WO2020248180A1 - 内建影像内视镜的全时影像监控的气管内管 - Google Patents

内建影像内视镜的全时影像监控的气管内管 Download PDF

Info

Publication number
WO2020248180A1
WO2020248180A1 PCT/CN2019/091014 CN2019091014W WO2020248180A1 WO 2020248180 A1 WO2020248180 A1 WO 2020248180A1 CN 2019091014 W CN2019091014 W CN 2019091014W WO 2020248180 A1 WO2020248180 A1 WO 2020248180A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular body
optical
endotracheal tube
patient
full
Prior art date
Application number
PCT/CN2019/091014
Other languages
English (en)
French (fr)
Inventor
张立伟
Original Assignee
张立伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张立伟 filed Critical 张立伟
Priority to US17/618,814 priority Critical patent/US20220355054A1/en
Priority to EP19932846.9A priority patent/EP3984440A4/en
Priority to JP2021573774A priority patent/JP2022536176A/ja
Priority to PCT/CN2019/091014 priority patent/WO2020248180A1/zh
Publication of WO2020248180A1 publication Critical patent/WO2020248180A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00154Holding or positioning arrangements using guiding arrangements for insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • A61B1/051Details of CCD assembly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0475Tracheal tubes having openings in the tube
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0486Multi-lumen tracheal tubes

Definitions

  • the present invention relates to an endotracheal tube, in particular to an endotracheal tube that can be used for routine and difficult endotracheal intubation, with a built-in video endoscope and full-time video monitoring, which can be used for full-time monitoring of the endotracheal tube
  • the location, structure and various conditions of the trachea are particularly important.
  • Endotracheal intubation is used for airway management, establishes definite airway conditions, and is an important first-aid measure in the first-line emergency, trauma, and critical medical field.
  • the patient may cause respiratory failure due to pneumonia or acute pulmonary edema, cerebral stroke or hypoglycemia causing unconsciousness, facial trauma endangering the respiratory tract, and even acute tonsillitis or foreign body choking caused by upper airway obstruction, all require first-line medical personnel to urgently Intervention to maintain the patient's oxygen and ventilation (oxygenation and ventilation) to avoid irreversible complications caused by hypoxia.
  • Endotracheal intubation is to insert an endotracheal tube into the patient’s trachea and connect it with a respirator so that the respirator can deliver oxygen to the patient’s trachea to ensure the patient’s airway is unblocked and prevent foreign bodies from inhaling Lungs to ensure that the patient has adequate ventilation.
  • the operator when performing endotracheal intubation operations, the operator must ensure that the endotracheal tube is correctly inserted into the trachea, and avoid inserting the endotracheal tube into the esophagus that is separated by a line.
  • the current medical methods to ensure the correct intubation position and depth of the endotracheal tube include listening with a stethoscope, checking the endotracheal wall for fogging, taking X-rays after intubation, and end tidal carbon dioxide (EtCO2) Monitor; EtCo2 is a carbon dioxide detector located between the endotracheal tube and the respirator.
  • the endotracheal tube is in the correct position. It is in the trachea, but This method still has shortcomings in use.
  • the carbon dioxide detector is easily blocked by the patient’s sputum or secretions, which affects the interpretation, and the patient moves or shakes during the journey, for example: in an ambulance or being sent out of the intensive care unit to do it. During the inspection, it is easy to cause inaccurate detection, error, or misjudgment; in addition, the overall carbon dioxide detector is very heavy and there is a risk of pulling out the endotracheal tube.
  • the traditional optical-stylet (optical-stylet) endotracheal intubation tube is assembled into the central channel of the endotracheal tube by an optical-stylet with a photographic lens at one end (patient end), and inserted into the patient’s trachea together with the endotracheal tube.
  • the main purpose of the present invention is to provide an endotracheal tube for full-time video monitoring with a built-in video endoscope, which has a main channel for the respirator to deliver oxygen to the patient’s trachea, and a secondary channel for a photographing device
  • the optical vents are installed to achieve the purpose of monitoring the position of the endotracheal tube, the internal structure of the trachea and various conditions at all times.
  • An embodiment of the present invention provides an endotracheal tube for full-time video monitoring with a built-in video endoscope, which includes: a tubular body having flexibility and a pre-shaped curvature, and the tubular body is used for Placed in the patient’s trachea; the tubular body has a front end and a back end arranged oppositely, the front end is connected to the respirator, the tubular body is provided with an inflatable bag; the tubular body is penetrated with a main channel and a secondary channel, wherein the main channel penetrates the front end And the rear end, allowing the respirator to deliver oxygen from the main channel to the patient’s trachea; the auxiliary channel is located on one side of the main channel and has a front end opening and a rear end opening that communicate with each other.
  • the front end opening is located on the side of the tubular body When the tubular body is placed in the patient’s trachea, the front end opening is higher than the patient’s bite part; and an optical flute, the length of which is greater than the tubular body, flexibility, and optical communication
  • the strip passes through the front and rear openings of the secondary channel.
  • the end of the optical flute is provided with a photographing device, which is coupled to the display. The end of the optical flute passes through the rear opening, and the photographic device captures the patient’s trachea. image.
  • the part of the optical pipe passing through the front opening has a measurement scale.
  • the rear end of the tubular body is bevel-shaped, and the inclination angle of the rear end of the tubular body is greater than 0 degrees and less than 90 degrees.
  • the number of sub-channels is multiple, and each sub-channel is provided for the optical channel to pass through.
  • the auxiliary channels are arranged at equal angles.
  • the optical pipes pass through the rear end openings of the sub-channels and the photographing device faces different directions to capture images.
  • a side edge of the tubular body is provided with an air port, the air port is adjacent to the rear end, and the air port communicates with the main channel.
  • the caliber of the air port is equal to the inner diameter of the main channel, or the caliber of the air port is smaller than the inner diameter of the main channel and larger than the tube diameter of the secondary channel.
  • the radial cross section of the tubular body is generally elliptical, and the radial cross section of the main channel is generally elliptical.
  • the camera is connected to a display remotely.
  • the present invention can achieve the effect.
  • the oxygen and optical ventilation strips of the respirator can enter the tubular body from the main channel and the auxiliary channel respectively. Therefore, during the endotracheal tube intubation process, the optical ventilation strip extends most of the tubular body.
  • the front end is used as a guide, and through the camera device at the end and the display connected to the camera device, the operator can continuously monitor the intubation process of the endotracheal tube at all times, identify and find the glottis (glottis)-intratrachea at the front end
  • the built-in optical fluting is pulled back and retracted parallel to the end of the tubular body after the endotracheal tube intubation is completed, which is used as a follow-up full-time
  • a full-time monitor that monitors the internal condition of the trachea, bleeding or sputum, and the position of the endotracheal tube; compared with the traditional optical tube, the endotracheal tube must be removed after intubation, which can only be temporarily
  • the present invention has the advantages of any bleeding, expectoration or position change, which can be monitored and processed in time.
  • the present invention can avoid the labor, time, and exposure of medical staff that were used to irradiate chest X-rays in the past The probability of radiation, and greatly improve patient safety.
  • the user can use the traditional technology of using optical vents to enter the optical vents into the tubular body from the main channel and the secondary channel respectively, and the optical vents that enter the main channel extend out of the rear end of the tubular body as the main guide for exploration Intratracheal and search for glottis, this is the traditional optical stylet intubation operation (Optical Stylet Intubation).
  • the optical stylet in the secondary channel continuously monitors the intubation process of the endotracheal tube at all times; In this way, the present invention can combine the use and maintenance of traditional optical flue endotracheal intubation technology, so that the first user can use it immediately, plus auxiliary channel optical flue image monitoring, to achieve and create a safer More efficient multi-angle wide-field imaging monitoring intubation technology.
  • Figure 1 Schematic diagram of the appearance of the first embodiment of the present invention
  • Figure 2 An exploded schematic diagram of the first embodiment of the present invention
  • Figure 3 Sectional view in the direction of the arrow of section line 3-3 in Figure 2;
  • Figure 4 A schematic side view of the first embodiment of the present invention (1), showing that the inclination angle of the rear end of the tubular body is 35 degrees;
  • Figure 5 Schematic diagram of the first embodiment of the present invention for optical cleaning strip photography (1);
  • Figure 6 A schematic side view (two) of the first embodiment of the present invention, showing that the inclination angle of the rear end of the tubular body is 50 degrees;
  • Fig. 7 Schematic diagram of the first embodiment of the present invention for optical cleaning strip photography (2);
  • FIG. 8 Schematic diagram of the use state of the present invention.
  • Fig. 9 A schematic diagram of the appearance of the second embodiment of the present invention.
  • the present invention provides an endotracheal tube for full-time video monitoring with a built-in video endoscope, which includes:
  • a tubular body 10 which is flexible and has a pre-shaped curvature.
  • the radial cross section of the tubular body 10 is generally elliptical, as shown in FIG. 3; the tubular body 10 is used to be placed in the trachea 2 of the patient 1 .
  • the tubular body 10 has a front end 11 and a rear end 12 oppositely arranged. The front end 11 is connected to the respirator.
  • An inflatable bladder 13 is provided adjacent to the rear end 12.
  • the rear end 12 of the tubular body 10 is oblique or flat.
  • the rear end 12 of the tubular body 10 is bevel-shaped, and the inclination angle ⁇ of the rear end 12 of the tubular body 10 is greater than 0 degrees and less than 90 degrees, where, please refer to FIG. 4,
  • the inclination angle ⁇ of the rear end 12 is 35 degrees; please refer to Fig. 6, the inclination angle ⁇ of the rear end 12 is 50 degrees; when the inclination angle ⁇ is larger, the inclined surface of the rear end 12 is larger.
  • the flexible tubular body 10 and the rear end 12 of the oblique mouth can be more Smoothly and gently bends around the protruding feature, which can effectively avoid the protruding feature trauma; in the second embodiment of the present invention, the rear end 12 of the tubular body 10 is flat, as shown in FIG. 9.
  • tubular body 10 is provided with a main channel 14, which penetrates the front end 11 and the rear end 12 of the tubular body 10, so that the respirator can send oxygen from the main channel 14 to the trachea 2 of the patient 1.
  • the diameter of the main channel 14 The cross section is roughly elliptical, as shown in Figure 3.
  • the tubular body 10 also has a secondary channel 15 through it.
  • the secondary channel 15 is provided on one side of the main channel 14 and has a front opening 151 and a rear opening 152 communicating with each other.
  • the front opening 151 is located at the side edge of the tubular body 10.
  • the rear end opening 152 is opened at the rear end 12; when the tubular body 10 is placed in the trachea 2 of the patient 1, the front end opening 151 is higher than the bite site 3 of the patient 1, and is exposed before the bite site 3, at the bite site Exposed and visible; among them, the number of secondary channels 15 is multiple, and each secondary channel 1514 is set at an equal angle; in the embodiment of the present invention, as shown in FIG. 3, the number of secondary channels 15 is two, and two Channels 15 are separated by 180 degrees.
  • the side edge of the tubular body 10 is provided with an air port 16 (Murph Eye), the air port 16 is adjacent to the rear end 12, and the air port 16 communicates with the main channel 14, wherein the caliber of the air port 16 is equal to the inner diameter of the main channel 14, or the caliber of the air port 16. It is smaller than the inner diameter of the main channel 14 and larger than the tube diameter of the secondary channel 15. In the embodiment of the present invention, the diameter of the air port 16 is three-quarters of the inner diameter of the main channel 14.
  • An optical flute 20 has a length greater than that of the tubular body 10 and is flexible.
  • the curvature of the optical flue 20 can meet the curvature of the tubular body 10; the optical flue 20 penetrates through the front opening 151 of the auxiliary channel 15 and The rear end opening 152.
  • the end 21 of the optical tube 20 is located at the rear opening 152, the part of the optical tube 20 passing through the front opening 151 has a measurement scale 22.
  • the optical tube 20 The number matches the number of the secondary channels 15, and each secondary channel 15 is provided with an optical pipe 20.
  • the end 21 of the optical tube 20 is provided with a photographing device 23.
  • the end 21 of the optical tube 20 passes through the rear end opening 152, and the image of the patient 1’s trachea 2 is captured by the photographing device 23, and
  • Each optical flute 20 passes through the rear end opening 152 of each sub-channel 15 and the photographing device 23 captures images in different directions.
  • the photographing devices 23 of the two optical flutes 20 respectively Images are captured in direction a and direction b; thereby, the images can be complementary and partially overlapped, and the glottis can be found and located with multiple angles and enlarged fields of view, helping to quickly and effectively perform endotracheal intubation.
  • the photographing device 23 is coupled to the display.
  • the display can be an eyepiece or a remote screen.
  • the display can be wired or wirelessly connected to the photographing device 23.
  • the display is arranged at an end of the optical tube 20 that is different from the photographing device 23. It is connected to the photographing device 23 in a wired connection; when the display is a remote screen, it is remotely connected to the photographing device 23 in a wireless connection.
  • the operator passes the optical flute 20 through the auxiliary channel 15 from the rear end 12 of the tubular body 10 as a guide to find and locate the glottis, first put the optical flute 20 into In the trachea 2 of the patient 1, at this time, the imaging device 23 at the end 21 of the optical tube 20 can capture the image of the trachea 2, and the operator can see the carina 4 (carina) of the patient 1 through the display After confirming that the optical flue 20 is located in the trachea 2 of the patient 1, the tubular body 10 can be placed in the trachea 2 of the patient 1 along the optical flue 20. This method is called railroad guide.
  • the length of the optical tube 20 extended and retracted can be checked at any time; and the bite part 3 of the patient 1 bites the tubular body 10, and the tube is completed The procedure of inserting the body 10 into the trachea 2; then, the operator can connect the tubular body 10 to a respirator, so that the respirator can deliver oxygen from the main channel 14 to the trachea 2 of the patient 1.
  • the secondary channels 15 of the present invention are provided on the left and right sides of the tubular body 10, and the operator can pass the main control optical flute 20 into the secondary channel 15 corresponding to the dominant hand according to the habits of the dominant hand, and the other secondary channels 15 penetrate
  • the optical cleaning strip 20 is used to assist in increasing the photographic field of view.
  • the multi-view and expanded field of view assist in finding and positioning the glottis, helping to quickly and effectively intubate the endotracheal 2 tubes; as shown in Figure 5, the two optical channels
  • the photographing device 23 of the bar 20 captures images in the direction a and the direction b respectively.
  • the oxygen of the respirator and the optical flue 20 can enter the tubular body 10 through the main channel 14 and the secondary channel 15 respectively, the optical flue 20 does not need to be pulled out during the intubation process of the entire trachea 2.
  • the operator can continuously monitor the intubation process at all times through the camera 23 and the display at the end 21 to achieve the function of monitoring the position of the endotracheal tube at all times, which can effectively prevent the position of the intubation from slipping and errors.
  • the optical cleaning rod 20 extends about eight to ten centimeters from the rear end 12 of the tubular body 10 as a guide, and is connected to the camera 23 and the camera 23 at the end 21 of the optical cleaning rod 20 With the display, the operator can continuously monitor the endotracheal intubation process of the endotracheal tube at all times, identify and find the entrance of the glottis in the trachea 2 at the rear end 12 of the tubular body 10; it is also different from the traditional After intubating the endotracheal tube, the optical cleaning strip 20 of the present invention is pulled back and retracted parallel to the rear end 12 of the tubular body 10 after the endotracheal tube 2 is intubated.
  • the present invention has the advantages that any bleeding, sputum, and position changes can be monitored and processed in time.
  • the tube can be monitored in full time
  • the position of the body 10 and the distance between its rear end 12 and the carina 4 (carina) in the trachea can adjust the depth and position of the tubular body 10 at any time to prevent it from slipping off the trachea 2 of the patient 1 or slipping into the esophagus by mistake;
  • the labor, time, and the probability of exposure of medical staff to radiation can be eliminated by irradiating chest X-rays in the past, and the safety of the patient 1 can be greatly increased.
  • the radial cross-section of the tubular body 10 is generally elliptical, which can fit the mouth shape of the patient 1 so that the patient 1 can easily bite the tubular body 10 without having to open the mouth too much, thereby providing the patient 1 with comfort during biting.
  • the user can use the traditional technology of using the optical cleaning rod 20 to enter the optical cleaning rod 20 from the main channel 14 and the auxiliary channel 15 into the tubular body 10, so that the optical cleaning rod 20 of the main channel 14 extends out of the tubular body 10
  • the back end 12 is used as the main guide to explore the trachea 2 and find the glottis.
  • the present invention can combine the use and maintenance of the traditional optical wiping 20 endotracheal intubation technology, so that the first user can use it immediately, plus auxiliary
  • the optical cleaning rod 20 of the auxiliary channel 15 achieves and creates a safer and more efficient multi-angle wide-view image monitoring intubation technology.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Anesthesiology (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Endoscopes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种内建影像内视镜的全时影像监控的气管内管,其包括管状本体(10)及光学通条(20),管状本体(10)放置于病人(1)的气管内(2);管状本体(10)的前端(11)连接呼吸器,管状本体(10)设有充气囊(13);管状本体(10)的主通道(14)贯穿前后端(11,12),使呼吸器将氧气由主通道(14)送至病人(1)的气管内(2);管状本体(10)的副通道(15)具有前端开口(151)及后端开口(152),前端开口(151)位于管状本体(10)的侧缘,后端开口(152)开设于后端(12),当管状本体(10)放置于病人(1)的气管内(2)时,前端开口(151)高于病人(1)的口咬部位(3);光学通条(20)穿设于副通道(15),光学通条(20)设有耦接显示器的摄影装置(23),摄影装置(23)由后端开口(152)穿出,以撷取病人(1)气管内(2)的影像。

Description

内建影像内视镜的全时影像监控的气管内管 技术领域
本发明关于一种气管内管,尤指一种可以运用于例行及困难气管内管插管,内建影像内视镜,全时影像监控的气管内管,可用以全时监控气管内管的位置、气管内结构及各种状况。
背景技术
气管内管插管(Endotracheal Intubation)用于呼吸道处理(airway management),建立确定呼吸道(definite airway)情况,为第一线急诊、外伤、重症医疗领域重要的急救措施。病人可能因为肺炎或是急性肺水肿引起呼吸衰竭、脑中风或是低血糖引起意识昏迷、颜面外伤危及呼吸道、甚至急性扁桃腺炎或是异物哽塞引起上呼道阻塞都需要第一线医疗人员紧急介入,以维持病人的给氧及通气(oxygenation and ventilation),避免缺氧造成不可逆的并发症。
气管内管插管是将一气管内管(Endotracheal tube)插入病人的气管内,并接上一呼吸器,以使呼吸器将氧气送至病人的气管内,确保病人的呼吸道畅通、防止异物吸入肺部,进而确保病人有足够的通气量。
发明概述
技术问题
然而,进行气管内管插管作业时,操作人员必须确保气管内管正确插入气管内,且避免将气管内管插入一线之隔、邻近的食道。而目前医疗上确保气管内管正确插管位置及深浅的方法,包括以听诊器听、检视气管内管壁是否有进出的雾气(fogging)、插管后拍摄X光、及潮气末二氧化碳(EtCO2)监测器;EtCo2是通过一设于气管内管及呼吸器之间的二氧化碳侦测器,若病人的吐气含有很高的二氧化碳浓度,即可确定气管内管的位置正确,是位于气管内,但此种方式仍有运用上的缺陷,二氧化碳侦测器容易被病人的痰或分泌物堵住而影响判读,且病人在行进中移动或是晃动,例如:救护车上或被送出加护病房去做检查时,容易造成其侦测不准、误差或是误判等情况发生;此外,整体二氧化碳侦测 器非常笨重,容易有将气管内管扯动拔出的风险。
因此对应此种缺陷,医界需要发展出另一种方法,更有效、更稳定的侦测及确定气管内管位置。传统光学通条(optical-stylet)气管内管插管以一末端(病人端)具有摄影镜头的光学通条组装放入气管内管中央通道内,连同气管内管一起插入病人的气管中,若此时通过摄影镜头连接的显示器,可看到病人左右支气管内的分岔处(气管内隆突,英文名carina),气管内管的插管位置即正确;之后必须将光学通条拔出,才可将气管内管接上呼吸器。
气管内管插管当时,可以看到气管内隆突(carina),确定气管内管的正确位置,且之后以各种方式辅助以确定气管内管的插管位置,例如听诊、气管内管壁雾气(fogging)、插管后拍摄X光、及潮气末二氧化碳(EtCO2)监测器;但之后病人移动、活动、翻身、咳痰都有可能改变气管内管位置;病人自急诊收住院到加护病房、自加护病房转出做各种检查、急诊及重症病人院际转院、插管病人咳嗽抽痰、开刀房麻醉中病人翻身以进行手术都有气管内管滑脱跑位的风险,且发生时往往造成延迟发现及处理的呼吸道处理悲剧。
问题的解决方案
技术解决方案
本发明的主要目的,在于提供一种内建影像内视镜的全时影像监控的气管内管,其具有主通道供呼吸器将氧气送至病人的气管内,还具有副通道供具有摄影装置的光学通条穿设,以达到全时监控气管内管的位置、气管内部的结构及各种状况的目的。
而其解决问题的技术方案,是这样实现的:
本发明一项实施例提供一种的内建影像内视镜的全时影像监控的气管内管,其包括:一管状本体,其具有可挠性且具有预型的曲度,管状本体用以放置于病人的气管内;管状本体具有相反设置的一前端及一后端,前端连接呼吸器,管状本体设有一充气囊;管状本体穿设一主通道及一副通道,其中,主通道贯穿前端及后端,使呼吸器将氧气由主通道送至病人的气管内;副通道设于主通道的一侧,并具有相互连通的一前端开口及一后端开口,前端开口位于管状本体的侧缘,后端开口开设于后端,该管状本体放置于病人的气管内时,前端开口 高于病人的口咬部位;以及一光学通条,其长度大于管状本体且具有可挠性,光学通条穿设于副通道的前、后端开口,光学通条的末端设有一摄影装置,摄影装置耦接显示器,光学通条的末端由后端开口穿出,由摄影装置撷取病人气管内的影像。
在其中一项实施例中,光学通条的末端位于后端开口时,光学通条自前端开口穿出的部分具有一量测刻度。
在其中一项实施例中,管状本体的后端为斜口状,管状本体的后端倾斜角度为大于0度且小于90度。
在其中一项实施例中,副通道的数量为多个,各副通道供光学通条穿设。
在其中一项实施例中,各副通道等角度设置。
在其中一项实施例中,所述光学通条由各副通道的后端开口穿出且摄影装置朝向不同方向撷取影像。
在其中一项实施例中,管状本体的侧缘开设有一气口,气口邻近后端,气口连通主通道。
在其中一项实施例中,气口的口径等于主通道的内径,或是气口的口径小于主通道的内径且大于副通道的管径。
在其中一项实施例中,管状本体的径向剖面概呈椭圆形,主通道的径向剖面概呈椭圆形。
在其中一项实施例中,摄影装置远端连接显示器。
通过上述技术方案,本发明可达成功效,呼吸器的氧气及光学通条可分别由主通道及副通道进入管状本体,因此,在气管内管插管过程中,光学通条伸出管状本体最前端作为导引,并通过其末端的摄影装置及摄影装置连接的显示器,操作人员即可全时连续地监控气管内管的插管过程,在最前端辨别及找寻声门(glottis)-气管内的入口;同时有别于传统的光学通条气管内管插管,内建式的光学通条在完成气管内管插管后拔回内缩与管状本体末端平行,此时做为后续全时监控气管内(trachea)内部状况、出血或是咳痰,以及气管内管(endotracheal tube)位置的全时监视器;相对于传统光学通条在气管内管插管后必需拔除,仅能短暂的监视气管内状况,本发明则有任何出血咳痰或位置改变,可以监控并予以 及时处理的优点。
并且,病人在气管内管插管之后,在急诊及加护病房,不需照射胸部X光,通过本发明即可全时影像监控气管内管的位置及其与气管内隆突(carina)相对的距离,以随时调整气管内管的深度及位置,避免其自病人的气管内滑脱或是滑落误入食道,通过本发明可免除以往因照射胸部X光所耗费的人力、时间及医护人员暴露于辐射线的机率,且大幅提升病人安全。
此外,使用者能够以传统使用光学通条的技术,将光学通条分别由主通道及副通道进入管状本体,以进入主通道的光学通条伸出管状本体的后端,作为主要导引探索气管内及寻找声门的作业,这是传统的光学通条气管内管插管作业(Optical Stylet Intubation),位于副通道的光学通条,则全时连续地监控气管内管的插管过程;借此,本发明能够结合使用及维持传统光学通条气管内管插管的技术,使初次使用者能立即使用,再加上辅助的副通道光学通条影像监测,以达成及创造出更安全更有效率的多角度广视野影像监测插管技术。
发明的有益效果
对附图的简要说明
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1:本发明第一实施例外观示意图;
图2:本发明第一实施例分解示意图;
图3:图2的3-3剖面线箭头方向剖视;
图4:本发明第一实施例侧视示意图(一),表示管状本体的后端的倾斜角度为35度;
图5:本发明第一实施例光学通条摄影示意图(一);
图6:本发明第一实施例侧视示意图(二),表示管状本体的后端的倾斜角度为50度;
图7:本发明第一实施例光学通条摄影示意图(二);
图8:本发明的使用状态示意图;
图9:本发明第二实施例外观示意图。
附图标记说明
1病人
2气管内
3口咬部位
4气管内隆突
10管状本体
11前端
12后端
13充气囊
14主通道
15副通道
151前端开口
152后端开口
16气口
20光学通条
21末端
22量测刻度
23摄影装置
方向a
方向b
倾斜角度θ。
实施该发明的最佳实施例
本发明的最佳实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
请参阅图1至图9所示,本发明提供一种内建影像内视镜的全时影像监控的气管内管,其包括:
一管状本体10,其具有可挠性且有预型的曲度,管状本体10的径向剖面概呈椭圆形,如图3所示;管状本体10用以放置于病人1的气管内2内。管状本体10具有相反设置的一前端11及一后端12,前端11连接呼吸器,邻近于后端12设有一充气囊13,其中,管状本体10的后端12为斜口状或平口状,在本发明第一实施例中,管状本体10的后端12为斜口状,管状本体10的后端12的倾斜角度θ为大于0度且小于90度,其中,请参阅图4所示,后端12的倾斜角度θ为35度;请参阅图6所示,后端12的倾斜角度θ为50度;当倾斜角度θ角度越大,表示后端12的倾斜面越大,因此,当管状本体10放入病人1的气管内2过程中,后端12与气道的突出特征(例如:声带和鼻甲)接触时,通过可挠性的管状本体10及斜口的后端12能更加滑顺且轻柔弯曲地绕过突出特征,能有效避免突出特征创伤;在本发明第二实施例中,管状本体10的后端12为平口状,如图9所示。
并且,管状本体10穿设一主通道14,主通道14贯穿管状本体10的前端11及后端12,使呼吸器将氧气由主通道14送至病人1的气管内2,主通道14的径向剖面概呈椭圆形,如图3所示。
管状本体10还穿设一副通道15,副通道15设于主通道14的一侧,并具有相互连通的一前端开口151及一后端开口152,前端开口151位于管状本体10的侧缘,后端开口152开设于后端12;当管状本体10放置于病人1的气管内2时,前端开口151高于病人1的口咬部位3,且外露于口咬部位3之前,在口咬合部位外露且可见;其中,副通道15的数量为多个,各副通道1514等角度设置;在本发明实施例中,如图3所示,所述副通道15的数量为2个,两个副通道15间隔180度。
此外,管状本体10的侧缘开设有一气口16(Murph Eye),气口16邻近后端12,气口16连通主通道14,其中,气口16的口径等于主通道14的内径,或是气口16的口径小于主通道14的内径且大于副通道15的管径,在本发明实施例中,气口16的口径为主通道14内径的四分之三。
一光学通条20,其长度大于管状本体10且具有可挠性,光学通条20的弯曲度能符合管状本体10的弯曲度;光学通条20穿贯设于副通道15的前端开口151及后端 开口152,光学通条20的末端21位于后端开口152时,光学通条20自前端开口151穿出的部分具有一量测刻度22,在本发明实施例中,光学通条20的数量配合所述副通道15的数量,每一副通道15穿设有一条光学通条20。
所述光学通条20的末端21设有一摄影装置23,摄影装置23所述光学通条20的末端21由后端开口152穿出,通过摄影装置23撷取病人1的气管内2影像,而每一光学通条20由各副通道15的后端开口152穿出且摄影装置23朝向不同方向撷取影像,请参阅图5及图7所示,两光学通条20的摄影装置23分别往方向a及方向b撷取影像;借此,能够使影像互补及部分重叠,以多角度及增广视野辅助寻找及定位声门(glottis),帮助迅速及有效的进行气管内2插管。
并且,摄影装置23耦接显示器,显示器可为目镜或远端萤幕,显示器能够有线或无线与摄影装置23连接,当显示器为目镜时,显示器设于光学通条20异于摄影装置23的一端,以有线连接的方式连接于摄影装置23;当显示器为远端屏幕时,则以无线连接的方式与摄影装置23远端连接。
请参阅图8所示,操作人员将光学通条20通过副通道15自管状本体10的后端12穿出后作为导引,寻找及定位声门(glottis),先将光学通条20放入于病人1的气管内2内,此时,光学通条20末端21的摄影装置23即可撷取气管内2的影像,而操作人员通过显示器看到病人1的气管内隆突4(carina),确认光学通条20是位于病人1的气管内2内后,即可再将管状本体10沿着光学通条20放入于病人1的气管内2内,此种方法称为railroad轨道导入,以确保管状本体10的插管位置;此时将做为导引的光学通条20拉出回收,使光学通条20的末端21与管状本体10平行,或是稍微内缩内收,之后就做为全时监控的光学通条20。
然后,通过光学通条20的量测刻度22,即可随时查看光学通条20伸出及内缩内收的长度;而病人1的口咬部位3将管状本体10咬住后,便完成管状本体10插入气管内2的程序;接着,操作人员可将管状本体10接上呼吸器,以使呼吸器将氧气由主通道14送至病人1的气管内2。
本发明的副通道15设于管状本体10的左右侧,操作人员能够依照惯用手习惯,将主要操控的光学通条20穿入对应惯用手的所述副通道15中,其它副通道15所穿设的光学通条20则为辅助增加摄影视野所用,以多视角及增广视野辅助寻找 及定位声门(glottis),帮助迅速及有效气管内2插管;如图5所示,两光学通条20的摄影装置23分别往方向a及方向b撷取影像。
借此,由于呼吸器的氧气及光学通条20可分别由主通道14及副通道15进入管状本体10,因此,在整个气管内2的插管过程中,光学通条20不需拔出,操作人员通过其末端21的摄影装置23及显示器,能够全时连续地监控插管过程,以达到全时监控气管内管的位置的功能,可有效防止插管位置滑落及错误的情形发生。
在气管内2插管过程中,光学通条20伸出管状本体10的后端12约八至十厘米做为导引,通过光学通条20的末端21的摄影装置23及摄影装置23连接的显示器,操作人员即可全时连续地监控气管内管的插管(endotracheal intubation)过程,在管状本体10的后端12辨别及找寻声门(glottis)气管内2的入口;同时有别于传统的通条气管内管插管,本发明光学通条20在完成气管内2插管后,拔回内缩与管状本体10的后端12平行,此时做为后续全时监控气管内2(trachea)内部状况、出血或是咳痰,以及气管内管(endotracheal tube)位置的全时监视器;相对于传统通条在气管内2插管后必需拔除,仅能短暂的监视气管内2内状况,本发明则有任何出血咳痰、位置改变,可以监控并予以及时处理的优点。
并且,病人1在插管之后,在急诊或加护病房,不需照射胸部X光以确定气管内2内管位置,通过光学通条20的摄影装置23及显示器,即可全时影像监控管状本体10的位置及其后端12与气管内隆突4(carina)的距离,以随时调整管状本体10的深度及位置,避免其自病人1的气管内2滑脱或是滑落误入食道;因此,通过本发明可免除以往因照射胸部X光所耗费的人力、时间及医护人员暴露于辐射线的机率,大幅增加病人1安全。
此外,管状本体10的径向剖面概呈椭圆形,能够配合病人1的嘴型,使病人1无须过于张大嘴巴便能轻易咬合管状本体10,借以提供病人1咬合的舒适性。
另外,使用者能够以传统使用光学通条20的技术,将光学通条20分别由主通道14及副通道15进入管状本体10,以进入主通道14的光学通条20伸出管状本体10的后端12,作为主要导引探索气管内2及寻找声门的作业,这是传统光学通条20的气管内管插管作业(Optical Stylet Intubation),而位于副通道15的光学通条20, 则全时连续地监控气管内管的插管过程;借此,本发明能够结合使用及维持传统光学通条20气管内管插管的技术,使初次使用者能立即使用,再加上辅助的副通道15的光学通条20影像监测,以达成及创造出更安全更有效率的多角度广视野影像监测插管技术。
以上说明内容仅为本发明较佳实施例,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (9)

  1. 一种内建影像内视镜的全时影像监控的气管内管,其特征在于:其包括一管状本体,其具有可挠性且具有预型的曲度,该管状本体用以放置于病人的气管内;该管状本体具有相反设置的一前端及一后端,该前端连接呼吸器,该管状本体设有一充气囊;该管状本体穿设一主通道及一副通道,其中,该主通道贯穿该前端及该后端,使呼吸器将氧气由该主通道送至病人的气管内;该副通道设于该主通道的一侧,并具有相互连通的一前端开口及一后端开口,该前端开口位于该管状本体的侧缘,该后端开口开设于该后端,当该管状本体放置于病人的气管内时,该前端开口高于病人的口咬部位,且外露于口咬部位之前;以及
    一光学通条,其长度大于该管状本体且具有可挠性,该光学通条穿设于该副通道的前、后端开口,该光学通条的末端设有一摄影装置,该摄影装置耦接显示器,该光学通条的末端由该后端开口穿出,由该摄影装置撷取病人气管内的影像。
  2. 根据权利要求1所述的内建影像内视镜的全时影像监控的气管内管,其特征在于:该光学通条的末端位于该后端开口时,该光学通条自该前端开口穿出的部分具有一量测刻度。
  3. 根据权利要求1所述的内建影像内视镜的全时影像监控的气管内管,其特征在于:该管状本体的后端为斜口状,该管状本体的后端倾斜角度为大于0度且小于90度。
  4. 根据权利要求1所述的内建影像内视镜的全时影像监控的气管内管,其特征在于:该副通道的数量为多个,各副通道供该光学通条穿设。
  5. 根据权利要求4所述的内建影像内视镜的全时影像监控的气管内管,其特征在于:各副通道等角度设置。
  6. 根据权利要求4所述的内建影像内视镜的全时影像监控的气管内管,其特征在于:所述光学通条由各副通道的后端开口穿出且该摄 影装置朝向不同方向撷取影像。
  7. 根据权利要求1所述的内建影像内视镜的全时影像监控的气管内管,其特征在于:该管状本体的侧缘开设有一气口,该气口邻近该后端,该气口连通该主通道。
  8. 根据权利要求7所述的内建影像内视镜的全时影像监控的气管内管,其特征在于:该气口的口径等于该主通道的内径,或是该气口的口径小于该主通道的内径且大于该副通道的管径根据权利要求1所述的内建影像内视镜的全时影像监控的气管内管,其特征在于:该管状本体的径向剖面概呈椭圆形,该主通道的径向剖面概呈椭圆形。
  9. 根据权利要求1所述的内建影像内视镜的全时影像监控的气管内管,其特征在于:该摄影装置远端连接显示器。
PCT/CN2019/091014 2019-06-13 2019-06-13 内建影像内视镜的全时影像监控的气管内管 WO2020248180A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/618,814 US20220355054A1 (en) 2019-06-13 2019-06-13 Endotracheal tube applied to built-in video endoscope and capable of full-time video monitoring
EP19932846.9A EP3984440A4 (en) 2019-06-13 2019-06-13 ENDOTRACHEAL TUBE FOR INTEGRATED VIDEO ENDOSCOPE FOR FULL-TIME VIDEO MONITORING
JP2021573774A JP2022536176A (ja) 2019-06-13 2019-06-13 フルタイムモニタニングするビデオ内蔵型内視鏡を有する気管内チューブ
PCT/CN2019/091014 WO2020248180A1 (zh) 2019-06-13 2019-06-13 内建影像内视镜的全时影像监控的气管内管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/091014 WO2020248180A1 (zh) 2019-06-13 2019-06-13 内建影像内视镜的全时影像监控的气管内管

Publications (1)

Publication Number Publication Date
WO2020248180A1 true WO2020248180A1 (zh) 2020-12-17

Family

ID=73781149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091014 WO2020248180A1 (zh) 2019-06-13 2019-06-13 内建影像内视镜的全时影像监控的气管内管

Country Status (4)

Country Link
US (1) US20220355054A1 (zh)
EP (1) EP3984440A4 (zh)
JP (1) JP2022536176A (zh)
WO (1) WO2020248180A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647936A (zh) * 2009-11-30 2012-08-22 国王体系股份有限公司 可视化仪器
US20140018615A1 (en) * 2012-07-13 2014-01-16 Jonathan Y. Lee Telescopic intubation tube with distal camera
CN106793918A (zh) * 2014-08-08 2017-05-31 伍恩迪吉股份有限公司 医疗装置及放置方法
CN109350818A (zh) * 2018-10-23 2019-02-19 广州圣犹达生物科技有限公司 一种可视双腔气管插管
CN208678114U (zh) * 2018-02-07 2019-04-02 浙江优亿医疗器械有限公司 一种改进的可视气管插管及其系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4757418B2 (ja) * 2001-09-25 2011-08-24 日本シャーウッド株式会社 気管切開チューブ
US20070137651A1 (en) * 2005-12-16 2007-06-21 Ezc Medical Llc Visualization esophageal-tracheal airway apparatus and methods
US8244329B2 (en) * 2009-09-29 2012-08-14 Nellcor Puritan Bennett Llc Multiple channel tracheal tube placement device and technique for using the same
US9211060B2 (en) * 2011-04-05 2015-12-15 Covidien Lp Visualization device and holder for use with a tracheal tube
TW201311305A (zh) * 2011-09-09 2013-03-16 Tien-Sheng Chen 氣管插管工具
JP5836304B2 (ja) * 2013-03-28 2015-12-24 株式会社フジクラ 気管チューブ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647936A (zh) * 2009-11-30 2012-08-22 国王体系股份有限公司 可视化仪器
US20140018615A1 (en) * 2012-07-13 2014-01-16 Jonathan Y. Lee Telescopic intubation tube with distal camera
CN106793918A (zh) * 2014-08-08 2017-05-31 伍恩迪吉股份有限公司 医疗装置及放置方法
CN208678114U (zh) * 2018-02-07 2019-04-02 浙江优亿医疗器械有限公司 一种改进的可视气管插管及其系统
CN109350818A (zh) * 2018-10-23 2019-02-19 广州圣犹达生物科技有限公司 一种可视双腔气管插管

Also Published As

Publication number Publication date
EP3984440A4 (en) 2023-01-04
US20220355054A1 (en) 2022-11-10
EP3984440A1 (en) 2022-04-20
JP2022536176A (ja) 2022-08-12

Similar Documents

Publication Publication Date Title
EP0768903B1 (en) A fibreoptic intubating laryngeal mask airway
US5842973A (en) Nasal intubation apparatus
JP5044741B2 (ja) 多機能な気管のチューブおよび該チューブを含むシステム
US8166967B2 (en) Systems and methods for intubation
JP7133110B2 (ja) 気管内チューブ挿入装置
US10149602B2 (en) Endobronchial tube with integrated image sensor and a cleaning nozzle arrangement
JP2008528131A (ja) ビデオに支援された喉頭マスク気道デバイス
Agrò et al. The intubating laryngeal maskClinical appraisal of ventilation and blind tracheal intubation in 110 patients
CN202161653U (zh) 一种便携式可视气管插管导引器
US20150257676A1 (en) Flexible sampling tube for patient monitoring
Hirabayashi et al. Airway Scope: early clinical experience in 405 patients
Myatra et al. Recent advances in airway management
WO2021248657A1 (zh) 一种气体导航可视化清醒气管插管装置
WO2020248180A1 (zh) 内建影像内视镜的全时影像监控的气管内管
WO2017058039A2 (en) Ventilation with a view mask
US8425409B2 (en) Laryngoscope
TWI739055B (zh) 內建影像內視鏡的全時影像監控之氣管內管
CN216061597U (zh) 一种可视化气管插管引导器
CN112076371A (zh) 内建影像内视镜的全时影像监控的气管内管
TWM581452U (zh) Intratracheal tube for full-time image monitoring of built-in image endoscope
CN207085047U (zh) 气管插管
Frass et al. Clinical evaluation of a new visualized endotracheal tube (VETT)
Xia et al. Evaluation of a Novel Multimodal Guidance Device for Difficult Airway Endotracheal Intubation in Spontaneously Breathing Pigs
CN219594549U (zh) 一种可检测呼气末二氧化碳的纤维支气管镜
Greene Acute lobar collapse: adults and infants differ in important ways

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573774

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019932846

Country of ref document: EP

Effective date: 20220113