WO2020248563A1 - 适配器及电池包与适配器的组合 - Google Patents

适配器及电池包与适配器的组合 Download PDF

Info

Publication number
WO2020248563A1
WO2020248563A1 PCT/CN2019/126426 CN2019126426W WO2020248563A1 WO 2020248563 A1 WO2020248563 A1 WO 2020248563A1 CN 2019126426 W CN2019126426 W CN 2019126426W WO 2020248563 A1 WO2020248563 A1 WO 2020248563A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
battery pack
adapter
conversion circuit
power supply
Prior art date
Application number
PCT/CN2019/126426
Other languages
English (en)
French (fr)
Inventor
高庆
朱宏
鲁志健
Original Assignee
南京德朔实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京德朔实业有限公司 filed Critical 南京德朔实业有限公司
Priority to EP23185726.9A priority Critical patent/EP4236020A3/en
Priority to EP19932459.1A priority patent/EP3972072B1/en
Publication of WO2020248563A1 publication Critical patent/WO2020248563A1/zh
Priority to US17/549,230 priority patent/US20220102997A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to an adapter and a combination of a battery pack and an adapter, for example, to an adapter and a combination of a battery pack and an adapter applied in the field of electric tools.
  • battery packs are often used to power electric tools.
  • the battery pack can only be adapted to power tools, but cannot be adapted to supply power from external electronic devices, which limits the use scenarios of the battery pack.
  • the electric tool in the related art needs to be equipped with a dedicated charger to charge the battery pack, and the charger in the related art has a complicated structure, a high manufacturing cost, and is large in size and inconvenient to carry.
  • the present application provides an adapter and a combination of the battery pack and the adapter that are low in cost, convenient to carry, and can expand the usage scenarios of the battery pack of the electric tool.
  • An embodiment provides a combination of a battery pack and an adapter, including: a battery pack, including a battery pack interface that can be detachably connected to an electric tool; a first adapter, including: a plug for connecting AC power; an AC power input interface , Electrically connected to the plug; an AC/DC conversion circuit, electrically connected to the AC input interface to convert AC power to DC power; a DC output interface, electrically connected to the AC/DC conversion circuit to output the DC power;
  • the second adapter can be electrically connected to the first adapter and the battery pack, and can charge the battery pack with a charging power greater than 10W.
  • the second adapter includes: an adapter interface configured to The battery pack interface is detachably connected; the DC interface is set to be detachably connected to the DC output interface; a voltage conversion circuit is connected in series between the DC interface and the adapting interface for connecting all The direct current is converted to adapt the power output of the battery pack; a bidirectional control module is connected between the direct current interface and the adapting interface, and is connected to the voltage conversion circuit, and the control module is configured to The signal states of the DC interface and the adaptation interface control the current direction and output voltage of the voltage conversion circuit.
  • An embodiment provides an adapter, including: an adapting interface for connecting a battery pack that can be detachably connected to an electric tool; a DC interface configured to selectively connect an external power device and an external power supply device.
  • the output or input power is greater than 10W;
  • the adapter also includes: a voltage conversion circuit, a communication module, and a two-way control module; the voltage conversion circuit is connected in series between the DC interface and the adapter interface for selectively connecting the The external power supply device is electrically converted into an electric energy output adapted to the battery pack and the electric energy of the battery pack is converted into an electric energy output adapted to the external electric device;
  • the communication module is set to be capable of adapting to the direct current
  • the signal state of the interface sends a control signal to the control module;
  • the control module is connected between the DC interface and the adaptation interface, and is connected to the voltage conversion circuit, and the control module is configured to The signal states of the DC interface and the adapting interface control the current direction and output voltage of the voltage conversion circuit to selectively enable
  • An embodiment provides a combination of a battery pack and an adapter, including: a battery pack, including a battery pack interface that can at least be detachably connected to an electric tool; a first adapter, including: a first plug for connecting AC power; An alternating current input interface is electrically connected to the first plug; a first alternating current and direct current conversion circuit is electrically connected to the first alternating current input interface to convert alternating current into direct current; the first direct current output interface is electrically connected to the first An AC-DC conversion circuit is electrically connected to output the DC power; the second adapter includes: a second plug for connecting AC power; a second AC power input interface electrically connected with the second plug;
  • the second AC-DC conversion circuit is electrically connected to the second AC power input interface to convert AC power to DC power;
  • the second DC power output interface is electrically connected to the second AC-DC conversion circuit to output the DC power;
  • Three adapters which can be electrically connected to the first adapter, the second adapter, and the battery pack.
  • the third adapter includes: an adapter interface configured to be detachably connected to the battery pack interface;
  • the current interface is set to be detachably connected to the first direct current output interface, and the output or input power of the first direct current interface is greater than 10W;
  • the second direct current interface is set to be connected to the second direct current output interface Removable electrical connection, the output or input power of the first DC interface is greater than 10W;
  • a first voltage conversion circuit, connected in series between the first DC interface and the adapting interface, is used to The direct current of the first direct current output interface is converted into an electric energy output adapted to the battery pack;
  • a second voltage conversion circuit connected in series between the first direct current interface and the adapting interface, is used to convert the The direct current of the two direct current output interfaces is converted into an electric energy output adapted to the battery pack;
  • a bidirectional control module is connected between the first direct current interface, the second direct current interface and the adapting interface, and is connected to all The first voltage conversion circuit and the second voltage conversion circuit, the
  • An embodiment provides an adapter, including: an adapting interface for connecting a battery pack that can be detachably connected to an electric tool; a first DC interface configured to be electrically connected to an external power supply device, and the DC interface The input power is greater than 10W; and the input voltage range of the first DC interface is 5V-20V; the second DC interface can be electrically connected with an external electrical device to connect the electrical energy of the external power supply device or the battery pack Provided to the external power device; a first voltage conversion circuit, connected in series between the first DC interface and the adapting interface, for converting the electric energy of the external power supply device to adapt the battery Package power output; a bidirectional control module, connected between the first DC interface and the adapter interface, and connected to the first voltage conversion circuit, the control module is configured to be able to according to the first The signal states of the DC interface and the adapting interface control the current direction and output voltage of the voltage conversion circuit; when the first DC interface is connected to an external power supply device, and the second DC interface is connected to an external power supply device In the case
  • An embodiment provides an adapter, including: an adapter interface for connecting a battery pack that can be detachably connected to an electric tool; a first DC interface that can be electrically connected to a first external power supply device, and the first direct current interface
  • the input power of the DC interface is greater than 10W; the value range of the input voltage of the first DC interface is: 5V-20V; the second DC interface can be electrically connected to a second external power supply device, the second DC interface
  • the input power of the second DC interface is greater than 10W; the range of the input voltage of the second DC interface is: 5V-20V;
  • the first voltage conversion circuit is connected in series between the first DC interface and the adapter interface, and To convert the direct current of the first direct current output interface into an electric energy output adapted to the battery pack; a second voltage conversion circuit, connected in series between the first direct current interface and the adapting interface, is used to convert The direct current of the second direct current output interface is converted into an electric energy output adapted to the battery pack;
  • a bidirectional control module is
  • An embodiment provides a combination of a battery pack and an adapter, including: a battery pack, including a battery pack interface that can be detachably connected with an electric tool; an adapter, which can be electrically connected to the battery pack, including: a plug, The adapter interface is detachably connected to the battery pack interface; the AC-DC conversion circuit is used to convert the AC power into the DC power that can charge the battery pack; the DC interface is set to connect to the external The electrical device is detachably electrically connected, the output power of the direct current interface is greater than 10W; the alternating current output interface is used to output alternating current; the first voltage conversion circuit is connected in series between the adapting interface and the alternating current output interface, For converting the direct current output by the battery pack into alternating current output;
  • a second voltage conversion circuit connected in series between the DC interface and the adaptation interface, is used to convert the electric energy of the battery pack into an electric energy output adapted to the external electric device;
  • a bidirectional control module is connected to Between the DC interface and the adaptation interface and connected to the second voltage conversion circuit, the control module is configured to control the voltage conversion according to the signal state of the DC interface and the adaptation interface Current direction of the circuit and output voltage.
  • An embodiment provides a combination of a battery pack and an adapter, including: the battery pack includes a battery pack interface that can at least be detachably connected with an electric tool; the adapter includes: an adapter interface for connecting and detachable with the electric tool A connected battery pack; an alternating current output interface for outputting alternating current; a first voltage conversion circuit is connected in series between the adapting interface and the alternating current interface for converting the direct current output by the battery pack into an alternating current output;
  • the DC interface is used to connect an external electric device or an external power supply device; the output or input power of the DC interface is greater than 10W; the value range of the input or output voltage of the DC interface is: 5V-20V; second voltage conversion A circuit, connected in series between the DC interface and the adapting interface, is used to convert the external power supply device into an electric energy output adapted to the battery pack or convert the electric energy of the battery pack into an adaptor The electric energy output of the external electric device; a bidirectional control module, connected between the DC interface and the adaptation interface, and connected to the second voltage conversion circuit, the control module is configured to be able to according to the DC interface
  • the signal state of the adapting interface controls the current direction and output voltage of the voltage conversion circuit.
  • the adapter and the combination of the battery pack and the adapter have a simple structure, low cost and convenient portability, and expand the usage scenarios of electric tools, battery packs, adapters and power supply devices, which is convenient for users to use.
  • FIG. 1 is a schematic structural diagram of a combination of a battery pack and an adapter provided by an embodiment
  • FIG. 2 is a schematic diagram of the structure of the battery pack in the combination of the battery pack and the adapter shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of the adapter in the combination of the battery pack and the adapter shown in FIG. 1;
  • FIG 4 is a schematic diagram of the battery pack shown in Figure 2 when used in combination with an electric tool
  • FIG. 5 is an embodiment of the combination of the battery pack and the adapter shown in FIG. 1;
  • FIG. 6 is a circuit block diagram of the adapter shown in FIG. 5;
  • FIG. 7 is a circuit block diagram of the adapter shown in FIG. 3;
  • FIG. 8 is a circuit block diagram of the adapter shown in FIG. 3;
  • FIG. 9 is a circuit block diagram of the adapter shown in FIG. 3;
  • FIG. 10 is a circuit block diagram of the adapter shown in FIG. 3;
  • FIG. 11 is a circuit block diagram of the adapter shown in FIG. 3;
  • FIG. 12 is a schematic structural diagram of another embodiment of the combination of the battery pack and the adapter shown in FIG. 1;
  • FIG. 13 is a circuit block diagram of the adapter shown in FIG. 12;
  • FIG. 14 is a circuit block diagram of the adapter shown in FIG. 3;
  • 15 is a schematic structural diagram of a combination of a battery pack and an adapter provided by an embodiment
  • 16 is a circuit block diagram of the adapter in the combination of the battery pack and the adapter shown in FIG. 15;
  • FIG. 17 is a schematic structural diagram of a combination of a battery pack and an adapter provided by an embodiment
  • FIG. 18 is a schematic structural diagram of the adapter in the combination of the battery pack and the adapter shown in FIG. 17;
  • FIG. 19 is a circuit block diagram of the adapter shown in FIG. 18;
  • FIG. 20 is a circuit block diagram of a battery pack according to an embodiment
  • Fig. 21 is a circuit block diagram of an adapter of an embodiment.
  • the battery pack and adapter assembly 10 includes a battery pack 11, a second adapter 12, and a first adapter 13.
  • the battery pack 11 is used to supply power to the electric tool 20 (as shown in FIG. 4 ), the second adapter 12 can make the battery pack 11 output electric energy, and the third adapter 13 can provide electric energy to charge the battery pack 11.
  • the nominal voltage range of the battery pack 11 is 10V-60V, and the power of the battery pack 20 is greater than or equal to 100 Wh and less than or equal to 2000 Wh.
  • the nominal voltage range of the battery pack 11 may also be: 18V-24V, 24V-40V, 40V-60V, or 60V-120V.
  • the battery pack 11 includes a battery 111 for storing electric energy and a first housing 114 for accommodating the battery, and a battery pack terminal including a positive terminal 112 of the battery pack and a negative terminal 113 of the battery pack.
  • the battery pack 11 outputs electric energy through the positive terminal 112 of the battery pack and the negative terminal 113 of the battery pack.
  • a first coupling part 115 is formed on the first housing.
  • the first coupling part 115 can be detachably connected to the coupling part of the electric tool 20 so that the battery pack 11 can supply power to the electric tool.
  • the first coupling portion 115 can also enable the battery pack 11 to be electrically connected to the adapter 12 when the battery pack 11 is coupled to the adapter 12.
  • the second adapter 12 includes: a second housing 122 and an interface 124.
  • the second housing 122 is formed with an adapter interface 121, and the adapter interface 121 includes an electrical connection terminal 121 and a second coupling portion 123.
  • the second coupling portion 123 can be combined with the first coupling portion 115 of the battery pack.
  • the first coupling portion 115 of the battery pack is coupled to the second coupling portion 123, the positive terminal 112, the negative terminal 113 and the electrical connection terminal of the power supply 121 connection to access or output electrical energy.
  • the second coupling portion 123 forms a slot, and the electrical connection terminal 121 is disposed in the slot.
  • the first coupling portion is formed with a guide groove
  • the second coupling portion is provided with a guide rail
  • the guide groove is matched so that the battery pack can be slidably connected to the adapter along the sliding rail.
  • An interface 124 capable of charging and discharging is also arranged on the second housing.
  • the interface 124 of the second adapter 12 can be selectively connected to an external power supply device or an external power supply device, so that the external power supply device can be selectively used to charge the battery pack or the battery pack can be used for the external power supply.
  • the electrical device discharges, and the circuit system architecture can refer to FIGS. 6-14.
  • the second adapter 12 is electrically connected to the first adapter 13.
  • the first adapter 13 includes a power plug 131, an AC input interface, an AC/DC conversion circuit 132, and a DC output interface 133.
  • the power plug 131 is used to connect to AC power.
  • the AC power plug is inserted into an AC socket to connect to AC mains.
  • the value range of the AC power plugged in is 110V-130V or 210V-230V.
  • the AC input interface is electrically connected to the power plug 131 to access AC power; the AC to DC conversion circuit 132 is electrically connected to the AC input interface to convert AC to DC; the DC output interface 133 is electrically connected to the AC to DC conversion circuit 132 to output DC .
  • the interface of the second adapter is electrically connected with the direct current output interface to access direct current to power the battery pack.
  • the first adapter 13 can also directly supply power to electronic terminals such as notebook computers, mobile phones, or mobile power supplies.
  • the first adapter 13 is an external power supply device.
  • the first adapter 13 includes an AC input interface, an AC/DC conversion circuit and a DC shop output interface.
  • the AC power input interface is connected to AC power to access AC power;
  • the AC-DC conversion circuit is used to convert the connected AC power to DC power;
  • the DC power output interface can be electrically connected to the second adaptor 12 to output DC power.
  • the second adapter 12 includes a first DC interface 133, an adapter interface 41, and a circuit board 44. Among them, the adapter interface 41 is used to electrically connect the battery pack 11. The first DC interface 133 is electrically connected to the DC output interface.
  • the first DC interface has a charging state and a discharging state.
  • the first DC interface receives electric energy from the external power supply device, such as the first adapter 13, to charge the battery pack.
  • the current interface 133 is in a discharging state, it can also provide the electric energy of the battery pack to the external electric device (refer to FIG. 7).
  • the first DC interface 133 includes at least two power terminals, respectively a first power terminal 421 such as Vbus1 and a second power terminal 422 such as Vbus2, and detection terminals 423 such as CC1 pin, CC2 Pin.
  • the interface 124 includes a slot and a socket tongue accommodated in the socket.
  • the upper surface of the socket tongue is provided with a first power terminal, a second power terminal and a detection terminal to correspond to
  • the first power terminal 421 such as Vbus1
  • the second power terminal 422 such as Vbus2
  • the detection terminal 423 such as the CC1 pin and/or CC2 pin
  • the first power terminal 421 and the second power terminal 422 are used to connect the positive terminal of the direct current
  • the positive terminal 112 of the battery pack 112 of the battery pack 112 in this way, the circuit design of at least two power terminals can bear greater power transmission, greatly improving the power transmission capacity of the first DC interface 133, so that the output power or input power of the DC interface 133 is greater than 10W, can greatly shorten the charging time or discharging time. For example, for a 2.5Ah/24V battery pack, it only takes 6 minutes to charge or discharge using this circuit architecture. However, in the related technology, the power tool matching charging circuit architecture or discharge The circuit architecture often takes about 6-7 hours.
  • the first power terminal 421 and the second power terminal 422 are used to input or output power, and the detection terminal 423 is used to detect the signal state of the DC interface.
  • the first DC interface 133 has a charging state, a discharging state, and an empty state.
  • the detection terminal 423 detects that the DC interface 133 is in a charging state, and sends a charging control signal to the circuit board, so that the first adapter 13 charges the battery pack.
  • the detection terminal 423 detects that the DC interface 133 is in a discharging state, and sends a discharge control signal to the circuit board 44 to discharge the battery pack for the external electrical device 401.
  • the circuit board unit 44 is connected in series between the adaptation interface 41 and the first DC interface 133.
  • the circuit board unit 44 is provided with a main controller 441, a communication module 442, a bidirectional power supply controller 443 and a voltage conversion circuit 444.
  • the circuit board unit 44 may be one circuit board or a plurality of circuit boards integrated, which is not limited herein.
  • the detection terminal 423 detects that the first DC interface 133 is in a charging state, and sends a charging control signal to the voltage conversion circuit 444. In one embodiment, the detection terminal 423 detects The first DC interface 42 is in a charging state and sends a charging control signal to the communication module 442.
  • the communication module 442 receives the charging control signal from the detection terminal 423, and transmits the charging control signal to the main controller 441.
  • the main controller 441 receives the battery pack communication signal of related information from the battery pack, and transmits it to the communication module 442.
  • the communication module 442 receives a communication signal of related information of the battery pack from the controller, and adjusts the voltage, current, and power of the external power supply device 402.
  • the controller 441 also receives the charging control signal from the communication module 442 and outputs the control signal to the bidirectional power supply controller 443; the bidirectional power supply controller 443 receives the control signal from the controller 441 and outputs the power supply control signal to the voltage conversion circuit to control The current direction of the voltage conversion circuit 444 and the control voltage conversion circuit 444 adjust the electrical energy of the external power supply device 401 to form an electrical energy output adapted to the battery pack so that the external power supply device 401 charges the battery pack.
  • the bidirectional power supply controller 443 receives the control signal from the controller 441 and outputs the reference voltage to the voltage conversion circuit 444 to control the current direction of the voltage conversion circuit 444.
  • the CS pin of the bidirectional power supply controller when the first adapter 13 is connected to the first DC interface 42, the CS pin of the bidirectional power supply controller outputs a positive voltage to the voltage conversion circuit, so that the external power supply device 402 can charge the battery pack.
  • the CS pin of the bidirectional power supply controller When the external electric device 401 is connected to the first DC interface, the CS pin of the bidirectional power supply controller outputs a negative voltage to the voltage conversion circuit, so that the battery pack is discharged to the external electric device 401.
  • the voltage conversion circuit 444 adapts the voltage of the first DC interface 42 to the voltage of the battery pack 11.
  • the detection terminal 423 of the DC interface 133 includes a CC1 pin and/or a CC2 pin, and the CC1 pin and/or CC2 pin are control pins, which generate a communication signal.
  • the first power terminal 421 is a Vbus1 pin
  • the second power terminal 422 is a Vbus2 pin.
  • the CC1 and/or CC2 pins are used to determine whether the device connected to the first DC interface 133 is an external power supply device or an external electrical device, and the change of the CC1 and/or CC2 pin status is detected by the communication module.
  • a CC1 pin is provided on the upper surface of the plug tongue, and a CC2 pin is provided on the lower surface of the plug tongue opposite to the upper surface.
  • the CC1 pin and CC2 together generate a communication signal.
  • the corresponding interface on the external power supply device is inserted in the forward direction such as The interface 124 shown in FIG. 3, and the corresponding interface of the external electrical device is inserted into the interface 124 shown in FIG. 3 in the opposite direction, and the CC1 pin and the CC2 pin on the upper and lower surfaces of the plug tongue together generate a communication signal.
  • the CC1 pin When the CC1 pin is in the idle state and the CC2 pin is in the idle state, no device is connected at this time.
  • the first adapter 13 When the first adapter 13 is connected to the first DC interface 133, the CC1 and/or CC2 pins detect a high level, the first adapter 13 is equivalent to a pull-up resistor, and it is determined that the first DC interface 133 is the power supply side, and The battery pack 11 is equivalent to a pull-down resistor and is determined to be the receiving side.
  • the main controller 441 obtains the current charging information of the battery pack and transmits it to the first communication module 442 through the SDA pin and SCL pin on the controller 441. 442 adjusts the voltage, current, and power of the external power supply device.
  • the external power supply device matches the voltage of the battery pack through the voltage conversion module 444 to charge the battery pack.
  • the standard voltage range of the first DC interface 133 is 5V to 20V, which can realize a continuously adjustable voltage from 5V to 20V and supports any larger source output power from 10W to 100W.
  • the CC1 and/or CC2 pins detect a low level
  • the external electric device 401 is equivalent to a pull-down resistor
  • the battery pack is equivalent to a pull-up resistor, and determined to be the power supply side.
  • the first communication module 442 detects the change in the state of the CC1 and/or CC2 pins, and transmits signals to the controller through the SCL pin and the SDA pin 441.
  • the controller 441 outputs a control signal to the two-way power supply controller 443.
  • the two-way power supply controller receives the control signal and controls the current direction of the voltage conversion circuit 444.
  • the voltage conversion circuit 444 compares the discharge voltage of the battery pack with that required by the external electrical device 401 The charging voltage is matched to charge the external electric device 401.
  • controller 441, the first communication module 442, and the bidirectional power supply controller 443 may be integrated into one system-on-chip (SOC).
  • the adapter 50 shown in FIG. 8 as one of the embodiments.
  • the difference from the embodiment shown in FIGS. 6 and 7 is that the adapter 50 includes a first DC interface 52 and a second DC interface 53.
  • the adapter 50 also includes a discharge circuit 55 and a charging circuit 56.
  • the first DC interface 52 is an interface that can realize high-power charging and discharging greater than 10W, and is the same type of interface as the first DC interface 133 of the adapter 12 in the embodiment shown in FIG. 6.
  • the second DC interface 53 is used to connect the external power-consuming device 501 to provide electric energy to the external power-consuming device 501.
  • the second DC interface 53 is an interface that supplies power to external devices and has a working power of 5V/2A.
  • the discharging circuit 55 is used to convert the electric energy output by the adapting interface 51 into a voltage output matching the second interface 53; the discharging circuit 55 is arranged on the circuit board 54 and connected in series between the adapting interface 51 and the second DC interface 53 .
  • the discharge circuit 55 includes a second communication module 551 and a second voltage conversion circuit 552.
  • the charging circuit 56 is used to convert the electric energy of the external power supply device 502 connected to the first interface 52 to charge the battery pack through the external power supply device 502.
  • the charging circuit 56 is connected in series between the adapting interface 51 and the first DC interface 52.
  • the second DC interface 53 is provided with a second communication terminal 58 such as a DM2 pin.
  • the second communication terminal 58 is used to detect the interface status of the second DC interface 53.
  • the interface state of the second DC interface 53 includes an empty state and a discharge state.
  • the second communication terminal 58 detects the discharge state and sends a communication signal to the second communication module 551.
  • the second communication module 551 receives the communication signal of the status information from the second DC interface 53 and transmits the communication signal to the second voltage conversion circuit 552.
  • the second voltage conversion circuit 552 receives the status signal from the second DC interface of the second communication module 551 and converts the battery pack voltage to a voltage suitable for the external electric device 501.
  • the charging circuit 56 includes a first communication module 561, a controller 562, a bidirectional power supply controller 563, and a first voltage conversion circuit 564.
  • the first voltage conversion circuit 564 is connected in series between the first DC interface 52 and the adaptation interface 51, and is used to convert the electric energy of the external power supply device 502 into an electric energy output of the adapted battery pack.
  • the first voltage conversion circuit 564 converts the voltage of the first DC interface 52 to adapt to the battery pack voltage.
  • the detection terminal 57 detects a high level, determines that the first DC interface is in a charging state, and sends a charging control signal to the first communication module 561.
  • the first communication module 561 receives the charging control signal from the detection terminal 57 and transmits the charging control signal to the main controller 562.
  • the main controller 562 is configured to be able to receive the communication signal about the battery pack related information from the battery pack, and transmit the communication signal of the battery pack information to the first communication module 561.
  • the first communication module 561 receives the communication signal related to the battery pack from the main controller 562, and adjusts the voltage, current, and power of the external power supply device 502.
  • the main controller 562 is also configured to receive the charging control signal from the first communication module 561 and output the control signal to the bidirectional power supply controller 563; the bidirectional power supply controller 563 can output the power supply control signal to the bidirectional power supply controller 563 according to the control signal from the main controller 562
  • the first voltage conversion circuit 564 controls the current direction of the first voltage conversion circuit 564 and controls the voltage conversion circuit 564 to adjust the power of the external power supply device 502 to adapt the power output of the battery pack to allow the external power supply device 502 to charge the battery pack.
  • the bidirectional power supply controller 563 receives a control signal from the main controller 562, outputs a reference voltage to the first voltage conversion circuit 564, and controls the current direction of the first voltage conversion circuit 564. For example, when the external power supply device 502 is connected to the first interface 52, the CS pin of the bidirectional power supply controller 563 outputs a positive voltage to the voltage conversion circuit, so that the external power supply device 502 charges the battery pack.
  • the first DC interface 52 includes at least two power terminals, which are connected to the positive pole of the external power supply device 502 for inputting power.
  • the first DC interface 52 is also provided with first detection terminals 57 such as CC1 and CC2 pins to detect the signal state of the first DC interface 52, and the second DC interface 53 is provided with a second communication terminal 58 such as the DM2 pin , Obtain the interface status of the second DC interface through the second communication terminal 58 such as the DM2 pin.
  • the pin of the second communication terminal DM2 Since the pin of the second communication terminal DM2 is different from the pins of the first detection terminals CC1 and CC2 of the first DC interface 52, the pin of the second communication terminal DM2 cannot selectively have the charging state and the discharging state, and the default is the discharging state, or
  • the second DC interface 53 has no additional detection terminals or conductive terminals for selecting the charging state and the discharging state.
  • the controller 562 obtains the current charging information of the battery pack, and transmits it to the first communication module 561 through the SDA pin and SCL pin on the controller 562.
  • the first communication module 561 adjusts the voltage, current, and power of the external power supply device 502, and externally supplies power.
  • the device 502 uses the first voltage conversion circuit 564 to match the voltage of the battery pack and/or the external electric device 501 to charge the battery pack and/or the external electric device 501.
  • the external power supply device provides 40W charging power to the battery pack at 20V/3A, while providing 20W charging power to the first electrical device.
  • the external power supply device charges the battery pack through the first DC interface, and at the same time, the external power supply device can also be used
  • the second DC interface discharges the external electric device.
  • the charging circuit and the discharging circuit are divided into two sets of circuits, which can reduce interference between the circuits, and each interface can work independently.
  • the first detection The terminal 57 determines that the first DC interface 52 is in a discharging state
  • the main controller 562 obtains the current charging information of the first DC interface 52 through the first communication module 561, and the battery pack passes through the second voltage conversion circuit 552 and the first voltage conversion respectively.
  • the circuit 564 matches the voltages of the first electrical device 501 and the second electrical device 502, and the battery pack simultaneously outputs electrical energy to supply power to the first electrical device 501 and the second electrical device 502.
  • the detection terminal 57 detects a low level and determines that the first DC interface 52 is in a discharge state, and sends a discharge control signal to the first communication module 661 .
  • the first communication module 561 is configured to receive the discharge control signal from the detection terminal 57 and transmit the discharge control signal to the main controller 562; the first communication module 561 is also configured to receive charging information from the external electric device 502 The communication signal of the charging information is transmitted to the main controller 562.
  • the main controller 562 is configured to receive the discharge control signal and the communication signal of the charging information and output the control signal to the bidirectional power supply controller 563;
  • the bidirectional power supply controller 563 is configured to output a power supply control signal to the first voltage conversion circuit 564 according to the control signal received from the main controller 562 to control the current direction of the first voltage conversion circuit 564 and control the first voltage conversion circuit 564 The voltage value is adjusted to enable the battery pack to charge the external electric device 502.
  • the controller 562, the first communication module 561, and the two-way power supply controller 563 can be integrated into one system-on-chip (SOC); or the main controller 562 and the two-way power supply controller 563 can be integrated into one Control module.
  • SOC system-on-chip
  • the battery pack can charge different external electric devices at the same time through the adapter.
  • the use scene of the battery pack is improved, which is convenient for users to use.
  • the discharge circuits of the two interfaces are divided into two sets of circuits, which can reduce interference between the circuits, and each interface can work independently.
  • the adapter 70 in the embodiment shown in FIG. 10 is configured with a first DC interface 72, a second DC interface 73 and a third DC interface 74.
  • the third DC interface 74 and the first DC interface 72 are the same type of interface as the first DC interface 133 in the embodiment shown in FIG. 6.
  • the first DC interface 72 is provided with a detection terminal 721
  • the third DC interface 74 is provided with a detection terminal 741.
  • both the first DC interface 72 and the third DC interface 74 include at least two power terminals, which are connected to the positive pole of the external power supply device for inputting power.
  • the adapter further includes: a first discharging circuit 76, a first charging circuit 77, and a second charging circuit 78.
  • the first DC interface 72 and the third DC interface 74 are interfaces that can realize the input and output of high-power (greater than 10W) electric energy.
  • the second DC interface 73 is used to connect to the first external electrical device 701 to provide the electric energy of the battery pack to the first external electrical device 701.
  • the second DC interface 73 is an interface that supplies power to external devices and has a working power of 5V/2A.
  • the first discharging circuit 76 is used for converting the electric energy of the battery pack or the external power supply device into electric energy matching the second DC interface 73 for output.
  • the first discharge circuit 76 is disposed on the circuit board 75 and is connected in series between the adapting interface 71 and the second DC interface 73.
  • the first charging circuit 77 is connected in series between the adapting interface 71 and the first DC interface 72, and is used to convert the electric energy of the first external power supply device 702 connected to the first DC interface 72 to pass the first external power supply device 702 as The battery pack and the first external electric device 701 are charged.
  • the second charging circuit 78 is used to convert the electric energy of the second external power supply device 703 connected by the third DC interface 74 to charge the battery pack and the first external power device 701 through the external power supply device 703.
  • the second charging circuit is connected in series with the suitable Between the matching interface 71 and the third DC interface 73.
  • the first discharge circuit 76 includes a second communication module 761 and a second voltage conversion circuit 762.
  • the second communication module 761 is connected to the second voltage conversion circuit 762
  • the second voltage conversion circuit 762 is connected to the adapting interface 71
  • the second voltage conversion circuit 762 converts the voltage connected to the second voltage conversion circuit to match the first external electrical device 701 voltage to charge it.
  • the first charging circuit 77 includes a first communication module 771, a main controller 772, a first bidirectional power supply controller 773, and a first voltage conversion circuit 774.
  • the detection terminal detects a high level, determines that the first DC interface 72 is in a charging state, and sends a charging control signal to the first communication module 771.
  • the first communication module 7712 receives the charging control signal from the detection terminal 721 and outputs the charging control signal to the main controller 772.
  • the main controller 772 is configured to be able to receive a communication signal about the battery pack information from the battery pack, and transmit the communication signal of the battery pack information to the first communication module 771.
  • the first communication module 771 receives a communication signal related to the battery pack from the main controller 772, and adjusts the voltage, current, and power of the first external power supply device 702.
  • the main controller 772 is also configured to receive the charging control signal from the first communication module 771, and output the control signal to the bidirectional power supply controller 773; the first bidirectional power supply controller 773 is configured to output according to the control signal from the main controller 772 The power supply control signal is supplied to the first voltage conversion circuit 774 to control the current direction of the first voltage conversion circuit 774 and to control the first voltage conversion circuit 774 to adjust the power of the first external power supply device 702 to adapt the power output of the battery pack to make all The external power supply device 702 charges the battery pack.
  • the bidirectional power supply controller 773 receives a control signal from the main controller 772, outputs a reference voltage to the first voltage conversion circuit 774, and controls the current direction of the first voltage conversion circuit 774.
  • the CS pin of the bidirectional power supply controller when the external power supply device 702 is connected to the first DC interface 72, the CS pin of the bidirectional power supply controller outputs a positive voltage to the voltage conversion circuit, so that the external power supply device 702 charges the battery pack.
  • the CS pin of the bidirectional power supply controller When the external electrical device is connected to the first DC interface 72, the CS pin of the bidirectional power supply controller outputs a negative voltage to the voltage conversion circuit, so that the battery pack can charge the external electrical device.
  • the second charging circuit 78 includes a third communication module 781, a second bidirectional power supply controller 782, and a third voltage conversion circuit 783.
  • the second charging circuit and the first charging circuit share the main controller 772, so that the controller 772 controls the third voltage conversion circuit 783 to adjust the power of the second external power supply device 703 to adapt to the power output of the battery pack, so that the second The external power supply device 703 charges the battery pack.
  • multiple external power supply devices can simultaneously charge the battery pack through the first DC interface 72 and the third DC interface 74, with higher charging efficiency and faster speed. It can be applied to battery packs with a nominal voltage range of 40V-120V.
  • the second direct current interface 73 or the third direct current interface 74 or the second direct current interface 73 and the third direct current interface 74 can be inserted into an external electrical device, and the battery pack can charge the connected electrical device.
  • the adapter 80 as one of the embodiments is different from FIG. 10 in that the third DC interface 84 of the adapter 80 and the first DC interface 82 in the embodiment shown in FIG. 10 share a bidirectional power supply controller 873 and the first voltage conversion circuit 874. And the positive terminal 821 of the first DC interface 82 and the positive terminal 841 of the third DC interface are connected in series to the first voltage conversion circuit 874, and the negative terminal 822 of the first DC interface 82 and the negative terminal 842 of the third DC interface are connected in series. Connected to the second voltage conversion circuit 874.
  • the first communication module 871 is connected to the main controller 872, and the controller 872 obtains the current signal state of the first DC interface 82 through the first communication module 871.
  • the third communication module 881 is also connected to the controller 872.
  • the third communication module 881 obtains the signal status of the third DC interface 84 and transmits the signal to the controller 872.
  • the controller 872 obtains the charging information of the current battery pack and transmits the control signal to the two-way
  • the power supply controller 873 controls the first voltage conversion circuit 874 to convert the voltage of the first DC interface and the third DC interface to match the voltage of the battery pack and/or the voltage of the first external power device, so that the first external power supply device 801 and The second external power supply device 802 supplies power to the battery pack and/or the first external power consumption device 801.
  • the first DC interface 82 and the third DC interface 84 can also be connected to an external electric device, and the battery pack provides power to the first DC interface 82, the second DC interface 83 and the third DC interface 84 at the same time. In an embodiment, the first DC interface 82 and the third DC interface 84 can only work in the charging or discharging mode at the same time.
  • a battery pack and an adapter shown in FIG. 12 includes: a battery pack 31, a first adapter 301, a second adapter 32 and an external power device 302.
  • the second adapter 32 further includes a second DC interface 322, wherein the input and output power of the first DC interface 321 and the second DC interface 322 are greater than 10W.
  • the first DC interface 321 can be electrically connected to the external power supply device 301 to access electric energy
  • the external power supply device 301 can be a laptop power adapter.
  • the second DC interface 322 is connected to the external power device 302 to simultaneously provide the DC power from the external power supply device 301 or the power of the battery pack to the external power device.
  • the external electric device 302 can be an electric device such as a mobile phone, a tablet computer, a wearable device, etc., and there is no limitation here.
  • the second adapter further includes: a third DC interface 93, and the output power of the third DC interface 93 is 5V/2A.
  • the difference from the embodiment shown in FIG. 10 is that the positive terminal 931 of the third DC interface 93 and the positive terminal 921 of the second DC interface 322 are connected in series to the first voltage conversion circuit 974, and the negative terminal 932 of the third DC interface 93 The negative terminal 922 of the second DC interface 322 is connected to the first voltage conversion circuit 974 in series.
  • Both the first DC interface 321 and the second DC interface 322 include detection terminals, namely CC1 and CC2 pins; and the third DC interface 93 has communication terminals DM1 or DM2 pins.
  • the working power of the second DC interface 322 and the working power of the third DC interface 93 are the same as 5V/2A.
  • the third DC interface 93 cannot work. Because the first DC interface 321 has an independent control circuit, the first DC interface 321 can work independently, and can be connected to an external power supply device for charging or an external power device for discharging.
  • the first DC interface 321 and the second DC interface 322 respectively include at least two electrical energy positive terminals, wherein the electrical energy positive terminal of the first DC interface 321 is connected to the positive electrode of the external power supply device 301; The electric power positive terminal of the DC interface 322 is connected to the positive terminal of the external electric device 302.
  • the external electric device can be discharged through the second DC interface.
  • the adapter can be used to output the electric energy stored in the battery pack to discharge external electrical devices such as smart phones or laptops, which greatly expands the actual application scenarios of the battery pack, and is no longer limited to the battery pack.
  • the application scenario of electric tool discharge or power supply it is also possible to use an external power supply device such as a smart phone or a laptop that is available on site to charge the battery pack with high power through the first DC interface, which is greatly convenient for users to use.
  • the above-mentioned charge and discharge control can be realized through the same controller, reducing the introduction of other operational amplifier circuits, simplifying the circuit structure, and the adapter can achieve high power greater than 10W Charge and discharge.
  • the adapter 90' as one of the embodiments is different from the embodiment shown in FIG. 13 in that the third DC interface 94' and the first DC interface 92' share the two-way power supply controller 973' and The first voltage conversion circuit 974'.
  • the positive terminals of the first DC interface 92', the second DC interface 93' and the third DC interface 94' are connected in series and connected to the first voltage conversion circuit 974', the first DC interface 92' and the second DC interface 93' And the negative terminal of the third DC interface 94' are also connected in series and connected to the first voltage conversion circuit 974'.
  • the first DC interface 92', the second DC interface 93' and the third DC interface 94' can work in the discharge mode at the same time, and the working power is 5V/2A.
  • the first DC interface 92' and the third DC interface 94' work in the charging mode, the first DC interface 92' cannot work.
  • the battery pack and adapter combination 200 includes an adapter 210 and two battery packs 220 and 230.
  • the battery pack and adapter combination 200 is a portable power system.
  • the battery pack 220 or the battery pack 230 may be the same battery pack or different battery packs, and both of them can power a DC electric tool.
  • the adapter 210 can include a housing 211 that can form an adapting interface that fits with the coupling part of the battery pack 220 to enable the battery pack to be detachably connected to the adapter 210.
  • the adapter 210 further includes an inverter 218 and a rectifier 217.
  • the inverter 218 can convert the DC power output by the battery pack connected to the adapter 210 into AC power.
  • the rectifier 217 can convert the AC power connected to the adapter 210 into DC power that can charge the battery pack.
  • Both the inverter 218 and the rectifier 217 are composed of corresponding circuit boards and circuit elements, and the circuit boards and circuit elements constituting the inverter are accommodated in the containing cavity formed by the housing 211.
  • the adapter 210 also includes an AC power input interface 214, which enables the adapter 210 to access AC power in the power grid.
  • the AC power input interface 214 can be configured as a power plug as shown in FIG. 15, which has the advantage of ensuring safety in electricity use; it can also be configured as a general AC interface, so that users can choose power cords of different lengths. Make a transfer.
  • the adapter 210 can charge the battery pack connected to it by the connected AC power; for example, the AC power input port 214 is electrically connected to the rectifier 217, so that the AC power input from the AC power input port 214 is changed into DC power to provide the battery pack Recharge.
  • the adapter 210 also includes an AC power output interface 213; it can be used to output AC power, so that the battery pack and adapter combination 200 can be used as an AC power source.
  • the power source of the AC power output interface can be either the power stored in the battery pack connected to the adapter 210, or the power accessed by the adapter 210 from elsewhere, such as the AC power grid introduced from the AC power input interface 214 Of electrical energy.
  • the AC output interface can be constructed in the form of a power socket as shown in Figure 13.
  • the power socket can be designed to have the same specifications as the sockets that output power from the local general grid, so that the battery pack and adapter combination 200 can be used for general AC power. Equipment power supply.
  • the power socket can be set on the same side of the adapter 210 or on a different side of the adapter 210.
  • the adapter 210 can use the power of the connected battery pack and output AC power through the AC power output interface.
  • the AC power output interface is at least electrically connected to the inverter 218.
  • the inverter 218 is connected in series between the adapter interface and the AC power output interface 213.
  • the DC power from the battery pack is converted to AC power through the inverter 218. Output to the AC output interface 213.
  • the adapter 210 also includes a DC interface, which is used to connect to an external electric device to make the adapter 210 output electric energy.
  • the voltage conversion circuit is connected in series between the DC interface and the adapting interface, and is used to convert the electric energy of the battery pack into an electric energy output adapted to the external electric device or convert the electric energy of the external power supply device into an electric energy adapted to the battery pack. Electric energy output.
  • the adapter 210 includes a first DC interface 215 and a second DC interface 216.
  • the first DC interface 215 is the same type of interface as the first DC interface 133 in the embodiment shown in FIG.
  • the current interface 215 is an interface that can realize high-power charging and discharging greater than 10W
  • the second DC interface 216 is an interface with a working power of 5V/2A.
  • the first DC interface 215 includes at least two electric energy positive terminals, and the electric energy positive terminal is connected to the positive electrode of the external electric device or the external power supply device.
  • the first DC interface 215 can be connected to a notebook computer adapter, a mobile phone charging terminal or a mobile power supply to charge the battery pack.
  • the first DC interface 215 can also charge electric devices such as laptop computers and mobile phones.
  • the circuit design of at least two electric energy positive terminals can undertake greater power transmission, greatly improving the power transmission capacity of the first DC interface 215, so that the output power or input power of the first DC interface 215 is greater than 10W, which can greatly reduce charging Time or discharge time.
  • the adapter 210 also includes a control module connected between the DC interface and the adapting interface and connected to the voltage conversion circuit.
  • the control module is configured to be able to adjust the voltage between the DC interface and the adapting interface.
  • the signal state controls the current direction and output voltage of the voltage conversion circuit.
  • the battery pack and adapter combination 200 ′ shown in FIGS. 17 to 19 it includes an adapter 240 and a battery pack 250.
  • the combination of battery pack and adapter 200' is a portable power system.
  • the battery pack 250 can power a DC electric tool.
  • the battery pack 250 includes a battery cell (not shown) and a first housing 251, and the battery cell is accommodated in the first housing 251.
  • the battery cell is used to store energy, which can be repeatedly charged and discharged. Lithium-ion battery or graphene battery can be selected for battery cell.
  • the first housing 251 is used to accommodate the cells and other components in the battery pack 250, and the first housing 251 is formed with a coupling part through which the battery pack 250 can be coupled to an electric tool.
  • the adapter 240 can be combined with the battery pack 250 described above, so that the battery pack 250 can output AC power and/or DC power through the adapter 240.
  • the adapter 240 also includes an AC output interface 241 for outputting AC power, so that the combination of the battery pack and the adapter 200' can be used as an AC power source.
  • the alternating current output interface 241 is electrically connected to the inverter 244 to output alternating current.
  • the AC output interface 241 is constructed in the form of a power socket as shown in FIG. 18.
  • the power socket is designed to have the same specifications as the sockets that output electrical energy from the local general power grid, so that the portable power system can be used for general AC. Power supply for electrical equipment.
  • the adapter 200 includes an alternating current output interface 241 for outputting 110-130V alternating current or 210-230V alternating current.
  • the adapter 240 includes two AC power output interfaces 241, which are respectively used to output 110-130V AC power or 210-230V AC power.
  • the adapter 240 also includes a voltage conversion circuit and a DC interface.
  • the adapter 240 includes a first DC interface 242, which is similar to the first DC interface 133 in the embodiment shown in FIG. It is the same type of interface, which is used to connect an external electric device to make the adapter 240 output electric energy or connect to an external power supply device to charge the battery pack.
  • the adapter 240 includes a first DC interface 242 and a second DC interface 243.
  • the adapter 240 further includes a first voltage conversion circuit 245 and a second voltage conversion circuit 246 for converting the direct current output from the battery pack 250 into a direct current output with a preset voltage.
  • the first voltage conversion circuit 245 can also It is used to convert the electric energy of the external power supply device into electric energy suitable for the battery pack.
  • the first DC interface 242 includes at least two electric energy positive terminals, the electric energy positive terminal is connected to the positive electrode of the external power device or the external power supply device, and the first DC interface 242 can realize high-power charging greater than 10W.
  • a discharge interface, and the second DC interface 243 is an interface with a working power of 5V/2A.
  • the first DC interface 242 can be connected to a laptop computer adapter, a mobile phone charging terminal or a mobile power supply to charge the battery pack, or can be connected to a power supply device for charging it, such as a laptop computer, a mobile phone and other electrical devices.
  • a laptop computer adapter a mobile phone charging terminal or a mobile power supply to charge the battery pack
  • a power supply device for charging it such as a laptop computer, a mobile phone and other electrical devices.
  • the circuit design of at least two electric power positive terminals in the first DC interface can bear greater power transmission, greatly improving the power transmission capability of the first DC interface 242, so that the output or input power of the first DC interface 242 is greater than 10W, can greatly shorten the charging time or discharging time.
  • the adapter 240 also includes a controller 247 and a two-way power supply controller 248.
  • the controller 247 is connected between the first DC interface 242 and the adapter interface 249.
  • the two-way power supply controller 248 is connected between the controller 247 and the first voltage conversion circuit 245.
  • the controller 247 is configured to output a control signal to the bidirectional power supply controller 248 according to the signal state of the DC interface and the adaptation interface to control the current direction and output voltage of the first voltage conversion circuit 245, so that The external power supply device charges the battery pack or causes the battery pack to discharge an external electric device.
  • the combination of the battery pack and the adapter can also adopt the circuit system architecture of FIGS. 7 to 11, 13 and 14 as the circuit system architecture of the DC interface, which is not limited here.
  • the battery pack and adapter combination 200 and 200' is often used as a small and medium charging station for outdoor operations, and its output power can be greater than 100W, such as 150W, 300W, 1200W or 2000W, which is not limited here.
  • 100W such as 150W, 300W, 1200W or 2000W, which is not limited here.
  • external power supply devices that provide AC and/or DC power and external power devices that require AC and/or DC power. Interaction to obtain power from each other greatly expands the use scenarios of power supply devices.
  • the battery pack 60 for supplying power to the electric tool 100, the battery pack 60 is detachably connected to the electric tool 100.
  • the battery pack 60 includes a battery cell 61 for storing electric energy, a battery pack terminal, including a positive terminal 621 of the battery pack, a negative terminal 622 of the battery pack, and a communication terminal 623.
  • the battery pack outputs electric energy through the positive terminal 621 of the battery pack and the negative terminal 622 of the battery pack.
  • the battery pack also includes a DC interface 63 and a circuit board unit 64.
  • the DC interface 63 can be selectively connected to an external electric device or an external power supply device. In this way, the DC interface 63 receives electric energy from the external power supply device when it is in a charging state; when the DC interface 63 is in a discharging state, it provides the electric energy of the battery pack to External electric device.
  • the DC interface 63 includes at least two power positive terminals, namely a first power terminal 631 and a second power terminal 632, such as Vbus1 and Vbus2, and the DC interface 63 also includes a detection terminal 633, such as CC1.
  • the first power terminal 631 and the second power terminal 632 can be connected to the positive terminal of the external power device or external power supply device for inputting or outputting power.
  • the detection terminal 633 is used to detect the signal state of the DC interface, and the DC interface 63 has a charging state, a discharging state, and an empty state.
  • the detection terminal 633 detects a high level, the external power supply device is equivalent to a pull-up resistor, it is determined that the DC interface 63 is the power supply side, and the cell 61 is equivalent to a pull-down resistor, which is determined to be the power receiving side ,
  • the detection terminal 633 determines that the DC interface 63 is in a charging state, and sends a charging control signal to the circuit board unit 64, so that the external power supply device charges the battery pack 60.
  • the detection terminal 633 detects a low level.
  • the external electrical device is equivalent to a pull-down resistor. It is determined that the DC interface 63 is the power receiving side, and the cell 61 is equivalent to a pull-up resistor.
  • the detection terminal 633 detects that the DC interface 63 is in a discharging state, and sends a discharge control signal to the circuit board unit 64 so that the battery pack 60 is discharged for the external electric device.
  • the circuit board unit 64 is connected in series between the battery pack terminal 62 and the DC interface 63. As an implementation manner, a main controller 641, a bidirectional power supply controller 642, and a voltage conversion circuit 643 are provided on the circuit board unit.
  • the circuit board unit 64 may be one circuit board or multiple circuit boards integrated, and it is not limited here.
  • the detection terminal 633 detects that the DC interface 63 is in a charging state and sends a charging control signal to the main controller 641.
  • the main controller 641 is configured to receive a charging control signal from the detection terminal 633, and the main controller 641 can also receive a communication signal of related information from the electric tool 100.
  • the main controller 641 outputs a control signal to the bidirectional power supply controller 642 according to the charging control signal; the bidirectional power supply controller 642 receives the control signal from the main controller 641 and outputs a power supply control signal to the voltage conversion circuit 643 to control the voltage conversion
  • the current direction of the circuit 643 and the control voltage conversion circuit 643 adjust the electric energy of the external power supply device to form an electrical energy output of the battery pack and/or the electric tool, so that the external power supply device supplies power to the battery pack and/or the electric tool.
  • the detection terminal 633 detects that the DC interface 63 is in a discharging state and sends a discharge control signal to the main controller 641.
  • the main controller 641 is configured to receive the discharge control signal from the detection terminal 633 and output the control signal to the bidirectional power supply controller 642; the bidirectional power supply controller 642 receives the control signal from the main controller 641 and outputs the power supply control signal to the voltage conversion
  • the circuit 643 controls the current direction of the voltage conversion circuit 643.
  • the voltage conversion circuit 643 matches the discharge voltage of the cell 61 with the charging voltage required by the external electric device to charge the external electric device.
  • an external power supply device such as a smart phone or a notebook computer available on site can be used to charge the battery pack with high power through the DC interface, and the electric energy stored in the battery pack can also be output through the battery pack as an external power device For charging, such as smartphones or laptops.
  • the usage scenarios of the battery pack are expanded, which is convenient for users to use.
  • the design circuit architecture of the bidirectional power supply controller is adopted in the battery pack, the charging and discharging control can be realized through the same controller, which reduces the introduction of other operational amplifier circuits, simplifies the circuit structure, and the battery pack can achieve greater than 10W high power charge and discharge.
  • the adapter 150 includes an adapter interface 151, an interface component 152 and a circuit board unit 153.
  • the interface component 152 includes a communication interface 154 and an electrical power interface 155.
  • the adapting interface 151 is used to electrically connect the battery pack to access direct current.
  • the interface component 152 can be selectively connected to an external electric device or an external power supply device, so that the external power supply device can selectively charge the battery pack or make the battery pack discharge the external electric device.
  • the external electric device may be a hand-held electric tool, or a garden electric tool, such as a vehicle-type lawn mower, a hair dryer, etc., which is not limited here.
  • the external power supply device may be an adapter.
  • the communication interface 154 is used to communicate with the circuit board unit 153.
  • the power interface 155 can be electrically connected to the circuit board unit 153 for inputting or outputting power.
  • the power interface 155 includes a power positive terminal 1551 and a power negative terminal 1552.
  • a nickel sheet is used as the power positive terminal 1551 and the power negative terminal 1552 to input and output direct current.
  • the standard voltage range of the electric energy interface 155 is 0V to 200V, which can realize continuous adjustment of the voltage from 0V to 200V and supports any larger source output power of 6000W.
  • the communication interface 154 is provided with a detection terminal 1541, and the detection terminal 1541 is used to detect the signal state of the interface component 152.
  • the interface component 152 has a charging state, a discharging state, and an empty state.
  • the detection terminal 1541 detects a high level, the external power supply device is equivalent to a pull-up resistor, and the power interface is determined to be the power supply side, and the battery pack is equivalent to a pull-down resistor, which is determined to be the power receiving side.
  • 1541 determines that the interface component 152 is in a charging state, and sends a charging control signal to the circuit board unit 153 to allow the external power supply device to charge the battery pack.
  • the detection terminal 1541 detects a low level, the external electrical device is equivalent to a pull-down resistor, and the power interface 155 is determined to be the power receiving side, and the battery pack is equivalent to a pull-up resistor, which is determined to be the power supply side , The detection terminal 1541 determines that the interface component is in a discharging state, and sends a discharge control signal to the circuit board to discharge the battery pack for the external electric device.
  • the circuit board unit 153 is connected in series between the adapting interface 151 and the communication interface 154.
  • the circuit board unit 153 is provided with a main controller 1531, a bidirectional power supply controller 1532 and a voltage conversion circuit 1533.
  • the circuit board unit 153 may be one circuit board or multiple circuit boards integrated, and it is not limited herein.
  • the detection terminal 1541 detects that the interface component 152 is in a charging state, and sends a charging control signal to the main controller 1531.
  • the main controller 1531 also receives the battery pack communication signal of related information from the battery pack, and outputs a control signal to the bidirectional power supply controller 1532.
  • the bidirectional power supply controller 1532 receives a control signal from the main controller 1531 and outputs a power supply control signal to the voltage conversion circuit 1533 to control the current direction of the voltage conversion circuit 1533 and control the voltage conversion circuit 1533 to adjust the electrical energy of the external power supply device
  • the external power supply device is used to form the power output of the adapted battery pack to charge the battery pack.
  • the detection terminal 1541 detects that the interface component 152 is in a discharge state, and sends a discharge control signal to the main controller 1531.
  • the main controller 1531 also receives the battery pack communication signal of related information from the battery pack, and outputs a control signal to the bidirectional power supply controller 1532.
  • the bidirectional power supply controller 1532 receives the control signal and controls the current direction of the voltage conversion circuit 1533.
  • the voltage conversion circuit 1533 matches the discharge voltage of the battery pack with the charging voltage required by the external electrical device, and charges the external electrical device.
  • the communication interface 154 and the power interface 155 can also be integrated into one interface, which is not limited here.
  • the adapter greatly shortens the charging time of the battery pack, and can be applied to the common 36V, 48V, 54V battery packs in the field of power tools.
  • the configuration of the communication interface makes the communication transmission more stable.
  • the battery pack can be used to supply power to power tools that do not match the rated voltage.
  • the 48V battery pack can be used to power 24V power tools or the 24V battery pack can be used to power 18V power tools.
  • the use scene of the battery pack is convenient for users.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种适配器及电池包与适配器的组合,所述电池包与适配器的组合包括:电池包,包括一个至少能与电动工具可拆卸连接的电池包接口;第一适配器,包括:插头;交流电输入接口,与所述插头电性连接;交直流转换电路,与所述交流电输入接口电性连接;直流电输出接口,与所述交直流转换电路电性连接;第二适配器,能够与所述第一适配器及所述电池包电性连接;所述第二适配器包括:适配接口,设置为与所述电池包接口可拆卸式连接;直流接口,设置为与所述直流电输出接口可拆卸的电性连接;电压转换电路,串联在所述直流接口和所述适配接口之间;双向控制模块,连接在所述直流接口与所述适配接口之间,且连接所述电压转换电路。

Description

适配器及电池包与适配器的组合
本申请要求申请日为2019年6月14日、申请号为201910518043.1,及申请日为2019年10月30日、申请号为201911047627.1的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种适配器及电池包与适配器的组合,例如涉及一种应用在电动工具领域的适配器及电池包与适配器的组合。
背景技术
随着电动工具的发展,便携式电动工具已经越来越多的应用在不同的领域,例如工业、建筑业、园林机械行业等。人们对便携式电动工具的要求也越来越高。
相关技术中多采用电池包为电动工具供电。该电池包只能适配电动工具,而无法适配外部电子设备供电,限制了电池包的使用场景。
另外,相关技术中的电动工具需要配备有专用充电器对电池包进行充电,且相关技术中的充电器的结构较复杂,制造成本较高,且体积较大,不方便携带。
发明内容
本申请提供了一种成本较低且方便携带并能拓展电动工具的电池包使用场景的适配器及电池包与适配器的组合。
一实施例提供一种电池包与适配器的组合,包括:电池包,包括一个至少能与电动工具可拆卸连接的电池包接口;第一适配器,包括:插头,用于接入交流电;交流电输入接口,与所述插头电性连接;交直流转换电路,与所述交流电输入接口电性连接以将交流电转换为直流电;直流电输出接口,与所述交流直流转换电路电性连接以输出所述直流电;第二适配器,能够与所述第一适配器及所述电池包电性连接,并能以大于10W的充电功率为所述电池包充电,所述第二适配器包括:适配接口,设置为与所述电池包接口可拆卸式连接;直流接口,设置为与所述直流电输出接口可拆卸的电性连接;电压转换电路,串联 在所述直流接口和所述适配接口之间,用于将所述直流电转换为适配所述电池包的电能输出;双向控制模块,连接在所述直流接口与所述适配接口之间,且连接所述电压转换电路,所述控制模块被配置为能根据所述直流接口和所述适配接口的信号状态控制所述电压转换电路的电流方向以及输出电压。
一实施例提供一种适配器,包括:适配接口,用于连接能与电动工具可拆卸连接的电池包;直流接口,设置为选择性连接外部用电装置和外部供电装置,所述直流接口的输出或输入功率大于10W;所述适配器还包括:电压转换电路、通信模块和双向控制模块;所述电压转换电路串联在所述直流接口和所述适配接口之间,用于选择性将所述外部供电装置电转换为适配所述电池包的电能输出和将所述电池包的电能转换为适配所述外部用电装置的电能输出;所述通信模块,设置为能够根据所述直流接口的信号状态发送控制信号给所述控制模块;所述控制模块连接在所述直流接口与所述适配接口之间,且连接所述电压转换电路,所述控制模块被配置为能根据所述直流接口和所述适配接口的信号状态控制所述电压转换电路的电流方向以及输出电压,以选择性使所述外部供电装置为所述电池包充电和使所述电池包对外部用电装置进行放电。
一实施例提供一种电池包与适配器的组合,包括:电池包,包括一个至少能与电动工具可拆卸连接的电池包接口;第一适配器,包括:第一插头,用于接入交流电;第一交流电输入接口,与所述第一插头电性连接;第一交直流转换电路,与所述第一交流电输入接口电性连接以将交流电转换为直流电;第一直流电输出接口,与所述第一交直流转换电路电性连接以输出所述直流电;第二适配器,包括:第二插头,用于接入交流电;第二交流电输入接口,与所述第二插头电性连接;
第二交直流转换电路,与所述第二交流电输入接口电性连接以将交流电转换为直流电;第二直流电输出接口,与所述第二交流直流转换电路电性连接以输出所述直流电;第三适配器,能够与所述第一适配器、第二适配器及所述电池包电性连接,所述第三适配器包括:适配接口,设置为与所述电池包接口可拆卸式连接;第一直流接口,设置为与所述第一直流电输出接口可拆卸的电性连接,所述第一直流接口的输出或输入功率大于10W;第二直流接口,设置为与所述第二直流电输出接口可拆卸的电性连接,所述第一直流接口的输出或输入功率大于10W;第一电压转换电路,串联在所述第一直流接口和所述适配接口之间,用于将所述第一直流电输出接口的直流电转换为适配所述电池包的电能输 出;第二电压转换电路,串联在所述第一直流接口和所述适配接口之间,用于将所述第二直流电输出接口的直流电转换为适配所述电池包的电能输出;双向控制模块,连接在所述第一直流接口、所述第二直流接口与所述适配接口之间,且连接所述第一电压转换电路和所述第二电压转换电路,所述控制模块被配置为根据所述第一直流接口和所述适配接口的信号状态控制所述第一电压转换电路的电流方向以及输出电压;所述双向控制模块还被配置为根据所述第二直流接口和所述适配接口的信号状态控制所述第二电压转换电路的电流方向以及输出电压;在所述第一交流电输入接口和所述第二交流电输入接口均接入交流电时,通过所述第一直流接口和所述第二直流接口同时为所述电池包充电;所述第一直流接口的充电功率的取值范围为大于10W;所述第二直流接口的充电功率的取值范围为大于10W。
一实施例提供一种适配器,包括:适配接口,用于连接能与电动工具可拆卸连接的电池包;第一直流接口,设置为能够与外部供电装置电性连接,所述直流接口的输入功率大于10W;且所述第一直流接口的输入电压范围为5V-20V;第二直流接口,能够与外部用电装置电性连接以将所述外部供电装置或所述电池包的电能提供给所述外部用电装置;第一电压转换电路,串联在所述第一直流接口和所述适配接口之间,用于将所述外部供电装置的电能转换为适配所述电池包的电能输出;双向控制模块,连接在所述第一直流接口与所述适配接口之间,且连接所述第一电压转换电路,所述控制模块被配置为能根据所述第一直流接口和所述适配接口的信号状态控制所述电压转换电路的电流方向以及输出电压;当所述第一直流接口接入外部供电装置,且所述第二直流接口接入外部用电装置时,所述外部供电装置能够通过所述第一直流接口为电池包充电,所述外部供电装置能通过所述第二直流接口为外部用电装置充电。
一实施例提供一种适配器,包括:适配接口,用于连接能与电动工具可拆卸连接的电池包;第一直流接口,能够与第一外部供电装置电性连接,所述第一直流接口的输入功率大于10W;所述第一直流接口的输入电压的取值范围为:5V-20V;第二直流接口,能够与第二外部供电装置电性连接,所述第二直流接口的输入功率大于10W;所述第二直流接口的输入电压的取值范围为:5V-20V;第一电压转换电路,串联在所述第一直流接口和所述适配接口之间,用于将所述第一直流电输出接口的直流电转换为适配所述电池包的电能输出;第二电压转换电路,串联在所述第一直流接口和所述适配接口之间,用于将所述第二直 流电输出接口的直流电转换为适配所述电池包的电能输出;双向控制模块,连接在所述第一直流接口或所述第二直流接口与所述适配接口之间,且连接所述第一电压转换电路和所述第二电压转换电路,所述控制模块被配置为根据所述第一直流接口和所述适配接口的信号状态控制所述第一电压转换电路的电流方向以及输出电压;所述控制模块还被配置为根据所述第二直流接口和所述适配接口的信号状态控制所述第二电压转换电路的电流方向以及输出电压;所述第一直流接口和所述第二直流接口均接入外部供电装置时,通过所述第一直流接口和所述第二直流接口同时为电池包充电。
一实施例提供一种电池包与适配器的组合,包括:电池包,包括一个至少能与电动工具可拆卸连接的电池包接口;适配器,能够与所述电池包电性连接,包括:插头,用于接入交流电;适配接口,与所述电池包接口可拆卸式连接;交直流转换电路,用于将所述交流电变为能为所述电池包充电的直流电;直流接口,设置为与外部用电装置可拆卸的电性连接,所述直流接口的输出功率大于10W;交流电输出接口,用于输出交流电;第一电压转换电路串联在所述适配接口和所述交流电输出接口之间,用于使所述电池包输出的直流电转换为交流电输出;
第二电压转换电路,串联在所述直流接口和所述适配接口之间,用于将所述电池包的电能转换为适配所述外部用电装置的电能输出;双向控制模块,连接在所述直流接口与所述适配接口之间,且连接所述第二电压转换电路,所述控制模块被配置为能根据所述直流接口和所述适配接口的信号状态控制所述电压转换电路的电流方向以及输出电压。
一实施例提供一种电池包与适配器的组合,包括:电池包,包括一个至少能与电动工具可拆卸连接的电池包接口;适配器,包括:适配接口,用于连接能与电动工具可拆卸连接的电池包;交流电输出接口,用于输出交流电;第一电压转换电路串联在所述适配接口和所述交流电接口之间,用于使所述电池包输出的直流电转换为交流电输出;
直流接口,用于连接外部用电装置或外部供电装置;所述直流接口的输出或输入功率大于10W;所述直流接口的输入或输出电压的取值范围为:5V-20V;第二电压转换电路,串联在所述直流接口和所述适配接口之间,用于将所述外部供电装置电转换为适配所述电池包的电能输出或将所述电池包的电能转换为是适配所述外部用电装置的电能输出;双向控制模块,连接在直流接口与所述 适配接口之间,且连接所述第二电压转换电路,所述控制模块被配置为能根据所述直流接口和所述适配接口的信号状态控制所述电压转换电路的电流方向以及输出电压。
所述适配器及电池包与适配器的组合结构简单,成本较低且方便携带,并且拓展了电动工具、电池包、适配器和电源装置的使用场景,方便用户使用。
附图说明
图1是一实施例提供的电池包与适配器的组合的结构示意图;
图2是图1所示的电池包与适配器的组合中的电池包的结构示意图;
图3是图1所示的电池包与适配器的组合中的适配器的结构示意图;
图4是图2所示的电池包和电动工具组合使用时的示意图;
图5是图1所示的电池包与适配器的组合的一种实施例;
图6是图5所示的适配器的一种电路框图;
图7是图3所示的适配器的一种电路框图;
图8是图3所示的适配器的一种电路框图;
图9是图3所示的适配器的一种电路框图;
图10是图3所示的适配器的一种电路框图;
图11是图3所示的适配器的一种电路框图;
图12是图1所示的电池包与适配器的组合的另一种实施例的结构示意图;
图13是图12所示的适配器的一种电路框图;
图14是图3所示的适配器的一种电路框图;
图15是一实施例提供的电池包与适配器的组合的结构示意图;
图16是图15所示的电池包与适配器的组合中的适配器的一种电路框图;
图17是一实施例提供的电池包与适配器的组合的结构示意图;
图18是图17所示的电池包与适配器的组合中的适配器的结构示意图;
图19是图18所示的适配器的一种电路框图;
图20是一实施例的电池包的电路框图;
图21是一实施例的适配器的电路框图。
具体实施方式
如图1至图4所示,电池包与适配器的组合10,包括电池包11、第二适配器 12和第一适配器13。其中,电池包11用于为电动工具20供电(如图4所示),第二适配器12可使电池包11输出电能,第三适配器13可以提供电能为电池包11充电。在一些实施例中,电池包11的标称电压范围为:10V-60V,电池包20的电量大于等于100Wh小于等于2000Wh。在一些实施例中,电池包11的标称电压范围也可以为:18V-24V,24V-40V,40V-60V或60V-120V。
虽然本实施例涉及到手持式电动工具,但是应该理解本申请不限于所公开的实施例,而是可应用于其他类型的电动工具,包括但不限于园林电动工具,例如车辆型割草机、吹风机等。
参考图2所示,电池包11包括:用于存储电能的电池111和容纳电池的第一壳体114,电池包端子,包括电池包的正极端子112以及电池包的负极端子113。电池包11通过电池包的正极端子112和电池包的负极端子113输出电能。在第一壳体上形成第一结合部115。第一结合部115能够与电动工具20的结合部可拆卸式连接,以使电池包11能为电动工具供电。第一结合部115也能使电池包11结合至适配器12时,电池包11与适配器12电性连接。
参考图3所示,第二适配器12包括:第二壳体122和接口124。第二壳体122形成有适配接口121,适配接口121包括电连接端子121和第二结合部123。其中,第二结合部123可以与电池包的第一结合部115相结合,电池包的第一结合部115结合至第二结合部123时,电源的正极端子112、负极端子113和电连接端子121连接以接入或输出电能。在一些实施例中,第二结合部123形成插槽,电连接端子121设置在插槽中,在另一些实施例中,第一结合部形成有导向槽,第二结合部设置有导轨,与导向槽配合使电池包可沿滑轨滑动的连接到适配器。在第二壳体上还配置有可以充放电的接口124。这里,第二适配器12的接口124可选择性连接外部用电装置或外部供电装置,如此可以选择性地使所述外部供电装置为所述电池包充电或使所述电池包对所述外部用电装置进行放电,电路系统架构可参考图6至图14。
在一些实施例中,参考图5所示,第二适配器12与第一适配器13电性连接。其中,第一适配器13包括电源插头131、交流电输入接口,交直流转换电路132和直流电输出接口133。在一实施例中,电源插头131用于接入交流电,在一些实施例中,交流电插头插入交流电插座以接入交流市电。插头接入的交流电的取值范围为110V-130V或210V-230V。交流电输入接口与电源插头131电性连接以接入交流电;交流直流转换电路132与交流电输入接口电性连接以将交流电转换 为直流电;直流电输出接口133与交直流转换电路132电性连接以输出直流电。第二适配器的接口与直流电输出接口电性连接以接入直流电以为电池包供电。在本实施例中,第一适配器13还能够直接给笔记本电脑、手机或移动电源等电子终端供电。示例性地,第一适配器13是一种外部供电装置。
参考图6所示的作为图5所示的实施方式的适配器的电路框图。第一适配器13包括交流电输入接口、交直流转换电路和直流店输出接口。其中,交流电输入接口连接交流电以接入交流电;交直流转换电路用于将接入的交流电转换为直流电;直流电输出接口能够有与第二适配12电性连接以输出直流电。
第二适配器12包括第一直流接口133,适配接口41,电路板44。其中,适配接口41用于电性连接电池包11。第一直流接口133与直流电输出接口电性连接。
在一实施例中,第一直流接口具有充电状态和放电状态,第一直流接口处于充电状态时接收来自所述外部供电装置,如第一适配器13的电能以为电池包充电,第一直流接口133处于放电状态时还能够将所述电池包的电能提供给所述外部用电装置(参考图7所示)。
第一直流接口133,所述第一直流接口133至少包括两个电能端子分别为第一电能端子421如Vbus1和第二电能端子422如Vbus2,还有检测端子423如CC1引脚、CC2引脚。结合图3所示的接口124,接口124包括插槽、容纳在插槽内的接插舌,在接插舌的上表面上设置有第一电能端子、第二电能端子以及检测端子,以对应于第一电能端子421如Vbus1、第二电能端子422如Vbus2,检测端子423如CC1引脚和/或CC2引脚,第一电能端子421和第二电能端子422用于接入直流电的正极到电池包11的正极端子112,这样,至少两个电能端子的电路设计能承担更大的功率传输,大大提升第一直流接口133的功率传输能力,使得直流接口133的输出功率或输入功率大于10W,可以大大缩短充电时间或放电时间,例如对于一个2.5Ah/24V电池包而言,采用此电路架构进行充电或放电,仅需要6分钟,但相关技术中电动工具匹配的充电电路架构或放电电路架构往往需要6-7个小时左右。
第一电能端子421和第二电能端子422用于输入或输出电能,检测端子423用于检测直流接口的信号状态,第一直流接口133具有充电状态、放电状态和空置状态。当第一直流接口133连接至第一适配器13时,检测端子423检测到直流接口133处于充电状态,发送充电控制信号至电路板,以使第一适配器13为电池包充电。当第一直流接口133连接至外部用电装置401时,检测端子423检测到直流 接口133处于放电状态,发送放电控制信号至电路板44,以使电池包为外部用电装置401放电。
电路板单元44串联在适配接口41和第一直流接口133之间。在一实施例中,电路板单元44上设置有主控制器441,通信模块442,双向供电控制器443和电压转换电路444。电路板单元44可以为一个电路板或多个电路板集成,在此并非有所限制。
第一直流接口133连接至第一适配器12时,检测端子423检测到第一直流接口133处于充电状态,且发送充电控制信号至电压转换电路444,在一实施例中,检测端子423检测到第一直流接口42处于充电状态且发送充电控制信号至通信模块442。
通信模块442,接收来自检测端子423的充电控制信号,并将充电控制信号传输给主控制器441。主控制器441接收来自电池包的相关信息的电池包通信信号,传递给通信模块442。通信模块442接收来自控制器的电池包的相关信息的通信信号,并调整外部供电装置402的电压、电流和功率。
控制器441还接收来自通信模块442的充电控制信号,输出控制信号至双向供电控制器443;双向供电控制器443,接收来自控制器441的控制信号输出供电控制信号给所述电压转换电路以控制所述电压转换电路444的电流方向且控制电压转换电路444调整所述外部供电装置401电能以形成适配电池包的电能输出使所述外部供电装置401为电池包充电。在一实施例中,双向供电控制器443,接收来自控制器441的控制信号输出参考电压给电压转换电路444,控制电压转换电路444的电流方向。例如,第一适配器13接入第一直流接口42时,双向供电控制器CS引脚输出正电压给电压转换电路,使外部供电装置402给电池包充电。当外部用电装置401接入第一直流接口时,双向供电控制器的CS引脚输出负电压给电压转换电路,使电池包给外部用电装置401进行放电。电压转换电路444,使第一直流接口42的电压和电池包11电压相适配。
在一些实施例中,直流接口133的检测端子423包括CC1引脚和/或CC2引脚,CC1引脚和/或CC2引脚为控制引脚,产生一个通信信号。第一电能端子421是Vbus1引脚,第二电能端子422是Vbus2引脚。其中,CC1和/或CC2引脚用来判断接入第一直流接口133的设备是外部供电装置还是外部用电装置,并且CC1和/或CC2引脚状态的改变由通信模块来实现检测。
在本申请的另一个实施例中,结合图3所示的接口124,例如在接插舌的上 表面上设置有CC1引脚,而在接插舌与上表面相对的下表面上设置有CC2引脚,当外部供电装置或外部用电装置对应接口插入至如图3所示的接口124时,CC1引脚和CC2共同产生一个通信信号,例如外部供电装置上对应接口以正向插入至如图3所示的接口124,而外部用电装置对应接口以反方向插入至如图3所示的接口124,在接插舌上下表面上的CC1引脚和CC2引脚共同产生一个通信信号。
当CC1引脚为空接状态且CC2引脚为空接状态,此时没有设备接入。在第一适配器13连接到第一直流接口133时,CC1和/或CC2引脚检测到高电平,第一适配器13相当于上拉电阻,确定第一直流接口133为供电侧,而电池包11相当于下拉电阻,确定为受电侧,主控制器441获取电池包当前的充电信息,通过控制器441上SDA引脚和SCL引脚传输给第一通信模块442,第一通信模块442调整外部供电装置的电压、电流和功率,外部供电装置通过电压转换模块444匹配电池包的电压给电池包充电。第一直流接口133的标准电压范围为5V到20V,可以实现5V到20V的电压连续可调且支持10W到100W的任何较大源输出功率。
参考图7所示,在第一直流接口133连接外部用电装置401时,CC1和/或CC2引脚检测到低电平,外部用电装置401相当于下拉电阻,第一直流接口133确定为受电侧,而电池包相当于上拉电阻,确定为供电侧,第一通信模块442检测CC1和/或CC2引脚状态的改变,通过SCL引脚和SDA引脚传输信号给控制器441,控制器441输出控制信号至双向供电控制器443,双向供电控制器接收控制信号,控制电压转换电路444的电流方向,电压转换电路444将电池包的放电电压与外部用电装置401所需的充电电压进行匹配,给外部用电装置401进行充电。
以这种方式,配备了如图5所示的电池包与适配器的组合,可以利用外部现场可用的智能手机或者笔记本电脑等的外部供电装置通过第一直流接口为电池包进行大功率充电,也可以通过适配器用于输出存储在电池包中的电能对外部用电设备进行放电,例如智能手机或者笔记本电脑等。这样,大大方便用户使用。由于适配器中采用了双向供电控制器的设计电路架构,通过同一个控制器,可实现充电和放电控制,减少了其他运放电路的引入,简化了电路结构,且适配器可以实现大于10W的大功率电。
在一些实施例中,可以将控制器441,第一通信模块442和双向供电控制器443集成为一个系统级芯片(SOC)。
参考图8所示作为实施方式之一的适配器50。与图6和图7所示实施例不同的是该适配器50包括第一直流接口52和第二直流接口53。适配器50还包括放电电 路55和充电电路56。
第一直流接口52是可以实现大功率大于10W充放电的接口,和图6所示实施例中适配器12的第一直流接口133为同一类接口。
第二直流接口53用于连接外部用电装置501,以将电能提供给外部用电装置501。第二直流接口53是一种向外部设备供电,工作功率为5V/2A的接口。
放电电路55,用于将适配接口51输出的电能转换为与第二接口53匹配的电压输出;放电电路55设置在电路板54上,串联在适配接口51和第二直流接口53之间。其中,放电电路55包括第二通信模块551和第二电压转换电路552。
充电电路56用于转换第一接口52接入的外部供电装置502的电能以通过外部供电装置502为电池包充电,充电电路56串联在适配接口51和第一直流接口52之间。
在一些实施例中,第二直流接口53内设有第二通信端子58例如DM2引脚。第二通信端子58用于检测第二直流接口53的接口状态。第二直流接口53的接口状态包括空置状态和放电状态。当外部用电装置接入第二直流接口时,第二通信端子58检测到放电状态,发送通信信号到第二通信模块551。
第二通信模块551接收来自第二直流接口53的状态信息的通信信号,并将此通信信号传递给第二电压转换电路552。
第二电压转换电路552接收来自第二通信模块551的第二直流接口的状态信号,使电池包电压转换为适配外部用电装置501的电压。
充电电路56包括第一通信模块561,控制器562,双向供电控制器563,第一电压转换电路564。
第一电压转换电路564串联在第一直流接口52和适配接口51之间,用于将外部供电装置502的电能转换为适配电池包的电能输出。第一电压转换电路564转换第一直流接口52的电压适配于电池包电压。
第一直流接口52连接至外部供电设备502时,检测端子57检测到高电平,判断第一直流接口处于充电状态,发送充电控制信号至第一通信模块561。第一通信模块561接收来自检测端子57的充电控制信号,并将充电控制信号传递给主控制器562。主控制器562设置为能够接收来自电池包的关于电池包相关信息的通信信号,并传递电池包信息的通信信号到第一通信模块561。第一通信模块561接收来自主控制器562的电池包的相关信息的通信信号,并调整外部供电装置502的电压、电流和功率。
主控制器562还被设置为接收来自第一通信模块561的充电控制信号,输出控制信号至双向供电控制器563;双向供电控制器563能够根据来自主控制器562的控制信号输出供电控制信号给第一电压转换电路564,以控制第一电压转换电路564的电流方向且控制电压转换电路564调整外部供电装置502的电能以适配电池包的电能输出使外部供电装置502为电池包充电。在一些实施例中,所述双向供电控制器563接收来自主控制器562的控制信号,输出参考电压给第一电压转换电路564,控制第一电压转换电路564的电流方向。例如,外部供电装置502接入第一接口52时,双向供电控制器563的CS引脚输出正电压给电压转换电路,使外部供电装置502给电池包充电。
在一些实施例中,第一直流接口52至少包括两个电能端子,所述电能端子与外部供电装置502的正极相连,用于输入电能。第一直流接口52内还设置有第一检测端子57如CC1、CC2引脚,检测第一直流接口52的信号状态,第二直流接口53内设置有第二通信端子58如DM2引脚,通过第二通信端子58如DM2引脚获得第二直流接口的接口状态。由于第二通信端子DM2引脚与第一直流接口52第一检测端子CC1、CC2引脚不同,第二通信端子DM2引脚不能选择性具有充电状态和放电状态,默认为放电状态,或者说第二直流接口53无额外的检测端子或导电端子供选择充电状态和放电状态。当外部用电装置501插入第二直流接口53,外部供电装置502插入第一直流接口52时,第二检测端子58检测到用电装置接入,第一检测端子57检测到高电平,判断第一直流接口52处于充电状态,第一直流接口52确定为供电侧。控制器562获取电池包当前的充电信息,通过控制器562上SDA引脚和SCL引脚传输给第一通信模块561,第一通信模块561调整外部供电装置502的电压、电流和功率,外部供电装置502通过第一电压转换电路564匹配电池包和/或外部用电装置501的电压给电池包和/或外部用电装置501充电。例如外部供电装置以20V/3A给电池包提供40W充电功率,同时提供给第一用电装置20W充电功率。
以这种方式,第一直流接口接入外部供电装置,第二直流接口接入外部用电装置时,外部供电装置通过第一直流接口为电池包充电,同时,外部供电装置也可以通过第二直流接口为外部用电装置放电。而且,通过适配器,可以同时给外部用电装置和电池包充电。充电电路和放电电路分为2套电路,电路之间可以减少干扰,每个接口可以独立工作。
如图9所示的适配器50,在一些实施例中,当第一用电装置601插入至第二 直流接口53,第二用电装置602也插入至第一直流接口52时,第一检测端子57确定第一直流接口52处于放电状态,主控制器562通过第一通信模块561获取第一直流接口52当前的充电信息,电池包分别通过第二电压转换电路552和第一电压转换电路564匹配第一用电装置501以及第二用电装置502的电压,电池包同时输出电能给第一用电装置501和第二用电装置502供电。
在一实施例中,当第二用电装置插入第一直流接口52,检测端子57检测到低电平判断第一直流接口52处于放电状态时,发送放电控制信号至第一通信模块661。
第一通信模块561设置为能够接收来自检测端子57的放电控制信号,并将放电控制信号传输给主控制器562;第一通信模块561还别配置为能够接收来自外部用电装置502的充电信息的通信信号,并将充电信息的通信信号传输给主控制器562。
主控制器562设置为能够接收放电控制信号和所述充电信息的通信信号并输出控制信号至所述双向供电控制器563;
双向供电控制器563设置为能够根据接收来自所述主控制器562的控制信号输出供电控制信号给第一电压转换电路564以控制第一电压转换电路564的电流方向且控制第一电压转换电路564调整电压值使所述电池包为所述外部用电装置502充电。
作为实施方式的一种,可以将控制器562,第一通信模块561,双向供电控制器563集成为一个系统级芯片(SOC);也可以将主控制器562和双向供电控制器563集成为一个控制模块。
以这种方式,第一直流接口52接入外部用电装置,第二直流接口53接入外部用电装置时,这样,电池包通过适配器,可以同时给不同的外部用电装置充电,拓展了电池包的使用场景,方便用户使用。同时,两个接口的放电电路分为2套电路,电路之间可以减少干扰,每个接口可以独立工作。
参考图10所示,与图8不同之处在于,图10所示实施例中适配器70配置有第一直流接口72、第二直流接口73和第三直流接口74。第三直流接口74和第一直流接口72与图6所示实施例中第一直流接口133为同一类接口。第一直流接口72设置有检测端子721,第三直流接口74设置有检测端子741。在一些实施例中,第一直流接口72和第三直流接口74都至少包括两个电能端子,所述电能端子与外部供电装置的正极相连,用于输入电能。
适配器还包括:第一放电电路76,第一充电电路77和第二充电电路78。
第一直流接口72和第三直流接口74是可以实现大功率(大于10W)电能输入输出的接口。
第二直流接口73用于连接第一外部用电装置701,以将电池包的电能提供给第一外部用电装701。第二直流接口73是一种向外部设备供电,工作功率为5V/2A的接口。
第一放电电路76,用于将电池包或外部供电装置的电能转换为与第二直流接口73匹配的电能输出。在一些实施例中,第一放电电路76设置在电路板75上,串联在适配接口71和第二直流接口73之间。
第一充电电路77串联在适配接口71和第一直流接口72之间,用于转换第一直流接口72接入的第一外部供电装置702的电能以通过第一外部供电装置702为电池包和第一外部用电装置701充电。
第二充电电路78用于转换第三直流接口74接入的第二外部供电装置703的电能以通过外部供电装置703为电池包和第一外部用电装置701充电,第二充电电路串联在适配接口71和第三直流接口73之间。
其中,第一放电电路76包括第二通信模块761和第二电压转换电路762。第二通信模块761连接第二电压转换电路762,第二电压转换电路762连接适配接口71,第二电压转换电路762使接入第二电压转换电路的电压转换为匹配第一外部用电装置701的电压给其充电。
第一充电电路77包括第一通信模块771,主控制器772,第一双向供电控制器773,第一电压转换电路774。
第一直流接口72连接至第一外部供电设备702时,检测端子检测到高电平,判断第一直流接口72处于充电状态,发送充电控制信号至第一通信模块771。第一通信模块7712,接收来自检测端子721的充电控制信号,并将充电控制信号输出给主控制器772。主控制器772设置为能够接收来自电池包的关于电池包信息的通信信号,并传递电池包信息的通信信号到第一通信模块771。第一通信模块771接收来自主控制器772的电池包的相关信息的通信信号,并调整第一外部供电装置702的电压、电流和功率。
主控制器772还被设置为接收来自第一通信模块771的充电控制信号,输出控制信号至双向供电控制器773;第一双向供电控制器773设置为能够根据来自主控制器772的控制信号输出供电控制信号给第一电压转化电路774以控制第一 电压转换电路774的电流方向且控制第一电压转换电路774调整第一外部供电装置702的电能以适配所述电池包的电能输出使所述外部供电装置702为所述电池包充电。在一些实施例中,所述双向供电控制器773接收来自主控制器772的控制信号,输出参考电压给第一电压转换电路774,控制第一电压转换电路774的电流方向。例如,外部供电装置702接入第一直流接口72时,双向供电控制器CS引脚输出正电压给电压转换电路,使外部供电装置702给电池包充电。当外部用电装置接入第一直流接口72时,双向供电控制器的CS引脚输出负电压给电压转换电路,使电池包给外部用电装置充电。
第二充电电路78包括第三通信模块781,第二双向供电控制器782,第三电压转换电路783。第二充电电路与第一充电电路共用主控制器772,以实现通过控制器772控制第三电压转换电路783调整第二外部供电装置703的电能以适配电池包的电能输出,从而使第二外部供电装置703为所述电池包充电。
以这种方式,多个外部供电装置可以同时通过第一直流接口72和第三直流接口74给电池包充电,充电效率更高,速度更快。可以适用于标称电压范围为:40V-120V的电池包。
在一些实施方式中,第二直流接口73或者第三直流接口74或者第二直流接口73和第三直流接口74可以插入外部用电装置,电池包可以对所接入的用电装置进行充电。
参考图11所示,作为实施例之一的适配器80,与图10不同之处在于,图10所示实施例中适配器80的第三直流接口84与第一直流接口82共用双向供电控制器873和第一电压转换电路874。且第一直流接口82的正端子821和第三直流接口的正端子841串联连接于第一电压转换电路874,第一直流接口82的负端子822和第三直流接口的负端子842串联连接于第二电压转换电路874。第一通信模块871与主控制器872连接,控制器872通过第一通信模块871获取当前的第一直流接口82信号状态。第三通信模块881也与控制器872连接,第三通信模块881获取第三直流接口84信号状态,将信号传递给控制器872,控制器872获取当前电池包的充电信息,传递控制信号给双向供电控制器873,控制第一电压转换电路874转换第一直流接口和第三直流接口的电压匹配电池包的电压和/或第一外部用电装置的电压,使第一外部供电装置801和第二外部供电装置802给电池包和/或第一外部用电装置801供电。
在一些实施例中,第一直流接口82和第三直流接口84也可以连接外部用电 装置,电池包同时给第一直流接口82,第二直流接口83和第三直流接口84供电。在一实施例中,第一直流接口82和第三直流接口84只能同时工作在充电或者放电模式。
在一些实施例中,参考图12所示的一种电池包与适配器的组合,包括:电池包31、第一适配器301、第二适配器32以及外部用电装置302。
与图5所示的电池包与适配器的组合的不同之处在于该第二适配器32还包括一个第二直流接口322,其中,第一直流接口321和第二直流接口322的输入输出功率大于10W。第一直流接口321可以与外部供电装置301电性连接以接入电能,外部供电装置301可以为笔记本电源适配器。第二直流接口322与外部用电装置302连接以将来自外部供电装置301的直流电或者电池包的电能同时提供给外部用电装置。外部用电装置302可以为手机、平板电脑、穿戴装备等用电装置,在此并没有限制。
参考图13所示的作为图12所示的实施方式的适配器的电路框图。第二适配器还包括:第三直流接口93,第三直流接口93的输出功率为5V/2A。与图10所示实施例不同之处在于,第三直流接口93的正端子931与第二直流接口322的正端子921串联连接于第一电压转换电路974,第三直流接口93的负端子932与第二直流接口322的负端子922串联连接于第一电压转换电路974。第一直流接口321和第二直流接口322均包括检测端子即CC1和CC2引脚;而第三直流接口93具有通信端子DM1或DM2引脚。在一个实施例中,当第二直流接口322工作在放电状态,此时第二直流接口322的工作功率和第三直流接口93的工作功率相同为5V/2A。当第二直流接口322工作在充电模式时,第三直流接口93不能工作。因为第一直流接口321具有独立的控制电路,因此第一直流接口321可独立工作,既可连接外部供电装置充电,也可连接外部用电装置放电。
在一些实施例中,第一直流接口321和第二直流接口322分别至少包括两个电能正极端子,其中,第一直流接口321的电能正极端子与外部供电装置301的正极连接;第二直流接口322的电能正极端子与外部用电装置302的正极连接。
以这种方式,配备了如图12所示的电池包与适配器的组合,可以通过第二直流接口放电为外部用电装置放电。例如,适配器可以用于输出存储在电池包中的电能,用于对智能手机或者笔记本电脑等的外部用电装置进行放电,大大扩展了电池包的实际应用场景,不再局限于电池包仅对电动工具的放电或供电的应用场景。同时,也可以利用外部现场可用的智能手机或者笔记本电脑等的 外部供电装置通过第一直流接口为电池包进行大功率充电,大大方便用户使用。由于适配器中采用了双向供电控制器的设计电路架构,通过同一个控制器,可实现上述充电和放电控制,减少了其他运放电路的引入,简化了电路结构,且适配器可以实现大功率大于10W的充放电。
参考图14所示,作为实施例之一的适配器90',与图13所示实施例不同之处在于,第三直流接口94'和第一直流接口92'共用双向供电控制器973'和第一电压转换电路974'。第一直流接口92'、第二直流接口93'和第三直流接口94'的正端子串联并连接于第一电压转换电路974',第一直流接口92'、第二直流接口93'和第三直流接口94'的负端子也串联并连接于第一电压转换电路974'。因此,第一直流接口92',第二直流接口93'和第三直流接口94'可以同时工作在放电模式,工作功率为5V/2A。当第一直流接口92'和第三直流接口94'工作在充电模式时,第一直流接口92'不能工作。
作为实施例之一的电池包与适配器的组合200,如图15所示,电池包与适配器的组合200包括:适配器210和两个电池包220,230。在本实施例中,电池包与适配器的组合200为一种便携式电能系统。
其中,电池包220或电池包230可以为相同的电池包,也可是不相同的电池包,它们均能为一个直流的电动工具供电。
示例性地,适配器210能包括壳体211,该壳体211能形成与电池包220的结合部相适配的适配接口以使电池包能够可拆卸的连接到适配器210。参考图16所示,适配器210还包括一个逆变器218和一个整流器217,逆变器218能使适配器210所连接的电池包所输出的直流电变为交流电。整流器217能使适配器210接入的交流电变为能为电池包充电的直流电。逆变器218和整流器217均由相应的电路板和电路元件构成,构成逆变器的电路板和电路元件容纳在壳体211所形成的容纳腔中。
适配器210还包括交流电输入接口214,其能使适配器210接入电网中的交流电。在一实施例中,交流电输入接口214可以构造为如图15所示的电源插头,这样的好处在于能够保证用电安全;也可以构造为一般的交流接口,从而方便用户选用不同长度的电源线进行转接。适配器210可以通过接入的交流电为其所连接的电池包充电;示例性地,交流电输入接口214电性连接至整流器217,从而使从交流电输入接口214接入的交流电变为直流电从而为电池包充电。
适配器210还包括交流电输出接口213;它能用于输出交流电,从而使电池 包与适配器的组合200能作为AC电源。示例性地,交流电输出接口的电能来源既可以是适配器210所连接的电池包中所存储的电能,也可以是由适配器210从它处接入的电能,比如从交流电输入接口214引入的交流电电网的电能。交流电输出接口可以被构造为如图13所示的电源插座的形式,电源插座可设计成与当地一般电网输出电能的插座相同的规格,使电池包与适配器的组合200能为一般的AC用电设备供电。电源插座既可以设置在适配器210的同侧,也可以设置适配器210的异侧。
适配器210可以使用其所连接的电池包电能并通过交流电输出接口输出交流电。在一实施例中,交流电输出接口至少电性连接至逆变器218,逆变器218串联在适配接口和交流电输出接口213之间,来自电池包的直流电经过逆变器218变为交流电然后输出到交流电输出接口213。
适配器210还包括直流接口,其用于接入外部用电装置使适配器210输出电能。电压转换电路串联在直流接口和适配接口之间,用于将电池包的电能转换为适配所述外部用电装置的电能输出或将外部供电装置的电能转换为适配所述电池包的电能输出。在一些实施例中,适配器210包括第一直流接口215和第二直流接口216,第一直流接口215与图6所示实施例中第一直流接口133为同一类型接口,第一直流接口215是可以实现大功率大于10W充放电的接口,第二直流接口216是工作功率为5V/2A的接口。在一实施例中,第一直流接口215至少包括两个电能正极端子,电能正极端子与外部用电装置或外部供电装置的正极连接。
这样,第一直流接口215可以连接笔记本电脑适配器、手机充电端子或移动电源以为电池包充电。第一直流接口215还可以为笔记本电脑,手机等用电装置充电。至少两个电能正极端子的电路设计能承担更大的功率传输,大大提升第一直流接口215的功率传输能力,使得第一直流接口215的输出功率或输入功率大于10W,可以大大缩短充电时间或放电时间。
适配器210还包括控制模块,连接在所述直流接口与所述适配接口之间,且连接所述电压转换电路,所述控制模块被配置为能根据所述直流接口和所述适配接口的信号状态控制所述电压转换电路的电流方向以及输出电压。
参考图17至图19所示的电池包与适配器的组合200',包括:适配器240和电池包250。在本实施例中,电池包与适配器的组合200'为一种便携式电能系统。
其中,电池包250能为一个直流的电动工具供电。在一实施例中,电池包250包括:电芯(未示出)和第一壳体251,电芯容纳在第一壳体251中。电芯用于 存储能量,其能被反复充放电。电芯可选择锂离子电池,也可以选择石墨烯电池。第一壳体251用于容纳电池包250中的电芯及其它部件,并且第一壳体251形成有结合部,电池包250可以通过该结合部结合至一个电动工具。
适配器240能结合以上介绍的电池包250,从而使电池包250通过适配器240输出交流电和/或直流电。
参考图18、19所示,适配器240还包括用于输出交流电的交流电输出接口241,从而使电池包与适配器的组合200’能作为AC电源。交流电输出接口241与逆变器244电性连接以输出交流电。在一些实施例中,交流电输出接口241被构造成如图18所示的电源插座的形式,电源插座设计为与当地一般电网输出电能的插座相同的规格,使便携式电源系统能为一般的AC用电设备供电。在一些实施例中,适配器200包括一个交流电输出接口241,用于输出110-130V的交流电或210-230V的交流电。在一些实施例中,适配器240包括两个交流电输出接口241,分别用于输出110-130V的交流电或210-230V的交流电。
适配器240还包括电压转换电路和直流接口,在一些实施例中,适配器240包括第一直流接口242,所述第一直流接口242与图6所示实施例中的第一直流接口133为同一类接口,其用于接入外部用电装置使适配器240输出电能或接入外部供电装置为电池包充电。在另一些实施例中,适配器240包括第一直流接口242和第二直流接口243。在一实施例中,适配器240还包括第一电压转换电路245和第二电压转换电路246用于使电池包250输出的直流电转换为具有预设电压的直流电输出,第一电压转换电路245还可以用于将外部供电装置的电能转换为适配所述电池包的电能。第一直流接口242至少包括两个电能正极端子,所述电能正极端子与所述外部用电装置或所述外部供电装置的正极连接,第一直流接口242是可以实现大功率大于10W充放电的接口,而第二直流接口243工作功率为5V/2A的接口。
第一直流接口242可以连接笔记本电脑适配器、手机充电端子或移动电源以为电池包充电,也可以连接供电装置为其充电,如笔记本电脑,手机等用电装置。这样,第一直流接口中至少两个电能正极端子的电路设计能承担更大的功率传输,大大提升第一直流接口242的功率传输能力,使得第一直流接口242输出或输入功率大于10W,可以大大缩短充电时间或放电时间。
适配器240还包括控制器247和双向供电控制器248,控制器247连接在第一直流接口242与适配接口249之间,双向供电控制器248连接在控制器247与第一 电压转换电路245之间,控制器247被配置为能根据所述直流接口和所述适配接口的信号状态输出控制信号至双向供电控制器248以控制第一电压转换电路245的电流方向以及输出电压,以使所述外部供电装置为所述电池包充电或使所述电池包对外部用电装置进行放电。
在本申请的上述实施例中,电池包与适配器的组合还可以采用图7至图11,图13,图14的电路系统架构作为直流接口的电路系统架构,在此并非有所限制。
这样,电池包与适配器的组合200和200',常作为中小型充电站而用于户外作业,其输出功率可以为大于100W,例如为150W、300W、1200W或2000W,在此并非有所限制。对于这种大功率电池包与适配器的组合,考虑到若能设计成与现场的各种可用设备,如提供交流电和/或直流电的外部供电装置以及需要交流电和/或直流电的外部用电装置灵活交互以相互获取电能,则大大拓展电源装置的使用场景。
在一些实施例中,参考图20所示的电池包60,用于为电动工具100供电,电池包60与电动工具100可拆卸连接。电池包60包括:用于存储电能的电芯61,电池包端子,包括电池包的正极端子621,电池包的负极端子622以及通信端子623。电池包通过电池包的正极端子621和电池包的负极端子622输出电能。
电池包还包括直流接口63和电路板单元64。直流接口63可以选择性地连接外部用电装置或外部供电装置,如此,直流接口63处于充电状态时接收来自外部供电装置的电能;直流接口63处于放电状态时将所述电池包的电能提供给外部用电装置。
直流接口63至少包括两个电能正极端子分别为第一电能端子631和第二电能端子632,例如Vbus1和Vbus2,直流接口63还包括检测端子633,如CC1。第一电能端子631和第二电能端子632能够与所述外部用电装置或外部供电装置的正极端子相连,用于输入或输出电能。
检测端子633用于检测直流接口的信号状态,直流接口63具有充电状态、放电状态和空置状态。当直流接口63连接外部供电装置时,检测端子633检测到高电平,外部供电装置相当于上拉电阻,确定直流接口63为供电侧,而电芯61相当于下拉电阻,确定为受电侧,检测端子633判断直流接口63处于充电状态,发送充电控制信号至电路板单元64,以使外部供电装置为电池包60充电。当直流接口60连接至外部用电装置时,检测端子633检测到低电平,外部用电装置相当于下拉电阻,确定直流接口63为受电侧,而电芯61相当于上拉电阻,确定为供 电侧,检测端子633检测到直流接口63处于放电状态,发送放电控制信号至电路板单元64,以使电池包60为外部用电装置放电。
电路板单元64串联在电池包端子62和直流接口63之间。作为实施方式的一种,电路板单元上设置有主控制器641,双向供电控制器642和电压转换电路643。电路板单元64可以为一个电路板或多个电路板集成,在此并非有所限制。
直流接口63连接至外部供电装置时,检测端子633检测到直流接口63处于充电状态且发送充电控制信号至主控制器641。主控制器641被配置为接收来自检测端子633的充电控制信号,主控制器641还能够接收来自电动工具100的相关信息的通信信号。
主控制器641根据充电控制信号,输出控制信号至双向供电控制器642;双向供电控制器642接收来自主控制器641的控制信号输出供电控制信号给所述电压转换电路643以控制所述电压转换电路643的电流方向且控制电压转换电路643调整所述外部供电装置电能以形成适配电芯组和/或电动工具的电能输出使所述外部供电装置为电池包和/或电动工具供电。
直流接口连接至外部用电装置时,检测端子633检测到直流接口63处于放电状态且发送放电控制信号至主控制器641。主控制器641被配置为接收来自检测端子633的放电控制信号,输出控制信号至双向供电控制器642;双向供电控制器642接收来自主控制器641的控制信号输出供电控制信号给所述电压转换电路643以控制所述电压转换电路643的电流方向,电压转换电路643将电芯61的放电电压与外部用电装置所需的充电电压进行匹配,给外部用电装置进行充电。
以这种方式,可以利用外部现场可用的智能手机或笔记本电脑等的外部供电装置通过直流接口为电池包大功率充电,也可通过电池包输出存储在电芯组中的电能为外部用电装置进行充电,例如智能手机或笔记本电脑等。这样,拓展了电池包的使用场景,方便用户使用。由于电池包中采用了双向供电控制器的设计电路架构,通过同一个控制器可以实现充电和放电控制,减少了其他运放电路的引入,简化了电路结构,且电池包通过直流接口可以实现大于10W的大功率充放电。
在另一些实施例中,参考图21所示的适配器150,所述适配器150包括适配接口151,接口组件152和电路板单元153。接口组件152包括:通信接口154和电能接口155其中,适配接口151用于电性连接电池包以接入直流电。接口组件152可选择性连接外部用电装置或外部供电装置,如此可以选择性地使所述外部供 电装置为所述电池包充电或使所述电池包对所述外部用电装置进行放电。外部用电装置可以为手持式电动工具,也可以为园林电动工具,例如车辆型割草机、吹风机等,在此并非有所限制。外部供电装置可以为适配器。
在一实施例中,通信接口154用于与所述电路板单元153进行通信。电能接口155能够与电路板单元153电性连接,用于输入或输出电能。电能接口155包括电能正端子1551和电能负端子1552,在一些实施例中,采用镍片作为电能正端子1551和电能负端子1552以输入输出直流电。电能接口155的标准电压范围为0V到200V,可以实现0V到200V的电压连续可调且支持6000W的任何较大源输出功率。
通信接口154中设置有检测端子1541,检测端1541用于检测接口组件152的信号状态,接口组件152具有充电状态、放电状态和空置状态。当外部供电装置连接至适配器时,检测端子1541检测到高电平,外部供电装置相当于上拉电阻,确定电能接口为供电侧,而电池包相当于下拉电阻,确定为受电侧,检测端子1541判断接口组件152处于充电状态,发送充电控制信号至电路板单元153以使外部供电装置为电池包充电。当外部用电装置连接至适配器时,检测端子1541检测到低电平,外部用电装置相当于下拉电阻,确定电能接口155为受电侧,而电池包相当于上拉电阻,确定为供电侧,检测端子1541判断接口组件处于放电状态,发送放电控制信号至电路板以使电池包为外部用电装置放电。
电路板单元153串联在适配接口151和通信接口154之间。作为实施方式的一种,电路板单元153上设置有主控制器1531,双向供电控制器1532和电压转换电路1533。电路板单元153可以为一个电路板或多个电路板集成,在此并非有所限制。
在一实施例中,接口组件152连接至外部供电装置时,检测端子1541检测到接口组件152处于充电状态,且发送充电控制信号至主控制器1531。主控制器1531还接收来自电池包的相关信息的电池包通信信号,输出控制信号至双向供电控制器1532。双向供电控制器1532,接收来自主控制器1531的控制信号输出供电控制信号给所述电压转换电路1533以控制所述电压转换电路1533的电流方向且控制电压转换电路1533调整所述外部供电装置电能以形成适配电池包的电能输出使所述外部供电装置为电池包充电。在另一些实施例中,当接口组件152连接至外部用电装置时,检测端子1541检测到接口组件152处于放电状态,且发送放电控制信号至主控制器1531。主控制器1531还接收来自电池包的相关信息的电池包通信信号,输出控制信号至双向供电控制器1532。双向供电控制器1532 接收控制信号,控制电压转换电路1533的电流方向,电压转换电路1533将电池包的放电电压与外部用电装置所需的充电电压进行匹配,给外部用电装置进行充电。
在一实施例中,通信接口154和电能接口155也可以集成在一个接口内,在此并非与有所限制。
以这种方式,可以通过适配器可以进行更大电压的电力传输,大大缩短电池包的充电时间,可以适用于电动工具领域常见的36V,48V,54V电池包且通信接口的配置使通信传输更稳定。而且,通过适配器可以使电池包给额定电压不匹配的电动工具供电,例如使额定电压48V的电池包给24V的电动工具供电或者使额定电压24V的电池包给18V的电动工具供电,这样拓展了电池包的使用场景,方便用户的使用。

Claims (80)

  1. 一种电池包与适配器的组合,包括:
    电池包,包括一个至少能与电动工具可拆卸连接的电池包接口;
    第一适配器,包括:
    插头,用于接入交流电;
    交流电输入接口,与所述插头电性连接;
    交直流转换电路,与所述交流电输入接口电性连接以将交流电转换为直流电;
    直流电输出接口,与所述交直流转换电路电性连接以输出所述直流电;
    第二适配器,能够与所述第一适配器及所述电池包电性连接,并能以大于10W的充电功率为所述电池包充电,所述第二适配器包括:
    适配接口,设置为与所述电池包接口可拆卸式连接;
    直流接口,设置为与所述直流电输出接口可拆卸的电性连接;
    电压转换电路,串联在所述直流接口和所述适配接口之间,用于将所述直流电转换为适配所述电池包的电能输出;
    双向控制模块,连接在所述直流接口与所述适配接口之间,且连接所述电压转换电路,所述双向控制模块被配置为能根据所述直流接口和所述适配接口的信号状态控制所述电压转换电路的电流方向以及输出电压。
  2. 根据权利要求1所述的电池包与适配器的组合,其中,所述直流接口至少包括两个电能正极端子,所述电能正极端子与所述直流电的正极连接。
  3. 根据权利要求1所述的电池包与适配器的组合,其中,所述直流接口与所述直流电输出接口电性连接时,所述直流电输出接口能在5Vˉ20V的电压范围内输出电能。
  4. 根据权利要求1所述的电池包与适配器的组合,其中,所述电池包的标称电压范围为:10Vˉ120V。
  5. 根据权利要求1所述的电池包与适配器的组合,其中,所述电池包包括:导向槽,用于与所述第二适配器可滑动的连接;
    所述适配接口包括:
    电连接端子,与电池包端子构成电性连接;
    导轨,用于与所述导向槽配合以使所述电池包可滑动的连接到所述第二适配器。
  6. 根据权利要求1所述的电池包与适配器的组合,其中,所述直流接口的信 号状态包括充电状态和放电状态。
  7. 根据权利要求6所述的电池包与适配器的组合,其中,所述直流接口包括:
    检测端子,用于检测所述直流接口的信号状态;
    当所述直流接口连接至所述直流电输出接口时,所述检测端子在检测到所述直流接口处于充电状态时,发送充电控制信号至所述双向控制模块,以使所述双向控制模块控制所述电压转换电路的电流方向使所述直流电为所述电池包充电。
  8. 根据权利要求6所述的电池包与适配器的组合,其中,所述直流接口包括:
    检测端子,用于检测所述直流接口的信号状态;
    当所述直流接口连接至外部用电装置时,所述检测端子在检测到所述直流接口处于放电状态时,发送放电控制信号至所述双向控制模块,以使所述双向控制模块控制所述电压转换电路的电流方向并使所述电池包对所述外部用电装置进行放电。
  9. 根据权利要求7所述的电池包与适配器的组合,其中,所述第二适配器还包括通信模块,所述通信模块设置为能够接收来自所述检测端子的充电控制信号,并将充电控制信号传输给所述双向控制模块;
    所述双向控制模块包括主控制器,所述主控制器设置为能够接收来自所述电池包的关于电池包信息的通信信号,并传递所述电池包信息的通信信号到所述通信模块;
    所述通信模块被配置为接收所述电池包的相关信息的通信信号,并调整所述直流电的电压、电流和功率以为所述电池包充电。
  10. 根据权利要求9所述的电池包与适配器的组合,其中,所述双向控制模块还包括:
    双向供电控制器;
    所述主控制器,还被设置为能够接收所述充电控制信号并输出控制信号至所述双向供电控制器;
    所述双向供电控制器,设置为能够根据来自所述主控制器的控制信号输出供电控制信号给所述电压转换电路以控制所述电压转换电路的电流方向且控制所述电压转换电路调整所述直流电以形成适配所述电池包的电能输出使所述直流电为所述电池包充电。
  11. 根据权利要求7所述的电池包与适配器的组合,其中,当所述检测端子 检测到高电平时判断所述直流接口处于充电状态。
  12. 根据权利要求7所述的电池包与适配器的组合,其中,当所述检测端子检测到低电平时判断所述直流接口处于放电状态。
  13. 一种适配器,包括:
    适配接口,用于连接能与电动工具可拆卸连接的电池包;
    直流接口,设置为能够选择性连接外部用电装置或外部供电装置,所述直流接口的输出或输入功率大于10W;
    所述适配器还包括:电压转换电路、通信模块、主控制器及双向供电控制器;
    所述电压转换电路串联在所述直流接口和所述适配接口之间,用于将所述外部供电装置电能转换为适配所述电池包的电能输出或将所述电池包的电能转换为适配所述外部用电装置的电能输出;
    所述通信模块,设置为能够根据所述直流接口的信号状态发送控制信号给所述主控制模块;
    所述主控制器连接在所述直流接口与所述适配接口之间,所述双向供电控制器连接在所述主控制器和所述电压转换电路之间,所述主控制模块被配置为能根据所述直流接口和所述适配接口的信号状态控制所述电压转换电路的电流方向以及输出电压,以使所述外部供电装置为所述电池包充电或使所述电池包对外部用电装置进行放电。
  14. 根据权利要求13所述的适配器,其中,所述直流接口至少包括两个电能正极端子,所述电能正极端子与述外部用电装置或所述外部供电装置的正极连接。
  15. 根据权利要求13所述的适配器,其中,所述直流接口的输出或输入电压的取值范围为:5Vˉ20V。
  16. 根据权利要求13所述的适配器,其中,所述电池包的标称电压范围为:10V-120V。
  17. 根据权利要求13所述的适配器,其中,所述电池包包括:
    导向槽,用于与所述适配器可滑动的连接;
    所述适配接口包括:
    电连接端子,与电池包端子构成电性连接;
    导轨,用于与所述导向槽配合以使所述电池包可滑动的连接到所述适配器。
  18. 根据权利要求13所述的适配器,其中,所述直流接口的信号状态包括充电状态和放电状态。
  19. 根据权利要求13所述的适配器,其中,所述外部供电装置为电源适配器,包括:
    插头,用于接入交流电;
    交流电输入接口,与所述插头电性连接;
    交流直流转换电路,与所述交流电输入接口电性连接以将交流电转换为直流电;
    直流电输出接口,与所述交流直流转换电路电性连接以输出所述直流电;
    所述直流电输出接口能够与所述直流接口可拆卸的电性连接。
  20. 根据权利要求13或18所述的适配器,其中,所述直流接口包括:
    检测端子,用于检测所述直流接口的信号状态;
    当所述直流接口连接至所述外部供电装置时,所述检测端子在检测到所述直流接口处于充电状态时,发送充电控制信号至所述主控制器,以使所述主控制器控制所述电压转换电路的电流方向使所述外部供电装置为所述电池包充电。
  21. 根据权利要求13或18所述的适配器,其中,所述直流接口包括:
    检测端子,用于检测所述直流接口的信号状态;
    当所述直流接口连接至外部用电装置时,所述检测端子在检测到所述直流接口处于放电状态时,发送放电控制信号至所述控制模块,以使所述控制模块控制所述电压转换电路的电流方向并使所述电池包对所述外部用电装置进行放电。
  22. 根据权利要求20所述的适配器,还包括通信模块,所述通信模块设置为能够接收来自所述检测端子的充电控制信号,并将充电控制信号传输给所述主控制器;
    所述主控制器设置为能够接收来自所述电池包的关于电池包信息的通信信号,并传递所述电池包信息的通信信号到所述通信模块;
    所述通信模块还被配置为接收所述电池包的相关信息的通信信号,并调整所述外部供电装置的电压、电流和功率以为所述电池包充电。
  23. 根据权利要求22所述的适配器,其中,所述主控制器,还被设置为能够接收所述充电控制信号并输出控制信号至所述双向供电控制器;
    所述双向供电控制器,设置为能够根据来自所述主控制器的控制信号输出 供电控制信号给所述电压转换电路以控制所述电压转换电路的电流方向且控制所述电压转换电路调整所述外部供电装置的电能以适配所述电池包的电能输出使所述外部供电装置为所述电池包充电。
  24. 根据权利要求21所述的适配器,其中,所述通信模块设置为能够接收来自所述检测端子的放电控制信号,并将放电控制信号传输给所述主控制器;所述通信模块还被设置为能够接受来自外部用电装置的充电信息的通信信号,并将所述充电信息的通信信号传输给所述主控制器;
    所述主控制器设置为能够接收放电控制信号和所述充电信息的通信信号并输出控制信号至所述双向供电控制器;
    所述双向供电控制器,设置为能够根据接收来自所述主控制器的控制信号输出供电控制信号给所述电压转换电路以控制所述电压转换电路的电流方向且控制所述电压转换电路调整电压值使所述电池包为所述外部用电装置放电。
  25. 根据权利要求20所述的适配器,其中,当所述检测端子检测到高电平时判断所述直流接口处于充电状态。
  26. 根据权利要求21所述的适配器,其中,当所述检测端子检测到低电平时判断所述直流接口处于放电状态。
  27. 一种电池包与适配器的组合,包括:
    电池包,包括一个至少能与电动工具可拆卸连接的电池包接口;
    第一适配器,包括:
    第一插头,用于接入交流电;
    第一交流电输入接口,与所述第一插头电性连接;
    第一交直流转换电路,与所述第一交流电输入接口电性连接以将交流电转换为直流电;
    第一直流电输出接口,与所述第一交直流转换电路电性连接以输出所述直流电;
    第二适配器,包括:
    第二插头,用于接入交流电;
    第二交流电输入接口,与所述第二插头电性连接;
    第二交直流转换电路,与所述第二交流电输入接口电性连接以将交流电转换为直流电;
    第二直流电输出接口,与所述第二交流直流转换电路电性连接以输出所述 直流电;
    第三适配器,能够与所述第一适配器、第二适配器及所述电池包电性连接,所述第三适配器包括:
    适配接口,设置为与所述电池包接口可拆卸式连接;
    第一直流接口,设置为与所述第一直流电输出接口可拆卸的电性连接,所述第一直流接口的输出或输入功率大于10W;
    第二直流接口,设置为与所述第二直流电输出接口可拆卸的电性连接,所述第一直流接口的输出或输入功率大于10W;
    第一电压转换电路,串联在所述第一直流接口和所述适配接口之间,用于将所述第一直流电输出接口的直流电转换为适配所述电池包的电能输出;
    第二电压转换电路,串联在所述第二直流接口和所述适配接口之间,用于将所述第二直流电输出接口的直流电转换为适配所述电池包的电能输出;
    双向控制模块,连接在所述第一直流接口、所述第二直流接口与所述适配接口之间,且连接所述第一电压转换电路和所述第二电压转换电路,所述双向控制模块,被配置为根据所述第一直流接口和所述适配接口的信号状态控制所述第一电压转换电路的电流方向以及输出电压;所述双向控制模块还被配置为根据所述第二直流接口和所述适配接口的信号状态控制所述第二电压转换电路的电流方向以及输出电压;
    在所述第一交流电输入接口和所述第二交流电输入接口均接入交流电时,通过所述第一直流接口和所述第二直流接口同时为所述电池包充电;所述第一直流接口的充电功率的取值范围为大于10W;
    所述第二直流接口的充电功率的取值范围为大于10W。
  28. 根据权利要求27所述的电池包与适配器的组合,其中,所述第一直流接口至少包括两个电能正极端子,所述电能正极端子与所述第一直流电输出接口的直流电的正极连接;
    所述第二直流接口至少包括两个电能正极端子,所述电能正极端子与所述第二直流电输出接口的直流电的正极连接。
  29. 根据权利要求27所述的电池包与适配器的组合,其中,所述第一直流接口与所述第一直流电输出接口电性连接时,所述第一直流电输出接口能在5Vˉ20V的电压范围内输出电能。
  30. 根据权利要求27所述的电池包与适配器的组合,其中,所述第二直流接 口与所述第二直流电输出接口电性连接时,所述第二直流电输出接口能在5Vˉ20V的电压范围内输出电能。
  31. 根据权利要求27所述的电池包与适配器的组合,其中,所述电池包包括:导向槽,用于与所述第二适配器可滑动的连接;
    所述适配接口包括:
    电连接端子,与电池包端子构成电性连接;
    导轨,用于与所述导向槽配合以使所述电池包可滑动的连接到所述第三适配器。
  32. 根据权利要求27的电池包与适配器的组合,其中,所述电池包的标称电压范围为:10Vˉ120V。
  33. 根据权利要求27所述的电池包与适配器的组合,其中,所述第一直流接口的信号状态包括充电状态和放电状态;所述第二直流接口的信号状态包括充电状态和放电状态。
  34. 根据权利要求33所述的电池包与适配器的组合,其中,所述第一直流接口还包括:第一检测端子;
    所述第二直流接口还包括:第二检测端子;
    所述检测端子用于检测所述接口的信号状态;
    当所述第一直流接口连接至所述第一直流电输出接口时,所述第一检测端子在检测到所述第一直流接口处于充电状态时,发送第一充电控制信号至所述双向控制模块,以使所述双向控制模块控制所述第一电压转换电路的电流方向使所述直流电对所述电池包进行充电;
    当所述第二直流接口连接至所述第二直流电输出接口时,所述第二检测端子在检测到所述第二直流接口处于充电状态时,发送第二充电控制信号至所述双向控制模块,以使所述双向控制模块控制所述第二电压转换电路的电流方向使所述第二直流电输出接口对所述电池包进行充电。
  35. 根据权利要求34所述的电池包与适配器的组合,其中,所述第三适配器还包括第一通信模块和第二通信模块;
    所述第一通信模块设置为能够接收来自所述第一检测端子的第一充电控制信号,并将所述第一充电控制信号传输给所述双向控制模块;所述第二通信模块设置为能够接收来自所述第二检测端子的第二充电控制信号,并将所述第二充电控制信号传输给所述双向控制模块;
    所述双向控制模块包括主控制器,所述主控制器设置为能够接收来自所述电池包的关于电池包信息的通信信号,并传递所述电池包信息的通信信号到所述第一通信模块和第二通信模块;
    所述第一通信模块和第二通信模块分别被配置为接收所述电池包的相关信息的通信信号,并调整所述直流电的电压、电流和功率以为所述电池包充电。
  36. 根据权利要求35所述的电池包与适配器的组合,其中,所述双向控制模块还包括:第一双向供电控制器和第二双向供电控制器;
    所述主控制器,被设置为能够接收所述第一充电控制信号并输出第一控制信号至所述第一双向供电控制器;所述主控制器还被设置为能够接收所述第二充电控制信号并输出第二控制信号至所述第二双向供电控制器;
    所述第一双向供电控制器,设置为能够根据来自所述主控制器的第一控制信号输出第一供电控制信号给所述第一电压转换电路以控制所述第一电压转换电路的电流方向且控制所述第一电压转换电路调整所述直流电的电能以适配所述电池包的电能输出使所述直流电为所述电池包充电;
    所述第二双向供电控制器,设置为能够根据来自所述主控制器的第二控制信号输出第二供电控制信号给所述第二电压转换电路以控制所述第二电压转换电路的电流方向且控制所述第二电压转换电路调整所述直流电的电能以适配所述电池包的电能输出使所述直流电为所述电池包充电。
  37. 根据权利要求33所述的电池包与适配器的组合,其中,当所述第一检测端子或第二检测端子检测到高电平判断所述第一直流接口或第二直流接口处于充电状态;
    当所述第一检测端子或第二检测端子检测到低电平判断所述第一直流接口或第二直流接口处于放电状态。
  38. 一种适配器,包括:
    适配接口,用于连接能与电动工具可拆卸连接的电池包;
    第一直流接口,设置为能够与外部供电装置电性连接,所述直流接口的输入功率大于10W;且所述第一直流接口的输入电压范围为5Vˉ20V;
    第二直流接口,能够与外部用电装置电性连接以将所述外部供电装置或所述电池包的电能提供给所述外部用电装置;
    第一电压转换电路,串联在所述第一直流接口和所述适配接口之间,用于将所述外部供电装置的电能转换为适配所述电池包的电能输出;
    双向控制模块,连接在所述第一直流接口与所述适配接口之间,且连接所述第一电压转换电路,所述双向控制模块被配置为能根据所述第一直流接口和所述适配接口的信号状态控制所述电压转换电路的电流方向以及输出电压;
    当所述第一直流接口接入外部供电装置,且所述第二直流接口接入外部用电装置时,所述外部供电装置能够通过所述第一直流接口为电池包充电,所述外部供电装置能通过所述第二直流接口为外部用电装置充电。
  39. 根据权利要求38所述的适配器,其中,所述第一直流接口至少包括两个电能正极端子,所述电能正极端子与所述外部供电装置的正极连接;
    所述第二直流接口至少包括两个电能正极端子,所述电能正极端子与所述外部用电装置的正极连接。
  40. 根据权利要求38所述的适配器,其中,所述电池包包括:导向槽,用于与所述第二适配器可滑动的连接;
    所述适配接口包括:
    电连接端子,与电池包端子构成电性连接;
    导轨,用于与所述导向槽配合以使所述电池包可滑动的连接到所述适配器。
  41. 根据权利要求38所述的适配器,其中,所述电池包的标称电压范围为:10V-120V。
  42. 根据权利要求38所述的适配器,其中,所述第一直流接口的信号状态包括充电状态和放电状态。
  43. 根据权利要求38所述的适配器,其中,所述第一直流接口包括:检测端子,用于检测所述第一直流接口的信号状态;
    当所述第一直流接口连接至所述外部供电装置时,所述检测端子在检测到所述第一直流接口处于充电状态时,发送充电控制信号至所述双向控制模块,以使所述双向控制模块控制所述电压转换电路的电流方向使所述外部供电装置对所述电池包进行充电。
  44. 根据权利要求42所述的适配器,其中,所述第一直流接口包括:
    检测端子,用于检测所述第一直流接口的信号状态;
    当所述第一直流接口连接至外部用电装置时,所述检测端子在检测到所述第一直流接口处于放电状态时,发送放电控制信号至所述双向控制模块,以使所述双向控制模块控制所述电压转换电路的电流方向并使所述电池包对所述外部用电装置进行放电。
  45. 根据权利要求44所述的适配器,还包括通信模块,所述通信模块设置为能够接收来自所述检测端子的充电控制信号,并将充电控制信号传输给所述控制模块;
    所述双向控制模块包括主控制器,所述主控制器设置为能够接收来自所述电池包的关于电池包信息的通信信号,并传递所述电池包信息的通信信号到所述通信模块;
    所述通信模块被配置为接收所述电池包的相关信息的通信信号,并调整所述直流电的电压、电流和功率以为所述电池包充电。
  46. 根据权利要求45所述的适配器,其中,所述双向控制模块还包括:
    双向供电控制器;
    所述主控制器,还被设置为能够接收所述充电控制信号并输出控制信号至所述双向供电控制器;
    所述双向供电控制器,设置为能够根据来自所述控制器的控制信号输出供电控制信号给所述电压转换电路以控制所述电压转换电路的电流方向以及控制所述电压转换电路调整电压值使所述外部供电装置为所述电池包充电。
  47. 根据权利要求42所述的适配器,其中,当所述检测端子检测到高电平时判断所述第一直流接口处于充电状态。
  48. 根据权利要求42所述的适配器,其中,当所述检测端子检测到低电平时判断所述第一直流接口处于放电状态。
  49. 根据权利要求38所述的适配器,还包括:
    第二电压转换电路,设置为串联在所述第二直流接口和所述适配接口之间,用于将所述电池包或所述外部供电装置的电能转换为适配所述外部用电装置的电能输出。
  50. 一种适配器,包括:
    适配接口,用于连接能与电动工具可拆卸连接的电池包;
    第一直流接口,能够与第一外部供电装置电性连接,所述第一直流接口的输入功率大于10W;所述第一直流接口的输入电压的取值范围为:5Vˉ20V;
    第二直流接口,能够与第二外部供电装置电性连接,所述第二直流接口的输入功率大于10W;所述第二直流接口的输入电压的取值范围为:5Vˉ20V;
    第一电压转换电路,串联在所述第一直流接口和所述适配接口之间,用于将所述第一外部供电装置的电能转换为适配所述电池包的电能输出;
    第二电压转换电路,串联在所述第二直流接口和所述适配接口之间,用于将所述第二外部供电装置的电能转换为适配所述电池包的电能输出;
    双向控制模块,连接在所述第一直流接口或所述第二直流接口与所述适配接口之间,且连接所述第一电压转换电路和所述第二电压转换电路,所述双向控制模块被配置为根据所述第一直流接口和所述适配接口的信号状态控制所述第一电压转换电路的电流方向以及输出电压;所述双向控制模块还被配置为根据所述第二直流接口和所述适配接口的信号状态控制所述第二电压转换电路的电流方向以及输出电压;
    所述第一直流接口和所述第二直流接口均接入外部供电装置时,通过所述第一直流接口和所述第二直流接口同时为电池包充电。
  51. 根据权利要求50所述的适配器,其中,所述第一直流接口至少包括两个电能正极端子,所述电能正极端子与所述第一外部供电装置的正极连接;
    所述第二直流接口至少包括两个电能正极端子,所述电能正极端子与所述第二外部供电装置的正极连接。
  52. 根据权利要求50所述的适配器,其中,所述电池包包括:导向槽,用于与所述第二适配器可滑动的连接;
    所述适配接口包括:
    电连接端子,与电池包端子构成电性连接;
    导轨,用于与所述导向槽配合以使所述电池包可滑动的连接到所述适配器。
  53. 根据权利要求50所述的适配器,其中,所述电池包的标称电压范围为:10V-120V。
  54. 根据权利要求50所述的适配器,其中,所述第一直流接口的信号状态包括充电状态和放电状态;所述第二直流接口的信号状态包括充电状态和放电状态两种信号状态。
  55. 根据权利要求54所述的适配器,其中,所述第一直流接口还包括:第一检测端子;所述第二直流接口还包括:第二检测端子;所述检测端子用于检测所述接口的信号状态;
    当所述第一直流接口连接至所述第一直流电输出接口时,所述第一检测端子在检测到所述第一直流接口处于充电状态时,发送第一充电控制信号至所述双向控制模块,以使所述双向控制模块控制所述第一电压转换电路的电流方向使所述第一外部供电装置对所述电池包进行充电;
    当所述第二直流接口连接至所述第二直流电输出接口时,所述第二检测端子在检测到所述第二直流接口处于充电状态时,发送第二充电控制信号至所述双向控制模块,以使所述双向控制模块控制所述第二电压转换电路的电流方向使所述第二直流电输出接口对所述电池包进行充电。
  56. 根据权利要求54所述的适配器,还包括:第一通信模块和第二通信模块;
    所述第一通信模块设置为能够接收来自所述第一检测端子的第一充电控制信号,并将所述第一充电控制信号传输给所述控制模块;所述第二通信模块设置为能够接收来自所述第二检测端子的第二充电控制信号,并将所述第二充电控制信号传输给所述控制模块;
    所述控制模块包括主控制器,所述主控制器设置为能够接收来自所述电池包的关于电池包信息的通信信号,并传递所述电池包信息的通信信号到所述第一通信模块和第二通信模块;
    所述第一通信模块和第二通信模块分别被配置为接收所述电池包的相关信息的通信信号,并调整所述直流电的电压、电流和功率以为所述电池包充电。
  57. 根据权利要求56所述的适配器,其中,所述双向控制模块还包括:
    第一双向供电控制器和第二双向供电控制器;
    所述主控制器,被设置为能够接收所述第一充电控制信号并输出第一控制信号至所述第一双向供电控制器;所述主控制器还被设置为能够接收所述第二充电控制信号并输出第二控制信号至所述第二双向供电控制器;
    所述第一双向供电控制器,设置为能够根据来自所述主控制器的第一控制信号输出第一供电控制信号给所述第一电压转换电路以控制所述第一电压转换电路的电流方向且控制所述第一电压转换电路调整所述直流电的电能以适配所述电池包的电能输出使所述直流电为所述电池包充电;
    所述第二双向供电控制器,设置为能够根据来自所述主控制器的第二控制信号输出第二供电控制信号给所述第二电压转换电路以控制所述第二电压转换电路的电流方向且控制所述第二电压转换电路调整所述直流电的电能以适配所述电池包的电能输出使所述直流电为所述电池包充电。
  58. 根据权利要求54所述的适配器,其中,当所述第一检测端子或第二检测端子检测到高电平判断所述第一直流接口或第二直流接口处于充电状态;
    当所述第一检测端子或第二检测端子检测到低电平判断所述第一直流接口或第二直流接口处于放电状态。
  59. 一种电池包与适配器的组合,包括:
    电池包,包括一个至少能与电动工具可拆卸连接的电池包接口;
    适配器,能够与所述电池包电性连接,包括:
    插头,用于接入交流电;
    适配接口,与所述电池包接口可拆卸式连接;
    交直流转换电路,用于将所述交流电变为能为所述电池包充电的直流电;
    直流接口,设置为与外部用电装置可拆卸的电性连接,所述直流接口的输出功率大于10W;
    交流电输出接口,用于输出交流电;
    第一电压转换电路串联在所述适配接口和所述交流电输出接口之间,用于使所述电池包输出的直流电转换为交流电输出;
    第二电压转换电路,串联在所述直流接口和所述适配接口之间,用于将所述电池包的电能转换为适配所述外部用电装置的电能输出;
    双向控制模块,连接在所述直流接口与所述适配接口之间,且连接所述第二电压转换电路,所述双向控制模块被配置为能根据所述直流接口和所述适配接口的信号状态控制所述电压转换电路的电流方向以及输出电压。
  60. 根据权利要求59所述的电池包与适配器的组合,其中,所述直流接口至少包括两个电能正极端子,所述电能正极端子与所述外部用电装置的正极连接。
  61. 根据权利要求59所述的电池包与适配器的组合,其中,所述电池包与适配器的组合包括一个或多个所述适配接口。
  62. 根据权利要求59所述的电池包与适配器的组合,其中,所述直流接口的输出电压的取值范围为:5Vˉ20V。
  63. 根据权利要求59所述的电池包与适配器的组合,其中,所述电池包的标称电压范围为:10Vˉ120V。
  64. 根据权利要求59所述的电池包与适配器的组合,其中,所述电池包包括:导向槽,用于与所述第二适配器可滑动的连接;
    所述适配接口包括:
    电连接端子,与电池包端子构成电性连接;
    导轨,用于与所述导向槽配合以使所述电池包可滑动的连接到所述适配器。
  65. 根据权利要求59所述的电池包与适配器的组合,其中,所述直流接口的信号状态包括充电状态和放电状态。
  66. 根据权利要求59所述的电池包与适配器的组合,其中,所述直流接口包括:检测端子,用于检测所述直流接口的信号状态;
    当所述直流接口连接至所述外部用电装置时,所述检测端子在检测到所述直流接口处于放电状态时,发送放电控制信号至所述双向控制模块,以使所述双向控制模块控制所述电压转换电路的电流方向并使所述电池包对所述外部用电装置进行放电。
  67. 根据权利要求66所述的电池包与适配器的组合,其中,所述适配器还包括通信模块,所述通信模块设置为能够接收来自所述检测端子的放电控制信号,并将放电控制信号传输给所述控制模块;所述通信模块还被设置为能够接受来自外部用电装置的充电信息的通信信号,并将所述充电信息的通信信号传输给所述控制模块;
    所述双向控制模块包括:主控制器和双向供电控制器;
    所述主控制器设置为能够接收放电控制信号和所述充电信息的通信信号并输出控制信号至所述双向供电控制器;
    所述双向供电控制器,设置为能够根据接收来自所述主控制器的控制信号输出供电控制信号给所述电压转换电路以控制所述电压转换电路的电流方向且控制所述电压转换电路调整电压值使所述电池包为所述外部用电装置充电。
  68. 根据权利要求65所述的电池包与适配器的组合,其中,所述检测端子检测到高电平时判断所述直流接口处于充电状态。
  69. 根据权利要求65所述的电池包与适配器的组合,其中,所述检测端子检测到低电平时判断所述第一直流接口处于放电状态。
  70. 一种电池包与适配器的组合,包括:
    电池包,包括一个至少能与电动工具可拆卸连接的电池包接口;
    适配器,包括:
    适配接口,用于连接能与电动工具可拆卸连接的电池包;
    交流电输出接口,用于输出交流电;
    第一电压转换电路串联在所述适配接口和所述交流电接口之间,用于使所述电池包输出的直流电转换为交流电输出;
    直流接口,用于选择性连接外部用电装置或外部供电装置;所述直流接口的输出或输入功率大于10W;所述直流接口的输入或输出电压的取值范围为:5V-20V;
    第二电压转换电路,串联在所述直流接口和所述适配接口之间,用于将所述外部供电装置电转换为适配所述电池包的电能输出或将所述电池包的电能转换为是适配所述外部用电装置的电能输出;
    双向控制模块,连接在直流接口与所述适配接口之间,且连接所述第二电压转换电路,所述双向控制模块被配置为能根据所述直流接口和所述适配接口的信号状态控制所述电压转换电路的电流方向以及输出电压。
  71. 根据权利要求70所述的电池包与适配器的组合,其中,所述直流接口至少包括两个电能正极端子,所述电能正极端子与所述外部用电装置或所述外部供电装置的正极连接。
  72. 根据权利要求70所述的电池包与适配器的组合,其中,所述电池包包括:导向槽,用于与所述适配器可滑动的连接;
    所述适配接口包括:
    电连接端子,与电池包端子构成电性连接;
    导轨,用于导向所述导向槽可滑动的连接到所述适配器。
  73. 根据权利要求70所述的电池包与适配器的组合,其中,所述电池包的标称电压范围为:10Vˉ120V。
  74. 根据权利要求70所述的电池包与适配器的组合,其中,所述直流接口的信号状态包括充电状态和放电状态。
  75. 根据权利要求74所述的电池包与适配器的组合,其中,所述直流接口包括:
    检测端子,用于检测所述直流接口的信号状态;
    所述直流接口连接外部供电装置时,所述检测端子在检测到所述直流接口处于充电状态时,发送充电控制信号至所述双向控制模块,以使所述双向控制模块控制所述电压转换电路的电流方向使所述外部供电装置为所述电池包充电。
  76. 根据权利要求74所述的电池包与适配器的组合,其中,所述直流接口包括:
    检测端子,用于检测所述直流接口的信号状态;
    当所述直流接口连接至外部用电装置时,所述检测端子在检测到所述直流接口处于放电状态时,发送放电控制信号至所述双向控制模块,以使所述双向控制模块控制所述电压转换电路的电流方向并使所述电池包对所述外部用电装置进行放电。
  77. 根据权利要求75所述的电池包与适配器的组合,其中,所述适配器还包括通信模块,
    所述通信模块设置为能够接收来自所述检测端子的充电控制信号,并将充电控制信号传输给所述控制模块;
    所述双向控制模块包括主控制器,所述主控制器设置为能够接收来自所述电池包的关于电池包信息的通信信号,并传递所述电池包信息的通信信号到所述通信模块;
    所述通信模块被配置为接收所述电池包的相关信息的通信信号,并调整所述外部供电装置的电压、电流和功率以为所述电池包充电。
  78. 根据权利要求77所述的电池包与适配器的组合,其中,所述双向控制模块还包括:
    双向供电控制器;
    所述主控制器,还被设置为能够接收所述充电控制信号并输出控制信号至所述双向供电控制器;
    所述双向供电控制器,设置为能够根据来自所述控制器的控制信号输出供电控制信号给所述电压转换电路以控制所述电压转换电路的电流方向以及控制所述电压转换电路调整电压值使所述外部供电装置为所述电池包充电。
  79. 根据权利要求76所述的电池包与适配器的组合,其中,所述适配器还包括通信模块,所述通信模块设置为能够接收来自所述检测端子的放电控制信号,并将放电控制信号传输给所述控制模块;所述通信模块还被设置为能够接受来自外部用电装置的充电信息的通信信号,并将所述充电信息的通信信号传输给所述控制模块;
    所述双向控制模块包括:主控制器和双向供电控制器;
    所述主控制器设置为能够接收放电控制信号和所述充电信息的通信信号并输出控制信号至所述双向供电控制器;
    所述双向供电控制器,设置为能够根据接收来自所述主控制器的控制信号输出供电控制信号给所述电压转换电路以控制所述电压转换电路的电流方向且控制所述电压转换电路调整电压值使所述电池包为所述外部用电装置充电。
  80. 根据权利要求74所述的电池包与适配器的组合,其中,当所述检测端子检测到高电平时判断所述直流接口处于充电状态,当所述检测端子检测到低电平时判断所述直流接口处于放电状态。
PCT/CN2019/126426 2019-06-14 2019-12-18 适配器及电池包与适配器的组合 WO2020248563A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP23185726.9A EP4236020A3 (en) 2019-06-14 2019-12-18 Adapter and battery pack and adapter combination
EP19932459.1A EP3972072B1 (en) 2019-06-14 2019-12-18 Adapter and battery pack and adapter combination
US17/549,230 US20220102997A1 (en) 2019-06-14 2021-12-13 Adapter and combination of a battery pack and an adapter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910518043 2019-06-14
CN201910518043.1 2019-06-14
CN201911047627 2019-10-30
CN201911047627.1 2019-10-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136005 Continuation WO2021147564A1 (zh) 2019-06-14 2020-12-14 工具灯、电池包与工具灯的组合以及电动工具

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/549,230 Continuation US20220102997A1 (en) 2019-06-14 2021-12-13 Adapter and combination of a battery pack and an adapter

Publications (1)

Publication Number Publication Date
WO2020248563A1 true WO2020248563A1 (zh) 2020-12-17

Family

ID=73781623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126426 WO2020248563A1 (zh) 2019-06-14 2019-12-18 适配器及电池包与适配器的组合

Country Status (2)

Country Link
EP (2) EP3972072B1 (zh)
WO (1) WO2020248563A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050174A1 (zh) * 2021-09-29 2023-04-06 深圳市华思旭科技有限公司 电动工具及电动工具系统
WO2023232138A1 (zh) * 2022-06-02 2023-12-07 杭州绿辉照明科技有限公司 一种电池包接口转换适配器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191498B1 (en) * 1999-07-19 2001-02-20 Pacific Technology Co., Ltd. Power-supplying device for generating different voltage outputs
CN201559182U (zh) * 2009-10-21 2010-08-25 傅志庆 交直流两用电动工具的充电装置
CN204497813U (zh) * 2015-04-27 2015-07-22 黄永林 一种电动工具的电池包
CN204597589U (zh) * 2015-04-16 2015-08-26 安克科技有限公司 充电器及其交流-直流转换模组和直流-直流转换模组
CN107394833A (zh) * 2016-05-16 2017-11-24 南京德朔实业有限公司 适配器、电源装置及过放的保护方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879134B2 (en) * 2003-02-11 2005-04-12 O2Micro International Limited Selector circuit for power management in multiple battery systems
TWI247469B (en) * 2003-02-11 2006-01-11 O2Micro Int Ltd Power supply system, electronic device comprising the same, and method of ensuring safe operation of batteries in parallel
US7990102B2 (en) * 2006-02-09 2011-08-02 Karl Frederick Scheucher Cordless power supply
US8084987B2 (en) * 2008-02-13 2011-12-27 Active-Semi, Inc. USB port with smart power management
US20140117922A1 (en) * 2012-10-31 2014-05-01 Lam Pham Portable dc power tool battery adapter and charger with usb interface
US10044197B2 (en) * 2013-12-12 2018-08-07 Milwaukee Electric Tool Corporation Portable power supply and battery charger
WO2017167210A1 (zh) * 2016-03-30 2017-10-05 南京德朔实业有限公司 用于汽车蓄电池的充电系统、转换装置和充电方法
CN211907879U (zh) 2017-04-11 2020-11-10 米沃奇电动工具公司 电池连接器及电气系统
CN207368867U (zh) * 2017-05-08 2018-05-15 创科(澳门离岸商业服务)有限公司 便携式电源、便携式直流电源及套件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191498B1 (en) * 1999-07-19 2001-02-20 Pacific Technology Co., Ltd. Power-supplying device for generating different voltage outputs
CN201559182U (zh) * 2009-10-21 2010-08-25 傅志庆 交直流两用电动工具的充电装置
CN204597589U (zh) * 2015-04-16 2015-08-26 安克科技有限公司 充电器及其交流-直流转换模组和直流-直流转换模组
CN204497813U (zh) * 2015-04-27 2015-07-22 黄永林 一种电动工具的电池包
CN107394833A (zh) * 2016-05-16 2017-11-24 南京德朔实业有限公司 适配器、电源装置及过放的保护方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050174A1 (zh) * 2021-09-29 2023-04-06 深圳市华思旭科技有限公司 电动工具及电动工具系统
WO2023232138A1 (zh) * 2022-06-02 2023-12-07 杭州绿辉照明科技有限公司 一种电池包接口转换适配器

Also Published As

Publication number Publication date
EP3972072A4 (en) 2022-07-27
EP3972072A1 (en) 2022-03-23
EP4236020A3 (en) 2023-11-29
EP3972072B1 (en) 2023-08-23
EP4236020A2 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
AU2018201398B2 (en) Battery packs and chargers, and battery pack kit for power tools
US7017055B1 (en) Hub that can supply power actively
US6528970B1 (en) Charger capable of converting multiple power sources
US20090309542A1 (en) Multi-input charger
TWI568128B (zh) 充電系統及其行動充電裝置與電源供應裝置
US20070236975A1 (en) Method and apparatus for balancing energy between portable devices
CN112087015B (zh) 电池包与适配器的组合
US20080074077A1 (en) System of supplying power between portable devices and portable device used therein
WO2020248563A1 (zh) 适配器及电池包与适配器的组合
CN105098890A (zh) 充电数据线及充电器
TWI600252B (zh) 行動充放電裝置
US20060007147A1 (en) Wireless mouse with multiple charging modes
JP2020198671A (ja) 受電装置およびその制御回路、給電装置と受電装置のネゴシエーションの方法
US20220102997A1 (en) Adapter and combination of a battery pack and an adapter
TWI554000B (zh) 行動充放電裝置
CN204858641U (zh) 充电数据线及充电器
TW201601414A (zh) 行動電源
JP3188034U (ja) 掌型交流/直流ポータブル電源
TWI276280B (en) Charging apparatus
WO2021147564A1 (zh) 工具灯、电池包与工具灯的组合以及电动工具
CN109375758B (zh) 一种电脑主机配置的充电装置
US20230283029A1 (en) Adapter, electric vehicle, and wire with power delivery function
CN220586025U (zh) 一种功率分配电路及具有其的供电设备
CN212182722U (zh) 充电转接线及充电系统
US20220302734A1 (en) Parallel charger circuit with battery feedback control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019932459

Country of ref document: EP

Effective date: 20211216