WO2020252805A1 - 一种fMRI脑网络机制启发的动态功能模式学习方法 - Google Patents

一种fMRI脑网络机制启发的动态功能模式学习方法 Download PDF

Info

Publication number
WO2020252805A1
WO2020252805A1 PCT/CN2019/093167 CN2019093167W WO2020252805A1 WO 2020252805 A1 WO2020252805 A1 WO 2020252805A1 CN 2019093167 W CN2019093167 W CN 2019093167W WO 2020252805 A1 WO2020252805 A1 WO 2020252805A1
Authority
WO
WIPO (PCT)
Prior art keywords
brain
network
dynamic
fmri
time series
Prior art date
Application number
PCT/CN2019/093167
Other languages
English (en)
French (fr)
Inventor
石玉虎
曾卫明
邓金
鲁佳
聂玮芳
李颖
Original Assignee
上海海事大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海海事大学 filed Critical 上海海事大学
Priority to JP2021500628A priority Critical patent/JP2022536881A/ja
Publication of WO2020252805A1 publication Critical patent/WO2020252805A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders

Definitions

  • the invention relates to the technical field of image processing of brain imaging, in particular to a dynamic function mode learning method inspired by fMRI brain network mechanism.
  • the brain is the most important organ of the human body. It controls various cognitive behaviors such as human thinking, consciousness, emotion, and memory. It is the central nervous system for humans to achieve advanced cognitive functions. It is also the most complicated and One of the sophisticated systems. How to understand the brain and explore the cognitive mechanism of brain neural activity is an important field that the scientific community at home and abroad strives to make breakthroughs and explorations, and has very important research value.
  • fMRI Magnetic Resonance Imaging
  • the analysis of brain function network connection based on fMRI is an important content of brain science research using this technology. Since the brain is a highly complex system that is always in dynamic changes, the quantitative description of the dynamic changes of brain functional connection patterns over time is more in line with the nature of brain neural activity and can provide richer information for exploring the basic properties of brain networks. Therefore, it is of great significance to improve and develop dynamic brain functional network connection analysis methods, and to explore the dynamic characteristics of the brain through the dynamic functional connection mode between fMRI brain networks. It can not only effectively dig out the internal information hidden in fMRI signals, but also It can also better reveal the laws of brain neural activity and promote fMRI technology to play an important role. However, the current dynamic brain function network connection analysis method still has several key problems in brain network construction and dynamic brain function model extraction, which need to be further systematically solved.
  • the present invention aims to use fMRI neuroimaging technology to obtain big brain image data, by making full use of the attribute characteristics between brain network mechanisms, and adopting group independent component analysis based on the true reference signal of the data.
  • Intrinsic reference, GICA-IR GICA-IR
  • sliding time window analysis as well as deep neural network models and affine propagation clustering algorithms to analyze the dynamic functional connection patterns of the whole brain of the living human brain.
  • GICA-IR Intrinsic reference
  • cranial nerve diseases such as autism, childhood ADHD, depression, schizophrenia, Alzheimer's disease, Parkinson's disease) Disease
  • the plastic restructuring characteristics of occupational brain such as seamen, pilots
  • the purpose of the present invention is to provide a dynamic functional connection pattern learning method inspired by the fMRI brain network mechanism, and extract the group-level and individual-level resting brain function networks of interest in fMRI brain imaging data and their corresponding counterparts through the GICA-IR method Then use the sliding time window method to calculate the dynamic functional connection matrix between these brain networks in each set of data, and finally use the deep neural network model and affine propagation clustering algorithm to cluster the dynamic functional connection vector set Analyze and extract the inherent dynamic brain function connection pattern in the human brain.
  • a dynamic functional pattern learning method inspired by fMRI brain network mechanism includes the following steps:
  • step S2 perform a preprocessing operation on the resting state fMRI brain image data acquired in step S1 to obtain preprocessed resting state fMRI brain image data;
  • the GICA-IR method is used to obtain the resting state brain function network at the group level and its corresponding time series, and the resting state at the individual level. State brain function network and its corresponding time series;
  • the subject keeps his brain awake during the data collection process, and lies flat in the magnetic resonance instrument.
  • the preprocessing operation includes temporal layer correction, head movement correction, spatial normalization, spatial smoothing, filtering, de-linear drift and covariate regression.
  • the resting state brain function network at the individual level and its corresponding time series are based on the resting state brain function network at the group level and its corresponding time series and are obtained through a spatio-temporal double regression method.
  • the GICA-IR method in step S3 further includes the following process:
  • ICA analysis is performed on each subject individually, and the principal component analysis method is used to form a matrix from the independent components of the subject corresponding to the brain function network of interest Extract the implicit authentic reference signal from
  • the individual-level resting brain function network and its time series were obtained through the spatio-temporal double regression method.
  • said dynamic functional pattern learning method inspired by fMRI brain network mechanism
  • the GICA-IR method in step S3 includes the following steps:
  • X i represents the order of T ⁇ V fMRI data observation matrix
  • N i ⁇ V denotes the source signal matrix order
  • i N i represents the test group after the number of decomposition levels of ICA Independent Component obtained, each row represents a separate component i is again obtained in the decomposition process ICA
  • M i represents a mixing matrix T ⁇ N i order, each column represents The time series corresponding to each row in;
  • step S3.2 Use the authentic reference signal obtained in step S3.1 to guide ICA's fMRI brain image data analysis at the group level, and use the time cascade method for group analysis, as follows:
  • s i represents the obtained output signal
  • J(s i ) represents the contrast function to measure the independence of the output signal
  • G( ⁇ ) is a non-quadratic function
  • v is a Gaussian random variable
  • r represents the true reference signal
  • ⁇ (s i ,r) is a distance measure
  • is a threshold parameter
  • h(s i ) is an equality constraint to ensure that the optimization problem is solved in the convex region
  • S represents sample i i corresponding source signal
  • Pinv (S) Solving means of a pseudo inverse matrix S
  • M i represents the time sequence
  • K represents the number of subjects.
  • GICA-IR is used to calculate the nine resting state brain function networks of interest and their corresponding time series.
  • the resting brain function network includes the default network, visual network, bilateral visual network, auditory network, sensorimotor network, executive control network, prominence network, working memory network, and attention network. Spatiotemporal information of brain network corresponding to each participant.
  • the step S4 further includes the following steps:
  • a time window of a specific width W is used to slide on the time series T 1 , T 2 ,..., T N with a step size of 1.
  • the time series of the nth brain network under i time windows is expressed as:
  • the dynamic function connection matrix group composed of the dynamic function connection matrix is:
  • step S4.1 the Pearson correlation coefficient between the two brain network time series specifically refers to the time series corresponding to the brain network x and y under the i-th time window versus The Pearson correlation coefficient between, the formula is as follows
  • the step S5 further includes the following steps:
  • step S5.2 Use the affine propagation clustering algorithm to perform cluster analysis on the feature samples obtained through the deep neural network model learning in step S5.1, and obtain Q categories, where the cluster center corresponding to each category is the implicit Corresponding dynamic functional connection mode in fMRI brain image data.
  • the present invention introduces the attribute characteristics of the brain network mechanism to perform dynamic brain function connection analysis, which helps to obtain the implicit dynamic function connection mode according to the dynamic characteristics of the brain network;
  • the present invention improves the accuracy and efficiency of clustering through the combination of GICA-IR method and sliding time window analysis, as well as deep neural network model and affine propagation clustering algorithm;
  • the dynamic functional connection model obtained in the present invention can provide an analysis basis for further research on the basic principles of brain cognitive activity, neurological damage mechanisms of brain diseases, and biological indicators of occupational brain plasticity.
  • Fig. 1 is a flowchart of the dynamic functional connection pattern learning method inspired by the fMRI brain network mechanism of the present invention
  • Figure 2 is a schematic diagram of the overall implementation of the dynamic functional connection pattern learning method inspired by the fMRI brain network mechanism of the present invention.
  • the present invention provides a dynamic functional pattern learning method inspired by fMRI brain network mechanism, which includes the following steps:
  • the subject is required to keep the brain awake during the data collection process and lie flat in the magnetic resonance instrument; the number of time points for fMRI data collection for each subject is 215.
  • step S2 Perform a preprocessing operation on the resting state fMRI brain image data of the normal healthy subject acquired in step S1 to obtain the resting state fMRI brain image data of the normal healthy subject after preprocessing;
  • the preprocessing operation includes There are seven steps of temporal correction, head movement correction, spatial standardization, spatial smoothing, filtering, de-linear drift and covariate regression. Among them, all preprocessing operations are completed by DPARSF software (software for brain function imaging research).
  • the GICA-IR method is used to obtain the resting state brain function network at the group level and its corresponding time series, and the individual level The resting state brain function network of and its corresponding time series; among them, the individual level information (the resting state brain function network of the individual level and its corresponding time series) is obtained by spatio-temporal double regression.
  • the GICA-IR method in step S3 includes the following steps:
  • ICA independent component analysis
  • X i represents the order of T ⁇ V fMRI data observation matrix
  • N i ⁇ V denotes the source signal matrix order
  • i N i represents the test group after the number of decomposition levels of ICA Independent Component obtained, each row represents a separate component i is again obtained in the decomposition process ICA
  • M i represents a mixing matrix T ⁇ N i order, each column represents The time series corresponding to each row in.
  • n i (1 ⁇ n i ⁇ N i ) independent component of subject i corresponding to the brain function network of interest (that is, the brain function network that the subject is interested in)
  • n i represents the nth component corresponding to subject i i independent component which is in the range between 1 and N i;
  • the output result from ICA decomposition generally includes a lot of independent components (the number N here is generally considered to be set or based on some specific method such as the minimum description length MDL To estimate), but not every component is meaningful, so usually only the meaningful components are selected for subsequent analysis, and each independent component in the ICA output results corresponds to a brain function network, so it is generally through Select the brain function network of interest to determine the corresponding independent components;
  • the correspondence of independent components between different subjects can be measured by spatial correlation, where component correspondence refers to the correspondence between independent components obtained by different subjects through ICA decomposition, because the ICA decomposition result is no Therefore, for a given brain function network, in different subjects, their corresponding independent components are different, so in order to determine the corresponding component numbers of the same brain function network in different subjects, calculate the correlation between them Therefore, as long as one of the subjects knows the component number corresponding to the brain function network, it can automatically determine which of the other subjects’ independent components corresponds to the brain function network (that is, the independent component with the largest correlation) );
  • the first principal component r that is, the required implicit authentic reference signal
  • e 1 represents the eigenvector corresponding to the maximum eigenvalue
  • step S3.2 Use the authentic reference signal obtained in step S3.1 above to guide the ICA to analyze the fMRI brain image data at the group level, where the group analysis (that is, the fMRI data brain image analysis at the group level) adopts time cascade
  • group analysis that is, the fMRI data brain image analysis at the group level
  • time cascade The way is as follows:
  • S (s 1 ,s 2 ,...,s N )'represents a source signal matrix of order N ⁇ V, and each row represents a group independent component, that is, the group-level resting brain function network, and N is through the group ICA
  • the number of source signals obtained by analysis ie formula 3
  • M represents the group mixing matrix of order KT ⁇ V
  • the equality constraint h(s i ) is to ensure that the optimization problem is solved in the convex region; then, the augmented Lagrangian method is used in combination with Newton iteration or fast fixed point iteration to obtain the separation vector w i , So as to obtain the required output signal s i .
  • S represents sample i i corresponding source signal
  • Pinv (S) Solving means of a pseudo inverse matrix S
  • M i represents the time sequence
  • K represents the number of subjects.
  • the step S4 further includes the following steps:
  • a time window of a specific width W is used to slide on the time series T 1 , T 2 ,..., T N with a step size of 1.
  • the time series of the nth brain network under i time windows is expressed as:
  • the dynamic function connection matrix group composed of the dynamic function connection matrix is:
  • dFCMG ⁇ dFCM 1 ,dFCM 2 ,...,dFCM T-W+1 ⁇ (7).
  • step S4.1 the Pearson correlation coefficient between the brain network time series here specifically refers to the time series corresponding to the brain network x and y under the i-th time window versus The Pearson correlation coefficient between, the formula is as follows
  • the upper triangular elements of the dynamic function connection matrix dFCM i (1 ⁇ i ⁇ T-W+1) in the dynamic function connection matrix group dFCMG are expanded into a column by rows to obtain a dynamic function connection vector dFCV i (1 ⁇ i ⁇ T-W +1);
  • the size of each vector is (N ⁇ (N-1)/2) ⁇ 1;
  • the dynamic function connection vector dFCV i under the i-th time window can be expressed as:
  • the step S5 further includes the following steps:
  • step 1 the resting state fMRI brain imaging data of 100 normal healthy subjects were collected.
  • the number of time points of fMRI data collection for each subject also called the length of time series, that is, how many time points of fMRI data are collected, and how long the time series in the corresponding analysis is) is 215.
  • step 2 preprocessing is performed on the collected resting state fMRI brain image data.
  • step 3 according to the rest state fMRI data corresponding to each subject after preprocessing, the dynamic functional connection vector set of each subject is obtained using GICA-IR and sliding time window method; specifically including the following:
  • step 4 for each subject, calculate the dynamic function connection matrix group dFCMG, the specific method is as follows:
  • the time series of the network is represented as Calculate the Pearson correlation coefficient between the subjects' corresponding brain network time series, and obtain 196 dynamic function connection matrices dFCM i (1 ⁇ i ⁇ 196).
  • the dynamic function connection matrix group composed of these dynamic function connection matrices is
  • dFCMG ⁇ dFCM 1 ,dFCM 2 ,...,dFCM 196 ⁇ .
  • the Pearson correlation coefficient between the two brain network time series specifically refers to the time series of the brain network x and y under the i-th time window. versus The Pearson correlation coefficient between, the formula is as follows
  • dFCVS ⁇ dFCV 1 ,dFCV 2 ,...,dFCV 196 ⁇ , the size is 36 ⁇ 196.
  • dFCV i refers to the dynamic function connection vector under the i-th time window, specifically expressed as:
  • step 5 the deep neural network model and the affine propagation clustering algorithm are used to perform cluster analysis on the dynamic functional connection vector set of all subjects to obtain the implicit dynamic functional connection pattern in the fMRI data.
  • the present invention aims to use fMRI neuroimaging technology to obtain big brain image data, by making full use of the attribute characteristics between brain network mechanisms, and adopting group independent component analysis (GICA-IR) based on the true reference signal of the data. ) And sliding time window analysis, as well as deep neural network model and affine propagation clustering algorithm to analyze the dynamic functional connection mode of the whole brain of the living human brain.
  • GICA-IR group independent component analysis
  • sliding time window analysis as well as deep neural network model and affine propagation clustering algorithm to analyze the dynamic functional connection mode of the whole brain of the living human brain.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • Molecular Biology (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Image Analysis (AREA)

Abstract

一种基于fMRI脑网络机制启发的动态功能模式学习方法,包含:采集若干被试的静息态fMRI脑影像数据;将静息态fMRI脑影像数据进行预处理操作;根据预处理后的静息态fMRI脑影像数据,采用GICA-IR方法分别获得组水平和个体水平的静息态脑功能网络及其对应的时间序列;使用滑动时间窗方法计算每个被试对应的静息态脑功能网络之间的动态功能连接矩阵,并将其上三角元素张成动态功能连接向量,进而获得所有被试对应的动态功能连接向量集;利用深度神经网络模型和仿射传播聚类算法提取出隐含于动态功能连接向量集中的大脑固有动态功能连接模式。该方法为揭示脑认知活动的基本原理、脑神经疾病的受损机制以及探索职业脑可塑性重组特征等提供坚实基础。

Description

一种fMRI脑网络机制启发的动态功能模式学习方法 技术领域
本发明涉及属于脑影像学图像处理技术领域,特别涉及一种基于fMRI脑网络机制启发的动态功能模式学习方法。
背景技术
大脑是人体最重要的器官,它控制着人类的思维、意识、情感、记忆等各种认知行为,是人类实现高级认知功能活动的中枢神经系统,也是人类迄今为止所知道的最为复杂和精密的系统之一。如何认识脑,探索大脑神经活动的认知机制,是国内外科学界力求突破和探索的一个重要领域,具有十分重要的研究价值。
近年来,随着科学技术的不断发展,脑功能成像技术已成为当前脑科学领域最受关注的研究热点和前沿方向之一。其中,功能磁共振成像技术(functional Magnetic Resonance Imaging,fMRI)由于结合了功能、解剖和影像三方面的信息,不仅能显示脑功能激活区的部位、大小和范围,而且可直接显示激活区所在的确切解剖位置,具有无侵入、无创伤、无辐射、可重复、可精确定位以及较高的时间和空间分辨率等诸多优越特性,因而被广泛的应用于各领域的脑科学研究。
基于fMRI脑功能网络连接分析是利用该技术进行脑科学研究的一项重要内容。由于大脑是一个始终处于动态变化之中的高度复杂系统,定量描述脑功能连接模式随时间的动态变化更符合大脑神经活动的本质,可以为探索脑网络的基本属性提供更加丰富的信息。因此,完善和发展动态脑功能网络连接分析方法,通过fMRI脑网络之间的动态功能连接模式来探究大脑的动态特性具有重要意义,不仅能够有效地挖掘出隐含在fMRI信号中的内在信息,而且还可以更好地揭示大脑神经活动规律,促进fMRI技术发挥重要作用。然而,当前的动态脑功能网络连接分析方法在脑网络构建和动态脑功能模式提取等方面还存在若干关键问题需要进一步系统解决。
基于上述,本发明旨在利用fMRI神经成像技术获取脑影像大数据情况下,通过充分利用脑网络机制之间的属性特征,采用基于数据本真参考信号的组独立成分分析(group independent component analysis with intrinsic reference,GICA-IR)和滑动时间窗分析、以及深度神经网络模型和仿射传播聚类算法等方法来解析活体人脑的全脑动态功能连接模式。从而为揭示脑认知活动的基本原理(如脑发育、脑老化)、脑神经疾病的受损机制(如自闭症、儿童多动症、抑郁症、精神分裂症、阿尔茨海默病、帕金森病)以及探索职业脑可塑性重组特征(如海员、飞行员)等提供坚实基础。
发明的公开
本发明的目的在于提供一种fMRI脑网络机制启发的动态功能连接模式学习方法,通过GICA-IR方法提取出fMRI脑影像数据中感兴趣的组水平和个体水平静息态脑功能网络及其对应的时间序列,然后采用滑动时间窗方法计算出每组数据中对应这些脑网络之间的动态功能连接矩阵,最后使用深度神经网络模型和仿射传播聚类算法对动态功能连接向量集进行聚类分析,提取出人类大脑中固有的动态脑功能连接模式。
为了达到上述目的,本发明通过以下技术方案实现:
一种基于fMRI脑网络机制启发的动态功能模式学习方法,该方法包含以下步骤:
S1、采集若干被试的静息态fMRI脑影像数据;
S2、将步骤S1中采集获得的所述静息态fMRI脑影像数据进行预处理操作,得到预处理后的静息态fMRI脑影像数据;
S3、根据步骤S2中的所述预处理后的静息态fMRI脑影像数据,采用GICA-IR方法分别获得组水平的静息态脑功能网络及其对应的时间序列,和个体水平的静息态脑功能网络及其对应的时间序列;
S4、使用滑动时间窗方法计算每个被试对应的所述静息态脑功能网络之间的动态功能连接矩阵,并将其上三角元素张成动态功能连接向量,进而获得所有被试对应的动态功能连接向量集;
S5、利用深度神经网络模型和仿射传播聚类算法提取出隐含于所述动态功能连接向量集中的大脑固有动态功能连接模式。
优选地,所述步骤S1中,数据采集过程中被试保持脑部清醒状态,且平躺于磁共振仪器内。
优选地,所述步骤S2中,所述预处理操作包括时间层校正、头动矫正、空间标准化、空间平滑、滤波、去线性漂移和协变量回归。
优选地,所有预处理操作均通过DPARSF软件完成。
优选地,所述步骤S3中,个体水平的静息态脑功能网络及其对应的时间序列是基于组水平的静息态脑功能网络及其对应的时间序列并通过时空双回归方式获得。
优选地,所述步骤S3中的GICA-IR方法进一步包含以下过程:
基于所述预处理后的静息态fMRI脑影像数据,对每个被试单独进行ICA分析,同时利用主成分分析方法,从与感兴趣脑功能网络对应的被试的独立成分而组成的矩阵中提取隐含的本真参考信号;
利用所述本真参考信号,指导ICA在组水平上的fMRI脑影像数据分析,计算获取组水平静息态脑功能网络及其时间序列;
根据计算获得的组水平静息态脑功能网络及其时间序列,通过时空双回归方式获得组中每个被试对应的个体水平静息态脑功能网络及其时间序列。
优选地,所述的基于fMRI脑网络机制启发的动态功能模式学习方法,
设定采集到K个被试的静息态fMRI脑影像数据,每个被试的fMRI数据在经过预处理操作后包含T个时间点和V个体素;
所述步骤S3中的GICA-IR方法包含如下步骤:
S3.1、对每个被试单独进行ICA分析,对于被试i,ICA分解可以表示为:
X i=M iS i,(i=1,2,…,K)           (1)
其中,X i表示T×V阶的fMRI观测数据矩阵;
Figure PCTCN2019093167-appb-000001
表示N i×V阶的源信号矩阵,N i表示被试i经过组水平ICA分解获得的独立成分个数,每行代表被试i在ICA分解过程中得到的一个独立成分;
Figure PCTCN2019093167-appb-000002
是大 小为V×1的列向量;M i表示T×N i阶的混合矩阵,每一列代表
Figure PCTCN2019093167-appb-000003
中每一行对应的时间序列;
Figure PCTCN2019093167-appb-000004
表示与感兴趣脑功能网络对应的被试i的第n i个独立成分,1≤n i≤N i;不同被试之间的成分对应性通过空间相关性进行度量,然后利用主成分分析方法从
Figure PCTCN2019093167-appb-000005
组成的大小为K×V的矩阵R中提取出隐含的本真参考信号,即:
Figure PCTCN2019093167-appb-000006
进而根据r=e' 1R得到第一主成分r,即为所需要的隐含的本真参考信号,其中e 1表示最大特征值所对应的特征向量;
S3.2、利用步骤S3.1获得的本真参考信号,指导ICA在组水平上的fMRI脑影像数据分析,并采用时间级联方式进行组分析,如下:
(X 1;X 2;…;X K)=MS         (3)
其中,S=(s 1,s 2,…,s N)'表示N×V阶的源信号矩阵,每一行代表一个组独立成分,即组水平静息态脑功能网络,N是组水平ICA分解获得的独立成分个数;M表示KT×V阶的组混合矩阵,每一列代表S=(s 1,s 2,…,s N)'中每一行对应的时间序列;
进一步通过约束优化的方式对公式(3)进行求解
最大化:J(s i)={E[G(s i)]-E[G(v)]} 2          (4-1)
约束于:g(s i)=ε(s i,r)-ξ≤0,h(s i)=E[s i] 2-1=0           (4-2)
其中,s i表示求得的输出信号;J(s i)表示度量输出信号独立性的对照函数;G(·)是一个非二次函数,v是一个高斯随机变量;r表示本真参考信号,ε(s i,r)是一个距离测度;ξ是一个阈值参数;h(s i)是为了保证优化问题在凸区域求解的等式约束;
S3.3、根据步骤S3.2中计算获得的组水平静息态脑功能网络及其时间序列,通过时空双回归方式获得组中每个被试对应的个体水平静息态脑功能网络及其时间序列,得到:
M i=X i·pinv(S),S i=pinv(M i)·X i,(i=1,2,…,K)         (5)
其中,S i表示被试i对应的源信号;pinv(S)是指求解S的伪逆矩阵;M i表示对应的时间序列;K表示被试个数。
优选地,所述步骤S3中,根据预处理后的静息态fMRI脑影像数据,使用GICA-IR计算出其中感兴趣的九种静息态脑功能网络及其对应的时间序列,所述九种静息态脑功能网络包括默认网络、视觉网络、双侧视觉网络、听觉网络、感觉运动网络、执行控制网络、突显网络、工作记忆网络和注意网络,并通过时空双回归方式获得组中每个被试对应的脑网络时空信息。
优选地,所述步骤S4,进一步包含如下步骤:
S4.1、对于每一个被试,通过采用滑动时间窗方法,利用一个特定宽度W的时间窗并以步长为1在时间序列T 1,T 2,……,T N上滑动,在第i个时间窗下第n个脑网络的时间序列表示为:
Figure PCTCN2019093167-appb-000007
计算每个时间窗下被试对应脑网络时间序列两两之间的皮尔森相关系数,得到T-W+1个动态功能连接矩阵dFCM i(1≤i≤T-W+1),由这些动态功能连接矩阵构成的动态功能连接矩阵组为:
dFCMG={dFCM 1,dFCM 2,…,dFCM T-W+1};            (7)
步骤S4.1中,脑网络时间序列两两之间的皮尔森相关系数具体是指第i个时间窗下的脑网络x和y对应时间序列
Figure PCTCN2019093167-appb-000008
Figure PCTCN2019093167-appb-000009
之间的皮尔森相关系数,其公式如下
Figure PCTCN2019093167-appb-000010
其中,
Figure PCTCN2019093167-appb-000011
Figure PCTCN2019093167-appb-000012
分别表示
Figure PCTCN2019093167-appb-000013
Figure PCTCN2019093167-appb-000014
的期望,
Figure PCTCN2019093167-appb-000015
Figure PCTCN2019093167-appb-000016
分别表示
Figure PCTCN2019093167-appb-000017
Figure PCTCN2019093167-appb-000018
的方差,且1≤i≤T-W+1,1≤x≤N,1≤y≤N;
从而,第i个时间窗下对应的动态功能连接矩阵dFCM i(1≤i≤T-W+1)表示为:
Figure PCTCN2019093167-appb-000019
S4.2、对于每一个被试,计算动态功能连接向量集dFCVS,具体方法如下:
按行将动态功能连接矩阵组dFCMG中动态功能连接矩阵
dFCM i(1≤i≤T-W+1)的上三角元素张成一列,得到一个动态功能连接向量 dFCV i(1≤i≤T-W+1);每个向量大小为(N×(N-1)/2)×1;将T-W+1个动态功能连接向量按时间窗先后顺序进行级联形成动态功能连接向量集dFCVS={dFCV 1,dFCV 2,…,dFCV T-W+1},大小为(N×(N-1)/2)×(T-W+1);其中,第i个时间窗下的动态功能连接向量dFCV i可表示为:
Figure PCTCN2019093167-appb-000020
所述步骤S5进一步包含如下步骤:
S5.1、将所有被试的动态功能连接向量集按列进行合并构成深度神经网络学习样本,并采用卷积神经网络模型进行特征提取,其中,每一个样本代表一个被试对应的动态功能连接向量;
S5.2、采用仿射传播聚类算法对步骤S5.1中经过深度神经网络模型学习获得的特征样本进行聚类分析,得到Q个类别,其中,每类对应的聚类中心即为隐含于fMRI脑影像数据中对应的动态功能连接模式。
与现有技术相比,本发明的有益效果为:
(1)本发明引入脑网络机制属性特征进行动态脑功能连接分析,有助于根据脑网络动态特性来获取隐含的动态功能连接模式;
(2)本发明通过GICA-IR方法和滑动时间窗分析,以及深度神经网络模型和仿射传播聚类算法等相结合的方式,提高聚类的准确度和效率;
(3)本发明获得的动态功能连接模式可以为脑认知活动的基本原理、脑科疾病的神经受损机制以及职业脑可塑性的生物指标的进一步研究提供分析基础。
附图的简要说明
图1为本发明的fMRI脑网络机制启发的动态功能连接模式学习方法的流程图;
图2为本发明的fMRI脑网络机制启发的动态功能连接模式学习方法的整体方案实施示意图。
实现本发明的最佳方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
如图1-图2所示,本发明提供了一种fMRI脑网络机制启发的动态功能模式学习方法,该方法包含如下步骤:
S1、采集若干(如100例)正常健康被试的静息态fMRI脑影像数据。
所述步骤S1中,数据采集过程中要求被试保持大脑清醒,平躺于磁共振仪器内;每个被试fMRI数据采集的时间点数为215。
S2、对步骤S1中采集获得的正常健康被试的静息态fMRI脑影像数据进行预处理操作,得到预处理后的正常健康被试的静息态fMRI脑影像数据;所述预处理操作包括时间层校正、头动矫正、空间标准化、空间平滑、滤波、去线性漂移和协变量回归这七个步骤。其中,所有预处理操作均通过DPARSF软件(用于脑功能成像研究的软件)完成。
S3、根据步骤S2中的预处理后的正常健康被试的静息态fMRI脑影像数据,使用GICA-IR方法分别获得组水平的静息态脑功能网络及其对应的时间序列,和个体水平的静息态脑功能网络及其对应的时间序列;其中,个体水平信息(个体水平的静息态脑功能网络及其对应的时间序列)通过时空双回归方式获得。
S4、使用滑动时间窗方法计算每个被试对应上述静息态脑功能网络之间的动态功能连接矩阵,并将其上三角元素张成动态功能连接向量,进而获得所有被试对应的动态功能连接向量集。
S5、利用深度神经网络模型和仿射传播聚类算法提取出隐含于上述动态功能连接向量集中的大脑固有动态功能连接模式。
所述步骤S3中的GICA-IR方法包含如下步骤:
S3.1、假设包含K个被试的静息态fMRI脑影像数据,每个被试的fMRI数据在经过预处理操作后包含T个时间点和V个体素。首先,对每个被试单独进行独立成分分析(independent component analysis,ICA),对于被试i,ICA可以表示为:
X i=M iS i,(i=1,2,…,K)         (1)
其中,X i表示T×V阶的fMRI观测数据矩阵;
Figure PCTCN2019093167-appb-000021
表示N i×V阶的源信号矩阵,N i表示被试i经过组水平ICA分解获得的独立成分个数,每行代表被试i在ICA分解过程中得到的一个独立成分;
Figure PCTCN2019093167-appb-000022
是大小为V×1的列向量;M i表示T×N i阶的混合矩阵,每一列代表
Figure PCTCN2019093167-appb-000023
中每一行对应的时间序列。
接下来,令
Figure PCTCN2019093167-appb-000024
表示与感兴趣脑功能网络(即被试感兴趣的脑功能网络)对应的被试i的第n i(1≤n i≤N i)个独立成分,n i表示被试i对应的第n i个独立成分,它的取值范围介于1到N i之间;
其中,当利用ICA方法对fMRI数据进行分析时,从ICA分解的输出结果一般包括很多个独立成分(这里究竟是多少个数N一般是认为设定或者根据某些特定的方法比如最小描述长度MDL来估计得到),但是并不是每个成分都有意义,因此通常只选择其中有意义的成分来进行后续分析,而ICA输出结果中的每个独立成分都对应一个脑功能网络,所以一般是通过选择感兴趣的脑功能网络来确定相应的独立成分;
而不同被试之间的独立成分的对应性可通过空间相关性进行度量,其中,成分对应性是指不同被试通过ICA分解得到的独立成分之间的对应性,因为ICA的分解结果是无序的,因而对于给定的脑功能网络,在不同被试中,它们对应的独立成分是不同的,所以为了确定同一个脑功能网络在不同被试中对应成分序号,计算它们之间的相关性,从而只要知道其中一个被试对应脑功能网络的成分序号,即可根据相关系数自动地确定其它被试独立成分中对应该脑功能网络的是哪个独立成分(即对应相关性最大的独立成分);
然后,利用主成分分析方法从
Figure PCTCN2019093167-appb-000025
组成的大小为K×V的矩阵R中提取出隐含的本真参考信号,即:
Figure PCTCN2019093167-appb-000026
进而,根据r=e' 1R,可以得到第一主成分r(即为所需要的隐含的本真参考信号),其中e 1表示最大特征值所对应的特征向量。
S3.2、利用上述步骤S3.1获得的本真参考信号,指导ICA在组水平上的fMRI脑影像数据分析,这里的组分析(即组水平上的fMRI数据脑影像分析)采用时间级联方式进行,如下:
(X 1;X 2;…;X K)=MS          (3)
其中,S=(s 1,s 2,…,s N)'表示N×V阶的源信号矩阵,每一行代表一个组独立成分,即组水平静息态脑功能网络,N是通过组ICA分析(即公式3)获得的源信号个数,也就是组水平ICA分解获得的独立成分个数;M表示KT×V阶的组混合矩阵,每一列代表S=(s 1,s 2,…,s N)'中每一行对应的时间序列。
进一步,通过约束优化的方式对上述模型(即公式3)进行求解
最大化:J(s i)={E[G(s i)]-E[G(v)]} 2             (4-1)
约束于:g(s i)=ε(s i,r)-ξ≤0,h(s i)=E[s i] 2-1=0            (4-2)
其中,s i表示输出信号,其由分离向量w i和观测信号X估计得到,即s i=w iX;J(s i)表示度量输出信号独立性的对照函数;G(·)是一个非二次函数,v是一个高斯随机变量;r表示本真参考信号,ε(s i,r)是一个距离测度;ξ是一个阈值参数,用于限制输出信号是唯一满足不等式约束条件的信号;等式约束h(s i)是为了保证优化问题在凸区域求解;然后,采用增广拉格朗日方法, 并结合牛顿迭代或者快速不动点迭代等算法即可求出分离向量w i,从而求得所需要的输出信号s i
S3.3、根据步骤S3.2中计算获得的组水平静息态脑功能网络及其时间序列,通过时空双回归方式获得组中每个被试对应的个体水平静息态脑功能网络及其时间序列,即:
M i=X i·pinv(S),S i=pinv(M i)·X i,(i=1,2,…,K)       (5)
其中,S i表示被试i对应的源信号;pinv(S)是指求解S的伪逆矩阵;M i表示对应的时间序列;K表示被试个数。
所述步骤S4进一步包含如下步骤:
S4.1、对于每一个被试,通过采用滑动时间窗方法,利用一个特定宽度W的时间窗并以步长为1在时间序列T 1,T 2,……,T N上滑动,在第i个时间窗下第n个脑网络的时间序列表示为:
Figure PCTCN2019093167-appb-000027
计算每个时间窗下被试对应脑网络时间序列两两之间的皮尔森相关系数,得到T-W+1个动态功能连接矩阵dFCM i(1≤i≤T-W+1),由这些动态功能连接矩阵构成的动态功能连接矩阵组为:
dFCMG={dFCM 1,dFCM 2,…,dFCM T-W+1}             (7)。
步骤S4.1中,这里的脑网络时间序列两两之间的皮尔森相关系数具体是指第i个时间窗下的脑网络x和y对应时间序列
Figure PCTCN2019093167-appb-000028
Figure PCTCN2019093167-appb-000029
之间的皮尔森相关系数,其公式如下
Figure PCTCN2019093167-appb-000030
其中,
Figure PCTCN2019093167-appb-000031
Figure PCTCN2019093167-appb-000032
分别表示
Figure PCTCN2019093167-appb-000033
Figure PCTCN2019093167-appb-000034
的期望,
Figure PCTCN2019093167-appb-000035
Figure PCTCN2019093167-appb-000036
分别表示
Figure PCTCN2019093167-appb-000037
Figure PCTCN2019093167-appb-000038
的方差,且1≤i≤T-W+1,1≤x≤N,1≤y≤N。
从而,第i个时间窗下对应的动态功能连接矩阵dFCM i(1≤i≤T-W+1)可以表示为:
Figure PCTCN2019093167-appb-000039
S4.2、对于每一个被试,计算动态功能连接向量集dFCVS,具体方法如下:
按行将动态功能连接矩阵组dFCMG中动态功能连接矩阵dFCM i(1≤i≤T-W+1)的上三角元素张成一列,得到一个动态功能连接向量dFCV i(1≤i≤T-W+1);每个向量大小为(N×(N-1)/2)×1;将T-W+1个动态功能连接向量按时间窗先后顺序进行级联形成动态功能连接向量集dFCVS={dFCV 1,dFCV 2,…,dFCV T-W+1},大小为(N×(N-1)/2)×(T-W+1)。其中,第i个时间窗下的动态功能连接向量dFCV i可表示为:
Figure PCTCN2019093167-appb-000040
所述步骤S5进一步包含如下步骤:
S5.1、将所有被试的动态功能连接向量集按列进行合并构成深度神经网络学习样本,并采用卷积神经网络模型进行特征提取。其中,每一个样本代表一个被试对应的动态功能连接向量。
S5.2、采用仿射传播聚类算法对步骤S5.1中经过深度神经网络模型学习获得的特征样本进行聚类分析,得到Q个类别,其中,每类对应的聚类中心即为隐含于fMRI数据中对应的动态功能连接模式。
为了便于理解,针对上述步骤给出一个具体事例,如下:
步骤1中,采集100例正常健康被试的静息态fMRI脑影像数据。其中,每个被试fMRI数据采集的时间点数(也称时间序列长度,即采集了多少时间点的fMRI数据,对应分析中的时间序列就有多长)为215。
步骤2中,对采集获得的静息态fMRI脑影像数据进行预处理操作。
步骤3中,根据预处理后每个被试对应的静息态fMRI数据,使用GICA-IR和滑动时间窗方法获得每个被试的动态功能连接向量集;具体包含以下:
对于每一个被试,计算所有感兴趣脑网络及其对应的时间序列,具体方法如下:根据预处理后的静息态fMRI数据,使用GICA-IR计算出其中感兴趣的九种静息态脑功能网络及其对应的时间序列T 1,T 2,…,T 9,包括默认网络、 视觉网络、双侧视觉网络、听觉网络、感觉运动网络、执行控制网络、突显网络、工作记忆网络和注意网络,并通过时空双回归方式获得组中每个被试对应的脑网络时空信息。对于时间序列长度为T=215的fMRI数据来说,时间序列
Figure PCTCN2019093167-appb-000041
其中
Figure PCTCN2019093167-appb-000042
表示第n个脑网络在i时刻的信号强度值。
步骤4中,对于每一个被试,计算动态功能连接矩阵组dFCMG,具体方法如下:
通过采用滑动时间窗方法,利用一个特定宽度W=20的时间窗以步长为1在时间序列T 1,T 2,……,T 9上滑动,在第i个时间窗下第n个脑网络的时间序列表示为
Figure PCTCN2019093167-appb-000043
计算被试对应脑网络时间序列两两之间的皮尔森相关系数,得到196个动态功能连接矩阵dFCM i(1≤i≤196),由这些动态功能连接矩阵构成的动态功能连接矩阵组为
dFCMG={dFCM 1,dFCM 2,…,dFCM 196}。
这里脑网络时间序列两两之间的皮尔森相关系数具体是指第i个时间窗下脑网络x和y对应时间序列
Figure PCTCN2019093167-appb-000044
Figure PCTCN2019093167-appb-000045
之间的皮尔森相关系数,其公式如下
Figure PCTCN2019093167-appb-000046
其中,
Figure PCTCN2019093167-appb-000047
Figure PCTCN2019093167-appb-000048
分别表示
Figure PCTCN2019093167-appb-000049
Figure PCTCN2019093167-appb-000050
的期望,
Figure PCTCN2019093167-appb-000051
Figure PCTCN2019093167-appb-000052
分别表示
Figure PCTCN2019093167-appb-000053
Figure PCTCN2019093167-appb-000054
的方差,且1≤i≤196,1≤x≤9,1≤y≤9。从而第i个时间窗下对应的动态功能连接矩阵dFCM i(1≤i≤196)可以表示为:
Figure PCTCN2019093167-appb-000055
对于每一个被试,计算动态功能连接向量集dFCVS,具体方法如下:
按行将动态功能连接矩阵组dFCMG中动态功能连接矩阵dFCM i(1≤i≤196)的上三角元素张成一列,得到一个动态功能连接向量dFCV i(1≤i≤196),每个向量大小为36×1;将196个动态功能连接向量按时间窗先后顺序进行级联形成动态功能连接向量集
dFCVS={dFCV 1,dFCV 2,…,dFCV 196},大小为36×196。其中,dFCV i是指第i个时间窗下的动态功能连接向量,具体表示为:
Figure PCTCN2019093167-appb-000056
步骤5中,使用深度神经网络模型和仿射传播聚类算法对所有被试的动态功能连接向量集进行聚类分析,获得fMRI数据中隐含的动态功能连接模式。
综上所述,本发明旨在利用fMRI神经成像技术获取脑影像大数据情况下,通过充分利用脑网络机制之间的属性特征,采用基于数据本真参考信号的组独立成分分析(GICA-IR)和滑动时间窗分析、以及深度神经网络模型和仿射传播聚类算法等方法来解析活体人脑的全脑动态功能连接模式。从而为揭示脑认知活动的基本原理(如脑发育、脑老化)、脑神经疾病的受损机制(如自闭症、儿童多动症、抑郁症、精神分裂症、阿尔茨海默病、帕金森病)以及探索职业脑可塑性重组特征(如海员、飞行员)等提供坚实基础。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识 到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (10)

  1. 一种基于fMRI脑网络机制启发的动态功能模式学习方法,其特征在于,该方法包含以下步骤:
    S1、采集若干被试的静息态fMRI脑影像数据;
    S2、将步骤S1中采集获得的所述静息态fMRI脑影像数据进行预处理操作,得到预处理后的静息态fMRI脑影像数据;
    S3、根据步骤S2中的所述预处理后的静息态fMRI脑影像数据,采用GICA-IR方法分别获得组水平的静息态脑功能网络及其对应的时间序列,和个体水平的静息态脑功能网络及其对应的时间序列;
    S4、使用滑动时间窗方法计算每个被试对应的所述静息态脑功能网络之间的动态功能连接矩阵,并将其上三角元素张成动态功能连接向量,进而获得所有被试对应的动态功能连接向量集;
    S5、利用深度神经网络模型和仿射传播聚类算法提取出隐含于所述动态功能连接向量集中的大脑固有动态功能连接模式。
  2. 如权利要求1所述的基于fMRI脑网络机制启发的动态功能模式学习方法,其特征在于,
    所述步骤S1中,数据采集过程中被试保持脑部清醒状态,且平躺于磁共振仪器内。
  3. 如权利要求1所述的基于fMRI脑网络机制启发的动态功能模式学习方法,其特征在于,
    所述步骤S2中,所述预处理操作包括时间层校正、头动矫正、空间标准化、空间平滑、滤波、去线性漂移和协变量回归。
  4. 如权利要求1或3所述的基于fMRI脑网络机制启发的动态功能模式学习方法,其特征在于,
    所有预处理操作均通过DPARSF软件完成。
  5. 如权利要求1所述的基于fMRI脑网络机制启发的动态功能模式学习方法,其特征在于,
    所述步骤S3中,个体水平的静息态脑功能网络及其对应的时间序列是基 于组水平的静息态脑功能网络及其对应的时间序列并通过时空双回归方式获得。
  6. 如权利要求1所述的基于fMRI脑网络机制启发的动态功能模式学习方法,其特征在于,
    所述步骤S3中的GICA-IR方法进一步包含以下过程:
    基于所述预处理后的静息态fMRI脑影像数据,对每个被试单独进行ICA分析,同时利用主成分分析方法,从与感兴趣脑功能网络对应的被试的独立成分而组成的矩阵中提取隐含的本真参考信号;
    利用所述本真参考信号,指导ICA在组水平上的fMRI脑影像数据分析,计算获取组水平静息态脑功能网络及其时间序列;
    根据计算获得的组水平静息态脑功能网络及其时间序列,通过时空双回归方式获得组中每个被试对应的个体水平静息态脑功能网络及其时间序列。
  7. 如权利要求1或5或6所述的基于fMRI脑网络机制启发的动态功能模式学习方法,其特征在于,
    设定采集到K个被试的静息态fMRI脑影像数据,每个被试的fMRI数据在经过预处理操作后包含T个时间点和V个体素;
    所述步骤S3中的GICA-IR方法包含如下步骤:
    S3.1、对每个被试单独进行ICA分析,对于被试i,ICA分解可以表示为:
    X i=M iS i,(i=1,2,…,K)       (1)
    其中,X i表示T×V阶的fMRI观测数据矩阵;
    Figure PCTCN2019093167-appb-100001
    表示N i×V阶的源信号矩阵,N i表示被试i经过组水平ICA分解获得的独立成分个数,每行代表被试i在ICA分解过程中得到的一个独立成分;
    Figure PCTCN2019093167-appb-100002
    是大小为V×1的列向量;M i表示T×N i阶的混合矩阵,每一列代表
    Figure PCTCN2019093167-appb-100003
    中每一行对应的时间序列;
    Figure PCTCN2019093167-appb-100004
    表示与感兴趣脑功能网络对应的被试i的第n i个独立成分,1≤n i≤N i;不同被试之间的成分对应性通过空间相关性进行度量,然后利用主成分分析方法从
    Figure PCTCN2019093167-appb-100005
    组成的大小为K×V的矩阵R中提取出隐含的本真参考信号,即:
    Figure PCTCN2019093167-appb-100006
    进而根据r=e′ 1R得到第一主成分r,即为所需要的隐含的本真参考信号,其中e 1表示最大特征值所对应的特征向量;
    S3.2、利用步骤S3.1获得的本真参考信号,指导ICA在组水平上的fMRI脑影像数据分析,并采用时间级联方式进行组分析,如下:
    (X 1;X 2;…;X K)=MS        (3)
    其中,S=(s 1,s 2,…,s N)'表示N×V阶的源信号矩阵,每一行代表一个组独立成分,即组水平静息态脑功能网络,N是组水平ICA分解获得的独立成分个数;M表示KT×V阶的组混合矩阵,每一列代表S=(s 1,s 2,…,s N)'中每一行对应的时间序列;
    进一步通过约束优化的方式对公式(3)进行求解
    最大化:J(s i)={E[G(s i)]-E[G(v)]} 2        (4-1)
    约束于:g(s i)=ε(s i,r)-ξ≤0,h(s i)=E[s i] 2-1=0        (4-2)
    其中,s i表示求得的输出信号;J(s i)表示度量输出信号独立性的对照函数;G(·)是一个非二次函数,v是一个高斯随机变量;r表示本真参考信号,ε(s i,r)是一个距离测度;ξ是一个阈值参数;h(s i)是为了保证优化问题在凸区域求解的等式约束;
    S3.3、根据步骤S3.2中计算获得的组水平静息态脑功能网络及其时间序列,通过时空双回归方式获得组中每个被试对应的个体水平静息态脑功能网络及其时间序列,得到:
    M i=X i·pinv(S),S i=pinv(M i)·X i,(i=1,2,…,K)          (5)
    其中,S i表示被试i对应的源信号;pinv(S)是指求解S的伪逆矩阵;M i表示对应的时间序列;K表示被试个数。
  8. 如权利要求1或5或6所述的基于fMRI脑网络机制启发的动态功能模式学习方法,其特征在于,
    所述步骤S3中,根据预处理后的静息态fMRI脑影像数据,使用GICA-IR计算出其中感兴趣的九种静息态脑功能网络及其对应的时间序列,所述九种静息态脑功能网络包括默认网络、视觉网络、双侧视觉网络、听觉网络、感觉运动网络、执行控制网络、突显网络、工作记忆网络和注意网络,并通过时空双回归方式获得组中每个被试对应的脑网络时空信息。
  9. 如权利要求7所述的基于fMRI脑网络机制启发的动态功能模式学习方法,其特征在于,
    所述步骤S4,进一步包含如下步骤:
    S4.1、对于每一个被试,通过采用滑动时间窗方法,利用一个特定宽度W的时间窗并以步长为1在时间序列T 1,T 2,……,T N上滑动,在第i个时间窗下第n个脑网络的时间序列表示为:
    Figure PCTCN2019093167-appb-100007
    计算每个时间窗下被试对应脑网络时间序列两两之间的皮尔森相关系数,得到T-W+1个动态功能连接矩阵dFCM i(1≤i≤T-W+1),由这些动态功能连接矩阵构成的动态功能连接矩阵组为:
    dFCMG={dFCM 1,dFCM 2,…,dFCM T-W+1};             (7)
    步骤S4.1中,脑网络时间序列两两之间的皮尔森相关系数具体是指第i个时间窗下的脑网络x和y对应时间序列wT i x与wT i y之间的皮尔森相关系数,其公式如下
    Figure PCTCN2019093167-appb-100008
    其中,E(wT i x)和E(wT i y)分别表示wT i x和wT i y的期望,D(wT i x)和D(wT i y)分别表示wT i x和wT i y的方差,且1≤i≤T-W+1,1≤x≤N,1≤y≤N;
    第i个时间窗下对应的动态功能连接矩阵dFCM i(1≤i≤T-W+1)表示为:
    Figure PCTCN2019093167-appb-100009
    S4.2、对于每一个被试,计算动态功能连接向量集dFCVS,具体方法如下:
    按行将动态功能连接矩阵组dFCMG中动态功能连接矩阵 dFCM i(1≤i≤T-W+1)的上三角元素张成一列,得到一个动态功能连接向量dFCV i(1≤i≤T-W+1);每个向量大小为(N×(N-1)/2)×1;
    将T-W+1个动态功能连接向量按时间窗先后顺序进行级联形成动态功能连接向量集dFCVS={dFCV 1,dFCV 2,…,dFCV T-W+1},大小为(N×(N-1)/2)×(T-W+1);
    其中,第i个时间窗下的动态功能连接向量dFCV i可表示为:
    Figure PCTCN2019093167-appb-100010
  10. 如权利要求1所述的基于fMRI脑网络机制启发的动态功能模式学习方法,其特征在于,
    所述步骤S5进一步包含如下步骤:
    S5.1、将所有被试的动态功能连接向量集按列进行合并构成深度神经网络学习样本,并采用卷积神经网络模型进行特征提取,每一个样本代表一个被试对应的动态功能连接向量;
    S5.2、采用仿射传播聚类算法对步骤S5.1中经过深度神经网络模型学习获得的特征样本进行聚类分析,得到Q个类别,每类对应的聚类中心为隐含于fMRI脑影像数据中对应的动态功能连接模式。
PCT/CN2019/093167 2019-06-20 2019-06-27 一种fMRI脑网络机制启发的动态功能模式学习方法 WO2020252805A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021500628A JP2022536881A (ja) 2019-06-20 2019-06-27 fMRI脳ネットワークメカニズムに触発される動的機能モード学習方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910536898.7A CN110265148B (zh) 2019-06-20 2019-06-20 一种fMRI脑网络机制启发的动态功能模式学习方法
CN201910536898.7 2019-06-20

Publications (1)

Publication Number Publication Date
WO2020252805A1 true WO2020252805A1 (zh) 2020-12-24

Family

ID=67919794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093167 WO2020252805A1 (zh) 2019-06-20 2019-06-27 一种fMRI脑网络机制启发的动态功能模式学习方法

Country Status (3)

Country Link
JP (1) JP2022536881A (zh)
CN (1) CN110265148B (zh)
WO (1) WO2020252805A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114129147A (zh) * 2021-10-14 2022-03-04 北京理工大学 基于脑功能网络的帕金森患者dbs术后效果预测系统及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110797123B (zh) * 2019-10-28 2023-05-26 大连海事大学 一种动态脑结构的图卷积神经网络演化方法
CN111259849B (zh) * 2020-01-22 2023-05-12 深圳大学 一种功能近红外光谱成像静息态脑网络检测方法和装置
CN111402212B (zh) * 2020-03-04 2023-11-14 上海海事大学 一种海员脑功能网络动态连接活动模式的提取方法
CN112382385A (zh) * 2020-11-12 2021-02-19 山东中医药大学 一种基于3d卷积神经网络的无先兆偏头痛辅助诊断算法
CN113345572B (zh) * 2021-05-13 2024-03-15 东南大学 基于荟萃分析的脑疾病判断系统和判断装置
CN113314216B (zh) * 2021-06-01 2022-11-22 南方科技大学 功能脑网络构建方法、装置、电子设备及可读存储介质
CN116363404B (zh) * 2023-03-30 2023-11-21 哈尔滨工业大学 一种识别和量化脑自发活动预测性地图样表征的方法
CN116597994B (zh) * 2023-05-16 2024-05-14 天津大学 基于脑激活聚类算法的精神疾病脑功能活动测评装置
CN116313131B (zh) * 2023-05-24 2023-09-15 山东大学 基于仿造变量的脑网络差异识别系统、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104715261A (zh) * 2015-03-23 2015-06-17 南京工业大学 fMRI动态脑功能子网络构建及并联SVM加权识别方法
CN104715241A (zh) * 2015-03-23 2015-06-17 南京工业大学 一种基于张量分解的fMRI特征提取与识别方法
CN106204581A (zh) * 2016-07-08 2016-12-07 西安交通大学 基于pca与k均值聚类的动态脑功能连接模式分解方法
US20180353072A1 (en) * 2017-06-08 2018-12-13 Fdna Inc. Systems, methods, and computer-readable media for gene and genetic variant prioritization
CN109316188A (zh) * 2018-09-30 2019-02-12 上海海事大学 一种偏头痛脑功能连接模式的提取方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101563153B1 (ko) * 2013-07-24 2015-10-26 삼성전자주식회사 의료 영상 신호 처리 방법 및 장치
EP3436145A4 (en) * 2016-03-28 2019-09-11 The Board of Trustees of the Leland Stanford Junior University DETECTION OR TREATMENT OF POSTTRAUMATIC LOAD DISORDER
CN106709244B (zh) * 2016-12-12 2019-08-13 西北工业大学 一种静息态同步EEG-fMRI的脑功能网络建模方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104715261A (zh) * 2015-03-23 2015-06-17 南京工业大学 fMRI动态脑功能子网络构建及并联SVM加权识别方法
CN104715241A (zh) * 2015-03-23 2015-06-17 南京工业大学 一种基于张量分解的fMRI特征提取与识别方法
CN106204581A (zh) * 2016-07-08 2016-12-07 西安交通大学 基于pca与k均值聚类的动态脑功能连接模式分解方法
US20180353072A1 (en) * 2017-06-08 2018-12-13 Fdna Inc. Systems, methods, and computer-readable media for gene and genetic variant prioritization
CN109316188A (zh) * 2018-09-30 2019-02-12 上海海事大学 一种偏头痛脑功能连接模式的提取方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DU, YUHUI: "Review of independent component analysis methods for brain functional networks", ACTA BIOPHYSICA SINICA, vol. 29, no. 4, 30 April 2013 (2013-04-30), XP055766292 *
MAO DEWANG, JIANHUA YUAN, ZHONGXIANG DING, XINGBO DI, JIANGUO XU, JIE ZHENG,: "Preliminary appficafion of resting -state functional magnetic resonance imaging in the human brain function mapping", ZHEJIANG MEDICAL EDUCATION, vol. 13, no. 1, 28 February 2014 (2014-02-28), XP055766301 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114129147A (zh) * 2021-10-14 2022-03-04 北京理工大学 基于脑功能网络的帕金森患者dbs术后效果预测系统及方法

Also Published As

Publication number Publication date
CN110265148A (zh) 2019-09-20
CN110265148B (zh) 2021-06-01
JP2022536881A (ja) 2022-08-22

Similar Documents

Publication Publication Date Title
WO2020252805A1 (zh) 一种fMRI脑网络机制启发的动态功能模式学习方法
Ahmed et al. Single volume image generator and deep learning-based ASD classification
CN109522894B (zh) 一种探测fMRI脑网络动态协变的方法
Thirion et al. Detection of signal synchronizations in resting-state fMRI datasets
CN112002428B (zh) 以独立成分网络为参照的全脑个体化脑功能图谱构建方法
WO2020103683A1 (zh) 基于脑功能图谱的猴-人跨物种迁移进行精神疾病的个体化预测方法和系统
CN109199376B (zh) 基于oa-wmne脑源成像的运动想象脑电信号的解码方法
Miller et al. Higher dimensional analysis shows reduced dynamism of time-varying network connectivity in schizophrenia patients
CN110598793A (zh) 一种大脑功能网络特征分类方法
CN105395194B (zh) 一种功能磁共振成像辅助的脑电通道选择方法
Chen et al. Multiattention adaptation network for motor imagery recognition
Zhang et al. Deep learning models unveiled functional difference between cortical gyri and sulci
CN113576491A (zh) 基于静息态eeg频域特征及脑网络自动分析方法和系统
Nieto-Castanon Brain-wide connectome inferences using functional connectivity MultiVariate Pattern Analyses (fc-MVPA)
CN108596228B (zh) 一种基于无监督模糊系统的脑功能磁共振图像分类方法
Liu et al. Straps: A fully data-driven spatio-temporally regularized algorithm for M/EEG patch source imaging
CN112233086A (zh) 基于脑区功能连接的fMRI数据分类识别方法及装置
Pakravan et al. Extraction and automatic grouping of joint and individual sources in multisubject fMRI data using higher order cumulants
CN111402212A (zh) 一种海员脑功能网络动态连接活动模式的提取方法
Li et al. Transformer-based model for fMRI data: ABIDE results
CN115813409A (zh) 一种超低延迟的运动图像脑电图解码方法
CN109241996A (zh) 一种基于梯度表征相似性和Searchlight的FMRI脑影像分析方法
CN112861629B (zh) 一种多窗口判别典型模式匹配方法及脑-机接口应用
CN113269707A (zh) 一种基于工作记忆任务的fMRI数据功能连接方法及其应用
Rokham et al. A Deep Learning Approach for Psychosis Spectrum Label Noise Detection from Multimodal Neuroimaging Data

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021500628

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934263

Country of ref document: EP

Kind code of ref document: A1