WO2020252546A1 - Level measurement system based on a column of hall-effect sensors with automatic calibration - Google Patents

Level measurement system based on a column of hall-effect sensors with automatic calibration Download PDF

Info

Publication number
WO2020252546A1
WO2020252546A1 PCT/BR2020/050194 BR2020050194W WO2020252546A1 WO 2020252546 A1 WO2020252546 A1 WO 2020252546A1 BR 2020050194 W BR2020050194 W BR 2020050194W WO 2020252546 A1 WO2020252546 A1 WO 2020252546A1
Authority
WO
WIPO (PCT)
Prior art keywords
hall effect
level measurement
sensors
calibration
system based
Prior art date
Application number
PCT/BR2020/050194
Other languages
French (fr)
Portuguese (pt)
Inventor
Janderson WILSON BLANSKI
Original Assignee
ROSÁRIO LORENZO, Juan José
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ROSÁRIO LORENZO, Juan José filed Critical ROSÁRIO LORENZO, Juan José
Publication of WO2020252546A1 publication Critical patent/WO2020252546A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/30Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
    • G01F23/64Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
    • G01F23/72Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using magnetically actuated indicating means

Definitions

  • the present patent application consists of a level measurement system based on a column of Hall effect sensors, with automatic real-time calibration of the sensors, during the measurement.
  • This automatic calibration solves the problems found in measurement systems with similar fundamentals, such as inaccuracy due to the variation of the gain and offset of the hall sensors due to the temperature variation and the error caused by the variation of the magnetic field of the magnet due to demagnetization, temperature or aging. It belongs to the technical equipment sector where level measurement in a linear fashion is required.
  • the device presented in this application has elements similar to those of the patents found, it differs completely by presenting a calibration system that solves the problems found in measurement systems with similar fundamentals, such as inaccuracy by the variation of the gain and offset of the hall sensors as a function of the temperature variation and the error caused by the variation of the magnetic field of the magnet due to demagnetization, temperature or aging.
  • the present invention is a system that measures the product level using a float with a magnet and a column of linear Hall effect sensors, with the ability to calibrate the sensors in time measurement, thus adjusting the equivalence between the signal curve obtained by the sensors and the distance from the object to the origin, compensating for errors caused by temperature variation and variation in the intensity of the magnet's magnetic field.
  • the system is illustrated in Figure 1 that accompanies and integrates this report, with the following components:
  • [12] 5 Electronic control system composed of analog-to-digital converters for acquiring the signals from the sensors, digital outputs for control of the valves and a microprocessor for data treatment and analysis.
  • Factor 1 - Hall effect sensors due to the nature of the materials used in manufacturing, have a significant range of variation, in gain and offset, even between sensors in the same manufacturing lot.
  • Factor 1 can be corrected can be corrected by normalizing the signal from each sensor. For this, an initial system calibration is required, which consists of reading the curve of each sensor and adjusting the offset and gain, so that the linearization curve corresponds.
  • the solution consists of a method of calibrating the signals from the hall effect sensors based on the shape of the magnetic field curve, which can be performed in real time, at the same time as the position measurement takes place, making the system immune temperature variations. Following, some terms will be observed used in the description of the calibration method.
  • Figure 1 shows the float (2) containing a magnet. It will be agreed that the north pole of the magnet is at the top of the buoy, and the south pole is below the buoy. The passage of the float through a sensor generates the curve in figure 2, which represents the variation of the magnetic field in the sensor. At the zero point positions until the SI sensor of the curve, the north pole of the buoy's magnetic field is represented, which increases as the buoy approaches the sensor, and inverts its polarity when the buoy is over the sensor. In positions above point Sl, the south pole of the buoy's magnetic field is shown, which decreases as the buoy moves away from the sensor.
  • the calibration process consists of normalizing the curve generated by the passage of the magnetic field through the sensor, adjusting its offset and gain, so that it coincides with the field-to-millimeter conversion curve, stored in a table.
  • Equation 1 represents the normalization function of the curve, where ⁇ is the distance in millimeters, and / G ») represents the reference curve of the magnetic field.
  • is the distance in millimeters
  • / G » represents the reference curve of the magnetic field.
  • To normalize the curve it is necessary to know the offset (b) and the gain (a), so that the curve generated by the sensor coincides with the reference curve.
  • these variables are unknown, and cannot be stored because they vary with temperature.
  • the curve in figure 2 will be divided into two parts: the first part is between positions zero to XI, and was generated by the north side of the magnet (top of the float), when the float approached the sensor, it will be called the north side of the curve.
  • the second part is between positions X2 to X3, and was generated by the south side of the magnet (bottom part of the float), when the float moved away from the sensor, and will be called the south side of the curve.
  • the calibration method consists of using the north field of the magnet (north side of the curve) to acquire the values of the gain and offset modules of the sensor curve, when the float is approaching the sensor, and make position measurement using the south field of the magnet (south side of the curve), when the float is moving away from the sensor, correcting in real time the offset and the gain of the sensor signal, with the parameters acquired before, with the north side of the curve.
  • This procedure is performed independently for each column sensor, as the float passes through the sensors. In this way, the calibration of the sensors is performed immediately before making the signal acquisition to calculate the position, compensating for any variation in gain and offset that may have happened.
  • the position measurement is not influenced by external variables, such as temperature, local magnetic field, variation of the magnet's magnetic field, aging of the sensors.

Abstract

A level measurement system based on a column of Hall-effect sensors with automatic calibration, pertaining to the technical sector of equipment in which linear level measurement is required, comprises a level measurement system for chemical-product dispensers based on a column of Hall-effect sensors, with automatic real-time calibration of the sensors during measurement. This automatic calibration resolves the problem of measurement inaccuracy caused by variations in gain and offset in the Hall-effect sensors as a function of temperature variations, and also resolves the problem of errors caused by variations in the magnetic field of the magnet as a function of demagnetization, or of temperature, or of ageing.

Description

SISTEMA DE MEDIÇÃO DE NÍVEL BASEADO EM UMA COLUNA DE SENSORES DE EFEITO HALL COM CALIBRAÇÃO AUTOMÁTICA. LEVEL MEASUREMENT SYSTEM BASED ON A COLUMN OF HALL EFFECT SENSORS WITH AUTOMATIC CALIBRATION.
[01] A presente solicitação de patente de invenção consiste em um sistema de medição de nível baseado em uma coluna de sensores de efeito Hall, com calibração automática em tempo real dos sensores, durante a medição. Esta calibração automática resolve os problemas encontrados em sistemas de medição com fundamentos similares, tais como imprecisão pela variação do ganho e offset dos sensores hall em função da variação da temperatura e o erro causado pela variação do campo magnético do imã em função da desmagnetização, da temperatura ou do envelhecimento. Pertence ao setor técnico de equipamentos onde a medição de nível de forma linear é demandada. [01] The present patent application consists of a level measurement system based on a column of Hall effect sensors, with automatic real-time calibration of the sensors, during the measurement. This automatic calibration solves the problems found in measurement systems with similar fundamentals, such as inaccuracy due to the variation of the gain and offset of the hall sensors due to the temperature variation and the error caused by the variation of the magnetic field of the magnet due to demagnetization, temperature or aging. It belongs to the technical equipment sector where level measurement in a linear fashion is required.
[02] No atual estado da técnica, a utilização de mais de um sensor de efeito hall linear, para detecção de posição, tem problemas de precisão e repetibilidade, em consequência da variação do ganho e do offset dos sensores de efeito hall em função da temperatura, e também, por causa da variação da intensidade do campo magnético dos imãs permanentes com a temperatura e a desmagnetização . [02] In the current state of the art, the use of more than one linear hall effect sensor for position detection has problems of precision and repeatability, as a result of the variation in the gain and offset of the hall effect sensors depending on the temperature, and also, because of the variation of the intensity of the magnetic field of the permanent magnets with the temperature and demagnetization.
[03] A partir de pesquisas realizadas em bases de dados de patentes, não foram identificadas características que tornem a ideia proposta fora do conceito de invenção. Foram obtidos dois resultados: CN20121420795 e BR1120160254856. [03] From searches carried out on patent databases, no characteristics were identified that make the proposed idea out of the concept of invention. Two results were obtained: CN20121420795 and BR1120160254856.
[04] Na patente CN20121420795, intitulada "Indicador de Nível de Óleo com Base no Efeito Hall" (Oil Levei Indicator Based on Hall Effect), o funcionamento se baseia em uma régua contendo sensores de efeito Hall, tipo chave, protegidos por um tubo de inox, onde o nível é dado pela posição de uma boia contendo um imã e, uma placa de circuito é responsável pela conversão do sinal do sensor . [04] In patent CN20121420795, entitled "Oil Level Indicator Based on the Hall Effect" (Oil I took Indicator Based on Hall Effect), the operation is based on a ruler containing Hall effect sensors, key type, protected by a stainless steel tube, where the level is given by the position of a buoy containing a magnet and a circuit board is responsible for converting the sensor signal.
[05] Enquanto que a patente BR1120160254856 (Dispositivo de Medição e Método para Medir o Nível de um Líquido em um Recipiente) que consiste de dois em dois elementos: um elemento de flutuação que gera campo magnético que gera campo magnético e que é móvel ao longo do trajeto de medição e, o outro elemento é um sensor que pode ser de um efeito magnetoresistivo ou de efeito Hall, a medição é feita conforme o elemento de flutuação vai passando pelos sensores que captam o campo magnético gerado pelo primeiro. [05] While the patent BR1120160254856 (Measuring Device and Method for Measuring the Level of a Liquid in a Container) that consists of two in two elements: a flotation element that generates a magnetic field that generates a magnetic field and that is mobile to along the measurement path and, the other element is a sensor that can have a magnetoresistive effect or a Hall effect, the measurement is made as the fluctuation element passes through the sensors that capture the magnetic field generated by the first.
[06] Portanto, é possível notar que apesar do dispositivo apresentado neste pedido possuir elementos parecidos aos das patentes encontradas, ele se difere por completo ao apresentar um sistema de calibração que resolve os problemas encontrados em sistemas de medição com fundamentos similares, tais como imprecisão pela variação do ganho e offset dos sensores hall em função da variação da temperatura e o erro causado pela variação do campo magnético do imã em função da desmagnetização, da temperatura ou do envelhecimento. [06] Therefore, it is possible to note that although the device presented in this application has elements similar to those of the patents found, it differs completely by presenting a calibration system that solves the problems found in measurement systems with similar fundamentals, such as inaccuracy by the variation of the gain and offset of the hall sensors as a function of the temperature variation and the error caused by the variation of the magnetic field of the magnet due to demagnetization, temperature or aging.
[07] A presente invenção se trata de um sistema que mede o nível de produto usando uma boia com um imã e uma coluna de sensores de efeito Hall lineares, com a capacidade de efetuar a calibração dos sensores em tempo real de medição, ajustando assim a equivalência entre a curva do sinal obtido pelos sensores e a distância do objeto à origem, compensando os erros causados pela variação de temperatura e variação da intensidade do campo magnético do imã. 0 sistema é ilustrado na Figura 1 que acompanha e integra o presente relatório, com os seguintes componentes: [07] The present invention is a system that measures the product level using a float with a magnet and a column of linear Hall effect sensors, with the ability to calibrate the sensors in time measurement, thus adjusting the equivalence between the signal curve obtained by the sensors and the distance from the object to the origin, compensating for errors caused by temperature variation and variation in the intensity of the magnet's magnetic field. The system is illustrated in Figure 1 that accompanies and integrates this report, with the following components:
[08] 1 - Coluna com "n" sensores de efeito hall linear (1), espaçados por uma distância x. Os sensores foram alojados no interior de um tubo (5) hermeticamente vedado . [08] 1 - Column with "n" linear hall effect sensors (1), spaced by a distance x. The sensors were housed inside a tube (5) hermetically sealed.
[09] 2 - Boia em forma de anel (2) fixado ao tubo de sensores . A boia foi equipada com um imã permanente no seu interior . [09] 2 - Ring-shaped float (2) attached to the sensor tube. The buoy was equipped with a permanent magnet inside.
[10] 3 - Proveta (6) . [10] 3 - Test tube (6).
[11] 4 - Válvulas de controle de entrada (3) e saída (4) de líquido da proveta. [11] 4 - Control valves for inlet (3) and outlet (4) of liquid from the cylinder.
[12] 5 - Sistema de controle eletrónico composto por conversores analógico-digital para aquisição dos sinais dos sensores, saídas digitais para controle das válvulas e microprocessador para tratamento e análise dos dados . [12] 5 - Electronic control system composed of analog-to-digital converters for acquiring the signals from the sensors, digital outputs for control of the valves and a microprocessor for data treatment and analysis.
[13] CONVERSÃO DO SINAL DO SENSOR HALL EM DISTÂNCIA [13] DISTANCE HALL SENSOR SIGNAL CONVERSION
[14] A fim de levantar a curva do sinal gerado pelo sensor, a boia foi colocada inicialmente na base (7), que corresponde ao ponto inicial. Em seguida, foi injetado água na proveta, fazendo com que a boia se movesse do ponto inicial, passando pelos sensores. A passagem do imã pelo sensor 1 gerou a curva mostrada na fig. 2. A curva representa a variação da tensão (V) em função da altura (mm) . [14] In order to raise the signal curve generated by the sensor, the float was initially placed on the base (7), which corresponds to the starting point. Then, water was injected into the beaker, causing the float to move from the starting point, passing the sensors. The passage of the magnet through sensor 1 generated the curve shown in fig. 2. The curve represents the change in voltage (V) as a function of height (mm).
[15] A curva obtida pelo sensor Hall devido à variação do campo magnético é exponencial. De início é necessário fazer a linearização da curva, utilizando uma tabela de conversão dos valores do campo magnético, em distância. A Figura 2 mostra a curva gerada pelo sensor Hall . [15] The curve obtained by the Hall sensor due to the variation of the magnetic field is exponential. At first, it is necessary to linearize the curve, using a table for converting the magnetic field values into distance. Figure 2 shows the curve generated by the Hall sensor.
[16] SOBREPOSIÇÃO DOS SINAIS DE VÁRIOS SENSORES DE EFEITO HALL. [16] OVERLAY OF SIGNS OF VARIOUS SENSORS OF HALL EFFECT.
[17] A sobreposição dos sinais obtidos na coluna dos onze sensores de efeito hall, é ilustrado na Figura [17] The overlap of the signals obtained in the column of the eleven hall effect sensors, is illustrated in Figure
3. 3.
[18] PROBLEMA DA VARIAÇÃO DO OFFSET E DO GANHO DA CURVA DOS SENSORES. [18] PROBLEM OF OFFSET VARIATION AND GAIN OF THE SENSOR CURVE.
[19] Para fazer a linearização do sinal dos sensores é necessário que eles coincidam ponto a ponto, com a curva de referência, que foi digitalizada e armazenada em uma tabela. Porém, alguns fatores intrínsecos aos sensores de efeito hall dificultam a linearização. Na sequência, serão listados os três fatores principais: [19] To linearize the signal from the sensors, it is necessary that they coincide point by point, with the reference curve, which was digitized and stored in a table. However, some factors intrinsic to the hall effect sensors make linearization difficult. Next, the three main factors will be listed:
[20] Fator 1 - Os sensores de efeito hall, devido à natureza dos materiais usados na fabricação, possuem uma faixa de variação significativa, no ganho e no offset, mesmo entre sensores de mesmo lote de fabricação. [20] Factor 1 - Hall effect sensors, due to the nature of the materials used in manufacturing, have a significant range of variation, in gain and offset, even between sensors in the same manufacturing lot.
[21] Fator 2 - 0 ganho e o offset dos sensores de efeito hall variam sensivelmente com a temperatura. [21] Factor 2 - The gain and the offset of the hall effect sensors vary significantly with temperature.
[22] Fator 3 - 0 campo magnético gerado pelo imã permanente, que é usado em conjunto com os sensores hall, variam com a temperatura. 3 [22] Factor 3 - The magnetic field generated by the permanent magnet, which is used in conjunction with the hall sensors, varies with temperature. 3
[23] O fator 1 pode ser corrigido pode ser corrigido com a normalização do sinal de cada sensor. Para isso é necessária uma calibração inicial do sistema, que consiste na leitura da curva de cada sensor e ajuste do offset e ganho, para que corresponda a curva de linearização . [23] Factor 1 can be corrected can be corrected by normalizing the signal from each sensor. For this, an initial system calibration is required, which consists of reading the curve of each sensor and adjusting the offset and gain, so that the linearization curve corresponds.
[24] No entanto, os fatores 2 e 3 não podem ser corrigidos pela calibração inicial dos sensores, porque eles sofrem variações com a temperatura, alterando seus valores iniciais. Algumas soluções do estado da arte consistem em utilizar um sensor de temperatura e corrigir o sinal do sensor em função da variação da temperatura. A correção pela temperatura tem alguns problemas que afetam a precisão. Um dos problemas está relacionado a curva de variação do ganho com a temperatura, que pode ser diferente para cada sensor, influenciando a precisão da medição. Outro possível problema se dá quando é utilizado um sistema com vários sensores, onde a temperatura pode ser diferente em cada sensor, principalmente se alguns estiverem submersos em líquidos e outros não. Outro problema é que a temperatura pode ser diferente no imã, provocando uma variação do campo magnético. [24] However, factors 2 and 3 cannot be corrected by the initial calibration of the sensors, because they undergo variations with temperature, changing their initial values. Some state-of-the-art solutions consist of using a temperature sensor and correcting the sensor signal depending on the temperature variation. Temperature correction has some problems that affect accuracy. One of the problems is related to the gain variation curve with temperature, which can be different for each sensor, influencing the measurement accuracy. Another possible problem occurs when a system with several sensors is used, where the temperature can be different in each sensor, especially if some are submerged in liquids and others are not. Another problem is that the temperature can be different in the magnet, causing a variation of the magnetic field.
[25] SOLUÇÃO PARA A CALIBRAÇÃO DE N SENSORES HALL, EM TEMPO DE EDIÇÃO. [25] SOLUTION FOR CALIBRATING N HALL SENSORS, IN EDITION TIME.
[26] A solução consiste em um método de calibração dos sinais dos sensores de efeito hall baseado na forma da curva do campo magnético, que pode ser executado em tempo real, ao mesmo tempo em que a medição da posição acontece, tornando o sistema imune a variações de temperatura. Na sequência serão observados alguns termos utilizados na descrição do método de calibração. [26] The solution consists of a method of calibrating the signals from the hall effect sensors based on the shape of the magnetic field curve, which can be performed in real time, at the same time as the position measurement takes place, making the system immune temperature variations. Following, some terms will be observed used in the description of the calibration method.
[27] POLOS DO CAMPO MAGNÉTICO. [27] POLES OF THE MAGNETIC FIELD.
[28] Na figura 1 está representada a boia (2) que contém um imã. Será convencionado que o polo norte do imã está na parte de cima da boia, e o polo sul está abaixo da boia. A passagem da boia por um sensor gera a curva da figura 2, que representa a variação do campo magnético no sensor. Nas posições do ponto zero até o sensor SI da curva, está representado o polo norte do campo magnético da boia, que aumenta, conforme a boia se aproxima do sensor, e inverte sua polaridade quando a boia está sobre o sensor. Nas posições acima do ponto Sl, está representado o polo sul do campo magnético da boia, que diminui, conforme a boia se afasta do sensor. [28] Figure 1 shows the float (2) containing a magnet. It will be agreed that the north pole of the magnet is at the top of the buoy, and the south pole is below the buoy. The passage of the float through a sensor generates the curve in figure 2, which represents the variation of the magnetic field in the sensor. At the zero point positions until the SI sensor of the curve, the north pole of the buoy's magnetic field is represented, which increases as the buoy approaches the sensor, and inverts its polarity when the buoy is over the sensor. In positions above point Sl, the south pole of the buoy's magnetic field is shown, which decreases as the buoy moves away from the sensor.
[29] SIMETRIA DA CURVA DO CAMPO MAGNÉTICO. [29] SYMMETRY OF THE MAGNETIC FIELD CURVE.
[30] Pode ser observado na figura 2 que a curva gerada pelos polos magnéticos do imã, durante a passagem da boia pelo sensor, é perfeitamente simétrica no eixo X, em relação à posição do sensor Sl. [30] It can be seen in figure 2 that the curve generated by the magnet's magnetic poles, during the passage of the float through the sensor, is perfectly symmetrical on the X axis, in relation to the position of the Sl sensor.
[31] NORMALIZAÇÃO DA CURVA EM TEMPO REAL. [31] CURVE STANDARDIZATION IN REAL TIME.
[32] O processo de calibração consiste em normalizar a curva gerada pela passagem do campo magnético pelo sensor, ajustando seu offset e ganho, para que ela coincida com a curva de conversão de intensidade de campo para milímetros, armazenada numa tabela. A equação 1 representa a função de normalização da curva, onde Í é a distância em milímetros, e /G») representa a curva de referência do campo magnético. Para fazer a normalização da curva é necessário conhecer o offset (b) e o ganho (a) , para que a curva gerada pelo sensor coincida com a curva de referência. No entanto, estas variáveis são desconhecidas, e não podem ser armazenadas porque variam com a temperatura. [32] The calibration process consists of normalizing the curve generated by the passage of the magnetic field through the sensor, adjusting its offset and gain, so that it coincides with the field-to-millimeter conversion curve, stored in a table. Equation 1 represents the normalization function of the curve, where Í is the distance in millimeters, and / G ») represents the reference curve of the magnetic field. To normalize the curve, it is necessary to know the offset (b) and the gain (a), so that the curve generated by the sensor coincides with the reference curve. However, these variables are unknown, and cannot be stored because they vary with temperature.
[33] d =
Figure imgf000009_0001
- bί Equação 1 - normalização da curva.
[33] d =
Figure imgf000009_0001
- bί Equation 1 - normalization of the curve.
[34] UTILIZAÇÃO DA SIMETRIA DOS POLOS DO CAMPO MAGNÉTICO PARA A CALIBRAÇÃO DOS SENSORES. [34] USE OF THE SYMMETRY OF THE POLES OF THE MAGNETIC FIELD FOR THE CALIBRATION OF THE SENSORS.
[35] Para fazer a descrição do método de calibração, a curva da figura 2 será dividida em duas partes: a primeira parte está entre as posições zero a XI, e foi gerada pelo lado norte do imã (parte de cima da boia) , quando a boia se aproximou do sensor, e vai ser denominada de lado norte da curva. A segunda parte está entre as posições X2 a X3, e foi gerada pelo lado sul do imã (parte de baixo da boia), quando a boia se afastou do sensor, e vai ser denominada de lado sul da curva. [35] To describe the calibration method, the curve in figure 2 will be divided into two parts: the first part is between positions zero to XI, and was generated by the north side of the magnet (top of the float), when the float approached the sensor, it will be called the north side of the curve. The second part is between positions X2 to X3, and was generated by the south side of the magnet (bottom part of the float), when the float moved away from the sensor, and will be called the south side of the curve.
[36] Levando em consideração que os lados norte e sul da curva são perfeitamente simétricos, pode-se concluir os dois lados têm o mesmo modulo de ganho, e mesmo modulo de offset. Também pode ser observado na figura 2 que, quando o nível está subindo, o lado norte da curva do sensor é gerado antes, quando a boia está se aproximando do sensor, e o lado sul da curva é gerado posteriormente, quando a boia já passou pelo sensor e está se afastando do mesmo. [36] Taking into account that the north and south sides of the curve are perfectly symmetrical, it can be concluded that both sides have the same gain module, and the same offset module. It can also be seen in figure 2 that, when the level is rising, the north side of the sensor curve is generated before, when the float is approaching the sensor, and the south side of the curve is generated later, when the float has passed sensor and is moving away from it.
[37] O método de calibração consiste em usar o campo norte do imã (lado norte da curva) para fazer a aquisição dos valores dos módulos do ganho e do offset da curva do sensor, quando a boia está se aproximando do sensor, e fazer a medição da posição usando o campo sul do imã (lado sul da curva), quando a boia está se afastando do sensor, fazendo a correção em tempo real do offset e do ganho do sinal do sensor, com os parâmetros adquiridos antes, com o lado norte da curva. Esse procedimento é realizado independentemente para cada sensor da coluna, conforme a boia vai passando pelos sensores. Desta forma, a calibração dos sensores é realizada imediatamente antes de fazer a aquisição do sinal para calcular a posição, compensando qualquer variação de ganho e offset que possa ter acontecido. [37] The calibration method consists of using the north field of the magnet (north side of the curve) to acquire the values of the gain and offset modules of the sensor curve, when the float is approaching the sensor, and make position measurement using the south field of the magnet (south side of the curve), when the float is moving away from the sensor, correcting in real time the offset and the gain of the sensor signal, with the parameters acquired before, with the north side of the curve. This procedure is performed independently for each column sensor, as the float passes through the sensors. In this way, the calibration of the sensors is performed immediately before making the signal acquisition to calculate the position, compensating for any variation in gain and offset that may have happened.
[38] Uma das principais vantagens do sistema apresentado nesta solicitação é que o método de calibração não depende da temperatura, como é feito em algumas soluções do estado da arte, não sendo necessário a utilização de sensores de temperatura. [38] One of the main advantages of the system presented in this request is that the calibration method does not depend on the temperature, as is done in some state of the art solutions, and it is not necessary to use temperature sensors.
[39] Outra vantagem interessante deste sistema é que a calibração dos sensores não se altera com o tempo, porque é realizada em tempo real, imediatamente antes de fazer cada medição. [39] Another interesting advantage of this system is that the calibration of the sensors does not change over time, because it is performed in real time, immediately before making each measurement.
[40] Por fim, a medição da posição não sofre influência de variáveis externa, como temperatura, campo magnético local, variação de campo magnético do imã, envelhecimento dos sensores. [40] Finally, the position measurement is not influenced by external variables, such as temperature, local magnetic field, variation of the magnet's magnetic field, aging of the sensors.

Claims

REIVINDICAÇÕES
1) SISTEMA DE MEDIÇÃO DE NÍVEL BASEADO EM UMA 1) LEVEL MEASUREMENT SYSTEM BASED ON A
COLUNA DE SENSORES DE EFEITO HALL COM CALIBRAÇÃO AUTOMÁTICA, aplicado para equipamentos onde a medição de nível de forma linear é demandada, caracterizado por uma coluna com sensores de efeito hall linear (1) espaçados por uma distância uniforme, uma boia (2) equipada com imã, válvulas de controle de entrada (3) e de saída (4) de líquido da proveta (6), tubo (5) hermeticamente vedado, proveta (6), base (7), conjunto de controle eletrónico composto por conversores analógico-digital, saídas digitais e microprocessador. HALL EFFECT SENSOR COLUMN WITH AUTOMATIC CALIBRATION, applied to equipment where linear level measurement is required, characterized by a column with linear hall effect sensors (1) spaced at a uniform distance, a float (2) equipped with magnet, inlet (3) and outlet (4) control valves for beaker liquid (6), hermetically sealed tube (5), beaker (6), base (7), electronic control set consisting of analog-to-digital converters digital, digital outputs and microprocessor.
2) SISTEMA DE MEDIÇÃO DE NÍVEL BASEADO EM UMA 2) LEVEL MEASUREMENT SYSTEM BASED ON A
COLUNA DE SENSORES DE EFEITO HALL COM CALIBRAÇÃO AUTOMÁTICA, de acordo com a reivindicação 1, caracterizado pelos conversores analógico-digital adquirirem os sinais dos sensores (1), as saídas digitais controlarem as válvulas (3 e 4) e o microprocessador tratar e analisar os dados. HALL EFFECT SENSOR COLUMN WITH AUTOMATIC CALIBRATION, according to claim 1, characterized by the analog-digital converters acquiring the signals from the sensors (1), the digital outputs controlling the valves (3 and 4) and the microprocessor treating and analyzing the Dice.
3) SISTEMA DE MEDIÇÃO DE NÍVEL BASEADO EM UMA 3) LEVEL MEASUREMENT SYSTEM BASED ON A
COLUNA DE SENSORES DE EFEITO HALL COM CALIBRAÇÃO AUTOMÁTICA, de acordo com as reivindicações 1 e 2, caracterizado pela utilização dos sensores de efeito hall para medição de nível do produto para dosadores de produto químico em máquinas de lavagem de roupas, de louças de cozinha e em máquinas de tingimento de roupas. HALL EFFECT SENSOR COLUMN WITH AUTOMATIC CALIBRATION, according to claims 1 and 2, characterized by the use of hall effect sensors for product level measurement for chemical product dispensers in washing machines, kitchenware and on clothing dyeing machines.
4) SISTEMA DE MEDIÇÃO DE NÍVEL BASEADO EM UMA 4) LEVEL MEASUREMENT SYSTEM BASED ON A
COLUNA DE SENSORES DE EFEITO HALL COM CALIBRAÇÃO AUTOMÁTICA, de acordo com as reivindicações 1, 2 e 3, caracterizado por sistema de calibração dos sensores de efeito hall em tempo real com a utilização de um dos polos do campo magnético do imã para fazer a calibração do sensor e a utilização do outro polo do campo magnético do sensor para fazer a medição da posição. HALL EFFECT SENSOR COLUMN WITH AUTOMATIC CALIBRATION, according to claims 1, 2 and 3, characterized by a calibration system for the sensors of Hall effect in real time with the use of one pole of the magnet's magnetic field to calibrate the sensor and the use of the other pole of the magnetic field of the sensor to measure the position.
5) SISTEMA DE MEDIÇÃO DE NÍVEL BASEADO EM UMA 5) LEVEL MEASUREMENT SYSTEM BASED ON A
COLUNA DE SENSORES DE EFEITO HALL COM CALIBRAÇÃO AUTOMÁTICA, de acordo com as reivindicações 1, 2, 3 e 4, caracterizado pelo sistema de calibração não depender da temperatura . HALL EFFECT SENSOR COLUMN WITH AUTOMATIC CALIBRATION, according to claims 1, 2, 3 and 4, characterized in that the calibration system does not depend on the temperature.
6) SISTEMA DE MEDIÇÃO DE NÍVEL BASEADO EM UMA 6) LEVEL MEASUREMENT SYSTEM BASED ON A
COLUNA DE SENSORES DE EFEITO HALL COM CALIBRAÇÃOHALL EFFECT SENSOR COLUMN WITH CALIBRATION
AUTOMÁTICA, de acordo com as reivindicações 1, 2, 3, 4 eAUTOMATIC, according to claims 1, 2, 3, 4 and
5, caracterizado por não ser necessário a utilização de sensores de temperatura. 5, characterized in that the use of temperature sensors is not necessary.
7) SISTEMA DE MEDIÇÃO DE NÍVEL BASEADO EM UMA 7) LEVEL MEASUREMENT SYSTEM BASED ON A
COLUNA DE SENSORES DE EFEITO HALL COM CALIBRAÇÃOHALL EFFECT SENSOR COLUMN WITH CALIBRATION
AUTOMÁTICA, de acordo com as reivindicações 1, 2, 3, 4, 5 e 6, caracterizado pela calibração dos sensores não se alterar com o tempo, sendo realizada em tempo real, imediatamente antes de fazer cada medição. AUTOMATIC, according to claims 1, 2, 3, 4, 5 and 6, characterized in that the calibration of the sensors does not change with time, being performed in real time, immediately before making each measurement.
8) SISTEMA DE MEDIÇÃO DE NÍVEL BASEADO EM UMA 8) LEVEL MEASUREMENT SYSTEM BASED ON A
COLUNA DE SENSORES DE EFEITO HALL COM CALIBRAÇÃOHALL EFFECT SENSOR COLUMN WITH CALIBRATION
AUTOMÁTICA, de acordo com as reivindicações 1, 2, 3, 4,AUTOMATIC, according to claims 1, 2, 3, 4,
5, 6 e 7, caracterizado pela medição da posição não sofrer influência de variáveis externa, como temperatura, campo magnético local, variação de campo magnético do imã, envelhecimento dos sensores. 5, 6 and 7, characterized by the position measurement not being influenced by external variables, such as temperature, local magnetic field, variation of the magnetic field of the magnet, aging of the sensors.
PCT/BR2020/050194 2019-06-19 2020-06-01 Level measurement system based on a column of hall-effect sensors with automatic calibration WO2020252546A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR102019012761-9 2019-06-19
BR102019012761-9A BR102019012761A2 (en) 2019-06-19 2019-06-19 level measurement system based on a column of hall effect sensors with automatic calibration

Publications (1)

Publication Number Publication Date
WO2020252546A1 true WO2020252546A1 (en) 2020-12-24

Family

ID=74036837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2020/050194 WO2020252546A1 (en) 2019-06-19 2020-06-01 Level measurement system based on a column of hall-effect sensors with automatic calibration

Country Status (2)

Country Link
BR (1) BR102019012761A2 (en)
WO (1) WO2020252546A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982087A (en) * 1975-02-27 1976-09-21 De Laval Turbine Inc. Liquid-level indicating means
US5743137A (en) * 1995-11-09 1998-04-28 Clark-Reliance Corporation Magnetic float assembly
US7279884B2 (en) * 2004-01-16 2007-10-09 Field Metrics, Inc Temperature compensated and self-calibrated current sensor using reference magnetic field
US20130200887A1 (en) * 2010-06-25 2013-08-08 Meas Deutschland Gmbh Device for generating a sensor signal and method for determining the position of a sensor
US20170074715A1 (en) * 2014-05-02 2017-03-16 TE Connectivity Sensors Germany GmbH Measuring Device and Method for Measuring the Level of a Liquid in a Container
US20180172779A1 (en) * 2016-12-16 2018-06-21 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for Offset Compensation of a Sensor Signal of a Hall Sensor and Sensor Arrangement
EP3410075A1 (en) * 2017-05-30 2018-12-05 MEAS France Temperature compensation for magnetic field sensing devices and a magnetic field sensing device using the same
US20190170562A1 (en) * 2016-08-11 2019-06-06 Dongguan Zhengyang Electronic Mechanical Co., Ltd. Liquid level detection method and liquid level sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982087A (en) * 1975-02-27 1976-09-21 De Laval Turbine Inc. Liquid-level indicating means
US5743137A (en) * 1995-11-09 1998-04-28 Clark-Reliance Corporation Magnetic float assembly
US7279884B2 (en) * 2004-01-16 2007-10-09 Field Metrics, Inc Temperature compensated and self-calibrated current sensor using reference magnetic field
US20130200887A1 (en) * 2010-06-25 2013-08-08 Meas Deutschland Gmbh Device for generating a sensor signal and method for determining the position of a sensor
US20170074715A1 (en) * 2014-05-02 2017-03-16 TE Connectivity Sensors Germany GmbH Measuring Device and Method for Measuring the Level of a Liquid in a Container
US20190170562A1 (en) * 2016-08-11 2019-06-06 Dongguan Zhengyang Electronic Mechanical Co., Ltd. Liquid level detection method and liquid level sensor
US20180172779A1 (en) * 2016-12-16 2018-06-21 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for Offset Compensation of a Sensor Signal of a Hall Sensor and Sensor Arrangement
EP3410075A1 (en) * 2017-05-30 2018-12-05 MEAS France Temperature compensation for magnetic field sensing devices and a magnetic field sensing device using the same

Also Published As

Publication number Publication date
BR102019012761A2 (en) 2020-12-29

Similar Documents

Publication Publication Date Title
ES2555127T5 (en) Improved position sensor
US6433537B1 (en) Arrangement for measuring a relative linear position between an angle sensor and magnetic body
Kummerlöwe et al. Precise measurement of RDCs in water and DMSO based gels using a silicone rubber tube for tunable stretching
WO2020252546A1 (en) Level measurement system based on a column of hall-effect sensors with automatic calibration
Grunwald et al. Kinetics of proton transfer in methanol solutions of benzoic acid and sodium benzoate
CN113358008B (en) Button system and method for determining the position of a magnet of a button system
FI110287B (en) Method and apparatus for measuring the water content of a liquid
RU2748564C2 (en) Hall effect magnetometer
Schaefer et al. Comparison of LAME analyses for an eight-spin system calibrated by CW and pulsed methods at different larmor frequencies
KR20120113162A (en) Device for detecting angle
SU767630A1 (en) Method for detecting microquantities of water
SE8505150D0 (en) DEVICE FOR SHOPPING MEASUREMENT, SPECIAL FOR GEODETIC
Graff et al. Electrical resistance of whole blood
Patterson et al. Error analysis for the Buerger precession camera
RU2645081C1 (en) Coagulation analyzer - thromboelastograph
NL8304488A (en) ARRANGEMENT AND METHOD FOR MEASURING A LIQUID LEVEL.
Arpaia et al. Calibrating the sensing-coil radius by feed-down from a harmonic reference
Hrvoic Requirements for obtaining high accuracy with proton magnetometers
Anastassiou et al. The fluctional behavior of 9-heterobarbaralanes
JPS6398544A (en) Reaction container
SU619841A1 (en) Method of monitoring electric properties of nonmetal substances
SE446776B (en) PROCEDURE FOR QUANTITATIVE SEATING OF NH? 713 IN A SAMPLE AND DEVICE FOR CARRYING OUT THE PROCEDURE
SU1626076A1 (en) Device for checking asymmetry and out of parallelism of flat relative to axis of cylindrical piece
GB1556063A (en) Pressurized water reactor including a boron concentration measuring apparatus
EP3628979A1 (en) Rotary encoder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825925

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20825925

Country of ref document: EP

Kind code of ref document: A1