WO2020252784A1 - 电力负荷数据的预测方法、装置及存储介质 - Google Patents

电力负荷数据的预测方法、装置及存储介质 Download PDF

Info

Publication number
WO2020252784A1
WO2020252784A1 PCT/CN2019/092384 CN2019092384W WO2020252784A1 WO 2020252784 A1 WO2020252784 A1 WO 2020252784A1 CN 2019092384 W CN2019092384 W CN 2019092384W WO 2020252784 A1 WO2020252784 A1 WO 2020252784A1
Authority
WO
WIPO (PCT)
Prior art keywords
power load
load data
data
model
prediction
Prior art date
Application number
PCT/CN2019/092384
Other languages
English (en)
French (fr)
Inventor
华文韬
李晶
刘浩
王丹
李昂
Original Assignee
西门子股份公司
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子股份公司, 西门子(中国)有限公司 filed Critical 西门子股份公司
Priority to EP19933539.9A priority Critical patent/EP3968247A4/en
Priority to US17/619,281 priority patent/US11831160B2/en
Priority to CN201980096655.4A priority patent/CN113853624A/zh
Priority to PCT/CN2019/092384 priority patent/WO2020252784A1/zh
Publication of WO2020252784A1 publication Critical patent/WO2020252784A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/10Pre-processing; Data cleansing
    • G06F18/15Statistical pre-processing, e.g. techniques for normalisation or restoring missing data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/62Extraction of image or video features relating to a temporal dimension, e.g. time-based feature extraction; Pattern tracking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2123/00Data types
    • G06F2123/02Data types in the time domain, e.g. time-series data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the present invention relates to the field of energy, in particular to a method, device, cloud platform, server and storage medium for predicting power load data.
  • the power industry is the main infrastructure in the energy sector, and it plays an important role in the development of industry and the quality of life.
  • Electric load is an important part of the electric power industry, which has a great influence on the stability of grid operation. Continuous overload will cause damage to electrical equipment such as transformers. In order to ensure the normal operation of the power grid, it is necessary to monitor the electrical load in advance.
  • power load forecasting is usually based on the growth rate, and the growth rate is calculated based on user tags.
  • the tags of registered users of the power supply bureau are relatively fixed, and these tags do not reflect the latest situation of users. Therefore, the power load forecast based on the growth rate severely limits the accuracy of the forecast.
  • one aspect of the embodiments of the present invention proposes a method for predicting power load data, and on the other hand, a predicting device, cloud platform, server, and storage medium for power load data are proposed to improve power load data. The accuracy of the forecast.
  • a method for predicting power load data proposed in an embodiment of the present invention includes: obtaining historical power load data of a one-dimensional time series, which is composed of values corresponding to each time point; and mapping the values corresponding to each time point to An abscissa is the set time period, and the ordinate is the coordinate system of each time point in the time period, and each mapping point is identified by a predetermined pixel value corresponding to the numerical value to obtain a A mapped image; wherein different values correspond to different pixel values; the pixel values of the mapped image are input into a trained data prediction model, and the power load data prediction value output by the data prediction model is obtained.
  • the prediction model includes: a feature extraction sub-model, which is based on the constructed feature extraction neural network, and takes the pixel values of the mapped image of the power load data as input nodes, and the key features are obtained by training the output nodes; And a prediction sub-model, which is connected to the feature extraction model, is based on a neural network with time series characteristics constructed, takes the key features output by the feature extraction sub-model as input nodes, and power load data as output nodes for training .
  • the method further includes: preprocessing the historical power load data of the one-dimensional time series to fill in missing data and repair extreme data.
  • the preprocessing of the historical power load data of the one-dimensional time series includes: using a trained data preprocessing model to preprocess the historical power load data of the one-dimensional time series.
  • the different values correspond to different pixel values: different values correspond to pixel values of different gray levels, or different values correspond to pixel values of different colors.
  • the time period is one day, one week, or any number of days that meets the requirements.
  • a power load data forecasting device includes: a one-dimensional data acquisition module for acquiring historical power load data of a one-dimensional time series, which is composed of numerical values corresponding to each time point; a data conversion module , Used to map the value corresponding to each time point to a coordinate system in which the abscissa is a set time period, and the ordinate is each time point in the time period, and each mapping point uses a predetermined
  • the pixel values corresponding to the numerical values are identified to obtain a mapped image; wherein different numerical values correspond to different pixel values; and a data prediction module for inputting the pixel values of the mapped image into a trained data prediction model , And obtain the power load data predicted value output by the data prediction model.
  • the prediction model includes: a feature extraction sub-model, which is based on the constructed feature extraction neural network, and takes the pixel values of the mapped image of the power load data as input nodes, and the key features are obtained by training the output nodes; And a prediction sub-model, which is connected to the feature extraction model, is based on a neural network with time series characteristics constructed, takes the key features output by the feature extraction sub-model as input nodes, and power load data as output nodes for training .
  • it further includes: a data preprocessing module, which is used to preprocess the historical power load data of the one-dimensional time series to fill in missing data and repair extreme data.
  • the data preprocessing module uses a trained data preprocessing model to preprocess the historical power load data of the one-dimensional time series.
  • Another device for predicting power load data proposed in an embodiment of the present invention includes: at least one memory and at least one processor, wherein: the at least one memory is used to store a computer program; the at least one processor is used to call the The computer program stored in the at least one memory executes the power load data prediction method described in any of the above embodiments.
  • a cloud platform or server proposed in an embodiment of the present invention includes the power load data prediction device described in any of the foregoing embodiments.
  • a computer-readable storage medium provided in an embodiment of the present invention has a computer program stored thereon; it is characterized in that the computer program can be executed by a processor and implement the power load data described in any of the foregoing embodiments Forecasting method.
  • the historical power load data of one-dimensional time series is first converted into two-dimensional image data, and then the trained prediction model is used based on the two-dimensional image data.
  • Power load data prediction because the prediction method is based on historical power load data instead of user tags, and avoids the use of one-dimensional time series data for time series analysis technology that is easy to lose characteristics, and directly adopts two-dimensional
  • the intelligent neural network technology of image data makes predictions, so it can improve the accuracy of power load data prediction.
  • the training and prediction of secondary data is carried out by constructing a feature extraction neural network and a neural network with time series characteristics, which makes the process easy to implement and ensures the accuracy of prediction.
  • Fig. 1 is an exemplary flowchart of a method for predicting power load data in an embodiment of the present invention.
  • FIGS. 2A and 2B are schematic diagrams of power load data in an example of the present invention.
  • Figure 2A is a representation method of the coordinate system with the abscissa as the time point and the ordinate as the numerical value.
  • Figure 2B is the two-dimensional image with the abscissa as the time period and the ordinate as each time point in the time period, and the numerical values are represented by pigments. display method.
  • Fig. 3A is an exemplary structure diagram of a device for predicting power load data in an embodiment of the present invention.
  • Fig. 3B is an exemplary structure diagram of another device for predicting power load data in an embodiment of the present invention.
  • Fig. 4 is an exemplary structure diagram of yet another power load data prediction device in an embodiment of the present invention.
  • One-dimensional data acquisition module 302 Data conversion module 303 Data prediction module 304 Data preprocessing module 41 Memory 42 processor
  • the power load data has the characteristics of time series, that is, the power load data is one-dimensional time series data, so it is heavily dependent on the technology used in the time series analysis.
  • time series analysis is only based on one-dimensional forecasts, it will lose some of the characteristics of historical data.
  • after creative work it is considered to convert one-dimensional time series data into two-dimensional image data, and then use a trained prediction model to predict power load data based on the two-dimensional image data. .
  • Fig. 1 is an exemplary flowchart of a method for predicting power load data in an embodiment of the present invention. As shown in Figure 1, the method may include the following steps:
  • Step S102 Obtain historical power load data of a one-dimensional time series, which is composed of numerical values corresponding to each time point.
  • the graph shown in FIG. 2A will be obtained.
  • the ordinate is a numerical value, such as the load rate;
  • the abscissa is the time point of collection. For example, taking 96 time points every day as an example, there are more than 30,000 time points in a year.
  • Step S104 Map the numerical value corresponding to each time point to a coordinate system whose abscissa is a set time period, and the ordinate is each time point in the time period, and a predetermined value is used for each mapping point.
  • the pixel value corresponding to the numerical value is identified to obtain a mapped image. Among them, different values correspond to different pixel values.
  • the time period in practical applications can also be one week or one month, or 10 days, 15 days, 20 days, or 25 days. , 30 days, 40 days, etc. Any period that meets the requirements.
  • the details can be determined according to actual needs and are not limited here.
  • a coordinate system can be obtained where the abscissa represents each day in two years, and the ordinate represents each time point in a day (taking the case of 96 time points per day as an example), and an image as shown in FIG. 2B is obtained.
  • different gray-scale pigment values are used for different values. The darker the color, the smaller the value, and the lighter the color, the larger the value.
  • color pigment values can be used for different values.
  • the color range can be represented from red to yellow. The larger the value, the more yellowish the color, and the smaller the value, the more reddish the color. In practical applications, the effect of using colored color values for representation will be better.
  • FIG. 2B is a two-dimensional image representation of the original time series data, it sometimes appears noisy due to the presence of noise.
  • a filter may be further used to filter them in the embodiment of the present invention, so as to remove high-frequency noise and obtain a filtered image.
  • the filter can be any function as long as it can remove high-frequency noise.
  • a two-dimensional Gaussian filter can be used to remove noise or tiny spots in FIG. 2B.
  • the converted two-dimensional image can more intuitively represent the power load situation, such as the power state of the transformer .
  • Step S106 Input the pixel value of the mapped image into a trained data prediction model, and obtain the power load data prediction value output by the data prediction model.
  • the data prediction model may be a model trained by a single network, or a model trained by a combination of at least two networks.
  • the data prediction model may include: a feature extraction sub-model and a prediction sub-model connected to the feature extraction model.
  • the feature extraction sub-model can be based on the constructed feature extraction neural network, such as CNN convolutional neural network, which takes the pixel value of the mapped image of the power load data as the input node and the key feature is the output node for training.
  • the prediction sub-model can be based on a constructed neural network with time-series characteristics, such as an RNN recurrent neural network, which is obtained by training with the key features output by the feature extraction sub-model as input nodes and power load data as output nodes.
  • a large number of known historical power load data sequences can be obtained first, and for each known historical power load data sequence, the data of the set period in which the time is ranked last can be used as the data to be predicted
  • the power load data for training is the predicted value of the power load data for training, and the power load data in which the time is before the data of the set period is used as the power load data of the forecast basis, and this part is the power load data of the forecast basis
  • the above data prediction model includes feature extraction sub-models and prediction sub-models. It is only necessary to obtain the key features of the above-mentioned training mapping image in advance, and use the obtained key features as training key features, and then use all The mapping image for training is used as the input of the feature extraction sub-model, and the key features for training are used as the output of the feature extraction sub-model to train the feature extraction sub-model; and for the prediction sub-model, the key features for training are used As the input of the predictor sub-model, the above-mentioned training power load data predicted value is used as the output of the predictor sub-model to train the predictor sub-model.
  • step S102 may further include: preprocessing the historical power load data of the one-dimensional time series to fill in missing data and repair extreme data.
  • preprocessing historical power load data of one-dimensional time series there can be many methods for preprocessing historical power load data of one-dimensional time series. For example, various existing or newly-added data preprocessing techniques can be used; or, a trained one can also be used.
  • the data preprocessing model preprocesses the historical power load data of the one-dimensional time series.
  • the data preprocessing model can be trained using power load data that has been acquired without missing or extreme data.
  • the power load data prediction method in the embodiment of the present invention has been described in detail above, and the power load data prediction device in the embodiment of the present invention will be described below.
  • the device in the embodiment of the present invention can be used to implement the method in the embodiment of the present invention.
  • Fig. 3A is an exemplary structure diagram of a device for predicting power load data in an embodiment of the present invention.
  • the device may include: a one-dimensional data acquisition module 301, a data conversion module 302, and a data prediction module 303.
  • the one-dimensional data acquisition module 301 is used to acquire historical power load data of a one-dimensional time series, which is composed of numerical values corresponding to each time point.
  • the data conversion module 302 is used to map the value corresponding to each time point to a coordinate system in which the abscissa is a set time period, and the ordinate is each time point in the time period, and is used at each mapping point.
  • the predetermined pixel value corresponding to the value is identified to obtain a mapped image. Among them, different values correspond to different pixel values.
  • the data prediction module 303 is configured to input the pixel values of the mapped image into a trained data prediction model, and obtain the power load data prediction value output by the data prediction model.
  • the data prediction model may be a model obtained through training of a single network, or may also be a model obtained through combined training of at least two networks.
  • the prediction model may include: a feature extraction sub-model and a prediction sub-model connected to the feature extraction model.
  • the feature extraction sub-model can be based on the constructed feature extraction neural network, using the pixel value of the mapped image of the power load data as the input node and the key feature as the output node for training.
  • the prediction sub-model may be based on a constructed neural network with time series characteristics, and the key features output by the feature extraction sub-model are used as input nodes, and the power load data is obtained by training as output nodes.
  • the apparatus for predicting power load data in this embodiment may be as shown in FIG. 3B, and further includes: a data preprocessing module 304 for preprocessing the historical power load data of the one-dimensional time series To fill in missing data and repair extreme data.
  • the data preprocessing module 304 may use a trained data preprocessing model to preprocess the historical power load data of the one-dimensional time series.
  • the data conversion module 302 performs coordinate system mapping on the preprocessed one-dimensional time series historical power load data.
  • Fig. 4 is an exemplary structure diagram of yet another power load data prediction device in an embodiment of the present invention.
  • the device may include: at least one memory 41 and at least one processor 42.
  • some other components may also be included, such as communication ports. These components communicate via the bus.
  • At least one memory 41 is used to store computer programs.
  • the computer program can be understood as including various modules of the power load data prediction device shown in FIG. 3.
  • at least one memory 41 may also store an operating system and the like.
  • Operating systems include but are not limited to: Android operating system, Symbian operating system, Windows operating system, Linux operating system, etc.
  • At least one processor 42 is configured to call a computer program stored in at least one memory 41 to execute the method for representing device operating data described in the embodiment of the present invention.
  • the processor 42 may be a CPU, a processing unit/module, an ASIC, a logic module or a programmable gate array, etc. It can receive and send data through the communication port.
  • the embodiment of the present invention also provides a server, or a server cluster, or a cloud platform that includes the power load data prediction device shown in FIG. 3 or FIG. 4.
  • a hardware module may include a specially designed permanent circuit or logic device (such as a dedicated processor, such as FPGA or ASIC) to complete a specific operation.
  • the hardware module may also include a programmable logic device or circuit (for example, including a general-purpose processor or other programmable processors) temporarily configured by software to perform specific operations.
  • a programmable logic device or circuit for example, including a general-purpose processor or other programmable processors
  • temporarily configured circuit such as software configuration
  • the embodiment of the present invention also provides a computer software that can be executed on a server or a server cluster or a cloud platform.
  • the computer software can be executed by a processor and realizes the power load data described in the embodiment of the present invention. method of prediction.
  • an embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored, and the computer program can be executed by a processor and implement the method for predicting power load data described in the embodiment of the present invention .
  • a system or device equipped with a storage medium may be provided, and the software program code for realizing the function of any one of the above embodiments is stored on the storage medium, and the computer (or CPU or MPU of the system or device) ) Read and execute the program code stored in the storage medium.
  • an operating system operating on the computer can also be used to complete part or all of the actual operations through instructions based on the program code.
  • Implementations of storage media used to provide program codes include floppy disks, hard disks, magneto-optical disks, optical disks (such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, DVD+RW), Magnetic tape, non-volatile memory card and ROM.
  • the program code can be downloaded from the server computer via a communication network.
  • the historical power load data of one-dimensional time series is first converted into two-dimensional image data, and then the trained prediction model is used based on the two-dimensional image data.
  • Power load data prediction because the prediction method is based on historical power load data instead of user tags, and avoids the use of one-dimensional time series data for time series analysis technology that is easy to lose characteristics, and directly adopts two-dimensional
  • the intelligent neural network technology of image data makes predictions, so it can improve the accuracy of power load data prediction.
  • the training and prediction of secondary data is carried out by constructing a feature extraction neural network and a neural network with time series characteristics, which makes the process easy to implement and ensures the accuracy of prediction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Artificial Intelligence (AREA)
  • Power Engineering (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Software Systems (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种电力负荷数据的预测方法、装置及存储介质。其中,方法包括:获取一维时间序列的历史电力负荷数据,其由对应各时间点的数值组成(S102);将所述对应各时间点的数值映射到一横坐标为设定的时间周期,纵坐标为所述时间周期内的各时间点的坐标系中,并在各个映射点采用预先确定的与所述数值相对应的像素值进行标识,得到一映射图像;其中,不同数值对应不同的像素值(S104);将所述映射图像的像素值输入一训练好的数据预测模型中,并获取所述数据预测模型输出的电力负荷数据预测值(S106)。所述方法、装置及存储介质能够提高电力负荷数据的预测准确性。

Description

电力负荷数据的预测方法、装置及存储介质 技术领域
本发明涉及能源领域,特别是一种电力负荷数据的预测方法、装置、云平台、服务器及存储介质。
背景技术
电力工业是能源领域的主要基础设施,其对工业的发展和生活的质量起着重要作用。电力负荷是电力工业中的一个重要组成部分,其对电网运行的稳定性影响很大。持续过载将导致电器设备如变压器等的损坏。为了保证电网的正常运行,有必要提前监测电力负荷。
目前,电力负荷预测通常以增长率为基础,而增长率是根据用户标签计算的。然而供电局的注册用户标签是相对固定的,这些标签并不能反映用户的最新情况,因此基于增长率的电力负荷预测严重限制了预测的准确性。
发明内容
有鉴于此,本发明实施例中一方面提出了一种电力负荷数据的预测方法,另一方面提出了一种电力负荷数据的预测装置、云平台、服务器及存储介质,用以提高电力负荷数据的预测准确性。
本发明实施例中提出的一种电力负荷数据的预测方法,包括:获取一维时间序列的历史电力负荷数据,其由对应各时间点的数值组成;将所述对应各时间点的数值映射到一横坐标为设定的时间周期,纵坐标为所述时间周期内的各时间点的坐标系中,并在各个映射点采用预先确定的与所述数值相对应的像素值进行标识,得到一映射图像;其中,不同数值对应不同的像素值;将所述映射图像的像素值输入一训练好的数据预测模型中,并获取所述数据预测模型输出的电力负荷数据预测值。
在一个实施方式中,所述预测模型包括:一特征提取子模型,其基于构建的特征提取神经网络,以电力负荷数据的映射图像的像素值为输入节点,关键特征为输出节点进行训练得到;和一预测子模型,其与所述特征提取模型相连,基于构建的具有时间序列 特性的神经网络,以所述特征提取子模型输出的关键特征为输入节点,电力负荷数据为输出节点进行训练得到。
在一个实施方式中,获取所述一维时间序列的历史电力负荷数据之后,进一步包括:对所述一维时间序列的历史电力负荷数据进行预处理,以填充缺失数据,并修复极端数据。
在一个实施方式中,所述对一维时间序列的历史电力负荷数据进行预处理为:采用一训练好的数据预处理模型对所述一维时间序列的历史电力负荷数据进行预处理。
在一个实施方式中,所述不同数值对应不同的像素值为:不同数值对应不同灰度的像素值,或者是不同数值对应不同色彩的像素值。
在一个实施方式中,所述时间周期为一天、一周或任意满足要求的天数。
本发明实施例中提出的一种电力负荷数据的预测装置,包括:一维数据获取模块,用于获取一维时间序列的历史电力负荷数据,其由对应各时间点的数值组成;数据转换模块,用于将所述对应各时间点的数值映射到一横坐标为设定的时间周期,纵坐标为所述时间周期内的各时间点的坐标系中,并在各个映射点采用预先确定的与所述数值相对应的像素值进行标识,得到一映射图像;其中,不同数值对应不同的像素值;和数据预测模块,用于将所述映射图像的像素值输入一训练好的数据预测模型中,并获取所述数据预测模型输出的电力负荷数据预测值。
在一个实施方式中,所述预测模型包括:一特征提取子模型,其基于构建的特征提取神经网络,以电力负荷数据的映射图像的像素值为输入节点,关键特征为输出节点进行训练得到;和一预测子模型,其与所述特征提取模型相连,基于构建的具有时间序列特性的神经网络,以所述特征提取子模型输出的关键特征为输入节点,电力负荷数据为输出节点进行训练得到。
在一个实施方式中,进一步包括:数据预处理模块,用于对所述一维时间序列的历史电力负荷数据进行预处理,以填充缺失数据,并修复极端数据。
在一个实施方式中,所述数据预处理模块采用一训练好的数据预处理模型对所述一维时间序列的历史电力负荷数据进行预处理。
本发明实施例中提出的又一种电力负荷数据的预测装置,包括:至少一个存储器和至少一个处理器,其中:所述至少一个存储器用于存储计算机程序;所述至少一个处理器用于调用所述至少一个存储器中存储的计算机程序,执行上述任一实施方式中所述的电力负荷数据的预测方法。
本发明实施例中提出的一种云平台或服务器,包括上述任一实施方式所述的电力负 荷数据的预测装置。
本发明实施例中提出的一种计算机可读存储介质,其上存储有计算机程序;其特征在于,所述计算机程序能够被一处理器执行并实现上述任一实施方式中所述的电力负荷数据的预测方法。
从上述方案中可以看出,由于本发明实施例中,首先将一维的时间序列的历史电力负荷数据转换为二维的图像数据,然后再基于二维的图像数据利用训练好的预测模型进行电力负荷数据的预测,由于该预测方法是基于的历史电力负荷数据而非用户标签进行的预测,且避免采用容易丢失特征的基于一维时间序列数据进行时间序列分析的技术,直接采用基于二维图像数据的智能神经网络技术进行预测,因此可以提高电力负荷数据的预测准确性。
此外,在采用智能网络技术时,通过构建特征提取神经网络和具有时间序列特性的神经网络进行二级数据的训练和预测,使得该过程易于实现,且能保证预测的准确性。
进一步地,通过对一维时间序列的历史电力负荷数据进行预处理,以填充缺失数据,并修复极端数据,可以进一步保证预测的准确性。
同样,采用基于智能神经网络技术训练得到的数据预处理模型对所述一维时间序列的历史电力负荷数据进行预处理,可以进一步提高预测的准确性。
附图说明
下面将通过参照附图详细描述本发明的优选实施例,使本领域的普通技术人员更清楚本发明的上述及其它特征和优点,附图中:
图1为本发明实施例中一种电力负荷数据的预测方法的示例性流程图。
图2A和图2B为本发明一个例子中的电力负荷数据的示意图。其中,图2A为横坐标为时间点、纵坐标为数值的坐标系表示方法,图2B为横坐标为时间周期、纵坐标为该时间周期内的各个时间点,数值用色素表示的二维图像表示方法。
图3A为本发明实施例中一种电力负荷数据的预测装置的示例性结构图。
图3B为本发明实施例中又一种电力负荷数据的预测装置的示例性结构图。
图4为本发明实施例中再一种电力负荷数据的预测装置的示例性结构图。
其中,附图标记如下:
标号 含义
S102、S104、S106 步骤
301 一维数据获取模块
302 数据转换模块
303 数据预测模块
304 数据预处理模块
41 存储器
42 处理器
具体实施方式
为了描述上的简洁和直观,下文通过描述若干代表性的实施方式来对本发明的方案进行阐述。实施方式中大量的细节仅用于帮助理解本发明的方案。但是很明显,本发明的技术方案实现时可以不局限于这些细节。为了避免不必要地模糊了本发明的方案,一些实施方式没有进行细致地描述,而是仅给出了框架。下文中,“包括”是指“包括但不限于”,“根据……”是指“至少根据……,但不限于仅根据……”。由于汉语的语言习惯,下文中没有特别指出一个成分的数量时,意味着该成分可以是一个也可以是多个,或可理解为至少一个。
本发明实施例中,考虑到电力负荷数据具有时间序列的特点,即电力负荷数据为一维的时间序列数据,因此严重依赖于时间序列分析中使用的技术。但时间序列分析由于只是基于一维的预测,因此会失去一些历史数据的特征。为此,本发明实施例中,经过创造性的劳动之后,考虑将一维的时间序列数据转换为二维的图像数据,然后基于二维的图像数据利用训练好的预测模型进行电力负荷数据的预测。
为了使本发明的技术方案及优点更加清楚明白,以下结合附图及实施方式,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方式仅仅用以阐述性说明本发明,并不用于限定本发明的保护范围。
图1为本发明实施例中一种电力负荷数据的预测方法的示例性流程图。如图1所示,该方法可包括如下步骤:
步骤S102,获取一维时间序列的历史电力负荷数据,其由对应各时间点的数值组成。
以历史电力负荷数据为一年的电力负荷数据为例,其原始数据如果按照时间点进行绘制的话,则得到如图2A所示的图形。图2A中,纵坐标为数值,例如负荷率;横坐标为进行采集的时间点,例如以每天96个时间点为例,则一年共3万多个时间点。
步骤S104,将所述对应各时间点的数值映射到一横坐标为设定的时间周期,纵坐标 为所述时间周期内的各时间点的坐标系中,并在各个映射点采用预先确定的与所述数值相对应的像素值进行标识,得到一映射图像。其中,不同数值对应不同的像素值。
例如,针对图2A所示的电力负荷数据,假设设定的时间周期为一天,当然,实际应用中时间周期也可以为一周或一个月,又或者是10天、15天、20天、25天、30天、40天等等任意满足要求的周期。具体可根据实际需要确定,此处不对其进行限定。则可得到一横坐标表示两年中的各天,纵坐标表示一天中的各时间点(以每天96个时间点的情况为例)的坐标系,并得到如图2B所示的图像。图2B中,针对不同的数值采用了不同灰度的色素值,颜色越深表示数值越小,颜色越浅表示数值越大。实际应用中,针对不同的数值还可以采用不同色彩的色素值,例如颜色范围可采用从红色到黄色表示,数值越大,颜色越偏黄,数值越小,颜色越偏红。实际应用中,采用彩色的颜色值进行表示时的效果会更好一些。
从图2B中可以直观的看出功率值随时间的变化规律,即在每天的开始时段功率值较低,随后功率值逐渐升高。但这一点如果是仅根据图2A所示的一维时间序列数据则很难看出。
进一步地,由于图2B是对原始时间序列数据的二维图像表示,因此有时会因为噪声的存在而显得嘈杂。为了后续使用中便于从图像中提取有用的特征或模式,本发明实施例中可进一步采用一个滤波器对其进行滤波,从而去除高频噪声,得到滤波后的图像。其中,滤波器可以是任何函数,只要能去除高频噪声即可。例如,在本实施例中,可使用二维高斯滤波器来去除图2B中的噪声或微小斑点。
可见,通过将一维时间序列数据在各个时间周期内进行叠加处理,从而将其转换或重塑为二维图像,转换后的二维图像可以更直观地表示电力负荷情况,如变压器的功率状态。
步骤S106,将所述映射图像的像素值输入一训练好的数据预测模型中,并获取所述数据预测模型输出的电力负荷数据预测值。
本步骤中,数据预测模型可以是一个单一网络训练得到的模型,或者也可以是由至少两个网络组合训练得到的模型。例如,在一个例子中,该数据预测模型可包括:一特征提取子模型和一与所述特征提取模型相连的预测子模型。其中,特征提取子模型可基于构建的特征提取神经网络,如CNN卷积神经网络,以电力负荷数据的映射图像的像素值为输入节点,关键特征为输出节点进行训练得到。预测子模型可基于构建的具有时间序列特性的神经网络,如RNN循环神经网络,以所述特征提取子模型输出的关键特征为输入节点,电力负荷数据为输出节点进行训练得到。
上述训练过程在具体实现时,可首先获取大量己知的历史电力负荷数据序列,针对每个己知的历史电力负荷数据序列,可将其中时间排在最后面的设定周期的数据作为待预测的电力负荷数据,即训练用电力负荷数据预测值,而将其中时间排在该设定周期的数据之前的电力负荷数据作为预测基础的电力负荷数据,并对该部分作为预测基础的电力负荷数据执行上述步骤S102和S104所示的操作,将得到的训练用映射图像作为数据预测模型的输入,将上述的训练用电力负荷数据预测值作为数据预测模型的输出对所述数据预测模型进行训练。
此外,针对上述数据预测模型包括特征提取子模型和预测子模型的情况也一样,只是需要预先获取上述训练用映射图像的关键特征,并将所获取的关键特征作为训练用关键特征,然后将所述训练用映射图像作为特征提取子模型的输入,将所述训练用关键特征作为特征提取子模型的输出对特征提取子模型进行训练;而对预测子模型,则是将所述训练用关键特征作为预测子模型的输入,将上述的训练用电力负荷数据预测值作为预测子模型的输出对预测子模型进行训练。
在一个实施方式中,步骤S102和步骤S104之间可进一步包括:对所述一维时间序列的历史电力负荷数据进行预处理,以填充缺失数据,并修复极端数据。
具体地,对一维时间序列的历史电力负荷数据进行预处理的方法可有多种,例如,可采用己有的或新增的各种数据预处理技术;或者,也可以采用一训练好的数据预处理模型对所述一维时间序列的历史电力负荷数据进行预处理。该数据预处理模型可利用己经获取的没有缺失及极端数据的电力负荷数据进行训练得到。
以上对本发明实施例中的电力负荷数据的预测方法进行了详细描述,下面再对本发明实施例中的电力负荷数据的预测装置进行描述,本发明实施例中的装置可用于实现本发明实施例中的上述方法,对于本发明装置实施例中未详细披露的内容请参见上述方法实施例中的对应描述,此处不再一一赘述。
图3A为本发明实施例中一种电力负荷数据的预测装置的示例性结构图。如图3A所示,该装置可包括:一维数据获取模块301、数据转换模块302和数据预测模块303。
其中,一维数据获取模块301用于获取一维时间序列的历史电力负荷数据,其由对应各时间点的数值组成。
数据转换模块302用于将所述对应各时间点的数值映射到一横坐标为设定的时间周期,纵坐标为所述时间周期内的各时间点的坐标系中,并在各个映射点采用预先确定的与所述数值相对应的像素值进行标识,得到一映射图像。其中,不同数值对应不同的像素值。
数据预测模块303用于将所述映射图像的像素值输入一训练好的数据预测模型中,并获取所述数据预测模型输出的电力负荷数据预测值。其中,数据预测模型可以是一个单一网络训练得到的模型,或者也可以是由至少两个网络组合训练得到的模型。例如,在一个例子中,该预测模型可包括:一特征提取子模型和一与所述特征提取模型相连的预测子模型。其中,特征提取子模型可基于构建的特征提取神经网络,以电力负荷数据的映射图像的像素值为输入节点,关键特征为输出节点进行训练得到。预测子模型可基于构建的具有时间序列特性的神经网络,以所述特征提取子模型输出的关键特征为输入节点,电力负荷数据为输出节点进行训练得到。
在其他实施方式中,本实施例中的电力负荷数据的预测装置可如图3B所示,进一步包括:数据预处理模块304,用于对所述一维时间序列的历史电力负荷数据进行预处理,以填充缺失数据,并修复极端数据。具体地,数据预处理模块304可采用一训练好的数据预处理模型对所述一维时间序列的历史电力负荷数据进行预处理。之后数据转换模块302对预处理后的一维时间序列的历史电力负荷数据进行坐标系映射。
图4为本发明实施例中又一种电力负荷数据的预测装置的示例性结构图。如图4所示,该装置可包括:至少一个存储器41和至少一个处理器42。此外,还可以包括一些其它组件,例如通信端口等。这些组件通过总线进行通信。
其中,至少一个存储器41用于存储计算机程序。在一个实施方式中,该计算机程序可以理解为包括图3所示的电力负荷数据的预测装置的各个模块。此外,至少一个存储器41还可存储操作系统等。操作系统包括但不限于:Android操作系统、Symbian操作系统、Windows操作系统、Linux操作系统等等。
至少一个处理器42用于调用至少一个存储器41中存储的计算机程序,以执行本发明实施例中所述的设备运行数据的表示方法。处理器42可以为CPU,处理单元/模块,ASIC,逻辑模块或可编程门阵列等。其可通过所述通信端口进行数据的接收和发送。
此外,本发明实施例中还提供一种包括上述图3或图4所示的电力负荷数据的预测装置的服务器、或服务器集群、或云平台等。
需要说明的是,上述各流程和各结构图中不是所有的步骤和模块都是必须的,可以根据实际的需要忽略某些步骤或模块。各步骤的执行顺序不是固定的,可以根据需要进行调整。各模块的划分仅仅是为了便于描述采用的功能上的划分,实际实现时,一个模块可以分由多个模块实现,多个模块的功能也可以由同一个模块实现,这些模块可以位于同一个设备中,也可以位于不同的设备中。
可以理解,上述各实施方式中的硬件模块可以以机械方式或电子方式实现。例如, 一个硬件模块可以包括专门设计的永久性电路或逻辑器件(如专用处理器,如FPGA或ASIC)用于完成特定的操作。硬件模块也可以包括由软件临时配置的可编程逻辑器件或电路(如包括通用处理器或其它可编程处理器)用于执行特定操作。至于具体采用机械方式,或是采用专用的永久性电路,或是采用临时配置的电路(如由软件进行配置)来实现硬件模块,可以根据成本和时间上的考虑来决定。
另外,本发明实施例中还提供一种能够在服务器或服务器集群或云平台上执行的计算机软件,所述计算机软件能够被一处理器执行并实现本发明实施例中所述的电力负荷数据的预测方法。
此外,本发明实施例中还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序能够被一处理器执行并实现本发明实施例中所述的电力负荷数据的预测方法。具体地,可以提供配有存储介质的系统或者装置,在该存储介质上存储着实现上述实施例中任一实施方式的功能的软件程序代码,且使该系统或者装置的计算机(或CPU或MPU)读出并执行存储在存储介质中的程序代码。此外,还可以通过基于程序代码的指令使计算机上操作的操作系统等来完成部分或者全部的实际操作。还可以将从存储介质读出的程序代码写到插入计算机内的扩展板中所设置的存储器中或者写到与计算机相连接的扩展单元中设置的存储器中,随后基于程序代码的指令使安装在扩展板或者扩展单元上的CPU等来执行部分和全部实际操作,从而实现上述实施方式中任一实施方式的功能。用于提供程序代码的存储介质实施方式包括软盘、硬盘、磁光盘、光盘(如CD-ROM、CD-R、CD-RW、DVD-ROM、DVD-RAM、DVD-RW、DVD+RW)、磁带、非易失性存储卡和ROM。可选择地,可以由通信网络从服务器计算机上下载程序代码。
从上述方案中可以看出,由于本发明实施例中,首先将一维的时间序列的历史电力负荷数据转换为二维的图像数据,然后再基于二维的图像数据利用训练好的预测模型进行电力负荷数据的预测,由于该预测方法是基于的历史电力负荷数据而非用户标签进行的预测,且避免采用容易丢失特征的基于一维时间序列数据进行时间序列分析的技术,直接采用基于二维图像数据的智能神经网络技术进行预测,因此可以提高电力负荷数据的预测准确性。
此外,在采用智能网络技术时,通过构建特征提取神经网络和具有时间序列特性的神经网络进行二级数据的训练和预测,使得该过程易于实现,且能保证预测的准确性。
进一步地,通过对一维时间序列的历史电力负荷数据进行预处理,以填充缺失数据,并修复极端数据,可以进一步保证预测的准确性。
同样,采用基于智能神经网络技术训练得到的数据预处理模型对所述一维时间序列 的历史电力负荷数据进行预处理,可以进一步提高预测的准确性。
以上所述仅为本发明的较佳实施例而己,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 电力负荷数据的预测方法,其特征在于,包括:
    获取一维时间序列的历史电力负荷数据,其由对应各时间点的数值组成(S102);
    将所述对应各时间点的数值映射到一横坐标为设定的时间周期,纵坐标为所述时间周期内的各时间点的坐标系中,并在各个映射点采用预先确定的与所述数值相对应的像素值进行标识,得到一映射图像(S104);其中,不同数值对应不同的像素值;
    将所述映射图像的像素值输入一训练好的数据预测模型中,并获取所述数据预测模型输出的电力负荷数据预测值(S106)。
  2. 根据权利要求1所述的电力负荷数据的预测方法,其特征在于,所述预测模型包括:一特征提取子模型,其基于构建的特征提取神经网络,以电力负荷数据的映射图像的像素值为输入节点,关键特征为输出节点进行训练得到;和
    一预测子模型,其与所述特征提取模型相连,基于构建的具有时间序列特性的神经网络,以所述特征提取子模型输出的关键特征为输入节点,电力负荷数据为输出节点进行训练得到。
  3. 根据权利要求1或2所述的电力负荷数据的预测方法,其特征在于,获取所述一维时间序列的历史电力负荷数据之后,进一步包括:
    对所述一维时间序列的历史电力负荷数据进行预处理,以填充缺失数据,并修复极端数据。
  4. 根据权利要求3所述的电力负荷数据的预测方法,其特征在于,所述对一维时间序列的历史电力负荷数据进行预处理为:
    采用一训练好的数据预处理模型对所述一维时间序列的历史电力负荷数据进行预处理。
  5. 根据权利要求1或2所述的电力负荷数据的预测方法,其特征在于,所述不同数值对应不同的像素值为:不同数值对应不同灰度的像素值,或者是不同数值对应不同色彩的像素值。
  6. 根据权利要求1或2所述的电力负荷数据的预测方法,其特征在于,所述时间周期为一天、一周或任意满足要求的天数。
  7. 电力负荷数据的预测装置,其特征在于,包括:
    一维数据获取模块(301),用于获取一维时间序列的历史电力负荷数据,其由对应各时间点的数值组成;
    数据转换模块(302),用于将所述对应各时间点的数值映射到一横坐标为设定的时 间周期,纵坐标为所述时间周期内的各时间点的坐标系中,并在各个映射点采用预先确定的与所述数值相对应的像素值进行标识,得到一映射图像;其中,不同数值对应不同的像素值;和
    数据预测模块(303),用于将所述映射图像的像素值输入一训练好的数据预测模型中,并获取所述数据预测模型输出的电力负荷数据预测值。
  8. 根据权利要求7所述的电力负荷数据的预测装置,其特征在于,所述预测模型包括:一特征提取子模型,其基于构建的特征提取神经网络,以电力负荷数据的映射图像的像素值为输入节点,关键特征为输出节点进行训练得到;和
    一预测子模型,其与所述特征提取模型相连,基于构建的具有时间序列特性的神经网络,以所述特征提取子模型输出的关键特征为输入节点,电力负荷数据为输出节点进行训练得到。
  9. 根据权利要求7或8所述的电力负荷数据的预测装置,其特征在于,进一步包括:
    数据预处理模块(304),用于对所述一维时间序列的历史电力负荷数据进行预处理,以填充缺失数据,并修复极端数据。
  10. 根据权利要求9所述的电力负荷数据的预测装置,其特征在于,所述数据预处理模块(304)采用一训练好的数据预处理模型对所述一维时间序列的历史电力负荷数据进行预处理。
  11. 电力负荷数据的预测装置,其特征在于,包括:至少一个存储器(41)和至少一个处理器(42),其中:
    所述至少一个存储器(41)用于存储计算机程序;
    所述至少一个处理器(42)用于调用所述至少一个存储器(41)中存储的计算机程序,执行如权利要求1至6中任一项所述的电力负荷数据的预测方法。
  12. 一种云平台或服务器,其特征在于,包括如权利要求7至11中任一项所述的电力负荷数据的预测装置。
  13. 计算机可读存储介质,其上存储有计算机程序;其特征在于,所述计算机程序能够被一处理器执行并实现如权利要求1至6中任一项所述的电力负荷数据的预测方法。
PCT/CN2019/092384 2019-06-21 2019-06-21 电力负荷数据的预测方法、装置及存储介质 WO2020252784A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19933539.9A EP3968247A4 (en) 2019-06-21 2019-06-21 METHOD AND DEVICE FOR ELECTRIC LOAD DATA PREDICTION AND INFORMATION HOLDER
US17/619,281 US11831160B2 (en) 2019-06-21 2019-06-21 Power load data prediction method and device, and storage medium
CN201980096655.4A CN113853624A (zh) 2019-06-21 2019-06-21 电力负荷数据的预测方法、装置及存储介质
PCT/CN2019/092384 WO2020252784A1 (zh) 2019-06-21 2019-06-21 电力负荷数据的预测方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/092384 WO2020252784A1 (zh) 2019-06-21 2019-06-21 电力负荷数据的预测方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2020252784A1 true WO2020252784A1 (zh) 2020-12-24

Family

ID=74039999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092384 WO2020252784A1 (zh) 2019-06-21 2019-06-21 电力负荷数据的预测方法、装置及存储介质

Country Status (4)

Country Link
US (1) US11831160B2 (zh)
EP (1) EP3968247A4 (zh)
CN (1) CN113853624A (zh)
WO (1) WO2020252784A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112801369A (zh) * 2021-01-26 2021-05-14 国网河北省电力有限公司营销服务中心 基于电网负荷的聚合响应容量预测方法及终端设备
CN112909936A (zh) * 2021-02-04 2021-06-04 中国神华能源股份有限公司国华电力分公司 火电机组运行状态的监测方法、装置和系统
CN113344737A (zh) * 2021-06-04 2021-09-03 北京国电通网络技术有限公司 设备控制方法、装置、电子设备和计算机可读介质
CN114326987A (zh) * 2021-10-08 2022-04-12 腾讯科技(深圳)有限公司 制冷系统控制及模型训练方法、装置、设备及存储介质
CN114565156A (zh) * 2022-02-28 2022-05-31 广东电网有限责任公司 一种电力负荷预测方法、装置、设备及存储介质
CN114707772A (zh) * 2022-06-06 2022-07-05 山东大学 基于多特征分解与融合的电力负荷预测方法及系统
CN115018119A (zh) * 2022-04-26 2022-09-06 河北大学 用电负荷预测方法及系统
CN115099502A (zh) * 2022-06-29 2022-09-23 四川大学 一种基于用户间用电行为相似性的短期电力负荷预测方法
CN115842347A (zh) * 2023-02-24 2023-03-24 深圳市三和电力科技有限公司 一种基于数字孪生的微网负荷动态平衡方法、系统及介质
CN116258282A (zh) * 2023-05-12 2023-06-13 国网浙江省电力有限公司金华供电公司 一种基于云平台的智能电网资源调度分配方法
CN116340432A (zh) * 2023-05-29 2023-06-27 武汉华瑞测智能技术有限公司 基于电力数据的数据库同步方法、设备及介质
CN117333219A (zh) * 2023-12-01 2024-01-02 国网浙江省电力有限公司 一种交易电量预测方法、装置、设备及存储介质

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113011630B (zh) * 2021-01-25 2024-01-23 国网浙江省电力有限公司杭州供电公司 一种大数据配电网台区时空负荷短期预测方法
CN114841458B (zh) * 2022-05-18 2023-03-24 上海玫克生储能科技有限公司 电力负荷预测方法及系统、电子设备及存储介质
CN115063041A (zh) * 2022-07-28 2022-09-16 广东电网有限责任公司电力调度控制中心 交直流送电规划方法
CN115085196B (zh) * 2022-08-19 2022-12-23 国网信息通信产业集团有限公司 电力负荷预测值确定方法、装置、设备和计算机可读介质
CN115130790B (zh) * 2022-08-30 2022-11-25 南通森淼船舶技术有限公司 一种船舶电能质量检测方法及装置
CN115496285B (zh) * 2022-09-26 2023-09-12 上海玫克生储能科技有限公司 一种电力负荷的预测方法、装置及电子设备
CN116205355B (zh) * 2023-02-22 2023-12-01 正泰电气股份有限公司 电力负荷的预测方法、装置以及存储介质
CN116365513B (zh) * 2023-04-17 2023-10-27 国网江苏省电力有限公司 一种基于电网态势指挥网络交互方法及其系统
CN116227759B (zh) * 2023-05-10 2023-08-04 天宇正清科技有限公司 基于多设备信息的检修时间预测方法、装置和设备
CN116257745B (zh) * 2023-05-10 2023-08-15 杭州致成电子科技有限公司 一种负荷电流极端异常数据处理方法和装置
CN116565966B (zh) * 2023-06-29 2023-10-24 国能青海黄河玛尔挡水电开发有限公司 智能水力发电双微机自动同步控制系统
CN116760195B (zh) * 2023-08-18 2024-01-02 国网浙江省电力有限公司宁波供电公司 电力系统全要素资源监控方法、系统、设备和存储介质
CN116817415B (zh) * 2023-08-28 2024-01-12 国网浙江省电力有限公司宁波供电公司 一种空调负荷管理调节方法、计算设备及存储介质
CN117175595B (zh) * 2023-10-27 2024-03-15 国网浙江省电力有限公司宁波供电公司 一种基于多级数据的电网调控方法及系统
CN117543563A (zh) * 2023-11-23 2024-02-09 国网河南省电力公司郑州供电公司 基于机器学习的短期电力负荷预测方法及系统
CN117318055B (zh) * 2023-12-01 2024-03-01 山东理工昊明新能源有限公司 电力负荷预测模型处理方法、装置、电子设备和存储介质
CN117932345A (zh) * 2024-03-08 2024-04-26 深圳国瑞协创储能技术有限公司 电力负荷数据预测模型组训练方法、装置、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244897A (ja) * 2011-05-13 2012-12-10 Fujitsu Ltd 短期電力負荷を予測する方法及び装置
CN108197773A (zh) * 2017-12-08 2018-06-22 囯网河北省电力有限公司电力科学研究院 电力负荷预测方法、电力负荷预测装置及终端设备
CN108832619A (zh) * 2018-05-29 2018-11-16 北京交通大学 基于卷积神经网络的电力系统暂态稳定评估方法
CN109740648A (zh) * 2018-12-21 2019-05-10 广州供电局有限公司 电力负荷异常数据识别方法、装置和计算机设备
CN109816145A (zh) * 2018-12-21 2019-05-28 国网上海市电力公司 一种供电负荷管理用数据平台

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909192A (en) * 1988-03-31 1999-06-01 Wiltron Company Method of displaying graphs with markers
US5332968A (en) * 1992-04-21 1994-07-26 University Of South Florida Magnetic resonance imaging color composites
US5729661A (en) * 1992-11-24 1998-03-17 Pavilion Technologies, Inc. Method and apparatus for preprocessing input data to a neural network
US5515480A (en) * 1994-06-15 1996-05-07 Dp-Tek, Inc. System and method for enhancing graphic features produced by marking engines
US20030101009A1 (en) * 2001-10-30 2003-05-29 Johnson Controls Technology Company Apparatus and method for determining days of the week with similar utility consumption profiles
US20120240072A1 (en) * 2011-03-18 2012-09-20 Serious Materials, Inc. Intensity transform systems and methods
US9569804B2 (en) * 2012-08-27 2017-02-14 Gridium, Inc. Systems and methods for energy consumption and energy demand management
US9542510B2 (en) * 2013-08-07 2017-01-10 International Business Machines Corporation Detecting appliances in a building from coarse grained meter data with partial label
JP6081940B2 (ja) * 2014-02-28 2017-02-15 三菱重工業株式会社 電力需要予測装置、電力供給システム、電力需要予測方法及びプログラム
US9501851B2 (en) * 2014-10-03 2016-11-22 Palantir Technologies Inc. Time-series analysis system
US10410113B2 (en) * 2016-01-14 2019-09-10 Preferred Networks, Inc. Time series data adaptation and sensor fusion systems, methods, and apparatus
GB2547712A (en) * 2016-02-29 2017-08-30 Fujitsu Ltd Method and apparatus for generating time series data sets for predictive analysis
WO2018167900A1 (ja) * 2017-03-16 2018-09-20 日本電気株式会社 ニューラルネットワーク学習装置、方法、およびプログラム
CN111373415A (zh) * 2017-05-05 2020-07-03 阿里莫有限责任公司 使用神经网络分析序列数据
EP3788539A1 (en) * 2018-06-14 2021-03-10 Siemens Aktiengesellschaft Predicting sun light irradiation intensity with neural network operations
US11468273B2 (en) * 2018-09-20 2022-10-11 Cable Television Laboratories, Inc. Systems and methods for detecting and classifying anomalous features in one-dimensional data
CN111488758A (zh) * 2019-01-25 2020-08-04 富士通株式会社 用于驾驶行为识别的深度学习模型、训练装置及方法
US10867375B2 (en) * 2019-01-30 2020-12-15 Siemens Healthcare Gmbh Forecasting images for image processing
CN109934343A (zh) * 2019-02-25 2019-06-25 中国科学院自动化研究所 基于正交投影矩阵的人工神经网络优化方法、系统、装置
US20220172290A1 (en) * 2019-04-08 2022-06-02 Jpmorgan Chase Bank, N.A. Method for automatically identifying signals or patterns in time series data by treating series as image
US20220208065A1 (en) * 2019-05-09 2022-06-30 Mitsubishi Electric Corporation Image processing device, method, image display device, and recording medium
JP7424375B2 (ja) * 2019-05-21 2024-01-30 ソニーグループ株式会社 画像処理装置、および画像処理方法、並びにプログラム
EP3961548A4 (en) * 2019-05-29 2022-11-30 Siemens Aktiengesellschaft METHOD AND DEVICE FOR CLASSIFICATION OF POWER NETWORK USERS AND COMPUTER READABLE STORAGE MEDIUM

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244897A (ja) * 2011-05-13 2012-12-10 Fujitsu Ltd 短期電力負荷を予測する方法及び装置
CN108197773A (zh) * 2017-12-08 2018-06-22 囯网河北省电力有限公司电力科学研究院 电力负荷预测方法、电力负荷预测装置及终端设备
CN108832619A (zh) * 2018-05-29 2018-11-16 北京交通大学 基于卷积神经网络的电力系统暂态稳定评估方法
CN109740648A (zh) * 2018-12-21 2019-05-10 广州供电局有限公司 电力负荷异常数据识别方法、装置和计算机设备
CN109816145A (zh) * 2018-12-21 2019-05-28 国网上海市电力公司 一种供电负荷管理用数据平台

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112801369A (zh) * 2021-01-26 2021-05-14 国网河北省电力有限公司营销服务中心 基于电网负荷的聚合响应容量预测方法及终端设备
CN112909936A (zh) * 2021-02-04 2021-06-04 中国神华能源股份有限公司国华电力分公司 火电机组运行状态的监测方法、装置和系统
CN113344737A (zh) * 2021-06-04 2021-09-03 北京国电通网络技术有限公司 设备控制方法、装置、电子设备和计算机可读介质
CN113344737B (zh) * 2021-06-04 2023-11-24 北京国电通网络技术有限公司 设备控制方法、装置、电子设备和计算机可读介质
CN114326987B (zh) * 2021-10-08 2023-10-20 腾讯科技(深圳)有限公司 制冷系统控制及模型训练方法、装置、设备及存储介质
CN114326987A (zh) * 2021-10-08 2022-04-12 腾讯科技(深圳)有限公司 制冷系统控制及模型训练方法、装置、设备及存储介质
CN114565156A (zh) * 2022-02-28 2022-05-31 广东电网有限责任公司 一种电力负荷预测方法、装置、设备及存储介质
CN115018119A (zh) * 2022-04-26 2022-09-06 河北大学 用电负荷预测方法及系统
CN114707772A (zh) * 2022-06-06 2022-07-05 山东大学 基于多特征分解与融合的电力负荷预测方法及系统
CN114707772B (zh) * 2022-06-06 2022-08-23 山东大学 基于多特征分解与融合的电力负荷预测方法及系统
CN115099502A (zh) * 2022-06-29 2022-09-23 四川大学 一种基于用户间用电行为相似性的短期电力负荷预测方法
CN115842347A (zh) * 2023-02-24 2023-03-24 深圳市三和电力科技有限公司 一种基于数字孪生的微网负荷动态平衡方法、系统及介质
CN116258282A (zh) * 2023-05-12 2023-06-13 国网浙江省电力有限公司金华供电公司 一种基于云平台的智能电网资源调度分配方法
CN116340432A (zh) * 2023-05-29 2023-06-27 武汉华瑞测智能技术有限公司 基于电力数据的数据库同步方法、设备及介质
CN116340432B (zh) * 2023-05-29 2023-08-04 武汉华瑞测智能技术有限公司 基于电力数据的数据库同步方法、设备及介质
CN117333219A (zh) * 2023-12-01 2024-01-02 国网浙江省电力有限公司 一种交易电量预测方法、装置、设备及存储介质
CN117333219B (zh) * 2023-12-01 2024-03-08 国网浙江省电力有限公司 一种交易电量预测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN113853624A (zh) 2021-12-28
US11831160B2 (en) 2023-11-28
US20230096258A1 (en) 2023-03-30
EP3968247A4 (en) 2022-12-21
EP3968247A1 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
WO2020252784A1 (zh) 电力负荷数据的预测方法、装置及存储介质
CN107330731B (zh) 一种识别广告位点击异常的方法和装置
WO2020237539A1 (zh) 电力负荷的预测方法、装置及存储介质
CN111864896B (zh) 一种电力负荷监测方法及系统
US20160004794A1 (en) System and method using generative model to supplement incomplete industrial plant information
CN111949795A (zh) 工单自动分类方法及装置
CN115346171A (zh) 一种输电线路监控方法、装置、设备及存储介质
CN115797565A (zh) 三维重建模型训练方法、三维重建方法、装置及电子设备
CN112287503B (zh) 用于交通需求预测的动态空间网络构建方法
CN113535379A (zh) 一种基于物联网的变电边缘计算方法、系统及设备
CN116071651B (zh) 一种均压场识别方法、装置、存储介质及终端
CN116090234A (zh) 一种设备运行状态的节能方法、装置、设备及存储介质
CN107679478B (zh) 输电线路空间负荷状态的提取方法和系统
CN111857015B (zh) 输变电云端智能控制器
CN113689125A (zh) 信息推送方法和装置
CN113505844A (zh) 标签生成方法、装置、设备、存储介质及程序产品
WO2020232641A1 (zh) 设备运行数据的表示方法、装置及存储介质
CN113344064A (zh) 事件处理方法和装置
CN116468985B (zh) 模型训练方法、质量检测方法、装置、电子设备及介质
CN117271098B (zh) 一种ai模型计算核调度方法、装置、设备及存储介质
US20210241025A1 (en) Object recognition method and apparatus, and storage medium
CN116805176A (zh) 一种台区的负荷预测方法、装置、设备及存储介质
CN116662903A (zh) 基于图神经网络的电网终端设备识别方法及系统
CN115423440A (zh) 光伏电站的智能化监控方法、装置、系统、设备及介质
CN117407572A (zh) 用于配网应急一体化指挥的故障信息处理方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019933539

Country of ref document: EP

Effective date: 20211209

NENP Non-entry into the national phase

Ref country code: DE