WO2020250486A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2020250486A1
WO2020250486A1 PCT/JP2020/005713 JP2020005713W WO2020250486A1 WO 2020250486 A1 WO2020250486 A1 WO 2020250486A1 JP 2020005713 W JP2020005713 W JP 2020005713W WO 2020250486 A1 WO2020250486 A1 WO 2020250486A1
Authority
WO
WIPO (PCT)
Prior art keywords
power conversion
cooling
conversion unit
conversion device
power
Prior art date
Application number
PCT/JP2020/005713
Other languages
French (fr)
Japanese (ja)
Inventor
央 上妻
公久 古川
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020250486A1 publication Critical patent/WO2020250486A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a power conversion device.
  • power conversion devices have realized higher speed switching (SW (Switching)) operation by technological innovation of power semiconductor elements, which are the main components thereof, and reduced the loss (SW loss) generated by these power semiconductor elements.
  • SW switching
  • the cooler (cooling fin) installed adjacent to the power semiconductor element can be miniaturized, and as a result, the power conversion device can be miniaturized. Further, by reducing the SW loss, the efficiency of the power conversion device can be improved.
  • the electron saturation rate is about twice as fast as that of Si, so faster SW operation is realized and SW loss is reduced. Further, the high frequency inverter SW operation can be realized.
  • industrial power converters increase the system voltage withstand voltage in order to improve the efficiency of the system.
  • By increasing the withstand voltage of the system voltage it is possible to reduce the current and the same transmission loss at the same power, and it is possible to improve the efficiency of the system.
  • the power conversion device connects a plurality of power conversion units having the power semiconductor element in series to increase the withstand voltage of the system voltage.
  • Patent Document 1 As a background technology in this technical field, there is International Publication No. WO2018 / 173379 (Patent Document 1).
  • a first section in which a first main circuit board is housed, a second section having a ventilation path through which cooling air passes, and a third section in which a second main circuit board is housed are housed.
  • the electrical terminal of the first capacitor and the electrical terminal of the first semiconductor element are housed in the first compartment and have at least a part of the first capacitor.
  • At least a part of the first heat sink is exposed in the second compartment, and the electric terminal of the second capacitor and the electric terminal of the second semiconductor element are housed in the third compartment, and the second compartment is used.
  • a power converter is described in which at least a portion of the capacitor and at least a portion of the second heat sink are exposed in the second compartment (see summary).
  • Patent Document 1 describes that an exhaust passage is formed behind each power conversion device, and cooling air is taken in from the front surface of each power conversion device (see 0041).
  • the thermal interference between the power conversion units and the power conversion units is reduced, and the cooling fins installed in each power conversion unit are miniaturized. There is a need to. Further, in a power conversion device having a plurality of transformers, it is necessary to reduce thermal interference between the plurality of power conversion units and the plurality of transformers in order to reduce the size of the cooling fins.
  • Patent Document 1 describes that the power conversion device is cooled from the front to the rear by using cooling air. However, Patent Document 1 does not describe such reduction of thermal interference between power conversion units and power conversion units and reduction of thermal interference between a plurality of power conversion units and a plurality of transformers.
  • the present invention has a plurality of power conversion units and a plurality of transformers, and causes thermal interference between the power conversion unit and the power conversion unit and thermal interference between the plurality of power conversion units and the plurality of transformers.
  • a power conversion device that reduces and reduces the size of cooling fins.
  • the power conversion device of the present invention is a power conversion device that connects a plurality of converter cells having a primary side power conversion unit, a high frequency transformer, and a secondary side power conversion unit.
  • the primary power conversion unit, the high-frequency transformer, and the secondary power conversion unit are arranged in this order from the inlet of the cooling medium (for example, cooling air) toward the outlet of the cooling medium (for example, cooling air). It is characterized by being installed in one direction.
  • a plurality of power conversion units and a plurality of transformers are provided, and thermal interference between the power conversion unit and the power conversion unit and thermal interference between the plurality of power conversion units and the plurality of transformers are caused. It is possible to provide a power conversion device that reduces the size and reduces the size of the cooling fins.
  • FIG. It is explanatory drawing explaining the power conversion apparatus 1 described in Example 1.
  • FIG. It is explanatory drawing explaining the converter cell 20 described in Example 1.
  • FIG. It is explanatory drawing explaining the voltage waveform of the primary side system voltage VS1 and the secondary side system voltage VS2 described in Example 1.
  • FIG. It is explanatory drawing explaining the installation structure of the power conversion apparatus 1 described in Example 1.
  • FIG. It is explanatory drawing explaining the aspect of the installation structure of the power conversion apparatus 1 described in Example 1.
  • FIG. It is explanatory drawing explaining the converter cell 20 described in Example 1 perspectively from the front.
  • FIG. It is explanatory drawing explaining the aspect of the installation structure of the power conversion apparatus 1 described in Example 2.
  • FIG. It is explanatory drawing explaining the aspect of the installation structure of the power conversion apparatus 1 described in Example 2.
  • FIG. 1 is an explanatory diagram (block diagram) for explaining the power conversion device 1 described in the first embodiment.
  • the power conversion device 1 described in the first embodiment has N converter cells 20-1 to 20-N.
  • Each converter cell 20-k (where k is a stage number and 1 ⁇ k ⁇ N) has a pair of primary side terminals 25 and 26 and a pair of secondary side terminals 27 and 28.
  • Each converter cell 20-k has an AC / DC converter (power semiconductor element) 11, an AC / DC converter (power semiconductor element) 12, an AC / DC converter (power semiconductor element) 13, and an AC / DC converter (power semiconductor element) 14. , Have.
  • the AC / DC converter (power semiconductor element) 11 is a first AC / DC converter (primary) that supplies an AC voltage (primary side system voltage VS1) from the primary side power supply system 31 and converts the AC voltage into a DC voltage. Side converter).
  • the AC / DC converter (power semiconductor element) 12 is a second AC / DC converter (primary side converter) that converts the DC voltage converted by the first AC / DC converter into an AC voltage.
  • the AC / DC converter (power semiconductor element) 13 is a third AC / DC converter (secondary side converter) that converts the AC voltage converted by the second AC / DC converter into a DC voltage.
  • the AC / DC converter (power semiconductor element) 14 converts the DC voltage converted by the third AC / DC converter into an AC voltage (secondary side system voltage VS2), and supplies this AC voltage to the secondary side power supply system 32.
  • each converter cell 20-k has a high frequency transformer 15 (isolation transformer), a capacitor 17 (first capacitor), and a capacitor 18 (second capacitor).
  • the high frequency transformer 15 (transformer) is connected between the AC / DC converter 12 and the AC / DC converter 13, the capacitor 17 is connected between the AC / DC converter 11 and the AC / DC converter 12, and the capacitor 18 is the AC / DC converter. It is connected between the device 13 and the AC / DC converter 14.
  • the primary side terminals 25 and 26 of the converter cells 20-1 to 20-N are sequentially connected in series with each other, and the primary side power supply system 31 is connected to these series circuits.
  • the secondary side terminals 27 and 28 of the converter cells 20-1 to 20-N are sequentially connected in series with each other, and the secondary side power supply system 32 is connected to these series circuits.
  • the converter cells 20-1 to 20-N transmit power in both directions or in one direction between the primary side terminals 25 and 26 and the secondary side terminals 27 and 28.
  • the primary side power supply system 31 and the secondary side power supply system 32 have an inductive impedance and a filter reactor. Further, the primary side power supply system 31 and the secondary side power supply system 32 are, for example, a system of various power generation facilities such as a commercial power supply system and a solar power generation system, and a system of various power receiving facilities such as a motor.
  • the voltage of the primary side power supply system 31 is the primary side system voltage VS1
  • the voltage of the secondary side power supply system 32 is the secondary side system voltage VS2.
  • the amplitude and frequency of the primary side system voltage VS1 and the secondary side system voltage VS2 are independent of each other.
  • the power conversion device 1 transmits power in both directions or in one direction between the primary power supply system 31 and the secondary power supply system 32.
  • the primary side reference terminal 33 is a terminal on which the primary side reference potential appears
  • the secondary side reference terminal 34 is a terminal on which the secondary side reference potential appears.
  • the primary side reference potential and the secondary side reference potential are, for example, the ground potential, but the primary side reference potential and the secondary side reference potential do not necessarily have to be the ground potential.
  • the primary side reference terminal 33 is connected to the primary side terminal 25 of the converter cell 20-1, and the terminal 35 is connected to the secondary side terminal 26 of the converter cell 20-N.
  • the secondary side reference terminal 34 is connected to the secondary side terminal 28 of the converter cell 20-N, and the terminal 36 is connected to the secondary side terminal 27 of the converter cell 20-1.
  • FIG. 2 is an explanatory diagram (circuit diagram) for explaining the converter cell 20 described in the first embodiment.
  • the AC / DC converter 11, the AC / DC converter 12, the AC / DC converter 13, and the AC / DC converter 14 are connected to four switching elements connected in an H-bridge shape, and these four switching elements are connected in antiparallel, respectively. It has a connected FWD (Free Wheeling Diode) and (both are unsigned).
  • these four switching elements are, for example, MOSFETs (Metal-Oxide-Semiconductor Field-Effective Transistors).
  • the voltage appearing between both ends of the capacitor 17 is the primary side DC link voltage V dc1 (primary side DC voltage), and the voltage appearing between the primary side terminals 25 and 26 is the voltage between the primary side AC terminals. Let it be V U1k .
  • the voltage appearing between both ends of the capacitor 18 is the secondary side DC link voltage V dc2 (secondary side DC voltage), and the voltage appearing between the secondary side terminals 27 and 28 is the voltage between the secondary side AC terminals. Let it be V U2k .
  • the AC / DC converter 11 transmits power while converting the primary side AC terminal voltage V U1k and the primary side DC link voltage V dc1 in both directions or in one direction.
  • the AC / DC converter 12 transmits electric power while converting the primary side DC link voltage V dc1 and the voltage appearing in the primary winding 15a of the high frequency transformer 15 in both directions or in one direction.
  • the AC / DC converter 13 transmits power while converting the secondary side DC link voltage V dc2 and the voltage appearing in the secondary winding 15b of the high frequency transformer 15 in both directions or in one direction.
  • the AC / DC converter 14 transmits power while converting the secondary side AC terminal voltage V U2k and the secondary side DC link voltage V dc2 in both directions or in one direction.
  • the high frequency transformer 15 has a primary winding 15a and a secondary winding 15b, and supplies electric power in both directions or in one direction at a predetermined frequency between the primary winding 15a and the secondary winding 15b. To transmit.
  • the current input / output from the AC / DC converter 12 and the AC / DC converter 13 to and from the high frequency transformer 15 is high frequency.
  • the high frequency is, for example, a frequency of 100 Hz or higher, but it is preferable to use a frequency of 1 kHz or higher, and further preferably a frequency of 10 kHz or higher.
  • FIG. 1 assuming that the amplitude value of the primary side system voltage VS1 is V max and the primary side DC link voltage V dc1 of each converter cell 20-k is 1 / N of the amplitude value V max , FIG.
  • the voltage V U1k between the primary AC terminals shown in is a voltage of either ⁇ V max / N or 0.
  • FIG. 1 assuming that the amplitude value of the secondary side system voltage VS2 is V max and the secondary side DC link voltage V dc2 of each converter cell 20-k is 1 / N of the amplitude value V max , FIG.
  • the voltage V U2k between the secondary AC terminals shown in the above is a voltage of either ⁇ V max / N or 0.
  • the power converter unit including the AC / DC converter 11, the capacitor 17, and the AC / DC converter 12 is used as the primary power conversion unit 101, and the AC / DC converter 13, the capacitor 18, and the AC / DC converter are used.
  • the power converter unit including 14 is referred to as a secondary power conversion unit 102.
  • the power conversion device 1 described in the first embodiment is composed of converter cells 20-1 to 20-N, and the U-phase, V-phase, and W-phase terminals of the primary-side three-phase power supply system are U1, V1, and W1.
  • the terminals of the U-phase, V-phase, and W-phase of the secondary side three-phase power supply system are U2, V2, and W2, and the neutral points thereof are N1 and N2.
  • the neutral point N1 and the neutral point N2 are on the primary side and It serves as a reference terminal on the secondary side.
  • the primary side terminals 25 and 26 (see FIGS. 1 and 2) of the converter cells 20-1 to 20-N are sequentially connected in series between the primary side terminal U1 and the neutral point N1.
  • the secondary terminals 27 and 28 are sequentially arranged in series. Be connected.
  • the V phase and the W phase are also connected to the power conversion device 1 in the same manner as the U phase.
  • FIG. 3 is an explanatory diagram illustrating voltage waveforms of the primary side system voltage VS1 and the secondary side system voltage VS2 described in the first embodiment.
  • the primary side system voltage VS1 for example, input voltage
  • the secondary side system voltage VS2 for example, output voltage
  • FIG. 4 is an explanatory diagram illustrating the installation structure of the power conversion device 1 described in the first embodiment.
  • the power conversion device 1 described in the first embodiment has a plurality of converter cells 20, and a primary side power conversion unit 101, a high frequency transformer 15, and a secondary side power conversion unit 102 are installed in the converter cell 20. Will be done.
  • the primary power conversion unit 101, the high frequency transformer 15, and the secondary power conversion unit 102 installed in the converter cell 20 are installed in one direction with respect to the direction in which the cooling air flows. That is, the cooling air circulates in the order of the primary side power conversion unit 101, the high frequency transformer 15, and the secondary side power conversion unit 102, and cools them.
  • this cooling air is forcibly supplied by a cooling fan (not shown). That is, the power conversion device 1 described in the first embodiment has a forced cooling structure.
  • the power conversion device 1 described in the first embodiment has openings for flowing cooling air on the front surface and the rear surface.
  • cooling air air (gas)
  • the cooling medium is not limited to the cooling air, and cooling oil (liquid) or the like can also be used.
  • cooling oil or the like is used as the cooling medium
  • the power semiconductor element used in the primary power conversion unit 101, the high frequency transformer 15, and the power semiconductor element used in the secondary power conversion unit 102 are used. It is used by covering it with a metal having high thermal conductivity, for example, and separating it from cooling oil.
  • the power conversion device 1 described in the first embodiment has a plurality of converter cells 20 installed in the order of the primary side power conversion unit 101, the high frequency transformer 15, and the secondary side power conversion unit 102 in the same direction. Install toward. As a result, the primary side power conversion unit 101 is installed on the front surface of the power conversion device 1, and the secondary side power conversion unit 102 is installed on the rear surface of the power conversion device 1.
  • the converter cells 20 are installed in the same direction in the vertical direction (three in the first embodiment) and the horizontal direction (nine in the first embodiment).
  • the wiring between the primary side power conversion units 101 is installed in the front space of the power conversion device 1, and the wiring between the secondary side power conversion units 102 is installed in the rear space of the power conversion device 1.
  • the power conversion device 1 described in the first embodiment has a wiring distance between the primary side power conversion unit 101 and the high frequency transformer 15, and a wiring distance between the secondary side power conversion unit 102 and the high frequency transformer 15.
  • the wiring distance can be shortened, the insulation dead space due to the wiring can be reduced, and the power conversion device 1 can be miniaturized.
  • the assembleability and maintainability are improved by installing the wiring in the front space and the rear space.
  • the power conversion device 1 described in the first embodiment has a control device next to the plurality of converter cells 20.
  • the power conversion device 1 described in the first embodiment has a plurality of converter cells 20 in which the primary side power conversion unit 101 and the high frequency transformer 15 and the secondary side power conversion unit 102 are installed in order.
  • the thermal interference between the power conversion unit and the power conversion unit and the thermal interference between the power conversion unit and the high frequency transformer are reduced, and the cooling fins are miniaturized.
  • FIG. 5 is an explanatory diagram illustrating an aspect of the installation structure of the power conversion device 1 described in the first embodiment.
  • the power conversion device 1 shown in FIG. 5 is a side view of the power conversion device 1 shown in FIG. 4, and shows two converter cells 20 (upper and lower) for convenience of explanation.
  • the power converter device 1 described in the first embodiment has a primary power conversion unit 101 (upper 101a and lower 101b) installed on the front surface and a secondary power conversion unit 102 (upper 102a and 102b) on the rear surface.
  • a high frequency transformer 15 (upper stage 15a and lower stage 15b) is installed between the primary side power conversion unit 101 and the secondary side power conversion unit 102.
  • the cooling air circulates in the order of the primary side power conversion unit 101, the high frequency transformer 15, and the secondary side power conversion unit 102.
  • a condenser 17 (upper stage 17a and lower stage 17b) is installed below, and a cooling fin 104 (upper stage 104a and lower stage 104b) is installed above, respectively.
  • a condenser 18 (upper stage 18a and lower stage 18b) is installed above, and a cooling fin 105 (upper stage 105a and lower stage 105b) is installed below, respectively.
  • the cooling fins 104 are installed above the condenser 17 in the height direction, and in the secondary side power conversion unit 102, the cooling fins 105 are below the condenser 18 in the height direction. Will be installed in.
  • cooling fins 104 are installed below the capacitor 17 in the height direction
  • the cooling fin 105 may be installed above the condenser 18 in the height direction.
  • one cooling air flows in from above the condenser 17 above the primary power conversion unit 101, flows through the cooling fins 105 of the secondary power conversion unit 102, and flows through the cooling fins 105 of the secondary power conversion unit 102. It flows out from the rear opening.
  • the other cooling air flows through the cooling fins 104 below the primary power conversion unit 101 and flows out from the rear opening below the condenser 18 below the secondary power conversion unit 102.
  • a frame 107 (upper stage 107a and lower stage 107b) covering the lower portion thereof is installed.
  • a frame 108 (upper stage 108a and lower stage 108b) covering the upper portion thereof is installed.
  • a frame 109 formed at the upper part is installed in the upper converter cell 20.
  • a frame 120 formed in the lower part is installed.
  • the front side is formed above the primary power conversion unit 101b of the lower converter cell 20, and the rear side of the upper converter cell 20.
  • a frame 121 formed below the secondary power conversion unit 102a is installed.
  • a space (insulated space) is required between two converter cells 20 adjacent to each other in the height direction in order to secure insulation. Further, the cooling air for cooling the converter cell 20 flows in from the front surface direction and flows out from the rear surface direction.
  • the frame 121 has a function as a wind direction plate.
  • this wind direction plate may be a part of the frame 121, or may be formed by being connected to the frame of the primary side power conversion unit 101 and the frame of the secondary side power conversion unit 102.
  • one cooling air (first cooling air 131 (upper stage 131a and lower stage 131b)) flows in from the front opening (intake port) above the primary side power conversion unit 101, and the primary side power conversion unit 101.
  • the cooling fins 104a (and the cooling fins 104b) for cooling the power semiconductor element of the above are circulated and flow out from the rear opening (exhaust port) above the secondary power conversion unit 102.
  • cooling air 132 (upper stage 132a and lower stage 132b)
  • second cooling air 132 (upper stage 132a and lower stage 132b)
  • Cooling fins 105a (and cooling fins 105b) for cooling the power semiconductor element of the unit 102 flow through and flow out from the rear opening (exhaust port) below the secondary power conversion unit 102.
  • the intake port is the inlet and the exhaust port is the outlet.
  • the cooling air for cooling the primary power conversion unit 101 and the cooling air for cooling the secondary power conversion unit 102 can be separated. it can. As a result, thermal interference between the primary side power conversion unit 101 and the secondary side power conversion unit 102 can be reduced, and the primary side power conversion unit 101 and the secondary side power conversion unit 102, respectively.
  • the cooling fins can be miniaturized.
  • a wind direction plate (frame 121) for dividing the cooling air is installed in the insulating space between the two converter cells 20 adjacent to each other in the height direction of the upper converter cell 20 and the lower converter cell 20. Therefore, the dead space of the cooling air flow path can be reduced.
  • the power conversion device 1 described in the first embodiment has a plurality of converter cells 20 in which the primary side power conversion unit 101, the high frequency transformer 15, and the secondary side power conversion unit 102 are installed in order.
  • the primary power conversion unit 101, the high frequency transformer 15, and the secondary power conversion unit 102 are installed in one direction from the intake port to the exhaust port (with respect to the direction in which the cooling air flows).
  • the thermal interference between the power conversion unit and the power conversion unit and the thermal interference between the power conversion unit and the high frequency transformer can be reduced, and the cooling fins can be miniaturized.
  • FIG. 6 is an explanatory view for perspectively explaining the converter cell 20 described in the first embodiment from the front.
  • FIG. 7 is an explanatory view for perspectively explaining the converter cell 20 described in the first embodiment from the rear surface.
  • the cooling fins (201 and 202) of the primary power conversion unit 101 are installed above the capacitor 17 of the primary power conversion unit 101 in the height direction.
  • the cooling fins (203 and 204) of the secondary power conversion unit 102 are installed below the capacitor 18 of the secondary power conversion unit 102 in the height direction.
  • a high frequency transformer 15 is installed between the primary side power conversion unit 101 and the secondary side power conversion unit 102.
  • the converter cell 20 described in the first embodiment has the cooling fins (201 and 202) of the primary power conversion unit 101 and the cooling fins (203 and 204) of the secondary power conversion unit 102. Install alternately in the height direction. Then, in the power conversion device 1 described in the first embodiment, such converter cells 20 are installed in a plurality of stages in the height direction. Then, a wind direction plate (frame 121) is installed between the converter cells 20 and the converter cells 20 which are installed in a plurality of stages in the height direction.
  • one cooling air (first cooling air 131) circulates through the cooling fins (201 and 202) of the primary side power conversion unit 101, and is above the high frequency transformer 15 and the condenser 18 of the secondary side power conversion unit 102. To distribute.
  • second cooling air 132 circulates below the condenser 17 of the primary power conversion unit 101 and the high frequency transformer 15, and the cooling fins (203 and 203) of the secondary power conversion unit 102. 204) is distributed.
  • the cooling air that cools the primary power conversion unit 101 and the cooling air that cools the secondary power conversion unit 102 can be separated, and the primary power conversion unit 101 and the secondary power conversion unit 101 can be converted.
  • Thermal interference with the unit 102 can be reduced, and the cooling fins of the primary power conversion unit 101 and the secondary power conversion unit 102 can be miniaturized.
  • the distance from the intake port to the exhaust port of the first cooling air and the distance from the intake port to the exhaust port of the second cooling air can be shortened, the bending of the cooling air flow path can be reduced, and the cooling air can be reduced. Pressure loss can be reduced. Then, the allowable pressure loss characteristic of the cooling air required for the cooling fan can be reduced.
  • the cooling fins (201, 202, 203, 204) are installed on the fin base 207. Further, the AC / DC converters (11, 12, 13, 14) are electrically connected to the bus bar 205.
  • the AC / DC converters (11, 12, 13, 14) have cooling fins (201, 202, 203, 204) individually. That is, the AC / DC converter 11 has cooling fins 201, the AC / DC converter 12 has cooling fins 202, the AC / DC converter 13 has cooling fins 203, and the AC / DC converter 14 has cooling fins 204.
  • the cooling fin 202 is larger than the cooling fin 201
  • the cooling fin 204 is larger than the cooling fin 203. That is, the surface area of the cooling fin 201 is set smaller than the surface area of the cooling fin 202, and the surface area of the cooling fin 203 is set smaller than the surface area of the cooling fin 204.
  • the surface area of the cooling fin 201 By setting the surface area of the cooling fin 201 to be smaller than the surface area of the cooling fin 202, it is possible to reduce the pressure loss in the flow path of the cooling air flowing through the primary side power conversion unit 101. Further, by setting the surface area of the cooling fin 203 to be smaller than the surface area of the cooling fin 204, it is possible to reduce the pressure loss in the flow path of the cooling air flowing through the secondary power conversion unit 102.
  • the calorific value of the AC / DC converter (power semiconductor element that executes AC / DC conversion) 11 is smaller than the calorific value of the AC / DC converter (power semiconductor element that executes DC / AC conversion) 12.
  • the calorific value of the AC / DC converter (power semiconductor element that executes AC / DC conversion) 13 is smaller than the calorific value of the AC / DC converter (power semiconductor element that executes DC / AC conversion) 14.
  • the primary power conversion unit 101 has an AC / DC power semiconductor element (11) and a DC / AC power semiconductor element (12), and is a cooling fin 201 that cools the AC / DC power semiconductor element (11).
  • the cooling fin 202 for cooling the DC / AC power semiconductor element (12), and the surface area of the cooling fin 201 for cooling the AC / DC power semiconductor element (11) is the DC / AC power semiconductor element (12). It is smaller than the surface area of the cooling fin 202 to be cooled.
  • the secondary power conversion unit 102 has an AC / DC power semiconductor element (13) and a DC / AC power semiconductor element (14), and is a cooling fin 203 that cools the AC / DC power semiconductor element (13).
  • the cooling fin 204 for cooling the DC / AC power semiconductor element (14), and the surface area of the cooling fin 203 for cooling the AC / DC power semiconductor element (13) is the DC / AC power semiconductor element (14). It is smaller than the surface area of the cooling fin 204 to be cooled.
  • the external dimensions of the cooling fins 201 are set to be smaller than the external dimensions of the cooling fins 202, and the external dimensions of the cooling fins 203 are set to be smaller than the external dimensions of the cooling fins 204.
  • the calorific value of the AC / DC converter 11 is smaller than the calorific value of the AC / DC converter 12, and the calorific value of the AC / DC converter 13 is smaller than the calorific value of the AC / DC converter 14. That is, the cooling fin 201 of the power semiconductor element (AC / DC converter 11) that executes AC / DC conversion is cooled by the power semiconductor element (AC / DC converter 12) that executes DC / AC conversion installed on the leeward side.
  • the power semiconductor element (AC / DC converter 14) installed on the leeward side of the cooling fin 203 of the power semiconductor element (AC / DC converter 13) that executes AC / DC conversion performs DC / AC conversion.
  • FIG. 8 is an explanatory diagram illustrating the installation structure of the power conversion device 1 described in the second embodiment.
  • the power conversion device 1 described in the second embodiment has a plurality of converter cells 20 like the power conversion device 1 described in the first embodiment, and the converter cells 20 include the primary side power conversion unit 101.
  • the high frequency transformer 15 and the secondary power conversion unit 102 are installed in one direction.
  • the power conversion device 1 described in the second embodiment is different from the power conversion device 1 described in the first embodiment in that the cooling air flows through the primary power conversion unit 101 and the high-frequency transformer 15 in this order. And the flow path that circulates in the order of the secondary power conversion unit 102 and the high frequency transformer 15, and is exhausted upward.
  • the power conversion device 1 described in the second embodiment has openings for circulating cooling air on the front surface (intake port), the rear surface (intake port), and the upper surface (exhaust port).
  • FIG. 9 is an explanatory diagram illustrating an aspect of the installation structure of the power conversion device 1 described in the second embodiment.
  • the primary side power conversion unit 101 has a capacitor 17 below and a cooling fin 104 above.
  • a capacitor 18 is installed below the power conversion unit 102 on the secondary side, and a cooling fin 105 is installed above the power conversion unit 102.
  • the primary side power conversion unit 101 is provided with a frame 107 covering the lower portion thereof and a frame 1070 formed on the upper portion thereof, and the secondary side power conversion unit 102 also has the frame 108 covering the lower portion and the upper portion thereof.
  • a frame 1080 formed in is installed.
  • the power conversion device 1 described in the second embodiment connects the frame 1070b and the frame 107a, connects the frame 1080b and the frame 108a, and forms a cooling air flow path in the region where the high frequency transformer 15 is installed.
  • the wind direction plate 103 is installed.
  • the cooling air flows in the order of the cooling fins 104 of the primary power conversion unit 101 and the high frequency transformer 15, and the flow of the cooling air of the secondary power conversion unit 102 in the order of the cooling fins 105 and the high frequency transformer 15. It circulates through the road and is exhausted above the high frequency transformer 15.
  • the cooling air of the primary power conversion unit 101 and the cooling air of the secondary power conversion unit 102 can be separated, and the primary power conversion unit 101 and the secondary power conversion unit 101 can be separated. Thermal interference with the side power conversion unit 102 can be reduced, and the cooling fins of each power conversion unit can be miniaturized.
  • the present invention is not limited to the above-mentioned examples, and includes various modifications.
  • the above-described embodiment has been specifically described in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations.

Abstract

An objective of the present invention is to provide a power conversion device comprising a plurality of power conversion units and a plurality of transformers, such that heat interference among the power conversion units and heat interference between the plurality of power conversion units and the plurality of transformers are reduced, and cooling fins are made compact. The power conversion device (1) connects a plurality of converter cells (20), each comprising a primary side power conversion unit (101), a radio frequency transformer (15), and a secondary side power conversion unit (102). The power conversion device (1) is characterized in that the primary side power conversion unit (101), the radio frequency transformer (15), and the secondary side power conversion unit (102) are set in this order in one direction from an inlet part for a cooling medium toward an outlet part for the cooling medium.

Description

電力変換装置Power converter
 本発明は、電力変換装置に関する。 The present invention relates to a power conversion device.
 近年の電力変換装置は、その主要部品であるパワー半導体素子の技術革新により、より高速なスイッチング(SW(Switching))動作を実現し、このパワー半導体素子が発する損失(SW損失)を低減させる。これにより、特に、パワー半導体素子に隣接して設置される冷却器(冷却フィン)を小型化することができ、その結果、電力変換装置を小型化することができる。また、SW損失を低減することにより、電力変換装置の効率を、向上させることができる。 In recent years, power conversion devices have realized higher speed switching (SW (Switching)) operation by technological innovation of power semiconductor elements, which are the main components thereof, and reduced the loss (SW loss) generated by these power semiconductor elements. As a result, in particular, the cooler (cooling fin) installed adjacent to the power semiconductor element can be miniaturized, and as a result, the power conversion device can be miniaturized. Further, by reducing the SW loss, the efficiency of the power conversion device can be improved.
 例えば、SiCやGaNなどのワイドバンドギャップデバイス(パワー半導体素子)では、電子飽和速度が、Siに対して、約2倍以上、速いことから、より高速なSW動作を実現し、SW損失を低減させ、更に、高周波インバータSW動作を実現することができる。 For example, in wide bandgap devices (power semiconductor devices) such as SiC and GaN, the electron saturation rate is about twice as fast as that of Si, so faster SW operation is realized and SW loss is reduced. Further, the high frequency inverter SW operation can be realized.
 また、特に、産業向けの電力変換装置は、システムを高効率化するため、システム電圧を高耐圧化する。システム電圧を高耐圧化することにより、同一電力における電流・同通損失を低減することができ、システムを高効率化することができる。 In particular, industrial power converters increase the system voltage withstand voltage in order to improve the efficiency of the system. By increasing the withstand voltage of the system voltage, it is possible to reduce the current and the same transmission loss at the same power, and it is possible to improve the efficiency of the system.
 ただし、パワー半導体素子の耐圧には制限があることから、電力変換装置は、パワー半導体素子を有する電力変換ユニットを、複数、直列に接続し、システム電圧を高耐圧化する。 However, since the withstand voltage of the power semiconductor element is limited, the power conversion device connects a plurality of power conversion units having the power semiconductor element in series to increase the withstand voltage of the system voltage.
 こうした本技術分野の背景技術として、国際公開番号WO2018/173379号公報(特許文献1)がある。この特許文献1には、第1の主回路基板が収容される第1の区画と、冷却風が通風する通風径路を有する第2の区画と、第2の主回路基板が収容される第3の区画と、を形成する筐体を有し、第1のキャパシタの電気端子と、第1の半導体素子の電気端子とが、第1の区画に収納され、第1のキャパシタの少なくとも一部と第1のヒートシンクの少なくとも一部とが、第2の区画に露出し、第2のキャパシタの電気端子と、第2の半導体素子の電気端子とが、第3の区画に収納され、第2のキャパシタの少なくとも一部と第2のヒートシンクの少なくとも一部とが、第2の区画に露出する電力変換装置が記載されている(要約参照)。 As a background technology in this technical field, there is International Publication No. WO2018 / 173379 (Patent Document 1). In this Patent Document 1, a first section in which a first main circuit board is housed, a second section having a ventilation path through which cooling air passes, and a third section in which a second main circuit board is housed are housed. The electrical terminal of the first capacitor and the electrical terminal of the first semiconductor element are housed in the first compartment and have at least a part of the first capacitor. At least a part of the first heat sink is exposed in the second compartment, and the electric terminal of the second capacitor and the electric terminal of the second semiconductor element are housed in the third compartment, and the second compartment is used. A power converter is described in which at least a portion of the capacitor and at least a portion of the second heat sink are exposed in the second compartment (see summary).
 また、特許文献1には、各電力変換装置の後方に排気路が形成され、冷却風は各電力変換装置の前面から吸入されることが記載されている(0041参照)。 Further, Patent Document 1 describes that an exhaust passage is formed behind each power conversion device, and cooling air is taken in from the front surface of each power conversion device (see 0041).
国際公開番号WO2018/173379号公報International Publication No. WO2018 / 173379
 一般に、複数の電力変換ユニットを有する電力変換装置を小型化するためには、電力変換ユニットと電力変換ユニットとの間の熱干渉を低減し、各電力変換ユニットに設置される冷却フィンを小型化する必要がある。また、複数のトランスを有する電力変換装置成では、冷却フィンを小型化するためには、複数の電力変換ユニットと複数のトランスとの間の熱干渉を低減する必要がある。 Generally, in order to miniaturize a power conversion device having a plurality of power conversion units, the thermal interference between the power conversion units and the power conversion units is reduced, and the cooling fins installed in each power conversion unit are miniaturized. There is a need to. Further, in a power conversion device having a plurality of transformers, it is necessary to reduce thermal interference between the plurality of power conversion units and the plurality of transformers in order to reduce the size of the cooling fins.
 一方、特許文献1には、冷却風を使用して、電力変換装置を前面から後方に冷却することが記載されている。しかし、特許文献1には、こうした電力変換ユニットと電力変換ユニットとの間の熱干渉の低減や複数の電力変換ユニットと複数のトランスとの間の熱干渉の低減については、記載されていない。 On the other hand, Patent Document 1 describes that the power conversion device is cooled from the front to the rear by using cooling air. However, Patent Document 1 does not describe such reduction of thermal interference between power conversion units and power conversion units and reduction of thermal interference between a plurality of power conversion units and a plurality of transformers.
 そこで、本発明は、複数の電力変換ユニットと複数のトランスとを有し、電力変換ユニットと電力変換ユニットとの間の熱干渉や複数の電力変換ユニットと複数のトランスとの間の熱干渉を低減し、冷却フィンを小型化する電力変換装置を提供する。 Therefore, the present invention has a plurality of power conversion units and a plurality of transformers, and causes thermal interference between the power conversion unit and the power conversion unit and thermal interference between the plurality of power conversion units and the plurality of transformers. Provided is a power conversion device that reduces and reduces the size of cooling fins.
 上記する課題を解決するため、本発明の電力変換装置は、1次側電力変換ユニットと、高周波トランスと、2次側電力変換ユニットと、を有する複数のコンバータセルを接続する電力変換装置であって、1次側電力変換ユニット、高周波トランス、2次側電力変換ユニットは、この順に、冷却媒体(例えば、冷却風)の入口部から冷却媒体(例えば、冷却風)の出口部に向かって、一方向に設置されることを特徴とする。 In order to solve the above problems, the power conversion device of the present invention is a power conversion device that connects a plurality of converter cells having a primary side power conversion unit, a high frequency transformer, and a secondary side power conversion unit. The primary power conversion unit, the high-frequency transformer, and the secondary power conversion unit are arranged in this order from the inlet of the cooling medium (for example, cooling air) toward the outlet of the cooling medium (for example, cooling air). It is characterized by being installed in one direction.
 本発明によれば、複数の電力変換ユニットと複数のトランスとを有し、電力変換ユニットと電力変換ユニットとの間の熱干渉や複数の電力変換ユニットと複数のトランスとの間の熱干渉を低減し、冷却フィンを小型化する電力変換装置を提供することができる。 According to the present invention, a plurality of power conversion units and a plurality of transformers are provided, and thermal interference between the power conversion unit and the power conversion unit and thermal interference between the plurality of power conversion units and the plurality of transformers are caused. It is possible to provide a power conversion device that reduces the size and reduces the size of the cooling fins.
 なお、上記した以外の課題、構成及び効果は、下記する実施例の説明により明らかにされる。 Issues, configurations and effects other than those mentioned above will be clarified by the explanation of the examples below.
実施例1に記載する電力変換装置1を説明する説明図である。It is explanatory drawing explaining the power conversion apparatus 1 described in Example 1. FIG. 実施例1に記載するコンバータセル20を説明する説明図である。It is explanatory drawing explaining the converter cell 20 described in Example 1. FIG. 実施例1に記載する1次側系統電圧VS1及び2次側系統電圧VS2の電圧波形を説明する説明図である。It is explanatory drawing explaining the voltage waveform of the primary side system voltage VS1 and the secondary side system voltage VS2 described in Example 1. FIG. 実施例1に記載する電力変換装置1の設置構造を説明する説明図である。It is explanatory drawing explaining the installation structure of the power conversion apparatus 1 described in Example 1. FIG. 実施例1に記載する電力変換装置1の設置構造の側面を説明する説明図である。It is explanatory drawing explaining the aspect of the installation structure of the power conversion apparatus 1 described in Example 1. FIG. 実施例1に記載するコンバータセル20を前面から斜視的に説明する説明図である。It is explanatory drawing explaining the converter cell 20 described in Example 1 perspectively from the front. 実施例1に記載するコンバータセル20を後面から斜視的に説明する説明図である。It is explanatory drawing explaining the converter cell 20 described in Example 1 perspectively from the rear surface. 実施例2に記載する電力変換装置1の設置構造を説明する説明図である。It is explanatory drawing explaining the installation structure of the electric power conversion apparatus 1 described in Example 2. FIG. 実施例2に記載する電力変換装置1の設置構造の側面を説明する説明図である。It is explanatory drawing explaining the aspect of the installation structure of the power conversion apparatus 1 described in Example 2. FIG.
 以下、図面を使用して、本発明の実施例を説明する。なお、実質的に同一又は類似の構成には、同一の符号を付し、説明が重複する場合は、その説明を省略する場合がある。 Hereinafter, examples of the present invention will be described with reference to the drawings. The substantially same or similar configurations are designated by the same reference numerals, and if the explanations are duplicated, the description may be omitted.
 まず、実施例1に記載する電力変換装置1を説明する。 First, the power conversion device 1 described in the first embodiment will be described.
 図1は、実施例1に記載する電力変換装置1を説明する説明図(ブロック図)である。 FIG. 1 is an explanatory diagram (block diagram) for explaining the power conversion device 1 described in the first embodiment.
 実施例1に記載する電力変換装置1は、N台のコンバータセル20-1~20-Nを有する。そして、各々のコンバータセル20-k(但し、kは段数番号であり、1≦k≦N)は、一対の1次側端子25と26、一対の2次側端子27と28を有する。 The power conversion device 1 described in the first embodiment has N converter cells 20-1 to 20-N. Each converter cell 20-k (where k is a stage number and 1 ≦ k ≦ N) has a pair of primary side terminals 25 and 26 and a pair of secondary side terminals 27 and 28.
 そして、各々のコンバータセル20-kは、交直変換器(パワー半導体素子)11、交直変換器(パワー半導体素子)12、交直変換器(パワー半導体素子)13、交直変換器(パワー半導体素子)14、を有する。 Each converter cell 20-k has an AC / DC converter (power semiconductor element) 11, an AC / DC converter (power semiconductor element) 12, an AC / DC converter (power semiconductor element) 13, and an AC / DC converter (power semiconductor element) 14. , Have.
 交直変換器(パワー半導体素子)11は、1次側電源系統31から交流電圧(1次側系統電圧VS1)を供給し、この交流電圧を直流電圧に変換する第1の交直変換器(1次側変換器)である。 The AC / DC converter (power semiconductor element) 11 is a first AC / DC converter (primary) that supplies an AC voltage (primary side system voltage VS1) from the primary side power supply system 31 and converts the AC voltage into a DC voltage. Side converter).
 交直変換器(パワー半導体素子)12は、第1の交直変換器により変換された直流電圧を交流電圧に変換する第2の交直変換器(1次側変換器)である。 The AC / DC converter (power semiconductor element) 12 is a second AC / DC converter (primary side converter) that converts the DC voltage converted by the first AC / DC converter into an AC voltage.
 交直変換器(パワー半導体素子)13は、第2の交直変換器により変換された交流電圧を直流電圧に変換する第3の交直変換器(2次側変換器)である。 The AC / DC converter (power semiconductor element) 13 is a third AC / DC converter (secondary side converter) that converts the AC voltage converted by the second AC / DC converter into a DC voltage.
 交直変換器(パワー半導体素子)14は、第3の交直変換器により変換された直流電圧を交流電圧(2次側系統電圧VS2)に変換し、この交流電圧を2次側電源系統32に供給する第4の交直変換器(2次側変換器)である。 The AC / DC converter (power semiconductor element) 14 converts the DC voltage converted by the third AC / DC converter into an AC voltage (secondary side system voltage VS2), and supplies this AC voltage to the secondary side power supply system 32. This is the fourth AC / DC converter (secondary converter).
 更に、各々のコンバータセル20-kは、高周波トランス15(絶縁トランス)と、コンデンサ17(第1のコンデンサ)と、コンデンサ18(第2のコンデンサ)と、を有する。 Further, each converter cell 20-k has a high frequency transformer 15 (isolation transformer), a capacitor 17 (first capacitor), and a capacitor 18 (second capacitor).
 高周波トランス15(トランス)は、交直変換器12と交直変換器13との間に接続され、コンデンサ17は、交直変換器11と交直変換器12との間に接続され、コンデンサ18は、交直変換器13と交直変換器14との間に接続される。 The high frequency transformer 15 (transformer) is connected between the AC / DC converter 12 and the AC / DC converter 13, the capacitor 17 is connected between the AC / DC converter 11 and the AC / DC converter 12, and the capacitor 18 is the AC / DC converter. It is connected between the device 13 and the AC / DC converter 14.
 そして、コンバータセル20-1~20-Nの1次側端子25と26とは、順次、互いに直列に接続され、これら直列回路に、1次側電源系統31が接続される。同様に、コンバータセル20-1~20-Nの2次側端子27と28とは、順次、互いに直列に接続され、これら直列回路に、2次側電源系統32が接続される。 Then, the primary side terminals 25 and 26 of the converter cells 20-1 to 20-N are sequentially connected in series with each other, and the primary side power supply system 31 is connected to these series circuits. Similarly, the secondary side terminals 27 and 28 of the converter cells 20-1 to 20-N are sequentially connected in series with each other, and the secondary side power supply system 32 is connected to these series circuits.
 コンバータセル20-1~20-Nは、1次側端子25と26及び2次側端子27と28の間で、双方向又は一方向に電力を伝送する。 The converter cells 20-1 to 20-N transmit power in both directions or in one direction between the primary side terminals 25 and 26 and the secondary side terminals 27 and 28.
 1次側電源系統31及び2次側電源系統32は、誘導性インピーダンスやフィルタリアクトルを有する。また、1次側電源系統31及び2次側電源系統32は、例えば、商用電源系統や太陽光発電系統などの様々な発電設備の系統、及び、モータなどの様々な受電設備の系統である。 The primary side power supply system 31 and the secondary side power supply system 32 have an inductive impedance and a filter reactor. Further, the primary side power supply system 31 and the secondary side power supply system 32 are, for example, a system of various power generation facilities such as a commercial power supply system and a solar power generation system, and a system of various power receiving facilities such as a motor.
 1次側電源系統31の電圧を1次側系統電圧VS1とし、2次側電源系統32の電圧を2次側系統電圧VS2とする。1次側系統電圧VS1及び2次側系統電圧VS2は、振幅及び周波数が相互に独立している。電力変換装置1は、1次側電源系統31と2次側電源系統32との間で、双方向又は一方向に電力を伝送する。 The voltage of the primary side power supply system 31 is the primary side system voltage VS1, and the voltage of the secondary side power supply system 32 is the secondary side system voltage VS2. The amplitude and frequency of the primary side system voltage VS1 and the secondary side system voltage VS2 are independent of each other. The power conversion device 1 transmits power in both directions or in one direction between the primary power supply system 31 and the secondary power supply system 32.
 1次側電源系統31の一対の端子のうち、一方を1次側基準端子33と、他方を端子35とし、2次側電源系統32の一対の端子のうち、一方を2次側基準端子34と、他方を端子36とする。1次側基準端子33は、1次側基準電位が現れる端子であり、2次側基準端子34は、2次側基準電位が現れる端子である。 Of the pair of terminals of the primary power system 31, one is the primary reference terminal 33 and the other is the terminal 35, and one of the pair of terminals of the secondary power system 32 is the secondary reference terminal 34. And the other is the terminal 36. The primary side reference terminal 33 is a terminal on which the primary side reference potential appears, and the secondary side reference terminal 34 is a terminal on which the secondary side reference potential appears.
 実施例1では、1次側基準電位及び2次側基準電位は、例えば、接地電位であるが、1次側基準電位及び2次側基準電位は、必ずしも接地電位でなくてもよい。 In Example 1, the primary side reference potential and the secondary side reference potential are, for example, the ground potential, but the primary side reference potential and the secondary side reference potential do not necessarily have to be the ground potential.
 そして、1次側基準端子33は、コンバータセル20-1の1次側端子25に接続され、端子35は、コンバータセル20-Nの2次側端子26に接続される。また、2次側基準端子34は、コンバータセル20-Nの2次側端子28に接続され、端子36は、コンバータセル20-1の2次側端子27に接続される。 Then, the primary side reference terminal 33 is connected to the primary side terminal 25 of the converter cell 20-1, and the terminal 35 is connected to the secondary side terminal 26 of the converter cell 20-N. Further, the secondary side reference terminal 34 is connected to the secondary side terminal 28 of the converter cell 20-N, and the terminal 36 is connected to the secondary side terminal 27 of the converter cell 20-1.
 次に、実施例1に記載するコンバータセル20を説明する。 Next, the converter cell 20 described in the first embodiment will be described.
 図2は、実施例1に記載するコンバータセル20を説明する説明図(回路図)である。 FIG. 2 is an explanatory diagram (circuit diagram) for explaining the converter cell 20 described in the first embodiment.
 交直変換器11、交直変換器12、交直変換器13、交直変換器14は、各々、Hブリッジ状に接続された4個のスイッチング素子と、これら4個のスイッチング素子に、各々、逆並列に接続されたFWD(Free Wheeling Diode)と、を有する(共に、符号なし)。なお、実施例1では、これら4個のスイッチング素子は、例えば、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。 The AC / DC converter 11, the AC / DC converter 12, the AC / DC converter 13, and the AC / DC converter 14 are connected to four switching elements connected in an H-bridge shape, and these four switching elements are connected in antiparallel, respectively. It has a connected FWD (Free Wheeling Diode) and (both are unsigned). In Example 1, these four switching elements are, for example, MOSFETs (Metal-Oxide-Semiconductor Field-Effective Transistors).
 コンデンサ17の両端の間に現れる電圧を、1次側DCリンク電圧Vdc1(1次側直流電圧)とし、1次側端子25と26との間に現れる電圧を、1次側AC端子間電圧VU1kとする。 The voltage appearing between both ends of the capacitor 17 is the primary side DC link voltage V dc1 (primary side DC voltage), and the voltage appearing between the primary side terminals 25 and 26 is the voltage between the primary side AC terminals. Let it be V U1k .
 コンデンサ18の両端の間に現れる電圧を、2次側DCリンク電圧Vdc2(2次側直流電圧)とし、2次側端子27と28との間に現れる電圧を、2次側AC端子間電圧VU2kとする。 The voltage appearing between both ends of the capacitor 18 is the secondary side DC link voltage V dc2 (secondary side DC voltage), and the voltage appearing between the secondary side terminals 27 and 28 is the voltage between the secondary side AC terminals. Let it be V U2k .
 交直変換器11は、1次側AC端子間電圧VU1kと1次側DCリンク電圧Vdc1とを、双方向又は一方向に変換しつつ、電力を伝送する。 The AC / DC converter 11 transmits power while converting the primary side AC terminal voltage V U1k and the primary side DC link voltage V dc1 in both directions or in one direction.
 交直変換器12は、1次側DCリンク電圧Vdc1と高周波トランス15の1次巻線15aに現れる電圧とを、双方向又は一方向に変換しつつ、電力を伝送する。 The AC / DC converter 12 transmits electric power while converting the primary side DC link voltage V dc1 and the voltage appearing in the primary winding 15a of the high frequency transformer 15 in both directions or in one direction.
 交直変換器13は、2次側DCリンク電圧Vdc2と高周波トランス15の2次巻線15bに現れる電圧とを、双方向又は一方向に変換しつつ、電力を伝送する。 The AC / DC converter 13 transmits power while converting the secondary side DC link voltage V dc2 and the voltage appearing in the secondary winding 15b of the high frequency transformer 15 in both directions or in one direction.
 交直変換器14は、2次側AC端子間電圧VU2kと2次側DCリンク電圧Vdc2とを、双方向又は一方向に変換しつつ、電力を伝送する。 The AC / DC converter 14 transmits power while converting the secondary side AC terminal voltage V U2k and the secondary side DC link voltage V dc2 in both directions or in one direction.
 高周波トランス15は、1次巻線15aと2次巻線15bとを有し、1次巻線15aと2次巻線15bとの間で、所定の周波数で、双方向又は一方向に電力を伝送する。 The high frequency transformer 15 has a primary winding 15a and a secondary winding 15b, and supplies electric power in both directions or in one direction at a predetermined frequency between the primary winding 15a and the secondary winding 15b. To transmit.
 交直変換器12及び交直変換器13が、高周波トランス15との間で入出力する電流は高周波である。ここで、高周波とは、例えば、100Hz以上の周波数であるが、1kHz以上の周波数を使用することが好ましく、更に、10kHz以上の周波数を使用することが好ましい。 The current input / output from the AC / DC converter 12 and the AC / DC converter 13 to and from the high frequency transformer 15 is high frequency. Here, the high frequency is, for example, a frequency of 100 Hz or higher, but it is preferable to use a frequency of 1 kHz or higher, and further preferably a frequency of 10 kHz or higher.
 図1において、1次側系統電圧VS1の振幅値をVmaxとし、各コンバータセル20-kの1次側DCリンク電圧Vdc1が振幅値Vmaxの1/Nであると仮定すると、図2に示す1次側AC端子間電圧VU1kは、±Vmax/N又は0のいずれかの電圧となる。 In FIG. 1, assuming that the amplitude value of the primary side system voltage VS1 is V max and the primary side DC link voltage V dc1 of each converter cell 20-k is 1 / N of the amplitude value V max , FIG. The voltage V U1k between the primary AC terminals shown in is a voltage of either ± V max / N or 0.
 図1において、2次側系統電圧VS2の振幅値をVmaxとし、各コンバータセル20-kの2次側DCリンク電圧Vdc2が振幅値Vmaxの1/Nであると仮定すると、図2に示す2次側AC端子間電圧VU2kは、±Vmax/N又は0のいずれかの電圧となる。 In FIG. 1, assuming that the amplitude value of the secondary side system voltage VS2 is V max and the secondary side DC link voltage V dc2 of each converter cell 20-k is 1 / N of the amplitude value V max , FIG. The voltage V U2k between the secondary AC terminals shown in the above is a voltage of either ± V max / N or 0.
 また、図2において、交直変換器11と、コンデンサ17と、交直変換器12とを含む電力変換器部を1次側電力変換ユニット101とし、交直変換器13と、コンデンサ18と、交直変換器14とを含む電力変換器部を2次側電力変換ユニット102とする。 Further, in FIG. 2, the power converter unit including the AC / DC converter 11, the capacitor 17, and the AC / DC converter 12 is used as the primary power conversion unit 101, and the AC / DC converter 13, the capacitor 18, and the AC / DC converter are used. The power converter unit including 14 is referred to as a secondary power conversion unit 102.
 実施例1に記載する電力変換装置1は、コンバータセル20-1~20-Nにより構成され、1次側三相電源系統のU相、V相、W相の端子をU1、V1、W1とし、2次側三相電源系統のU相、V相、W相の端子をU2、V2、W2とし、これらの中性点をN1、N2とする。 The power conversion device 1 described in the first embodiment is composed of converter cells 20-1 to 20-N, and the U-phase, V-phase, and W-phase terminals of the primary-side three-phase power supply system are U1, V1, and W1. The terminals of the U-phase, V-phase, and W-phase of the secondary side three-phase power supply system are U2, V2, and W2, and the neutral points thereof are N1 and N2.
 このような三相交流の電力変換装置1(三相交流システム:単相電力変換ユニットを直並列接続する三相電力変換装置)では、中性点N1及び中性点N2が、1次側及び2次側の基準端子となる。1次側の端子U1と中性点N1との間には、コンバータセル20-1~20-Nの1次側端子25と26(図1及び図2参照)が、順次、直列に接続される。
また、2次側の端子U2と中性点N2との間には、コンバータセル20-1~20-Nの2次側端子27と28(図1及び図2参照)が、順次、直列に接続される。なお、V相及びW相についても、U相と同様に、電力変換装置1に接続される。
In such a three-phase AC power conversion device 1 (three-phase AC system: a three-phase power conversion device in which single-phase power conversion units are connected in series and parallel), the neutral point N1 and the neutral point N2 are on the primary side and It serves as a reference terminal on the secondary side. The primary side terminals 25 and 26 (see FIGS. 1 and 2) of the converter cells 20-1 to 20-N are sequentially connected in series between the primary side terminal U1 and the neutral point N1. To.
Further, between the terminals U2 on the secondary side and the neutral point N2, the secondary terminals 27 and 28 (see FIGS. 1 and 2) of the converter cells 20-1 to 20-N are sequentially arranged in series. Be connected. The V phase and the W phase are also connected to the power conversion device 1 in the same manner as the U phase.
 次に、実施例1に記載する1次側系統電圧VS1及び2次側系統電圧VS2の電圧波形を説明する。 Next, the voltage waveforms of the primary side system voltage VS1 and the secondary side system voltage VS2 described in the first embodiment will be described.
 図3は、実施例1に記載する1次側系統電圧VS1及び2次側系統電圧VS2の電圧波形を説明する説明図である。 FIG. 3 is an explanatory diagram illustrating voltage waveforms of the primary side system voltage VS1 and the secondary side system voltage VS2 described in the first embodiment.
 直列に接続されるコンバータセル20-1~20-Nを制御することにより、図3に示すように、例えば、1次側端子25と26の1次側系統電圧VS1(例えば、入力電圧)を、2次側端子27と28の2次側系統電圧VS2(例えば、出力電圧)に、変換することができる。 By controlling the converter cells 20-1 to 20-N connected in series, for example, the primary side system voltage VS1 (for example, input voltage) of the primary side terminals 25 and 26 is set as shown in FIG. It can be converted into the secondary side system voltage VS2 (for example, output voltage) of the secondary side terminals 27 and 28.
 次に、実施例1に記載する電力変換装置1の設置構造を説明する。 Next, the installation structure of the power conversion device 1 described in the first embodiment will be described.
 図4は、実施例1に記載する電力変換装置1の設置構造を説明する説明図である。 FIG. 4 is an explanatory diagram illustrating the installation structure of the power conversion device 1 described in the first embodiment.
 実施例1に記載する電力変換装置1は、複数のコンバータセル20を有し、このコンバータセル20には、1次側電力変換ユニット101、高周波トランス15、2次側電力変換ユニット102が、設置される。そして、コンバータセル20に設置される1次側電力変換ユニット101、高周波トランス15、2次側電力変換ユニット102は、冷却風が流通する方向に対して、一方向に設置される。つまり、冷却風は、1次側電力変換ユニット101、高周波トランス15、2次側電力変換ユニット102の順に、流通し、これらを冷却する。 The power conversion device 1 described in the first embodiment has a plurality of converter cells 20, and a primary side power conversion unit 101, a high frequency transformer 15, and a secondary side power conversion unit 102 are installed in the converter cell 20. Will be done. The primary power conversion unit 101, the high frequency transformer 15, and the secondary power conversion unit 102 installed in the converter cell 20 are installed in one direction with respect to the direction in which the cooling air flows. That is, the cooling air circulates in the order of the primary side power conversion unit 101, the high frequency transformer 15, and the secondary side power conversion unit 102, and cools them.
 なお、この冷却風は、冷却ファン(図示なし)によって、強制的に供給される。つまり、実施例1に記載する電力変換装置1は、強制冷却構造を有する。 Note that this cooling air is forcibly supplied by a cooling fan (not shown). That is, the power conversion device 1 described in the first embodiment has a forced cooling structure.
 つまり、実施例1に記載される電力変換装置1は、前面と後面とに冷却風を流通する開口部を有する。 That is, the power conversion device 1 described in the first embodiment has openings for flowing cooling air on the front surface and the rear surface.
 また、実施例1では、冷却媒体として、冷却風(空気(気体))を使用する。しかし、冷却媒体としては冷却風に限定されるものではなく、冷却油(液体)などを使用することもできる。冷却媒体として、冷却油などを使用する場合には、1次側電力変換ユニット101に使用されるパワー半導体素子、高周波トランス15、2次側電力変換ユニット102に使用されるパワー半導体素子を、それぞれ熱伝導性の高い、例えば、金属などで覆い、冷却油などと、隔離して使用する。 Further, in the first embodiment, cooling air (air (gas)) is used as the cooling medium. However, the cooling medium is not limited to the cooling air, and cooling oil (liquid) or the like can also be used. When cooling oil or the like is used as the cooling medium, the power semiconductor element used in the primary power conversion unit 101, the high frequency transformer 15, and the power semiconductor element used in the secondary power conversion unit 102 are used. It is used by covering it with a metal having high thermal conductivity, for example, and separating it from cooling oil.
 このように、実施例1に記載する電力変換装置1は、1次側電力変換ユニット101、高周波トランス15、2次側電力変換ユニット102の順に設置される複数のコンバータセル20を、同じ方向に向けて設置する。これにより、電力変換装置1の前面には、1次側電力変換ユニット101が、電力変換装置1の後面には、2次側電力変換ユニット102が、設置される。 As described above, the power conversion device 1 described in the first embodiment has a plurality of converter cells 20 installed in the order of the primary side power conversion unit 101, the high frequency transformer 15, and the secondary side power conversion unit 102 in the same direction. Install toward. As a result, the primary side power conversion unit 101 is installed on the front surface of the power conversion device 1, and the secondary side power conversion unit 102 is installed on the rear surface of the power conversion device 1.
 実施例1に記載する電力変換装置1は、縦方向(実施例1では3つ)及び横方向(実施例1では9つ)に、コンバータセル20が、同じ方向に向けて設置される。 In the power conversion device 1 described in the first embodiment, the converter cells 20 are installed in the same direction in the vertical direction (three in the first embodiment) and the horizontal direction (nine in the first embodiment).
 そして、1次側電力変換ユニット101間の配線は、電力変換装置1の前面スペースに設置され、2次側電力変換ユニット102間の配線は、電力変換装置1の後面スペースに設置される。 Then, the wiring between the primary side power conversion units 101 is installed in the front space of the power conversion device 1, and the wiring between the secondary side power conversion units 102 is installed in the rear space of the power conversion device 1.
 これにより、実施例1に記載する電力変換装置1は、1次側電力変換ユニット101と高周波トランス15との間の配線距離、及び、2次側電力変換ユニット102と高周波トランス15との間の配線距離を、短くすることができ、配線の引き回しによる絶縁デットスペースも小さくすることができ、電力変換装置1を小型化することができる。 As a result, the power conversion device 1 described in the first embodiment has a wiring distance between the primary side power conversion unit 101 and the high frequency transformer 15, and a wiring distance between the secondary side power conversion unit 102 and the high frequency transformer 15. The wiring distance can be shortened, the insulation dead space due to the wiring can be reduced, and the power conversion device 1 can be miniaturized.
 また、実施例1に記載する電力変換装置1は、配線を、前面スペース及び後面スペースに、設置することにより、組み立て性やメンテナンス性が向上する。 Further, in the power conversion device 1 described in the first embodiment, the assembleability and maintainability are improved by installing the wiring in the front space and the rear space.
 なお、実施例1に記載する電力変換装置1は、複数のコンバータセル20の横に、制御装置を有する。 The power conversion device 1 described in the first embodiment has a control device next to the plurality of converter cells 20.
 このように、実施例1に記載する電力変換装置1は、1次側電力変換ユニット101と、高周波トランス15、2次側電力変換ユニット102とを順に設置する複数のコンバータセル20を有し、電力変換ユニットと電力変換ユニットとの間の熱干渉、及び、電力変換ユニットと高周波トランスとの間の熱干渉を低減し、冷却フィンを小型化する。 As described above, the power conversion device 1 described in the first embodiment has a plurality of converter cells 20 in which the primary side power conversion unit 101 and the high frequency transformer 15 and the secondary side power conversion unit 102 are installed in order. The thermal interference between the power conversion unit and the power conversion unit and the thermal interference between the power conversion unit and the high frequency transformer are reduced, and the cooling fins are miniaturized.
 次に、実施例1に記載する電力変換装置1の設置構造の側面を説明する。 Next, aspects of the installation structure of the power conversion device 1 described in the first embodiment will be described.
 図5は、実施例1に記載する電力変換装置1の設置構造の側面を説明する説明図である。なお、図5に記載する電力変換装置1は、図4に記載する電力変換装置1を側面から見たものであり、説明の都合上、2つ(上段及び下段)のコンバータセル20を示す。 FIG. 5 is an explanatory diagram illustrating an aspect of the installation structure of the power conversion device 1 described in the first embodiment. The power conversion device 1 shown in FIG. 5 is a side view of the power conversion device 1 shown in FIG. 4, and shows two converter cells 20 (upper and lower) for convenience of explanation.
 実施例1に記載する電力変換器装置1は、前面に1次側電力変換ユニット101(上段101a及び下段101b)、後面に2次側電力変換ユニット102(上段102a及び下段102b)が設置され、1次側電力変換ユニット101と2次側電力変換ユニット102との間に高周波トランス15(上段15a及び下段15b)が設置される。 The power converter device 1 described in the first embodiment has a primary power conversion unit 101 (upper 101a and lower 101b) installed on the front surface and a secondary power conversion unit 102 (upper 102a and 102b) on the rear surface. A high frequency transformer 15 (upper stage 15a and lower stage 15b) is installed between the primary side power conversion unit 101 and the secondary side power conversion unit 102.
 そして、冷却風は、1次側電力変換ユニット101、高周波トランス15、2次側電力変換ユニット102の順に、流通する。 Then, the cooling air circulates in the order of the primary side power conversion unit 101, the high frequency transformer 15, and the secondary side power conversion unit 102.
 また、1次側電力変換ユニット101には、下方にコンデンサ17(上段17a及び下段17b)が、上方に冷却フィン104(上段104a及び下段104b)が、それぞれ設置される。 Further, in the primary power conversion unit 101, a condenser 17 (upper stage 17a and lower stage 17b) is installed below, and a cooling fin 104 (upper stage 104a and lower stage 104b) is installed above, respectively.
 また、2次側電力変換ユニット102には、上方にコンデンサ18(上段18a及び下段18b)が、下方に冷却フィン105(上段105a及び下段105b)が、それぞれ設置される。 Further, in the secondary power conversion unit 102, a condenser 18 (upper stage 18a and lower stage 18b) is installed above, and a cooling fin 105 (upper stage 105a and lower stage 105b) is installed below, respectively.
 つまり、1次側電力変換ユニット101では、冷却フィン104がコンデンサ17よりも高さ方向に上方に設置され、2次側電力変換ユニット102では、冷却フィン105がコンデンサ18よりも高さ方向に下方に設置される。 That is, in the primary side power conversion unit 101, the cooling fins 104 are installed above the condenser 17 in the height direction, and in the secondary side power conversion unit 102, the cooling fins 105 are below the condenser 18 in the height direction. Will be installed in.
 また、この関係は、これに限定されるものではなく、1次側電力変換ユニット101では、冷却フィン104がコンデンサ17よりも高さ方向に下方に設置され、2次側電力変換ユニット102では、冷却フィン105がコンデンサ18よりも高さ方向に上方に設置されてもよい。 Further, this relationship is not limited to this, and in the primary side power conversion unit 101, the cooling fins 104 are installed below the capacitor 17 in the height direction, and in the secondary side power conversion unit 102, The cooling fin 105 may be installed above the condenser 18 in the height direction.
 この場合、1つの冷却風は、1次側電力変換ユニット101の上方のコンデンサ17の上方から流入し、2次側電力変換ユニット102の冷却フィン105を流通し、2次側電力変換ユニット102の後面開口部から流出する。 In this case, one cooling air flows in from above the condenser 17 above the primary power conversion unit 101, flows through the cooling fins 105 of the secondary power conversion unit 102, and flows through the cooling fins 105 of the secondary power conversion unit 102. It flows out from the rear opening.
 そして、他の1つの冷却風は、1次側電力変換ユニット101の下方の冷却フィン104を流通し、2次側電力変換ユニット102の下方のコンデンサ18の下方の後面開口部から流出する。 Then, the other cooling air flows through the cooling fins 104 below the primary power conversion unit 101 and flows out from the rear opening below the condenser 18 below the secondary power conversion unit 102.
 また、1次側電力変換ユニット101には、その下部を覆うフレーム107(上段107a及び下段107b)が設置される。 Further, in the primary power conversion unit 101, a frame 107 (upper stage 107a and lower stage 107b) covering the lower portion thereof is installed.
 また、2次側電力変換ユニット102には、その上部を覆うフレーム108(上段108a及び下段108b)が設置される。 Further, in the secondary power conversion unit 102, a frame 108 (upper stage 108a and lower stage 108b) covering the upper portion thereof is installed.
 また、上段のコンバータセル20には、上部に形成されるフレーム109が設置される。 Further, a frame 109 formed at the upper part is installed in the upper converter cell 20.
 また、下段のコンバータセル20には、下部に形成されるフレーム120が設置される。 Further, in the lower converter cell 20, a frame 120 formed in the lower part is installed.
 また、上段のコンバータセル20と下段のコンバータセル20との間には、前面側で下段のコンバータセル20の1次側電力変換ユニット101bの上部に形成され、後面側で上段のコンバータセル20の2次側電力変換ユニット102aの下部に形成されるフレーム121が設置される。 Further, between the upper converter cell 20 and the lower converter cell 20, the front side is formed above the primary power conversion unit 101b of the lower converter cell 20, and the rear side of the upper converter cell 20. A frame 121 formed below the secondary power conversion unit 102a is installed.
 なお、これらフレームは、絶縁性を有する。 Note that these frames have insulating properties.
 特に、高さ方向に隣り合う2つのコンバータセル20の間には、絶縁性を確保するため、空間(絶縁空間スペース)が必要となる。また、コンバータセル20を冷却する冷却風は、前面方向から流入し、後面方向から流出する。 In particular, a space (insulated space) is required between two converter cells 20 adjacent to each other in the height direction in order to secure insulation. Further, the cooling air for cooling the converter cell 20 flows in from the front surface direction and flows out from the rear surface direction.
 このように、これらフレームを設置することにより、特に、この絶縁空間スペースにフレーム121を設置することにより、1次側電力変換ユニット101を冷却する冷却風と2次側電力変換ユニット102を冷却する冷却風とを分流することができる。なお、このフレーム121は、風向板としての機能を有する。 By installing these frames in this way, in particular, by installing the frame 121 in this insulated space, the cooling air that cools the primary side power conversion unit 101 and the secondary side power conversion unit 102 are cooled. It can separate the cooling air. The frame 121 has a function as a wind direction plate.
 なお、この風向板は、フレーム121の一部であってもよく、1次側電力変換ユニット101のフレームと2次側電力変換ユニット102のフレームとに連結して形成されていてもよい。 Note that this wind direction plate may be a part of the frame 121, or may be formed by being connected to the frame of the primary side power conversion unit 101 and the frame of the secondary side power conversion unit 102.
 つまり、1つの冷却風(第1冷却風131(上段131a及び下段131b))は、1次側電力変換ユニット101の上方の前面開口部(吸気口)から流入し、1次側電力変換ユニット101のパワー半導体素子を冷却する冷却フィン104a(及び冷却フィン104b)を流通し、2次側電力変換ユニット102の上方の後面開口部(排気口)から流出する。 That is, one cooling air (first cooling air 131 (upper stage 131a and lower stage 131b)) flows in from the front opening (intake port) above the primary side power conversion unit 101, and the primary side power conversion unit 101. The cooling fins 104a (and the cooling fins 104b) for cooling the power semiconductor element of the above are circulated and flow out from the rear opening (exhaust port) above the secondary power conversion unit 102.
 そして、他の1つの冷却風(第2冷却風132(上段132a及び下段132b))は、1次側電力変換ユニット101の下方の前面開口部(吸気口)から流入し、2次側電力変換ユニット102のパワー半導体素子を冷却する冷却フィン105a(及び冷却フィン105b)を流通し、2次側電力変換ユニット102の下方の後面開口部(排気口)から流出する。 Then, another cooling air (second cooling air 132 (upper stage 132a and lower stage 132b)) flows in from the lower front opening (intake port) of the primary side power conversion unit 101, and secondary side power conversion. Cooling fins 105a (and cooling fins 105b) for cooling the power semiconductor element of the unit 102 flow through and flow out from the rear opening (exhaust port) below the secondary power conversion unit 102.
 なお、冷却媒体が気体でない場合には、吸気口は入口部であり、排気口は出口部である。 If the cooling medium is not a gas, the intake port is the inlet and the exhaust port is the outlet.
 このように、実施例1に記載する電力変換器装置1によれば、1次側電力変換ユニット101を冷却する冷却風と2次側電力変換ユニット102を冷却する冷却風とを分流することができる。これにより、1次側電力変換ユニット101と2次側電力変換ユニット102との間の熱干渉を低減することができ、1次側電力変換ユニット101と2次側電力変換ユニット102とのそれぞれの冷却フィンを小型化することができる。 As described above, according to the power converter device 1 described in the first embodiment, the cooling air for cooling the primary power conversion unit 101 and the cooling air for cooling the secondary power conversion unit 102 can be separated. it can. As a result, thermal interference between the primary side power conversion unit 101 and the secondary side power conversion unit 102 can be reduced, and the primary side power conversion unit 101 and the secondary side power conversion unit 102, respectively. The cooling fins can be miniaturized.
 そして、上段のコンバータセル20と下段のコンバータセル20との高さ方向に隣り合う2つのコンバータセル20の間の絶縁空間スペースに、冷却風を分流する風向板(フレーム121)を、設置することにより、冷却風の流路のデットスペースを小さくすることができる。 Then, a wind direction plate (frame 121) for dividing the cooling air is installed in the insulating space between the two converter cells 20 adjacent to each other in the height direction of the upper converter cell 20 and the lower converter cell 20. Therefore, the dead space of the cooling air flow path can be reduced.
 このように、実施例1に記載する電力変換装置1は、1次側電力変換ユニット101と、高周波トランス15と、2次側電力変換ユニット102とを順に設置する複数のコンバータセル20を有し、これら1次側電力変換ユニット101、高周波トランス15、2次側電力変換ユニット102は、吸気口から排気口に向かって(冷却風が流通する方向に対して)、一方向に設置される。 As described above, the power conversion device 1 described in the first embodiment has a plurality of converter cells 20 in which the primary side power conversion unit 101, the high frequency transformer 15, and the secondary side power conversion unit 102 are installed in order. The primary power conversion unit 101, the high frequency transformer 15, and the secondary power conversion unit 102 are installed in one direction from the intake port to the exhaust port (with respect to the direction in which the cooling air flows).
 これにより、電力変換ユニットと電力変換ユニットとの間の熱干渉、及び、電力変換ユニットと高周波トランスとの間の熱干渉を低減し、冷却フィンを小型化することができる。 As a result, the thermal interference between the power conversion unit and the power conversion unit and the thermal interference between the power conversion unit and the high frequency transformer can be reduced, and the cooling fins can be miniaturized.
 次に、実施例1に記載するコンバータセル20を前面及び後面から斜視的に説明する。 Next, the converter cell 20 described in the first embodiment will be described perspectively from the front surface and the rear surface.
 図6は、実施例1に記載するコンバータセル20を前面から斜視的に説明する説明図である。 FIG. 6 is an explanatory view for perspectively explaining the converter cell 20 described in the first embodiment from the front.
 図7は、実施例1に記載するコンバータセル20を後面から斜視的に説明する説明図である。 FIG. 7 is an explanatory view for perspectively explaining the converter cell 20 described in the first embodiment from the rear surface.
 実施例1に記載するコンバータセル20は、1次側電力変換ユニット101の冷却フィン(201及び202)は、1次側電力変換ユニット101のコンデンサ17よりも高さ方向で上方に設置され、2次側電力変換ユニット102の冷却フィン(203及び204)は、2次側電力変換ユニット102のコンデンサ18よりも高さ方向で下方に設置される。 In the converter cell 20 described in the first embodiment, the cooling fins (201 and 202) of the primary power conversion unit 101 are installed above the capacitor 17 of the primary power conversion unit 101 in the height direction. The cooling fins (203 and 204) of the secondary power conversion unit 102 are installed below the capacitor 18 of the secondary power conversion unit 102 in the height direction.
 そして、1次側電力変換ユニット101と2次側電力変換ユニット102との間には、高周波トランス15が設置される。 Then, a high frequency transformer 15 is installed between the primary side power conversion unit 101 and the secondary side power conversion unit 102.
 このように、実施例1に記載するコンバータセル20は、1次側電力変換ユニット101の冷却フィン(201及び202)と、2次側電力変換ユニット102の冷却フィン(203及び204)とを、高さ方向に互い違いに設置する。そして、実施例1に記載する電力変換装置1は、このようなコンバータセル20を、高さ方向に複数段重ねて設置する。そして、高さ方向に複数段重ねて設置されるコンバータセル20とコンバータセル20との間には、風向板(フレーム121)が設置される。 As described above, the converter cell 20 described in the first embodiment has the cooling fins (201 and 202) of the primary power conversion unit 101 and the cooling fins (203 and 204) of the secondary power conversion unit 102. Install alternately in the height direction. Then, in the power conversion device 1 described in the first embodiment, such converter cells 20 are installed in a plurality of stages in the height direction. Then, a wind direction plate (frame 121) is installed between the converter cells 20 and the converter cells 20 which are installed in a plurality of stages in the height direction.
 そして、1つの冷却風(第1冷却風131)は、1次側電力変換ユニット101の冷却フィン(201及び202)を流通し、高周波トランス15及び2次側電力変換ユニット102のコンデンサ18の上方を流通する。 Then, one cooling air (first cooling air 131) circulates through the cooling fins (201 and 202) of the primary side power conversion unit 101, and is above the high frequency transformer 15 and the condenser 18 of the secondary side power conversion unit 102. To distribute.
 更に、他の1つの冷却風(第2冷却風132)は、1次側電力変換ユニット101のコンデンサ17及び高周波トランス15の下方を流通し、2次側電力変換ユニット102の冷却フィン(203及び204)を流通する。 Further, the other cooling air (second cooling air 132) circulates below the condenser 17 of the primary power conversion unit 101 and the high frequency transformer 15, and the cooling fins (203 and 203) of the secondary power conversion unit 102. 204) is distributed.
 このように、1次側電力変換ユニット101を冷却する冷却風と2次側電力変換ユニット102を冷却する冷却風とを分流することができ、1次側電力変換ユニット101と2次側電力変換ユニット102との間の熱干渉を低減することができ、1次側電力変換ユニット101と2次側電力変換ユニット102とのそれぞれの冷却フィンを小型化することができる。 In this way, the cooling air that cools the primary power conversion unit 101 and the cooling air that cools the secondary power conversion unit 102 can be separated, and the primary power conversion unit 101 and the secondary power conversion unit 101 can be converted. Thermal interference with the unit 102 can be reduced, and the cooling fins of the primary power conversion unit 101 and the secondary power conversion unit 102 can be miniaturized.
 更に、第1冷却風の吸気口から排気口までの距離及び第2冷却風の吸気口から排気口までの距離を、短くすることができ、冷却風の流路の曲折を低減し、冷却風の圧力損失を低減することができる。そして、冷却ファンに要求される冷却風の許容圧力損失特性を低減することができる。 Further, the distance from the intake port to the exhaust port of the first cooling air and the distance from the intake port to the exhaust port of the second cooling air can be shortened, the bending of the cooling air flow path can be reduced, and the cooling air can be reduced. Pressure loss can be reduced. Then, the allowable pressure loss characteristic of the cooling air required for the cooling fan can be reduced.
 なお、冷却フィン(201、202、203、204)は、フィンベース207に設置される。また、交直変換器(11、12、13、14)は、バスバー205に電気的に接続される。 The cooling fins (201, 202, 203, 204) are installed on the fin base 207. Further, the AC / DC converters (11, 12, 13, 14) are electrically connected to the bus bar 205.
 また、交直変換器(11、12、13、14)は、それぞれ個別に、冷却フィン(201、202、203、204)を有する。つまり、交直変換器11は冷却フィン201を有し、交直変換器12は冷却フィン202を有し、交直変換器13は冷却フィン203を有し、交直変換器14は冷却フィン204を有する。 Further, the AC / DC converters (11, 12, 13, 14) have cooling fins (201, 202, 203, 204) individually. That is, the AC / DC converter 11 has cooling fins 201, the AC / DC converter 12 has cooling fins 202, the AC / DC converter 13 has cooling fins 203, and the AC / DC converter 14 has cooling fins 204.
 本実施例では、特に、冷却フィン201よりも冷却フィン202が大きく、冷却フィン203よりも冷却フィン204が大きく、形成される。つまり、冷却フィン201の表面積が、冷却フィン202の表面積よりも小さく設定され、冷却フィン203の表面積が、冷却フィン204の表面積よりも小さく設定される。 In this embodiment, in particular, the cooling fin 202 is larger than the cooling fin 201, and the cooling fin 204 is larger than the cooling fin 203. That is, the surface area of the cooling fin 201 is set smaller than the surface area of the cooling fin 202, and the surface area of the cooling fin 203 is set smaller than the surface area of the cooling fin 204.
 冷却フィン201の表面積を冷却フィン202の表面積よりも小さく設定することにより、1次側電力変換ユニット101を流通する冷却風の流路の圧力損失を低減することができる。また、冷却フィン203の表面積を冷却フィン204の表面積よりも小さく設定することにより、2次側電力変換ユニット102を流通する冷却風の流路の圧力損失を低減することができる。 By setting the surface area of the cooling fin 201 to be smaller than the surface area of the cooling fin 202, it is possible to reduce the pressure loss in the flow path of the cooling air flowing through the primary side power conversion unit 101. Further, by setting the surface area of the cooling fin 203 to be smaller than the surface area of the cooling fin 204, it is possible to reduce the pressure loss in the flow path of the cooling air flowing through the secondary power conversion unit 102.
 これは、交直変換器(AC/DC変換を実行するパワー半導体素子)11の発熱量が、交直変換器(DC/AC変換を実行するパワー半導体素子)12の発熱量よりも小さいためであり、交直変換器(AC/DC変換を実行するパワー半導体素子)13の発熱量が、交直変換器(DC/AC変換を実行するパワー半導体素子)14の発熱量よりも小さいためである。 This is because the calorific value of the AC / DC converter (power semiconductor element that executes AC / DC conversion) 11 is smaller than the calorific value of the AC / DC converter (power semiconductor element that executes DC / AC conversion) 12. This is because the calorific value of the AC / DC converter (power semiconductor element that executes AC / DC conversion) 13 is smaller than the calorific value of the AC / DC converter (power semiconductor element that executes DC / AC conversion) 14.
 つまり、1次側電力変換ユニット101は、AC/DCパワー半導体素子(11)とDC/ACパワー半導体素子(12)とを有し、AC/DCパワー半導体素子(11)を冷却する冷却フィン201とDC/ACパワー半導体素子(12)を冷却する冷却フィン202とを有し、AC/DCパワー半導体素子(11)を冷却する冷却フィン201の表面積は、DC/ACパワー半導体素子(12)を冷却する冷却フィン202の表面積よりも小さい。 That is, the primary power conversion unit 101 has an AC / DC power semiconductor element (11) and a DC / AC power semiconductor element (12), and is a cooling fin 201 that cools the AC / DC power semiconductor element (11). And the cooling fin 202 for cooling the DC / AC power semiconductor element (12), and the surface area of the cooling fin 201 for cooling the AC / DC power semiconductor element (11) is the DC / AC power semiconductor element (12). It is smaller than the surface area of the cooling fin 202 to be cooled.
 また、2次側電力変換ユニット102は、AC/DCパワー半導体素子(13)とDC/ACパワー半導体素子(14)とを有し、AC/DCパワー半導体素子(13)を冷却する冷却フィン203とDC/ACパワー半導体素子(14)を冷却する冷却フィン204とを有し、AC/DCパワー半導体素子(13)を冷却する冷却フィン203の表面積は、DC/ACパワー半導体素子(14)を冷却する冷却フィン204の表面積よりも小さい。 Further, the secondary power conversion unit 102 has an AC / DC power semiconductor element (13) and a DC / AC power semiconductor element (14), and is a cooling fin 203 that cools the AC / DC power semiconductor element (13). And the cooling fin 204 for cooling the DC / AC power semiconductor element (14), and the surface area of the cooling fin 203 for cooling the AC / DC power semiconductor element (13) is the DC / AC power semiconductor element (14). It is smaller than the surface area of the cooling fin 204 to be cooled.
 また、本実施例では、特に、冷却フィン201の外形寸法が、冷却フィン202の外形寸法よりも小さく設定され、冷却フィン203の外形寸法が、冷却フィン204の外形寸法よりも小さく設定される。 Further, in the present embodiment, in particular, the external dimensions of the cooling fins 201 are set to be smaller than the external dimensions of the cooling fins 202, and the external dimensions of the cooling fins 203 are set to be smaller than the external dimensions of the cooling fins 204.
 これは、交直変換器11の発熱量が、交直変換器12の発熱量よりも小さいためであり、交直変換器13の発熱量が、交直変換器14の発熱量よりも小さいためである。つまり、AC/DC変換を実行するパワー半導体素子(交直変換器11)の冷却フィン201に対して、風下側に設置されるDC/AC変換を実行するパワー半導体素子(交直変換器12)の冷却フィン202には、交直変換器11の冷却フィン201を流通した温度上昇した冷却風と直接風との両方の風が流入されるため、交直変換器12の冷却フィン202に流入する冷却風の温度上昇を低減することができ、交直変換器11の冷却フィン201の体積を、交直変換器12の冷却フィン202の体積に比較して、小さくすることができる。 This is because the calorific value of the AC / DC converter 11 is smaller than the calorific value of the AC / DC converter 12, and the calorific value of the AC / DC converter 13 is smaller than the calorific value of the AC / DC converter 14. That is, the cooling fin 201 of the power semiconductor element (AC / DC converter 11) that executes AC / DC conversion is cooled by the power semiconductor element (AC / DC converter 12) that executes DC / AC conversion installed on the leeward side. Since both the temperature-increased cooling air and the direct air flowing through the cooling fin 201 of the AC / DC converter 11 flow into the fin 202, the temperature of the cooling air flowing into the cooling fin 202 of the AC / DC converter 12 The rise can be reduced, and the volume of the cooling fins 201 of the AC / DC converter 11 can be made smaller than the volume of the cooling fins 202 of the AC / DC converter 12.
 また、同様に、AC/DC変換を実行するパワー半導体素子(交直変換器13)の冷却フィン203に対して、風下側に設置されるDC/AC変換を実行するパワー半導体素子(交直変換器14)の冷却フィン204には、交直変換器13の冷却フィン203を流通した温度上昇した冷却風と直接風との両方の風が流入されるため、交直変換器14の冷却フィン204に流入する冷却風の温度上昇を低減することができ、交直変換器13の冷却フィン203の体積を、交直変換器14の冷却フィン204の体積に比較して、小さくすることができる。 Similarly, the power semiconductor element (AC / DC converter 14) installed on the leeward side of the cooling fin 203 of the power semiconductor element (AC / DC converter 13) that executes AC / DC conversion performs DC / AC conversion. ), Since both the temperature-increased cooling air and the direct air flowing through the cooling fin 203 of the AC / DC converter 13 flow into the cooling fin 204, the cooling flowing into the cooling fin 204 of the AC / DC converter 14 The temperature rise of the wind can be reduced, and the volume of the cooling fin 203 of the AC / DC converter 13 can be made smaller than the volume of the cooling fin 204 of the AC / DC converter 14.
 次に、実施例2に記載する電力変換装置1の設置構造を説明する。 Next, the installation structure of the power conversion device 1 described in the second embodiment will be described.
 図8は、実施例2に記載する電力変換装置1の設置構造を説明する説明図である。 FIG. 8 is an explanatory diagram illustrating the installation structure of the power conversion device 1 described in the second embodiment.
 実施例2に記載する電力変換装置1は、実施例1に記載する電力変換装置1と同様に、複数のコンバータセル20を有し、このコンバータセル20には、1次側電力変換ユニット101、高周波トランス15、2次側電力変換ユニット102が、一方向に、設置される。 The power conversion device 1 described in the second embodiment has a plurality of converter cells 20 like the power conversion device 1 described in the first embodiment, and the converter cells 20 include the primary side power conversion unit 101. The high frequency transformer 15 and the secondary power conversion unit 102 are installed in one direction.
 そして、実施例2に記載する電力変換装置1は、実施例1に記載する電力変換装置1と相違して、冷却風は、1次側電力変換ユニット101、高周波トランス15の順に流通する流路と、2次側電力変換ユニット102、高周波トランス15の順に流通する流路と、を流通し、上方に排気される。 The power conversion device 1 described in the second embodiment is different from the power conversion device 1 described in the first embodiment in that the cooling air flows through the primary power conversion unit 101 and the high-frequency transformer 15 in this order. And the flow path that circulates in the order of the secondary power conversion unit 102 and the high frequency transformer 15, and is exhausted upward.
 つまり、実施例2に記載される電力変換装置1は、前面(吸気口)と後面(吸気口)と上面(排気口)とに冷却風を流通する開口部を有する。 That is, the power conversion device 1 described in the second embodiment has openings for circulating cooling air on the front surface (intake port), the rear surface (intake port), and the upper surface (exhaust port).
 次に、実施例2に記載する電力変換装置1の設置構造の側面を説明する。 Next, aspects of the installation structure of the power conversion device 1 described in the second embodiment will be described.
 図9は、実施例2に記載する電力変換装置1の設置構造の側面を説明する説明図である。 FIG. 9 is an explanatory diagram illustrating an aspect of the installation structure of the power conversion device 1 described in the second embodiment.
 実施例2に記載する電力変換装置1は、実施例1に記載する電力変換装置1と比較して、1次側電力変換ユニット101には、下方にコンデンサ17が、上方に冷却フィン104が、それぞれ設置され、2次側電力変換ユニット102にも、下方にコンデンサ18が、上方に冷却フィン105が、それぞれ設置される。 In the power conversion device 1 described in the second embodiment, as compared with the power conversion device 1 described in the first embodiment, the primary side power conversion unit 101 has a capacitor 17 below and a cooling fin 104 above. A capacitor 18 is installed below the power conversion unit 102 on the secondary side, and a cooling fin 105 is installed above the power conversion unit 102.
 また、1次側電力変換ユニット101には、その下部を覆うフレーム107及びその上部に形成されるフレーム1070が設置され、2次側電力変換ユニット102にも、その下部を覆うフレーム108及びその上部に形成されるフレーム1080が設置される。 Further, the primary side power conversion unit 101 is provided with a frame 107 covering the lower portion thereof and a frame 1070 formed on the upper portion thereof, and the secondary side power conversion unit 102 also has the frame 108 covering the lower portion and the upper portion thereof. A frame 1080 formed in is installed.
 そして、実施例2に記載する電力変換装置1は、フレーム1070bとフレーム107aとを接続し、フレーム1080bとフレーム108aとを接続し、高周波トランス15が設置される領域に冷却風の流路を形成する風向板103が設置される。 Then, the power conversion device 1 described in the second embodiment connects the frame 1070b and the frame 107a, connects the frame 1080b and the frame 108a, and forms a cooling air flow path in the region where the high frequency transformer 15 is installed. The wind direction plate 103 is installed.
 これにより、冷却風は、1次側電力変換ユニット101の冷却フィン104、高周波トランス15の順に流通する流路と、2次側電力変換ユニット102の冷却フィン105、高周波トランス15の順に流通する流路と、を流通し、高周波トランス15の上方に排気される。 As a result, the cooling air flows in the order of the cooling fins 104 of the primary power conversion unit 101 and the high frequency transformer 15, and the flow of the cooling air of the secondary power conversion unit 102 in the order of the cooling fins 105 and the high frequency transformer 15. It circulates through the road and is exhausted above the high frequency transformer 15.
 このように、実施例2によれば、1次側電力変換ユニット101の冷却風と2次側電力変換ユニット102の冷却風とを分流することができ、1次側電力変換ユニット101と2次側電力変換ユニット102との間の熱干渉を低減することができ、各電力変換ユニットの冷却フィンを小型化することができる。 As described above, according to the second embodiment, the cooling air of the primary power conversion unit 101 and the cooling air of the secondary power conversion unit 102 can be separated, and the primary power conversion unit 101 and the secondary power conversion unit 101 can be separated. Thermal interference with the side power conversion unit 102 can be reduced, and the cooling fins of each power conversion unit can be miniaturized.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために、具体的に説明したものであり、必ずしも説明した全ての構成を有するものに限定されない。また、ある実施例の構成の一部を、他の実施例の構成の一部に置き換えることが可能である。また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の一部を、追加、削除、置換をすることも可能である。 The present invention is not limited to the above-mentioned examples, and includes various modifications. For example, the above-described embodiment has been specifically described in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with a part of the configuration of another embodiment. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace a part of the other configurations with respect to a part of the configurations of each embodiment.
1・・・電力変換装置、11、12、13、14・・・交直変換器、15・・・高周波トランス、17、18・・・コンデンサ、20、20-1~20-K~20-N・・・コンバータセル、25、26・・・1次側端子、27、28・・・2次側端子、31・・・1次側電源系統、32・・・2次側電源系統、101・・・1次側電力変換ユニット、102・・・2次側電力変換ユニット、103・・・風向板、104、105、201、202、203、204・・・冷却フィン、109、120、121・・・フレーム、205・・・バスバー、207・・・フィンベース。 1 ... Power converter, 11, 12, 13, 14 ... AC / DC converter, 15 ... High frequency transformer, 17, 18 ... Capacitor, 20, 20-1 to 20-K to 20-N ... Converter cell, 25, 26 ... Primary side terminal, 27, 28 ... Secondary side terminal, 31 ... Primary side power supply system, 32 ... Secondary side power supply system, 101. Primary power conversion unit, 102 ... Secondary power conversion unit, 103 ... Wind direction plate, 104, 105, 201, 202, 203, 204 ... Cooling fins, 109, 120, 121.・ ・ Frame, 205 ・ ・ ・ Bus bar, 207 ・ ・ ・ Fin base.

Claims (10)

  1.  1次側電力変換ユニットと、高周波トランスと、2次側電力変換ユニットと、を有する複数のコンバータセルを接続する電力変換装置であって、
     前記1次側電力変換ユニット、前記高周波トランス、前記2次側電力変換ユニットは、この順に、冷却媒体の入口部から冷却媒体の出口部に向かって、一方向に設置されることを特徴とする電力変換装置。
    A power conversion device that connects a plurality of converter cells having a primary side power conversion unit, a high frequency transformer, and a secondary side power conversion unit.
    The primary power conversion unit, the high frequency transformer, and the secondary power conversion unit are installed in this order in one direction from the inlet portion of the cooling medium to the outlet portion of the cooling medium. Power converter.
  2.  請求項1に記載の電力変換装置であって、
     前記冷却媒体が、冷却風であり、
     高さ方向に隣り合う2つのコンバータセルの間には、前記1次側電力変換ユニットを冷却する冷却風と前記2次側電力変換ユニットを冷却する冷却風とを分流する風向板を有することを特徴とする電力変換装置。
    The power conversion device according to claim 1.
    The cooling medium is cooling air,
    Between two converter cells adjacent to each other in the height direction, a wind direction plate for dividing the cooling air for cooling the primary power conversion unit and the cooling air for cooling the secondary power conversion unit is provided. Characterized power conversion device.
  3.  請求項1に記載の電力変換装置であって、
     前記1次側電力変換ユニットの配線は、電力変換装置の前面スペースに設置され、前記2次側電力変換ユニットの配線は、電力変換装置の後面スペースに設置されることを特徴とする電力変換装置。
    The power conversion device according to claim 1.
    The wiring of the primary side power conversion unit is installed in the front space of the power conversion device, and the wiring of the secondary side power conversion unit is installed in the rear space of the power conversion device. ..
  4.  請求項1に記載の電力変換装置であって、
     前記1次側電力変換ユニットは、冷却フィンとコンデンサとを有し、前記2次側電力変換ユニットは、冷却フィンとコンデンサとを有し、
     前記1次側電力変換ユニットでは、下方にコンデンサ、上方に冷却フィンが、それぞれ設置され、前記2次側電力変換ユニットでは、上方にコンデンサ、下方に冷却フィンが、それぞれ設置されることを特徴とする電力変換装置。
    The power conversion device according to claim 1.
    The primary power conversion unit has cooling fins and a capacitor, and the secondary power conversion unit has cooling fins and a capacitor.
    The primary power conversion unit is characterized in that a condenser and a cooling fin are installed below, and the secondary power conversion unit is characterized by a condenser and a cooling fin below. Power converter.
  5.  請求項4に記載の電力変換装置であって、
     前記1次側電力変換ユニットは、AC/DCパワー半導体素子とDC/ACパワー半導体素子とを有し、前記AC/DCパワー半導体素子を冷却する冷却フィンと前記DC/ACパワー半導体素子を冷却する冷却フィンとを有し、
     前記AC/DCパワー半導体素子を冷却する冷却フィンの表面積は、前記DC/ACパワー半導体素子を冷却する冷却フィンの表面積よりも、小さいことを特徴とする電力変換装置。
    The power conversion device according to claim 4.
    The primary power conversion unit has an AC / DC power semiconductor element and a DC / AC power semiconductor element, and cools the cooling fins for cooling the AC / DC power semiconductor element and the DC / AC power semiconductor element. Has cooling fins and
    A power conversion device characterized in that the surface area of the cooling fins for cooling the AC / DC power semiconductor element is smaller than the surface area of the cooling fins for cooling the DC / DC power semiconductor element.
  6.  請求項4に記載の電力変換装置であって、
     前記2次側電力変換ユニットは、AC/DCパワー半導体素子とDC/ACパワー半導体素子とを有し、前記AC/DCパワー半導体素子を冷却する冷却フィンと前記DC/ACパワー半導体素子を冷却する冷却フィンとを有し、
     前記AC/DCパワー半導体素子を冷却する冷却フィンの表面積は、前記DC/ACパワー半導体素子を冷却する冷却フィンの表面積よりも、小さいことを特徴とする電力変換装置。
    The power conversion device according to claim 4.
    The secondary power conversion unit has an AC / DC power semiconductor element and a DC / AC power semiconductor element, and cools the cooling fins for cooling the AC / DC power semiconductor element and the DC / AC power semiconductor element. Has cooling fins and
    A power conversion device characterized in that the surface area of the cooling fins for cooling the AC / DC power semiconductor element is smaller than the surface area of the cooling fins for cooling the DC / DC power semiconductor element.
  7.  請求項5に記載の電力変換装置であって、
     前記AC/DCパワー半導体素子を冷却する冷却フィンの外形寸法は、前記DC/ACパワー半導体素子を冷却する冷却フィンの外形寸法よりも、小さいことを特徴とする電力変換装置。
    The power conversion device according to claim 5.
    A power conversion device characterized in that the external dimensions of the cooling fins for cooling the AC / DC power semiconductor element are smaller than the external dimensions of the cooling fins for cooling the DC / DC power semiconductor element.
  8.  請求項6に記載の電力変換装置であって、
     前記AC/DCパワー半導体素子を冷却する冷却フィンの外形寸法は、前記DC/ACパワー半導体素子を冷却する冷却フィンの外形寸法よりも、小さいことを特徴とする電力変換装置。
    The power conversion device according to claim 6.
    A power conversion device characterized in that the external dimensions of the cooling fins for cooling the AC / DC power semiconductor element are smaller than the external dimensions of the cooling fins for cooling the DC / DC power semiconductor element.
  9.  請求項1に記載の電力変換装置であって、
     前記冷却媒体が、冷却風であり、
     前面と後面とに、冷却風が流通する開口部を有することを特徴とする電力変換装置。
    The power conversion device according to claim 1.
    The cooling medium is cooling air,
    A power conversion device characterized by having openings on the front surface and the rear surface through which cooling air flows.
  10.  請求項1に記載の電力変換装置であって、
     前記冷却媒体が、冷却風であり、
     前面と後面とには、冷却風が流通する吸気口となる開口部を有し、上部には前記冷却風を排気する開口部を有することを特徴とする電力変換装置。
    The power conversion device according to claim 1.
    The cooling medium is cooling air,
    A power conversion device having an opening serving as an intake port through which cooling air flows on the front surface and the rear surface, and an opening opening on the upper surface for exhausting the cooling air.
PCT/JP2020/005713 2019-06-14 2020-02-14 Power conversion device WO2020250486A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-110767 2019-06-14
JP2019110767A JP2020205656A (en) 2019-06-14 2019-06-14 Power conversion apparatus

Publications (1)

Publication Number Publication Date
WO2020250486A1 true WO2020250486A1 (en) 2020-12-17

Family

ID=73782158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005713 WO2020250486A1 (en) 2019-06-14 2020-02-14 Power conversion device

Country Status (2)

Country Link
JP (1) JP2020205656A (en)
WO (1) WO2020250486A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115244920A (en) 2020-12-11 2022-10-25 Jvc建伍株式会社 Head-mounted display and adjusting method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180424A (en) * 2002-11-27 2004-06-24 Fuji Electric Fa Components & Systems Co Ltd Stack structure of semiconductor power converter
WO2012032642A1 (en) * 2010-09-09 2012-03-15 三菱電機株式会社 Power semiconductor module, power conversion apparatus, and railroad vehicle
JP2017184387A (en) * 2016-03-29 2017-10-05 東芝三菱電機産業システム株式会社 Cell inverter unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180424A (en) * 2002-11-27 2004-06-24 Fuji Electric Fa Components & Systems Co Ltd Stack structure of semiconductor power converter
WO2012032642A1 (en) * 2010-09-09 2012-03-15 三菱電機株式会社 Power semiconductor module, power conversion apparatus, and railroad vehicle
JP2017184387A (en) * 2016-03-29 2017-10-05 東芝三菱電機産業システム株式会社 Cell inverter unit

Also Published As

Publication number Publication date
JP2020205656A (en) 2020-12-24

Similar Documents

Publication Publication Date Title
EP2584691B1 (en) 3-level NPC converter phase module
US7978488B2 (en) Three-level power converting apparatus
JP6488194B2 (en) Power supply
CN101341648B (en) Packaging system for modular power cells
GB2541966A (en) Power converter and railway vehicle
TW201545459A (en) Three-level rectifier
JP6804543B2 (en) Power converter, cooling structure, power conversion system and power supply
CN109075733A (en) Motor drive and air conditioner
WO2020250486A1 (en) Power conversion device
EP0590502B1 (en) Inverter apparatus for electric rolling stock
JP2018042337A (en) Electric power conversion system
JP6526361B2 (en) Power converter
Kranzer et al. Applications of SiC devices
US10554123B2 (en) Power converter with a parallel flat plate conductor electrically connected with a capacitor and a power module
WO2018143053A1 (en) Power conversion device
JP2003259657A (en) Power converter
JP2023531343A (en) Power electronic building blocks (PEBB) with higher power density, smaller size and isolated power ports
JP2018087423A (en) Power supply circuit system for driving jet fan using non-isolated transformer
US11863083B2 (en) Rectifier assembly
CN113632364A (en) Power conversion unit
CN111342686A (en) Power conversion device and refrigeration cycle device provided with same
RU2815815C1 (en) High-voltage converter module with cooling system
JP2022160942A (en) Power conversion device
US20220272877A1 (en) Power conversion apparatus
JPH06225548A (en) Inverter device for electric rolling stock

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20821974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20821974

Country of ref document: EP

Kind code of ref document: A1