WO2020249069A1 - 听觉脑干植入体的电生理测试方法及其使用的记录电极 - Google Patents

听觉脑干植入体的电生理测试方法及其使用的记录电极 Download PDF

Info

Publication number
WO2020249069A1
WO2020249069A1 PCT/CN2020/095774 CN2020095774W WO2020249069A1 WO 2020249069 A1 WO2020249069 A1 WO 2020249069A1 CN 2020095774 W CN2020095774 W CN 2020095774W WO 2020249069 A1 WO2020249069 A1 WO 2020249069A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
abi
electrical stimulation
auditory brainstem
clip
Prior art date
Application number
PCT/CN2020/095774
Other languages
English (en)
French (fr)
Inventor
吴皓
贾欢
陈颖
Original Assignee
上海交通大学医学院附属第九人民医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910511248.7A external-priority patent/CN110226929B/zh
Priority claimed from CN201921139630.1U external-priority patent/CN210698495U/zh
Priority claimed from CN201910677269.6A external-priority patent/CN110251126B/zh
Priority claimed from CN201921190923.2U external-priority patent/CN210811029U/zh
Application filed by 上海交通大学医学院附属第九人民医院 filed Critical 上海交通大学医学院附属第九人民医院
Priority to US17/618,507 priority Critical patent/US20220233358A1/en
Publication of WO2020249069A1 publication Critical patent/WO2020249069A1/zh
Priority to AU2021107212A priority patent/AU2021107212A4/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F11/00Methods or devices for treatment of the ears or hearing sense; Non-electric hearing aids; Methods or devices for enabling ear patients to achieve auditory perception through physiological senses other than hearing sense; Protective devices for the ears, carried on the body or in the hand
    • A61F11/04Methods or devices for enabling ear patients to achieve auditory perception through physiological senses other than hearing sense, e.g. through the touch sense
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/12Audiometering
    • A61B5/121Audiometering evaluating hearing capacity
    • A61B5/125Audiometering evaluating hearing capacity objective methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36036Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the outer, middle or inner ear
    • A61N1/36038Cochlear stimulation

Definitions

  • the invention belongs to the field of medical devices, and particularly relates to an electrophysiological test method of an auditory brainstem implant (ABI) and a recording electrode used in the electrophysiological test method.
  • ABSI auditory brainstem implant
  • ABI Auditory Brain Stem Implant
  • cochlea cochlear ossification
  • lack of auditory nerve etc.
  • Good intraoperative monitoring is the guarantee for the effect of postoperative auditory reconstruction.
  • the ABI device includes two parts: an external device and an internal device.
  • the extracorporeal device includes an electroacoustic transducer, a voice processor and connecting wires; the intracorporeal device includes a receiver, electrode wires and electrode arrays (namely, auditory brainstem electrode pads).
  • the working principle of ABI is to place the electrode array on the surface of the cochlear nucleus in the recess of the fourth ventricle, and directly stimulate the cochlear nucleus complex across the cochlea and auditory nerve to produce speech perception and recognition.
  • ABI implantation is a craniotomy. During the operation, the implantation area is fully exposed and the cochlear nucleus is well positioned.
  • the cochlear nucleus is located in the brainstem and is adjacent to many other nerve nuclei, including the facial nucleus, trigeminal nucleus, glossopharyngeal nucleus, etc. Therefore, the accurate implantation of the electrode array is very important, and the surrounding structures cannot be wrongly stimulated, otherwise it will lead to serious consequences.
  • eABR electrically-evoked auditory brainstem responses
  • the electrode array of ABI sends out electrical stimulation, and the recording electrode is placed on the top of the skull or breast.
  • the reference electrode should be placed on the contralateral earlobe or mastoid, the forehead electrode should be grounded, and the preamplifier should be placed close to the subject.
  • the typical response of eABR occurs within 10msec after pulse stimulation, and usually requires thousands of average scans to achieve a sufficient signal-to-noise ratio.
  • the electrode array directly stimulates the cochlear nucleus, so only partial wave III (cochlear nucleus), wave IV (olive nucleus), and wave V (lateral colliculus nucleus) records can be obtained. Incoming objects appear 1-2ms earlier than the entry.
  • the monitoring of auditory evoked potentials when the electrode pads are implanted is very important. It not only prompts the position of the electrode pads, but also indicates the auditory effect after implantation.
  • the presence of one or more response waves helps to confirm that the electrode is implanted correctly, but the process of obtaining eABR is relatively cumbersome, and usually requires an external system for recording, which must then be connected/synchronized with the stimulation system. At the same time, various recording electrodes need to be placed on the patient, and their positions may be easily affected by the patient's movement.
  • the present invention provides an automated electrophysiological testing method for ABI of auditory brainstem implants.
  • the method includes the following steps: Step 1. Electrical stimulation of a number of ABI electrodes by a stimulation generator; Step 2. Each ABI electrode is sequentially and correspondingly Groundly generate electrical stimulation signals, stimulate the central auditory system, and generate electrical stimulation auditory brainstem evoked potentials.
  • a recording electrode in the patient sequentially records the generated electrical stimulation auditory brainstem evoked potentials; step 3.
  • the signal receiving device and a signal acquisition The device is connected with a signal processing device, and receives the electrical stimulation auditory brainstem evoked potential recorded by the recording electrode collected by the signal acquisition device.
  • the signal processing device automatically recognizes the corresponding ABI electrode through signal superposition and waveform automatic identification. Whether there is a target waveform of electrical stimulation auditory brainstem evoked potentials, and then summarize the response results of all ABI electrodes, and display them in a three-dimensional image.
  • the present invention also provides a CNAP-based electrophysiological testing method for auditory brainstem implants.
  • the method includes the following steps: S1, ABI electrode pads are implanted; S2, any ABI electrode to be tested on the ABI electrode pads is used as a stimulation electrode Send out electrical stimulation; S3.
  • another electrode on the ABI electrode sheet can be selected as the recording electrode of the stimulation electrode, receive the electrical stimulation signal sent by the stimulation electrode and record the action potential of the electrical stimulation cochlear nucleus; S4, stimulation electrode The adjacent electrode of the stimulating electrode is used as the recording electrode, receiving the electrical stimulation signal sent by the stimulating electrode and recording the action potential of the electrical stimulation cochlear nucleus: if yes, the placement of the stimulation electrode is correct; if not, the placement of the stimulation electrode is incorrect, then the stimulation electrode After fine-tuning, continue to perform steps S2-S4 until the target waveform is obtained as the recording result; S5.
  • the present invention also provides a non-invasive nerve clamp recording electrode, which includes: a misaligned complementary clamp provided with two clamps; the front ends of the two clamps are staggered and open at the head of the clamp to form an opening, or the two clamps are complementary Close to form a complete closed-loop structure; expose a number of electrodes arranged inside the closed-loop structure, and are electrically connected to an external signal generator and/or signal receiver through wires; two pressing sections, which are respectively outwardly located at the tail of the clip
  • the extension is arranged to provide the first force for urging the clip to open by transmitting the external pressing force; the first elastic body is arranged at the rear end of the clip and the pressing section of the clip tail; the elastic force of the first elastic body , As the second force for urging the clip to close; the second elastic body, which is arranged at the end of the clip, and the two ends of the second elastic body respectively abut against the two clips; the elastic force of the second elastic body is for urging the clip to open The third force
  • the present invention also provides a cochlear nucleus recording electrode, including: an electrode sheet, which is provided with a main body, and a plurality of first test electrodes distributed on the same surface of the main body; a lead wire, which is pierced in the main body and corresponds to the first test electrode It is connected and extends from the tail of the electrode sheet to the outside of the body to obtain electrical stimulation signals; the first clampable component is arranged on a wire extending from the tail of the electrode sheet.
  • the cochlear nucleus recording electrode further includes one or more movable electrodes; each of the movable electrodes is provided with a lead wire to transmit electrical stimulation signals, one end of the lead wire is connected with a second test electrode, and the other end is set to At the wire extending from the tail of the electrode sheet; the lead of the movable electrode is provided with a second clampable component.
  • Fig. 1 is a schematic diagram of an electrophysiological test method of an auditory brainstem implant in the prior art
  • FIG. 2 is a schematic diagram of the electrophysiological test method of the automated auditory brainstem implant of the present invention
  • Figure 2a is a schematic diagram of the waveform when the ABI electrode of the present invention reacts well
  • 2b is a schematic diagram of the waveform of the ABI electrode of the present invention when the reaction is normal;
  • Figure 2c is a schematic diagram of the waveform of the ABI electrode of the present invention when the reaction is poor;
  • Fig. 3 is a schematic diagram of the relationship between the electrode array and the cochlea nucleus of the present invention.
  • Figure 4 is a flowchart of the CNAP-based electrophysiological testing method of the auditory brainstem implant of the present invention
  • Figure 5 is a schematic diagram of the principle of electrical stimulation and recording performed by the ABI electrode sheet of the present invention.
  • Figure 6 is a schematic diagram of the recording results of the positive and negative waves induced by the present invention.
  • Figure 7 is a top view of the non-invasive nerve clamp recording electrode of the present invention when the clamp is closed;
  • FIG. 8 is a top view of the non-invasive nerve clamp recording electrode of the present invention when the clamp is opened;
  • Figure 9 is a side view of the non-invasive nerve clamping recording electrode of the present invention when the clips are complementarily closed (other parts of the clip are omitted);
  • Figure 10 is a side view of the non-invasive nerve clamp recording electrode of the present invention when the clip is dislocated and opened (other parts of the clip are omitted);
  • FIG. 11 is a schematic diagram of the non-invasive nerve clamp recording electrode of the present invention when the first elastic body is a torsion spring;
  • FIG. 12 is a schematic diagram of the non-invasive nerve clamp recording electrode of the present invention when the second elastic body is a coil spring;
  • Fig. 13 is a schematic diagram when the second elastic body of the non-invasive nerve clamp recording electrode of the present invention is a serpentine spring.
  • FIG. 14 is a schematic diagram of the cochlear nucleus recording electrode provided with a clamping member of the present invention.
  • 15 is a schematic diagram of the electrode sheet of the cochlear nucleus recording electrode of the present invention using different colors to assist in distinguishing the orientation of the electrode;
  • 16 is a schematic diagram of the cochlear nucleus recording electrode of the present invention with movable electrodes
  • Fig. 17 is a schematic diagram of an example of the structure of the clamping member in the cochlear nucleus recording electrode of the present invention.
  • the present invention provides an electrophysiological test method for automated auditory brainstem implantation (ABI), as shown in FIG. 2.
  • the method includes the following steps:
  • the audiologist Before the operation, the audiologist first places the electrode group for detecting the electrical stimulation auditory brainstem evoked potential (eABR) on the patient's head, which are the reference electrode on the top of the head (preferred position) and the skin on the chest (preferred position) ) And one or more recording electrodes in front of both ears (preferred positions).
  • the recording electrode is not limited to being placed on the top of the patient's head, but can also be other positions on the head or on the forehead, etc., wherein the recording electrode and the reference electrode can be changed positions according to the condition of the implanter.
  • ABS auditory brainstem electrodes
  • the step S2 further includes the following steps:
  • the stimulation generator performs electrical stimulation on each of the connected ABI electrodes.
  • the first computer 1 (PC1) is electrically connected to the stimulation generator, and the first computer 1 controls the stimulation generator.
  • the stimulation generator receives the stimulation control signal from the first computer 1 and sends it to the ABI electrode. Electrical stimulation signal.
  • the number of implanted ABI electrodes is 12-22. Only one of the ABI electrodes is stimulated for each electrical stimulation, and the electrical stimulation process of each ABI electrode is performed sequentially until the electrical stimulation process of all ABI electrodes is completed.
  • the number of ABI electrodes to be tested in this embodiment is determined by an expert system (for example, a surgeon).
  • Each ABI electrode correspondingly receives electrical stimulation signals, and stimulates the central auditory system to generate local potentials to obtain electrical stimulation auditory brainstem evoked potentials (eABR).
  • eABR electrical stimulation auditory brainstem evoked potentials
  • the electrically stimulated auditory brainstem evoked potential is one of the auditory evoked potentials, and the electrically stimulated auditory brainstem evoked potential can always be recorded by a recording electrode of the patient mentioned above, that is, the test The ABI electrodes are replaced sequentially, and the recording electrodes are always recorded by the same recording electrode.
  • the signal receiving device (by connecting with the signal acquisition device, receiving the recording electrode collected by the signal acquisition device, the central auditory system in the patient’s head
  • the electrical stimulation of the auditory brainstem evoked potential the signal receiving device is connected to a second computer 2 (PC2, a computer used for eABR waveform matching and recording), and the second computer 2 performs filtering and superposition of the electrical stimulation of the auditory brainstem evoked potential, etc. Processing (for example, 100-1000 times) to form a more stable and characteristic target eABR waveform.
  • This stability can be understood as a stable baseline of the eABR waveform after superposition processing, and the shape, latency, and amplitude are basically the same. It is understood that the eABR wave after superimposition always exists, the peak becomes larger when the stimulation amount is increased, and the peak becomes smaller when the stimulation amount is reduced. Among them, the signal acquisition device is connected to the recording electrode.
  • the eABR waveform is automatically recognized by the software recognition algorithm module in the second computer 2.
  • the starting point of the eABR waveform generally appears within 1 ms and the entire eABR waveform time limit is approximately within 3 ms, so the software recognition algorithm module can automatically identify the waveform within the eABR waveform time limit.
  • the software recognition algorithm module also differentially calculates the slope of the data points of the eABR waveform to find the starting point, peak, and trough of the waveform, and then locate and identify the entire eABR waveform, and automatically calculate the latency, amplitude, and time limit of the eABR waveform And other data.
  • the first computer 1 controls the stimulation generator to perform minimum electrical stimulation on a certain ABI electrode
  • the second computer 2 determines the above-mentioned stable and characteristic target eABR waveform, it is judged that the ABI electrode responds well.
  • the second computer 2 does not identify the eABR waveform
  • the first computer 1 automatically increases the amount of electrical stimulation and continues to repeat steps S21 to S23 until a stable and characteristic eABR waveform appears.
  • the ABI electrode is considered to have a normal response; if electrical stimulation After the amount reaches the maximum, when the second computer 2 still does not appear to be a target eABR waveform, it is considered that the ABI electrode has no response.
  • Figure 2a shows the waveform when the ABI electrode reacts well. It can be seen that the same stimulus intensity always leads to a waveform with similar peaks in the same latency period, where the abscissa is the time and the ordinate is the amplitude.
  • Figure 2b shows the waveform when the ABI electrode reacts in general. It can be seen that the same stimulus intensity can see similar waveforms in the same latency period, but the peak values may be different.
  • Figure 2c shows the waveform when the ABI response is extremely poor. It can be seen that there is no more stable and characteristic target waveform.
  • the amount of electrical stimulation (such as the minimum electrical stimulation, the amount of electrical stimulation increased each time, and the maximum amount of electrical stimulation) is determined by an expert system (such as an audiologist).
  • the second computer 2 can also automatically simulate and draw a diagram of the position of the ABI electrode (the position information of the electrode sheet in the 3D visualization structure) according to the collected electrical stimulation auditory brainstem evoked potential information and eABR waveform, and display it in On the second computer 2 interface, the subsequent surgeon can adjust the position of the ABI electrode.
  • surgeon can also adjust the position of the ABI electrode with normal or non-response according to the result information of the second computer 2 imaging (the position information of the electrode plate in the 3D visualization structure), and then repeat the above step S21- S23, until the most suitable position of the ABI electrode is found, until a good result of the position of the entire electrode array is reached.
  • first computer 1 connected to the stimulus generator and the second computer 2 used for eABR waveform matching and recording in the present invention can be realized by one computer, that is, the stimulus generator and the signal receiving device can be connected to the computer at the same time.
  • Figure 3 shows the schematic diagram of the relationship between the electrode array and the cochlear nucleus.
  • 12 electrodes denoted as A1
  • 4 electrodes denoted as B1
  • the electrode (C1) has no response and the position is poor. Therefore, after adjusting the position of the electrode array, it becomes as shown in the figure on the right, and finally 16 electrodes in the electrode array in the figure on the right (marked as A2) have good response and good position, 2 electrodes (B2) have normal response and normal position, 3 Two electrodes (C2) have no response and are poorly positioned.
  • the electrophysiological measurement method of the automated auditory brainstem implant of the present invention adopts the eABR waveform automatic interpretation method, and automatically records the relevant stimulation information and the matched eABR waveform, and automatically simulates and draws the electrode position map (3D visualization structure of the electrode Instead of the existing manual recording method, it can effectively improve the efficiency of the audiologist’s intraoperative electrode testing and save manpower.
  • the surgeon can improve the surgeon’s adjustment
  • the efficiency of the electrode position shorten the operation time, reduce the operation risk, and improve the patient's prognosis.
  • Good intraoperative detection is the guarantee of the postoperative auditory reconstruction effect, and it has great application prospects.
  • the present invention also provides an electrophysiological test of auditory brainstem implant (ABI) based on CNAP (Electrical Stimulation Cochlear Nucleus Action Potential). As shown in Figure 4, the method includes the following steps:
  • the ABI implant includes an ABI electrode sheet (auditory brainstem electrode sheet, also called electrode array), a reference electrode and a ground electrode, which are used to subsequently detect the action potential of electrical stimulation of the cochlear nucleus.
  • the reference electrode is located on the top of the head (preferred position) and the ground electrode is located on the skin of the chest (preferred position).
  • the ABI electrode was placed on the surface of the cochlear nucleus in the recess of the fourth ventricle according to the anatomy, and electrophysiological testing was used to confirm whether the placement was correct.
  • the ABI electrode sheet is provided with a body and a plurality of ABI electrodes to be tested distributed on the same surface of the body.
  • an ABI electrode (ABI electrode to be tested) on the ABI electrode sheet is used as a stimulation electrode to emit electrical stimulation;
  • any adjacent electrode of the aforementioned stimulation electrode can be used as a recording electrode, receiving electrical stimulation signals sent by the stimulation electrode, and performing a cochlear nucleus action potential recording operation.
  • the recording electrode is connected to a signal acquisition device, and the cochlear nucleus action potential signal recorded by the recording electrode is sent to a signal processing device.
  • step S4' Determine whether the recording result in step S3' obtains a target waveform of the action potential of electrical stimulation cochlear nucleus: if yes, it means that the placement position of the stimulation electrode is correct; if not, it indicates that the placement position of the stimulation electrode is incorrect, and it is required Fine-tune the position of the stimulating electrode, and retest the electrophysiology after fine-tuning, that is, continue to perform steps S2'-S4' until the target positive and negative waveforms can be drawn, indicating that the placement of the stimulating electrode is correct.
  • the schematic diagram of the recording result of the positive and negative waves induced by the present invention is shown in FIG. 6.
  • the signal processing device receives the above-mentioned cochlear nucleus action potential signal, and through signal superimposition and automatic waveform recognition, it is determined whether the corresponding stimulation electrode has an electric stimulation cochlear nucleus action potential target waveform, which is relatively stable and characteristic
  • the action potential waveform of the electrical stimulation of the cochlear nucleus refers to a more obvious peak within a certain time range. As shown in Figure 5, the abscissa is time and the ordinate is amplitude.
  • the signal processing device includes a software recognition algorithm module, which is used to automatically recognize the target waveform of the action potential of the electric stimulation cochlear nucleus.
  • step S5' judge whether all the ABI electrodes to be tested on the ABI electrode sheet have completed the test, if yes, end the electrophysiological test process, if not, skip to step S2', continue the test process of the next ABI electrode until it is completed Electrophysiological testing process of all ABI electrodes.
  • each ABI electrode refers to the above steps S2'-S4', as a stimulating electrode to emit electrical stimulation and its adjacent electrode as a recording electrode for action potential recording, to verify whether the placement of each ABI electrode is correct, until all ABIs are completed Electrode stimulation process.
  • the number of ABI electrodes to be tested is determined by an expert system (such as a surgeon).
  • the recording electrode satisfies the need to be adjacent to the stimulation electrode. Connection, so it is different from the traditional eABR test method that requires additional insertion of electrodes under the skin, which simplifies the preoperative preparation and makes the application easier.
  • the electrophysiological test method of the present invention has the following beneficial effects: (1)
  • the present invention uses electrical stimulation of the cochlear nucleus action potential CNAP to replace the existing electrical stimulation auditory brainstem evoked potential test method, without additional Placing recording electrodes under the skin of the patient simplifies the preoperative preparation work, has the advantages of high signal-to-noise ratio, fast response, short recording time, and large anti-interference ability, which can effectively improve the efficiency of intraoperative electrode testing;
  • the present invention CNAP has the advantages of being a near-field technique, observing larger amplitude signals, and requiring fewer average scans to obtain a satisfactory waveform;
  • the present invention is also suitable for use in auditory brainstem implantation operations, and has more applications. Simple.
  • the CNAP-based electrophysiological testing method for auditory brainstem implants of the present invention has high signal-to-noise ratio, fast response speed, greatly shortened recording time, strong anti-interference, and can become a standard measurement for judging the correct placement of the electrode array on the cochlear nucleus Method;
  • the present invention can also be used to assist post-operative programming of implantable Xinli devices; the present invention can not only complete the auditory electrophysiological detection after auditory brainstem implantation, but also conform to surgical habits, shorten the operation time and reduce the surgical risk , Improve the patient’s prognosis;
  • CNAP has the advantages of being a near-field technique, observing larger amplitude signals, and requiring fewer average scans to obtain a satisfactory waveform.
  • the present invention provides a non-invasive nerve clamp recording electrode, as shown in Figs. 7 to 10, its main body includes a clip that is misaligned and complementary, that is, two clips 10 are provided, which can be dislocated and opened (Fig. 8, Fig. 10), it can also be complementary closed to form a complete closed loop structure ( Figure 7, Figure 9).
  • the example closed-loop structure is a hollow cylindrical shape.
  • the front ends of the two clips 10 can be clamped on the nerve to be monitored when the staggered expansion reaches a set angle (or above the set angle).
  • a closed loop structure formed by the two clips 10 Embracing the clamped nerve. It is necessary for the two clips 10 to be staggered and expanded again to reach a set angle or above, otherwise it is difficult for the nerves to escape from the closed-loop structure, and reliable clamping and fixing is realized.
  • Electrodes 40 (Fig. 7) arranged on the inner side of the closed loop structure are exposed, which can be in close contact with the clamped nerves, and are used to transmit excitation signals to the nerves and/or receive during the electrophysiological monitoring of nerve function Feedback signal.
  • the electrode 40 is electrically connected to an external signal generator and/or signal receiver through a wire 30.
  • the electrode 40 can be embedded or attached to the inner side of the clip 10, so that at least a part of the electrode 40 is exposed inside the clip 10; the wire 30 is firmly connected to the clip 10, for example, the wire 30 can pass through the clip 10 It can also be embedded or attached to the inside or outside of the clip 10 ( Figures 7 and 8 omit the part where the wire 30 is fixed to the clip 10 and connected to the electrode 40).
  • Electrodes 40 there can be one or more electrodes 40 in the entire closed-loop structure; when there are multiple electrodes 40, they can be arranged on only one of the clips 10, or can be arranged on two clips 10 respectively; the distribution of the electrodes 40 can be Symmetrical or asymmetrical.
  • the present invention does not limit the shape and number of the electrodes 40 and their positions or fixing methods on the clip 10.
  • the rear ends of the two clips 10 are connected or integrated.
  • the tail of the clip further extends outward, and is provided with two pressing sections; by pressing the two pressing sections oppositely, the front ends of the two clip pieces 10 can be dislocated and opened.
  • the softness and shape of the entire device of the recording electrode also determine the opening and closing state of the clip to a certain extent.
  • the O-shaped slit opening on the clip ( Figure 7) will become a C-shaped opening when the internal force is strong ( Figure 8).
  • the force When the force is strong, it will continue to shape into a U-shape (not shown) to make it Larger opening (larger opening angle).
  • the material of the two pressing sections is relatively hard, while the material of the two clips 10 is relatively soft.
  • the lengths of the two pressing sections are different.
  • the lead 30 of the electrode 40 is tightly connected to the longer first pressing section 21, for example, is inserted into the first pressing section 21, embedded on the surface of the first pressing section 21, etc., so as to avoid direct pressing on the lead 30. Play a certain protective effect; the second pressing section 22 is short, which can prevent it from blocking the surgical field of vision during actual application and affecting the surgical operation.
  • the first elastic body 51 is, for example, a torsion spring ( Figure 11), the spiral part of which is arranged inside the rear ends of the two clips 10, and the two torsion arms connecting the spiral parts are respectively located in the two pressing sections; The effect of the elastic force of the elastic body 51 is to close the clip.
  • a torsion spring Figure 11
  • the second elastic body 52 is, for example, a coil spring 52' (FIG. 12), a serpentine spring 52" (at least one set; FIG. 13), an elastic piece, etc., which are arranged in the two clips 10 and are connected to the first elastic body 51 is fixed on the same shaft 53; the second elastic body 52 is bent as a whole, and the two ends respectively abut against the clips 10 on both sides, and the elastic effect of the second elastic body 52 is to open the clip. It can be bent in accordance with the curvature of the clip 10, or can be adjusted in consideration of elasticity, so that the second elastic body 52 has been deformed in the closed state of the clip to generate a certain elastic force (but not enough to open the clip).
  • the first elastic body 51 and the second elastic body 52 are arranged inside the clip (indicated by a dashed line in FIG. 8) so that they will not be exposed inside the clip 10 to prevent the electrode 40 in the clip 10 from being exposed. Make an impact.
  • the second elastic body 52 is mainly arranged at the tail of the clip, and does not extend or only a small part of it extends to the head of the clip.
  • the wire 30 of the electrode 40 is not directly related to the second elastic body 52.
  • the gravity of the first elastic body 51, the second elastic body 52 and the clip itself can be achieved through the design adjustment of the structure and a limited number of tests:
  • the clip opens to a set angle, which is just for nerves to enter and exit: at this time, the opening angle of the clip is consistent with the situation that the second elastic body 52 does not deform The elastic force of the second elastic body 52 does not work, and the first elastic body 51 has not yet been deformed or the elastic force generated by the deformation is not enough to achieve the effect of actually closing the clip.
  • a clip opening angle range that is, a set angle
  • the first elastic body 51 has not been deformed or the elastic force generated by the deformation is not yet sufficient to actually close the clip; and if the pressing reaches more than the set angle and then removed, the first elastic body 51 has sufficient deformation , Its elastic force will actually force the clip to close.
  • the above situation does not consider the influence of the gravity of the clip itself, and is suitable for the situation where the clip is placed horizontally on an object such as a desktop and is carried by the object; or the clip is taken by the user and pressed.
  • the opening direction of the clip can be used to define the vertical position vertically; when the clip in this example is set upright, the two pressing sections are upward (but in other examples, The vertical position of the clip may not be defined by the opening direction, and the pressing section may also have other orientations, which is not limited by the present invention).
  • the head forms a misaligned complementary clamp structure, which can clamp specific nerves for fixation; at the same time, the second elastic body 52 is provided to form a guarantee mechanism to avoid clamping too tightly.
  • An elastic body 51 and the clip’s own gravity enable the clip as a whole to maintain a small clamping force.
  • the clip can be opened to a set angle by pulling the electrode 40 lead 30, so that the nerve can be released without being damaged; the inside of the clip can be Single or multiple electrodes 40 are provided to realize multiple application modes.
  • the invention is easy to fix, simple to operate, accurate in recording, and suitable for neurological monitoring in intracranial surgery.
  • the invention also provides a cochlear nucleus recording electrode for testing during ABI operation.
  • An auditory brainstem implantation device is implanted in the cochlear nucleus to generate hearing through electrical stimulation of the cochlear nucleus; the implanted part of the auditory brainstem implantation device contains the cochlear nucleus recording electrode.
  • the cochlear nucleus recording electrode includes an electrode sheet 100, a wire 200 extending from the tail of the electrode sheet 100, and a first clampable member 300 provided on the wire 200.
  • the electrode piece 100 includes a main body and a plurality of first test electrodes 11 distributed on the same surface of the main body; the lead 200 is pierced through the main body and connected to the first test electrode 11 accordingly.
  • the first clampable part 300 is arranged circumferentially around the wire 200, which is equivalent to making the wire 200 extend radially outward and thicker.
  • the material of the first clampable component 300 should be soft enough not to damage the human tissue around the implantation site, and it can also be further formed by rounding corners at the junction of different surfaces on the first clampable component 300 Smooth transition to avoid sharp parts; at the same time, the material of the first clampable part 300 needs to have sufficient strength, etc., to maintain its inherent shape or have only a small amount of deformation, so as to support the grasping of surgical tools, and
  • the electrode sheet 100 at the front of the lead 200 is further driven to move and adjust to the part of the cochlear nucleus to be monitored.
  • the shape, size, and material of the first clampable component 300 can be adjusted accordingly to meet the above requirements as much as possible.
  • the first clampable part 300 has a disc shape through which the wire 200 passes (FIG. 17 ); the junction of the radial surface and the circumferential surface of the disc can be further smoothly transitioned through rounded corners.
  • the diameter c of the disc is greater than the diameter b of the wire 200; in different examples, the diameter c of the disc can be less than, equal to or greater than the width a of the electrode sheet 100; the axial length d of the disc can be set as required for convenience Surgical tool clamping.
  • the first clampable component 300 may not be symmetrically arranged around the wire 200; for example, the thickness e1 of the first clampable component 300 on the side of the wire 200 It may be greater than the thickness e2 on the other side of the wire 200.
  • the body of a plurality of first test electrodes 11 is fixed on the electrode sheet 100, which is usually transparent, so that the following body tissues can be observed through the body during operation.
  • the exposed side of the first test electrode 11 is called the front side of the electrode sheet 100, which usually needs to be attached to the monitored part; then, in order to quickly distinguish the front side and the back side of the electrode sheet 100 during the operation, as shown in FIG. 15
  • the upper half 12 and the lower half 13 of the electrode sheet 100 are set to different colors (and still have sufficient transparency). For example, the upper part 12 of the body is red, and the lower part 13 is blue.
  • this color sequence corresponds to the state of the electrode pad 100 with the front side facing forward and the back side facing back, the corresponding color sequence can be observed during the operation. If it is found that the current order is upper blue and lower red does not match the setting, the main body needs to be turned over.
  • the left half and right half of the body can also be set to different colors, in an inherent color sequence (such as left red and right blue), corresponding to the state of the electrode pad 100 facing forward. If the observed color order is reversed, it is reversed. Therefore, the present invention can use different colors for marking to assist in identifying the electrode orientation.
  • the electrode sheet 100 can be made very small to adapt to the smaller operating space of the cochlear nucleus.
  • the volume of the electrode sheet 100 can be further reduced.
  • 1 to 4 first test electrodes 11 are provided on the body of the electrode sheet 100.
  • the present invention can also add one or more movable electrodes 400 to meet different monitoring needs, as a supplement to the first test electrode 11 on the body.
  • a lead is set from the lead 200, for example, near the first clampable part 300; one end of the lead is connected to a second test electrode to form the movable electrode 400.
  • the second test electrode and the first test electrode 11 at the electrode sheet 100 may be the same or different types of electrodes.
  • the first clampable part 300 may be provided with a channel for the lead wire to pass through, so as to set an initial extraction angle for the movable electrode 400.
  • a second clampable component 41 may be further provided on the lead of the movable electrode 400 to facilitate intraoperative operations.
  • the lead of the movable electrode 400 may be one of the wires, which merges with the other wires 200 extending from the tail of the electrode sheet 100; or, the movable electrode 400 may be combined with the electrode sheet 100 as required, for example, in the first
  • the clamping member 300 is provided with an electrical connector for internally connecting one of the wires 200, and externally connected to the electrical connector provided on the other end of the lead, so that the movable electrode 400 can be plugged and unplugged at any time.
  • the lead 200 extending from the tail of the electrode sheet 100 can obtain electrical stimulation signals from the stimulation device in a wired or wireless manner, and then correspondingly transmit it to the first test electrode 11 on the electrode sheet 100 (and the second test electrode on the movable electrode 400). ).
  • the end of the lead 200 is directly connected to the stimulation device; or, the end of the lead 200 is connected to a signal receiving part, which cooperates with the signal sending part of the stimulation device to obtain electrical stimulation signals.
  • the overall volume of the electrode sheet 100 is small, and an additional movable electrode 400 is added; the body of the electrode sheet 100 adopts different color marks to assist in distinguishing the electrode orientation; the first clampable part 300 is provided to facilitate clamping Support operation; the present invention can reduce damage to the implantation site, and can be used in scenarios such as auditory brainstem implantation surgery and nerve monitoring to realize simultaneous monitoring of eABR, eCAP, etc., and has a wide range of applications.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Neurology (AREA)
  • Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • Psychology (AREA)
  • Acoustics & Sound (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Neurosurgery (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Multimedia (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本申请属于医疗器械领域,涉及一种听觉脑干植入体(ABI)的电生理测试方法及其使用的记录电极。根据本申请的方法,无须额外在患者皮下放置记录电极,简化了术前准备工作,具有较高信噪比、反应速度较快、记录时间短、抗干扰能力较好的优势,能提高术中电极测试的效率,适合听觉脑干植入手术时使用。而且本申请使得听觉脑干植入定位更加精确,拓展了适用范围。

Description

听觉脑干植入体的电生理测试方法及其使用的记录电极 技术领域
本发明属于医疗器械领域,特别涉及一种听觉脑干植入体(ABI)的电生理测试方法,以及其使用的记录电极。
背景技术
ABI(听觉脑干植入体)适用于耳蜗未发育、耳蜗骨化、听神经缺如等不适合进行人工耳蜗植入的患者。目前在国内尚未普遍开展,有极大的应用前景,良好的术中监测是术后听觉重建效果的保障。
ABI装置包含体外装置及体内装置两个部分。体外装置包括电声转换器、语音处理器和连接导线;体内装置包括接收器、电极导线和电极阵列(即听觉脑干电极片)。ABI的工作原理是将电极阵列放置于第四侧脑室隐窝内的蜗核表面,越过耳蜗及听神经直接刺激蜗核复合体,产生言语感知和识别。ABI植入手术为开颅手术,术中充分暴露植入区域,良好定位蜗核,蜗核位于脑干,周围邻近诸多其他神经核团,包括面神经核、三叉神经核、舌咽神经核等,因此电极阵列的准确植入至关重要,不可错误刺激周围结构,否则导致严重后果。
目前ABI植入后常规使用电刺激听觉脑干诱发电位(electrically‐evokedauditory brainstem responses,eABR)作为检查方法,eABR为远场电位记录,ABI的电极阵列发出电刺激,记录电极放于颅顶或乳突,参考电极置于对侧耳垂或乳突,前额电极接地,前置放大器应放于近受试者位置。eABR典型反应在脉冲刺激后10msec内发生,通常需要数千次平均扫描以实现足够的信噪比。由于ABI越过耳蜗及听神经,电极阵列直接刺激蜗核,因此仅能获得部分波III(蜗核)、波IV(橄榄核)、波V(外侧丘系核)的记录,并且与使用人工耳蜗植入物相比提早出现1‐2ms。
电极片植入时听觉诱发电位监测至关重要,不仅提示电极片的位置,更是提示植入后的听觉效果。一个或多个反应波的存在有助于确认电极植入正确,但是获得eABR的过程较为繁琐,通常需要配备用于记录的外部系统,然后必须将其与刺激系统相接/同步。同时,还需要将各种记录电极放置在患者上,其位置可能易受患者移动的影响。
发明内容
本发明提供一种自动化听觉脑干植入体ABI的电生理测试方法,该方法包含以下步骤:步骤1、通过刺激发生器对若干个ABI电极进行电刺激;步骤2、各个ABI电极依次、对应地产生电刺激信号,刺激中枢听觉系统,产生电刺激听觉脑干诱发电位,患者体内的一记录电极依次记录所产生的电刺激听觉脑干诱发电位;步骤3、信号接收装置分别与一信号采集装置和一信号处理装置连接,接收所述信号采集装置采集的所述记录电极所记录的电刺激听觉脑干诱发电位,所述信号处理装置通过信号叠加、波形自动识别,判别出对应的ABI电极是否出现电刺激听觉脑干诱发电位目标波形,进而汇总出所有ABI电极的反应结果,并三维图像化地显示。
本发明还提供一种基于CNAP的听觉脑干植入体的电生理测试方法,该方法包含以下步骤:S1、植入ABI电极片;S2、ABI电极片上的任意一待测ABI电极作为刺激电极发出电刺激;S3、根据不同的刺激模式,可选取ABI电极片上的其他一个电极作为该刺激电极的记录电极,接收刺激电极发送的电刺激信号并记录电刺激蜗核动作电位;S4、刺激电极的相邻电极作为记录电极,接收刺激电极发送的电刺激信号并记录电刺激蜗核动作电位:若是,刺激电极的放置位置正确;若否,刺激电极的放置位置不正确,则对该刺激电极的位置进行微调,微调后继续执行步骤S2‐S4,直至记录结果得到目标波形;S5、判断ABI电极片上所有的待测ABI电极是否完成上述测试:若是,结束电生理测试过程;若否,跳转至所述步骤S2中,继续进行下一待测ABI电极的测试,直至完成所有的待测ABI电极的测试。
本发明还提供一种无创神经夹持式记录电极,包括:错位互补的夹子,其设有两个夹片;两个夹片前端错位张开在夹子头部形成开口,或者两个夹片互补闭合形成完整的闭环结构;暴露设置在所述闭环结构内侧的若干电极,通过导线与外部的信号发生器和/或信号接收器电性连接;两个按压段,其在夹子的尾部分别向外延伸设置,通过传递外部对其施加的按压力,提供促使夹子张开的第一作用力;第一弹性体,其设置在夹子尾部的夹片后端及按压段处;第一弹性体的弹力,作为促使夹子闭合的第二作用力;第二弹性体,其设置在夹子尾部,且所述第二弹性体的两端分别抵触两个夹片;第二弹性体的弹力,作为促使夹子张开的 第三作用力。
本发明还提供一种蜗核记录电极,包含:电极片,其设有本体,和在该本体同一面分布的若干第一测试电极;导线,其在本体内穿设,与第一测试电极相应连接,并从电极片尾部延伸到本体之外来获取电刺激信号;第一可夹持部件,设置在从电极片尾部延伸的导线上。可选地,所述蜗核记录电极进一步包含一个或多个可移动电极;每个所述可移动电极设有引线来传递电刺激信号,该引线一端连接有第二测试电极,另一端设置到从电极片尾部延伸的导线处;所述可移动电极的引线上设置有第二可夹持部件。
附图说明
图1为现有技术的听觉脑干植入体的电生理测试方法示意图;
图2为本发明的自动化听觉脑干植入体的电生理测试方法示意图;
图2a为本发明的ABI电极反应好时的波形示意图;
图2b为本发明的ABI电极反应一般时的波形示意图;
图2c为本发明的ABI电极反应差时的波形示意图;
图3为本发明的电极阵列与蜗核的关系示意图。
图4为本发明的基于CNAP的听觉脑干植入体的电生理测试方法流程图;
图5为本发明的ABI电极片本身完成电刺激及记录原理示意图;
图6为本发明引出的正负波的记录结果示意图。
图7是本发明的无创神经夹持式记录电极的夹子闭合时的俯视图;
图8是本发明的无创神经夹持式记录电极的夹子张开时的俯视图;
图9是本发明的无创神经夹持式记录电极的夹片互补闭合时的侧视图(省略夹子的其他部分);
图10是本发明的无创神经夹持式记录电极的夹片错位张开时的侧视图(省略夹子的其他部分);
图11是本发明的无创神经夹持式记录电极的第一弹性体为扭转弹簧时的示意图;
图12是本发明的无创神经夹持式记录电极的第二弹性体为螺旋弹簧时的示意图;
图13是本发明的无创神经夹持式记录电极的第二弹性体为蛇形弹簧时的示 意图。
图14是本发明的蜗核记录电极设置可夹持部件的示意图;
图15是本发明的蜗核记录电极的电极片以不同颜色辅助辨别电极朝向的示意图;
图16是本发明的蜗核记录电极设置可移动电极的示意图;
图17是本发明的蜗核记录电极中夹持部件的一个示例结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供一种自动化听觉脑干植入(ABI)的电生理测试方法,如图2所示。所述方法包含以下步骤:
S1、术前时,首先由听力师在患者头部放置用于检测电刺激听觉脑干诱发电位(eABR)的电极组,分别为头顶(优选位置)的参考电极、胸前皮肤处(优选位置)的接地电极和双侧耳前(优选位置)的一个或多个记录电极。其中,所述记录电极不仅限于置于患者的头顶,还可以是头部的其他的位置或者前额上等,其中记录电极和参考电极可根据植入者情况更换位置。
S2、术中时,手术医生暴露术区,植入听觉脑干电极(ABI电极)后,开始进行eABR检测。
所述步骤S2中,进一步包含以下步骤:
S21、首先由刺激发生器对所连接的各个ABI电极进行电刺激。
所述S21步骤中,第一计算机1(PC1)与所述刺激发生器电连接,第一计算机1控制该刺激发生器,该刺激发生器接收第一计算机1的刺激控制信号,向ABI电极发送电刺激信号。
一般植入ABI电极的数量为12‐22个,每次电刺激仅刺激其中一个ABI电极, 各个ABI电极的电刺激过程依次进行,直至完成所有的ABI电极的电刺激过程。另,本实施例的待测试的ABI电极的数量由专家系统(例如手术医生)判断确定。
S22、各个ABI电极对应地接收电刺激信号,并刺激中枢听觉系统从而产生局部电位,得到电刺激听觉脑干诱发电位(eABR)。
所述步骤S22中,电刺激听觉脑干诱发电位(eABR)是听觉诱发电位中的一种,该电刺激听觉脑干诱发电位可始终通过上述的患者的一记录电极进行记录,即待测试的ABI电极依次更换,且记录电极始终由同一记录电极进行记录。
S23、由于电刺激听觉脑干诱发电位信噪比低,则信号接收装置(通过与信号采集装置相连接,接收该信号采集装置所采集的记录电极上记录的患者头部内的中枢听觉系统产生的所述电刺激听觉脑干诱发电位,信号接收装置与第二计算机2(PC2,用于eABR波形匹配记录的计算机)连接,第二计算机2对该电刺激听觉脑干诱发电位进行滤波叠加等处理(例如100‐1000次),形成一个较为稳定且具有特征的目标eABR波形。该稳定可以理解为eABR波形在经过叠加处理后基线平稳,形态、潜伏期和幅值也基本保持一致,具有特征可以理解为经过叠加后的eABR波始终存在,增加刺激量时波峰变大,减小刺激量时波峰变小。其中,该信号采集装置与记录电极连接。
所述步骤S23中,eABR波形由第二计算机2中的软件识别算法模块自动识别。其中,该eABR波形的起始点一般出现在1ms以内且整个eABR波形时限大约在3ms以内,故可由软件识别算法模块在该eABR波形时限内自动识别该波形。所述软件识别算法模块还对eABR波形的数据点进行微分计算斜率,用以找到波形的起始点、波峰、波谷,进而对整个eABR波形进行定位识别,并自动计算eABR波形的潜伏期、波幅、时限等数据。
S23、当第一计算机1控制刺激发生器对某一ABI电极实施最小电刺激时,若第二计算机2判别出上述稳定且具有特征的目标eABR波形时,此时判断为ABI电极反应好,若第二计算机2未判别出eABR波形,则第一计算机1自动增加电刺激量并继续重复步骤S21~S23,直到出现稳定且具有特征的eABR波形,此时则认为ABI电极反应一般;若电刺激量达到最大后,第二计算机2仍未出现可判定为目标eABR波形时,则认为该ABI电极无反应。
如图2a所示为ABI电极反应好时的波形,由此可知,同一刺激强度始终在 相同的潜伏期引出峰值相似的波形,其中,横坐标为时间,纵坐标为波幅。如图2b所示为ABI电极反应一般时的波形,由此可知,同一刺激强度在相同的潜伏期可见类似波形,但峰值可能有不同。如图2c所示为ABI极反应差时的波形,由此可知,未见一个较为稳定且具有特征的目标波形。
所述步骤S23中,电刺激量大小(例如最小电刺激、每次增加的电刺激量以及最大电刺激量)由专家系统(例如听力医生)确定。
S24、按照上述步骤S21‐S23依次对所需的所有ABI电极进行电刺激并进行自动识别判断,通过第二计算机2的自动判读方式得出反应好或反应一般或无反应的ABI电极。
S25、第二计算机2还可以根据采集到的电刺激听觉脑干诱发电位信息以及eABR波形,自动模拟并绘制出ABI电极所在位置的图示(3D形象化结构的电极片位置信息),显示在第二计算机2界面上,供后续手术医生进行ABI电极位置的调整过程。
S26、手术医生还可以根据上述第二计算机2图像化的结果信息(3D形象化结构的电极片位置信息),相应地调整反应一般或无反应的ABI电极位置,调整后再重复以上步骤S21‐S23,直到找到该ABI电极最合适的位置,直至达到整个电极阵列位置佳的结果。
其中,本实施例中判定为整个电极阵列位置佳由专家系统(例如手术医生)进行相应判断。
另,本发明中与刺激发生器连接的第一计算机1和用于eABR波形匹配记录的第二计算机2可以利用一个计算机进行实现,即刺激发生器和信号接收装置同时与该计算机连接即可。
如图3所示为电极阵列与蜗核的关系示意图,左图电极阵列中12个电极(记为A1)反应好以及位置佳,4个电极(记为B1)反应一般以及位置一般,5个电极(C1)无反应以及位置差。因此,将电极阵列调整位置后变为右图所示,最终得到右图中电极阵列中16个电极(记为A2)反应好以及位置佳,2个电极(B2)反应一般以及位置一般,3个电极(C2)无反应以及位置差。
另,本发明的上述自动化的生理测方法也同样适用于耳蜗植入体,具体方法在此不做赘述。
本发明的自动化听觉脑干植入体的电生理测方法采用eABR波形自动判读的方式,并且自动记录相关刺激信息及与其匹配的eABR波形,自动模拟并绘制电极位置图(3D形象化结构的电极片位置信息),代替现有的手工记录的方法,可有效提高听力医师在术中电极测试的效率,节省人力,同时根据该展示的3D形象化结构的电极片位置信息,可提高外科医生调整电极片位置的效率,缩短手术时间,降低手术风险,提高患者的预后,良好的术中检测是术后听觉重建效果的保障,有极大地应用前景。
本发明还提供一种基于CNAP(电刺激蜗核动作电位)的听觉脑干植入体(ABI)的电生理测试,如图4所示,所述方法包含以下步骤:
S1’、术中时,手术医生暴露术区,植入ABI植入体;
所述步骤S1’中,ABI植入体包含ABI电极片(听觉脑干电极片,也称电极阵列)、参考电极和接地电极,用于后续检测电刺激蜗核动作电位。其中,参考电极位于头顶(优选位置)以及接地电极位于胸前皮肤处(优选位置)。术中根据解剖将ABI电极片放置在第四侧脑室隐窝内的蜗核表面,后续通过电生理测试方法来证实放置位置是否正确。
如图5所示,ABI电极片设有本体和在该本体同一面分布的多个待测试的ABI电极。
S2’、ABI电极片上的某个ABI电极(待测试的ABI电极)作为刺激电极发出电刺激;
S3’、上述刺激电极的任意一相邻电极可作为记录电极,接收刺激电极发送的电刺激信号,进行蜗核动作电位记录操作。
所述步骤S3’中,记录电极与一信号采集装置连接,并将记录电极记录的蜗核动作电位信号发送给一信号处理装置。
S4’、判断步骤S3’中的记录结果是否得到一电刺激蜗核动作电位目标波形:若是,则说明刺激电极的放置位置正确;若否,则说明电极刺激电极的放置位置不正确,则需要对该刺激电极的位置进行微调,微调后复测电生理,即继续执行步骤S2’‐S4’,直至能够引出该目标正负波形时,说明刺激电极的放置位置正确。本发明引出的正负波的记录结果示意图如图6所示。
所述步骤S4’中,信号处理装置接收上述蜗核动作电位信号,并通过信号叠加、波形自动识别,判别出对应的刺激电极是否出现电刺激蜗核动作电位目标波形,即较为稳定且具有特征的电刺激蜗核动作电位波形,该目标波形是指要在一定时间范围内出现较为明显的峰值,如图5所示,横坐标为时间,纵坐标为波幅。所述信号处理装置包含软件识别算法模块,用于自动识别电刺激蜗核动作电位目标波形。
S5’、判断ABI电极片上所有的待测ABI电极是否都完成测试,若是,则结束电生理测试过程,若否,则跳转至步骤S2’,继续进行下一个ABI电极的测试过程,直至完成所有的ABI电极的电生理测试过程。
其中,一般植入的ABI电极片的电极数量为12‐22个。每个ABI电极均参照上述步骤S2’‐S4’,作为刺激电极发出电刺激以及其相邻电极作为记录电极进行动作电位记录,用以验证各个ABI电极的放置位置是否正确,直至完成所有的ABI电极的电刺激过程。
示例地,待测试的ABI电极的数量由专家系统(如手术医生)判断确定。
值得说明的是,本发明的刺激电极的不相邻的其他电极也可以作为记录电极;在优选实施例中,记录电极满足与刺激电极相邻,此时效果最佳,不需要与其他设备相连接,所以不同于需要在皮下另外插电极的传统eABR测试方法,简化术前准备工作,应用更简便。
与现有技术相比,本发明的电生理测试方法的有益效果为:(1)本发明采用电刺激蜗核动作电位CNAP代替现有的电刺激听觉脑干诱发电位的测试方法,无须额外在患者皮下放置记录电极等,简化术前准备工作,具有高信噪比、反应速度快、记录时间短、抗干扰能力大的优势,可有效提高术中电极测试的效率;(2)本发明的CNAP具有作为近场技术的优点,观察到更大的振幅信号,并且需要更少的平均扫描以获得令人满意的波形;(3)本发明还适合听觉脑干植入手术时使用,应用更简便。
本发明的基于CNAP的听觉脑干植入体的电生理测试方法信噪比高、反应速度快、记录时间大幅缩短,抗干扰强,可成为判断电极阵列在耳蜗核上的正确放置的标准测量法;本发明还可用于协助可植入昕力装置的手术后编程;本发明不但能完成听觉脑干植入后听觉电生理的检测,还更符合手术习惯,可缩短手术时 间,降低手术风险,提高患者的预后;CNAP具有作为近场技术的优点,观察到更大的振幅信号,并且需要更少的平均扫描以获得令人满意的波形。
本发明提供一种无创神经夹持式记录电极,参见图7~图10所示,其主体包含一个错位互补的夹子,即,设有两个夹片10,可以错位张开(图8、图10),也可以互补闭合形成一个完整的闭环结构(图7、图9)。示例的闭环结构为中空的圆桶形。
在夹子的头部,两个夹片10的前端在错位张开达到设定角度(或设定角度以上)时,可以夹持在待监测的神经上,通过两个夹片10形成的闭环结构环抱着被夹持的神经。需要两个夹片10再次错位张开达到设定角度或以上,否则神经很难从所述的闭环结构中脱出,实现了可靠的夹持固定。
暴露设置在所述闭环结构内侧的若干电极40(图7),可以与被夹持的神经紧密接触,在对神经功能进行电生理监测的过程中,用于向神经传递激励信号和/或接收反馈信号。
所述电极40通过导线30,与外部的信号发生器和/或信号接收器电性连接。示例地,电极40可以嵌设或附着在夹片10的内侧,使得电极40的至少一部分暴露在夹片10内侧;导线30与夹片10紧固连接,例如导线30可以在夹片10内穿设,也可以嵌设或附着在夹片10的内侧或外侧(图7、图8省略了导线30固定至夹片10及连接至电极40的部分)。
整个闭环结构内的电极40可以有一个或多个;有多个电极40时,可以仅在其中一个夹片10上设置,也可以分别设置在两个夹片10上;电极40的分布可以是对称或不对称的。本发明对所述电极40的形状、数量及其在夹片10上的位置或固定方式不做限定。
在夹子的尾部,两个夹片10的后端是相连接的,或者是一体的。夹子的尾部进一步向外延伸,设置有两个按压段;通过相对按压两个按压段,可以使两个夹片10的前端错位张开。
该记录电极整个装置的自身柔软度及形状,一定程度上也决定了夹子的开合状态。闭合时夹子上O形的带缝开口(图7),在内部用力大时变成C形开口(图8),用力再大时会继续形变成U形(图未示出),使其开口更大(张开角度更大)。 示例地,两个按压段的材质偏硬,而两个夹片10的材质偏软。
优选地,两个按压段的长度不同。电极40的导线30与较长的第一按压段21紧固连接,例如穿设在第一按压段21内、嵌设至第一按压段21表面等,可以避免直接按压到导线30,对其起到一定保护作用;第二按压段22较短,可以防止其在实际应用过程中对手术视野造成遮挡,影响手术操作。
第一弹性体51,例如是一个扭转弹簧(图11),其螺旋部分设置在两个夹片10的后端内部,连接螺旋部分的两个扭臂分别位于两个按压段之内;第一弹性体51的弹力作用的效果是使夹子闭合。
第二弹性体52,例如是螺旋弹簧52’(图12)、蛇形弹簧52”(至少一组;图13)、弹片等,其设置在两个夹片10内,并与第一弹性体51固定在同一轴53上;该第二弹性体52整体弯曲,两端分别抵触着两侧的夹片10,该第二弹性体52的弹力作用效果是使夹子张开。第二弹性体52可配合夹片10的弧度弯曲,也可以为考虑弹力等适应调整弧度,使该第二弹性体52在夹子闭合状态时已经形变而产生了一定的弹力(但不足以打开夹子)。
优选地,将第一弹性体51、第二弹性体52设置在夹子内部(在图8中以虚线表示),使其不会在夹片10内侧暴露,以防对夹片10内的电极40产生影响。示例地,将第二弹性体52主要设置于夹子尾部,不延伸或仅小部分延伸到夹子头部。
电极40的导线30与第二弹性体52无直接关联。第一弹性体51、第二弹性体52以及夹子自身重力,通过对结构的设计调整及有限次的测试,可以实现:
1)按压段在被按压到一定程度时,夹子张开达到设定角度,该设定角度恰好可供神经进出:此时,因夹子的开口角度与第二弹性体52不产生形变的情况相符,该第二弹性体52的弹力不起作用,同时第一弹性体51还没有形变或其形变产生的弹力尚不足以起到使夹子实际关闭的效果。即是说,存在一个两个弹性体弹力都不起作用的夹子张开角度范围(即,设定角度),使神经进出。
对上述情况的实现原理简述如下:在按压达到一定程度之前,随着按压力的不断增加,夹子不断张开,第二弹性体52从夹子闭合时的形变状态逐渐恢复到没有形变产生的状态,其弹力逐渐减小;直至夹子张开到上述设定角度时,夹子已经脱离第二弹性体52作用的空间范围,第二弹性体52无形变产生,此时即使 撤去按压力,第二弹性体52对夹片10也无力的作用。上述的按压过程中,第一弹性体51都还没有形变或其形变产生的弹力尚不足以使夹子实际关闭;而若按压达到超过设定角度后再撤去,第一弹性体51产生足够的形变,其弹力将实际促使夹子关闭。
上述情况都不考虑夹子自身重力的影响,适用于例如夹子水平置于桌面等物体上,由该物体承载的情况;或者,夹子被用户拿取,并进行按压的情况。
2)不考虑按压力的情况下,当夹子处于竖直位置时,夹子的自身重力与第二弹性体52弹力的共同作用效果,可以使得两夹片10闭合(此时第一弹性体51未发生形变,没有力的作用产生);可以用夹子的开口方向竖直朝下来界定竖直位置;本例的夹子在竖直设置时,两个按压段是朝上的(但在其他示例中,夹子竖直方位置可以不以开口方向来界定,按压段也可以有其他朝向,本发明对此不作限制)。
3)不考虑按压力的情况下,当夹子从竖直位置转变为偏离竖直位置(优选是转变为水平位置)时,重力作用效果减小(或水平位置时失去夹子自身重力的作用效果),第二弹性体52的作用效果明显(此时第一弹性体51仍无形变发生,不产生力的作用),此时拉动电极40的导线30,带动夹片10活动,可以在第二弹性体52的协助下使夹子张开到设定角度,使神经脱出。
本发明的无创神经夹持式记录电极,头部形成错位互补的夹子结构,可夹取特定神经进行固定;同时设置第二弹性体52形成一种保障机制,避免夹持过紧,其配合第一弹性体51及夹子自身重力,使夹子整体可以保持较小的夹持力度,通过拉动电极40导线30即可使夹子张开到设定角度,使神经得以脱出而不受损伤;夹子内侧可设置单个或多个电极40,实现多种应用模式。本发明易固定,操作简便,记录精确,适合颅内手术进行神经监护时使用。
本发明还提供一种蜗核记录电极,在ABI术中测试用。在耳蜗核的部位植入听觉脑干植入装置,通过电刺激耳蜗核产生听觉;听觉脑干植入装置的植入部分包含该蜗核记录电极。
如图14所示,所述蜗核记录电极包含电极片100,从电极片100尾部延伸出来的导线200,和设置在该导线200上的第一可夹持部件300。其中,所述电 极片100包含本体,和在本体同一面分布设置的若干第一测试电极11;导线200在本体内穿设并相应地与第一测试电极11连接。
所述的第一可夹持部件300环绕着导线200周向设置,相当于使导线200该处沿径向朝外延伸并加厚。第一可夹持部件300的材质应该足够柔软而不会对植入部位周边的人体组织产生损伤,还可以进一步在第一可夹持部件300上不同表面的交界处通过倒圆角等方式形成光滑过渡以避免出现尖锐部分;同时,第一可夹持部件300的材质又需要有足够的强度等,来维持其固有形状或仅有少量形变,从而支持手术工具对其进行的夹取,并进一步带动导线200前部的电极片100移动及调整到所需监测的蜗核部位。所述第一可夹持部件300的形状、尺寸及材质,都可以做相应调整,尽可能兼顾上述要求。
优选地,第一可夹持部件300为圆盘状,导线200从中穿过(图17);可以进一步使该圆盘径向表面和周向表面的交接处通过倒圆角而光滑过渡。圆盘的直径c大于导线200的直径b;不同的示例中,圆盘的直径c可以小于、等于或大于电极片100的宽度a;圆盘轴向的长度d可以根据需要设定,以方便手术工具夹持。或者,一些示例中,为了方便夹持及术中操作,第一可夹持部件300可以不是以导线200为中心对称布置的;例如,第一可夹持部件300在导线200一侧的厚度e1可以大于在导线200另一侧的厚度e2。
所述电极片100上固定若干第一测试电极11的本体,通常是透明的,以便手术中透过本体观察到后面的人体组织等。称第一测试电极11暴露设置的一面为电极片100的正面,通常需要贴靠着被监测的部位;则,为了方便在术中快速区分电极片100的正面和背面,在图15所示的优选示例中,将电极片100的本体上半部分12和下半部分13设为不同的颜色(且仍有足够的透明度)。例如,本体上半部分12为红色、下半部分13为蓝色,将这样的颜色顺序与电极片100正面朝前、背面朝后的状态对应,则在手术中可以观察相应的颜色顺序,若发现当前顺序为上蓝下红与设定不符,则该本体就需要被翻转使用。以此类推,也可以将本体的左半部分和右半部分设置为不同颜色,以固有的一种颜色顺序(如左红右蓝),与电极片100正面朝前的状态对应,若术中观察到的颜色顺序相反则对其进行翻转。因而,本发明可以利用不同颜色进行标识,来辅助辨别电极朝向。
随着工艺的进步,电极片100可以做到很小,来适应耳蜗核处较小的操作空 间。通过适当减少本体上第一测试电极11的数量,可以进一步使电极片100的体积减小。示例地,在电极片100的本体上设置有1~4个第一测试电极11。
如图16所示,本发明还可以通过增设一个或多个可移动电极400,来满足不同的监测需要,作为对本体上第一测试电极11的补充。从导线200处设置一个引线,例如在第一可夹持部件300附近;使该引线的一端连接一第二测试电极,形成所述的可移动电极400。所述第二测试电极与电极片100处的第一测试电极11,可以采用相同或不同种类的电极。
示例地,第一可夹持部件300内可以开设有供引线穿设的通道,以便为可移动电极400设定一个初始的引出角度。可移动电极400的引线上可以进一步设置第二可夹持部件41,方便术中操作。
可移动电极400的引线可以是导线中的一个,与从电极片100尾部延伸的其他导线200汇合;或者,可移动电极400可以是根据需要再与电极片100进行组合的,例如在第一可夹持部件300处设置电性接插件对内连接其中一个导线200,对外连接引线的另一端配合设置的电性接插件,以便对可移动电极400随时进行插拔。
从电极片100尾部延伸的导线200,可以通过有线或无线方式从刺激装置获取电刺激信号,再相应传递到电极片100上的第一测试电极11(及可移动电极400上的第二测试电极)。导线200的末端直接连接至刺激装置;或者,导线200的末端连接一个信号接收部件,与刺激装置处的信号发送部件配合,来获取电刺激信号。
本发明提供的蜗核记录电极,电极片100整体体积小,增加额外活动的可移动电极400;电极片100本体采用不同颜色标识以辅助辨别电极朝向;设置第一可夹持部件300,方便夹持操作;本发明可以减少对植入部位的损伤,在听觉脑干植入手术及神经监护等场景使用,实现同时监测eABR、eCAP等,适用范围广泛。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (36)

  1. 一种自动化听觉脑干植入体ABI的电生理测试方法,其特征在于,该方法包含以下步骤:
    步骤1、通过刺激发生器对若干个ABI电极进行电刺激;
    步骤2、各个ABI电极依次、对应地产生电刺激信号,刺激中枢听觉系统,产生电刺激听觉脑干诱发电位,患者体内的一记录电极依次记录所产生的电刺激听觉脑干诱发电位;
    步骤3、信号接收装置分别与一信号采集装置和一信号处理装置连接,接收所述信号采集装置采集的所述记录电极所记录的电刺激听觉脑干诱发电位,所述信号处理装置通过信号叠加、波形自动识别,判别出对应的ABI电极是否出现电刺激听觉脑干诱发电位目标波形,进而汇总出所有ABI电极的反应结果,并三维图像化地显示。
  2. 如权利要求1所述的自动化听觉脑干植入体ABI的电生理测试方法,其特征在于,所述患者的头部放置有用于检测电刺激听觉脑干诱发电位的电极组,分别为头顶的参考电极、胸前皮肤处的接地电极、双侧耳前的一个或多个所述记录电极。
  3. 如权利要求1所述的自动化听觉脑干植入体ABI的电生理测试方法,其特征在于,所述刺激发生器与一控制装置电连接,所述控制装置发送一刺激控制信号至所述刺激发生器,控制所述刺激发生器向ABI电极发送所述电刺激信号。
  4. 如权利要求1或3所述的自动化听觉脑干植入体ABI的电生理测试方法,其特征在于,所述步骤1中,每次电刺激仅刺激其中一个ABI电极,各个ABI电极的电刺激过程依次进行,直至完成所有的ABI电极的电刺激过程。
  5. 如权利要求1所述的自动化听觉脑干植入体ABI的电生理测试方法,其特征在于,所述步骤3中进一步包含以下过程:
    当所述控制装置控制所述刺激发生器对待测试的ABI电极实施第一预设电刺激时,此时所述信号处理装置记录电刺激听觉脑干诱发电位信号,该步骤反复进行且到达预设次数后停止,以便进行信号叠加,随后进行波形识别,若判别出电刺激听觉脑干诱发电位目标波形,则判断结果为ABI电极反应结果为第一级期望结果;和/或,
    当所述控制装置控制所述刺激发生器对待测试的ABI电极实施第一预设 电刺激时,若所述信号处理装置未判别出电刺激听觉脑干诱发电位目标波形,则所述控制装置控制所述刺激发生器自动增加电刺激量并继续重复步骤1~3,直到所述信号处理装置直接判别出电刺激听觉脑干诱发电位目标波形,则判断结果为ABI电极反应结果为第二级期望结果;和/或,
    当所述控制装置控制所述刺激发生器对待测试的ABI电极实施第一预设电刺激时,若所述信号处理装置未判别出电刺激听觉脑干诱发电位目标波形,则所述控制装置控制所述刺激发生器自动增加电刺激量并继续重复步骤1~3,直至电刺激量增加至第二预设电刺激时,所述信号处理装置仍未判别出电刺激听觉脑干诱发电位目标波形,则判断结果为ABI电极反应结果为第三级期望结果。
  6. 如权利要求1或5所述的自动化听觉脑干植入体ABI的电生理测试方法,其特征在于,所述步骤3中,所述信号处理装置包含软件识别算法模块,用于自动识别电刺激听觉脑干诱发电位目标波形,所述电刺激听觉脑干诱发电位目标波形的起始点出现在1ms以内且整个波形时限在3ms以内。
  7. 如权利要求6所述的自动化听觉脑干植入体ABI的电生理测试方法,其特征在于,所述软件识别算法模块还对电刺激听觉脑干诱发电位目标波形的数据点进行微分计算斜率,识别到该波形的起始点、波峰、波谷,进而对整个电刺激听觉脑干诱发电位目标波形进行定位识别,并自动计算电刺激听觉脑干诱发电位目标波形的潜伏期、波幅、时限数据。
  8. 如权利要求7所述的自动化听觉脑干植入体ABI的电生理测试方法,其特征在于,进一步包含:所述信号处理装置根据采集到的电刺激听觉脑干诱发电位的信息以及电刺激听觉脑干诱发电位的波形,自动模拟并绘制出ABI电极所在位置的三维图像,显示在与所述信号处理装置相连的显示模块的界面上,用于ABI电极位置的调整过程。
  9. 如权利要求8所述的自动化听觉脑干植入体ABI的电生理测试方法,其特征在于,进一步包含:根据所述显示模块三维图像化的结果相应地调整反应结果为第二级期望结果或反应结果为第三级期望结果的ABI电极的位置,将ABI电极位置调整完成后再重复所述步骤1‐3,直至找到ABI电极反应结果为第一级期望结果时的位置,最终达到整个电极阵列位置达到预设的期望结果。
  10. 一种基于CNAP的听觉脑干植入体的电生理测试方法,其特征在于,该方法包含以下步骤:
    S1、植入ABI电极片;
    S2、ABI电极片上的任意一待测ABI电极作为刺激电极发出电刺激;
    S3、ABI电极片上的其他任意一电极作为该刺激电极的记录电极,接收刺激电极发送的电刺激信号并记录电刺激蜗核动作电位;
    S4、判断是否得到电刺激蜗核动作电位目标波形:若是,刺激电极的放置位置正确;若否,刺激电极的放置位置不正确,则对该刺激电极的位置进行微调,微调后继续执行步骤S2‐S4,直至得到目标波形;
    S5、判断ABI电极片上所有的待测ABI电极是否完成上述测试:若是,结束电生理测试过程;若否,跳转至所述步骤S2中,继续进行下一待测ABI电极的测试,直至完成所有的待测ABI电极的测试。
  11. 如权利要求10所述的基于CNAP的听觉脑干植入体的电生理测试方法,其特征在于,所述记录电极为刺激电极的相邻电极。
  12. 如权利要求10所述的基于CNAP的听觉脑干植入体的电生理测试方法,其特征在于,所述步骤S1中,术中时医生暴露术区,所述ABI电极片放置在第四侧脑室隐窝内的蜗核表面。
  13. 如权利要求10所述的基于CNAP的听觉脑干植入体的电生理测试方法,其特征在于,所述ABI电极片设有:本体,和在该本体同一面分布的多个待测ABI电极。
  14. 如权利要求10或13所述的基于CNAP的听觉脑干植入体的电生理测试方法,其特征在于,待测ABI电极的数量由专家系统确定。
  15. 如权利要求10所述的基于CNAP的听觉脑干植入体的电生理测试方法,其特征在于,每个待测ABI电极对应一个或多个相邻电极,任意一相邻电极均可作为对应的待测ABI电极的所述记录电极。
  16. 如权利要求10所述的基于CNAP的听觉脑干植入体的电生理测试方法,其特征在于,进一步包含:刺激电极对应的记录电极与信号采集装置连接,将所述记录电极记录的电刺激蜗核动作电位信号发送给信号处理装置,所述信号处理装置接收电刺激蜗核动作电位信号,并通过信号叠加、波形自动识别, 判别出该刺激电极是否出现电刺激蜗核动作电位目标波形。
  17. 如权利要求19所述的基于CNAP的听觉脑干植入体的电生理测试方法,其特征在于,所述信号处理装置包含软件识别算法模块,用于自动识别电刺激蜗核动作电位目标波形。
  18. 一种无创神经夹持式记录电极,其特征在于,包含:
    错位互补的夹子,其设有两个夹片;两个夹片前端错位张开在夹子头部形成开口,或者两个夹片互补闭合形成完整的闭环结构;
    暴露设置在所述闭环结构内侧的若干电极,通过导线与外部的信号发生器和/或信号接收器电性连接;
    两个按压段,其在夹子的尾部分别向外延伸设置,通过传递外部对其施加的按压力,提供促使夹子张开的第一作用力;
    第一弹性体,其设置在夹子尾部的夹片后端及按压段处;第一弹性体的弹力,作为促使夹子闭合的第二作用力;
    第二弹性体,其设置在夹子尾部,且所述第二弹性体的两端分别抵触两个夹片;第二弹性体的弹力,作为促使夹子张开的第三作用力。
  19. 如权利要求18所述无创神经夹持式记录电极,其特征在于,两个按压段上相对施加的按压力使夹子张开到设定角度的状态,与第二弹性体不产生形变的状态相符,也与所述第一弹性体不产生形变或其形变产生的弹力不足以使两夹片朝着互补闭合方向实际移动的状态相符。
  20. 如权利要求19所述无创神经夹持式记录电极,其特征在于,所述夹子被按压时,夹子重力与外部物体承载夹子时的力相抵消,或者与用户拿取夹子时的力相抵消;
    两个按压段上相对施加的按压力使夹子张开到超过设定角度的状态,与所述第一弹性体的形变产生的弹力使两夹片朝着互补闭合方向实际移动的状态相符。
  21. 如权利要求18所述无创神经夹持式记录电极,其特征在于,夹子处于竖直位置时,夹子重力作为促使夹子闭合的第四作用力,其与第二弹性体弹力的共同作用,使夹子处于闭合状态;夹子的闭合状态,与第一弹性体不产生形 变的状态相符;或者,
    夹子偏离竖直位置的状态,与第一弹性体不产生形变的状态相符;夹子重力作为促使夹子闭合的第五作用力,其与对夹片施加的第一外力、第二弹性体弹力的共同作用,使夹子张开到设定角度;所述第五作用力小于第四作用力;或者,
    夹子处于水平位置的状态,与夹子重力不产生作用的状态相符,也与第一弹性体不产生形变的状态相符;对夹片施加的第二外力与第二弹性体弹力的共同作用,使夹子张开到设定角度。
  22. 如权利要求21所述无创神经夹持式记录电极,其特征在于,电极的导线通过与至少一个按压段连接,以及与至少一个夹片连接,进而与夹片内侧暴露的电极电性连接;所述第一外力包含拉动电极导线来带动夹片活动的力;所述第二外力包含拉动电极导线来带动夹片活动的力;所述第二外力大于所述第一外力。
  23. 如权利要求22所述无创神经夹持式记录电极,其特征在于,电极的导线与第二弹性体不直接连接。
  24. 如权利要求18~23中任意一项所述无创神经夹持式记录电极,其特征在于,两个夹片前端错位张开设定角度,在夹子头部形成可供神经进出的开口;或者,
    两个夹片互补闭合形成完整的闭环结构,环抱着从开口进入的神经,使所述电极与神经紧密接触。
  25. 如权利要求24所述无创神经夹持式记录电极,其特征在于,两个按压段之中,第一按压段的长度大于第二按压段的长度;电极的导线与第一按压段相连。
  26. 如权利要求24所述无创神经夹持式记录电极,其特征在于,所述第二弹性体与第一弹性体同轴连接;所述第一弹性体和/或第二弹性体设置在夹子内部,不在夹片内侧暴露。
  27. 如权利要求24所述无创神经夹持式记录电极,其特征在于,所述第一弹性体是扭转弹簧;所述第二弹性体是螺旋弹簧,或蛇形弹簧,或弹片;夹子闭合的状态与所述第二弹性体产生形变的状态相符;所述第二弹性体整体弯曲。
  28. 一种蜗核记录电极,其特征在于,包含:
    电极片,其设有本体,和在该本体同一面分布的若干第一测试电极;
    导线,其在本体内穿设,与第一测试电极相应连接,并从电极片尾部延伸到本体之外来获取电刺激信号;
    第一可夹持部件,设置在从电极片尾部延伸的导线上。
  29. 如权利要求28所述的蜗核记录电极,其特征在于,进一步包含一个或多个可移动电极;每个所述可移动电极设有引线来传递电刺激信号,该引线一端连接有第二测试电极,另一端设置到从电极片尾部延伸的导线处;所述可移动电极的引线上设置有第二可夹持部件。
  30. 如权利要求29所述的蜗核记录电极,其特征在于,所述第一可夹持部件内,开设有供可移动电极的引线穿过的通道。
  31. 如权利要求28或29所述的蜗核记录电极,其特征在于,所述电极片的本体包含多个部分;每个部分具有不同的颜色和足够的透明度;所述多个部分的第一位置顺序,对应不同颜色的第一顺序组合,与电极片的正面状态相对应;所述多个部分的第二位置顺序,对应不同颜色的第二顺序组合,与电极片的背面状态相对应。
  32. 如权利要求31所述的蜗核记录电极,其特征在于,本体的多个部分是具有不同颜色的上半部分、下半部分;或者,本体的多个部分是具有不同颜色的左半部分、右半部分。
  33. 如权利要求28或29所述的蜗核记录电极,其特征在于,从电极片尾部延伸的导线连接到提供电刺激信号的刺激装置;
    或者,从电极片尾部延伸的导线连接信号接收部件;刺激装置的信号发送部件向所述信号接收部件无线传输电刺激信号。
  34. 如权利要求28所述的蜗核记录电极,其特征在于,所述可夹持部件环绕着导线的周向设置;所述导线从所述可夹持部件的中心穿过,或者从偏离中心的部位穿过所述可夹持部件。
  35. 如权利要求28所述的蜗核记录电极,其特征在于,所述可夹持部件是圆盘。
  36. 如权利要求28所述的蜗核记录电极,其特征在于,电极片的本体上有1~4个第一测试电极。
PCT/CN2020/095774 2019-06-13 2020-06-12 听觉脑干植入体的电生理测试方法及其使用的记录电极 WO2020249069A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/618,507 US20220233358A1 (en) 2019-06-13 2020-06-12 Electrophysiological test method for auditory brainstem implant and recording electrode used by method
AU2021107212A AU2021107212A4 (en) 2019-06-13 2021-08-25 Electrophysiological test method for auditory brainstem implant and recording electrode used by method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201910511248.7 2019-06-13
CN201910511248.7A CN110226929B (zh) 2019-06-13 2019-06-13 一种自动化听觉脑干植入体的电生理测试装置
CN201921139630.1U CN210698495U (zh) 2019-07-19 2019-07-19 一种蜗核记录电极
CN201921139630.1 2019-07-19
CN201910677269.6A CN110251126B (zh) 2019-07-25 2019-07-25 实现基于cnap的听觉脑干植入体的电生理测试方法的设备
CN201910677269.6 2019-07-25
CN201921190923.2 2019-07-26
CN201921190923.2U CN210811029U (zh) 2019-07-26 2019-07-26 无创神经夹持式记录电极

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2021107212A Division AU2021107212A4 (en) 2019-06-13 2021-08-25 Electrophysiological test method for auditory brainstem implant and recording electrode used by method

Publications (1)

Publication Number Publication Date
WO2020249069A1 true WO2020249069A1 (zh) 2020-12-17

Family

ID=73781796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095774 WO2020249069A1 (zh) 2019-06-13 2020-06-12 听觉脑干植入体的电生理测试方法及其使用的记录电极

Country Status (2)

Country Link
US (1) US20220233358A1 (zh)
WO (1) WO2020249069A1 (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898183A (en) * 1987-07-24 1990-02-06 Cochlear Pty. Limited Apparatus and method for insertion of cochlear electrode assembly
US6308105B1 (en) * 1999-07-15 2001-10-23 Medtronic Inc. Medical electrical stimulation system using an electrode assembly having opposing semi-circular arms
CN102217932A (zh) * 2011-05-17 2011-10-19 上海理工大学 Abr信号波峰检测的一种全新的算法
CN102307617A (zh) * 2008-12-08 2012-01-04 梅德特朗尼克索梅德公司 神经电极
US20120245666A1 (en) * 2011-03-25 2012-09-27 Med-El Elektromedizinische Geraete Gmbh Implantable Auditory Prosthesis with Temporary Connector
CN102908139A (zh) * 2012-09-29 2013-02-06 深圳英智科技有限公司 干式医用电极
CN103096850A (zh) * 2010-07-29 2013-05-08 Med-El电气医疗器械有限公司 通过植入假体的电诱发脑干反应测量
CN103636234A (zh) * 2011-05-24 2014-03-12 Med-El电气医疗器械有限公司 用于耳蜗植入物的渐进参数扫描
US20140094887A1 (en) * 2012-10-02 2014-04-03 Cardiac Pacemakers, Inc. Pinch to open cuff electrode
CN105561470A (zh) * 2016-02-03 2016-05-11 浙江诺尔康神经电子科技股份有限公司 一种听性脑干刺激电极
US20180055393A1 (en) * 2016-08-31 2018-03-01 Medtronic Xomed, Inc. System to Monitor Neural Integrity
CN108601676A (zh) * 2016-02-05 2018-09-28 Med-El电气医疗器械有限公司 Abi电极的可重复放置
CN208089697U (zh) * 2018-04-03 2018-11-13 陈永振 一种夹具
CN110226929A (zh) * 2019-06-13 2019-09-13 上海交通大学医学院附属第九人民医院 一种自动化听觉脑干植入体的电生理测试方法
CN110251126A (zh) * 2019-07-25 2019-09-20 上海交通大学医学院附属第九人民医院 基于cnap的听觉脑干植入体的电生理测试方法
CN210698495U (zh) * 2019-07-19 2020-06-09 上海交通大学医学院附属第九人民医院 一种蜗核记录电极

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4898183A (en) * 1987-07-24 1990-02-06 Cochlear Pty. Limited Apparatus and method for insertion of cochlear electrode assembly
US6308105B1 (en) * 1999-07-15 2001-10-23 Medtronic Inc. Medical electrical stimulation system using an electrode assembly having opposing semi-circular arms
CN102307617A (zh) * 2008-12-08 2012-01-04 梅德特朗尼克索梅德公司 神经电极
CN103096850A (zh) * 2010-07-29 2013-05-08 Med-El电气医疗器械有限公司 通过植入假体的电诱发脑干反应测量
US20120245666A1 (en) * 2011-03-25 2012-09-27 Med-El Elektromedizinische Geraete Gmbh Implantable Auditory Prosthesis with Temporary Connector
CN102217932A (zh) * 2011-05-17 2011-10-19 上海理工大学 Abr信号波峰检测的一种全新的算法
CN103636234A (zh) * 2011-05-24 2014-03-12 Med-El电气医疗器械有限公司 用于耳蜗植入物的渐进参数扫描
CN102908139A (zh) * 2012-09-29 2013-02-06 深圳英智科技有限公司 干式医用电极
US20140094887A1 (en) * 2012-10-02 2014-04-03 Cardiac Pacemakers, Inc. Pinch to open cuff electrode
CN105561470A (zh) * 2016-02-03 2016-05-11 浙江诺尔康神经电子科技股份有限公司 一种听性脑干刺激电极
CN108601676A (zh) * 2016-02-05 2018-09-28 Med-El电气医疗器械有限公司 Abi电极的可重复放置
US20180055393A1 (en) * 2016-08-31 2018-03-01 Medtronic Xomed, Inc. System to Monitor Neural Integrity
CN208089697U (zh) * 2018-04-03 2018-11-13 陈永振 一种夹具
CN110226929A (zh) * 2019-06-13 2019-09-13 上海交通大学医学院附属第九人民医院 一种自动化听觉脑干植入体的电生理测试方法
CN210698495U (zh) * 2019-07-19 2020-06-09 上海交通大学医学院附属第九人民医院 一种蜗核记录电极
CN110251126A (zh) * 2019-07-25 2019-09-20 上海交通大学医学院附属第九人民医院 基于cnap的听觉脑干植入体的电生理测试方法

Also Published As

Publication number Publication date
US20220233358A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
US11622697B2 (en) Medical device and prosthesis
US8165687B2 (en) Systems and methods for detecting and using an electrical cochlear response (“ECR”) in analyzing operation of a cochlear stimulation system
US9616232B2 (en) Electrically evoked brainstem response measurements via implant prosthesis
US7835800B1 (en) Adaptive place-pitch ranking within a multi-channel neural stimulator
CN110226929B (zh) 一种自动化听觉脑干植入体的电生理测试装置
US20230285748A1 (en) Electrical techniques for biomarker detection in a cochlea
CN110251126B (zh) 实现基于cnap的听觉脑干植入体的电生理测试方法的设备
CN113272005B (zh) 用于监测电极引线插入过程期间发生的诱发反应的系统和方法
WO2020249069A1 (zh) 听觉脑干植入体的电生理测试方法及其使用的记录电极
AU2021107212A4 (en) Electrophysiological test method for auditory brainstem implant and recording electrode used by method
US8320987B2 (en) Electric potential mapping and electrode attachment device with continuous electric signal monitoring and method
Mittal et al. Correlation between intra-operative high rate neural response telemetry measurements and behaviourally obtained threshold and comfort levels in patients using Nucleus 24 cochlear implants
US20230338734A1 (en) Methods and apparatuses for extracochlear stimulation
Harris et al. Future of Intraoperative Electrophysiologic Testing in CI Surgery
AU2014246687B2 (en) Electrically evoked brainstem response measurements via implant prosthesis
WO2024168264A1 (en) Multimodal ultrasound and acoustic system and method for novel non-invasive hearing assessment and intracranial pressure monitoring
US20160325095A1 (en) Novel Recording Approach of Stapedius Muscle Activity
Gonzalez et al. Analysis and Characterization of Stapedius Muscle Electromyograms Elicited by Cochlear Implants in Rats.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20822073

Country of ref document: EP

Kind code of ref document: A1