WO2020253190A1 - 电子装置 - Google Patents

电子装置 Download PDF

Info

Publication number
WO2020253190A1
WO2020253190A1 PCT/CN2019/127978 CN2019127978W WO2020253190A1 WO 2020253190 A1 WO2020253190 A1 WO 2020253190A1 CN 2019127978 W CN2019127978 W CN 2019127978W WO 2020253190 A1 WO2020253190 A1 WO 2020253190A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
electronic device
emitting element
sensing module
Prior art date
Application number
PCT/CN2019/127978
Other languages
English (en)
French (fr)
Inventor
林冠仪
傅同龙
曾俊钦
Original Assignee
神盾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神盾股份有限公司 filed Critical 神盾股份有限公司
Publication of WO2020253190A1 publication Critical patent/WO2020253190A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/145Illumination specially adapted for pattern recognition, e.g. using gratings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms

Definitions

  • the invention relates to an electronic device, and more particularly to an electronic device capable of sensing fingerprints.
  • the light intensity sensed by the sensing pixels near the surroundings in the sensing module is often lower than the light intensity sensed by the sensing pixels near the center in the sensing module, so that the sensing
  • the intensity of the optical signal obtained by the module has a gap, which will affect the accuracy of fingerprint sensing. Therefore, in the current solution, the back-end software is often used to correct the signal strength, but the corrected image still has side effects, such as amplifying noise and causing loss of detail. Therefore, how to enable the fingerprint sensor module to sense a uniform optical signal intensity is a research effort by those skilled in the art.
  • the present invention is directed to an electronic device, which has a good fingerprint sensing effect.
  • An embodiment of the present invention provides an electronic device for sensing a fingerprint image of a finger, and includes a light-emitting element, a sensing module, and a controller.
  • the light-emitting element includes a plurality of light-emitting pixels arranged in an array, has a fingerprint sensing area, and is used to provide an irradiating light beam to the finger.
  • the sensing module is disposed under the fingerprint sensing area, and is used for receiving the irradiated light beam that reaches the sensing module after being reflected by the finger to generate a fingerprint image.
  • the controller is electrically connected to the light emitting element to control the light emission of the light emitting element, wherein the fingerprint sensing area is divided into at least a first area and a second area from its center to its periphery.
  • the controller controls the light color emitted by the light-emitting pixels in the first area and the light color emitted by the light-emitting pixels in the second area, so that the sensing module is The quantum efficiency of the light color emitted by the light-emitting pixel is smaller than the quantum efficiency of the light color emitted by the light-emitting pixel in the second area by the sensing module.
  • the controller controls the quantum efficiency corresponding to the light color emitted by the light-emitting pixels from the center to the periphery in the fingerprint sensing area to increase. the trend of.
  • the light-emitting element is a transparent display panel.
  • the transparent display panel is an organic light emitting diode display panel.
  • the sensing module includes an image sensor.
  • the quantum efficiencies corresponding to the multiple different light colors emitted by the light-emitting pixels are respectively equivalent to the quantum efficiencies corresponding to multiple different single-wavelength lights.
  • the electronic device further includes a memory for storing the relationship model between the light energy receiving speed of the plurality of different positions of the sensing module and the plurality of different light colors of the light emitting element, and The controller controls the light color emitted by the light-emitting pixels in the first area and the light color emitted by the light-emitting pixels in the second area according to the relationship model.
  • the relationship model includes multiple curves of the light energy receiving speeds of these different light colors at these different positions.
  • the controller is used to select a reference light energy receiving speed, and obtain the multiple intersection points of the straight line formed by the reference light energy receiving speed at these different positions and the curves, and use these
  • the multiple light colors corresponding to the intersection points are used as the light-emitting colors of the light-emitting pixels corresponding to the positions of the intersection points.
  • the light energy receiving speed at these different positions in the relational model is formed by the light-emitting pixels of the light-emitting element all emitting light with the same intensity.
  • the controller controls the light-emitting pixels that emit different light colors to have the same light-emitting intensity.
  • the controller is used to control the light color emitted by the light-emitting pixels in the first area and the light color emitted by the light-emitting pixels in the second area, so that the sensing module is aligned
  • the quantum efficiency of the light color emitted by the light-emitting pixels in the first area is less than the quantum efficiency of the light color emitted by the light-emitting pixels in the second area by the sensor module, so the light energy sensed by the center of the sensor module is close to The light energy sensed by the edge of the sensing module.
  • the image sensed by the sensing module can have uniform brightness, and the situation where the middle bright edge is dark is suppressed, and the fingerprint sensing effect of the electronic device is improved.
  • FIG. 1A is a schematic cross-sectional view of an electronic device according to an embodiment of the invention.
  • FIG. 1B is a schematic top view of the fingerprint sensing area of the light-emitting element in FIG. 1A.
  • FIG. 2 is a light intensity distribution diagram of an irradiation beam emitted by a light-emitting element of the electronic device in FIG. 1A.
  • FIG. 3 is a diagram showing the light intensity distribution of the image detected by the sensing module if the light-emitting time of all the light-emitting pixels in the fingerprint sensing area is the same.
  • FIG. 4 is a diagram showing the light emission time distribution of light-emitting pixels at various positions in the fingerprint sensing area of the electronic device of FIG. 1A.
  • FIG. 5 is a distribution diagram of light energy detected by the sensing module of the electronic device in FIG. 1A per unit time.
  • FIG. 6 is a diagram showing the relationship between the quantum efficiency of the sensing module in FIG. 1A for different wavelengths of light.
  • Fig. 7 is a relational model stored in the storage unit in Fig. 1A.
  • FIG. 8 is a diagram showing the relationship between the luminous intensity of each color light-emitting pixel of the light-emitting element in FIG. 1A and the wavelength of light of a single wavelength corresponding to it.
  • FIG. 1A is a schematic cross-sectional view of an electronic device according to an embodiment of the present invention
  • FIG. 1B is a schematic top view of the fingerprint sensing area of the light-emitting element in FIG. 1A. Please refer to FIGS. 1A and 1B at the same time.
  • the electronic device 100 of this embodiment is used to sense a fingerprint image of a user's finger 10.
  • the electronic device 100 includes a light-emitting element 20, a sensing module 60 and a controller 80.
  • the light-emitting element 20 includes a plurality of light-emitting pixels arranged in an array, and has a fingerprint sensing area 22, and is used to provide a light beam to the user's finger 10, and the user can place the finger 10 on the fingerprint sensing area 22 to perform Fingerprint sensing.
  • the light-emitting element 20 is, for example, a display panel (for example, a transparent display panel), a touch control display panel (for example, a transparent touch display panel), or a combination of the above and a finger pressure plate.
  • the light-emitting element 20 is, for example, an organic light-emitting diode display panel (OLED display panel), but the invention is not limited to this.
  • the light-emitting element 20 may be a touch display panel, such as an organic light emitting diode display panel with multiple touch electrodes.
  • the multiple touch electrodes can be formed on the outer surface of the organic light emitting diode display panel or embedded in the organic light emitting diode display panel, and the multiple touch electrodes can be touched by self-capacitance or mutual capacitance. Detection.
  • the light-emitting element 20 may be a combination of a finger pressure plate and a display panel or a combination of a finger pressure plate and a touch display panel.
  • the electronic device 100 may further include an optical module 40, which is disposed between the fingerprint sensing area 22 and the sensing module 60 to guide the irradiation light beam reflected by the finger 10 to the sensing module 60 to form a fingerprint image.
  • the optical module 40 is, for example, a lens group, has a collimator structure, and/or includes a micro-lens layer and/or pin-holes layer.
  • the optical module 40 is, for example, a lens group, including a combination of one or more optical lenses with refractive power, such as non-planar lenses such as bi-concave lenses, bi-convex lenses, meniscus lenses, convex-concave lenses, plano-convex lenses, and plano-concave lenses.
  • the present invention does not limit the type and type of the optical module 40.
  • the optical module 40 is composed of two lenses, but in other embodiments, it can also be composed of three lenses or four lenses, and the present invention is not limited thereto.
  • the sensing module 60 is disposed under the fingerprint sensing area 22 to receive the irradiated light beam that reaches the sensing module after being reflected by the finger 10 to generate a fingerprint image.
  • the sensing module 60 includes an image sensor, and the image sensor includes a plurality of sensing pixels, and the plurality of sensing pixels are arranged in a sensing array, wherein each sensing pixel may include at least one photodiode, but The present invention is not limited to this.
  • the user places the finger 10 close to or placed on the fingerprint sensing area 22 of the light-emitting element 20, and the light-emitting element 20 emits an illuminating beam to illuminate the finger 10, which is reflected by the finger and then sequentially passes through the light-emitting element.
  • the element 20 and the optical module 40 are transferred to the sensing module 60 for fingerprint sensing.
  • the electronic device 100 further includes a controller 80 electrically connected to the light emitting element 20 to control the light emission of the light emitting element 20.
  • the fingerprint sensing area 22 can be divided into at least a first area 222 and a second area 224 from its center to its periphery, and when the light emitting element 20 provides an illumination beam to illuminate the finger 10, the controller 80 controls the light emission in the first area 222
  • the light color emitted by the pixel and the light color emitted by the light-emitting pixel in the second region 224 are such that the quantum efficiency of the light color emitted by the light-emitting pixel in the first region 222 by the sensing module 60 is lower than that of the sensing module 60.
  • the quantum efficiency of the light color emitted by the light-emitting pixels in the second region 224 is close to the light energy sensed by the edges of the sensing module 60, so that the image sensed by the sensing module 60 can have a more uniform brightness, and The situation where the middle bright edge of the image sensed in the prior art is dark is suppressed.
  • the controller 80 controls the quantum efficiency corresponding to the light color emitted by the light-emitting pixels from the center to the periphery in the fingerprint sensing area 22 to show an increasing trend
  • the brightness of the image sensed by the sensing module 60 can be further uniform across the entire surface, so as to further improve the quality of the fingerprint image, thereby effectively improving the success rate and accuracy of fingerprint recognition.
  • FIG. 2 is a light intensity distribution diagram of an irradiation beam emitted by a light-emitting element of the electronic device in FIG. 1A. 1A, 1B and 2 at the same time, when the user places a finger 10 or an object on the fingerprint sensing area 22 of the light-emitting element 20 for fingerprint recognition and sensing, the fingerprint sensing area 22 of the light-emitting element 20 will The illumination beam is emitted to illuminate the finger 10 or the object. At this time, the light intensity in the fingerprint sensing area 22 is, for example, uniform. At this time, if the light colors of all the light-emitting pixels in the fingerprint sensing area 22 are the same, the light intensity of the image detected by the sensing module 60 is as shown in FIG. situation.
  • the controller 80 controls the quantum efficiency corresponding to the light color emitted by the light-emitting pixels from the center to the periphery in the fingerprint sensing area 22 to show an increasing trend.
  • the sensing module The light energy detected by the sensing pixels at each position on the 60 is uniform, as shown in FIG. 5, and the light energy detected is reflected in the brightness of the image sensed by the sensing module 60.
  • the controller 80 performing the above-mentioned control, the sensing module 60 can sense an image with uniform brightness.
  • the center line C1 in FIGS. 2 and 4 corresponds to the center position of the fingerprint sensing area 22, that is, the position in the figure is 0, while the center line C2 in FIGS. 3 and 5 corresponds to the sensor module 60
  • the center position, that is, the position in the figure is 0.
  • the electronic device 100 can be a handheld electronic device, such as a smart phone, a tablet computer, etc., and the light-emitting element 20 can be used as a display to show what the user wants to watch when fingerprint recognition is not performed.
  • the light emitting element 20 can emit light on the entire surface or only in the fingerprint sensing area 22 to generate an illumination beam for illuminating the finger 10.
  • the controller 80 is, for example, a central processing unit (CPU), a microprocessor (microprocessor), a digital signal processor (digital signal processor, DSP), a programmable controller, and a programmable controller.
  • CPU central processing unit
  • microprocessor microprocessor
  • DSP digital signal processor
  • programmable controller programmable controller
  • programmable controller programmable controller
  • programmable controller programmable controller
  • programmable controller 80 is, for example, a central processing unit (CPU), a microprocessor (microprocessor), a digital signal processor (digital signal processor, DSP), a programmable controller, and a programmable controller.
  • a logic device programmable logic device, PLD
  • the functions of the controller 80 can be implemented as multiple program codes. These program codes are stored in a memory, and the controller 80 executes the program codes.
  • each function of the controller 80 may be implemented as one or more circuits. The present invention does not limit the implementation of the functions of the controller 80 by means of software or
  • the controller 80 can also be electrically connected to the sensing module 60 to synchronize the light-emitting time of the light-emitting element 20 with the sensing time of the sensing module 60.
  • FIG. 6 is a graph of the quantum efficiency of the sensing module in FIG. 1A for different wavelengths of light
  • FIG. 7 is a relationship model stored in the storage unit in FIG. 1A
  • FIG. 8 is a graph of the light-emitting element in FIG. 1A
  • FIG. 6 first. It can be seen from FIG. 6 that the sensing module 60 has different quantum efficiencies for light of different wavelengths, and the sensing module has the largest quantum efficiency for light with a wavelength close to 550 nanometers (nanometer, nm), and when When the wavelength becomes longer or shorter, the quantum efficiency decreases.
  • each light-emitting pixel can have a red sub-pixel that emits red light, a green sub-pixel that emits green light, and a blue sub-pixel that emits blue light.
  • the ratio of luminous intensity can make the luminous pixels produce different light colors, and then simulate different single wavelength light.
  • the wavelengths corresponding to the luminous intensity of the red sub-pixels, green sub-pixels and blue sub-pixels are shown in Figure 8.
  • the electronic device 100 of this embodiment further includes a memory 90 for storing the light energy receiving speed at a plurality of different positions of the sensing module 60 and a plurality of different light colors of the light emitting element 20
  • the controller 80 controls the light color emitted by the light-emitting pixels in the first region 222 and the light color emitted by the light-emitting pixels in the second region 224 according to the relationship model, or controls the light-emitting element 20 according to the relationship model The light color emitted by the light-emitting pixel at each position of the fingerprint sensing area 22.
  • the above relationship model includes multiple curves of the light energy receiving speeds of these different light colors at these different positions, such as curves D1, D2, D3, D4, and D5 as shown in FIG. 7, wherein the light energy receiving speed For example, it is analog-to-digital conversion energy velocity, which represents the light energy received by the pixel of the sensing module 60 in a unit time, which corresponds to the light intensity detected by the pixel.
  • the light energy receiving speeds at these different positions in the relational model are formed by the light-emitting pixels of the light-emitting element 20 all emitting light with the same intensity.
  • the light-emitting pixels of the light-emitting element 20 can all emit light of a certain light color, and the luminous intensity of these light-emitting pixels are all the same, and the sensor module 60 is used to sense the Data of one curve in FIG. 7 (for example, data of curve D1 is obtained). Then, the light-emitting pixels of the light-emitting element 20 are made to emit light of another light color, and the light-emitting intensity of the light-emitting pixels is maintained unchanged, and the sensor module 60 is used to sense to obtain another curve as shown in FIG. Data (for example, the data of curve D2 is obtained), and so on to obtain all the curves (for example, curves D1 to D5 are obtained, and the data of these curves are all stored in the memory 90 as the above-mentioned relationship model.
  • the sensor module 60 is used to sense the Data of one curve in FIG. 7 (for example, data of curve D1 is obtained). Then, the light-emitting pixels of the light-emitting element 20
  • the controller 80 can select a reference light energy receiving speed, and obtain the straight line formed by the reference light energy receiving speed at these different positions (for example, The horizontal line H1 in FIG. 7) and the multiple intersection points of these curves (for example, the curves D1 to D5 in FIG. 7), and the multiple light colors corresponding to these intersection points are used as the light-emitting colors of the light-emitting pixels corresponding to the positions of the intersection points. .
  • the controller 80 selects the analog-to-digital conversion energy speed V1 as the reference value (for example, the reference value can be selected at the peak value of the curve with the lowest peak value or a value near it), it can be found that The intersection of the horizontal line H1 on this reference value and these curves (for example, the curves D1 to D5).
  • the abscissas of the two intersection points of the horizontal line H1 and the curve D1 are the position P1 and the position P2, and the controller 80 can control the light emitting element 20 corresponding to the position P1
  • the light color emitted by the light-emitting pixels at or near the position P2 is the light color represented by the curve D1.
  • the controller 80 can obtain the abscissas of the two intersections of the horizontal line H1 and the curve D2 (that is, the position coordinates on the sensing module 60) as the position P3 and the position P4, and the controller 80 can control the light emitting element 20
  • the light color emitted by the light-emitting pixels at or near the positions corresponding to the positions P3 and P4 is the light color represented by the curve D2.
  • the controller 80 can obtain the abscissas of the two intersection points of the horizontal line H1 and the curve D3 (that is, the position coordinates on the sensing module 60) as the position P5 and the position P6, and the controller 80 can control the light emitting element 20
  • the light color emitted by the light-emitting pixels at or near the positions corresponding to the positions P5 and P6 is the light color represented by the curve D3.
  • the light color of the light-emitting pixel at or near the position on the light-emitting element 20 corresponding to the intersection of the horizontal line H1 and other curves (for example, the curves D4 and D5) can also be obtained.
  • the controller 80 can control the light color emitted by the light-emitting pixels in the first area 222 and the light color emitted by the light-emitting pixels in the second area 224 according to the relational model, or control the light-emitting elements according to the relational model The light color emitted by the light-emitting pixel at each position of the fingerprint sensing area 22 of 20.
  • the controller 80 controls the light-emitting pixels that emit different light colors to have the same luminous intensity. Or, furthermore, when the light-emitting element 20 provides an illuminating beam to illuminate the finger 10, the controller 80 controls the light-emitting intensity of each light-emitting pixel in the fingerprint sensing area 22 of the light-emitting element 20 to be the same, even though the light-emitting pixels of different The luminous color may be different.
  • the controller controls the light color emitted by the light-emitting pixels in the first area and the light color emitted by the light-emitting pixels in the second area, Make the quantum efficiency of the light color emitted by the light-emitting pixels in the first region of the sensing module smaller than the quantum efficiency of the light color emitted by the light-emitting pixels in the second region of the sensing module, so the center of the sensing module senses The light energy is close to the light energy sensed by the edge of the sensing module. In this way, the image sensed by the sensing module can have uniform brightness, and the situation where the middle bright edge is dark is suppressed, and the fingerprint sensing effect of the electronic device is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明提供一种电子装置,用以感测手指的指纹图像,且包括发光元件、感测模块及控制器。发光元件包括多个排成阵列的发光像素,具有指纹感测区域,且用以提供照射光束至手指。感测模块配置于指纹感测区域的下方,用以接收经手指反射后到达感测模块的照射光束以产生指纹图像。控制器电性连接至发光元件,以控制发光元件的发光,其中指纹感测区域从其中心至其外围至少划分为第一区域及第二区域。当发光元件提供照射光束以照射手指时,控制器控制第一区域中的发光像素所发出的光色与第二区域中的发光像素所发出的光色,以使感测模块对第一区域中的发光像素所发出的光色的量子效率小于感测模块对第二区域中的发光像素所发出的光色的量子效率。

Description

电子装置 技术领域
本发明涉及一种电子装置,且特别是涉及一种可感测指纹的电子装置。
背景技术
随着电子科技与制造技术的不断演进与改良,资讯电子产品亦一直推陈出新。电脑、手机、摄相机等电子产品已经是现代人必备的工具。此外,现今的智能型行动装置中,亦需要整合指纹感测装置,以加强智能型行动装置的使用安全性并且支援更多智能型功能。
在目前,使用者可将手指按压于手机的显示器上以进行指纹感测。然而,在感测的过程中,感测模块中靠近周围的感测像素所感测到的光强度往往较低于感测模块中靠近中央的感测像素所感测到的光强度,以致于感测模块所得到的光信号强度具有落差,会影响指纹感测的正确性。所以在目前的解决方法中,常以后端的软件来修正信号强度,不过修正后的图像仍是有副作用,例如会将杂讯(noise)放大而造成细节损失等副作用。因此,如何让指纹感测模块可以感测到均匀的光信号强度,是本领域技术人员致力于研究的。
发明内容
本发明是针对一种电子装置,其具有良好的指纹感测效果。
本发明的实施例提出一种电子装置,用以感测手指的指纹图像,且包括发光元件、感测模块及控制器。发光元件包括多个排成阵列的发光像素,具有指纹感测区域,且用以提供照射光束至手指。感测模块配置于指纹感测区域的下方,用以接收经手指反射后到达感测模块的照射光束以产生指纹图像。控制器电性连接至发光元件,以控制发光元件的发光,其中指纹感测区域从其中心至其外围至少划分为第一区域及第二区域。当发光元件提供照射光束以照射手指时,控制器控制第一区域中的发光像素所发出的光色与第二区域中的发光像素所发出的光色,以使感测模块对第一区域中的发光像素所发出的光色的量子效率小于感测模块对第二区域中的发光像素所发出的光色的量子效率。
在根据本发明的实施例的电子装置中,当发光元件提供照射光束以照射手 指时,控制器控制指纹感测区域中从中心至外围的发光像素所发出的光色所对应的量子效率呈现递增的趋势。
在根据本发明的实施例的电子装置中,发光元件为透明显示面板。
在根据本发明的实施例的电子装置中,透明显示面板为有机发光二极管显示面板。
在根据本发明的实施例的电子装置中,感测模块包括图像传感器。
在根据本发明的实施例的电子装置中,这些发光像素所发出的多个不同光色所对应的量子效率分别相当于多个不同的单一波长的光所对应的量子效率。
在根据本发明的实施例的电子装置中,电子装置还包括存储器,用以储存感测模块的多个不同位置的光能量接收速度与发光元件的多个不同光色之间的关系模型,且控制器根据关系模型来控制第一区域中的发光像素所发出的光色与第二区域中的发光像素所发出的光色。
在根据本发明的实施例的电子装置中,关系模型包括这些不同光色在这些不同位置的光能量接收速度的多条曲线。
在根据本发明的实施例的电子装置中,控制器用以选择一个参考光能量接收速度,且求得参考光能量接收速度在这些不同位置所形成的直线与这些曲线的多个交点,并以这些交点所对应的多个光色来分别作为对应于这些交点的位置的发光像素的发光颜色。
在根据本发明的实施例的电子装置中,在关系模型当中的这些不同位置的光能量接收速度是由发光元件的这些发光像素皆以相同强度发光所形成的。
在根据本发明的实施例的电子装置中,当发光元件提供照射光束以照射手指时,控制器控制发出不同光色的发光像素的发光强度皆相同。
在本发明的实施例的电子装置中,由于藉由控制器来控制第一区域中的发光像素所发出的光色与第二区域中的发光像素所发出的光色,以使感测模块对第一区域中的发光像素所发出的光色的量子效率小于感测模块对第二区域中的发光像素所发出的光色的量子效率,因此感测模块的中心所感测到的光能量接近于感测模块的边缘所感测到的光能量。如此一来,感测模块所感测到的图像便能够有均匀的亮度,而抑制了中间亮边缘暗的情形,进而提升电子装置的指纹感测效果。
附图说明
包含附图以便进一步理解本发明,且附图并入本说明书中并构成本说明书的一部分。附图说明本发明的实施例,并与描述一起用于解释本发明的原理。
图1A为本发明的一实施例的电子装置的剖面示意图。
图1B为图1A中的发光元件的指纹感测区域的上视示意图。
图2为图1A的电子装置的发光元件所发出的照射光束的光强度分布图。
图3为若指纹感测区域中的所有发光像素的发光时间皆一样长时感测模块所侦测到的图像的光强度分布图。
图4为图1A的电子装置的指纹感测区域中各位置的发光像素的发光时间分布图。
图5为图1A的电子装置的感测模块在单位时间内所侦测到的光能量的分布图。
图6为图1A中的感测模块对于不同的波长的光的量子效率的关系图。
图7为图1A中的存储单元中所储存的关系模型。
图8为图1A中的发光元件的各色发光像素的发光强度与其所相当的单一波长的光的波长之间的关系图。
具体实施方式
现将详细地参考本发明的示范性实施例,示范性实施例的实例说明于附图中。只要有可能,相同元件符号在图式和描述中用来表示相同或相似部分。
图1A为本发明的一实施例的电子装置的剖面示意图,而图1B为图1A中的发光元件的指纹感测区域的上视示意图。请同时参考图1A及图1B,本实施例的电子装置100用以感测使用者的手指10的指纹图像,电子装置100包括发光元件20、感测模块60及控制器80。发光元件20包括多个排成阵列的发光像素,具有指纹感测区域22,且用以提供照射光束至使用者的手指10,而使用者可将手指10放置在指纹感测区域22上以进行指纹感测。
在本实施例中,发光元件20例如是显示面板(例如为透明显示面板)、触 控显示面板(例如为透明触控显示面板)或上述与指压板的组合。举例而言,发光元件20例如为有机发光二极管显示面板(Organic Light-Emitting Diode display panel,OLED display panel),但本发明并不限于此。替代地,发光元件20可以是触控显示面板,如具有多个触控电极的有机发光二极管显示面板。所述多个触控电极可以形成在有机发光二极管显示面板的外表面上或是内嵌于有机发光二极管显示面板中,且多个触控电极可以藉由自容或互容的方式进行触控侦测。或者,发光元件20可以是指压板与显示面板的组合或指压板与触控显示面板的组合。
在本实施例中,电子装置100还可包括光学模块40,配置于指纹感测区域22与感测模块60之间,以将被手指10反射的照射光束导引至感测模块60以形成指纹图像。光学模块40例如是透镜组,具有准直器(collimator)结构,以及/或是包含有微透镜(micro-lens)层及/或微孔(pin-holes)层。在本实施例中,光学模块40例如为透镜组,包含具有屈光度的一或多个光学镜片的组合,例如包含双凹透镜、双凸透镜、凹凸透镜、凸凹透镜、平凸透镜以及平凹透镜等非平面镜片的各种组合,本发明对光学模块40的型态及其种类并不加以限制。举例而言,光学模块40由两片透镜所组成,但在其他实施例中,亦可以是三片透镜或四片透镜组成,本发明并不限于此。
在本实施例中,感测模块60配置于指纹感测区域22的下方,用以接收经手指10反射后到达感测模块的照射光束以产生指纹图像。感测模块60包括图像传感器,而图像传感器包括有多个感测像素,而多个感测像素是排列成一个感测阵列,其中每一个感测像素可以包含至少一个光电二极管(photodiode),但本发明并不限于此。在进行指纹感测时,使用者将手指10靠近或放置于发光元件20的指纹感测区域22上,而发光元件20会发出照射光束照射至手指10,经手指反射后会依序传递通过发光元件20以及光学模块40,并且传递至感测模块60以进行指纹感测。
此外,电子装置100还包括控制器80,电性连接至发光元件20,以控制发光元件20的发光。指纹感测区域22从其中心至其外围可至少划分为第一区域222及第二区域224,且当发光元件20提供照射光束以照射手指10时,控制器80控制第一区域222中的发光像素所发出的光色与第二区域224中的发 光像素所发出的光色,以使感测模块60对第一区域222中的发光像素所发出的光色的量子效率小于感测模块60对第二区域224中的发光像素所发出的光色的量子效率。如此一来,感测模块60的中心所感测到的光能量接近于感测模块60的边缘所感测到的光能量,而使得感测模块60所感测到的图像能够有较为均匀的亮度,而抑制了现有技术中感测到的图像的中间亮边缘暗的情形。在一实施例中,当发光元件20提供照射光束以照射手指10时,控制器80控制指纹感测区域22中从中心至外围的发光像素所发出的光色所对应的量子效率呈现递增的趋势,如此能够进一步地使感测模块60所感测到的图像的亮度具有整面皆均匀的情形,以进一步提升指纹图像的质量,进而有效提升指纹识别的成功率与准确度。
图2为图1A的电子装置的发光元件所发出的照射光束的光强度分布图。请同时参考图1A、图1B及图2,当使用者将手指10或物体放置于发光元件20的指纹感测区域22上以进行指纹识别感测时,发光元件20的指纹感测区域22会发出照射光束,以照射手指10或物体,此时,指纹感测区域22中的光强度例如是均匀的。此时,若指纹感测区域22中的所有发光像素的发光光色是一致的,则感测模块60所侦测到的图像的光强度则如图3所示,会有中间亮边缘暗的情形。然而,在本实施例中,控制器80控制指纹感测区域22中从中心至外围的发光像素所发出的光色所对应的量子效率呈现递增的趋势,如图4所示,则感测模块60上各位置的感测像素所侦测到的光能量则是均匀的,如图5所示,而测到的光能量则会反应在感测模块60所感测到的图像的亮度上。也就是说,通过控制器80作如上述的控制,感测模块60可以感测到亮度均匀的图像。在图2与图4中的中心线C1是对应到指纹感测区域22的中心位置,即图中位置为0处,而在图3与图5的中心线C2是对应到感测模块60的中心位置,即图中位置为0处。
在本实施例中,电子装置100可为手持电子装置,例如是智慧型手机、平板电脑等手持电子装置,而发光元件20在不作指纹识别的时候,可用以作为显示器以显示使用者所需观看的帧(frame)。在作指纹识别时,发光元件20可整面发光或仅在指纹感测区域22发光,以产生用以照明手指10的照射光束。
在一实施例中,控制器80例如为中央处理单元(central processing unit, CPU)、微处理器(microprocessor)、数字信号处理器(digital signal processor,DSP)、可程序化控制器、可程序化逻辑装置(programmable logic device,PLD)或其他类似装置或这些装置的组合,本发明并不加以限制。此外,在一实施例中,控制器80的各功能可被实作为多个程序码。这些程序码会被存储在一个存储器中,由控制器80来执行这些程序码。或者,在一实施例中,控制器80的各功能可被实作为一或多个电路。本发明并不限制用软件或硬件的方式来实作控制器80的各功能。
此外,在本实施例中,控制器80还可电性连接至感测模块60,以使发光元件20的发光时间与感测模块60的感测时间同步化。
图6为图1A中的感测模块对于不同的波长的光的量子效率的关系图,图7为图1A中的存储单元中所储存的关系模型,而图8为图1A中的发光元件的各色发光像素的发光强度与其所相当的单一波长的光的波长之间的关系图。请先参照图6,由图6可知,感测模块60对不同波长的光具有不同的量子效率,其中感测模块对波长接近550纳米(nanometer,nm)的光具有最大的量子效率,而当波长渐变长或变短时,则量子效率皆递减。发光元件20的发光像素所发出的光色可用来模拟图6中单一波长的光。举例而言,每一发光像素可具有发出红光的红色子像素、发出绿光的绿色子像素及发出蓝光的蓝色子像素,藉由控制红色子像素、绿色子像素及蓝色子像素的发光强度的比例可使发光像素产生不同的光色,进而模拟不同的单一波长的光。红色子像素、绿色子像素及蓝色子像素的发光强度所对应的波长如图8所示,当欲求得某一单一波长的光可由多少比例的红光、蓝光及绿光混合而成时,可在图8中画出于此波长的铅直线,并求得此铅直线分别与代表红光、绿光及蓝光的归一化发光强度相对于波长的曲线的三个交点,这三个交点的纵坐标即代表欲模拟此波长时,红色、绿色及蓝色子像素所需发出的归一化光强度。感测模块60对通过调配红色子像素、绿色子像素及蓝色子像素的发光强度比例所发出的某一光色的光的量子效率等同于感测模块60对此光色所模拟的单一波长的光的量子效率。也就是说,发光元件20的这些发光像素所发出的多个不同光色所对应的量子效率分别相当于多个不同的单一波长的光所对应的量子效率。
请再参照图1A与图7,本实施例的电子装置100还包括存储器90,用以 储存感测模块60的多个不同位置的光能量接收速度与发光元件20的多个不同光色之间的关系模型,且控制器80根据关系模型来控制第一区域222中的发光像素所发出的光色与第二区域224中的发光像素所发出的光色,或者根据关系模型来控制发光元件20的指纹感测区域22的每个位置的发光像素所发出的光色。
在本实施例中,上述关系模型包括这些不同光色在这些不同位置的光能量接收速度的多条曲线,如图7所示的曲线D1、D2、D3、D4及D5,其中光能量接收速度例如是模数转换能量速度(analog-to-digital conversion energy velocity),其代表感测模块60的像素在单位时间内所接收到的光能量,其对应于此像素所侦测到的光强度。在本实施例中,在关系模型当中的这些不同位置的光能量接收速度是由发光元件20的这些发光像素皆以相同强度发光所形成的。举例而言,在电子装置100出厂前,可使发光元件20的这些发光像素皆发出某一光色的光,且这些发光像素的发光强度皆相同,并以感测模块60感测以取得如图7中的一条曲线的数据(例如取得曲线D1的数据)。接着,使发光元件20的这些发光像素皆发出另一光色的光,且让这些发光像素的发光强度维持不变,并以感测模块60感测以取得如图7中的另一条曲线的数据(例如取得曲线D2的数据),并以此类推以取得所有的曲线(例如取得曲线D1至D5,而这些曲线的数据皆储存于存储器90中,以作为上述关系模型。
在本实施例中,当使用者使用电子装置100来感测指纹时,控制器80可用以选择一个参考光能量接收速度,且求得参考光能量接收速度在这些不同位置所形成的直线(例如图7的水平线H1)与这些曲线(例如图7的曲线D1至D5)的多个交点,并以这些交点所对应的多个光色来分别作为对应于这些交点的位置的发光像素的发光颜色。举例而言,当控制器80选择以模数转换能量速度V1作为基准值(此基准值的选择例如可以选在波峰值最低的曲线的波峰值或其附近的数值)时,可求得落在此基准值上的水平线H1与这些曲线(例如曲线D1至D5)的交点。在图7中,水平线H1与曲线D1的两个交点的横坐标(即感测模块60上的位置坐标)为位置P1与位置P2,而控制器80便可控制发光元件20上对应于位置P1与位置P2的位置上或其附近的发光像素所发出的光色是采用曲线D1所代表的光色。同理,控制器80可求得水平线H1与曲线D2的两个交点的横坐标(即感测模块60上的位置坐标)为位置P3 与位置P4,而控制器80便可控制发光元件20上对应于位置P3与位置P4的位置上或其附近的发光像素所发出的光色是采用曲线D2所代表的光色。同理,控制器80可求得水平线H1与曲线D3的两个交点的横坐标(即感测模块60上的位置坐标)为位置P5与位置P6,而控制器80便可控制发光元件20上对应于位置P5与位置P6的位置上或其附近的发光像素所发出的光色是采用曲线D3所代表的光色。以此类推,水平线H1与其他曲线(例如曲线D4与D5)的交点所对应的发光元件20上的位置上或其附近的发光像素的光色也都可以被求得。如此一来,控制器80便可以根据关系模型来控制第一区域222中的发光像素所发出的光色与第二区域224中的发光像素所发出的光色,或者根据关系模型来控制发光元件20的指纹感测区域22的每个位置的发光像素所发出的光色。
在本实施例中,当发光元件20提供照射光束以照射手指10时,控制器80控制发出不同光色的发光像素的发光强度皆相同。或者,更进一步地,当发光元件20提供照射光束以照射手指10时,控制器80控制发光元件20的指纹感测区域22中的每个发光像素的发光强度皆相同,尽管不同的发光像素的发光颜色可能是不同的。
综上所述,在本发明的实施例的电子装置中,由于藉由控制器来控制第一区域中的发光像素所发出的光色与第二区域中的发光像素所发出的光色,以使感测模块对第一区域中的发光像素所发出的光色的量子效率小于感测模块对第二区域中的发光像素所发出的光色的量子效率,因此感测模块的中心所感测到的光能量接近于感测模块的边缘所感测到的光能量。如此一来,感测模块所感测到的图像便能够有均匀的亮度,而抑制了中间亮边缘暗的情形,进而提升电子装置的指纹感测效果。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (12)

  1. 一种电子装置,其特征在于,用以感测手指的指纹图像,且包括:
    发光元件,包括多个排成阵列的发光像素,具有指纹感测区域,且用以提供照射光束至所述手指;
    感测模块,配置于所述指纹感测区域的下方,用以接收经所述手指反射后到达所述感测模块的所述照射光束以产生所述指纹图像;以及
    控制器,电性连接至所述发光元件,以控制所述发光元件的发光,其中所述指纹感测区域从其中心至其外围至少划分为第一区域及第二区域,且当所述发光元件提供所述照射光束以照射所述手指时,所述控制器控制所述第一区域中的发光像素所发出的光色与所述第二区域中的发光像素所发出的光色,以使所述感测模块对所述第一区域中的发光像素所发出的光色的量子效率小于所述感测模块对所述第二区域中的发光像素所发出的光色的量子效率。
  2. 根据权利要求1所述的电子装置,其特征在于,当所述发光元件提供所述照射光束以照射所述手指时,所述控制器控制所述指纹感测区域中从所述中心至所述外围的发光像素所发出的光色所对应的量子效率呈现递增的趋势。
  3. 根据权利要求1所述的电子装置,其特征在于,所述发光元件为透明显示面板。
  4. 根据权利要求3所述的电子装置,其特征在于,所述透明显示面板为有机发光二极管显示面板。
  5. 根据权利要求1所述的电子装置,其特征在于,所述感测模块包括图像传感器。
  6. 根据权利要求1所述的电子装置,其特征在于,所述多个发光像素所发出的多个不同光色所对应的量子效率分别相当于多个不同的单一波长的光所对应的量子效率。
  7. 根据权利要求1所述的电子装置,其特征在于,还包括存储器,用以储存所述感测模块的多个不同位置的光能量接收速度与所述发光元件的多个不同光色之间的关系模型,且所述控制器根据所述关系模型来控制所述第一区域中的发光像素所发出的光色与所述第二区域中的发光像素所发出的光色。
  8. 根据权利要求7所述的电子装置,其特征在于,所述关系模型包括所述多个不同光色在所述多个不同位置的光能量接收速度的多条曲线。
  9. 根据权利要求8所述的电子装置,其特征在于,所述控制器用以选择一个参考光能量接收速度,且求得所述参考光能量接收速度在所述多个不同位置所形成的直线与所述多条曲线的多个交点,并以所述多个交点所对应的多个光色来分别作为对应于所述多个交点的位置的发光像素的发光颜色。
  10. 根据权利要求9所述的电子装置,其特征在于,所述多个不同光色所对应的量子效率分别相当于多个不同的单一波长的光所对应的量子效率。
  11. 根据权利要求7所述的电子装置,其特征在于,在所述关系模型当中的所述多个不同位置的光能量接收速度是由所述发光元件的所述多个发光像素皆以相同强度发光所形成的。
  12. 根据权利要求7所述的电子装置,其特征在于,当所述发光元件提供所述照射光束以照射所述手指时,所述控制器控制发出不同光色的发光像素的发光强度皆相同。
PCT/CN2019/127978 2019-06-21 2019-12-24 电子装置 WO2020253190A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962864586P 2019-06-21 2019-06-21
US62/864,586 2019-06-21

Publications (1)

Publication Number Publication Date
WO2020253190A1 true WO2020253190A1 (zh) 2020-12-24

Family

ID=70423987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127978 WO2020253190A1 (zh) 2019-06-21 2019-12-24 电子装置

Country Status (2)

Country Link
CN (1) CN111104939A (zh)
WO (1) WO2020253190A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111104939A (zh) * 2019-06-21 2020-05-05 神盾股份有限公司 电子装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275374A (zh) * 2017-05-31 2017-10-20 北京小米移动软件有限公司 Oled面板、模组、指纹识别方法、装置及存储介质
CN109313703A (zh) * 2018-08-15 2019-02-05 深圳市汇顶科技股份有限公司 屏下光学指纹识别系统、背光模组、显示屏幕及电子设备
US20190156099A1 (en) * 2015-12-13 2019-05-23 Joshua Noel Hogan Frustrated Total Internal Reflection Fingerprint Detector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107004130B (zh) * 2015-06-18 2020-08-28 深圳市汇顶科技股份有限公司 用于屏幕上指纹感应的屏幕下光学传感器模块
CN107580709B (zh) * 2015-06-18 2021-02-12 深圳市汇顶科技股份有限公司 具有光学感应能力的多功能指纹传感器
CN108766987B (zh) * 2018-05-31 2021-06-04 上海天马有机发光显示技术有限公司 一种显示装置及其驱动方法
CN111104939A (zh) * 2019-06-21 2020-05-05 神盾股份有限公司 电子装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190156099A1 (en) * 2015-12-13 2019-05-23 Joshua Noel Hogan Frustrated Total Internal Reflection Fingerprint Detector
CN107275374A (zh) * 2017-05-31 2017-10-20 北京小米移动软件有限公司 Oled面板、模组、指纹识别方法、装置及存储介质
CN109313703A (zh) * 2018-08-15 2019-02-05 深圳市汇顶科技股份有限公司 屏下光学指纹识别系统、背光模组、显示屏幕及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111104939A (zh) * 2019-06-21 2020-05-05 神盾股份有限公司 电子装置

Also Published As

Publication number Publication date
CN111104939A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
CN108287634B (zh) 触控显示面板、显示装置和触控显示面板的驱动方法
US11482051B2 (en) Display apparatus and pattern identification method thereof
WO2020119135A1 (en) A driving method and an apparatus for a fingerprint recognition device
TWI742477B (zh) 電子裝置
TWI725761B (zh) 具有屏下式紅外線生物感測器的電子設備
US20210232841A1 (en) Texture recognition device and driving method of texture recognition device
TWI730519B (zh) 液晶顯示裝置
TW202014772A (zh) 顯示元件的指紋感測區域與指紋感測模組的對齊方法
TW202023086A (zh) 光學指紋感測模組
CN112668388A (zh) 包含取代光电二极管的光圈以获得增加的光通过量的光学感测系统和装置
WO2020253190A1 (zh) 电子装置
US20200117933A1 (en) Light-emitting signal intensity control method and electronic device
CN113015384A (zh) 壳体组件及电子设备
CN206657365U (zh) 用于生物识别装置的光准直元件及生物识别装置
US11776297B2 (en) Coordinate transformation method used for imaging under screen, storage medium and electronic device
WO2021227327A1 (zh) 具指纹感测功能的电子装置及指纹感测方法
TWI784212B (zh) 一種應用於屏下圖像成像的拓撲架構光源驅動方法、儲存介質和電子設備
WO2020253250A1 (zh) 电子装置
US11188772B2 (en) Drive method for texture recognition device and texture recognition device
CN209560562U (zh) 指纹识别装置以及电子设备
CN206849036U (zh) 生物辨识装置
CN214429847U (zh) 壳体组件及电子设备
US20220058367A1 (en) Method for automatically searching for thickness parameters of display screen, storage medium and electronic device
WO2023242438A1 (en) Display with integrated sensors and systems and methods related thereto
TW202042107A (zh) 圖像採集方法、裝置、存儲介質,及電子設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933353

Country of ref document: EP

Kind code of ref document: A1