WO2020250574A1 - 運転支援装置、運転支援方法及びプログラム - Google Patents
運転支援装置、運転支援方法及びプログラム Download PDFInfo
- Publication number
- WO2020250574A1 WO2020250574A1 PCT/JP2020/017316 JP2020017316W WO2020250574A1 WO 2020250574 A1 WO2020250574 A1 WO 2020250574A1 JP 2020017316 W JP2020017316 W JP 2020017316W WO 2020250574 A1 WO2020250574 A1 WO 2020250574A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- running
- information
- abnormality
- history
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
Definitions
- the present invention relates to a driving support device, a driving support method, and a program for providing danger avoidance support in driving a vehicle.
- Patent Document 1 includes danger avoidance provided with an analysis means for analyzing the relationship between a driver's driving operation and vehicle behavior and the occurrence of an accident based on a plurality of sets of biological information, vehicle information, and surrounding images. The device is disclosed.
- Patent Document 1 aims to generate a highly accurate driving simulation, and does not support danger avoidance in actual vehicle driving.
- the present invention has been made in view of the above background, and an object of the present invention is to provide a driving support device capable of qualifying support for avoiding danger in actual driving of a vehicle.
- the driving support device includes a vehicle driving information acquisition unit that acquires vehicle driving information, an image acquisition unit that acquires an image of the surroundings of the vehicle, and the vehicle from the image.
- An image feature extraction unit that extracts features related to driving, a biological information acquisition unit that acquires biological information of one or more occupants of the vehicle, and a biological abnormality determination unit that determines a biological abnormality from the biological information of the occupant.
- the history management unit that manages the traveling information of the vehicle and the characteristics related to the traveling of the vehicle when the abnormality of the living body occurs as a history corresponding to the abnormality of the living body, and the image feature extraction unit extracted.
- An output control unit that outputs an instruction signal for performing notification or outputs an instruction signal for performing traveling control of the vehicle.
- the driving support method includes a first step of acquiring travel information of the vehicle, a second step of acquiring an image of the surroundings of the vehicle, and the image of the vehicle.
- a third step of extracting characteristics related to driving includes a fourth step of acquiring biometric information of one or more occupants of the vehicle, and a fifth step of determining an abnormality of the living body from the biometric information of the occupants.
- a seventh step of outputting an instruction signal for performing notification or outputting an instruction signal for performing driving control of the vehicle is provided.
- the program according to one embodiment of the present invention relates to the first step of acquiring the traveling information of the vehicle, the second step of acquiring the image of the surroundings of the vehicle, and the traveling of the vehicle from the images.
- a third step of extracting features a fourth step of acquiring biometric information of one or more occupants of the vehicle, a fifth step of determining an abnormality of the living body from the biometric information of the occupant, and a living body.
- the notification is sent.
- the computer is made to execute the seventh step of outputting the instruction signal for performing the operation or outputting the instruction signal for performing the traveling control of the vehicle.
- FIG. 5 is a flowchart showing a flow of processing for outputting an instruction signal for controlling the running of the vehicle when it is determined that there is a high possibility that an abnormality in the living body occurs in the driving support device according to the first embodiment.
- It is a block diagram which shows the modification of the external output part which the output control part of the operation support device which concerns on Embodiment 1 output an instruction signal.
- It is a block diagram which shows the structure of the driving support apparatus which concerns on Embodiment 2.
- FIG. 1 is a block diagram showing a configuration of the driving support device 10 according to the first embodiment.
- the driving support device 10 includes a control unit 30.
- the control unit 30 includes a vehicle traveling information acquisition unit 31, an image acquisition unit 32, an image feature extraction unit 33, a biological information acquisition unit 34, a biological abnormality determination unit 35, and a history management unit 36 as functional blocks. It includes an output control unit 37.
- the vehicle running information acquisition unit 31 acquires the running information of the vehicle 50 such as the vehicle speed and acceleration.
- the vehicle traveling information acquisition unit 31 may acquire, for example, operation information of the steering wheel, brake, accelerator, etc., lighting information of blinkers and hazards, and operation information of the horn.
- the image acquisition unit 32 acquires an image (captured image) of the surroundings of the vehicle by the camera 60.
- the image acquisition unit 32 assumes a form of capturing an image of the traveling direction of the vehicle 50, but is not limited to this. If a camera that captures the side or rear of the vehicle 50 is installed, the images captured by these may be included. Further, the image acquisition unit 32 may supplementarily acquire measurement information by LiDAR or millimeter wave radar for measuring the distance to an obstacle around the vehicle 50.
- the image feature extraction unit 33 extracts features related to the running of the vehicle from the captured image acquired by the image acquisition unit 32.
- the characteristics related to the running of the vehicle are, for example, the ETC bar in the traveling direction of the vehicle 50 or around the vehicle 50, traffic regulation information such as traffic lights and stop signs, characteristics of vehicles parked on the street and pedestrians, and the running of the vehicle 50. These include the width of the road being used, the characteristics of places where vehicles 50 are located, such as parking lots and highway toll gates.
- the sudden braking of the vehicle in front of the vehicle 50, the distance between the vehicle in front and the relative speed may be calculated from the image and extracted as a feature. Similarly, the distance and relative speed with the following vehicle may be calculated. May be extracted as a feature.
- danger signs such as approaching may be determined from the inter-vehicle distance, relative speed, and the like, and extracted as features.
- the characteristics related to the running of the vehicle are extracted by using an image recognition technique such as pattern matching in the captured image.
- Image recognition in the captured image may be by a machine learning method.
- the biometric information acquisition unit 34 acquires biometric information of one or more occupants of the vehicle 50.
- the biometric information acquired by the biometric information acquisition unit 34 is not limited to that of the driver of the vehicle 50, and may include that of the passenger.
- the sensor from which the biological information acquisition unit 34 acquires biological information is a sensor that detects heart rate, pulse, body temperature, respiratory rate, and the like.
- the biological information acquisition unit 34 acquires the biological information from the smart watch 70 by wireless communication.
- the biological information acquisition unit 34 may include a function of receiving an image from the camera 60 that captures the line of sight or facial expression of the driver or passenger and performing processing such as line-of-sight detection to generate line-of-sight information.
- Voice information may be received from a microphone (not shown) that collects the sound in the vehicle 50, and processing such as voice recognition may be performed to extract the sound indicating surprise or discomfort.
- the biological abnormality determination unit 35 determines a biological abnormality from the biological information of the occupant of the vehicle 50. For example, an abnormality is determined based on whether or not the heart rate exceeds a predetermined heart rate threshold value and whether or not the rate of increase in heart rate exceeds a predetermined rate of increase threshold value.
- the biological abnormality determination unit 35 makes a determination based on determination items such as heart rate, pulse rate, stress degree, and alertness.
- the degree of stress is an index showing the degree of stress of the occupant.
- the stress level may be calculated from the facial expression of the occupant by monitoring the facial expression of the occupant and using a learned neural network.
- the arousal level is an index showing the level of consciousness of the occupant.
- arousal degree for example, it is calculated by analyzing the captured image obtained by capturing the human behavior (particularly the movement of the eyes) with a camera, and calculating by analyzing the fluctuation of the heart rate. It can be calculated by analyzing brain waves.
- the biological abnormality may be determined by the biological abnormality determination value, which is the sum of the values obtained by multiplying each determination item by the weighting coefficient as the biological abnormality determination value. That is, the biological abnormality determination unit 35 determines that a biological abnormality has occurred when the biological abnormality determination value considering each determination item in a complex manner deviates from a predetermined normal range.
- A1, A2, A3, and A4 are weighting coefficients.
- the history management unit 36 registers the biological abnormality as a history in association with the running information and the characteristics related to the running of the vehicle. For example, consider the case where "when approaching the ETC bar at a speed of 40 km / h or more, the heart rate of the passenger suddenly increased". In this case, the sudden rise in heart rate of the passenger corresponds to an abnormality in the living body, the traveling information corresponds to the fact that the vehicle was traveling at a speed of 40 km / h or more, and the ETC bar near the vehicle 50 is a characteristic of the vehicle traveling. ..
- the output control unit 37 notifies when it is determined that the characteristics related to the running of the vehicle and the running information of the vehicle are similar to the characteristics related to the running of the (registered) vehicle and the running information of the vehicle in the history. Outputs an instruction signal to perform.
- the output control unit 37 is characterized by the traveling of the vehicle when, for example, "the ETC bar is approaching at a speed of 40 km / h or more" or "there is a parked vehicle on the road and the vehicle is trying to avoid it without making a large detour". It is determined that the vehicle is similar to the traveling information of the vehicle, and an instruction signal for giving a notification such as "Please decelerate” or "Please turn the steering wheel more" is output to the notification unit 40.
- the notification unit 40 that receives the instruction signal notifies the driver.
- the notification unit 40 has, for example, a display device 41 and a speaker 42, and when the instruction signal is received, the notification unit 40 issues an alarm from the speaker 42 and is likely to feel a favorable hat on the display device 41 (abnormality of the living body). (High possibility of occurrence) is displayed.
- FIG. 1 is a flowchart showing the flow of the process of registering the abnormality of the living body, the running information when the abnormality of the living body occurs, and the characteristics related to the running of the vehicle as a history in the driving support device 10. Will be described. In the following description, FIG. 1 will also be referred to as appropriate.
- FIG. 2 is a flowchart showing a flow of processing for registering an abnormality of a living body in a history in the driving support device 10.
- the vehicle travel information acquisition unit 31 acquires travel information (step S1).
- the image acquisition unit 32 acquires the captured image (step S2).
- the image feature extraction unit 33 extracts features related to the running of the vehicle from the captured image (step S3).
- the biometric information acquisition unit 34 acquires the biometric information of the occupants of the vehicle (step S4).
- step S5 the biological abnormality determination unit 35 determines whether or not a biological abnormality has occurred in the occupant of the vehicle based on the acquired biological information (step S5). In step S5, if no abnormality has occurred in the occupant of the vehicle, the process returns to step S1. In step S5, when an abnormality of the living body has occurred in the occupant of the vehicle, the history management unit 36 records the abnormality of the living body in correspondence with the running information when the abnormality of the living body occurs and the characteristics related to the running of the vehicle. Register in (step S6).
- FIG. 1 will also be referred to as appropriate.
- FIG. 3 is a flowchart showing a flow of processing for outputting an instruction signal for controlling the running of the vehicle when it is determined that there is a high possibility that an abnormality in the living body will occur.
- the vehicle travel information acquisition unit 31 acquires travel information (step S101).
- the image acquisition unit 32 acquires the captured image (step S102).
- the image feature extraction unit 33 extracts features related to the running of the vehicle from the captured image (step S103).
- step S104 the output control unit 37 searches the history managed by the history management unit 36, and the features related to the vehicle extracted in step S103 and the history similar to the traveling information acquired in step S101 are obtained. It is determined whether or not there is (step S104). If it is determined in step S104 that there is no similar history, the process returns to step SS101. If it is determined in step S104 that there is a similar history, the output control unit 37 outputs an instruction signal to the external output unit (step S105).
- FIG. 4 is a block diagram showing a modified example of the external output unit in which the output control unit 37 of the driving support device 10 outputs an instruction signal.
- the target to which the output control unit 37 outputs the instruction signal is the automatic operation control unit 51. That is, in the first modification, the external output unit is the automatic operation control unit 51.
- the output control unit 37 will contact the automatic operation control unit 51. Outputs an instruction signal to control the running of the vehicle 50. Further, the output control unit 37 may output an instruction signal to a vehicle control unit (not shown).
- the driving support device 10 acquires the biological information of the occupant of the vehicle, and when the abnormality of the biological body occurs, the abnormality of the biological body corresponds to the characteristics and the driving information regarding the running of the vehicle. Let me register it as a history. Then, in driving the vehicle, if the characteristics and driving information related to the running of the vehicle are similar to those registered in the history, an instruction signal for notifying the external output unit is output, or the vehicle Outputs an instruction signal for driving control. As a result, when it is determined that the driving environment is the same as when the driver or the passenger has caused an abnormality in the living body in the actual driving of the vehicle in the past, for example, the passenger screamed in the past. As in the case, when the vehicle 50 is accelerated even though the traffic light is yellow, the driver can be notified or automatic driving control can be performed, and the support for avoiding danger can be accurately supported. .
- FIG. 5 is a block diagram showing a configuration of the driving support device 110 according to the second embodiment.
- the control unit 130 in the driving support device 110 further includes a position information acquisition unit 38 with respect to the control unit 30 in the driving support device 10 according to the first embodiment.
- the position information acquisition unit 38 acquires the position information of the feature related to the running of the vehicle extracted by the image feature extraction unit 33.
- the position information is absolute value information such as latitude and longitude in which features related to the running of the vehicle exist.
- the position information acquisition unit 38 calculates the direction of the characteristic related to the running of the vehicle from the position and the traveling direction of the vehicle 50 acquired from the history such as GPS (Global Positioning System) and the mounting direction of the camera 60. Furthermore, by calculating the relative distance from the vehicle 50, which is a feature related to the running of the vehicle, from the license plate of the vehicle 50 and the size of the human head, for example, an ETC bar, a traffic light, or a parked vehicle on the street from the latitude and longitude of the vehicle 50.
- the position where the characteristic related to the running of the vehicle exists, such as, is calculated and acquired as the position information. It may have map information (not shown) and acquire the tollhouse position and the intersection position of the expressway as latitude / longitude information in which features related to the running of the vehicle exist.
- the driving support device 110 the flow of the process of registering the abnormality of the living body, the running information when the abnormality of the living body occurs, and the characteristics related to the running of the vehicle as a history is shown in FIG. 2, and the driving support according to the first embodiment is shown. It is basically the same as the processing flow in the device 10.
- the flow of processing for outputting an instruction signal for controlling the running of the vehicle when it is determined that there is a high possibility that an abnormality in the living body will occur is described in the driving support device 10 according to the first embodiment shown in FIG. It is basically the same as the processing flow.
- step S3 of FIG. 2 the driving support device 110 according to the present embodiment extracts the characteristics related to the running of the vehicle and acquires the position information of the features related to the running of the vehicle. Then, the driving support device 110 according to the present embodiment determines in step S104 in FIG. 3 in consideration of the position information of the feature related to the traveling of the vehicle. By doing so, the support for avoiding danger can be more qualified in the actual driving of the vehicle
- FIG. 6 is a block diagram showing a configuration of the driving support device 210 according to the third embodiment.
- the control unit 230 in the driving support device 210 further includes a vehicle occupant identification unit 39 with respect to the control unit 30 in the driving support device 10 according to the first embodiment.
- the vehicle occupant identification unit 39 identifies the occupants of the vehicle 50. Specifically, the vehicle occupant identification unit 39 identifies the occupant of the vehicle by image recognition using a camera image taken inside the vehicle, wireless ID identification of a mobile device, sensor ID (smart watch ID), or the like.
- the driver or passenger may identify the vehicle occupant by inputting into a user information input unit (not shown) such as a button input.
- the driving support device 210 the flow of the process of registering the abnormality of the living body, the running information when the abnormality of the living body occurs, and the characteristics related to the running of the vehicle as a history is shown in FIG. 2, and the driving support according to the first embodiment is shown. It is basically the same as the processing flow in the device 10.
- the flow of processing for outputting an instruction signal for controlling the running of the vehicle when it is determined that there is a high possibility that an abnormality in the living body will occur is described in the driving support device 10 according to the first embodiment shown in FIG. It is basically the same as the processing flow.
- the history management unit 36 manages the history for each occupant identified by the vehicle occupant identification unit 39. Further, when the output control unit 37 determines that the passenger is likely to feel a favorable hat and the driver is unlikely to feel a very hat, the output control unit 37 issues an instruction signal for increasing the degree of notification to the driver. Output. There is a difference in the sensation of feeling a hiyari hat between the driver and the passenger, and there is a time lag between the driver operating the vehicle to avoid the hiyari hat and the passenger feeling the vehicle behavior due to the operation. , Even if the passenger feels a smirk, the driver may not feel a smirk. By doing so, not only the driver but also the passengers can drive so as to reduce the frequency of feeling the hiatus.
- the processing in each part of the driving support device can be realized by causing a computer or the like to execute a program. More specifically, a program stored in the program memory for executing processing in each part of the operation support device is loaded into the main storage device, and the program is executed and realized under the control of the CPU.
- the program can be stored and supplied to a computer using various types of non-transitory computer-readable media (non-transitory computer readable media).
- Non-transitory computer-readable media include various types of tangible storage media (tangible storage media).
- non-temporary computer-readable media examples include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, Includes CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
- the program may also be supplied to the computer by various types of temporary computer-readable media (transitory computer readable media). Examples of temporary computer-readable media include electrical, optical, and electromagnetic waves.
- the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
- a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
- the processing in each part of the navigation device is not limited to being realized by software by a program, and may be realized by any combination of hardware, firmware, and software.
- the present invention can be used in various types of vehicles.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Traffic Control Systems (AREA)
Abstract
運転支援装置(10)は、車両の走行情報を取得する車両走行情報取得部(31)と、車両の周囲を撮像した画像を取得する画像取得部(32)と、画像から、車両の走行に関する特徴を抽出する画像特徴抽出部(33)と、車両の乗員の生体情報を取得する生体情報取得部(34)と、乗員の生体情報から、生体の異常を判定する生体異常判定部(35)と、生体の異常が発生したときの車両の走行情報と車両の走行に関する特徴とを、当該生体の異常と対応させて履歴として管理する履歴管理部(36)と、画像特徴抽出部(33)が抽出した車両の走行に関する特徴と車両走行情報取得部(31)が取得した車両の走行情報が、履歴にある車両の走行に関する特徴と車両の走行情報に類似していると判定された場合に、報知を行うための指示信号を出力する出力制御部(37)と、を備える。これにより、実際の車両の運転において危険回避の支援を適格にすることができる。
Description
本発明は、車両の運転において、危険回避支援をするための運転支援装置、運転支援方法及びプログラムに関する。
近年、車両の運転において事故に至りそうな危険を事前に察知し、運転者に注意を促す技術について、開発が進められている。特許文献1には、生体情報、車両情報および周囲画像の複数の組に基づいて、運転者の運転操作および車両の挙動と、事故の発生と、の関連を解析する解析手段を備えた危険回避装置が開示されている。
しかしながら、特許文献1に開示された技術は、精度の高い運転シミュレーションを生成することを目的としており、実際の車両の運転において危険回避を支援するものではなかった。
本発明は、以上の背景に鑑みなされたものであり、実際の車両の運転において危険回避の支援を適格にすることができる運転支援装置を提供することを目的とする。
本発明の一実施態様に係る運転支援装置は、車両の走行情報を取得する車両走行情報取得部と、前記車両の周囲を撮像した画像を取得する画像取得部と、前記画像から、前記車両の走行に関する特徴を抽出する画像特徴抽出部と、前記車両の一人または複数の乗員の生体情報を取得する生体情報取得部と、前記乗員の生体情報から、生体の異常を判定する生体異常判定部と、前記生体の異常が発生したときの前記車両の走行情報と前記車両の走行に関する特徴とを、当該生体の異常と対応させて履歴として管理する履歴管理部と、前記画像特徴抽出部が抽出した前記車両の走行に関する特徴と前記車両走行情報取得部が取得した前記車両の走行情報が、前記履歴にある前記車両の走行に関する特徴と前記車両の走行情報に類似していると判定された場合に、報知を行うための指示信号を出力するか、または、前記車両の走行制御を行うための指示信号を出力する出力制御部と、を備える。
本発明の一実施態様に係る運転支援方法は、車両の走行情報を取得する第1のステップと、前記車両の周囲を撮像した画像を取得する第2のステップと、前記画像から、前記車両の走行に関する特徴を抽出する第3のステップと、前記車両の一人または複数の乗員の生体情報を取得する第4のステップと、前記乗員の生体情報から、生体の異常を判定する第5のステップと、生体の異常が発生したときの前記車両の走行情報と前記車両の走行に関する特徴とを、当該生体の異常と対応させて履歴として管理する第6のステップと、前記第3のステップにおいて抽出した前記車両の走行に関する特徴と前記第1のステップにおいて取得した前記車両の走行情報が、前記履歴にある前記車両の走行に関する特徴と前記車両の走行情報に類似していると判定された場合に、報知を行うための指示信号を出力するか、または、前記車両の走行制御を行うための指示信号を出力する第7のステップと、を備える
本発明の一実施態様に係るプログラムは、車両の走行情報を取得する第1のステップと、前記車両の周囲を撮像した画像を取得する第2のステップと、前記画像から、前記車両の走行に関する特徴を抽出する第3のステップと、前記車両の一人または複数の乗員の生体情報を取得する第4のステップと、前記乗員の生体情報から、生体の異常を判定する第5のステップと、生体の異常が発生したときの前記車両の走行情報と前記車両の走行に関する特徴とを、当該生体の異常と対応させて履歴として管理する第6のステップと、前記第3のステップにおいて抽出した前記車両の走行に関する特徴と前記第1のステップにおいて取得した前記車両の走行情報が、前記履歴にある前記車両の走行に関する特徴と前記車両の走行情報に類似していると判定された場合に、報知を行うための指示信号を出力するか、または、前記車両の走行制御を行うための指示信号を出力する第7のステップと、をコンピュータに実行させる。
本実施の形態によれば、実際の車両の運転において危険回避の支援を適格にすることができる。
以下、発明の実施の形態を通じて本発明を説明するが、特許請求の範囲に係る発明を以下の実施形態に限定するものではない。また、実施形態で説明する構成の全てが課題を解決するための手段として必須であるとは限らない。
[実施の形態1]
まず、実施の形態1に係る運転支援装置の構成について説明する。
図1は、実施の形態1に係る運転支援装置10の構成について示すブロック図である。図1に示すように、運転支援装置10は、制御部30を備えている。制御部30は、機能ブロックとして、車両走行情報取得部31と、画像取得部32と、画像特徴抽出部33と、生体情報取得部34と、生体異常判定部35と、履歴管理部36と、出力制御部37と、を備えている。
まず、実施の形態1に係る運転支援装置の構成について説明する。
図1は、実施の形態1に係る運転支援装置10の構成について示すブロック図である。図1に示すように、運転支援装置10は、制御部30を備えている。制御部30は、機能ブロックとして、車両走行情報取得部31と、画像取得部32と、画像特徴抽出部33と、生体情報取得部34と、生体異常判定部35と、履歴管理部36と、出力制御部37と、を備えている。
車両走行情報取得部31は、車両速度や加速度などの車両50の走行情報を取得する。車両走行情報取得部31は、例えば、ハンドルやブレーキやアクセルなどの操作情報、ウィンカーやハザードの点灯情報、クラクションの操作情報を取得してもよい。
画像取得部32は、カメラ60により車両の周囲を撮像した画像(撮像画像)を取得する。画像取得部32は、車両50の進行方向を撮像する形態を想定するが、これに限定されない。車両50の側方や後方を撮像するカメラが設置されている場合にはこれらによる撮像画像を含めてもよい。また、画像取得部32は、車両50の周囲の障害物までの距離を測るLiDARやミリ波レーダによる測定情報を補助的に取得してもよい。
画像特徴抽出部33は、画像取得部32の取得した撮像画像から、車両の走行に関する特徴を抽出する。車両の走行に関する特徴とは、例えば、車両50の進行方向または車両50の周辺にあるETCバー、信号機や一時停止標識などの交通規制情報や路上駐車車両や歩行者などの特徴、車両50の走行している道路の道幅、駐車場や高速道路料金所などの車両50がいる場所の特徴などである。車両50の前方を走行する前方走行車両の急ブレーキや、前方走行車両との車間距離や相対速度を画像から算出し、特徴として抽出してもよく、同様に後続車との車間距離や相対速度を特徴として抽出してもよい。さらに接近などの危険兆候を車間距離および相対速度などから判定して、特徴として抽出してもよい。車両の走行に関する特徴は、撮像画像においてパターンマッチングなどの画像認識技術を用いることにより抽出する。撮像画像における画像認識は、機械学習の手法によるものであってもよい。
生体情報取得部34は、車両50の一人または複数の乗員の生体情報を取得する。生体情報取得部34が取得する生体情報は、車両50の運転者のものに限定されず、同乗者のものを含んでいてもよい。生体情報取得部34が生体情報を取得するセンサは、心拍、脈拍、体温、呼吸数などを検出するセンサである。生体情報取得部34が生体情報を取得するセンサが、例えばスマートウォッチ70が備えるセンサ類である場合、生体情報取得部34はスマートウォッチ70から生体情報を無線通信により取得する。また、生体情報取得部34は、運転者または同乗者の視線や表情を撮影するカメラ60から画像を受取り、視線検出などの処理を行って視線情報を生成する機能を含んでいてもよい。車両50内の音声を集音する図示しないマイクから音声情報を受取り、音声認識などの処理を行って驚きや違和感を示す音声を抽出してもよい。
生体異常判定部35は、車両50の乗員の生体情報から、生体の異常を判定する。例えば、心拍数が所定の心拍数閾値を超えたか否か、心拍数の上昇率が所定の上昇率閾値を超えたか否か、により異常と判定する。生体異常判定部35は、例えば、心拍数、脈拍数、ストレス度、覚醒度などの判定項目に基づいて判定を行う。ここで、ストレス度は、乗員のストレスの程度がどの程度かを表す指標である。ストレス度は、例えば、乗員の顔表情をモニタリングし、学習済みニューラルネットワークによって乗員の顔表情から算出するようにしてもよい。覚醒度は、乗員の意識レベルの高低を示す指標である。覚醒度を算出する方法としては、例えば、人間の挙動(特に目の動き)をカメラで撮像して取得した撮像画像を解析することで算出する、心拍数の揺らぎを解析することによって算出する、脳波の解析によって算出する、などが考えられる。
生体の異常の判定において、各判定項目の1つでも正常範囲を超えた場合に生体の異常が発生したと判定するようにしても良い。また、生体の異常は、各判定項目に重み係数をかけた値の総和を生体異常判定値とし、生体異常判定値によって判定するようにしても良い。つまり、生体異常判定部35では、各判定項目を複合的に考慮した生体異常判定値が、所定の正常範囲を逸脱した場合に生体異常が発生したと判定する。例えば、生体異常判定値は以下の算出式により算出してもよい。
生体異常判定値=A1×心拍数+A2×脈拍数+A3×ストレス度+A4×覚醒度
ここで、A1、A2、A3、A4は、重み係数である。
生体異常判定値=A1×心拍数+A2×脈拍数+A3×ストレス度+A4×覚醒度
ここで、A1、A2、A3、A4は、重み係数である。
履歴管理部36は、生体異常判定部35において生体の異常が発生したと判定された場合に、生体の異常を、走行情報及び車両の走行に関する特徴と対応させて履歴として登録する。例えば、「ETCバーに時速40キロ以上で接近した際、同乗者の心拍数が急上昇した」、という場合を考える。この場合、同乗者において心拍数が急上昇したことが生体の異常にあたり、時速40キロ以上で走行していたことが走行情報にあたり、車両50の近くにETCバーがあることが車両の走行に関する特徴にあたる。また、「路上駐車車両を大きく迂回せずに回避しようとした際、運転者の呼吸が荒くなった」という場合を考える。この場合、運転者の呼吸が荒くなったことが生体の異常にあたり、迂回するためにハンドルを切ったことが走行情報にあたり、車両50の近くに路上駐車車両があったことが車両の走行に関する特徴にあたる。「進行方向の信号機が黄色であるにも関わらず車両50が加速した際、同乗者が悲鳴を上げた」「進行方向に存在する一時停止標識に、減速せずに接近した際、同乗者の表情が強張った」「前方走行車両が急ブレーキをかけた際に、運転者が怒声を発しながらクラクションを操作した」などの履歴を履歴として登録してもよい。
出力制御部37は、車両の走行に関する特徴と車両の走行情報が、履歴にある(登録されている)車両の走行に関する特徴と車両の走行情報に類似していると判定された場合に、報知を行うための指示信号を出力する。出力制御部37は、例えば、「ETCバーに時速40キロ以上で接近中である」「路上駐車車両が存在し、これを大きく迂回せずに回避しようとしている」場合に、車両の走行に関する特徴と車両の走行情報に類似していると判定し、「減速してください」「ハンドルをもっと切ってください」などの報知を行うための指示信号を、報知部40に向けて出力する。当該指示信号を受けた報知部40は、運転者に対して報知を行う。報知部40は、例えば、表示装置41とスピーカ42を有し、当該指示信号を受けたときに、スピーカ42から警報を発するとともに、表示装置41にヒヤリハットを感じる可能性が高い(生体の異常の発生可能性が高い)旨を表示させる。
次に、運転支援装置10において、生体の異常と、生体の異常が発生したときの走行情報及び車両の走行に関する特徴を履歴として登録する処理の流れを示すフローチャートである。について説明する。なお、以下の説明では、図1についても適宜参照する。
図2は、運転支援装置10において、生体の異常を履歴に登録する処理の流れを示すフローチャートである。図2に示すように、まず、車両走行情報取得部31が走行情報を取得する(ステップS1)。続いて、画像取得部32が撮像画像を取得する(ステップS2)。続いて、画像特徴抽出部33が撮像画像から車両の走行に関する特徴を抽出する(ステップS3)。続いて、生体情報取得部34が車両の乗員の生体情報を取得する(ステップS4)。
ステップS4に続いて、生体異常判定部35が、取得した生体情報に基づいて車両の乗員に生体の異常が発生しているか否かを判定する(ステップS5)。ステップS5において、車両の乗員に生体の異常が発生していない場合、処理をステップS1に戻す。ステップS5において、車両の乗員に生体の異常が発生している場合、履歴管理部36が、生体の異常を、生体の異常が発生したときの走行情報及び車両の走行に関する特徴と対応させて履歴に登録する(ステップS6)。
次に、生体の異常が発生する可能性が高いと判定される場合に車両の走行制御を行うための指示信号を出力する処理の流れについて説明する。なお、以下の説明では、図1についても適宜参照する。
図3は、生体の異常が発生する可能性が高いと判定される場合に車両の走行制御を行うための指示信号を出力する処理の流れを示すフローチャートである。図3に示すように、まず、車両走行情報取得部31が走行情報を取得する(ステップS101)。続いて、画像取得部32が撮像画像を取得する(ステップS102)。続いて、画像特徴抽出部33が撮像画像から車両の走行に関する特徴を抽出する(ステップS103)。
ステップS103に続いて、出力制御部37が、履歴管理部36において管理された履歴を検索し、ステップS103で抽出された車両に関する特徴、及び、ステップS101で取得された走行情報に類似する履歴があるか否かを判定する(ステップS104)。ステップS104において、類似する履歴がないと判定された場合、処理をステップSS101に戻す。ステップS104において、類似する履歴があると判定された場合、出力制御部37が、外部出力部に対して指示信号を出力する(ステップS105)。
[変形例1]
図4は、運転支援装置10の出力制御部37が指示信号を出力する外部出力部の変形例について示すブロック図である。図4に示すように、出力制御部37が指示信号を出力する対象は自動運転制御部51である。すなわち、変形例1では、外部出力部は自動運転制御部51である。出力制御部37は、図3のステップS104において類似する履歴があると判定された場合(つまり、乗員にヒヤリハットが発生する可能性が高いと判断された場合)に、自動運転制御部51に対して車両50の走行制御を行うよう指示信号を出力する。また、出力制御部37は、図示しない車両制御部を対象として指示信号を出力してもよい。例えば、車両50の前方を走行する前方走行車両が急ブレーキを踏んだ際に運転者がクラクションを操作した場合に、怒声を発した履歴があれば、類似の状況が発生した場合にクラクションの出力音を低減させるなどの制御を行ってもよい。
図4は、運転支援装置10の出力制御部37が指示信号を出力する外部出力部の変形例について示すブロック図である。図4に示すように、出力制御部37が指示信号を出力する対象は自動運転制御部51である。すなわち、変形例1では、外部出力部は自動運転制御部51である。出力制御部37は、図3のステップS104において類似する履歴があると判定された場合(つまり、乗員にヒヤリハットが発生する可能性が高いと判断された場合)に、自動運転制御部51に対して車両50の走行制御を行うよう指示信号を出力する。また、出力制御部37は、図示しない車両制御部を対象として指示信号を出力してもよい。例えば、車両50の前方を走行する前方走行車両が急ブレーキを踏んだ際に運転者がクラクションを操作した場合に、怒声を発した履歴があれば、類似の状況が発生した場合にクラクションの出力音を低減させるなどの制御を行ってもよい。
以上より、本実施の形態に係る運転支援装置10は、車両の乗員の生体情報を取得し、生体の異常が発生したときに、当該生体の異常を、車両の走行に関する特徴及び走行情報と対応させて履歴として登録する。そして、車両の運転において、車両の走行に関する特徴及び走行情報が、履歴に登録されたものと類似する場合には、外部出力部に対し、報知を行うための指示信号を出力するか、車両の走行制御を行うための指示信号を出力する。これにより、実際の車両の運転において、過去に運転者または同乗者が生体の異常を発生させた際と同様の走行環境であると判定された場合、例えば、過去に同乗者が悲鳴を上げた際と同様に、信号機が黄色であるにも関わらず車両50を加速させた場合に、運転者への報知または自動運転制御を行わせることができ、危険回避の支援を的確にすることができる。
[実施の形態2]
まず、実施の形態2に係る運転支援装置の構成について説明する。
図5は、実施の形態2に係る運転支援装置110の構成を示すブロック図である。図5に示すように、運転支援装置110における制御部130は、実施の形態1に係る運転支援装置10における制御部30に対し、位置情報取得部38をさらに備えている。位置情報取得部38は、画像特徴抽出部33が抽出した車両の走行に関する特徴の位置情報を取得する。
まず、実施の形態2に係る運転支援装置の構成について説明する。
図5は、実施の形態2に係る運転支援装置110の構成を示すブロック図である。図5に示すように、運転支援装置110における制御部130は、実施の形態1に係る運転支援装置10における制御部30に対し、位置情報取得部38をさらに備えている。位置情報取得部38は、画像特徴抽出部33が抽出した車両の走行に関する特徴の位置情報を取得する。
ここで、位置情報は、車両の走行に関する特徴が存在する緯度経度などの絶対値情報である。位置情報取得部38は、GPS(Global Positioning System)などの履歴より取得した車両50の位置と進行方向、及び、カメラ60の取付方向により、車両の走行に関する特徴の方向を算出する。さらに、車両50のナンバープレートや人の頭部の大きさにより車両の走行に関する特徴の車両50からの相対距離を算出することで、車両50の緯度経度から、たとえばETCバーや信号機、路上駐車車両などの、車両の走行に関する特徴が存在する位置を算出し、位置情報として取得する。図示しない地図情報を有して、高速道路の料金所位置や交差点位置を、車両の走行に関する特徴が存在する緯度経度情報として取得してもよい。
運転支援装置110において、生体の異常と、生体の異常が発生したときの走行情報及び車両の走行に関する特徴を履歴として登録する処理の流れは、図2に示す、実施の形態1に係る運転支援装置10における処理の流れと基本的に同じである。生体の異常が発生する可能性が高いと判定される場合に車両の走行制御を行うための指示信号を出力する処理の流れは、図3に示す、実施の形態1に係る運転支援装置10における処理の流れと基本的に同じである。本実施の形態に係る運転支援装置110は、図2におけるステップS3において、車両の走行に関する特徴の抽出と共に、車両の走行に関する特徴の位置情報を取得する。そして、本実施の形態に係る運転支援装置110は、図3におけるステップS104において、車両の走行に関する特徴の位置情報を考慮して判定する。このようにすることで、実際の車両の運転において危険回避の支援をより適格にすることができる。
[実施の形態3]
まず、実施の形態3に係る運転支援装置の構成について説明する。
図6は、実施の形態3に係る運転支援装置210の構成を示すブロック図である。図6に示すように、運転支援装置210における制御部230は、実施の形態1に係る運転支援装置10における制御部30に対し、車両乗員識別部39をさらに備えている。車両乗員識別部39は、車両50の乗員を識別する。具体的には、車両乗員識別部39は、車両の乗員を、車内撮影のカメラ映像による画像認識、携帯機器の無線ID識別、センサID(スマートウォッチID)などにより識別する。運転者または同乗者が、例えばボタン入力などの図示しないユーザ情報入力部に入力することで車両乗員を識別してもよい。
まず、実施の形態3に係る運転支援装置の構成について説明する。
図6は、実施の形態3に係る運転支援装置210の構成を示すブロック図である。図6に示すように、運転支援装置210における制御部230は、実施の形態1に係る運転支援装置10における制御部30に対し、車両乗員識別部39をさらに備えている。車両乗員識別部39は、車両50の乗員を識別する。具体的には、車両乗員識別部39は、車両の乗員を、車内撮影のカメラ映像による画像認識、携帯機器の無線ID識別、センサID(スマートウォッチID)などにより識別する。運転者または同乗者が、例えばボタン入力などの図示しないユーザ情報入力部に入力することで車両乗員を識別してもよい。
運転支援装置210において、生体の異常と、生体の異常が発生したときの走行情報及び車両の走行に関する特徴を履歴として登録する処理の流れは、図2に示す、実施の形態1に係る運転支援装置10における処理の流れと基本的に同じである。生体の異常が発生する可能性が高いと判定される場合に車両の走行制御を行うための指示信号を出力する処理の流れは、図3に示す、実施の形態1に係る運転支援装置10における処理の流れと基本的に同じである。
履歴管理部36は、車両乗員識別部39が識別した乗員ごとに履歴を管理する。また、出力制御部37は、同乗者がヒヤリハットを感じる可能性が高く、運転者がヒヤリハットを感じる可能性が低いと判断した場合に、運転者に対する報知の程度をより強くするための指示信号を出力する。運転者と同乗者では、ヒヤリハットを感じる感覚に相違があり、また、運転者がヒヤリハットを回避するための車両操作を行ってから、同乗者がその操作による車両挙動を感じるまでの時間差があるため、同乗者がヒヤリハットを感じていても、運転者がヒヤリハットを感じない場合がある。上述のようにすることで、運転者だけでなく、同乗者もヒヤリハットを感じる頻度が低減されるような運転を行うことができる。
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。以上で説明した複数の例は、適宜組み合わせて実施されることもできる。
本発明にかかる運転支援装置の各部における処理は、コンピュータなどにプログラムを実行させることによって実現できる。より具体的には、プログラムメモリに格納された、運転支援装置の各部における処理を実行させるためのプログラムを主記憶装置にロードし、CPUの制御によって当該プログラムを実行して実現する。ここで、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。また、ナビゲーション装置の各部における処理は、プログラムによるソフトウェアで実現することに限ることなく、ハードウェア、ファームウェア、及びソフトウェアのうちのいずれかの組み合わせ等により実現しても良い。
この出願は、2019年6月11日に出願された日本出願特願2019-108479を基礎とする優先権を主張し、その開示の全てをここに取り込む。
本発明は、様々な形態の車両において利用することができる。
10、110、210 運転支援装置
30、130、230 制御部
31 車両走行情報取得部
32 画像取得部
33 画像特徴抽出部
34 生体情報取得部
35 生体異常判定部
36 履歴管理部
37 出力制御部
38 位置情報取得部
39 車両乗員識別部
40 報知部
41 表示装置
42 スピーカ
50 車両
51 自動運転制御部
60 カメラ
70 スマートウォッチ
30、130、230 制御部
31 車両走行情報取得部
32 画像取得部
33 画像特徴抽出部
34 生体情報取得部
35 生体異常判定部
36 履歴管理部
37 出力制御部
38 位置情報取得部
39 車両乗員識別部
40 報知部
41 表示装置
42 スピーカ
50 車両
51 自動運転制御部
60 カメラ
70 スマートウォッチ
Claims (6)
- 車両の走行情報を取得する車両走行情報取得部と、
前記車両の周囲を撮像した画像を取得する画像取得部と、
前記画像から、前記車両の走行に関する特徴を抽出する画像特徴抽出部と、
前記車両の一人または複数の乗員の生体情報を取得する生体情報取得部と、
前記乗員の生体情報から、生体の異常を判定する生体異常判定部と、
前記生体の異常が発生したときの前記車両の走行情報と前記車両の走行に関する特徴とを、当該生体の異常と対応させて履歴として管理する履歴管理部と、
前記画像特徴抽出部が抽出した前記車両の走行に関する特徴と前記車両走行情報取得部が取得した前記車両の走行情報が、前記履歴にある前記車両の走行に関する特徴と前記車両の走行情報に類似していると判定された場合に、報知を行うための指示信号を出力するか、または、前記車両の走行制御を行うための指示信号を出力する出力制御部と、を備える、運転支援装置。 - 前記車両走行情報取得部は、前記車両の走行情報として前記車両の速度および加速度の少なくともいずれかに関する走行情報を取得し、
前記画像特徴抽出部は、前記車両の走行に関する特徴として前記車両の進行方向に存在する交通規制情報を抽出する、請求項1に記載の運転支援装置。 - 前記画像特徴抽出部が抽出した前記車両の走行に関する特徴の位置情報を取得する位置情報取得部をさらに備え、
前記出力制御部において、前記画像特徴抽出部が抽出した前記車両の走行に関する特徴と前記車両走行情報取得部が取得した前記車両の走行情報が、前記履歴にある前記車両の走行に関する特徴と前記車両の走行情報に類似しているか否かの判定は、当該位置情報を含めて行う、請求項1または2に記載の運転支援装置。 - 前記車両の乗員を識別する乗員識別部をさらに備え、
前記履歴管理部は、前記乗員識別部により識別された乗員ごとに履歴を管理し、
前記出力制御部は、前記画像特徴抽出部が抽出した前記車両の走行に関する特徴と前記車両走行情報取得部が取得した前記車両の走行情報が、前記履歴にある、同乗者に生体の異常が発生したときの前記車両の走行に関する特徴と前記車両の走行情報に類似していると判定された場合に、運転者に対する報知の程度をより強くするための指示信号を出力する、請求項1から3のいずれか1項に記載の運転支援装置。 - 車両の走行情報を取得する第1のステップと、
前記車両の周囲を撮像した画像を取得する第2のステップと、
前記画像から、前記車両の走行に関する特徴を抽出する第3のステップと、
前記車両の一人または複数の乗員の生体情報を取得する第4のステップと、
前記乗員の生体情報から、生体の異常を判定する第5のステップと、
生体の異常が発生したときの前記車両の走行情報と前記車両の走行に関する特徴とを、当該生体の異常と対応させて履歴として管理する第6のステップと、
前記第3のステップにおいて抽出した前記車両の走行に関する特徴と前記第1のステップにおいて取得した前記車両の走行情報が、前記履歴にある前記車両の走行に関する特徴と前記車両の走行情報に類似していると判定された場合に、報知を行うための指示信号を出力するか、または、前記車両の走行制御を行うための指示信号を出力する第7のステップと、を備える、運転支援方法。 - 車両の走行情報を取得する第1のステップと、
前記車両の周囲を撮像した画像を取得する第2のステップと、
前記画像から、前記車両の走行に関する特徴を抽出する第3のステップと、
前記車両の一人または複数の乗員の生体情報を取得する第4のステップと、
前記乗員の生体情報から、生体の異常を判定する第5のステップと、
生体の異常が発生したときの前記車両の走行情報と前記車両の走行に関する特徴とを、当該生体の異常と対応させて履歴として管理する第6のステップと、
前記第3のステップにおいて抽出した前記車両の走行に関する特徴と前記第1のステップにおいて取得した前記車両の走行情報が、前記履歴にある前記車両の走行に関する特徴と前記車両の走行情報に類似していると判定された場合に、報知を行うための指示信号を出力するか、または、前記車両の走行制御を行うための指示信号を出力する第7のステップと、をコンピュータに実行させるプログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-108479 | 2019-06-11 | ||
JP2019108479A JP2020201737A (ja) | 2019-06-11 | 2019-06-11 | 運転支援装置、運転支援方法及びプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020250574A1 true WO2020250574A1 (ja) | 2020-12-17 |
Family
ID=73743397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/017316 WO2020250574A1 (ja) | 2019-06-11 | 2020-04-22 | 運転支援装置、運転支援方法及びプログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020201737A (ja) |
WO (1) | WO2020250574A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009128398A1 (ja) * | 2008-04-15 | 2009-10-22 | 日本電気株式会社 | 移動体警告装置、移動体警告方法および移動体警告プログラム |
JP2016184282A (ja) * | 2015-03-26 | 2016-10-20 | パイオニア株式会社 | 情報出力装置 |
JP2017138694A (ja) * | 2016-02-02 | 2017-08-10 | ソニー株式会社 | 映像処理装置及び映像処理方法 |
-
2019
- 2019-06-11 JP JP2019108479A patent/JP2020201737A/ja active Pending
-
2020
- 2020-04-22 WO PCT/JP2020/017316 patent/WO2020250574A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009128398A1 (ja) * | 2008-04-15 | 2009-10-22 | 日本電気株式会社 | 移動体警告装置、移動体警告方法および移動体警告プログラム |
JP2016184282A (ja) * | 2015-03-26 | 2016-10-20 | パイオニア株式会社 | 情報出力装置 |
JP2017138694A (ja) * | 2016-02-02 | 2017-08-10 | ソニー株式会社 | 映像処理装置及び映像処理方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2020201737A (ja) | 2020-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11673569B2 (en) | Alert control apparatus and alert control method | |
US20220286811A1 (en) | Method for smartphone-based accident detection | |
US10246014B2 (en) | System and method for driver distraction determination | |
US10776735B2 (en) | Risk information processing method and server device | |
US10336252B2 (en) | Long term driving danger prediction system | |
CN107176123B (zh) | 声音检测信息提供方法、车辆周围声音检测装置及车辆 | |
US11745745B2 (en) | Systems and methods for improving driver attention awareness | |
US10977882B1 (en) | Driver health profile | |
RU2708534C2 (ru) | Улучшенное предотвращение столкновений | |
KR102658770B1 (ko) | 운전자 보조 시스템(das) 및 고도 자율 주행 기능(had)을 위한 안전 필수 교통 시나리오를 결정하기 위한 방법, 시스템 및 컴퓨터 프로그램 제품 | |
US11756350B2 (en) | Model development using parallel driving data collected from multiple computing systems | |
CN111278708B (zh) | 用于辅助驾驶的方法和装置 | |
JP2019128697A (ja) | 情報処理方法及び情報処理装置 | |
JP4901287B2 (ja) | 走行支援装置 | |
WO2020250574A1 (ja) | 運転支援装置、運転支援方法及びプログラム | |
JP7347390B2 (ja) | 運転評価装置、運転評価システム、及び運転評価プログラム | |
Kashevnik et al. | Driver intelligent support system in internet of transportation things: Smartphone-based approach | |
US10562450B2 (en) | Enhanced lane negotiation | |
WO2024150369A1 (ja) | 監視システム、情報処理装置、方法及び非一時的なコンピュータ記録媒体 | |
JP2019012480A (ja) | 運転診断装置および運転診断方法 | |
JP2021092962A (ja) | 車載機、処理装置及びプログラム | |
JP2024052612A (ja) | 交通安全支援システム及びコンピュータプログラム | |
CN117141512A (zh) | 车载情绪调节系统的控制方法及装置 | |
JP5742180B2 (ja) | 注視点推定装置 | |
JP2018097485A (ja) | 運転支援装置、運転支援方法、運転支援プログラム、及び運転支援システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20823222 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20823222 Country of ref document: EP Kind code of ref document: A1 |