的小区协调方法
WO2012156574A1 (en) * 2011-05-13 2012-11-22 Nokia Corporation Interference management in wireless network
CN106658515B (zh) * 2015-10-29 2020-04-21 华为技术有限公司 通信方法和装置
CN109451547B (zh) * 2018-12-21 2021-06-29 展讯通信(上海)有限公司 无线漫游方法及装置、存储介质、接入点设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730231A (zh) * 2008-10-10 2010-06-09 中兴通讯股份有限公司 一种部分频率复用的资源分配方法
US20140003353A1 (en) * 2012-06-27 2014-01-02 Adrian Paul Stephens Channel selection to minimize impact on existing networks
US20140177546A1 (en) * 2012-12-26 2014-06-26 Electronics And Telecommunications Research Institute Apparatus and method for avoiding interference between access points
CN104717679A (zh) * 2013-12-17 2015-06-17 北京神州泰岳软件股份有限公司 信号优化方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Cross Link Interference (CLI) handling and Remote Interference Management (RIM) for NR", 3GPP TSG RAN MEETING #84 RP-191518, 6 June 2019 (2019-06-06), XP051748436, DOI: 20200611115852 *

Also Published As

Publication number Publication date
CN112118580A (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
TWI433577B (zh) 用於異質無線網路之多重無線射頻協調的設備及方法
US9185707B2 (en) Method and apparatus of transmitting a white space map information in a wireless local area network system
US9131470B2 (en) Resource allocation in a coexistence system
CN108541073B (zh) 一种网络控制器、站点、以及建立保护期的方法
WO2017005047A1 (zh) 一种频谱共享的方法和装置
EP2635062A2 (en) Method for acquiring resources in a coexistence system, and apparatus using same
KR20110051133A (ko) 이동통신 시스템에서 마이크로 단말에게 주파수 자원을 할당하기 위한 장치 및 방법
WO2018173418A1 (ja) 装置、方法及び記録媒体
CN103477667B (zh) 用于在服务网络或者设备的管理器设备中的服务转换的方法
KR20130023210A (ko) 서로 다른 종류의 액세스 포인트들이 공존할 수 있도록 정보를 제공하는 방법
WO2021027376A1 (zh) 一种共生网络中的资源配置方法及装置
CN105828340A (zh) 电视空白区中设备访问、启用和控制的方法和装置
US20210136764A1 (en) Data transmission method and related apparatus
US11350390B2 (en) Simultaneous data transmission between an access point and a plurality of stations
CN109716819B (zh) 一种信道控制方法,及设备
US11765570B2 (en) Data transfer using a dual SIM phone
Khattab et al. An overview of IEEE standardization efforts for cognitive radio networks
WO2020253307A1 (zh) 频谱资源分配方法及装置
US9967009B2 (en) Data transmission method and apparatus
WO2021047337A1 (zh) wifi连接建立方法及相关设备
US20230116493A1 (en) Signal Transmission Method and Apparatus
JP7204995B2 (ja) 攻撃的な媒体予約を緩和するためのデバイス、システムおよび方法
US20240121813A1 (en) Detection and mitigation of aggressive medium reservations
WO2024067003A1 (zh) 一种干扰控制方法及装置
CN115484609A (zh) 数据传输方法、装置及系统、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20825885

Country of ref document: EP

Kind code of ref document: A1