WO2020248410A1 - 一种基于电子信标的列车自动驾驶系统 - Google Patents

一种基于电子信标的列车自动驾驶系统 Download PDF

Info

Publication number
WO2020248410A1
WO2020248410A1 PCT/CN2019/105219 CN2019105219W WO2020248410A1 WO 2020248410 A1 WO2020248410 A1 WO 2020248410A1 CN 2019105219 W CN2019105219 W CN 2019105219W WO 2020248410 A1 WO2020248410 A1 WO 2020248410A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
electronic
electronic beacon
beacon
platform
Prior art date
Application number
PCT/CN2019/105219
Other languages
English (en)
French (fr)
Inventor
王佳
陈志强
王鹏
王成
葛鹭明
王祺
包正堂
Original Assignee
北京全路通信信号研究设计院集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京全路通信信号研究设计院集团有限公司 filed Critical 北京全路通信信号研究设计院集团有限公司
Publication of WO2020248410A1 publication Critical patent/WO2020248410A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning, or like safety means along the route or between vehicles or vehicle trains
    • B61L23/08Control, warning, or like safety means along the route or between vehicles or vehicle trains for controlling traffic in one direction only
    • B61L23/14Control, warning, or like safety means along the route or between vehicles or vehicle trains for controlling traffic in one direction only automatically operated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • B61L25/023Determination of driving direction of vehicle or vehicle train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • B61L25/028Determination of vehicle position and orientation within a train consist, e.g. serialisation

Definitions

  • the present disclosure belongs to the technical field of rail transit, and particularly relates to an automatic train driving system based on an electronic beacon.
  • the train operation control system is a key technology to ensure the safe and high-speed operation of trains, referred to as train control system.
  • the automatic train driving system (ATO) completes the control of starting, accelerating, cruising, idling and braking of the train to realize the automatic driving of the train.
  • ATO automatic train driving system
  • the train positioning function directly determines the speed control and precise stopping effect of the train in the deceleration phase.
  • CBTC Communication Based Train Control
  • C2+ATO CTCS-2+ATO
  • CTCS-2 is the second level of China Train Operation Control System
  • C3+ATO is the third level of China Train Operation Control System
  • the present disclosure provides an electronic beacon-based train automatic driving system.
  • the system includes an electronic beacon and an on-board ATO.
  • the electronic beacon includes an inbound electronic beacon, an accurate parking electronic beacon, and a transfer line.
  • At least two inbound electronic beacons are provided, the inbound electronic beacons are set at a fixed position in front of the inbound and after the outbound, and the number of inbound electronic beacons in front of the inbound is equal to The number of inbound electronic beacons are the same after the exit, and they are used for trains to obtain platform position information, so that when the train enters or reverses, it can decelerate in advance according to the acquired platform position information;
  • the precise parking electronic beacons are arranged in the platform and between the parking point and the reverse parking point, and the precise parking electronic beacons are symmetrically distributed about the center line of the platform. Obtain and correct the position of the stop on the train;
  • At least two transfer electronic beacons are installed, and the transfer electronic beacons are installed in the turnout section of the station, and are used to clear the operating direction of the train after the line switches.
  • vehicle-mounted ATO is used to perform at least one of consistency check, link distance check, ID sequence check, and validity check on electronic beacons.
  • the consistency check includes the on-board ATO checking the legality of the message content of the inbound electronic beacon and the precision parking electronic beacon.
  • the link distance check includes the on-board ATO checking the distance between the two electronic beacons that the train passes successively.
  • the two electronic beacons that the train passes successively include the inbound electronic beacon or the precise stop electronic beacon. One or two of the bids.
  • the ID sequence check includes the on-board ATO checking the number sequence of the inbound electronic beacons and the precise stop electronic beacons that the train passes in sequence.
  • the validity check includes the on-board ATO checking the line number and station number of the transfer electronic beacon.
  • the on-board ATO is used to determine the direction of train operation, and the determination of the direction of train operation includes:
  • the operating direction is determined based on the comparison between the current received electronic beacon number and the previous electronic beacon number;
  • the determining the operation direction based on the comparison between the currently received electronic beacon and the known operation direction includes:
  • the known operating direction When judging that the operating direction is the same as the known operating direction based on the currently received electronic beacons, the known operating direction shall be used;
  • the operating direction is lost, and the operating direction is re-determined waiting for the next electronic beacon.
  • the vehicle-mounted ATO is used to obtain a target point position and a parking point position
  • the target point position includes a platform entrance position and a platform exit position.
  • the on-board ATO is used to determine the position of the train, and the determining the position of the train includes:
  • the disclosed system has the characteristics of uniform electronic beacon layout, versatility and strong implementation, which can effectively reduce the system construction cost and maintenance difficulty. It is suitable for domestic and foreign urban rail transit, intercity and trunk railways, and not only for new railway lines. , It is also suitable for the upgrading and transformation of existing lines to increase the ATO function.
  • FIG. 1 shows a schematic diagram of the positions of the inbound TAG and the precise parking TAG according to an embodiment of the present disclosure
  • FIG. 2 shows the position of the transfer TAG and the schematic diagram of the train transfer in the embodiment of the present disclosure
  • Fig. 3 shows a schematic diagram of the principle of alignment of the station entrance position according to an embodiment of the present disclosure.
  • the present disclosure provides an automatic train driving system based on an electronic beacon.
  • the system includes an electronic beacon and an on-board ATO.
  • the electronic beacons can be divided into three categories, namely, stop TAG, precise parking TAG, and transfer TAG.
  • the installation position of the electronic beacons is uniform, that is, the electronic beacons of each station are installed in the same position on the platform, and the electronic beacons have the same number.
  • FIG. 1 shows a schematic diagram of the positions of the inbound TAG and the precise parking TAG according to the embodiment of the present disclosure. As shown in FIG.
  • the inbound TAG installed on the platform track can be set to two, three, or four, but Not limited to this, this example takes four as an example for description, the numbers are T1, T2, T3, T4, the number of precise parking TAGs installed on the platform track is an even number, and you can set two, four, six or eight. But it is not limited to this.
  • This example uses six as an example for description, the numbers are T5, T6, T7, T8, T9, T10.
  • this embodiment takes the forward direction as an example for description, and the electronic beacons on the platform track are installed in the forward direction, that is, the direction T1 ⁇ T4 is defined as the positive direction.
  • T1 and T2 are located in a fixed position before the station and are installed in order, mainly used to obtain platform position information, so that when the train enters the station, it can be decelerated in advance according to the obtained platform position information, and T3 and T4 are located at the exit The fixed position after the rear, and installed in order, used for the train to decelerate in the reverse direction.
  • T5 ⁇ T10 are located in the platform and between the forward parking point and the reverse parking point. The forward parking point and the reverse parking point are symmetrically arranged with respect to the center line of the platform. Since this embodiment takes the forward direction as an example, the figure The reverse stop point is not shown in 1.
  • T5 ⁇ T7 are installed on the side close to the entrance of the platform in the forward direction
  • T8 ⁇ T10 are installed on the side close to the exit of the platform in the forward direction
  • T5 and T10 are arranged symmetrically about the center line of the platform
  • T6 and T9 are about the center of the platform.
  • Line symmetrical setting, T7 and T8 are set symmetrically about the center line of the platform.
  • Accurate parking TAG adopts this arrangement principle, which is mainly used for parking point position acquisition and correction. Regardless of forward and reverse operation, all accurate parking TAG information is used, that is, six Second accurate calibration.
  • set the distance between T1 and the platform entrance as S4
  • set the distance between T10 and the parking spot as S1
  • set the distance between T9 and the parking spot as S2
  • set the distance between T8 and the parking spot as S2.
  • the setting principle of S4 is: the train runs at the maximum speed limit, and the braking distance to stop with the maximum service brake is S4, the expression is as follows:
  • Vmax is the maximum speed limit
  • a is the maximum service brake and the lowest deceleration rate that can be provided
  • t 0 is the response time, that is, the delay time for cutting and establishing the brake.
  • T1 is passed
  • the vehicle speed is the maximum limit
  • the braking command is sent immediately, and the vehicle can only perform braking after t 0 time.
  • t 0 the vehicle will cut and establish braking; take the urban rail transit with a maximum operating speed of 90km/h as an example S4 is usually set to 450 meters, and the link distance of T1 and T2 is 20 meters.
  • T3 and T4 are the same as those of T1 and T2, that is, when the train is in reverse operation, take the urban rail transit with the maximum operating speed of 90km/h as an example, and calculate according to formula (1) to obtain the reverse entrance of T4 and the platform (positive
  • the distance to the exit of the platform during operation is 450 meters, and the link distance between T4 and T3 is 20 meters.
  • T10 and T5 are the precise parking TAGs closest to the parking point and the reverse parking point respectively.
  • the distance S1 between T10 and the parking point is generally set to 5 meters, and the distance between T5 and the reverse parking point is also 5 meters.
  • T9 The link distance between T10 and T5 and T6 is 8 meters, and the link distance between T8 and T9 and the link distance between T6 and T7 are 10 meters. Therefore, the distance S2 between T9 and the parking point is 13 meters, the distance S3 between T8 and the parking point is 23 meters, the distance between T6 and the reverse parking point is 13 meters, and the distance between T7 and the reverse parking point is 13 meters. The distance is 23 meters.
  • the distance between T7 and T8 is determined by the length of the station.
  • FIG. 2 shows the position of the transfer TAG and the schematic diagram of the train transfer in the embodiment of the present disclosure.
  • One T11 is located between T2 and the entrance of the platform, the other T11 is located between T3 and the exit of the platform, and the two T11 are respectively located in the turnout section at both ends of the platform, used for clearing the direction of operation after the train switches lines.
  • the train operates in the direction of T1 ⁇ T4. Taking two strands as an example, the two strands are marked as IG and IIG respectively, and the transfer TAG is installed on the turnout between IG and IIG. If the position of the turnout is changed from positioning to reverse, and the train changes from IG to IIG, the train passes through T11 and receives the signal sent by T11. The vehicle-mounted ATO will deal with the lost operation direction according to the signal sent by T11. After switching to IIG, wait Re-determine the direction of operation on the IIG; if the position of the turnout remains in position, the train will not switch lines, and the train will not pass through T11.
  • the electronic beacons in the embodiments of the present disclosure are uniform in layout, and have strong versatility and implementability, which can effectively reduce the system construction cost and the difficulty of maintenance and repair. It is suitable for domestic and foreign urban rail transit, intercity and trunk railways, and not only for new railways. Lines are also suitable for upgrading existing lines to increase ATO function.
  • the onboard ATO on the train must check the consistency of the electronic beacon, link distance check, ID sequence check, and transfer TAG validity check. If the electronic beacon fails the inspection, it is considered that the electronic beacon data is abnormal, and the vehicle-mounted ATO cannot use its data or needs to report a malfunction.
  • Consistency check is oriented to T1 ⁇ T10, and mainly checks the legality of the message content, including: for the two inbound TAGs that have passed successively, the described station, line number, door opening side, parking point location, arrival platform Information such as the location of the entrance and the speed limit of the platform should be the same; for the six precise parking TAGs that have passed successively, the described station, line number, distance from the center of the platform, and door opening side should be the same.
  • the link distance check is oriented to T1 ⁇ T10, and mainly checks the distance between two electronic beacons that have passed by. For example, when the train receives Tn-1, the position is P1, and the position when Tn is received is P2, Tn The design distance between -1 and Tn is S, and the installation error is d, so
  • the ID sequence check is oriented to T1 to T10, and mainly checks the number sequence of electronic beacons in order to prevent the occurrence of direction jumps.
  • the vehicle-mounted ATO does not rely on external data such as electronic maps to check the electronic beacons, but only relies on the link relationship between them to check their legitimacy, which greatly reduces the data configuration work that engineers and technicians need to face.
  • the vehicle-mounted ATO in the embodiment of the present disclosure completes the functions of train operation direction determination, target point location acquisition, parking point location acquisition, and train location determination through electronic beacon message information. specific:
  • the train passes through the direction of T1 ⁇ T4 in turn, which is defined as the forward direction, that is, the normal direction of operation, and vice versa.
  • the direction of operation can be determined only after two consecutive electronic beacons.
  • the determination method is as follows: a. For a train with an unknown direction of operation, the current received electronic beacon number is greater than the previous electronic beacon number, then the train Forward operation, otherwise, reverse operation; b. For a train with a known operating direction, if it is judged that the operating direction is the same as before based on the currently received electronic beacon, then the known operating direction will be used. If the beacon judges that the operation direction is different from the previous one, the operation direction will be lost and the operation direction will be re-determined by the next electronic beacon; c. If the train currently passing by is a transfer TAG, the operation direction will be restored to unknown.
  • All electronic beacons have fields related to the target point.
  • the fields related to the target point include the distance to the platform entrance, the distance to the platform exit, and the platform speed limit. If the train is running in the forward direction, the electronic beacon message field is used normally; if When the train runs in the reverse direction, the distance to the platform entrance means the distance from the platform exit, and the distance to the platform exit means the distance from the platform entrance.
  • All electronic beacons have two fields to indicate the location information of parking spots, one for forward use and one for reverse use.
  • the meaning of the parking point, platform entrance, and platform exit fields in the electronic beacon message does not refer to the actual kilometer mark of the parking point, platform entrance, and platform exit, but refers to the distance from the parking point and the target point, so this determines each Station electronic beacons are installed at the same location, except for the station number, other messages are also the same.
  • the parking point calibration or the target point calibration is achieved by obtaining the parking point position or the target point position multiple times.
  • the algorithm of the parking point calibration position or the target point calibration position is:
  • KP represents the position of the stop point or the target point
  • s represents the position in the train cycle when the train first receives the electronic beacon message.
  • This position is derived from the speed and distance measurement unit, that is, the cumulative displacement calculated from the time the train is powered on.
  • the train position is calculated every train cycle
  • l represents the distance field of the e-beacon in the message to the entrance or exit of the platform
  • ⁇ t represents the average delay from when the train receives the radio frequency data to the use of the radio frequency data
  • v represents the first time the train
  • D represents the size of the electronic beacon receiving window.
  • the train cycle is the on-board ATO main control logic cycle, that is, the on-board ATO reads and calculates the message every 100ms. Since the e-beacon message describes distance information, not position, the platform entrance position and platform exit position cannot be obtained directly, but calculated by the offset of the platform entrance position and platform exit position relative to the current position of the train Come.
  • FIG. 3 shows a schematic diagram of the principle of the alignment of the platform entrance position according to the embodiment of the present disclosure.
  • the arrival platform entrance distance l1 in the T1 message will be obtained, using this
  • the platform entrance position Before passing the next electronic beacon, the platform entrance position remains unchanged, and the train position changes in real time until the next electronic beacon is recalibrated, that is, after the train passes T2, the arrival platform entrance in the T2 message will be obtained
  • the distance l2 is calculated by using the position s2 from the speed measurement and distance measurement at this time plus the arrival station entrance distance l2 in the T2 message, and then considering the receiving window size D2 and the inter-board communication delay ⁇ t2, the calculated station entrance position.
  • the platform entrance position calculated after T2 is used to replace the platform entrance position calculated after T1, so as to realize the calibration of the platform entrance position.
  • the calibration principles of the parking point position and the station exit position are the same as the calibration principle of the station entrance position.
  • the on-board ATO converts the target point distance field of the electronic beacon message field into the platform entrance position and the platform exit position according to formula (2), and then compares the current train position with it. If it is on the platform Between the exit position and the entrance position, the train is judged to be on the platform, otherwise it is in the interval. When the train is operating in an unknown state, it is impossible to determine whether it is on a platform.
  • the train is in the state of unknown operation direction includes three situations:
  • the train has never passed the electronic beacon and has never obtained the electronic beacon message, then the train operation direction is unknown, the platform entrance position and platform exit position are defined as invalid values, the stopping point is invalid value, and the door opening side is invalid value ;
  • the train jumps when judging the operation direction according to the latest electronic beacon message (the increase of TAG number suddenly changes to decrease, or the decrease of TAG number suddenly changes to increase), then the operation direction of the train is unknown, platform entrance location, platform exit The position is an invalid value.
  • the position of the parking point adopts the minimum value of the two parking point fields in the latest electronic beacon message to ensure safety, and the invalid value on the side of the door is opened;
  • the train has passed the transfer TAG, and the operating direction is determined to be unknown. Before the next two electronic beacons are re-determined, the platform entrance position and platform exit position are invalid values, and the stop location uses the latest electronic beacon message In order to ensure safety, the minimum value of the two parking point fields is invalid value.
  • the electronic beacons in the embodiments of the present disclosure can be replaced by passive transponders for use by the ATO to determine the direction of train operation.

Abstract

一种基于电子信标(T1~T11)的列车自动驾驶系统,具备电子信标(T1~T11)布置统一、通用性和实施性强的特点,可以有效降低系统建设成本及维护难度。系统包括电子信标(T1~T11)、车载ATO,电子信标(T1~T11)包括进站电子信标(T1~T4)、精确停车电子信标(T5~T10)和转线电子信标(T11),进站电子信标(T1~T4)、精确停车电子信标(T5~T10)和转线电子信标(T11)采用依次递增的方式进行编号;进站电子信标(T1~T4)用于列车获取站台位置(KP)信息;精确停车电子信标(T5~T10)用于列车获取及校正停车点位置(KP);转线电子信标(T11)用于列车切换线路后运营方向的清除。

Description

一种基于电子信标的列车自动驾驶系统
本申请要求在2019年06月12日在中国专利局递交的、申请号为“201910507586.3”、发明名称为“一种基于电子信标的列车自动驾驶系统”的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开属于轨道交通技术领域,特别涉及一种基于电子信标的列车自动驾驶系统。
背景技术
列车运行控制系统是保证列车安全高速运行的关键技术,简称列控系统。列车自动驾驶系统(ATO)完成对列车的启动、加速、巡航、惰行和制动的控制,实现列车的自动驾驶。列车定位功能作为ATO最基础也最重要的功能之一,直接决定了列车减速阶段的速度控制及精确停车效果。
目前我国城市轨道交通具备ATO功能的线路主流为CBTC(Communication Based Train Control,基于通信的列车自动控制)系统,该系统采用电子地图与应答器结合的方式定位,具备位置信息描述丰富准确的特点,C2+ATO(CTCS-2+ATO,CTCS-2为中国列车运行控制系统第2级)和C3+ATO(CTCS-3+ATO,CTCS-3为中国列车运行控制系统第3级)采用单独应答器定位校位的方式,同样能够实现停车阶段的精确校位。然而,面对既有线升级、部分海外城市轨道交通增加ATO功能,若选择采用电子地图或应答器的方式,对于不同线路以及不同车站,每个应答器报文数据和各条线电子地图数据各不相同,工程技术人员需要面临巨大的数据配置工作;此外,由于应答器的功率大、辐射高,不利于实验室仿真测试。
目前,在列车自动驾驶相关技术的相关文献和专利中,尚无基于电子信标(TAG)的定位(确定方向)校位方式。在现有国内城市轨道交通领域,列车的精确停车依然依靠电子地图和应答器的位置校正。
发明内容
针对上述问题,本公开提供了一种基于电子信标的列车自动驾驶系统, 所述系统包括电子信标、车载ATO,所述电子信标包括进站电子信标、精确停车电子信标和转线电子信标,所述进站电子信标、精确停车电子信标和转线电子信标采用依次递增的方式进行编号;
所述进站电子信标设置至少两个,所述进站电子信标设置在进站口前和出站口后的固定位置,所述进站电子信标设置在进站口前的数量与进站电子信标设置在出站口后的数量相同,用于列车获取站台位置信息,从而列车进站或反向进站时可以根据已获取的站台位置信息提前减速;
所述精确停车电子信标设置至少两个,所述精确停车电子信标设置在站台内且位于停车点与反向停车点之间,所述精确停车电子信标关于站台中线对称分布,用于列车获取及校正停车点位置;
所述转线电子信标设置至少两个,所述转线电子信标设置在车站道岔区段,用于列车切换线路后运营方向的清除。
进一步地,所述车载ATO用于对电子信标进行一致性检查、链接距离检查、ID顺序检查、有效性检查中的至少一种检查。
进一步地,所述一致性检查包括车载ATO对进站电子信标和精确停车电子信标的报文内容合法性进行检查。
进一步地,所述链接距离检查包括车载ATO对列车先后经过的两个电子信标之间的间距进行检查,所述列车先后经过的两个电子信标包括进站电子信标或精确停车电子信标中的一种或两种。
进一步地,所述ID顺序检查包括车载ATO对列车依次经过的进站电子信标和精确停车电子信标的编号顺序进行检查。
进一步地,所述有效性检查包括车载ATO对转线电子信标的线路号和车站号进行检查。
进一步地,所述车载ATO用于判断列车运营的方向,所述判断列车运营的方向包括:
对于运营方向未知的列车,根据当前接收到的电子信标编号与上一个电子信标编号的大小比较决定运营方向;
对于运营方向已知的列车,根据当前收到的电子信标判断运营方向与 已知运营方向的对比决定运营方向;
当列车当前经过的电子信标为转线电子信标时,列车运营方向恢复为未知。
进一步地,所述根据当前收到的电子信标判断运营方向与已知运营方向的对比决定运营方向包括:
根据当前收到的电子信标判断运营方向与已知运营方向相同时,沿用已知运营方向;
根据当前收到的电子信标判断运营方向与已知运营方向不同时,则运营方向丢失,等待下一个电子信标重新确定运营方向。
进一步地,所述车载ATO用于获取目标点位置和停车点位置,所述目标点位置包括站台入口位置和站台出口位置。
进一步地,所述车载ATO用于判断列车的位置,所述判断列车的位置包括:
当列车处于已确定运营方向状态时,将当前列车位置与站台入口位置、站台出口位置进行比较,包括:
当列车处于站台入口位置与站台出口位置之间时,则判断列车处于站台;
当列车不处于站台入口位置与站台出口位置之间时,则判断列车处于区间;
当列车处于未确定运营方向状态时,无法判断列车位置。
本公开系统具备电子信标布置统一、通用性和实施性强的特点,可以有效降低系统建设成本及维护维修难度,适用于国内外城市轨道交通、城际、干线铁路,不但适用于新建铁路线路,还适用于既有线路增加ATO功能的升级改造。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点可通过在说明书、权利要求书以及附图中所指出的结构来实现和获得。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本公开实施例的进站TAG和精确停车TAG位置示意图;
图2示出了本公开实施例的转线TAG位置及列车转线示意图;
图3示出了本公开实施例的站台入口位置校位原理示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地说明,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开提供了一种基于电子信标的列车自动驾驶系统,该系统包括电子信标和车载ATO,其中,电子信标可分为三类,分别为进站TAG、精确停车TAG和转线TAG,并且电子信标的安装位置具有统一性,即每站的电子信标安装于站台的相同位置,且电子信标的编号相同。示例性的,图1示出了本公开实施例的进站TAG和精确停车TAG位置示意图,如图1所示,站台轨道上安装的进站TAG可以设置两个、三个或四个,但不限于此,本示例以四个为例进行说明,编号为T1、T2、T3、T4,站台轨道上安装的精确停车TAG数量为偶数,可以设置两个、四个、六个或八个,但不限于此,本示例以六个为例进行说明,编号为T5、T6、T7、T8、T9、T10。示例性的,以通常的运营方向为正向,本实施例以正向为例进行说明,站台轨道上的电子信标按照正向安装,即定义T1→T4的方向为正向。
具体的,T1、T2位于进站前的固定位置,且按顺序安装,主要用于获取站台位置信息,从而列车进站时可以根据已获取的站台位置信息提前减速,T3、T4位于出站口后的固定位置,且按顺序安装,用于列车反向进站 时提前减速。T5~T10位于站台内且位于正向停车点与反向停车点之间,正向停车点与反向停车点关于站台中线对称设置,由于本实施例以正向为例进行说明,因此图1中未显示反向停车点。其中T5~T7沿正向按顺序安装于接近站台入口一侧,T8~T10沿正向按顺序安装于接近站台出口一侧,并且T5与T10关于站台中线对称设置,T6与T9关于站台中线对称设置,T7与T8关于站台中线对称设置,精确停车TAG采用这样的布置原则,主要用于停车点位置获取及校正,无论正反向运行,均采用全部精确停车TAG信息,即进行六次精确校位。
示例性的,以T1与站台入口之间的距离设为S4,以T10与停车点之间的距离设为S1,以T9与停车点之间的距离设为S2,以T8与停车点之间的距离设为S3。其中,S4的设置原则为:列车以最高限速行驶,以最大常用制动停车的制动距离为S4,表达式如下:
Figure PCTCN2019105219-appb-000001
其中Vmax为最高限速,a为可提供的最大常用制动最低减速率,t 0为反应时间,即切牵及建立制动的延迟时间,示例性的,经过T1时,车辆速度为最高限速,立刻发送制动命令,需经过t 0时间车辆才能真正执行制动,在这t 0时间内车辆进行切牵和建立制动;以最高运营速度为90km/h的城市轨道交通为例,S4通常设置为450米,T1、T2的链接距离为20米。T3、T4的设置原则与T1、T2相同,即列车反向运营时,以最高运营速度为90km/h的城市轨道交通为例,按照式(1)计算可得T4与站台反向入口(正向运营时的站台出口)之间的距离为450米,T4、T3的链接距离为20米。
T10、T5分别为距离停车点和反向停车点最近的精确停车TAG,T10与停车点之间的距离S1一般设置为5米,T5与反向停车点之间的距离也为5米,T9、T10之间的链接距离和T5、T6之间的链接距离为8米,T8、T9之间的链接距离和T6、T7之间的链接距离为10米。因此T9与停车点之间的距离S2为13米,T8与停车点之间的距离S3为23米,T6与反向停车点之间的距离为13米,T7与反向停车点之间的距离为23米。T7与T8之间的距离由站台长度决定。
示例性的,图2示出了本公开实施例的转线TAG位置及列车转线示意图,如图2所示,站台轨道上安装的转线TAG设有两个,但不限于两个,编号均为T11。其中一个T11位于T2与站台入口之间,另一个T11位于T3与站台出口之间,且两个T11分别位于站台两端的道岔区段,用于列车切换线路后运营方向的清除。
示例性的,列车按T1→T4的方向运营,以两条股道为例,两条股道分别记为IG和IIG,转线TAG安装在IG和IIG之间的道岔上。若道岔位置由定位变为反位,列车从IG换线到IIG时,则列车经过T11并接收到T11发送的信号,车载ATO根据T11发送的信号作丢失运营方向处理,切换到IIG后,等待在IIG上重新确定运营方向;若道岔位置保持为定位,列车不会切换线路,则列车不会经过T11。
本公开实施例中的电子信标布置统一,且通用性和实施性强,可以有效降低系统建设成本及维护维修难度,适用于国内外城市轨道交通、城际、干线铁路,不但适用于新建铁路线路,还适用于既有线路增加ATO功能的升级改造。
当列车经过电子信标时,列车上的车载ATO必须对电子信标进行一致性检查、链接距离检查、ID顺序检查、转线TAG有效性检查。若电子信标没通过检查,则认为电子信标数据异常,车载ATO不能使用其数据或需报告故障。具体的:
(1)一致性检查面向T1~T10,主要针对报文内容合法性进行检查,具体包括:对于先后经过的两个进站TAG,描述的车站、线路编号、开门侧、停车点位置、到达站台入口位置、站台限速等信息应当相同;对于先后经过的六个精确停车TAG,描述的车站、线路编号、距离站台中心距离、开门侧等信息应当相同。
(2)链接距离检查面向T1~T10,主要对先后经过的两个电子信标的间距进行检查,示例性的,当列车收到Tn-1的位置为P1,接收到Tn的位置为P2,Tn-1与Tn的设计间距为S,安装误差为d,则应当满足|P2-P1-S|≤S*2%+d。若不满足链接距离检查,则说明测速测距误差过大或丢失电子 信标。
(3)ID顺序检查面向T1~T10,主要对依次经过电子信标的编号顺序进行检查,防止方向跳转的情况发生。
(4)转线TAG有效性检查面向T11,主要对转线TAG的线路号和车站号进行检查,当发现经过转线TAG后进行列车运营方向清除。
车载ATO对电子信标的检查不依赖电子地图等外部数据,仅依靠相互之间的链接关系检查其合法性,大大降低了工程技术人员需要面临的数据配置工作。
本公开实施例中的车载ATO通过电子信标报文信息完成列车运营方向判断、目标点位置获取、停车点位置获取、列车位置判断功能。具体的:
(1)列车运营方向判断
列车依次经过T1→T4的方向,定义为正向,即通常的运营方向,反之定义为反向。列车启动后,只有连续经过两个电子信标,才能够确定运营方向,确定方式为:a、对于运营方向未知的列车,当前接收到的电子信标编号大于上一个电子信标的编号,则列车正向运行,反之为反向运行;b、对于运营方向已知的列车,若根据当前收到的电子信标判断运营方向与之前相同,则沿用已知运营方向,若根据当前收到的电子信标判断运营方向与之前不同,则丢失运营方向,等待下一个电子信标重新确定运营方向;c、若列车当前经过的为转线TAG,则运营方向恢复为未知。
(2)目标点位置获取和停车点位置获取
所有电子信标均存有有关目标点的字段,有关目标点的字段包括到达站台入口距离、到达站台出口距离、站台限速,若列车正向运行,则正常使用电子信标报文字段;若列车反向运行,则到达站台入口距离表示距站台出口距离,到达站台出口距离表示距站台入口距离。
所有电子信标均有两个字段表示停车点位置信息,一个为正向使用,一个为反向使用。
电子信标报文中的停车点、站台入口、站台出口字段含义并非指停车点、站台入口、站台出口的实际公里标,而是指距停车点、目标点的距离, 因此这就决定了每站电子信标安装的位置相同,除车站编号外其他报文内容也相同。
通过多次获取停车点位置或目标点位置实现停车点校位或目标点校位,其中停车点校位或目标点校位的算法为:
Figure PCTCN2019105219-appb-000002
其中KP表示停车点位置或目标点位置,s表示列车首次收到电子信标报文时列车周期中的位置,该位置来源于测速测距单元,即从列车上电时算起的累积位移,这个列车位置在每个列车周期都会计算,l表示报文中此电子信标到达站台入口或站台出口的距离字段,Δt表示从列车接收射频数据到使用射频数据的平均延时,v表示列车首次收到电子信标报文时列车周期中的速度,D表示电子信标接收窗范围大小。其中,列车周期为车载ATO主控逻辑周期,即车载ATO每100ms进行一次报文读取并计算。由于电子信标报文中描述的是距离信息,而不是位置,因此站台入口位置和站台出口位置并不能直接获取,而是通过站台入口位置和站台出口位置相对于列车当前位置的偏移量计算而来。
示例性的,图3示出了本公开实施例的站台入口位置校位原理示意图,如图3所示,当列车经过T1后,会获取到T1报文中的到达站台入口距离l1,用此时来自测速测距单元的位置s1加上T1报文中的到达站台入口距离l1,再考虑接收窗大小D1和板间通信延时Δt1,计算得到的即为站台入口位置。
在经过下个电子信标前,站台入口位置不变,列车位置实时变化,直到经过下个电子信标重新校准站台入口位置,即列车经过T2后,会获取到T2报文中的到达站台入口距离l2,再用此时来自测速测距的位置s2加上T2报文中的到达站台入口距离l2,再考虑接收窗大小D2和板间通信延时Δt2,计算得到的即为站台入口位置。用经过T2后计算的站台入口位置取代经过T1后计算的站台入口位置,从而实现站台入口位置的校准。
停车点位置的校准和站台出口位置的校准原则均与站台入口位置的校准原则相同。
(3)列车位置判断
当列车处于已确定运营方向状态时,车载ATO依照公式(2)将电子信标报文字段的目标点距离字段转化为站台入口位置和站台出口位置,然后将当前列车位置与其比较,若处于站台出口位置与入口位置之间,则判断列车处于站台,否则处于区间。当列车处于运营方向未知状态时,无法确定是否处于站台。
其中,列车处于运营方向未知状态包括三种情况:
1、列车从未经过电子信标,从未获取过电子信标报文,那么列车运营方向为未知,站台入口位置、站台出口位置定义为无效值,停车点为无效值,开门侧为无效值;
2、列车根据最新电子信标报文判断运营方向时发生了跳转(TAG编号递增突然变为递减,或TAG编号递减突然变为递增),则列车运营方向为未知,站台入口位置、站台出口位置为无效值,停车点位置采用最新电子信标报文的两个停车点字段中最小值以确保安全,开门侧为无效值;
3、列车经过了转线TAG,运营方向定为未知,在经过下两个电子信标重新确定运营方向前,站台入口位置、站台出口位置为无效值,停车点位置采用最新电子信标报文的两个停车点字段中最小值以确保安全,开门侧为无效值。
需要说明的是,本公开实施例中的电子信标可以被无源应答器来替代,供ATO确定列车运营方向使用。
尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (10)

  1. 一种基于电子信标的列车自动驾驶系统,所述系统包括电子信标、车载ATO,其中,所述电子信标包括进站电子信标、精确停车电子信标和转线电子信标,所述进站电子信标、精确停车电子信标和转线电子信标采用依次递增的方式进行编号;
    所述进站电子信标设置至少两个,所述进站电子信标设置在进站口前和出站口后的固定位置,所述进站电子信标设置在进站口前的数量与进站电子信标设置在出站口后的数量相同,用于列车获取站台位置信息,从而列车进站或反向进站时可以根据已获取的站台位置信息提前减速;
    所述精确停车电子信标设置至少两个,所述精确停车电子信标设置在站台内且位于停车点与反向停车点之间,所述精确停车电子信标关于站台中线对称分布,用于列车获取及校正停车点位置;
    所述转线电子信标设置至少两个,所述转线电子信标设置在车站道岔区段,用于列车切换线路后运营方向的清除。
  2. 根据权利要求1所述的基于电子信标的列车自动驾驶系统,其中,所述车载ATO用于对电子信标进行一致性检查、链接距离检查、ID顺序检查、有效性检查中的至少一种检查。
  3. 根据权利要求2所述的基于电子信标的列车自动驾驶系统,其中,所述一致性检查包括车载ATO对进站电子信标和精确停车电子信标的报文内容合法性进行检查。
  4. 根据权利要求2所述的基于电子信标的列车自动驾驶系统,其中,所述链接距离检查包括车载ATO对列车先后经过的两个电子信标之间的间距进行检查,所述列车先后经过的两个电子信标包括进站电子信标或精确停车电子信标中的一种或两种。
  5. 根据权利要求2所述的基于电子信标的列车自动驾驶系统,其中,所述ID顺序检查包括车载ATO对列车依次经过的进站电子信标和精确停车电子信标的编号顺序进行检查。
  6. 根据权利要求2-5任一项所述的基于电子信标的列车自动驾驶系统,其中,所述有效性检查包括车载ATO对转线电子信标的线路号和车站号进 行检查。
  7. 根据权利要求1-5任一项所述的基于电子信标的列车自动驾驶系统,其中,所述车载ATO用于判断列车运营的方向,所述判断列车运营的方向包括:
    对于运营方向未知的列车,根据当前接收到的电子信标编号与上一个电子信标编号的大小比较决定运营方向;
    对于运营方向已知的列车,根据当前收到的电子信标判断运营方向与已知运营方向的对比决定运营方向;
    当列车当前经过的电子信标为转线电子信标时,列车运营方向恢复为未知。
  8. 根据权利要求7所述的基于电子信标的列车自动驾驶系统,其中,所述根据当前收到的电子信标判断运营方向与已知运营方向的对比决定运营方向包括:
    根据当前收到的电子信标判断运营方向与已知运营方向相同时,沿用已知运营方向;
    根据当前收到的电子信标判断运营方向与已知运营方向不同时,则运营方向丢失,等待下一个电子信标重新确定运营方向。
  9. 根据权利要求1-5任一项所述的基于电子信标的列车自动驾驶系统,其中,所述车载ATO用于获取目标点位置和停车点位置,所述目标点位置包括站台入口位置和站台出口位置。
  10. 根据权利要求1-5任一项所述的基于电子信标的列车自动驾驶系统,其中,所述车载ATO用于判断列车的位置,所述判断列车的位置包括:
    当列车处于已确定运营方向状态时,将当前列车位置与站台入口位置、站台出口位置进行比较,包括:
    当列车处于站台入口位置与站台出口位置之间时,则判断列车处于站台;
    当列车不处于站台入口位置与站台出口位置之间时,则判断列车处于区间;
    当列车处于未确定运营方向状态时,无法判断列车位置。
PCT/CN2019/105219 2019-06-12 2019-09-10 一种基于电子信标的列车自动驾驶系统 WO2020248410A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910507586.3 2019-06-12
CN201910507586.3A CN110356435B (zh) 2019-06-12 2019-06-12 一种基于电子信标的列车自动驾驶系统

Publications (1)

Publication Number Publication Date
WO2020248410A1 true WO2020248410A1 (zh) 2020-12-17

Family

ID=68216082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105219 WO2020248410A1 (zh) 2019-06-12 2019-09-10 一种基于电子信标的列车自动驾驶系统

Country Status (2)

Country Link
CN (1) CN110356435B (zh)
WO (1) WO2020248410A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111252112B (zh) * 2019-11-25 2022-10-11 高新兴创联科技有限公司 基于地面信标的轨道交通工程车的正线控制方法
CN112874579A (zh) * 2019-11-29 2021-06-01 比亚迪股份有限公司 列车开门判定方法和车载控制器
CN111391889B (zh) * 2020-04-29 2024-03-29 卡斯柯信号有限公司 一种基于应答器的列车准确停车控制的信号系统
CN111746597A (zh) * 2020-06-11 2020-10-09 中铁第四勘察设计院集团有限公司 一种列车停车控制系统及方法
CN111746596A (zh) * 2020-06-11 2020-10-09 中铁第四勘察设计院集团有限公司 一种列车停车控制方法和装置
CN112249096B (zh) * 2020-09-14 2022-09-27 南京铁道职业技术学院 一种城市轨道交通车站的精确停车方法
CN112124365B (zh) * 2020-09-18 2022-08-30 交控科技股份有限公司 城轨信号系统停车点定测方法以及系统
CN113276911B (zh) * 2021-07-08 2023-01-20 中铁二院工程集团有限责任公司 一种悬挂式单轨车辆段列车位置检测方法及系统
CN113734242B (zh) * 2021-10-13 2023-05-12 上海电气泰雷兹交通自动化系统有限公司 一种基于统计特征的地铁列车精确定位方法
CN114750807A (zh) * 2022-06-16 2022-07-15 卡斯柯信号(北京)有限公司 地铁运行控制方法及装置
CN115447639B (zh) * 2022-09-22 2024-01-02 中车成都机车车辆有限公司 一种停车精度测试方法、装置、设备及可读存储介质
CN117565937B (zh) * 2024-01-17 2024-04-09 湖南承希科技有限公司 一种基于wlan技术实现轨道列车动态定位方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080078158A (ko) * 2007-02-22 2008-08-27 현대로템 주식회사 열차 자동 운행 시스템
CN102167064A (zh) * 2011-04-08 2011-08-31 南京工程学院 Rfid辅助的地铁列车位置检测及精确停车系统
CN107621823A (zh) * 2017-08-31 2018-01-23 金勇� 自动行驶汽车的站台精准停车系统
CN108082225A (zh) * 2017-12-18 2018-05-29 江苏添仂智能科技有限公司 基于uwb传感器作为轨道信标对轨道无人车进站进行自动控制的方法
CN108099962A (zh) * 2017-12-02 2018-06-01 天津津航计算技术研究所 一种基于rfid技术的列车位置类型自动识别系统及应用
CN109211263A (zh) * 2018-08-31 2019-01-15 江苏飞梭智行设备有限公司 一种轨道交通测距系统及其方法
CN109255267A (zh) * 2018-09-11 2019-01-22 安徽安为科技有限公司 车辆站台rfid识别装置
CN109455201A (zh) * 2018-12-29 2019-03-12 数源科技股份有限公司 一种基于rfid定位的环线管轨小型车辆的自动驾驶辅助制动系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103129585A (zh) * 2012-07-20 2013-06-05 上海城基中控技术有限公司 列车自动跟踪定位系统
CN104442927B (zh) * 2013-10-24 2017-04-26 上海宝信软件股份有限公司 基于rfid的轨道交通列车定位方法
CN104002837B (zh) * 2014-06-11 2017-01-04 上海工程技术大学 一种基于rfid的轨道交通列车自动记点及定位系统
CN104228884B (zh) * 2014-08-29 2016-07-06 深圳市远望谷信息技术股份有限公司 在铁路站场内实现车辆自动识别及追踪定位的方法及装置
WO2016166879A1 (ja) * 2015-04-17 2016-10-20 株式会社日立製作所 鉄道運行管理システム
CN205971372U (zh) * 2016-08-29 2017-02-22 西南交通大学 地铁车厢乘客分布多模式检测及站台引导系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080078158A (ko) * 2007-02-22 2008-08-27 현대로템 주식회사 열차 자동 운행 시스템
CN102167064A (zh) * 2011-04-08 2011-08-31 南京工程学院 Rfid辅助的地铁列车位置检测及精确停车系统
CN107621823A (zh) * 2017-08-31 2018-01-23 金勇� 自动行驶汽车的站台精准停车系统
CN108099962A (zh) * 2017-12-02 2018-06-01 天津津航计算技术研究所 一种基于rfid技术的列车位置类型自动识别系统及应用
CN108082225A (zh) * 2017-12-18 2018-05-29 江苏添仂智能科技有限公司 基于uwb传感器作为轨道信标对轨道无人车进站进行自动控制的方法
CN109211263A (zh) * 2018-08-31 2019-01-15 江苏飞梭智行设备有限公司 一种轨道交通测距系统及其方法
CN109255267A (zh) * 2018-09-11 2019-01-22 安徽安为科技有限公司 车辆站台rfid识别装置
CN109455201A (zh) * 2018-12-29 2019-03-12 数源科技股份有限公司 一种基于rfid定位的环线管轨小型车辆的自动驾驶辅助制动系统

Also Published As

Publication number Publication date
CN110356435A (zh) 2019-10-22
CN110356435B (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2020248410A1 (zh) 一种基于电子信标的列车自动驾驶系统
EP3483030B1 (en) Automatic train protection method based on vehicle-vehicle communication, corresponding vehicle on-board controller and train comprising such a controller
WO2021143238A1 (zh) 基于列车自主定位的移动闭塞列车运行控制方法及系统
US10259478B1 (en) Vehicle-vehicle communication based urban train control system
CN109080667B (zh) 一种基于车车协作的列车移动授权方法
CN110194201B (zh) 一种列控等级转换系统及其方法
CN111731347B (zh) 一种虚拟区段占用检查方法
CN107709136B (zh) 用于为轨道车辆确定行驶授权的方法和装置
WO2021012989A1 (zh) 一种基于列车追踪关系筛选车头前方空闲的方法和系统
CN104008655B (zh) 基于集中差分gps定位的有轨电车道口信号优先控制方法
CN208978874U (zh) 基于北斗短报文的列车运行控制系统
KR20200108871A (ko) 무선 열차관리 시스템
CN109591849A (zh) 一种基于卫星定位技术的城际铁路列控系统
CN104554299B (zh) 基于atp/td环线制式的列车自动驾驶方法
CN109532955B (zh) 一种微轨调度控制方法及系统
CN109211263B (zh) 一种轨道交通测距系统及其方法
CN113525458B (zh) 一种lkj基础数据的组织和运用方法
CN111731346A (zh) 基于近距离通信的列车定位和降级资源管理系统及方法
CN112590885B (zh) 一种市域铁路信号控制系统
CN113401187B (zh) 列车进路办理方法及装置
CN114684222A (zh) 一种基于应答器双向传输的列车控制方法及系统
CN114348064A (zh) 无线应答器报文叠加进路信息的生成及控制方法、系统
CN114348059A (zh) 一种基于自组网的进路分段解锁及逻辑处理方法、系统
CN115257887B (zh) 一种列车移动授权终点的确定方法
CN114394136B (zh) 一种用于市域铁路c2+ato的列车控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933050

Country of ref document: EP

Kind code of ref document: A1