WO2020250508A1 - 電気化学式水素ポンプ - Google Patents

電気化学式水素ポンプ Download PDF

Info

Publication number
WO2020250508A1
WO2020250508A1 PCT/JP2020/009171 JP2020009171W WO2020250508A1 WO 2020250508 A1 WO2020250508 A1 WO 2020250508A1 JP 2020009171 W JP2020009171 W JP 2020009171W WO 2020250508 A1 WO2020250508 A1 WO 2020250508A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
anode
cathode
water
hydrogen pump
Prior art date
Application number
PCT/JP2020/009171
Other languages
English (en)
French (fr)
Inventor
脇田 英延
貴之 中植
智也 鎌田
美紗 萬家
酒井 修
鵜飼 邦弘
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020250508A1 publication Critical patent/WO2020250508A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form

Definitions

  • This disclosure relates to an electrochemical hydrogen pump.
  • Patent Document 1 describes a hydrogen purification boosting system in which hydrogen is purified and boosted by applying a voltage between an anode and a cathode in which an electrolyte membrane is sandwiched. Specifically, when a current flows between the anode and the cathode, hydrogen in the anode becomes a proton, and the proton moves from the anode to the cathode, accompanied by water molecules, in the electrolyte membrane.
  • the laminated structure of the anode, the electrolyte membrane and the cathode is referred to as a membrane electrode assembly (hereinafter, MEA: Membrane Electrode Assembly).
  • a high voltage that produces oxygen on the anode side and hydrogen on the cathode side by applying a voltage between the anode and cathode of the MEA having a solid polymer electrolyte membrane and electrolyzing the water supplied to the anode side.
  • a hydrogen production apparatus has been proposed (see, for example, Patent Document 2).
  • the high-pressure hydrogen production apparatus is provided with a disc spring or a coil spring for bringing the cathode feeder into close contact with the electrolyte membrane against deformation of the electrolyte membrane and the anode feeder.
  • the present disclosure is an object of the present disclosure, as an example, to provide an electrochemical hydrogen pump capable of improving the efficiency of hydrogen compression operation when the user starts the first use.
  • the electrochemical hydrogen pump of one aspect of the present disclosure includes an electrolyte membrane having a pair of main surfaces, a cathode catalyst layer provided on one main surface of the electrolyte membrane, and the other main surface of the electrolyte membrane.
  • the cathode catalyst layer and the voltage applyer for applying a voltage between the cathode catalyst layer and the anode catalyst layer are provided in the above, and the voltage applyer applies the voltage to the above the anode catalyst layer.
  • An electrochemical hydrogen pump that moves and boosts the voltage of hydrogen in the hydrogen-containing gas supplied to the cathode catalyst layer on the cathode catalyst layer, and before the user starts using the cathode catalyst layer for the first time.
  • the cathode catalyst layer has larger irregularities in cross-sectional shape.
  • the electrochemical hydrogen pump according to one aspect of the present disclosure can have the effect that the efficiency of the hydrogen compression operation can be improved as compared with the conventional case when the user starts the first use.
  • FIG. 1 is a diagram showing an example of the chemical potential of water in relation to relative humidity.
  • FIG. 2 is a diagram showing an example of cell performance test results associated with repeated hydrogen compression tests.
  • FIG. 3A is a diagram replicating an example of a cell cross section observed by electron microscopy.
  • FIG. 3B is a diagram replicating an example of a cell cross section observed by electron microscopy.
  • FIG. 3C is a diagram replicating an example of a cell cross section observed by electron microscopy.
  • FIG. 3D is a diagram replicating an example of the surface of the catalyst layer observed by electron microscopy.
  • FIG. 4 is a diagram showing an example of an electrochemical hydrogen pump according to the first embodiment.
  • FIG. 5 is a diagram showing an example of an electrochemical hydrogen pump according to an embodiment of the first embodiment.
  • FIG. 6 is a diagram showing an example of an electrochemical hydrogen pump according to the second embodiment.
  • the pump performance (depending on the wet state of the electrolyte membrane of the electrochemical hydrogen pump and the water condition at the electrode when electrochemically purifying and boosting hydrogen Efficiency performance using overvoltage as an index) is affected.
  • the proton conductivity of the electrolyte membrane decreases. Then, since the electric energy during the hydrogen compression operation of the electrochemical hydrogen pump becomes large, the efficiency of the hydrogen compression operation of the electrochemical hydrogen pump decreases.
  • the water vapor in the anode of the electrochemical hydrogen pump when the water vapor in the anode of the electrochemical hydrogen pump is excessive, the water vapor in the anode gas condenses, and the condensed water may block the gas flow path (flooding) of the electrochemical hydrogen pump. There is sex. Then, the diffusibility of hydrogen at the anode may be hindered. In this case, the power required for the pump operation to secure the desired proton transfer is increased, so that the efficiency of the hydrogen compression operation of the electrochemical hydrogen pump is reduced.
  • the former electro-osmosis of water occurs with proton conduction in the electrolyte membrane.
  • the latter reverse osmosis of water is caused by the difference in the chemical potential of water between the anode and the cathode, and this difference in chemical potential depends on (eg, proportionally) the differential pressure generated by the electrochemical hydrogen pump.
  • Uliq_338 U0liq_338 + ⁇ ⁇ [P (z) -PSTD]
  • is “1.990 J mol-1 atm-1”
  • P (z) is the pressing force on water
  • PSTD is the normal pressure
  • the amount of water movement in the electrolyte membrane of the electrochemical hydrogen pump is the flux (jEOD) of electroosmotic water generated by the proton conduction of the electrolyte membrane in FIG. 1 and the chemical potential between the anode and the cathode in FIG. It is determined by the balance with the flow flux (jP) of the reverse osmosis water generated by the difference between the two.
  • jEOD the flux of electroosmotic water generated by the proton conduction of the electrolyte membrane in FIG. 1 and the chemical potential between the anode and the cathode in FIG.
  • the reverse osmosis driving force of water acts on the electrolyte membrane in the direction in which the relative humidity of the hydrogen-containing gas decreases.
  • the reverse osmosis driving force of water acts on the electrolyte membrane until the relative humidity at the cathode of 20 MPaG becomes H, and the reverse osmosis driving force of water is the hydrogen-containing gas of the cathode. It increases with increasing pressure.
  • the flux (jEOD) of electroosmotic water generated by proton conduction in the electrolyte membrane does not depend on the differential pressure generated by the electrochemical hydrogen pump. Then, when the flux of electrically permeable water (jEOD) and the flux of back-permeated water (jP) are in opposition, for example, in the hydrogen compression operation of an electrochemical hydrogen pump, when the cathode pressure is low, the cathode becomes the cathode.
  • the amount of water present (hereinafter, the amount of cathode water) is larger than the amount of water present at the anode (hereinafter, the amount of anode water) (cathode water content> the amount of anode water), and at high pressure, the amount of cathode water is smaller than the amount of anode water. (Cathode water content ⁇ Anode water content).
  • the flux of electroosmotic water is an amount that does not depend on the thickness of the electrolyte membrane, but the flux of reverse osmosis water (jP) is larger as the thickness of the electrolyte membrane is thinner.
  • the pressure at which the above reversal phenomenon occurs with the amount of water at the anode decreases as the thickness of the electrolyte membrane becomes thinner.
  • the above reversal phenomenon can be a factor of the dry-up of the electrolyte membrane on the cathode side, for example. It is also considered to be a factor of flooding in the anode, for example.
  • the present disclosers conducted a performance test of the hydrogen compression operation of the electrochemical hydrogen pump using the following test equipment, and based on the test results, the following phenomena I found.
  • the test apparatus includes an electrolyte membrane, a catalyst layer, a microporous layer and a gas diffusion layer laminated on each side of the electrolyte membrane, and a voltage applyer.
  • the laminate of the electrolyte membrane, the catalyst layer, the microporous layer and the gas diffusion layer corresponds to the cell of the electrochemical hydrogen pump. Further, the high pressure side region of the cell corresponds to the cathode, and the low pressure side region of the cell corresponds to the anode.
  • electrolyte membrane a commercially available fluorine-based polymer electrolyte membrane having a film thickness of about 50 ⁇ m was used.
  • a catalyst layer having the same cross-sectional shape was used for both the cathode and the anode, and 0.3 mg / cm2 platinum was used as the catalyst metal for these catalyst layers.
  • Carbon felt with water repellent treatment was used as the gas diffusion layer of the cathode.
  • a water-repellent titanium powder sintered body was used as the gas diffusion layer of the anode.
  • the voltage applyer is a device that applies a voltage between the anode and cathode of the cell.
  • the microporous layer is a water repellent layer containing a water repellent material (for example, PTFE) and carbon black.
  • a water repellent material for example, PTFE
  • the microporous layer on the anode side is referred to as a first microporous layer
  • the microporous layer on the cathode side is referred to as a second microporous layer.
  • ⁇ Test procedure> First, the temperature of the cell was set to about 65 ° C., and a fully humidified hydrogen-containing gas having a relative humidity of about 100% was supplied to the anode. Then, with the cathode open (normal pressure), the electrolyte membrane is sufficiently humidified overnight by controlling the voltage applyer so that a constant current of 1 A / cm2 flows between the anode and the cathode in terms of current density. did.
  • the cell temperature was set to 50 ° C., and a hydrogen-containing gas having a dew point of 55 ° C. was supplied to the anode. Then, by controlling the voltage applyer so that a constant current of 1 A / cm2 flows between the anode and the cathode in terms of current density, about 70% of the hydrogen in the hydrogen-containing gas supplied to the anode moves to the cathode. Under these conditions, the cathode was switched from the open state to the sealed state, and the cell hydrogen compression operation (hereinafter referred to as hydrogen compression test) was performed until the gas pressure of the cathode reached 40 MPa. Such a hydrogen compression test was repeated a plurality of times with reopening and resealing of the cathode, and the test result of FIG. 2 was obtained.
  • hydrogen compression test was repeated a plurality of times with reopening and resealing of the cathode, and the test result of FIG. 2 was obtained.
  • FIG. 2 is a diagram showing an example of cell performance test results associated with repeated hydrogen compression tests.
  • the vertical axis on the right side of FIG. 2 shows the resistance (m ⁇ ) of the cell, and the vertical axis on the left side shows the overvoltage (V) of the cell.
  • the number of hydrogen compression tests is taken on the horizontal axis of FIG.
  • FIG. 2 shows the cell resistance (dotted line) in the high cathode pressure state (40 MPaG) after the fourth hydrogen compression test, and plots the cell overvoltage (white diamond) for each number of hydrogen compression tests in the same state. Has been done. Further, as a comparative example, the resistance (solid line) of the cell when the cathode is open (normal pressure) is shown, and the overvoltage (black rhombus) of the cell is plotted for each number of hydrogen compression tests in the same state.
  • the resistance and overvoltage of the cell when the cathode was in a high pressure state were not measured until the third hydrogen compression test.
  • the reason for this is that the overvoltage of the cell reached the threshold value (0.5 V) before the gas pressure of the cathode reached 40 MPaG.
  • the cathode gas pressure was 38 MPaG and the cell resistance and overvoltage were 6.6 m ⁇ and 0.5 V, respectively.
  • the cathode gas pressure was 34 MPaG and the cell resistance and overvoltage were 4.9 m ⁇ and 0.5 V, respectively.
  • the overvoltage of the cell became lower than the predetermined threshold value (0.5V) even when the gas pressure of the cathode reached 40 MPaG.
  • the gas pressure of the cathode was 40 MPaG, and the resistance and overvoltage of the cell were 4.0 m ⁇ and 0.35 V, respectively.
  • the resistance and overvoltage of the cell tended to decrease, respectively.
  • the resistance of the cell when the cathode is open does not change from the first to the eighth hydrogen compression test at a low value of about 2.1 m ⁇ , and the cathode is open (normal pressure).
  • the overvoltage of the cell at (normal pressure) showed a slight upward tendency as the number of hydrogen compression tests increased from 0.119 V in the first hydrogen compression test.
  • the present disclosers have determined that the decrease in cell overvoltage due to the increase in cathode pressure due to the increase in the number of hydrogen compression tests between the 4th and 8th times (hereinafter referred to as the increase in the number of hydrogen compression tests) is the cell. Since the resistance decreased at the same time, it was speculated that the dry-up of the electrolyte membrane might be suppressed as the hydrogen compression test was repeated between the 4th and 8th times. That is, it was considered that the resistance of the electrolyte membrane, which is directly linked to the cell resistance, correlates with the wet state of the electrolyte membrane, and the decrease in the cell resistance is due to the improvement of the wet state of the electrolyte membrane.
  • FIGS. 3B and 3C are diagrams that replicate an example of a cell cross section observed by electron microscopy.
  • FIG. 3A shows a diagram replicating the cross sections of both the anode catalyst layer and the cathode catalyst layer of the cell by electron microscope observation, and the magnification of electron microscope observation in FIG. 3A is such that the dimension L in the figure is about 60 ⁇ m. It can be grasped from that.
  • 3B and 3C show diagrams that replicate the cross sections of the cathode catalyst layer and the anode catalyst layer of the cell by electron microscope observation, respectively, and the magnification of electron microscope observation in FIGS. 3B and 3C is shown in the figure. It can be grasped from the fact that the dimension L is about 15 ⁇ m.
  • the surface of the cathode catalyst layer in contact with the second microporous layer and the surface of the cathode catalyst layer in contact with the electrolyte membrane are each observed over 120 ⁇ m.
  • the surface roughness (Rz) was determined, the surface roughness of the former was 2.9 ⁇ m, and the surface roughness of the latter was 1.2 ⁇ m.
  • the surface of the anode catalyst layer in contact with the first microporous layer and the surface of the anode catalyst layer in contact with the electrolyte membrane are observed over 240 ⁇ m.
  • the surface roughness (Rz) of the former was determined, the surface roughness of the former was 10.0 ⁇ m, and the surface roughness of the latter was 11.3 ⁇ m.
  • the above-mentioned difference in unevenness provided in the cathode catalyst layer and the anode catalyst layer is caused by the differential pressure (high pressure) generated in the cell being applied to the anode catalyst layer via the electrolyte membrane. Then, such a phenomenon may be one of the factors for reducing the overvoltage of the cell in increasing the cathode pressure as the number of hydrogen compression tests increases. If the difference in unevenness is caused by the differential pressure generated in the cell, the same applies if the hydrogen compression operation period in the hydrogen compression test is lengthened without increasing the number of hydrogen compression tests. It is presumed that the overvoltage of the cell will decrease.
  • the present inventors exhibit that the unevenness of the cross-sectional shape of the anode catalyst layer is larger than the unevenness of the cross-sectional shape of the cathode catalyst layer, for example, in suppressing the dry-up of the electrolyte membrane. I'm guessing that it is.
  • the electrochemical hydrogen pump according to the first aspect of the present disclosure is provided on an electrolyte membrane having a pair of main surfaces, a cathode catalyst layer provided on one main surface of the electrolyte membrane, and the other main surface of the electrolyte membrane.
  • the anode catalyst layer is provided with a voltage applyer that applies a voltage between the cathode catalyst layer and the anode catalyst layer, and the voltage applyer applies the above voltage to supply hydrogen to the anode catalyst layer.
  • a device that moves hydrogen in the contained gas onto the cathode catalyst layer and boosts the pressure, and the anode catalyst layer has a cross-sectional shape rather than the cathode catalyst layer before the user starts using it for the first time. The unevenness is large.
  • the electrochemical hydrogen pump of this embodiment can improve the efficiency of the hydrogen compression operation when the user starts the first use.
  • the user is a person who repeatedly uses the electrochemical hydrogen pump and continuously uses it. Therefore, the user does not include those who perform a test run performed before the user starts the first use.
  • the user may be, for example, a purchaser of an electrochemical hydrogen pump, an organization that has purchased an electrochemical hydrogen pump, or a person or organization that has obtained a license from a purchaser or an organization that has purchased an electrochemical hydrogen pump.
  • the differential pressure (high pressure) generated by the electrochemical hydrogen pump causes the unevenness of the cross-sectional shape of the anode catalyst layer to become a cathode catalyst. It can be made larger than the unevenness of the cross-sectional shape of the layer. Then, for example, it is presumed that the anode catalyst layer is more likely to crack than the cathode catalyst layer.
  • the hydrogen-containing gas in a highly humidified state is supplied to the anode catalyst layer, the presence of cracks in the anode catalyst layer causes the anode catalyst layer to pass through the cracks as compared with the case where the anode catalyst layer is flat and has few cracks.
  • the water content in the hydrogen-containing gas is easily supplied to the electrolyte membrane.
  • the hydrogen compression operation of the electrochemical hydrogen pump is performed before the user starts the first use, so that the electrolyte membrane of the electrochemical hydrogen pump is dried up when the user starts the first use. It will be possible to suppress it.
  • the main surface of the second microporous layer (water repellent layer) and the main surface of the cathode catalyst layer are in close contact with each other, the main surface of the second microporous layer on the cathode catalyst layer side. Is formed with irregularities along the irregularities of the cross-sectional shape of the cathode catalyst layer.
  • the unevenness of the cross-sectional shape of the anode catalyst layer is larger than the unevenness of the cross-sectional shape of the cathode catalyst layer
  • the unevenness of the main surface of the first microporous layer on the anode catalyst layer side is the cathode catalyst layer of the second microporous layer. It is larger than the unevenness of the main surface on the side. And this is also verified in the surface roughness measurement of these microporous layers.
  • the surface roughness (Rz) of the second microporous layer was determined by observing the surface of the second microporous layer on the cathode catalyst layer side over 120 ⁇ m at a magnification of 2000, the surface roughness was determined. Was 2.9 ⁇ m.
  • the surface roughness (Rz) of the first microporous layer was determined by observing the surface of the first microporous layer on the anode catalyst layer side over 240 ⁇ m at a magnification of 1000 times, the surface roughness was determined.
  • the surface roughness was determined.
  • the surface roughness was determined.
  • the above-mentioned unevenness provided on the main surface of the first microporous layer is caused by the differential pressure (high pressure) generated in the cell being applied to the anode catalyst layer via the electrolyte membrane. Then, such a phenomenon may be one of the factors for reducing the overvoltage of the cell in increasing the cathode pressure as the number of hydrogen compression tests increases. That is, the present disclosers consider that providing the main surface of the first microporous layer on the anode catalyst layer side with irregularities along the irregularities of the anode catalyst layer is advantageous for suppressing dry-up of the electrolyte membrane, for example. It is speculated that it may be exerting its action and effect.
  • the electrochemical hydrogen pump of the second aspect of the present disclosure includes a first water-repellent layer containing a water-repellent material provided on the anode catalyst layer in the electrochemical hydrogen pump of the first aspect, and is the first repellent.
  • the main surface of the aqueous layer on the anode catalyst layer side may be provided with irregularities along the irregularities of the anode catalyst layer.
  • the electrochemical hydrogen pump of the third aspect of the present disclosure includes a second water-repellent layer containing a water-repellent material provided on the cathode catalyst layer in the electrochemical hydrogen pump of the second aspect, and is the first repellent.
  • the main surface of the aqueous layer on the anode catalyst layer side may have larger irregularities than the main surface of the second water repellent layer on the cathode catalyst layer side.
  • the electrochemical hydrogen pump of this embodiment can improve the efficiency of the hydrogen compression operation when the user starts the first use.
  • the differential pressure (high pressure) generated by the electrochemical hydrogen pump causes the anode catalyst layer side of the first water repellent layer.
  • the main surface of the surface is provided with irregularities along the irregularities of the anode catalyst layer.
  • the first water-repellent layer is more likely to crack than the second water-repellent layer from the magnitude relationship of the unevenness between the first water-repellent layer and the second water-repellent layer.
  • the inflow and outflow of water between both main surfaces of the first water-repellent layer at the anode is more likely to be promoted through the cracks in the first water-repellent layer.
  • the hydrogen compression operation of the electrochemical hydrogen pump is performed before the user starts the first use, so that the electrolyte membrane of the electrochemical hydrogen pump is dried up when the user starts the first use. It will be possible to suppress it.
  • the occurrence of flooding at the anode is suppressed by providing the first water-repellent layer on the anode catalyst layer.
  • the first water-repellent layer the water existing at the anode easily moves out of the anode together with the hydrogen-containing gas due to the flow of the hydrogen-containing gas at the anode.
  • the lower the differential pressure generated by the electrochemical hydrogen pump the smaller the flux (jP) of the back-penetrating water moving from the cathode to the anode. Therefore, in the initial stage of the hydrogen compression operation of the electrochemical hydrogen pump, the cathode The amount of water present can be greater than the amount of water present at the anode. Then, condensed water is likely to be generated from the hydrogen-containing gas at the cathode, and the movement of the condensed water from the cathode to the anode is performed via the electrolyte membrane.
  • the electrochemical hydrogen pump of this embodiment by providing the second water-repellent layer on the cathode catalyst layer, even if the differential pressure generated by the electrochemical hydrogen pump becomes high, it exists outside the second water-repellent layer. It is considered that the movement of the condensed water to the electrolyte membrane can be appropriately suppressed.
  • the outside of the second water-repellent layer corresponds to the opposite side when the cathode catalyst layer side is the inside of the second water-repellent layer with reference to the second water-repellent layer.
  • the electrochemical hydrogen pump of this embodiment can improve the state in which excess water stays in the anode, so that the occurrence of flooding of the anode can be appropriately suppressed.
  • the hydrogen compression test is performed even though the thickness of the cathode catalyst layer and the anode catalyst layer are about the same (both thicknesses are between about 7 ⁇ m and 10 ⁇ m).
  • 3B and 3C show that the thicknesses of the cathode catalyst layer and the anode catalyst layer are clearly different. This has also been verified in the thickness measurement of the cathode catalyst layer and the anode catalyst layer.
  • the thickness of the cathode catalyst layer was 7.0 ⁇ m in the thin film portion and 9.9 ⁇ m in the thick film portion.
  • the thickness of the anode catalyst layer was 4.5 ⁇ m in the thin film portion and 6.7 ⁇ m in the thick film portion.
  • the void ratios of the cathode catalyst layer and the anode catalyst layer were about the same before the hydrogen compression test, when the hydrogen compression test was performed, the surface of the cathode catalyst layer was observed with an electron microscope (Fig.). From the comparison of 3D (see (a)) and electron microscopic observation of the surface of the anode catalyst layer (see (b) of FIG. 3D), the void ratio of the anode catalyst layer and the void ratio of the cathode catalyst layer are clearly different. The magnification of electron microscope observation in FIG. 3D can be grasped from the fact that the dimension L in the figure is about 600 nm.
  • the porosity of the cathode catalyst layer composed of pores of several to several hundred nm (here, with an electron microscope).
  • this porosity was about 14%.
  • the difference between the void ratio of the anode catalyst layer and the void ratio of the cathode catalyst layer is that the differential pressure (high pressure) generated in the cell is applied to the anode catalyst layer via the electrolyte membrane, so that the thickness of the anode catalyst layer is thick. It is thought that this occurs in the process of thinning. That is, it is considered that when the thickness of the anode catalyst layer becomes thin, the voids of the anode catalyst layer are crushed and the porosity of the anode catalyst layer becomes small. Then, such a phenomenon may be one of the factors for reducing the overvoltage of the cell in increasing the cathode pressure as the number of hydrogen compression tests increases.
  • the present inventors exhibit that making the porosity of the anode catalyst layer smaller than the porosity of the cathode catalyst layer has an advantageous effect on, for example, suppressing the dry-up of the electrolyte membrane. I'm guessing it might be.
  • the anode catalyst layer in any of the first to third aspects of the electrochemical hydrogen pump, may be thinner than the cathode catalyst layer. Further, in the electrochemical hydrogen pump of the fifth aspect of the present disclosure, in any of the first to fourth aspects of the electrochemical hydrogen pump, the anode catalyst layer may have a smaller void ratio than the cathode catalyst layer.
  • the thickness of the anode catalyst layer is changed to the thickness of the cathode catalyst layer by the differential pressure (high pressure) generated by the electrochemical hydrogen pump. Can be made thinner than. Then, it is considered that the voids of the anode catalyst layer are crushed in the process of thinning the thickness of the anode catalyst layer, and the porosity of the anode catalyst layer is reduced. The smaller the porosity of the anode catalyst layer, the smaller the water content present in the anode catalyst layer, but the diameter of the pores forming the voids of the anode catalyst layer can be reduced.
  • the holding power of water in the pores becomes stronger than in the case where the diameter is large.
  • water can be appropriately retained in the pores of the anode catalyst layer near the electrolyte membrane. Therefore, by performing the hydrogen compression operation of the electrochemical hydrogen pump before the user starts the first use, the dry-up of the electrolyte membrane of the electrochemical hydrogen pump when the user starts the first use is suppressed. It will be possible to do so.
  • the main surface of the electrolyte membrane on the cathode catalyst layer side is along the unevenness of the cross-sectional shape of the cathode catalyst layer. Unevenness is formed.
  • the main surface of the electrolyte membrane on the anode catalyst layer side has irregularities in the cross-sectional shape of the anode catalyst layer. Unevenness is formed along the surface.
  • the unevenness of the cross-sectional shape of the anode catalyst layer is larger than the unevenness of the cross-sectional shape of the cathode catalyst layer
  • the unevenness of the main surface of the electrolyte film on the anode catalyst layer side is the unevenness of the main surface of the electrolyte film on the cathode catalyst layer side. Greater than. And this is also verified in the surface roughness measurement described above. That is, the surface roughness of the former electrolyte membrane can be regarded as 11.3 ⁇ m, and the surface roughness of the latter electrolyte membrane can be regarded as 1.2 ⁇ m.
  • the difference in the unevenness provided on the pair of main surfaces of the electrolyte membrane is caused by the differential pressure generated in the cell being applied to the anode catalyst layer via the electrolyte membrane. It is presumed that such a phenomenon is accompanied by pore shrinkage in the electrolyte membrane, which may be one of the factors for the decrease in cell overvoltage in the cathode pressure increase due to the increase in the number of hydrogen compression tests. There is. That is, the present inventors consider making the unevenness of the main surface of the electrolyte membrane on the anode catalyst layer side larger than the unevenness of the main surface of the electrolyte membrane on the cathode catalyst layer side, for example, to suppress dry-up of the electrolyte membrane. On the other hand, it is speculated that it may have an advantageous effect.
  • the electrolyte membrane in any of the first to fifth aspects of the electrochemical hydrogen pump, is closer to the anode catalyst layer side than the main surface of the cathode catalyst layer side.
  • the main surface may have larger irregularities.
  • the differential pressure (high pressure) generated by the electrochemical hydrogen pump is provided on a pair of main surfaces of the electrolyte membrane.
  • the pores in the electrolyte membrane can be appropriately contracted.
  • the amount of reverse osmosis water that moves from the cathode catalyst layer to the anode catalyst layer due to the differential pressure generated by the electrochemical hydrogen pump can be suppressed, and water can be appropriately retained in the pores of the electrolyte membrane.
  • the electrochemical hydrogen pump according to the seventh aspect of the present disclosure is the electrochemical hydrogen pump according to any one of the first to sixth aspects, wherein the electrolyte membrane, the cathode catalyst layer and the anode catalyst are used before the user first starts using the hydrogen pump.
  • the cell containing the layer may retain water content equal to or higher than the water content in an atmosphere of 80% relative humidity at the temperature of the cell during the hydrogen compression operation of the electrochemical hydrogen pump.
  • the electrochemical hydrogen pump of this embodiment can retain water having a water content equal to or higher than the above in the cell if the hydrogen compression operation of the electrochemical hydrogen pump is performed before the user first starts using the pump.
  • the electrolyte membrane can be sufficiently humidified by performing the hydrogen compression operation of the electrochemical hydrogen pump before the user starts the first use, so that when the user starts the first use. It is possible to appropriately suppress the dry-up of the electrolyte membrane of the electrochemical hydrogen pump.
  • FIG. 4 is a diagram showing an example of an electrochemical hydrogen pump according to the first embodiment.
  • the electrochemical hydrogen pump 100 includes an electrolyte membrane 22, an anode catalyst layer 23, a cathode catalyst layer 24, and a voltage applyer 21.
  • the anode (electrode) of the electrochemical hydrogen pump 100 is composed of an anode catalyst layer 23 and an anode gas diffusion layer (not shown in FIG. 4).
  • the cathode (electrode) of the electrochemical hydrogen pump 100 is composed of a cathode catalyst layer 24 and a cathode gas diffusion layer (not shown in FIG. 4).
  • the electrolyte membrane 22 is a polymer membrane having a pair of main surfaces and having proton (H +) conductivity.
  • the electrolyte membrane 22 may have any structure as long as it is a polymer membrane having such proton conductivity.
  • a fluorine-based polymer electrolyte membrane and the like can be mentioned.
  • the electrolyte membrane 22 for example, Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Corporation) and the like can be used, but the electrolyte membrane 22 is not limited thereto.
  • the cathode catalyst layer 24 is provided on one main surface of the electrolyte membrane 22.
  • the cathode catalyst layer 24 may contain, for example, Pt as a catalyst metal, but is not limited thereto.
  • the anode catalyst layer 23 is provided on the other main surface of the electrolyte membrane 22.
  • the anode catalyst layer 23 may contain, for example, platinum (Pt) or the like as the catalyst metal, but is not limited thereto.
  • the cathode catalyst layer 24 and the anode catalyst layer 23 are not particularly limited as various methods can be mentioned as the catalyst preparation method.
  • examples of the catalyst carrier include conductive oxide powder and carbon-based powder.
  • examples of the carbon-based powder include powders such as graphite, carbon black, and activated carbon having electrical conductivity.
  • the method of supporting platinum or other catalytic metal on a carrier such as carbon is not particularly limited.
  • a method such as powder mixing or liquid phase mixing may be used.
  • Examples of the latter liquid phase mixing include a method in which a carrier such as carbon is dispersed in a colloidal catalyst component and adsorbed.
  • the supported state of the catalyst metal such as platinum on the carrier is not particularly limited.
  • the catalyst metal may be atomized and supported on a carrier with high dispersion.
  • the voltage applyer 21 is a device that applies a voltage between the anode catalyst layer 23 and the cathode catalyst layer 24.
  • the high potential of the voltage applyer 21 is applied to the anode catalyst layer 23, and the low potential of the voltage applyer 21 is applied to the cathode catalyst layer 24.
  • the voltage applyer 21 may have any configuration as long as a voltage can be applied between the anode catalyst layer 23 and the cathode catalyst layer 24.
  • the voltage applyer 21 may be a device that adjusts the voltage applied between the anode catalyst layer 23 and the cathode catalyst layer 24.
  • the voltage applyer 21 includes a DC / DC converter when connected to a DC power source such as a battery, a solar cell, or a fuel cell, and when connected to an AC power source such as a commercial power source. , AC / DC converter.
  • the voltage applyr 21 for example, the voltage applied between the anode catalyst layer 23 and the cathode catalyst layer 24, the anode catalyst layer 23, and the anode catalyst layer 23 so that the electric power supplied to the electrochemical hydrogen pump 100 becomes a predetermined set value. It may be a power supply type power source in which the current flowing between the cathode catalyst layers 24 is adjusted.
  • the voltage applyer 21 applies the above voltage to move hydrogen in the hydrogen-containing gas supplied on the anode catalyst layer 23 onto the cathode catalyst layer 24. And it is a device that boosts the voltage.
  • the hydrogen-containing gas may be, for example, a hydrogen gas generated by electrolysis of water or a reformed gas containing hydrogen.
  • the anode catalyst layer 23 has a larger unevenness in cross-sectional shape than the cathode catalyst layer 24 before the user starts the first use. .. Further, the anode catalyst layer 23 is thinner than the cathode catalyst layer 24. Further, the anode catalyst layer 23 has a smaller porosity than the cathode catalyst layer 24. Further, the electrolyte membrane 22 has larger irregularities on the main surface on the anode catalyst layer 23 side than on the main surface on the cathode catalyst layer 24 side.
  • the above configuration of the electrochemical hydrogen pump 100 is realized, for example, by performing a hydrogen compression operation (hereinafter, trial run) of the electrochemical hydrogen pump 100 before the user starts the first use.
  • the first use of the user means the first hydrogen compression operation of the electrochemical hydrogen pump 100 performed by the user after the electrochemical hydrogen pump 100 is shipped from the business operator to the user.
  • the cross-sectional shapes of the cathode catalyst layer 24 and the anode catalyst layer 23 are similar. Instead, by performing a trial run, the unevenness 200 of the cross-sectional shape of the anode catalyst layer 23 becomes larger than the unevenness 201 of the cross-sectional shape of the cathode catalyst layer 24. Further, even though the thicknesses of the cathode catalyst layer 24 and the anode catalyst layer 23 were about the same before the test run, the thickness TA of the anode catalyst layer 23 was reduced to the cathode catalyst layer 24 by the test run. It becomes thinner than the thickness TC.
  • the porosity of the anode catalyst layer 23 was changed to the cathode catalyst layer by the trial run. It is smaller than the porosity of 24.
  • the main surface of the electrolyte membrane 22 on the cathode catalyst layer side has irregularities in the cross-sectional shape of the cathode catalyst layer 24. Concavities and convexities along 201 are formed. Further, since the main surface of the anode catalyst layer 23 and the main surface of the electrolyte membrane 22 are in close contact with each other, the main surface of the electrolyte membrane 22 on the anode catalyst layer 23 side has irregularities 200 having a cross-sectional shape of the anode catalyst layer 23. Concavities and convexities are formed along.
  • the hydrogen compression operation of the electrochemical hydrogen pump 100 will be described with reference to FIG.
  • the following operations may be performed by, for example, a controller arithmetic circuit (not shown) from the controller storage circuit by a control program. However, it is not always essential to perform the following operations on the controller. The operator may perform some of the operations.
  • the hydrogen compression operation of the electrochemical hydrogen pump 100 is performed as a trial run as follows.
  • the hydrogen-containing gas is supplied to the anode of the electrochemical hydrogen pump 100, and the electric power of the voltage adapter 21 is supplied between the anode catalyst layer 23 and the cathode catalyst layer 24 of the electrochemical hydrogen pump 100.
  • hydrogen (H2) in the hydrogen-containing gas is separated into hydrogen ions (protons) and electrons by the oxidation reaction (formula (1)).
  • protons are conducted in the electrolyte membrane 22 and move to the cathode catalyst layer 24. Electrons move to the cathode catalyst layer 24 through the voltage adapter 21. Then, in the cathode catalyst layer 24, hydrogen molecules are regenerated by the reduction reaction (formula (2)).
  • the electrochemical hydrogen pump 100 is provided with a gas lead-out path (not shown) for leading out the hydrogen generated at the cathode to the outside of the cathode, and a gas lead-out path is provided by using a flow rate regulator on the gas lead-out path.
  • a gas lead-out path is provided by using a flow rate regulator on the gas lead-out path.
  • the flow rate regulator include a back pressure valve and a regulating valve provided in the gas lead-out path.
  • the difference in the electroosmotic water generated in the electrochemical hydrogen pump 100 from the anode to the cathode accompanied by the proton in the electrolyte membrane 22 is generated in the electrochemical hydrogen pump 100. It moves (back-penetrates) from the cathode to the anode by pressure.
  • the electrochemical hydrogen pump 100 of the present embodiment can improve the efficiency of the hydrogen compression operation when the user starts the first use.
  • the differential pressure (high pressure) generated by the electrochemical hydrogen pump 100 causes unevenness 200 in the cross-sectional shape of the anode catalyst layer 23.
  • the unevenness of the cross-sectional shape of the cathode catalyst layer 24 can be made larger than that of 201. Then, for example, it is presumed that the anode catalyst layer 23 is more likely to crack than the cathode catalyst layer 24.
  • the anode when the hydrogen-containing gas in a highly humidified state is supplied to the anode of the electrochemical hydrogen pump 100, the anode is compared to the case where the anode catalyst layer 23 is flat and has few cracks due to the presence of cracks in the anode catalyst layer 23. Moisture in the hydrogen-containing gas is easily supplied to the electrolyte membrane 22 through the cracks in the catalyst layer 23.
  • the electrolyte membrane 22 of the electrochemical hydrogen pump 100 is dried up when the user starts the first use. It is thought that it will be possible to suppress.
  • the thickness TA of the anode catalyst layer 23 is cathodeed by the differential pressure (high pressure) generated by the electrochemical hydrogen pump 100.
  • the thickness of the catalyst layer 24 can be made thinner than TC. Then, it is considered that the voids of the anode catalyst layer 23 are crushed in the process of thinning the thickness TA of the anode catalyst layer 23, and the porosity of the anode catalyst layer 23 becomes small. The smaller the porosity of the anode catalyst layer 23, the smaller the water content present in the anode catalyst layer 23, but the diameter of the pores forming the voids of the anode catalyst layer 23 can be reduced.
  • the holding power of water in the pores becomes stronger than in the case where the diameter is large.
  • water can be appropriately retained in the pores of the anode catalyst layer 23 in the vicinity of the electrolyte membrane 22. Therefore, by performing a trial run of the electrochemical hydrogen pump 100 before the user starts the first use, the electrolyte membrane 22 of the electrochemical hydrogen pump 100 when the user starts the first use can be dried up. It will be possible to suppress it.
  • the differential pressure (high pressure) generated by the electrochemical hydrogen pump 100 causes the pair of main surfaces of the electrolyte membrane 22 to be formed.
  • the pores in the electrolyte membrane 22 can be appropriately contracted.
  • the amount of reverse osmosis water that moves from the cathode to the anode due to the differential pressure generated by the electrochemical hydrogen pump 100 can be suppressed, and water can be appropriately retained in the pores of the electrolyte membrane 22. .. Therefore, by performing a trial run of the electrochemical hydrogen pump 100 before the user starts the first use, the electrolyte membrane 22 of the electrochemical hydrogen pump 100 when the user starts the first use can be dried up. It will be possible to suppress it.
  • FIG. 5 is a diagram showing an example of an electrochemical hydrogen pump according to an embodiment of the first embodiment.
  • the electrochemical hydrogen pump 100 includes an electrolyte membrane 22, an anode catalyst layer 23, a cathode catalyst layer 24, a voltage applyer 21, an anode gas diffusion layer 25, and a cathode gas diffusion layer 26.
  • the anode separator 27 and the cathode separator 28 are provided.
  • the electrolyte membrane 22, the anode catalyst layer 23, the cathode catalyst layer 24, and the voltage applyer 21 are the same as those of the electrochemical hydrogen pump 100 of the first embodiment, and thus the description thereof will be omitted.
  • the anode gas diffusion layer 25 is provided on the anode catalyst layer 23.
  • the anode gas diffusion layer 25 is made of, for example, a porous body and has corrosion resistance, conductivity, and gas diffusion. Further, the anode gas diffusion layer 25 is a high-rigidity material capable of suppressing displacement and deformation of components generated by the differential pressure between the anode and the cathode of the electrochemical hydrogen pump 100 during the hydrogen compression operation of the electrochemical hydrogen pump 100. It is preferable to configure it.
  • the anode gas diffusion layer 25 is composed of a porous body having corrosion resistance and conductivity such as a platinum-plated titanium (Ti) powder sintered body, but is not limited thereto.
  • the anode gas diffusion layer 25 may be water-repellent treated substantially evenly in a plane by, for example, impregnating a titanium powder sintered body with a water-repellent solution and firing it.
  • a water-repellent solution for example, a PTFE (polytetrafluoroethylene) solution or the like can be used, but the solution is not limited thereto.
  • a PTFE solution is used as the water-repellent solution, an appropriate amount of PTFE particles are attached to the surface of the titanium powder sintered body having a porous structure. As a result, the water repellency of the anode gas diffusion layer 25 is exhibited.
  • the cathode gas diffusion layer 26 is provided on the cathode catalyst layer 24. Further, the cathode gas diffusion layer 26 is made of a porous material and has conductivity and gas diffusivity. Further, it is desirable that the cathode gas diffusion layer 26 has elasticity so as to appropriately follow the displacement and deformation of the constituent members generated by the differential pressure between the cathode and the anode during the operation of the electrochemical hydrogen pump 100.
  • the cathode gas diffusion layer 26 is composed of a porous body provided with carbon fibers, but is not limited thereto.
  • the porous body may be, for example, a porous carbon fiber sheet such as carbon paper, carbon cloth, or carbon felt.
  • the cathode gas diffusion layer 26 may be water-repellent treated substantially evenly in a plane by, for example, impregnating a carbon fiber sheet with a water-repellent solution and firing it.
  • a water-repellent solution for example, a PTFE solution or the like can be used, but the solution is not limited thereto.
  • a PTFE solution is used as the water-repellent solution, an appropriate amount of PTFE particles are attached to the surface of the carbon fiber sheet having a porous structure. As a result, the water repellency of the cathode gas diffusion layer 26 is exhibited.
  • the anode separator 27 is a member provided on the anode gas diffusion layer 25.
  • the cathode separator 28 is a member provided on the cathode gas diffusion layer 26.
  • a recess is provided in the central portion of each of the anode separator 27 and the cathode separator 28.
  • An anode gas diffusion layer 25 and a cathode gas diffusion layer 26 are housed in each of these recesses.
  • the anode separator 27 and the cathode separator 28 are made of, for example, a metal member and have corrosion resistance and conductivity.
  • a sealing member is provided in the annular groove portion (not shown) of the anode separator 27 so as to surround the periphery of the anode catalyst layer 23, and the hydrogen-containing gas is appropriately sealed by this sealing member. .. Further, in a plan view, a sealing member is provided in the annular groove portion (not shown) of the cathode separator 28 so as to surround the periphery of the cathode catalyst layer 24, and hydrogen is appropriately sealed by this sealing member.
  • the anode separator 27 is provided with a hydrogen-containing gas inlet 29IN and a hydrogen-containing gas outlet 29OUT extending from the outer surface of the anode separator 27 to the main surface in the recess of the anode separator 27.
  • a serpentine-shaped anode gas flow path 29 including, for example, a plurality of U-shaped folded portions and a plurality of straight portions is provided on the main surface of the anode separator 27 in the recess, and the anode gas is provided.
  • One end of the flow path 29 communicates with the hydrogen-containing gas inlet 29IN, and the other end of the anode gas flow path 29 communicates with the hydrogen-containing gas outlet 29OUT.
  • such an anode gas flow path is an example and is not limited to this example.
  • the anode gas flow path may be composed of a plurality of linear flow paths.
  • the hydrogen-containing gas passes through the anode gas flow path 29 during the hydrogen compression operation of the electrochemical hydrogen pump 100, a part of the hydrogen-containing gas is supplied to the anode catalyst layer 23 through the anode gas diffusion layer 25. By doing so, the pressure of hydrogen in the hydrogen-containing gas is increased in the electrochemical hydrogen pump 100.
  • the cathode separator 28 is provided with a cathode gas outlet 40 extending from the outer surface of the cathode separator 28 to the main surface in the recess of the cathode separator 28.
  • the cathode gas outlet 40 is connected to a gas derivation path (not shown) through which high-pressure hydrogen boosted by the cathode of the electrochemical hydrogen pump 100 flows to the outside.
  • the high-pressure hydrogen boosted by the cathode of the electrochemical hydrogen pump 100 Is led out from the cathode gas outlet 40 through the gas lead-out path.
  • the electrochemical hydrogen pump 100 about 10 to 200 cells composed of MEA, an anode separator 27, and a cathode separator 28 are stacked to form a laminated body, and the laminated body is used as a current collector plate and an insulating plate. It may be sandwiched between the end plates and the both end plates may be fastened with a fastening rod or the like. The number of such cells can be set to an appropriate number based on the operating conditions of the electrochemical hydrogen pump 100.
  • sealing members such as O-rings and gaskets are provided from both sides of the MEA so that the high-pressure gas does not leak to the outside from the electrochemical hydrogen pump 100, and may be integrally assembled with the MEA in advance.
  • the above-mentioned conductive anode separator 27 and cathode separator 28 for mechanically fixing the MEA and electrically connecting the adjacent MEAs to each other in series are arranged.
  • the hydrogen-containing gas may be supplied to the electrochemical hydrogen pump 100 from an external hydrogen source having a predetermined supply pressure.
  • the external hydrogen source include a gas reservoir (for example, a gas cylinder), a gas supply infrastructure, and the like.
  • the hydrogen-containing gas may be generated by, for example, a reformer, a water electrolyzer, or the like.
  • the hydrogen boosted by the cathode of the electrochemical hydrogen pump 100 can be supplied to the hydrogen demander in a timely manner.
  • hydrogen demanders include fuel cells for home use and automobiles.
  • the configuration of the above-mentioned electrochemical hydrogen pump 100 and various members and devices are examples and are not limited to this example.
  • the total amount of hydrogen (H2) in the hydrogen-containing gas supplied to the anode through the hydrogen-containing gas inlet 29IN is boosted by the cathode without providing the hydrogen-containing gas outlet 29OUT in the anode separator 27.
  • a dead-end structure may be adopted.
  • the electrochemical hydrogen pump 100 of this embodiment may be the same as the electrochemical hydrogen pump 100 of the first embodiment except for the above features.
  • FIG. 6 is a diagram showing an example of an electrochemical hydrogen pump according to the second embodiment.
  • the electrochemical hydrogen pump 100 includes an electrolyte membrane 22, an anode catalyst layer 23, a cathode catalyst layer 24, a voltage applyer 21, a first water repellent layer 30, and a second water repellent layer. 31 and.
  • the anode (electrode) of the electrochemical hydrogen pump 100 is an anode catalyst layer 23, a first water repellent layer 30, and an anode gas diffusion layer (not shown in FIG. 6). It is configured.
  • the cathode (electrode) of the electrochemical hydrogen pump 100 is composed of a cathode catalyst layer 24, a second water repellent layer 31, and a cathode gas diffusion layer (not shown in FIG. 6).
  • the electrolyte membrane 22, the anode catalyst layer 23, the cathode catalyst layer 24, and the voltage applyer 21 are the same as those of the electrochemical hydrogen pump 100 of the first embodiment, and thus the description thereof will be omitted.
  • the first water-repellent layer 30 is a layer containing a water-repellent material provided on the anode catalyst layer 23.
  • the first water-repellent layer 30 may have any structure as long as it is a layer containing such a water-repellent material.
  • the first water-repellent layer 30 may be, for example, a microporous layer in which a conductive material and a water-repellent material are mixed.
  • the conductive material include, but are not limited to, carbon black.
  • examples of the water-repellent material include, but are not limited to, PTFE, FEP (tetrafluorinated / hexafluorinated propylene copolymer) and the like.
  • the second water-repellent layer 31 is a layer containing a water-repellent material provided on the cathode catalyst layer 24.
  • the second water-repellent layer 31 may have any structure as long as it is a layer containing such a water-repellent material.
  • the second water-repellent layer 31 may be, for example, a microporous layer in which a conductive material and a water-repellent material are mixed.
  • the conductive material include, but are not limited to, carbon black.
  • Examples of the water-repellent material include, but are not limited to, PTFE and FEP.
  • the main surface of the first water-repellent layer 30 on the anode catalyst layer 23 side is provided with irregularities 300 along the irregularities of the anode catalyst layer 23. There is. Further, the main surface of the first water-repellent layer 30 on the anode catalyst layer side has larger irregularities than the main surface of the second water-repellent layer 31 on the cathode catalyst layer 24 side.
  • the above configuration of the electrochemical hydrogen pump 100 is realized, for example, by performing a trial run of the electrochemical hydrogen pump 100 before the user starts the first use.
  • the details will be omitted because they can be easily understood from the electron microscope observation of the cell cross section described above and the description of the first embodiment.
  • the electrochemical hydrogen pump 100 of the present embodiment can improve the efficiency of the hydrogen compression operation when the user starts the first use.
  • the anode catalyst layer of the first water repellent layer 30 is generated by the differential pressure (high pressure) generated by the electrochemical hydrogen pump 100.
  • the main surface on the 23 side is provided with unevenness 300 along the unevenness of the anode catalyst layer 23.
  • the first water repellent layer 30 is cracked, for example, as compared with the second water repellent layer 31. Is presumed to occur easily.
  • the electrolyte membrane 22 of the electrochemical hydrogen pump 100 is dried up when the user starts the first use. It is thought that it will be possible to suppress.
  • the first water-repellent layer 30 is provided on the anode catalyst layer 23 to suppress the occurrence of flooding at the anode. Specifically, for example, in the first water-repellent layer 30, the water existing at the anode easily moves out of the anode together with the hydrogen-containing gas due to the flow of the hydrogen-containing gas at the anode.
  • the lower the differential pressure generated by the electrochemical hydrogen pump 100 the smaller the flux (jP) of the back-penetrating water moving from the cathode to the anode. Therefore, in the initial stage of the hydrogen compression operation of the electrochemical hydrogen pump 100, The amount of water present at the cathode can be greater than the amount of water present at the anode. Then, condensed water is likely to be generated from the hydrogen-containing gas at the cathode. The movement of the condensed water from the cathode to the anode is performed via the electrolyte membrane 22.
  • the second water repellent layer 31 on the cathode catalyst layer 24, even if the differential pressure generated by the electrochemical hydrogen pump 100 becomes high, the second water repellent layer 31 is provided. It is considered that the movement of the condensed water existing on the outside of the layer 31 to the electrolyte membrane 22 can be appropriately suppressed.
  • the electrochemical hydrogen pump 100 of the present embodiment can improve the state in which excess water stays in the anode, so that the occurrence of flooding of the anode can be appropriately suppressed.
  • the electrochemical hydrogen pump 100 of the present embodiment may be the same as the electrochemical hydrogen pump 100 of the first embodiment or the first embodiment except for the above-mentioned features.
  • the water content of the cell including the electrolyte membrane 22, the cathode catalyst layer 24 and the anode catalyst layer 23 is retained as follows before the user first starts using the hydrogen pump 100. Other than that, it is the same as the electrochemical hydrogen pump 100 of the first embodiment.
  • the above cells are placed in an atmosphere of 80% relative humidity at the temperature of the cells during the hydrogen compression operation of the electrochemical hydrogen pump 100 before the user first starts using the hydrogen pump 100. Retains more water than the water content of.
  • the water content of the cell can be derived as follows by dividing the weight change before and after drying by the weight after drying.
  • a laminate of a catalyst layer and a gas diffusion layer or a laminate of a catalyst layer, a microporous layer (water repellent layer), and a gas diffusion layer is provided on both sides of the electrolyte membrane.
  • a microporous layer water repellent layer
  • a gas diffusion layer is provided on both sides of the electrolyte membrane.
  • the hydrogen compression test was performed four times using the cell having the same structure as the cell used in the hydrogen compression test, and the water content A of the cell was derived by the following method. ..
  • the weight (W1) of the cell was measured before the cell was dried.
  • the water content B corresponding to the water content of the cell in an atmosphere of 80% relative humidity at the temperature of the cell during the hydrogen compression operation of the electrochemical hydrogen pump 100 was derived by the following method.
  • the temperature of the cell was set to 50 ° C., and a hydrogen-containing gas having a relative humidity of 80% at this temperature (50 ° C.) was circulated until the weight of the cell became constant.
  • the electrochemical hydrogen pump 100 of the present embodiment retains water having a water content of B or more in the cell when the hydrogen compression operation of the electrochemical hydrogen pump 100 is performed before the user first starts using the hydrogen pump 100. I can let you.
  • the electrolyte membrane 22 can be sufficiently humidified by performing the hydrogen compression operation of the electrochemical hydrogen pump 100 before the user starts the first use, so that the user starts the first use. It is possible to suppress the dry-up of the electrolyte membrane 22 of the electrochemical hydrogen pump 100 at the time of the operation.
  • the electrochemical hydrogen pump 100 of the present embodiment may be the same as the electrochemical hydrogen pump 100 of any of the first embodiment, the first embodiment, and the second embodiment except for the above-mentioned features. ..
  • first embodiment, the first embodiment, the second embodiment, and the third embodiment may be combined with each other as long as the other party is not excluded from each other.
  • One aspect of the present disclosure can be applied to an electrochemical hydrogen pump that can improve the efficiency of hydrogen compression operation when the user starts the first use.
  • Electrochemical hydrogen pump 200 Concavo-convex 201: Concavo-convex 300: Concavo-convex 301: Concavo-convex

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Combustion & Propulsion (AREA)
  • Urology & Nephrology (AREA)
  • Health & Medical Sciences (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

電気化学式水素ポンプは、一対の主面を備える電解質膜と、電解質膜の一方の主面に設けられたカソード触媒層と、電解質膜の他方の主面に設けられアノード触媒層と、カソード触媒層およびアノード触媒層の間に電圧を印加する電圧印加器と、を備え、電圧印加器が上記の電圧を印加することで、アノード触媒層上に供給された水素含有ガス中の水素を、カソード触媒層上に移動させ、かつ昇圧する。使用者が最初の使用を開始する前に、カソード触媒層よりもアノード触媒層の方が、断面形状の凹凸が大きい。

Description

電気化学式水素ポンプ
 本開示は電気化学式水素ポンプに関する。
 近年、燃費向上、カーボンフリー燃料の利用の観点から、燃料電池により発電された電力でモーターを駆動して走行する燃料電池車が注目を集めており、発売が開始されている。しかし、燃料電池車の普及にあたっては、燃料となる水素供給のインフラストラクチャを整え、全国に水素ステーションをいかに多く広範囲に設置できるかが課題となっている。これまで、水素ステーションとして、圧力スイング吸着法(PSA)で、水素を精製および圧縮する方法などが行われてきたが、装置の大型化および膨大な設置コストなどが、水素ステーションの全国展開の障害となっている。
 来るべき水素社会では、水素を製造することに加えて、水素を高密度で貯蔵し、小容量かつ低コストで輸送または利用し得る技術開発が求められている。特に、分散型のエネルギー源となる燃料電池の普及の促進には、燃料供給インフラを整備する必要がある。また、燃料供給インフラに水素を安定的に供給するために、高純度の水素を精製および昇圧する様々な提案が行われている。
 例えば、特許文献1には、電解質膜が挟持されたアノードとカソードとの間の電圧印加によって、水素の精製および昇圧が行われる水素精製昇圧システムが記載されている。具体的には、アノードとカソードとの間に電流が流れるとき、アノードの水素がプロトンになり、プロトンがアノードからカソードへと、水分子を同伴しながら電解質膜を移動する。なお、アノード、電解質膜およびカソードの積層構造体を膜電極接合体(以下、MEA:Membrane Electrode Assembly)という。
 また、固体高分子形の電解質膜を備えるMEAのアノードとカソード間に電圧をかけて、アノード側に供給された水を電気分解することで、アノード側で酸素、カソード側で水素を製造する高圧水素製造装置が提案されている(例えば、特許文献2参照)。そして、この高圧水素製造装置には、電解質膜およびアノード給電体の変形に対して、カソード給電体を電解質膜に密着させるための皿バネまたはコイルバネが設けられている。
特開2015-117139号公報 特開2006-70322号公報
 本開示は、一例として、使用者が最初の使用を開始する際に水素圧縮動作の効率を従来よりも向上し得る電気化学式水素ポンプを提供することを課題する。
 本開示の一態様(aspect)の電気化学式水素ポンプは、一対の主面を備える電解質膜と、前記電解質膜の一方の主面に設けられたカソード触媒層と、前記電解質膜の他方の主面に設けられアノード触媒層と、前記カソード触媒層および前記アノード触媒層の間に電圧を印加する電圧印加器と、を備え、前記電圧印加器が前記電圧を印加することで、前記アノード触媒層上に供給された水素含有ガス中の水素を、前記カソード触媒層上に移動させ、かつ昇圧する電気化学式水素ポンプであって、使用者が最初の使用を開始する前に、前記カソード触媒層よりも前記アノード触媒層の方が、断面形状の凹凸が大きい。
 本開示の一態様の電気化学式水素ポンプは、使用者が最初の使用を開始する際に水素圧縮動作の効率を従来よりも向上し得るという効果を奏することができる。
図1は、水分の化学ポテンシャルの一例を相対湿度との関係において示す図である。 図2は、水素圧縮試験の繰り返しに伴うセルの性能試験結果の一例を示す図である。 図3Aは、電子顕微鏡観察によるセル断面の一例を模写した図である。 図3Bは、電子顕微鏡観察によるセル断面の一例を模写した図である。 図3Cは、電子顕微鏡観察によるセル断面の一例を模写した図である。 図3Dは、電子顕微鏡観察による触媒層表面の一例を模写した図である。 図4は、第1実施形態の電気化学式水素ポンプの一例を示す図である。 図5は、第1実施形態の実施例の電気化学式水素ポンプの一例を示す図である。 図6は、第2実施形態の電気化学式水素ポンプの一例を示す図である。
 電気化学式水素ポンプの電解質膜のドライアップ、アノードにおけるフラッディングを軽減する視点から水素圧縮動作の効率を向上するための検討が行われ、以下の知見が得られた。
 なお、従来例では、電気化学式水素ポンプの触媒層と給電体との間の電気的接触を改善する視点から水素圧縮動作の効率を向上することが検討されているが、上記のドライアップおよびフラッディングを軽減する視点から水素圧縮動作の効率を向上することは検討されていない。
 電気化学式水素ポンプが、固体高分子形の電解質膜を備える場合、電気化学的に水素を精製および昇圧する際に、電気化学式水素ポンプの電解質膜の湿潤状態、電極における水の状態によりポンプ性能(過電圧を指標とする効率性能)が左右される。
 具体的には、例えば、電気化学式水素ポンプの電解質膜の水分が不足する場合、電解質膜のプロトン伝導性が低下する。すると、電気化学式水素ポンプの水素圧縮動作時の電気エネルギーが大きくなるので、電気化学式水素ポンプの水素圧縮動作の効率が低下する。
 逆に、例えば、電気化学式水素ポンプのアノードにおいて水分が過剰である場合、アノードガス中の水蒸気が凝縮することで、凝縮水により電気化学式水素ポンプのガス流路の閉塞(フラッディング)が発生する可能性がある。すると、アノードにおける水素の拡散性が阻害される恐れがある。この場合、所望のプロトン移動を確保するためのポンプ動作に必要な電力が増加するので、電気化学式水素ポンプの水素圧縮動作の効率が低下する。
 ここで、電気化学式水素ポンプの水素圧縮動作中、アノードからカソードにプロトンと同伴して移動(電気浸透)した水が、電気化学式水素ポンプで発生する差圧によってカソードからアノードへ移動(逆浸透)する。これにより、アノードにおいて上記のフラッディングを引き起こすことが多い。
 前者の水の電気浸透は、電解質膜におけるプロトン伝導に伴って発生する。後者の水の逆浸透は、アノードおよびカソード間の水の化学ポテンシャルの差によって引き起こされ、この化学ポテンシャルの差が、電気化学式水素ポンプで発生する差圧に依存(例えば、比例)する。
 ところで、高圧状態の水蒸気の化学ポテンシャルは、本開示者らの知る限り報告されていない。このため、例えば、65℃および20MPaGにおける水の化学ポテンシャル(Uliq_338)を、65℃および常圧における公知の水の化学ポテンシャル(U0liq_338)と、「Job G. et. al., Eur. J. Phys., 27 353 (2006)」で報告された以下の式とによって計算するとともに、このような水の化学ポテンシャル(Uliq_338)から、公知の手法に基づいて65℃および20MPaGにおける水蒸気の化学ポテンシャルを算出した。
Uliq_338 = U0liq_338+δ × [P(z)-PSTD]
 上記の式において、δは「1.990 J mol-1 atm-1」であり、P(z)は水に対する加圧力であり、PSTDは、常圧である。
 そして、水蒸気の相対湿度(%)を横軸にとり、65℃および20MPaGにおける水蒸気の化学ポテンシャルを、65℃および常圧の水蒸気の化学ポテンシャルと比較すると、これらの化学ポテンシャル図(図1)が得られた。
 つまり、電気化学式水素ポンプの電解質膜における水の移動量は、図1の電解質膜のプロトン伝導に伴って発生する電気浸透水の流束(jEOD)と、図1のアノードおよびカソード間の化学ポテンシャルの差によって発生する逆浸透水の流束(jP)との間のバランスによって決定される。この場合、仮に、アノードに水素含有ガスをフル加湿(相対湿度:100%)の状態で供給した場合でも、カソードが高圧の場合はアノードおよびカソード間の水の化学ポテンシャルが等しくなるまで、カソードにおける水素含有ガスの相対湿度が低下する方向に、電解質膜に対して水の逆浸透駆動力が働く。例えば、図1に示す例では、20MPaGのカソードにおける相対湿度がHになるまで、電解質膜に対して水の逆浸透駆動力が働き、この水の逆浸透駆動力は、カソードの水素含有ガスの高圧化とともに大きくなる。
 ここで、電解質膜におけるプロトン伝導に伴って発生する電気浸透水の流束(jEOD)が電気化学式水素ポンプで発生する差圧に依存しないと仮定する。すると、電気浸透水の流束(jEOD)と逆浸透水の流束(jP)とが拮抗している場合、例えば、電気化学式水素ポンプの水素圧縮動作において、カソードの圧力が低圧では、カソードに存在する水の量(以下、カソード水量)がアノードに存在する水の量(以下、アノード水量)よりも多くなり(カソード水分量>アノード水分量)、高圧では、カソード水量がアノード水量よりも少なくなる可能性がある(カソード水分量<アノード水分量)。
 一般に、電気浸透水の流束(jEOD)は電解質膜の膜厚に依存しない量であるが、逆浸透水の流束(jP)は、電解質膜の膜厚が薄いほど大きいので、カソード水量とアノード水量との間で上記の逆転現象が生じる圧力は、電解質膜の膜厚が薄いほど低下する。
 そして、以上の逆転現象が、例えば、カソード側における電解質膜のドライアップの一要因になり得ると考えられる。また、例えば、アノードにおけるフラッディングの一要因にもなり得ると考えられる。
 そこで、本開示者らは、以上の電気化学式水素ポンプの問題を確認すべく、以下の試験装置を用いて、電気化学式水素ポンプの水素圧縮動作の性能試験を行い、この試験結果から以下の現象を見出した。
 <試験装置>
 試験装置は、電解質膜と、電解質膜の両側のそれぞれに積層された触媒層、マイクロポーラス層およびガス拡散層と、電圧印加器と、を備える。なお、電解質膜、触媒層、マイクロポーラス層およびガス拡散層の積層体が電気化学式水素ポンプのセルに相当する。また、セルの高圧側領域がカソードに相当し、セルの低圧側領域がアノードに相当する。
 電解質膜として、膜厚が約50μmの市販のフッ素系高分子電解質膜を使用した。
 カソードおよびアノードとも、同一断面形状の触媒層を使用するともに、これらの触媒層には、触媒金属として、0.3mg/cm2の白金を使用した。
 カソードのガス拡散層として、撥水処理が施されたカーボンフェルトを使用した。
 アノードのガス拡散層として、撥水処理が施されたチタン粉末焼結体を使用した。
 なお、電圧印加器は、セルのアノードおよびカソード間に電圧を印加する装置である。また、マイクロポーラス層は、撥水性材料(例えば、PTFE)とカーボンブラックとを含む撥水層である。なお、便宜上、アノード側のマイクロポーラス層を第1マイクロポーラス層といい、カソード側のマイクロポーラス層を第2マイクロポーラス層という。
 <試験手順>
 まず、セルの温度を約65℃に設定するとともに、相対湿度が約100%のフル加湿の水素含有ガスをアノードに供給した。そして、カソードを開放状態(常圧)で、アノードおよびカソード間を電流密度換算で1A/cm2の一定の電流が流れるように電圧印加器を制御することで、一晩、電解質膜を十分に加湿した。
 次に、セルの温度を50℃に設定するとともに、露点が55℃の水素含有ガスをアノードに供給した。そして、アノードおよびカソード間を電流密度換算で1A/cm2の一定の電流が流れるように電圧印加器を制御することで、アノードに供給した水素含有ガス中の約70%程度の水素がカソードに移動する条件において、カソードを開放状態から封止状態に切り替え、カソードのガス圧が40MPaに到達するまでのセルの水素圧縮動作(以下、水素圧縮試験)を行った。このような水素圧縮試験は、カソードの再開放および再封止を伴いながら複数回に亘って繰り返され、図2の試験結果が得られた。
 なお、セルの過電圧が所定の閾値(ここでは、0.5V)に到達したときは、水素圧縮動作の継続を止めた後、次回の水素圧縮試験を行った。
 <試験結果>
 図2は、水素圧縮試験の繰り返しに伴うセルの性能試験結果の一例を示す図である。図2の右側の縦軸は、セルの抵抗(mΩ)が示され、左側の縦軸は、セルの過電圧(V)が示されている。図2の横軸には、水素圧縮試験の回数が取られている。
 図2には、水素圧縮試験が4回目以降において、カソード高圧状態(40MPaG)におけるセルの抵抗(点線)が示され、同状態における水素圧縮試験の回数毎のセルの過電圧(白菱形)がプロットされている。また、比較例として、カソードが開放状態(常圧)におけるセルの抵抗(実線)が示され、同状態における水素圧縮試験の回数毎のセルの過電圧(黒菱形)がプロットされている。
 なお、図2に示すように、水素圧縮試験が3回目までは、カソードが高圧状態(40MPaG)におけるセルの抵抗および過電圧は測定しなかった。この理由は、カソードのガス圧が40MPaGになる前に、セルの過電圧が閾値(0.5V)に到達したからである。具体的には、水素圧縮試験が1回目および2回目の場合、カソードのガス圧が38MPaGにおいて、セルの抵抗および過電圧がそれぞれ、6.6mΩおよび0.5Vであった。また、水素圧縮試験が3回目の場合、カソードのガス圧が34MPaGにおいて、セルの抵抗および過電圧がそれぞれ、4.9mΩおよび0.5Vであった。
 ところが、水素圧縮試験が4回目以降においては、カソードのガス圧が40MPaGに到達したときも、セルの過電圧が、所定の閾値(0.5V)を下回るようになった。具体的には、例えば、水素圧縮試験が4回目の場合、図2に示すように、カソードのガス圧が40MPaGにおいて、セルの抵抗および過電圧がそれぞれ、4.0mΩおよび0.35Vであった。その後、水素圧縮試験の回数が、8回目まで増えるに連れて、セルの抵抗および過電圧がそれぞれ、減少する傾向を示した。
 これに対して、カソードが開放状態(常圧)におけるセルの抵抗は、水素圧縮試験が1回目から8回目の間において、2.1mΩ程度の低い値のまま変化せず、カソードが開放状態(常圧)におけるセルの過電圧は、水素圧縮試験が1回目の0.119Vから、水素圧縮試験の回数が増えるに連れて、僅かな上昇傾向を示した。
 以上の試験結果から、本開示者らは、水素圧縮試験の4回目~8回目の間の回数の増加(以下、水素圧縮試験の回数増加)に伴うカソード高圧化におけるセルの過電圧減少は、セル抵抗の減少が一緒に起こることから、電解質膜のドライアップが、4回目~8回目の間で水素圧縮試験を繰り返すに連れて抑制されているのではないかと推察した。つまり、セル抵抗に直結する電解質膜の抵抗は、電解質膜の湿潤状態に相関しており、セル抵抗の減少は、電解質膜の湿潤状態が改善しているからであると考えた。このため、水素圧縮試験が行われる前、電解質膜を十分に加湿したにも拘わらず、水素圧縮試験を行うと、セル抵抗減少が起きるのは、1回目~3回目の水素圧縮試験において何らかの要因で電解質膜がドライアップしたからではないかと推察した。
 <セル断面の電子顕微鏡観察>
 そこで、水素圧縮試験の回数増加に伴うカソード高圧化におけるセルの過電圧減少の要因を探るべく、同一構造の他のセルを用いて、上記と同様に、4回の水素圧縮試験を行い、セル断面および触媒層表面を電子顕微鏡で観察した。
 図3A、図3Bおよび図3Cは、電子顕微鏡観察によるセル断面の一例を模写した図である。図3Aには、電子顕微鏡観察によるセルのアノード触媒層およびカソード触媒層の両方の断面を模写した図が示され、図3Aの電子顕微鏡観察の倍率は、図中の寸法Lが約60μmであることから把握することができる。図3Bおよび図3Cにはそれぞれ、電子顕微鏡観察によるセルのカソード触媒層およびアノード触媒層のそれぞれの断面を模写した図が示され、図3Bおよび図3Cの電子顕微鏡観察の倍率は、図中の寸法Lが約15μmであることから把握することができる。
 水素圧縮試験が行われる前は、カソード触媒層およびアノード触媒層の断面形状が同程度であったにも拘わらず、水素圧縮試験を行うと、図3Bおよび図3Cでは、カソード触媒層の断面形状とアノード触媒層の断面形状とが明らかな相違する。そして、このことは、カソード触媒層およびアノード触媒層の表面粗さ測定においても検証されている。
 具体的には、例えば、倍率が2000倍において、第2マイクロポーラス層に接触するカソード触媒層の表面および電解質膜に接触するカソード触媒層の表面をそれぞれ120μmに亘って観察することで、これらの表面粗さ(Rz)を求めたところ、前者の表面粗さは2.9μmであり、後者の表面粗さは1.2μmであった。
 これに対して、例えば、倍率が1000倍において、第1マイクロポーラス層に接触するアノード触媒層の表面および電解質膜に接触するアノード触媒層のそれぞれの表面を240μmに亘って観察することで、これらの表面粗さ(Rz)を求めたところ、前者の表面粗さは10.0μmであり、後者の表面粗さは11.3μmであった。
 以上のカソード触媒層およびアノード触媒層に設けられた凹凸の違いは、セルで発生する差圧(高圧)が、電解質膜を介してアノード触媒層に付与されたことで生じていると考えられる。そして、このような現象が、水素圧縮試験の回数増加に伴うカソード高圧化におけるセルの過電圧減少の一要因になっている可能性がある。なお、セルで発生する差圧で、上記凹凸の違いが生じているとすれば、水素圧縮試験の回数を増加させなくても、水素圧縮試験での水素圧縮動作期間を長くすれば、同様にセルの過電圧が減少すると推察される。ここで、本開示者らは、アノード触媒層の断面形状の凹凸がカソード触媒層の断面形状の凹凸よりも大きいことが、例えば、電解質膜のドライアップの抑制に対して有利な作用効果を発揮しているのではないかと推察している。
 すなわち、本開示の第1態様の電気化学式水素ポンプは、一対の主面を備える電解質膜と、電解質膜の一方の主面に設けられたカソード触媒層と、電解質膜の他方の主面に設けられアノード触媒層と、カソード触媒層およびアノード触媒層の間に電圧を印加する電圧印加器と、を備え、電圧印加器が上記の電圧を印加することで、アノード触媒層上に供給された水素含有ガス中の水素を、カソード触媒層上に移動させ、かつ昇圧する装置であって、使用者が最初の使用を開始する前に、カソード触媒層よりもアノード触媒層の方が、断面形状の凹凸が大きい。
 かかる構成によると、本態様の電気化学式水素ポンプは、使用者が最初の使用を開始する際に水素圧縮動作の効率を従来よりも向上し得る。
 ここで、使用者とは、電気化学式水素ポンプを繰り返し、継続的に使用する者である。従って、使用者が最初の使用を開始する前に実行される試運転を行う者は、使用者に含まれない。使用者は、例えば、電気化学式水素ポンプの購入者、電気化学式水素ポンプを購入した組織、もしくは、電気化学式水素ポンプの購入者または購入した組織から使用許可を得た者または組織が挙げられる。
 例えば、使用者が最初の使用を開始する前に、電気化学式水素ポンプの水素圧縮動作を行うと、電気化学式水素ポンプで発生する差圧(高圧)によってアノード触媒層の断面形状の凹凸をカソード触媒層の断面形状の凹凸よりも大きくすることができる。すると、例えば、アノード触媒層は、カソード触媒層よりも亀裂が生じやすいと推察される。ここで、アノード触媒層に、高加湿状態の水素含有ガスを供給する場合、アノード触媒層の亀裂の存在により、アノード触媒層が平坦で亀裂が少ない場合に比べて、アノード触媒層の亀裂を介して、水素含有ガス中の水分が電解質膜に供給されやすくなる。これにより、使用者が最初の使用を開始する前に、電気化学式水素ポンプの水素圧縮動作を行うことで、使用者が最初の使用を開始する際の電気化学式水素ポンプの電解質膜のドライアップを抑制することが可能になると考えられる。
 図3Cに示すように、第1マイクロポーラス層(撥水層)の主面とアノード触媒層の主面とが密着しているので、第1マイクロポーラス層のアノード触媒層側の主面には、アノード触媒層の断面形状の凹凸に沿った凹凸が形成されている。
 また、図3Bに示すように、第2マイクロポーラス層(撥水層)の主面とカソード触媒層の主面とが密着しているので、第2マイクロポーラス層のカソード触媒層側の主面には、カソード触媒層の断面形状の凹凸に沿った凹凸が形成されている。
 そして、アノード触媒層の断面形状の凹凸がカソード触媒層の断面形状の凹凸よりも大きいので、第1マイクロポーラス層のアノード触媒層側の主面の凹凸は、第2マイクロポーラス層のカソード触媒層側の主面の凹凸よりも大きい。そして、このことは、これらのマイクロポーラス層の表面粗さ測定においても検証されている。
 具体的には、例えば、倍率が2000倍において、第2マイクロポーラス層のカソード触媒層側の表面を120μmに亘って観察することで、この表面粗さ(Rz)を求めたところ、表面粗さは2.9μmであった。
 これに対して、例えば、倍率が1000倍において、第1マイクロポーラス層のアノード触媒層側の表面を240μmに亘って観察することで、この表面粗さ(Rz)を求めたところ、表面粗さは10.0μmであった。
 以上の第1マイクロポーラス層の主面に設けられた凹凸は、セルで発生する差圧(高圧)が、電解質膜を介してアノード触媒層に付与されたことで生じていると考えられる。そして、このような現象が、水素圧縮試験の回数増加に伴うカソード高圧化におけるセルの過電圧減少の一要因になっている可能性がある。つまり、本開示者らは、第1マイクロポーラス層のアノード触媒層側の主面にアノード触媒層の凹凸に沿った凹凸を設けることが、例えば、電解質膜のドライアップの抑制に対して有利な作用効果を発揮しているのではないかと推察している。また、第1マイクロポーラス層のアノード触媒層側の主面の凹凸を、第2マイクロポーラス層のカソード触媒層側の主面の凹凸よりも大きくすることが、例えば、電解質膜のドライアップの抑制に対して有利な作用効果を発揮しているのではないかと推察している。
 すなわち、本開示の第2態様の電気化学式水素ポンプは、第1態様の電気化学式水素ポンプにおいて、アノード触媒層上に設けられた、撥水性材料を含む第1撥水層を備え、第1撥水層のアノード触媒層側の主面は、アノード触媒層の凹凸に沿って凹凸が設けられていてもよい。また、本開示の第3態様の電気化学式水素ポンプは、第2態様の電気化学式水素ポンプにおいて、カソード触媒層上に設けられた、撥水性材料を含む第2撥水層を備え、第1撥水層のアノード触媒層側の主面は、第2撥水層のカソード触媒層側の主面よりも凹凸が大きくてもよい。
 かかる構成によると、本態様の電気化学式水素ポンプは、使用者が最初の使用を開始する際に水素圧縮動作の効率を従来よりも向上し得る。
 例えば、使用者が最初の使用を開始する前に、電気化学式水素ポンプの水素圧縮動作を行うと、電気化学式水素ポンプで発生する差圧(高圧)によって、第1撥水層のアノード触媒層側の主面には、アノード触媒層の凹凸に沿って凹凸が設けられる。この場合、第1撥水層と第2撥水層との間の凹凸の大小関係から、第1撥水層は、第2撥水層に比べて亀裂が生じやすいと推察される。すると、第1撥水層では、第2撥水層に比べて、第1撥水層の亀裂を介して、アノードにおける第1撥水層の両主面間の水の出入りが促進されやすい。これにより、使用者が最初の使用を開始する前に、電気化学式水素ポンプの水素圧縮動作を行うことで、使用者が最初の使用を開始する際の電気化学式水素ポンプの電解質膜のドライアップを抑制することが可能になると考えられる。
 なお、電気化学式水素ポンプで発生する差圧が高いほど、カソードからアノードに移動する逆浸透水の流束(jP)が大きい。よって、電気化学式水素ポンプの水素圧縮動作が進行すると、アノードに存在する水分がカソードに存在する水分に比べて多量になる可能性がある。すると、アノードへの逆浸透水によってアノードのフラッディングが発生しやすくなる。そして、このようなフラッディングが発生することにより、アノードで水素の拡散性が阻害される場合、電気化学式水素ポンプの拡散抵抗が増加する可能性があるので、電気化学式水素ポンプの水素圧縮動作の効率が低下する恐れがある。
 そこで、本態様の電気化学式水素ポンプは、アノード触媒層上に第1撥水層を設けることで、アノードでフラッディングが発生することを抑制している。具体的には、例えば、第1撥水層では、アノードに存在する水は、アノードの水素含有ガスの流れによって、水素含有ガスとともにアノード外に移動しやすい。
 逆に、電気化学式水素ポンプで発生する差圧が低いほど、カソードからアノードに移動する逆浸透水の流束(jP)が小さいので、電気化学式水素ポンプの水素圧縮動作の初期段階では、カソードに存在する水分がアノードに存在する水分に比べて多量になる可能性がある。すると、カソードにおいて水素含有ガスから凝縮水が発生しやすく、この凝縮水のカソードからアノードへの移動は電解質膜を介して行われる。
 そこで、本態様の電気化学式水素ポンプは、カソード触媒層上に第2撥水層を設けることで、電気化学式水素ポンプで発生する差圧が高くなっても、第2撥水層の外側に存在する凝縮水が電解質膜に移動することを適切に抑制することができると考えられる。なお、第2撥水層の外側とは、第2撥水層を基準にして、カソード触媒層側を第2撥水層の内側としたときの反対側に相当する。
 以上により、本態様の電気化学式水素ポンプは、アノードに過剰な水が滞留する状態を改善できるので、アノードのフラッディング発生を適切に抑制することができる。
 ところで、水素圧縮試験が行われる前は、カソード触媒層およびアノード触媒層の厚みが同程度(いずれの膜厚も約7μm~10μm程度の間)であったにも拘わらず、水素圧縮試験を行うと、図3Bおよび図3Cでは、カソード触媒層とアノード触媒層の厚みとが明らかに相違する。そして、このことは、カソード触媒層およびアノード触媒層の厚み測定においても検証されている。
 具体的には、カソード触媒層については、薄膜部分では、厚みが7.0μmであり、厚膜部分では、厚みが9.9μmであった。
 これに対して、アノード触媒層については、薄膜部分では、厚みが4.5μmであり、厚膜部分では、厚みが6.7μmであった。
 また、水素圧縮試験が行われる前は、カソード触媒層およびアノード触媒層の空隙率が同程度であったにも拘わらず、水素圧縮試験を行うと、カソード触媒層の表面の電子顕微鏡観察(図3Dの(a)参照)およびアノード触媒層の表面の電子顕微鏡観察(図3Dの(b)参照)の比較から、アノード触媒層の空隙率とカソード触媒層の空隙率とが明らかに相違する。なお、図3Dの電子顕微鏡観察の倍率は、図中の寸法Lが約600nmであることから把握することができる。
 そして、以上のことは、カソード触媒層およびアノード触媒層の空隙率測定においても検証されている。
 具体的には、例えば、倍率が10万倍において、カソード触媒層の表面を観察することで、数~数百nmの細孔で構成されるカソード触媒層の空隙率(ここでは、電子顕微鏡で撮った断面写真から得られる空隙部分の断面の割合;以下、同じ。)を求めると、この空隙率が約34%であった。
 これに対して、例えば、倍率が10万倍において、アノード触媒層の表面を観察することで、アノード触媒層の空隙率を求めると、この空隙率が約14%であった。
 なお、アノード触媒層の空隙率とカソード触媒層の空隙率の相違は、セルで発生する差圧(高圧)が、電解質膜を介してアノード触媒層に付与されたことで、アノード触媒層の厚みが薄くなる過程で生じていると考えられる。つまり、アノード触媒層の厚みが薄くなるとき、アノード触媒層の空隙が潰れ、アノード触媒層の空隙率が小さくなると考えられる。そして、このような現象が、水素圧縮試験の回数増加に伴うカソード高圧化におけるセルの過電圧減少の一要因になっている可能性がある。つまり、本開示者らは、アノード触媒層の空隙率をカソード触媒層の空隙率よりも小さくすることが、例えば、電解質膜のドライアップの抑制に対して有利な作用効果を発揮しているのではないかと推察している。
 すなわち、本開示の第4態様の電気化学式水素ポンプは、第1態様から第3態様のいずれかの電気化学式水素ポンプにおいて、アノード触媒層は、カソード触媒層よりも厚みが薄くてもよい。また、本開示の第5態様の電気化学式水素ポンプは、第1態様から第4態様のいずれかの電気化学式水素ポンプにおいて、アノード触媒層は、カソード触媒層よりも空隙率が小さくてもよい。
 例えば、使用者が最初の使用を開始する前に、電気化学式水素ポンプの水素圧縮動作を行うと、電気化学式水素ポンプで発生する差圧(高圧)によってアノード触媒層の厚みをカソード触媒層の厚みよりも薄くすることができる。すると、アノード触媒層の厚みが薄くなる過程でアノード触媒層の空隙が潰れ、アノード触媒層の空隙率が小さくなると考えられる。アノード触媒層の空隙率が小さいほど、アノード触媒層に存在する含水量が減少するが、アノード触媒層の空隙を構成する細孔の径を小さくすることができる。そして、アノード触媒層の空隙を構成する細孔の径が小さいと、これが大きい場合に比べて、細孔内における水の保持力が強くなる。これにより、電解質膜近傍のアノード触媒層の細孔内において水を適切に保持することができる。よって、使用者が最初の使用を開始する前に、電気化学式水素ポンプの水素圧縮動作を行うことで、使用者が最初の使用を開始する際の電気化学式水素ポンプの電解質膜のドライアップを抑制することが可能になると考えられる。
 図3Bに示すように、カソード触媒層の主面と電解質膜の主面とが密着しているので、電解質膜のカソード触媒層側の主面には、カソード触媒層の断面形状の凹凸に沿った凹凸が形成されている。また、図3Cに示すように、アノード触媒層の主面と電解質膜の主面とが密着しているので、電解質膜のアノード触媒層側の主面には、アノード触媒層の断面形状の凹凸に沿った凹凸が形成されている。そして、アノード触媒層の断面形状の凹凸がカソード触媒層の断面形状の凹凸よりも大きいので、電解質膜のアノード触媒層側の主面の凹凸は、電解質膜のカソード触媒層側の主面の凹凸よりも大きい。そして、このことは、上記で説明した表面粗さ測定においても検証されている。つまり、前者の電解質膜の表面粗さは11.3μmであると見做すことができるとともに、後者の電解質膜の表面粗さは1.2μmであると見做すことができる。
 以上の電解質膜の一対の主面に設けられた凹凸の違いは、セルで発生する差圧が、電解質膜を介してアノード触媒層に付与されたことで生じていると考えられる。そして、このような現象は、電解質膜内の細孔収縮を伴うと推察され、このことが、水素圧縮試験の回数増加に伴うカソード高圧化におけるセルの過電圧減少の一要因になっている可能性がある。つまり、本開示者らは、電解質膜のアノード触媒層側の主面の凹凸を電解質膜のカソード触媒層側の主面の凹凸よりも大きくすることが、例えば、電解質膜のドライアップの抑制に対して有利な作用効果を発揮しているのではないかと推察している。
 すなわち、本開示の第6態様の電気化学式水素ポンプは、第1態様から第5態様のいずれかの電気化学式水素ポンプにおいて、電解質膜は、カソード触媒層側の主面よりもアノード触媒層側の主面の方が、凹凸が大きくてもよい。
 例えば、使用者が最初の使用を開始する前に、電気化学式水素ポンプの水素圧縮動作を行うと、電気化学式水素ポンプで発生する差圧(高圧)によって電解質膜の一対の主面に設けられた凹凸が、上記で説明した大小関係で形成される際に、電解質膜内の細孔を適切に収縮させることができる。これにより、電気化学式水素ポンプで発生する差圧によってカソード触媒層からアノード触媒層に移動する逆浸透水の量を抑制することができるとともに、電解質膜の細孔内において水を適切に保持することができる。よって、使用者が最初の使用を開始する前に、電気化学式水素ポンプの水素圧縮動作を行うことで、使用者が最初の使用を開始する際の電気化学式水素ポンプの電解質膜のドライアップを抑制することが可能になると考えられる。
 本開示の第7態様の電気化学式水素ポンプは、第1態様から第6態様のいずれかの電気化学式水素ポンプにおいて、使用者が最初に利用開始する前に、電解質膜、カソード触媒層およびアノード触媒層を含むセルは、電気化学式水素ポンプの水素圧縮動作中のセルの温度で相対湿度80%の雰囲気下での含水率以上の水分を保持してもよい。
 以上により、本態様の電気化学式水素ポンプは、使用者が最初に利用開始する前に、電気化学式水素ポンプの水素圧縮動作を行うと、上記の含水率以上の水分をセルに保持させ得る。これにより、使用者が最初の使用を開始する前に、電気化学式水素ポンプの水素圧縮動作を行うことで、電解質膜を十分に加湿することができるので、使用者が最初の使用を開始する際の電気化学式水素ポンプの電解質膜のドライアップを適切に抑制することが可能になる。
 以下、添付図面を参照しながら、本開示の実施形態について説明する。なお、以下で説明する実施形態は、いずれも上記の各態様の一例を示すものである。よって、以下で示される形状、材料、構成要素、および、構成要素の配置位置および接続形態などは、あくまで一例であり、請求項に記載されていない限り、上記の各態様を限定するものではない。また、以下の構成要素のうち、上記の各態様の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面において、同じ符号が付いたものは、説明を省略する場合がある。図面は理解しやすくするために、それぞれの構成要素を模式的に示したもので、形状および寸法比などについては正確な表示ではない場合がある。
 (第1実施形態)
 [装置構成]
 図4は、第1実施形態の電気化学式水素ポンプの一例を示す図である。
 図4に示す例では、電気化学式水素ポンプ100は、電解質膜22と、アノード触媒層23と、カソード触媒層24と、電圧印加器21と、を備える。なお、本実施例の電気化学式水素ポンプ100では、電気化学式水素ポンプ100のアノード(電極)は、アノード触媒層23およびアノードガス拡散層(図4では図示せず)で構成されている。電気化学式水素ポンプ100のカソード(電極)は、カソード触媒層24およびカソードガス拡散層(図4では図示せず)で構成されている。
 電解質膜22は、一対の主面を備え、プロトン(H+)伝導性を有する高分子膜である。電解質膜22は、このようなプロトン伝導性を有する高分子膜であれば、どのような構成であってもよい。例えば、電解質膜22として、フッ素系高分子電解質膜などを挙げることができる。具体的には、電解質膜22として、例えば、Nafion(登録商標、デュポン社製)、Aciplex(登録商標、旭化成株式会社製)などを用いることができるが、これらに限定されない。
 カソード触媒層24は、電解質膜22の一方の主面に設けられている。カソード触媒層24は、例えば、触媒金属としてPtなどを含んでもよいが、これに限定されない。
 アノード触媒層23は、電解質膜22の他方の主面に設けられている。アノード触媒層23は、例えば、触媒金属として白金(Pt)などを含んでもよいが、これに限定されない。
 カソード触媒層24もアノード触媒層23も、触媒の調製方法としては、種々の方法を挙げることができるので、特に限定されない。例えば、触媒の担体としては、導電性の酸化物粉末、炭素系粉末などを挙げることができる。炭素系粉末としては、例えば、黒鉛、カーボンブラック、電気導電性を有する活性炭などの粉末を挙げることができる。カーボンなどの担体に、白金若しくは他の触媒金属を担持する方法は、特に限定されない。例えば、粉末混合または液相混合などの方法を用いてもよい。後者の液相混合としては、例えば、触媒成分コロイド液にカーボンなどの担体を分散させ、吸着させる方法などが挙げられる。白金などの触媒金属の担体への担持状態は、特に限定されない。例えば、触媒金属を微粒子化し、高分散で担体に担持してもよい。
 電圧印加器21は、アノード触媒層23とカソード触媒層24との間に電圧を印加する装置である。
 具体的には、電圧印加器21の高電位が、アノード触媒層23に印加され、電圧印加器21の低電位が、カソード触媒層24に印加されている。電圧印加器21は、アノード触媒層23およびカソード触媒層24間に電圧を印加できれば、どのような構成であってもよい。例えば、電圧印加器21は、アノード触媒層23およびカソード触媒層24間に印加する電圧を調整する装置であってもよい。具体的には、電圧印加器21は、バッテリ、太陽電池、燃料電池などの直流電源と接続されているときは、DC/DCコンバータを備え、商用電源などの交流電源と接続されているときは、AC/DCコンバータを備える。
 また、電圧印加器21は、例えば、電気化学式水素ポンプ100に供給する電力が所定の設定値となるように、アノード触媒層23およびカソード触媒層24間に印加される電圧、アノード触媒層23およびカソード触媒層24間に流れる電流が調整される電力型電源であってもよい。
 このように、電気化学式水素ポンプ100は、電圧印加器21が、上記電圧を印加することで、アノード触媒層23上に供給された水素含有ガス中の水素を、カソード触媒層24上に移動させ、かつ昇圧する装置である。なお、水素含有ガスは、例えば、水の電気分解により生成する水素ガスであってもよいし、水素を含む改質ガスであってもよい。
 図4に示すように、本実施形態の電気化学式水素ポンプ100は、使用者が最初の使用を開始する前に、カソード触媒層24よりもアノード触媒層23の方が、断面形状の凹凸が大きい。また、アノード触媒層23は、カソード触媒層24よりも厚みが薄い。また、アノード触媒層23は、カソード触媒層24よりも空隙率が小さい。また、電解質膜22は、カソード触媒層24側の主面よりもアノード触媒層23側の主面の方が、凹凸が大きい。
 以上の電気化学式水素ポンプ100の構成は、例えば、使用者が最初の使用を開始する前に、電気化学式水素ポンプ100の水素圧縮動作(以下、試運転)を行うことで実現される。なお、使用者の最初の利用とは、電気化学式水素ポンプ100を事業者から使用者に出荷した後に使用者によって行われる初回の電気化学式水素ポンプ100の水素圧縮動作をいう。
 例えば、上記で説明したセル断面の電子顕微鏡観察から分かるように、電気化学式水素ポンプ100の試運転が行われる前は、カソード触媒層24およびアノード触媒層23の断面形状が同程度であるにも拘わらず、試運転を行うことで、アノード触媒層23の断面形状の凹凸200が、カソード触媒層24の断面形状の凹凸201よりも大きくなる。また、試運転が行われる前は、カソード触媒層24およびアノード触媒層23の厚みが同程度であったにも拘わらず、試運転を行うことで、アノード触媒層23の厚みTAが、カソード触媒層24よりも厚みTCよりも薄くなる。また、試運転が行われる前は、カソード触媒層24およびアノード触媒層23の空隙率が同程度であったにも拘わらず、試運転を行うことで、アノード触媒層23の空隙率は、カソード触媒層24の空隙率よりも小さくなる。
 なお、このとき、カソード触媒層24の主面と電解質膜22の主面とが密着しているので、電解質膜22のカソード触媒層側の主面には、カソード触媒層24の断面形状の凹凸201に沿った凹凸が形成されている。また、アノード触媒層23の主面と電解質膜22の主面とが密着しているので、電解質膜22のアノード触媒層23側の主面には、アノード触媒層23の断面形状の凹凸200に沿った凹凸が形成されている。
 [動作]
 以下、電気化学式水素ポンプ100の水素圧縮動作について、図4を参照しながら説明する。以下の動作は、例えば、図示しない制御器の演算回路が、制御器の記憶回路から制御プログラムにより行われてもよい。ただし、以下の動作を制御器で行うことは、必ずしも必須ではない。操作者が、その一部の動作を行ってもよい。
 本実施形態の電気化学式水素ポンプ100では、例えば、使用者が最初の使用を開始する前に、以下の如く、電気化学式水素ポンプ100の水素圧縮動作が試運転として行われる。
 まず、電気化学式水素ポンプ100のアノードに水素含有ガスが供給されるとともに、電圧印加器21の電力が電気化学式水素ポンプ100のアノード触媒層23およびカソード触媒層24間に給電される。
 すると、電気化学式水素ポンプ100のアノード触媒層23において、酸化反応で水素含有ガス中の水素(H2)が水素イオン(プロトン)と電子とに分離する(式(1))。プロトンは、図4に示す如く、電解質膜22内を伝導してカソード触媒層24に移動する。電子は電圧印加器21を通じてカソード触媒層24に移動する。そして、カソード触媒層24において、還元反応で水素分子が再び生成される(式(2))。
 このとき、プロトンが電解質膜22を伝導する際に、所定水量の水が、電気浸透水としてプロトンと同伴してアノードからカソードに移動することが知られている。
  アノード:H2(低圧)→2H++2e-   ・・・(1)
  カソード:2H++2e-→H2(高圧)   ・・・(2)
 ここで、電気化学式水素ポンプ100には、カソードで生成された水素をカソード外に導出させるガス導出経路(図示せず)が設けられ、ガス導出経路上の流量調整器を用いて、ガス導出経路の圧損を増加させることにより、カソードの水素を高圧にまで昇圧することができる。流量調整器として、例えば、ガス導出経路に設けられた背圧弁、調整弁などを挙げることができる。
 なお、電気化学式水素ポンプ100の水素圧縮動作時には、電気化学式水素ポンプ100において、電解質膜22内をプロトンと同伴してアノードからカソードに移動した電気浸透水が、電気化学式水素ポンプ100で発生する差圧によってカソードからアノードに移動(逆浸透)する。
 以上により、本実施形態の電気化学式水素ポンプ100は、使用者が最初の使用を開始する際に水素圧縮動作の効率を従来よりも向上し得る。
 例えば、使用者が最初の使用を開始する前に、電気化学式水素ポンプ100の試運転を行うと、電気化学式水素ポンプ100で発生する差圧(高圧)によってアノード触媒層23の断面形状の凹凸200をカソード触媒層24の断面形状の凹凸201よりも大きくすることができる。すると、例えば、アノード触媒層23は、カソード触媒層24よりも亀裂が生じやすいと推察される。ここで、電気化学式水素ポンプ100のアノードに、高加湿状態の水素含有ガスを供給する場合、アノード触媒層23の亀裂の存在により、アノード触媒層23が平坦で亀裂が少ない場合に比べて、アノード触媒層23の亀裂を介して、水素含有ガス中の水分が電解質膜22に供給されやすくなる。これにより、使用者が最初の使用を開始する前に、電気化学式水素ポンプ100の試運転を行うことで、使用者が最初の使用を開始する際の電気化学式水素ポンプ100の電解質膜22のドライアップを抑制することが可能になると考えられる。
 また、例えば、使用者が最初の使用を開始する前に、電気化学式水素ポンプ100の試運転を行うと、電気化学式水素ポンプ100で発生する差圧(高圧)によってアノード触媒層23の厚みTAをカソード触媒層24の厚みTCよりも薄くすることができる。すると、アノード触媒層23の厚みTAが薄くなる過程でアノード触媒層23の空隙が潰れ、アノード触媒層23の空隙率が小さくなると考えられる。アノード触媒層23の空隙率が小さいほど、アノード触媒層23に存在する含水量が減少するが、アノード触媒層23の空隙を構成する細孔の径を小さくすることができる。そして、アノード触媒層23の空隙を構成する細孔の径が小さいと、これが大きい場合に比べて、細孔内における水の保持力が強くなる。これにより、電解質膜22の近傍のアノード触媒層23の細孔内において水を適切に保持することができる。よって、使用者が最初の使用を開始する前に、電気化学式水素ポンプ100の試運転を行うことで、使用者が最初の使用を開始する際の電気化学式水素ポンプ100の電解質膜22のドライアップを抑制することが可能になると考えられる。
 また、例えば、使用者が最初の使用を開始する前に、電気化学式水素ポンプ100の試運転を行うと、電気化学式水素ポンプ100で発生する差圧(高圧)によって電解質膜22の一対の主面に設けられた凹凸が、上記で説明した大小関係で形成される際に、電解質膜22内の細孔を適切に収縮させることができる。これにより、電気化学式水素ポンプ100で発生する差圧によってカソードからアノードに移動する逆浸透水の量を抑制することができるとともに、電解質膜22の細孔内において水を適切に保持することができる。よって、使用者が最初の使用を開始する前に、電気化学式水素ポンプ100の試運転を行うことで、使用者が最初の使用を開始する際の電気化学式水素ポンプ100の電解質膜22のドライアップを抑制することが可能になると考えられる。
 (実施例)
 図5は、第1実施形態の実施例の電気化学式水素ポンプの一例を示す図である。
 図5に示す例では、電気化学式水素ポンプ100は、電解質膜22と、アノード触媒層23と、カソード触媒層24と、電圧印加器21と、アノードガス拡散層25と、カソードガス拡散層26と、アノードセパレータ27と、カソードセパレータ28と、を備える。
 ここで、電解質膜22、アノード触媒層23、カソード触媒層24および電圧印加器21は、第1実施形態の電気化学式水素ポンプ100と同様であるので説明を省略する。
 アノードガス拡散層25は、アノード触媒層23上に設けられている。アノードガス拡散層25は、例えば、多孔質体などで構成され、耐腐食性、導電性およびガス拡散性を備える。また、アノードガス拡散層25は、電気化学式水素ポンプ100の水素圧縮動作時に電気化学式水素ポンプ100のアノードおよびカソードの間の差圧で発生する構成部材の変位、変形を抑制し得る高剛性材料で構成する方が望ましい。
 例えば、アノードガス拡散層25は、白金メッキが施されたチタン(Ti)粉末焼結体などの耐腐食性および導電性を備える多孔質体で構成されているが、これに限定されない。
 ここで、アノードガス拡散層25は、例えば、チタン粉末焼結体に撥水性溶液を浸み込ませて焼成することにより撥水処理が平面内でほぼ均等に施されていてもよい。撥水性溶液として、例えば、PTFE(ポリテトラフルオロエチレン)溶液などを用いることができるが、これに限定されない。撥水性溶液としてPTFE溶液を用いる場合、多孔質構造のチタン粉末焼結体の表面上には、適量のPTFE粒子が付着している。これにより、アノードガス拡散層25の撥水性が発現されている。
 カソードガス拡散層26は、カソード触媒層24上に設けられている。また、カソードガス拡散層26は、多孔性材料で構成され、導電性およびガス拡散性を備える。さらに、カソードガス拡散層26は、電気化学式水素ポンプ100の動作時にカソードおよびアノード間の差圧で発生する構成部材の変位、変形に適切に追従するような弾性を備える方が望ましい。
 例えば、カソードガス拡散層26は、カーボン繊維を備える多孔質体で構成されているが、これに限定されない。なお、この多孔質体は、例えば、カーボンペーパー、カーボンクロス、カーボンフェルトなどの多孔性のカーボン繊維シートでもよい。
 ここで、カソードガス拡散層26は、例えば、カーボン繊維シートに撥水性溶液を浸み込ませて焼成することにより撥水処理が平面内でほぼ均等に施されていてもよい。なお、撥水性溶液として、例えば、PTFE溶液などを用いることができるが、これに限定されない。撥水性溶液としてPTFE溶液を用いる場合、多孔質構造のカーボン繊維シートの表面上には、適量のPTFE粒子が付着している。これにより、カソードガス拡散層26の撥水性が発現されている。
 アノードセパレータ27は、アノードガス拡散層25上に設けられた部材である。カソードセパレータ28は、カソードガス拡散層26上に設けられた部材である。そして、アノードセパレータ27およびカソードセパレータ28のそれぞれの中央部には、凹部が設けられている。これらの凹部のそれぞれに、アノードガス拡散層25およびカソードガス拡散層26がそれぞれ収容されている。
 アノードセパレータ27およびカソードセパレータ28は、例えば、金属部材などで構成され、耐腐食性および導電性を備える。アノードセパレータ27およびカソードセパレータ28の材質として、例えば、白金メッキが施されたチタンなどを用いることができるが、これに限定されない。
 なお、平面視において、アノード触媒層23の周囲を囲むようにシール部材がアノードセパレータ27の環状の溝部(図示せず)に設けられ、水素含有ガスが、このシール部材で適切にシールされている。また、平面視において、カソード触媒層24の周囲を囲むようにシール部材がカソードセパレータ28の環状の溝部(図示せず)に設けられ、水素が、このシール部材で適切にシールされている。
 ここで、アノードセパレータ27には、水素含有ガス流入口29INおよび水素含有ガス流出口29OUTが、アノードセパレータ27の外面からアノードセパレータ27の凹部内の主面にまで延伸するように設けられている。そして、アノードセパレータ27の凹部内の主面には、平面視において、例えば、複数のU字状の折り返し部分と複数の直線部分とを含むサーペンタイン状のアノードガス流路29が設けられ、アノードガス流路29の一方の端部が、水素含有ガス流入口29INに連通し、アノードガス流路29の他方の端部が、水素含有ガス流出口29OUTに連通している。ただし、このようなアノードガス流路は、例示であって、本例に限定されない。例えば、アノードガス流路は、複数の直線状の流路により構成されていてもよい。
 以上により、電気化学式水素ポンプ100の水素圧縮動作中、水素含有ガスが、アノードガス流路29を通過する際に、水素含有ガスの一部が、アノードガス拡散層25を通じてアノード触媒層23に供給されることで、電気化学式水素ポンプ100において水素含有ガス中の水素の昇圧が行われる。
 カソードセパレータ28には、カソードガス流出口40が、カソードセパレータ28の外面からカソードセパレータ28の凹部内の主面にまで延伸するように設けられている。カソードガス流出口40は、電気化学式水素ポンプ100のカソードで昇圧された高圧の水素が外部へ流通するガス導出経路(図示せず)に接続されている。
 以上により、電気化学式水素ポンプ100の水素圧縮動作中、ガス導出経路上の流量調整器を用いて、ガス導出経路の圧損を減少させると、電気化学式水素ポンプ100のカソードで昇圧された高圧の水素が、カソードガス流出口40からガス導出経路を通じて外部に導出される。
 図5には示されていないが、本実施例の電気化学式水素ポンプ100の水素圧縮動作において必要となる部材および機器は適宜、設けられる。
 例えば、電気化学式水素ポンプ100は、MEA、アノードセパレータ27およびカソードセパレータ28で構成されるセルを10~200個程度、積み重ねて積層体を構成し、この積層体を、集電板および絶縁板を介して端板で挟み、両端板を締結ロッドなどで締結してもよい。なお、このようなセルの個数は、電気化学式水素ポンプ100の運転条件をもとに適宜の数に設定することができる。このとき、高圧ガスが電気化学式水素ポンプ100から外部へリークしないように、MEAの両側からOリング、ガスケットなどのシール部材が設けられ、MEAと一体化して予め組み立てられていてもよい。そして、MEAの外側には、これを機械的に固定するとともに、隣接するMEA同士を互いに電気的に直列に接続するための上記の導電性のアノードセパレータ27およびカソードセパレータ28が配置されている。
 また、所定の供給圧を有する外部の水素源から電気化学式水素ポンプ100に水素含有ガスが供給されてもよい。外部の水素源として、例えば、ガス貯蔵器(例えば、ガスボンベ)、ガス供給インフラなどを挙げることができる。この場合、水素含有ガスは、例えば、改質器、水電解装置などで生成されてもよい。
 また、電気化学式水素ポンプ100のカソードで昇圧された水素は、適時に、水素需要体に供給することができる。水素需要体として、例えば、家庭用または自動車用の燃料電池などを挙げることができる。
 なお、以上の電気化学式水素ポンプ100の構成、および、図示しない様々な部材および機器は例示であって、本例に限定されない。例えば、電気化学式水素ポンプ100は、アノードセパレータ27に水素含有ガス流出口29OUTを設けずに、水素含有ガス流入口29INを通してアノードに供給する水素含有ガス中の水素(H2)を全量、カソードで昇圧するデッドエンド構造が採用されてもよい。
 本実施例の電気化学式水素ポンプ100は、上記の特徴以外は、第1実施形態の電気化学式水素ポンプ100と同様であってもよい。
 (第2実施形態)
 図6は、第2実施形態の電気化学式水素ポンプの一例を示す図である。
 図6に示す例では、電気化学式水素ポンプ100は、電解質膜22と、アノード触媒層23と、カソード触媒層24と、電圧印加器21と、第1撥水層30と、第2撥水層31と、を備える。なお、本実施例の電気化学式水素ポンプ100では、電気化学式水素ポンプ100のアノード(電極)は、アノード触媒層23、第1撥水層30およびアノードガス拡散層(図6では図示せず)で構成されている。電気化学式水素ポンプ100のカソード(電極)は、カソード触媒層24、第2撥水層31およびカソードガス拡散層(図6では図示せず)で構成されている。
 ここで、電解質膜22、アノード触媒層23、カソード触媒層24および電圧印加器21は、第1実施形態の電気化学式水素ポンプ100と同様であるので説明を省略する。
 第1撥水層30は、アノード触媒層23上に設けられた、撥水性材料を含む層である。第1撥水層30は、このような撥水性材料を含む層であれば、どのような構成であってもよい。例えば、第1撥水層30が、例えば、導電性材料と撥水性材料とが混合されたマイクロポーラス層であってもよい。なお、導電性材料として、例えば、カーボンブラックなどを挙げることができるが、これに限定されない。また、撥水性材料として、例えば、PTFE、FEP(四フッ化・六フッ化プロピレン共重合体)などを挙げることができるが、これらに限定されない。
 第2撥水層31は、カソード触媒層24上に設けられた、撥水性材料を含む層である。第2撥水層31は、このような撥水性材料を含む層であれば、どのような構成であってもよい。例えば、第2撥水層31が、例えば、導電性材料と撥水性材料とが混合されたマイクロポーラス層であってもよい。なお、導電性材料として、例えば、カーボンブラックなどを挙げることができるが、これに限定されない。撥水性材料として、例えば、PTFE、FEPなどを挙げることができるが、これらに限定されない。
 図6に示すように、本実施形態の電気化学式水素ポンプ100は、第1撥水層30のアノード触媒層23側の主面は、アノード触媒層23の凹凸に沿って凹凸300が設けられている。また、第1撥水層30のアノード触媒層側の主面は、第2撥水層31のカソード触媒層24側の主面よりも凹凸が大きい。
 以上の電気化学式水素ポンプ100の構成は、例えば、使用者が最初の使用を開始する前に、電気化学式水素ポンプ100の試運転を行うことで実現される。なお、詳細は、上記で説明したセル断面の電子顕微鏡観察、および、第1実施形態の説明から容易に理解できるので省略する。
 以上により、本実施形態の電気化学式水素ポンプ100は、使用者が最初の使用を開始する際に水素圧縮動作の効率を従来よりも向上し得る。
 例えば、使用者が最初の使用を開始する前に、電気化学式水素ポンプ100の試運転を行うと、電気化学式水素ポンプ100で発生する差圧(高圧)によって、第1撥水層30のアノード触媒層23側の主面には、アノード触媒層23の凹凸に沿って凹凸300が設けられる。この場合、第1撥水層30と第2撥水層31との間の凹凸300、301の大小関係から、第1撥水層30は、第2撥水層31に比べて、例えば、亀裂が生じやすいと推察される。すると、第1撥水層30では、第2撥水層31に比べて、第1撥水層30の亀裂を介して、アノードにおける第1撥水層30の両主面間の水の出入りが促進されやすい。これにより、使用者が最初の使用を開始する前に、電気化学式水素ポンプ100の試運転を行うことで、使用者が最初の使用を開始する際の電気化学式水素ポンプ100の電解質膜22のドライアップを抑制することが可能になると考えられる。
 なお、電気化学式水素ポンプ100で発生する差圧が高いほど、カソードからアノードに移動する逆浸透水の流束(jP)が大きい。よって、電気化学式水素ポンプ100の水素圧縮動作が進行すると、アノードに存在する水分がカソードに存在する水分に比べて多量になる可能性がある。すると、アノードへの逆浸透水によってアノードのフラッディングが発生しやすくなる。そして、このようなフラッディングが発生することにより、アノードで水素の拡散性が阻害される場合、電気化学式水素ポンプ100の拡散抵抗が増加する可能性があるので、電気化学式水素ポンプ100の水素圧縮動作の効率が低下する恐れがある。
 そこで、本実施形態の電気化学式水素ポンプ100は、アノード触媒層23上に第1撥水層30を設けることで、アノードでフラッディングが発生することを抑制している。具体的には、例えば、第1撥水層30では、アノードに存在する水は、アノードの水素含有ガスの流れによって、水素含有ガスとともにアノード外に移動しやすい。
 逆に、電気化学式水素ポンプ100で発生する差圧が低いほど、カソードからアノードに移動する逆浸透水の流束(jP)が小さいので、電気化学式水素ポンプ100の水素圧縮動作の初期段階では、カソードに存在する水分がアノードに存在する水分に比べて多量になる可能性がある。すると、カソードにおいて水素含有ガスから凝縮水が発生しやすい。なお、この凝縮水のカソードからアノードへの移動は電解質膜22を介して行われる。
 そこで、本実施形態の電気化学式水素ポンプ100は、カソード触媒層24上に第2撥水層31を設けることで、電気化学式水素ポンプ100で発生する差圧が高くなっても、第2撥水層31の外側に存在する凝縮水が電解質膜22に移動することを適切に抑制することができると考えられる。
 以上により、本実施形態の電気化学式水素ポンプ100は、アノードに過剰な水が滞留する状態を改善できるので、アノードのフラッディング発生を適切に抑制することができる。
 本実施形態の電気化学式水素ポンプ100は、上記の特徴以外は、第1実施形態または第1実施形態の実施例の電気化学式水素ポンプ100と同様であってもよい。
 (第3実施形態)
 第3実施形態の電気化学式水素ポンプ100は、使用者が最初に利用開始する前に、電解質膜22、カソード触媒層24およびアノード触媒層23を含むセルの水分が、以下の如く保持されている以外は、第1実施形態の電気化学式水素ポンプ100と同様である。
 本実施形態の電気化学式水素ポンプ100では、使用者が最初に利用開始する前に、上記のセルは、電気化学式水素ポンプ100の水素圧縮動作中のセルの温度で相対湿度80%の雰囲気下での含水率以上の水分を保持している。セルの含水率は、乾燥前後の重量変化を乾燥後の重量で除することで、以下の如く導出することができる。
 <セル含水率導出>
 一般的に、電解質膜の両側には、触媒層およびガス拡散層の積層体、または、触媒層、マイクロポーラス層(撥水層)およびガス拡散層の積層体が設けられている。ここで、セルの解体時には、電解質膜からガス拡散層を剥がすことが容易である。しかし、触媒層中のイオノマーの接着機能によって、電解質膜および触媒層との間が密着状態で接合している。
 そこで、本実施形態のセルの含水率測定では、水素圧縮試験で使用したセルと同一構造のセルを用いて、4回の水素圧縮試験を行い、セルの含水率Aを以下の方法で導出した。
 セルの重量測定前に、電解質膜の両側のガス拡散層のみを電解質膜から剥がした。つまり、電解質膜の両側のそれぞれに触媒層およびマイクロポーラス層が設けられた状態のまま、セルの含水率を導いた。
 まず、セルを乾燥させる前にセルの重量(W1)を測定した。
 次に、セル中に約120℃の乾燥ガスを流通させることで、セルを十分に乾燥させた後、セルの乾燥重量(W2)を測定した。そして、以下の式(3)で、セルの含水率Aを算出した。
 含水率A=(W1-W2)/W2×100・・・(3)
 次に、比較例として、電気化学式水素ポンプ100の水素圧縮動作中のセルの温度で相対湿度80%の雰囲気下でのセルの含水率に相当する含水率Bを、以下の方法で導出した。
 まず、上記セルの温度を50℃に設定するとともに、この温度(50℃)における相対湿度80%の水素含有ガスを、セルの重量が一定となるまで流通させた。
 次に、セルの重量(W3)を測定した。そして、以下の式(4)で、セルの含水率Bを算出した。
 含水率B=(W3-W2)/W2×100・・・(4)
 <対比>
 含水率Aと含水率Bとを比較したところ、図2の水素圧縮試験(4回)が行われた場合のセルの過電圧および抵抗に対応するセルの含水率Aが、電気化学式水素ポンプ100の水素圧縮動作中のセルの温度で相対湿度80%の雰囲気下での含水率に相当する含水率B以上であることがわかった(つまり、含水率A≧含水率B)。
 以上により、本実施形態の電気化学式水素ポンプ100は、使用者が最初に利用開始する前に、電気化学式水素ポンプ100の水素圧縮動作を行うと、上記の含水率B以上の水分をセルに保持させ得る。これにより、使用者が最初の使用を開始する前に、電気化学式水素ポンプ100の水素圧縮動作を行うことで、電解質膜22を十分に加湿することができるので、使用者が最初の使用を開始する際の電気化学式水素ポンプ100の電解質膜22のドライアップを抑制することが可能になる。
 本実施形態の電気化学式水素ポンプ100は、上記の特徴以外は、第1実施形態、第1実施形態の実施例および第2実施形態のいずれかの電気化学式水素ポンプ100と同様であってもよい。
 なお、第1実施形態、第1実施形態の実施例、第2実施形態および第3実施形態は、互いに相手を排除しない限り、互いに組み合わせてもよい。
 また、上記の説明から、当業者にとっては、本開示の多くの改良および他の実施形態が明らかである。従って、上記の説明は、例示としてのみ解釈されるべきであり、本開示を実行する最良の態様を当業者に教示する目的で提供されたものである。本開示の精神を逸脱することなく、その動作条件、組成、構造および/または機能を実質的に変更できる。
 本開示の一態様は、使用者が最初の使用を開始する際に水素圧縮動作の効率を従来よりも向上し得る電気化学式水素ポンプに利用することができる。
21    :電圧印加器
22    :電解質膜
23    :アノード触媒層
24    :カソード触媒層
25    :アノードガス拡散層
26    :カソードガス拡散層
27    :アノードセパレータ
28    :カソードセパレータ
29    :アノードガス流路
29IN  :水素含有ガス流入口
29OUT :水素含有ガス流出口
30    :第1撥水層
31    :第2撥水層
40    :カソードガス流出口
100   :電気化学式水素ポンプ
200   :凹凸
201   :凹凸
300   :凹凸
301   :凹凸

Claims (7)

  1.  一対の主面を備える電解質膜と、
     前記電解質膜の一方の主面に設けられたカソード触媒層と、
     前記電解質膜の他方の主面に設けられアノード触媒層と、
     前記カソード触媒層および前記アノード触媒層の間に電圧を印加する電圧印加器と、を備え、
     前記電圧印加器が前記電圧を印加することで、前記アノード触媒層上に供給された水素含有ガス中の水素を、前記カソード触媒層上に移動させ、かつ昇圧する電気化学式水素ポンプであって、
     使用者が最初の使用を開始する前に、
     前記カソード触媒層よりも前記アノード触媒層の方が、断面形状の凹凸が大きい電気化学式水素ポンプ。
  2.  前記アノード触媒層上に設けられた、撥水性材料を含む第1撥水層を備え、
     前記第1撥水層のアノード触媒層側の主面は、前記アノード触媒層の凹凸に沿って凹凸が設けられている請求項1に記載の電気化学式水素ポンプ。
  3.  前記カソード触媒層上に設けられた、撥水性材料を含む第2撥水層を備え、
     前記第1撥水層のアノード触媒層側の主面は、前記第2撥水層のカソード触媒層側の主面よりも凹凸が大きい請求項2に記載の電気化学式水素ポンプ。
  4.  前記アノード触媒層は、前記カソード触媒層よりも厚みが薄い請求項1-3のいずれかに記載の電気化学式水素ポンプ。
  5.  前記アノード触媒層は、前記カソード触媒層よりも空隙率が小さい請求項1-4のいずれかに記載の電気化学式水素ポンプ。
  6.  前記電解質膜は、前記カソード触媒層側の主面よりも前記アノード触媒層側の主面の方が、凹凸が大きい請求項1-5のいずれか1項に記載の電気化学式水素ポンプ。
  7.  使用者が最初に利用開始する前に、前記電解質膜、前記カソード触媒層および前記アノード触媒層を含むセルは、前記電気化学式水素ポンプの水素圧縮動作中の前記セルの温度で相対湿度80%の雰囲気下での含水率以上の水分を保持している請求項1-6のいずれか1項に記載の電気化学式水素ポンプ。
PCT/JP2020/009171 2019-06-11 2020-03-04 電気化学式水素ポンプ WO2020250508A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019108792A JP2022108751A (ja) 2019-06-11 2019-06-11 電気化学式水素ポンプ
JP2019-108792 2019-06-11

Publications (1)

Publication Number Publication Date
WO2020250508A1 true WO2020250508A1 (ja) 2020-12-17

Family

ID=73780995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009171 WO2020250508A1 (ja) 2019-06-11 2020-03-04 電気化学式水素ポンプ

Country Status (2)

Country Link
JP (1) JP2022108751A (ja)
WO (1) WO2020250508A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037755A1 (ja) * 2021-09-07 2023-03-16 パナソニックIpマネジメント株式会社 電気化学式水素ポンプ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205803A (ja) * 2008-02-26 2009-09-10 Aisin Seiki Co Ltd 燃料電池用膜電極接合体の製造方法
US20150255818A1 (en) * 2013-09-09 2015-09-10 Brian Benicewicz Methods of Purifying a Hydrogen Gas Stream Containing Hydrogen Sulfide Impurities
JP2016143621A (ja) * 2015-02-04 2016-08-08 トヨタ自動車株式会社 燃料電池のならし運転システム
WO2019045064A1 (ja) * 2017-09-01 2019-03-07 Agc株式会社 フルオロスルホニル基又はスルホン酸基含有ポリマー、その製造方法及び用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205803A (ja) * 2008-02-26 2009-09-10 Aisin Seiki Co Ltd 燃料電池用膜電極接合体の製造方法
US20150255818A1 (en) * 2013-09-09 2015-09-10 Brian Benicewicz Methods of Purifying a Hydrogen Gas Stream Containing Hydrogen Sulfide Impurities
JP2016143621A (ja) * 2015-02-04 2016-08-08 トヨタ自動車株式会社 燃料電池のならし運転システム
WO2019045064A1 (ja) * 2017-09-01 2019-03-07 Agc株式会社 フルオロスルホニル基又はスルホン酸基含有ポリマー、その製造方法及び用途

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037755A1 (ja) * 2021-09-07 2023-03-16 パナソニックIpマネジメント株式会社 電気化学式水素ポンプ

Also Published As

Publication number Publication date
JP2022108751A (ja) 2022-07-27

Similar Documents

Publication Publication Date Title
US10811712B2 (en) Hydrogen supply system for adjusting dew point of a hydrogen-containing gas supplied thereto
Hwang et al. Influence of properties of gas diffusion layers on the performance of polymer electrolyte-based unitized reversible fuel cells
JP7162258B2 (ja) 水素供給システムおよび水素供給システムの運転方法
JP7149530B2 (ja) 水素供給システムおよび水素供給システムの運転方法
JP6719075B1 (ja) 電気化学式水素ポンプ
US11577196B2 (en) Electrochemical hydrogen pump
WO2021033366A1 (ja) 圧縮装置
US20210285427A1 (en) Electrochemical hydrogen pump
JP2019163521A (ja) 電気化学式水素ポンプ
JP2020015930A (ja) 電気化学式水素ポンプ
US20200350604A1 (en) Electrochemical hydrogen pump
WO2020250508A1 (ja) 電気化学式水素ポンプ
JP2022168321A (ja) 水素システムおよび水素システムの運転方法
WO2022097348A1 (ja) 水素システムおよび水素システムの運転方法
US20210197120A1 (en) Compression apparatus
WO2021215088A1 (ja) 圧縮装置
EP4350053A1 (en) Electrochemical cell for hydrogen pumps, and compression apparatus
WO2023037755A1 (ja) 電気化学式水素ポンプ
JP6719076B1 (ja) 電気化学式水素ポンプ
JP7002045B1 (ja) 圧縮機および圧縮機の制御方法
WO2022149301A1 (ja) 圧縮機および圧縮機の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823355

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20823355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP