WO2020246142A1 - Flexible substrate - Google Patents

Flexible substrate Download PDF

Info

Publication number
WO2020246142A1
WO2020246142A1 PCT/JP2020/016342 JP2020016342W WO2020246142A1 WO 2020246142 A1 WO2020246142 A1 WO 2020246142A1 JP 2020016342 W JP2020016342 W JP 2020016342W WO 2020246142 A1 WO2020246142 A1 WO 2020246142A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
elastic resin
flexible substrate
coating layer
layer
Prior art date
Application number
PCT/JP2020/016342
Other languages
French (fr)
Japanese (ja)
Inventor
匠 佐野
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Publication of WO2020246142A1 publication Critical patent/WO2020246142A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • An embodiment of the present invention relates to a flexible substrate.
  • a flexible substrate in which electrical elements are arranged in a matrix can be attached to a curved surface such as a housing of an electronic device or a human body.
  • the electrical element for example, various sensors such as a touch sensor and a temperature sensor and a display element can be applied.
  • An object of the present embodiment is to provide a flexible substrate capable of suppressing deterioration over time due to a wiring step.
  • the flexible substrate according to the embodiment includes a flexible insulating base material, a plurality of wire portions including wiring provided on the insulating base material, and a first elastic resin layer that supports the insulating base material.
  • a coating layer that covers the wire portion and the first elastic resin layer, and a second elastic resin layer that covers the coating layer are provided, and the coating layer is an area between two adjacent wire portions.
  • the side surface of the wire portion, the first elastic resin layer, and the second elastic resin layer are formed in contact with each other.
  • FIG. 1 is a schematic plan view of a flexible substrate according to the present embodiment.
  • FIG. 2 is an enlarged plan view of a part of the flexible substrate shown in FIG.
  • FIG. 3 is a cross-sectional view of the flexible substrate taken along the line AB shown in FIG.
  • FIG. 4 is a cross-sectional view of the flexible substrate on the CD line shown in FIG.
  • FIG. 5 is a cross-sectional view of a flexible substrate according to a comparative example.
  • FIG. 6 is another cross-sectional view of the flexible substrate according to the comparative example.
  • FIG. 7 is still another cross-sectional view of the flexible substrate according to the comparative example.
  • FIG. 1 is a schematic plan view of the flexible substrate 100 according to the present embodiment.
  • the first direction D1, the second direction D2, and the third direction D3 are defined as shown in the figure.
  • the first direction D1 and the second direction D2 are parallel to the main surface of the flexible substrate 100 and intersect with each other.
  • the third direction D3 is a direction perpendicular to the first direction D1 and the second direction D2, and corresponds to the thickness direction of the flexible substrate 100.
  • the first direction D1 and the second direction D2 intersect vertically in the present embodiment, they may intersect at an angle other than vertical.
  • the flexible substrate 100 includes a plurality of scanning lines 1, a plurality of signal lines 2, a plurality of electrical elements 3, a support 8, a scanning line driver DR1, and a signal line driver DR2.
  • the scanning line driver DR1 and the signal line driver DR2 may be provided outside the flexible substrate 100.
  • the scanning line 1, the signal line 2, and the electrical element 3 are provided on the support 8.
  • the plurality of scanning lines 1 extend in the first direction D1 as a whole and are arranged in the second direction D2.
  • Each of the plurality of scanning lines 1 is electrically connected to the scanning line driver DR1.
  • the plurality of signal lines 2 extend in the second direction D2 as a whole and are lined up in the first direction D1.
  • Each of the plurality of signal lines 2 is electrically connected to the signal line driver DR2.
  • Each of the electrical elements 3 is provided at the intersection of the scanning line 1 and the signal line 2, and is electrically connected to the scanning line 1 and the signal line 2.
  • FIG. 2 is an enlarged plan view of a part of the flexible substrate 100 shown in FIG.
  • the flexible substrate 100 includes an insulating base material 4 that supports the scanning line 1 and the signal line 2.
  • the insulating base material 4 has elasticity and flexibility.
  • the insulating base material 4 can be formed of, for example, polyimide, but is not limited to this example.
  • the insulating base material 4 has a plurality of first partial PT1s extending in the first direction D1 and arranged side by side in the second direction D2, and a plurality of first portions PT1 extending in the second direction D2 and arranged side by side in the first direction D1. It has a second portion PT2 and a plurality of island-shaped portions IL located at the intersection of the first portion PT1 and the second portion PT2.
  • the first portion PT1 and the second portion PT2 are each formed in a wavy shape (formed in a meandering manner).
  • the island-shaped portion IL is connected to the first portion PT1 and the second portion PT2.
  • the scanning line 1 is located on the first portion PT1 and is arranged in a wavy shape.
  • the signal line 2 is located on the second portion PT2 and is arranged in a wavy shape.
  • the scanning line 1 and the signal line 2 are examples of wiring provided in the flexible substrate 100.
  • the scanning line 1 and the signal line 2 can be formed of, for example, a metal material or a transparent conductive material, and may have a single-layer structure or a laminated structure.
  • the flexible substrate 100 may include other types of wiring such as a power supply line that supplies power to the electrical element 3.
  • the scanning line 1 has a first wiring 11 shown by a solid line and a second wiring 12 shown by a broken line.
  • the second wiring 12 overlaps with the electrical element 3.
  • the first wiring 11 and the second wiring 12 are arranged in different layers from each other and are electrically connected through the contact holes CH1 and CH2.
  • the scanning line 1 supplies a scanning signal to the electrical element 3.
  • the electric element 3 is accompanied by the output of a signal such as a sensor, the output signal from the electric element 3 is supplied to the signal line 2.
  • a drive signal is supplied to the signal line 2.
  • a controller including a scanning signal supply source, a drive signal supply source, a processor for processing an output signal, and the like may be provided on the flexible board 100, or may be provided on a device connected to the flexible board 100.
  • the electrical element 3 is located on the island-shaped portion IL.
  • the electrical element 3 is smaller than the island-shaped portion IL, and in FIG. 2, the island-shaped portion IL protrudes from the edge of the electrical element 3.
  • the electrical element 3 is a sensor, a semiconductor, an actuator, or the like.
  • the sensor an optical sensor that receives visible light or near-infrared light, a temperature sensor, a pressure sensor, a touch sensor, or the like can be applied.
  • a semiconductor element a light emitting element, a light receiving element, a diode, a transistor, or the like can be applied.
  • the electrical element 3 is a light emitting element, a flexible display having flexibility and elasticity can be realized.
  • the light emitting element for example, a light emitting diode having a size of about 100 ⁇ m such as a mini LED or a micro LED or an organic electroluminescence element can be applied.
  • the electrical element 3 is an actuator, for example, a piezo element can be applied.
  • the electrical element 3 is not limited to the one illustrated here, and other elements having various functions can be applied.
  • the electrical element 3 may be a capacitor, a resistor, or the like. Further, the arrangement position and shape of the electric element 3 are not limited to the example shown in FIG.
  • the insulating base material 4, the scanning line 1, the signal line 2, the first organic insulating layer 5 and the second organic insulating layer 6 described later are collectively referred to as a wire portion LP.
  • the wire LP is located on the support 8.
  • the line portion LP extends in the first direction D1 and extends in the second direction D2 in a plurality of corrugated (meandering type) first line portions LP1 arranged side by side in the second direction D2. It includes a plurality of corrugated (meandering) second line portions LP2 arranged side by side.
  • the first line portion LP1 includes the first portion PT1 of the above-mentioned insulating base material 4 and the scanning line 1.
  • the second wire portion LP2 includes the second portion PT2 of the insulating base material 4 described above and the signal line 2.
  • FIG. 3 is a cross-sectional view of the flexible substrate 100 in line AB shown in FIG.
  • the flexible substrate 100 further includes a first organic insulating layer 5, a second organic insulating layer 6, a coating layer 7, and a second elastic resin layer 9.
  • the support 8 will be referred to as the first stretchable resin layer 8.
  • the first elastic resin layer 8 has a first surface SF1.
  • the wire portion LP is located on the first surface SF1.
  • the wire portion LP is composed of an insulating base material 4, a first organic insulating layer 5, a second organic insulating layer 6, a signal line 2, and a scanning line 1 shown in FIG.
  • the second wire portion LP2 is composed of an insulating base material 4, a first organic insulating layer 5, a second organic insulating layer 6, and a signal line 2.
  • the first line portion LP1 is composed of an insulating base material 4, a first organic insulating layer 5, a second organic insulating layer 6, and a scanning line 1.
  • the insulating base material 4 is located on the first surface SF1.
  • the first organic insulating layer 5 covers the insulating base material 4.
  • the second organic insulating layer 6 covers the first organic insulating layer 5.
  • the signal line 2 is located on the second organic insulating layer 6.
  • the coating layer 7 covers the second line portion LP2. That is, the coating layer 7 covers the signal line 2, the insulating base material 4, the first organic insulating layer 5, and the second organic insulating layer 6. Further, the coating layer 7 is in contact with the entire surface of the first surface SF1 in the region R1 between the two adjacent second line portions LP2. That is, the coating layer 7 covers the second wire portion LP2 and the first stretchable resin layer 8.
  • the coating layer 7 is formed of a poly-para-xylylenes (PPX) structure, such as parylene®. Although the details will be described later, if the coating layer 7 is a material having excellent coverage of wiring steps and surface flatness and having material properties described later, other than the poly-p-xylylene structure described above. It may be formed by a material.
  • the second elastic resin layer 9 covers the coating layer 7. That is, in the region R1 between the two adjacent second wire portions LP2, the coating layer 7 includes the side surface of the second wire portion LP2, the first elastic resin layer 8 (first surface SF1), and the second elastic resin. It is formed in contact with the layer 9.
  • the first stretchable resin layer 8 and the second stretchable resin layer 9 may be formed of the same material or may be formed of different materials.
  • the relationship between the line portion LP and the coating layer 7 has been described by taking the second line portion LP2 as an example, but it should be noted that the relationship between the first line portion LP1 and the coating layer 7 is also the same. That is, the coating layer 7 covers the first line portion LP1 and the first stretchable resin layer 8, and in the region between the two adjacent first line portions LP1, the side surface of the first line portion LP1 and the first stretchable resin It is formed in contact with the layer 8 (first surface SF1) and the second elastic resin layer 9.
  • the second stretchable resin layer 9 is formed of a stretchable and flexible resin, for example, an elastomer material such as acrylic, epoxy, urethane, or silicone.
  • the breaking elongation rate of the second elastic resin layer 9 is, for example, 1000%.
  • the breaking elongation rate is a value indicating how much the substance is stretched from the start of pulling the substance in a state where no external force is applied (normal state) to the breaking, for example, the breaking elongation rate is 1000% described above.
  • the substance has a property of being stretchable by 10 times as much as the normal state before breaking.
  • the recovery rate of the second elastic resin layer 9 is, for example, 90%.
  • the recovery rate is a value indicating how much the substance returns to the normal state (returns to the original state) when the external force is removed from the substance in the state of being pulled by applying the external force.
  • the recovery rate may be referred to as restoring force.
  • the transmittance of the second elastic resin layer 9 is, for example, 90%.
  • the transmittance is a value indicating how much incident light of a specific wavelength is passed through by a substance.
  • Water vapor permeability of the second stretchable resin layer 9 is, for example, several 10g / m 2 ⁇ 24h.
  • the water vapor permeability indicates the amount of water vapor that passes through a substance of a unit area in a unit time under the conditions of a specified temperature and humidity. That is, the water vapor permeability indicates the number of grams of water vapor per 1 m 2 of the area permeated in 24 hours.
  • the water vapor transmittance may be referred to as moisture permeability.
  • the second stretchable resin layer 9 further has properties such as ultraviolet resistance whose characteristics do not change even when irradiated with ultraviolet rays.
  • the coating layer 7 is formed of a material having elasticity, flexibility and barrier properties.
  • the coating layer 7 is formed of, for example, a material that is vapor-deposited as a gas in a room temperature vapor deposition chamber. As described above, the coating layer 7 is formed by being vapor-deposited in a thin-film deposition chamber at room temperature, so that damage caused by heat to other elements can be reduced.
  • the coating layer 7 is formed by, for example, vapor deposition of gas, it is possible to uniformly form the layer even in cracks and narrow portions.
  • An example of such a material is the parylene described above.
  • the elongation at break of the coating layer 7 (parylene) is, for example, 200%.
  • the transmittance of the coating layer 7 (parylene) is, for example, 90%.
  • Water vapor permeability of the coating layer 7 (parylene) is, for example 0.1g / m 2 ⁇ 24h. Unlike the second elastic resin layer 9, the coating layer 7 (parylene) does not have the above-mentioned ultraviolet resistance property.
  • the coating layer 7 has the characteristics that the water vapor transmittance is smaller than that of the second stretchable resin layer 9 and the elongation at break is also smaller. Further, the coating layer 7 also has a characteristic that a layer can be uniformly formed even in a crack or a narrow portion.
  • FIG. 4 is a cross-sectional view of the flexible substrate 100 on the CD line shown in FIG.
  • the electrical element 3 is arranged on the island-shaped portion IL of the insulating base material 4.
  • An inorganic insulating layer 10 (passivation layer) is arranged between the electrical element 3 and the island-shaped portion IL.
  • the inorganic insulating layer 10 is formed in an island shape that overlaps with the electric element 3 (or the island-shaped portion IL) in a plan view.
  • the first wiring portions 11a and 11b are arranged on the first organic insulating layer 5 and covered with the second organic insulating layer 6.
  • the second wiring portion 12 is arranged on the inorganic insulating layer 10 and is electrically connected to the electric element 3. In the example shown in FIG. 4, both ends of the second wiring portion 12 are covered with the first organic insulating layer 5.
  • the contact holes CH1 and CH2 are provided in the first organic insulating layer 5.
  • the first wiring portion 11a is electrically connected to the second wiring portion 12 via the connecting member CM1 arranged in the contact hole CH1.
  • the first wiring portion 11b is electrically connected to the second wiring portion 12 via the connecting member CM2 arranged in the contact hole CH2.
  • the connection member CM1 may be a part of the first wiring portion 11a, or may be provided separately from the first wiring portion 11a.
  • the connection member CM2 may be a part of the first wiring portion 11b, or may be provided separately from the first wiring portion 11b.
  • the island-shaped inorganic insulating layer 10 is arranged between the electrical element 3 and the insulating base material 4.
  • the inorganic insulating layer 10 functions as a protective film that suppresses the intrusion of moisture and the like into the second wiring portion 12 of the electrical element 3 and the scanning line 1. Therefore, the reliability of the flexible substrate 100 is improved. Further, in general, the inorganic film is more likely to crack than the organic film, but since the inorganic insulating layer 10 is not provided below the first wiring portions 11a and 11b of the scanning line 1, the first wiring portion 11a And the disconnection at 11b is suppressed. The same applies to signal lines (not shown). Further, as compared with the case where the inorganic insulating layer 10 is provided on the entire flexible substrate 100, the elasticity and flexibility of the flexible substrate 100 are less likely to be impaired.
  • the second wiring portion 12 that overlaps with the electric element 3 is arranged in a layer different from that of the first wiring portions 11a and 11b, the degree of freedom of design in the vicinity of the electric element 3 is increased. improves. Further, since the contact holes CH1 and CH2 are provided above the inorganic insulating layer 10, the connection positions between the first wiring portion 11a and the second wiring portion 12 and the first wiring portion 11b and the second wiring portion 12b are provided. Poor connection at the connection position with 12 is suppressed.
  • the effect of the flexible substrate 100 according to the present embodiment will be described with reference to a comparative example.
  • the comparative example is for explaining a part of the effects that the flexible substrate 100 according to the present embodiment can exert, and the configurations and effects common to the comparative example and the present embodiment can be described from the scope of the present invention. It is not an exclusion.
  • FIG. 5 is a diagram showing a cross section of the flexible substrate 100A according to the comparative example.
  • the flexible substrate 100A according to the comparative example is provided so that the coating layer 7 does not cover the entire wire portion LP but covers the signal line 2 (and the second organic insulating layer 6) constituting the wire portion LP. Therefore, it is different from the flexible substrate 100 according to the present embodiment.
  • the coating layer 7 is provided so as to cover the signal line 2 constituting the wire portion LP instead of the entire wire portion LP as in the flexible substrate 100A according to the comparative example, the region between the two adjacent wire portion LPs.
  • the second elastic resin layer 9 is in contact with the first surface SF1 instead of the coating layer 7.
  • the coating layer 7 is formed of a material that is vapor-deposited as a gas, such as parylene, it is possible to uniformly form the layer even in cracks and narrow portions, while the second elastic resin. Due to the material properties of the layer 9, the layer cannot be uniformly formed in a crack or a narrow portion. Therefore, as shown in FIG. 5, in the region R1 between the two adjacent line portions LP, the third direction of the line portion LP is between the second elastic resin layer 9 and the first elastic resin layer 8. Bubbles (gap) due to the length (height) of D3 are generated.
  • the area where the second elastic resin layer 9 contacts the first surface SF1 of the first elastic resin layer 8 becomes smaller, so that the flexible substrate 100A is repeatedly used and the first elastic resin layer 8 is used. As the second elastic resin layer 9 repeatedly expands and contracts, the second elastic resin layer 9 may peel off from the first elastic resin layer 8.
  • the coating layer 7 is provided so as to cover not only the signal line 2 but also the entire line portion LP and the first elastic resin layer 8, the adjacent 2 In the region R1 between the two line portions LP, as shown in FIG. 3, the coating layer 7 is in contact with the side surface of the line portion LP and the entire surface of the first surface SF1 of the first elastic resin layer 8 to form a line. It is possible to suppress the generation of air bubbles due to the height of the part LP (wiring step).
  • the coating layer 7 is the first stretchable resin. It is possible to suppress the possibility of peeling off from the layer 8, and it is also possible to suppress the possibility of the second elastic resin layer 9 provided over the entire surface of the flat coating layer 7 peeling off. It is possible.
  • the second stretchable resin layer 9 becomes the first stretchable resin layer 9 as shown in FIG. 6 due to the material characteristics of the second stretchable resin layer 9.
  • the area of the elastic resin layer 8 in contact with the first surface SF1 is smaller than that shown in FIG. 5, and there is a problem that the possibility that the second elastic resin layer 9 is peeled off from the first elastic resin layer 8 is further increased.
  • the material characteristics of the second elastic resin layer 9 show that FIG. As shown, the area where the second elastic resin layer 9 is in contact with the first surface SF1 of the first elastic resin layer 8 is smaller than that in the case shown in FIG. 5, and the second elastic resin layer 9 is the first elastic resin.
  • the possibility of peeling off from the layer 8 is further increased, but in the case of the configuration according to the present embodiment, the layer is uniformly formed even in the cracks and narrow portions, and the generation of air bubbles due to the wiring step is suppressed. Therefore, it is also possible to realize a narrow pitch of the line portion LP.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Structure Of Printed Boards (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

Provided is a flexible substrate which makes it possible to minimize deterioration over time caused by a wiring height difference. A flexible substrate according to one embodiment equipped with a plurality of wire parts comprising a flexible insulative substrate and wiring provided on the insulative substrate, and also equipped with a first elastic resin layer for supporting the insulative substrate, a coating layer for covering the wire parts and the first elastic resin layer, and a second elastic resin layer for covering the coating layer, wherein the coating layer is formed so as to contact the lateral surfaces of the wire parts, the first elastic resin layer and the second elastic resin layer in the regions between two adjacent wire parts.

Description

フレキシブル基板Flexible substrate
 本発明の実施形態は、フレキシブル基板に関する。 An embodiment of the present invention relates to a flexible substrate.
 近年、可撓性および伸縮性を有したフレキシブル基板の利用が種々の分野で検討されている。一例を挙げると、マトリクス状に電気的素子が配列されたフレキシブル基板を電子機器の筐体や人体等の曲面に貼り付ける利用形態が考えられる。電気的素子としては、例えばタッチセンサや温度センサ等の各種センサや表示素子が適用され得る。 In recent years, the use of flexible and stretchable flexible substrates has been studied in various fields. As an example, a flexible substrate in which electrical elements are arranged in a matrix can be attached to a curved surface such as a housing of an electronic device or a human body. As the electrical element, for example, various sensors such as a touch sensor and a temperature sensor and a display element can be applied.
 フレキシブル基板においては、屈曲や伸縮による応力で配線が損傷しないように対策を講じる必要がある。このような対策としては、例えば、配線を支持する基材にハニカム形状の開口を設けることや、配線を蛇行した形状(ミアンダ形状)とすることが提案されている。 For flexible boards, it is necessary to take measures to prevent the wiring from being damaged by stress due to bending or expansion and contraction. As such measures, for example, it has been proposed to provide a honeycomb-shaped opening in the base material that supports the wiring, or to make the wiring meandering (munder shape).
 一方で、フレキシブル基板においては、配線段差に起因した経時劣化を抑制するための対策も講じる必要がある。 On the other hand, for flexible substrates, it is necessary to take measures to suppress deterioration over time due to wiring steps.
特開2015-198101号公報JP-A-2015-198101 特開2015-198102号公報JP-A-2015-198102 特開2017-118109号公報JP-A-2017-118109 特開2017-113088号公報JP-A-2017-113088
 本実施形態の目的は、配線段差に起因した経時劣化を抑制することが可能なフレキシブル基板を提供することにある。 An object of the present embodiment is to provide a flexible substrate capable of suppressing deterioration over time due to a wiring step.
 一実施形態に係るフレキシブル基板は、可撓性の絶縁基材と、前記絶縁基材の上に設けられる配線とからなる複数の線部と、前記絶縁基材を支持する第1伸縮樹脂層と、前記線部と前記第1伸縮樹脂層とを覆うコーティング層と、前記コーティング層を覆う第2伸縮樹脂層と、を具備し、前記コーティング層は、隣接する2つの前記線部の間の領域において、前記線部の側面と前記第1伸縮樹脂層と前記第2伸縮樹脂層とに接して形成されている。 The flexible substrate according to the embodiment includes a flexible insulating base material, a plurality of wire portions including wiring provided on the insulating base material, and a first elastic resin layer that supports the insulating base material. A coating layer that covers the wire portion and the first elastic resin layer, and a second elastic resin layer that covers the coating layer are provided, and the coating layer is an area between two adjacent wire portions. In the above, the side surface of the wire portion, the first elastic resin layer, and the second elastic resin layer are formed in contact with each other.
 本実施形態によれば、配線段差に起因した経時劣化を抑制することが可能なフレキシブル基板を提供することができる。 According to this embodiment, it is possible to provide a flexible substrate capable of suppressing deterioration over time due to a wiring step.
図1は、本実施形態に係るフレキシブル基板の概略的な平面図である。FIG. 1 is a schematic plan view of a flexible substrate according to the present embodiment. 図2は、図1に示したフレキシブル基板の一部を拡大した平面図である。FIG. 2 is an enlarged plan view of a part of the flexible substrate shown in FIG. 図3は、図2に示したA-B線におけるフレキシブル基板の断面図である。FIG. 3 is a cross-sectional view of the flexible substrate taken along the line AB shown in FIG. 図4は、図2に示したC-D線におけるフレキシブル基板の断面図である。FIG. 4 is a cross-sectional view of the flexible substrate on the CD line shown in FIG. 図5は、比較例に係るフレキシブル基板の断面図である。FIG. 5 is a cross-sectional view of a flexible substrate according to a comparative example. 図6は、比較例に係るフレキシブル基板の別の断面図である。FIG. 6 is another cross-sectional view of the flexible substrate according to the comparative example. 図7は、比較例に係るフレキシブル基板のさらに別の断面図である。FIG. 7 is still another cross-sectional view of the flexible substrate according to the comparative example.
 いくつかの実施形態につき、図面を参照しながら説明する。 
 なお、開示はあくまで一例に過ぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有される。また、図面は、説明をより明確にするため、実施の態様に比べて模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。各図において、連続して配置される同一または類似の要素については符号を省略することがある。また、本明細書と各図において、既出の図に関して前述したものと同一または類似した機能を発揮する構成要素には同一の参照符号を付し、重複する詳細な説明を省略することがある。
Some embodiments will be described with reference to the drawings.
It should be noted that the disclosure is merely an example, and those skilled in the art can easily conceive of appropriate changes while maintaining the gist of the invention are naturally included in the scope of the present invention. In addition, the drawings may be represented schematically as compared with the embodiments in order to clarify the description, but the drawings are merely examples and do not limit the interpretation of the present invention. In each figure, the reference numerals may be omitted for the same or similar elements arranged consecutively. Further, in the present specification and each figure, components exhibiting the same or similar functions as those described above with respect to the above-mentioned figures may be designated by the same reference numerals, and duplicate detailed description may be omitted.
 図1は、本実施形態に係るフレキシブル基板100の概略的な平面図である。本実施形態においては、図示したように第1方向D1、第2方向D2、第3方向D3を定義する。第1方向D1および第2方向D2は、フレキシブル基板100の主面と平行であり、互いに交わる方向である。第3方向D3は、第1方向D1、第2方向D2に対して垂直な方向であり、フレキシブル基板100の厚さ方向に相当する。第1方向D1と第2方向D2は、本実施形態では垂直に交わるが、垂直以外の角度で交わっても良い。 FIG. 1 is a schematic plan view of the flexible substrate 100 according to the present embodiment. In the present embodiment, the first direction D1, the second direction D2, and the third direction D3 are defined as shown in the figure. The first direction D1 and the second direction D2 are parallel to the main surface of the flexible substrate 100 and intersect with each other. The third direction D3 is a direction perpendicular to the first direction D1 and the second direction D2, and corresponds to the thickness direction of the flexible substrate 100. Although the first direction D1 and the second direction D2 intersect vertically in the present embodiment, they may intersect at an angle other than vertical.
 フレキシブル基板100は、複数の走査線1と、複数の信号線2と、複数の電気的素子3と、支持体8と、走査線ドライバDR1と、信号線ドライバDR2と、を備えている。なお、走査線ドライバDR1および信号線ドライバDR2は、フレキシブル基板100の外部に設けられていても良い。走査線1、信号線2、および電気的素子3は、支持体8の上に設けられている。複数の走査線1は、全体的に第1方向D1に延出し、第2方向D2に並んでいる。複数の走査線1は、それぞれ走査線ドライバDR1と電気的に接続されている。複数の信号線2は、全体的に第2方向D2に延出し、第1方向D1に並んでいる。複数の信号線2は、それぞれ信号線ドライバDR2と電気的に接続されている。電気的素子3の各々は、走査線1と信号線2との交差部に設けられ、走査線1および信号線2と電気的に接続されている。 The flexible substrate 100 includes a plurality of scanning lines 1, a plurality of signal lines 2, a plurality of electrical elements 3, a support 8, a scanning line driver DR1, and a signal line driver DR2. The scanning line driver DR1 and the signal line driver DR2 may be provided outside the flexible substrate 100. The scanning line 1, the signal line 2, and the electrical element 3 are provided on the support 8. The plurality of scanning lines 1 extend in the first direction D1 as a whole and are arranged in the second direction D2. Each of the plurality of scanning lines 1 is electrically connected to the scanning line driver DR1. The plurality of signal lines 2 extend in the second direction D2 as a whole and are lined up in the first direction D1. Each of the plurality of signal lines 2 is electrically connected to the signal line driver DR2. Each of the electrical elements 3 is provided at the intersection of the scanning line 1 and the signal line 2, and is electrically connected to the scanning line 1 and the signal line 2.
 図2は、図1に示したフレキシブル基板100の一部を拡大した平面図である。フレキシブル基板100は、上記に加えて、走査線1および信号線2を支持する絶縁基材4を備えている。絶縁基材4は、伸縮性および可撓性を有している。絶縁基材4は、例えばポリイミドで形成することができるが、この例に限られない。 FIG. 2 is an enlarged plan view of a part of the flexible substrate 100 shown in FIG. In addition to the above, the flexible substrate 100 includes an insulating base material 4 that supports the scanning line 1 and the signal line 2. The insulating base material 4 has elasticity and flexibility. The insulating base material 4 can be formed of, for example, polyimide, but is not limited to this example.
 絶縁基材4は、第1方向D1に延出し第2方向D2に並んで配置された複数の第1部分PT1と、第2方向D2に延出し第1方向D1に並んで配置された複数の第2部分PT2と、第1部分PT1と第2部分PT2との交差部に位置する複数の島状部ILと、を有している。第1部分PT1および第2部分PT2は、それぞれ波状に形成されている(蛇行して形成されている)。島状部ILは、第1部分PT1と第2部分PT2とに接続されている。 The insulating base material 4 has a plurality of first partial PT1s extending in the first direction D1 and arranged side by side in the second direction D2, and a plurality of first portions PT1 extending in the second direction D2 and arranged side by side in the first direction D1. It has a second portion PT2 and a plurality of island-shaped portions IL located at the intersection of the first portion PT1 and the second portion PT2. The first portion PT1 and the second portion PT2 are each formed in a wavy shape (formed in a meandering manner). The island-shaped portion IL is connected to the first portion PT1 and the second portion PT2.
 走査線1は、第1部分PT1上に位置し、波状に配置されている。信号線2は、第2部分PT2上に位置し、波状に配置されている。走査線1および信号線2は、フレキシブル基板100が備える配線の一例である。走査線1および信号線2は、例えば金属材料や透明導電材料で形成することができ、単層構造であっても良いし、積層構造であっても良い。フレキシブル基板100は、走査線1および信号線2の他に、電気的素子3に給電する電源線等の他種の配線を備えても良い。 The scanning line 1 is located on the first portion PT1 and is arranged in a wavy shape. The signal line 2 is located on the second portion PT2 and is arranged in a wavy shape. The scanning line 1 and the signal line 2 are examples of wiring provided in the flexible substrate 100. The scanning line 1 and the signal line 2 can be formed of, for example, a metal material or a transparent conductive material, and may have a single-layer structure or a laminated structure. In addition to the scanning line 1 and the signal line 2, the flexible substrate 100 may include other types of wiring such as a power supply line that supplies power to the electrical element 3.
 走査線1は、実線で示す第1配線11と、破線で示す第2配線12と、を有している。第2配線12は、電気的素子3と重畳している。第1配線11および第2配線12は、互いに異なる層に配置されており、コンタクトホールCH1およびCH2を通じて電気的に接続されている。 The scanning line 1 has a first wiring 11 shown by a solid line and a second wiring 12 shown by a broken line. The second wiring 12 overlaps with the electrical element 3. The first wiring 11 and the second wiring 12 are arranged in different layers from each other and are electrically connected through the contact holes CH1 and CH2.
 走査線1は、電気的素子3に走査信号を供給する。例えば電気的素子3がセンサのような信号の出力を伴うものである場合、信号線2には電気的素子3からの出力信号が供給される。また、後述するが電気的素子3が発光素子やアクチュエータのように、入力される信号に応じて作動するものである場合、信号線2には駆動信号が供給される。走査信号の供給源、駆動信号の供給源または出力信号を処理するプロセッサ等を含むコントローラは、フレキシブル基板100に設けられても良いし、フレキシブル基板100に接続される機器に設けられても良い。 The scanning line 1 supplies a scanning signal to the electrical element 3. For example, when the electric element 3 is accompanied by the output of a signal such as a sensor, the output signal from the electric element 3 is supplied to the signal line 2. Further, as will be described later, when the electric element 3 operates in response to an input signal, such as a light emitting element or an actuator, a drive signal is supplied to the signal line 2. A controller including a scanning signal supply source, a drive signal supply source, a processor for processing an output signal, and the like may be provided on the flexible board 100, or may be provided on a device connected to the flexible board 100.
 電気的素子3は、島状部IL上に位置している。電気的素子3は島状部ILよりも小さく、図2においては電気的素子3の縁から島状部ILがはみ出ている。例えば電気的素子3は、センサ、半導体、またはアクチュエータ等である。例えばセンサとしては、可視光や近赤外光を受光する光学センサ、温度センサ、圧力センサ、またはタッチセンサ等を適用できる。例えば半導体素子としては、発光素子、受光素子、ダイオード、またはトランジスタ等を適用できる。電気的素子3が発光素子である場合、可撓性および伸縮性を有するフレキシブルディスプレイを実現できる。発光素子としては、例えばミニLEDやマイクロLEDといった100μm前後の大きさを有する発光ダイオードや有機エレクトロルミネッセンス素子を適用することができる。電気的素子3がアクチュエータである場合、例えばピエゾ素子を適用できる。なお、電気的素子3は、ここで例示したものに限られず、その他にも種々の機能を有する素子を適用し得る。電気的素子3は、コンデンサや抵抗等であっても良い。また、電気的素子3の配置位置や形状は図2に示した例に限らない。 The electrical element 3 is located on the island-shaped portion IL. The electrical element 3 is smaller than the island-shaped portion IL, and in FIG. 2, the island-shaped portion IL protrudes from the edge of the electrical element 3. For example, the electrical element 3 is a sensor, a semiconductor, an actuator, or the like. For example, as the sensor, an optical sensor that receives visible light or near-infrared light, a temperature sensor, a pressure sensor, a touch sensor, or the like can be applied. For example, as a semiconductor element, a light emitting element, a light receiving element, a diode, a transistor, or the like can be applied. When the electrical element 3 is a light emitting element, a flexible display having flexibility and elasticity can be realized. As the light emitting element, for example, a light emitting diode having a size of about 100 μm such as a mini LED or a micro LED or an organic electroluminescence element can be applied. When the electrical element 3 is an actuator, for example, a piezo element can be applied. The electrical element 3 is not limited to the one illustrated here, and other elements having various functions can be applied. The electrical element 3 may be a capacitor, a resistor, or the like. Further, the arrangement position and shape of the electric element 3 are not limited to the example shown in FIG.
 本実施形態においては、絶縁基材4、走査線1、信号線2、後述する第1有機絶縁層5および第2有機絶縁層6を総称して線部LPとする。線部LPは、支持体8上に位置している。線部LPは、第1方向D1に延出し第2方向D2に並んで配置された複数の波型(蛇行型)の第1線部LP1と、第2方向D2に延出し第1方向D1に並んで配置された複数の波型(蛇行型)の第2線部LP2と、を含んでいる。第1線部LP1は、上記した絶縁基材4の第1部分PT1と、走査線1と、を含んでいる。第2線部LP2は、上記した絶縁基材4の第2部分PT2と、信号線2と、を含んでいる。 In the present embodiment, the insulating base material 4, the scanning line 1, the signal line 2, the first organic insulating layer 5 and the second organic insulating layer 6 described later are collectively referred to as a wire portion LP. The wire LP is located on the support 8. The line portion LP extends in the first direction D1 and extends in the second direction D2 in a plurality of corrugated (meandering type) first line portions LP1 arranged side by side in the second direction D2. It includes a plurality of corrugated (meandering) second line portions LP2 arranged side by side. The first line portion LP1 includes the first portion PT1 of the above-mentioned insulating base material 4 and the scanning line 1. The second wire portion LP2 includes the second portion PT2 of the insulating base material 4 described above and the signal line 2.
 図3は、図2に示したA-B線におけるフレキシブル基板100の断面図である。フレキシブル基板100は、上記した要素の他に、第1有機絶縁層5と、第2有機絶縁層6と、コーティング層7と、第2伸縮樹脂層9と、をさらに備えている。なお、以下の説明中では、支持体8を、第1伸縮樹脂層8と称するものとする。 FIG. 3 is a cross-sectional view of the flexible substrate 100 in line AB shown in FIG. In addition to the above-mentioned elements, the flexible substrate 100 further includes a first organic insulating layer 5, a second organic insulating layer 6, a coating layer 7, and a second elastic resin layer 9. In the following description, the support 8 will be referred to as the first stretchable resin layer 8.
 第1伸縮樹脂層8は、第1面SF1を有している。線部LPは、第1面SF1に位置している。 The first elastic resin layer 8 has a first surface SF1. The wire portion LP is located on the first surface SF1.
 線部LPは、絶縁基材4、第1有機絶縁層5、第2有機絶縁層6、信号線2、図1に示した走査線1によって構成されている。このうち、第2線部LP2は、図3に示すように、絶縁基材4、第1有機絶縁層5、第2有機絶縁層6、信号線2によって構成されている。図示しないが、第1線部LP1は、絶縁基材4、第1有機絶縁層5、第2有機絶縁層6、走査線1によって構成されている。 The wire portion LP is composed of an insulating base material 4, a first organic insulating layer 5, a second organic insulating layer 6, a signal line 2, and a scanning line 1 shown in FIG. Of these, as shown in FIG. 3, the second wire portion LP2 is composed of an insulating base material 4, a first organic insulating layer 5, a second organic insulating layer 6, and a signal line 2. Although not shown, the first line portion LP1 is composed of an insulating base material 4, a first organic insulating layer 5, a second organic insulating layer 6, and a scanning line 1.
 絶縁基材4は、第1面SF1に位置している。第1有機絶縁層5は、絶縁基材4を覆っている。第2有機絶縁層6は、第1有機絶縁層5を覆っている。信号線2は、第2有機絶縁層6の上に位置している。 The insulating base material 4 is located on the first surface SF1. The first organic insulating layer 5 covers the insulating base material 4. The second organic insulating layer 6 covers the first organic insulating layer 5. The signal line 2 is located on the second organic insulating layer 6.
 コーティング層7は、第2線部LP2を覆っている。すなわち、コーティング層7は、信号線2、絶縁基材4、第1有機絶縁層5および第2有機絶縁層6を覆っている。また、コーティング層7は、隣接する2つの第2線部LP2の間の領域R1において第1面SF1の全面と接している。つまり、コーティング層7は、第2線部LP2および第1伸縮樹脂層8を覆っている。コーティング層7は、ポリ-p-キシリレン(PPX: poly-para-xylylenes)構造体、例えばパリレン(登録商標)によって形成される。詳細については後述するが、コーティング層7は、配線段差のカバレッジ性や、表面の平坦性に優れ、かつ、後述する材料特性を有する材料であれば、上記したポリ-p-キシリレン構造体以外の材料によって形成されても良い。 The coating layer 7 covers the second line portion LP2. That is, the coating layer 7 covers the signal line 2, the insulating base material 4, the first organic insulating layer 5, and the second organic insulating layer 6. Further, the coating layer 7 is in contact with the entire surface of the first surface SF1 in the region R1 between the two adjacent second line portions LP2. That is, the coating layer 7 covers the second wire portion LP2 and the first stretchable resin layer 8. The coating layer 7 is formed of a poly-para-xylylenes (PPX) structure, such as parylene®. Although the details will be described later, if the coating layer 7 is a material having excellent coverage of wiring steps and surface flatness and having material properties described later, other than the poly-p-xylylene structure described above. It may be formed by a material.
 第2伸縮樹脂層9は、コーティング層7を覆っている。つまり、コーティング層7は、隣接する2つの第2線部LP2の間の領域R1において、第2線部LP2の側面と、第1伸縮樹脂層8(第1面SF1)と、第2伸縮樹脂層9とに接して形成されている。なお、第1伸縮樹脂層8と第2伸縮樹脂層9とは、同一の材料によって形成されても良いし、それぞれ異なる材料によって形成されても良い。 The second elastic resin layer 9 covers the coating layer 7. That is, in the region R1 between the two adjacent second wire portions LP2, the coating layer 7 includes the side surface of the second wire portion LP2, the first elastic resin layer 8 (first surface SF1), and the second elastic resin. It is formed in contact with the layer 9. The first stretchable resin layer 8 and the second stretchable resin layer 9 may be formed of the same material or may be formed of different materials.
 なお、図3では、第2線部LP2を例にとって線部LPとコーティング層7の関係について説明したが、第1線部LP1とコーティング層7の関係も同様であることには留意されたい。すなわち、コーティング層7は、第1線部LP1および第1伸縮樹脂層8を覆い、隣接する2つの第1線部LP1の間の領域において、第1線部LP1の側面と、第1伸縮樹脂層8(第1面SF1)と、第2伸縮樹脂層9とに接して形成されている。 Note that, in FIG. 3, the relationship between the line portion LP and the coating layer 7 has been described by taking the second line portion LP2 as an example, but it should be noted that the relationship between the first line portion LP1 and the coating layer 7 is also the same. That is, the coating layer 7 covers the first line portion LP1 and the first stretchable resin layer 8, and in the region between the two adjacent first line portions LP1, the side surface of the first line portion LP1 and the first stretchable resin It is formed in contact with the layer 8 (first surface SF1) and the second elastic resin layer 9.
 ここで、コーティング層7を形成する材料の特性と、第2伸縮樹脂層9を形成する材料の特性とについて説明する。 Here, the characteristics of the material forming the coating layer 7 and the characteristics of the material forming the second elastic resin layer 9 will be described.
 第2伸縮樹脂層9は、伸縮性および可撓性を有した樹脂、例えば、アクリル、エポキシ、ウレタン、シリコーン等のエラストマー材によって形成される。 The second stretchable resin layer 9 is formed of a stretchable and flexible resin, for example, an elastomer material such as acrylic, epoxy, urethane, or silicone.
 第2伸縮樹脂層9の破断伸長率は、例えば1000%である。破断伸長率とは、外力が加わっていない状態(通常状態)の物質を引っ張り始めてから破断するまでに、当該物質がどれだけ伸長するかを示す値であり、例えば破断伸長率が上記した1000%の物質の場合、当該物質は、破断するまでに、通常状態の10倍だけ伸長可能な性質を有している。 The breaking elongation rate of the second elastic resin layer 9 is, for example, 1000%. The breaking elongation rate is a value indicating how much the substance is stretched from the start of pulling the substance in a state where no external force is applied (normal state) to the breaking, for example, the breaking elongation rate is 1000% described above. In the case of the substance, the substance has a property of being stretchable by 10 times as much as the normal state before breaking.
 第2伸縮樹脂層9のリカバリー率は、例えば90%である。リカバリー率とは、外力が加えられて引っ張られた状態の物質から、当該外力が除かれた場合に、当該物質がどれだけ通常状態に戻る(元に戻る)のかを示す値である。なお、リカバリー率は、復元力と称されても良い。 The recovery rate of the second elastic resin layer 9 is, for example, 90%. The recovery rate is a value indicating how much the substance returns to the normal state (returns to the original state) when the external force is removed from the substance in the state of being pulled by applying the external force. The recovery rate may be referred to as restoring force.
 第2伸縮樹脂層9の透過率は、例えば90%である。透過率とは、物質が特定の波長の入射光をどれだけ通過させるのかを示す値である。 The transmittance of the second elastic resin layer 9 is, for example, 90%. The transmittance is a value indicating how much incident light of a specific wavelength is passed through by a substance.
 第2伸縮樹脂層9の水蒸気透過率は、例えば数10g/m・24hである。水蒸気透過率とは、規定の温度および湿度の条件下において、単位時間に単位面積の物質を通過する水蒸気の量を示す。すなわち、水蒸気透過率とは、24時間に透過した面積1mあたりの水蒸気のグラム数を示している。なお、水蒸気透過率は、透湿度と称されても良い。 Water vapor permeability of the second stretchable resin layer 9 is, for example, several 10g / m 2 · 24h. The water vapor permeability indicates the amount of water vapor that passes through a substance of a unit area in a unit time under the conditions of a specified temperature and humidity. That is, the water vapor permeability indicates the number of grams of water vapor per 1 m 2 of the area permeated in 24 hours. The water vapor transmittance may be referred to as moisture permeability.
 第2伸縮樹脂層9は、上記した各種特性の他に、紫外線が照射されても特性が変化しない耐紫外線といった性質をさらに有している。 In addition to the various properties described above, the second stretchable resin layer 9 further has properties such as ultraviolet resistance whose characteristics do not change even when irradiated with ultraviolet rays.
 一方で、コーティング層7は、伸縮性、可撓性およびバリア性を有する材料によって形成される。コーティング層7は、例えば、室温の蒸着チャンバ内で気体として蒸着される材料によって形成される。このように、コーティング層7が、室温の蒸着チャンバ内で蒸着されて形成されることで、他の要素への熱に起因したダメージを軽減することが可能である。 On the other hand, the coating layer 7 is formed of a material having elasticity, flexibility and barrier properties. The coating layer 7 is formed of, for example, a material that is vapor-deposited as a gas in a room temperature vapor deposition chamber. As described above, the coating layer 7 is formed by being vapor-deposited in a thin-film deposition chamber at room temperature, so that damage caused by heat to other elements can be reduced.
 コーティング層7は、上記したように、例えば気体を蒸着させて形成されるため、割れ目や狭い部分にも均一に層を形成することが可能である。このような材料の一例が上記したパリレンである。 As described above, since the coating layer 7 is formed by, for example, vapor deposition of gas, it is possible to uniformly form the layer even in cracks and narrow portions. An example of such a material is the parylene described above.
 コーティング層7(パリレン)の破断伸長率は、例えば200%である。コーティング層7(パリレン)の透過率は、例えば90%である。コーティング層7(パリレン)の水蒸気透過率は、例えば0.1g/m・24hである。コーティング層7(パリレン)は、第2伸縮樹脂層9とは異なり、上記した耐紫外線といった性質を有していない。 The elongation at break of the coating layer 7 (parylene) is, for example, 200%. The transmittance of the coating layer 7 (parylene) is, for example, 90%. Water vapor permeability of the coating layer 7 (parylene) is, for example 0.1g / m 2 · 24h. Unlike the second elastic resin layer 9, the coating layer 7 (parylene) does not have the above-mentioned ultraviolet resistance property.
 以上説明したように、コーティング層7は、第2伸縮樹脂層9に比べて水蒸気透過率が小さく、かつ、破断伸長率も小さいという特性を有している。また、コーティング層7は、割れ目や狭い部分にも均一に層を形成することが可能という特性も有している。 As described above, the coating layer 7 has the characteristics that the water vapor transmittance is smaller than that of the second stretchable resin layer 9 and the elongation at break is also smaller. Further, the coating layer 7 also has a characteristic that a layer can be uniformly formed even in a crack or a narrow portion.
 図4は、図2に示したC-D線におけるフレキシブル基板100の断面図である。電気的素子3は、絶縁基材4の島状部ILの上に配置されている。電気的素子3と島状部ILとの間には、無機絶縁層10(パッシベーション層)が配置されている。無機絶縁層10は、平面視においては電気的素子3(あるいは島状部IL)と重畳する島状に形成されている。第1配線部11aおよび11bは、第1有機絶縁層5の上に配置され、第2有機絶縁層6によって覆われている。第2配線部12は、無機絶縁層10の上に配置され、電気的素子3と電気的に接続されている。図4に示す例においては、第2配線部12の両端部が第1有機絶縁層5に覆われている。 FIG. 4 is a cross-sectional view of the flexible substrate 100 on the CD line shown in FIG. The electrical element 3 is arranged on the island-shaped portion IL of the insulating base material 4. An inorganic insulating layer 10 (passivation layer) is arranged between the electrical element 3 and the island-shaped portion IL. The inorganic insulating layer 10 is formed in an island shape that overlaps with the electric element 3 (or the island-shaped portion IL) in a plan view. The first wiring portions 11a and 11b are arranged on the first organic insulating layer 5 and covered with the second organic insulating layer 6. The second wiring portion 12 is arranged on the inorganic insulating layer 10 and is electrically connected to the electric element 3. In the example shown in FIG. 4, both ends of the second wiring portion 12 are covered with the first organic insulating layer 5.
 コンタクトホールCH1およびCH2は、第1有機絶縁層5に設けられている。第1配線部11aは、コンタクトホールCH1に配置された接続部材CM1を介して第2配線部12と電気的に接続されている。同様に、第1配線部11bは、コンタクトホールCH2に配置された接続部材CM2を介して第2配線部12と電気的に接続されている。接続部材CM1は、第1配線部11aの一部であっても良いし、第1配線部11aとは別に設けられても良い。接続部材CM2は、第1配線部11bの一部であっても良いし、第1配線部11bとは別に設けられても良い。 The contact holes CH1 and CH2 are provided in the first organic insulating layer 5. The first wiring portion 11a is electrically connected to the second wiring portion 12 via the connecting member CM1 arranged in the contact hole CH1. Similarly, the first wiring portion 11b is electrically connected to the second wiring portion 12 via the connecting member CM2 arranged in the contact hole CH2. The connection member CM1 may be a part of the first wiring portion 11a, or may be provided separately from the first wiring portion 11a. The connection member CM2 may be a part of the first wiring portion 11b, or may be provided separately from the first wiring portion 11b.
 このように、電気的素子3と絶縁基材4との間には島状の無機絶縁層10が配置されている。この無機絶縁層10は、電気的素子3や走査線1の第2配線部12への水分等の侵入を抑制する保護膜として機能する。このため、フレキシブル基板100の信頼性が向上する。また、一般的に無機膜は有機膜に比べてクラックが生じ易いが、走査線1の第1配線部11aおよび11bの下方には無機絶縁層10が設けられていないため、第1配線部11aおよび11bでの断線が抑制される。図示しない信号線についても同様である。さらに、無機絶縁層10がフレキシブル基板100の全体に設けられている場合と比較して、フレキシブル基板100の伸縮性および可撓性が阻害されにくくなる。 In this way, the island-shaped inorganic insulating layer 10 is arranged between the electrical element 3 and the insulating base material 4. The inorganic insulating layer 10 functions as a protective film that suppresses the intrusion of moisture and the like into the second wiring portion 12 of the electrical element 3 and the scanning line 1. Therefore, the reliability of the flexible substrate 100 is improved. Further, in general, the inorganic film is more likely to crack than the organic film, but since the inorganic insulating layer 10 is not provided below the first wiring portions 11a and 11b of the scanning line 1, the first wiring portion 11a And the disconnection at 11b is suppressed. The same applies to signal lines (not shown). Further, as compared with the case where the inorganic insulating layer 10 is provided on the entire flexible substrate 100, the elasticity and flexibility of the flexible substrate 100 are less likely to be impaired.
 また、走査線1において、電気的素子3と重畳する第2配線部12が第1配線部11aおよび11bとは異なる層に配置されているため、電気的素子3の近傍における設計の自由度が向上する。また、コンタクトホールCH1およびCH2は、無機絶縁層10の上方に設けられているため、第1配線部11aと第2配線部12との接続位置、および、第1配線部11bと第2配線部12との接続位置での接続不良が抑制される。 Further, in the scanning line 1, since the second wiring portion 12 that overlaps with the electric element 3 is arranged in a layer different from that of the first wiring portions 11a and 11b, the degree of freedom of design in the vicinity of the electric element 3 is increased. improves. Further, since the contact holes CH1 and CH2 are provided above the inorganic insulating layer 10, the connection positions between the first wiring portion 11a and the second wiring portion 12 and the first wiring portion 11b and the second wiring portion 12b are provided. Poor connection at the connection position with 12 is suppressed.
 ここで、比較例を用いて、本実施形態に係るフレキシブル基板100の効果について説明する。なお、比較例は、本実施形態に係るフレキシブル基板100が奏し得る効果の一部を説明するためのものであって、比較例と本実施形態とで共通する構成や効果を本願発明の範囲から除外するものではない。 Here, the effect of the flexible substrate 100 according to the present embodiment will be described with reference to a comparative example. It should be noted that the comparative example is for explaining a part of the effects that the flexible substrate 100 according to the present embodiment can exert, and the configurations and effects common to the comparative example and the present embodiment can be described from the scope of the present invention. It is not an exclusion.
 図5は、比較例に係るフレキシブル基板100Aの断面を示す図である。比較例に係るフレキシブル基板100Aは、コーティング層7が線部LP全体を覆うのではなく、線部LPを構成する信号線2(および第2有機絶縁層6)を覆うように設けられている点で、本実施形態に係るフレキシブル基板100と相違している。 FIG. 5 is a diagram showing a cross section of the flexible substrate 100A according to the comparative example. The flexible substrate 100A according to the comparative example is provided so that the coating layer 7 does not cover the entire wire portion LP but covers the signal line 2 (and the second organic insulating layer 6) constituting the wire portion LP. Therefore, it is different from the flexible substrate 100 according to the present embodiment.
 比較例に係るフレキシブル基板100Aのように、コーティング層7が線部LP全体ではなく、線部LPを構成する信号線2を覆うように設けられる場合、隣接する2つの線部LPの間の領域R1においては、コーティング層7ではなく、第2伸縮樹脂層9が第1面SF1と接している。 When the coating layer 7 is provided so as to cover the signal line 2 constituting the wire portion LP instead of the entire wire portion LP as in the flexible substrate 100A according to the comparative example, the region between the two adjacent wire portion LPs. In R1, the second elastic resin layer 9 is in contact with the first surface SF1 instead of the coating layer 7.
 上記したように、コーティング層7は、例えばパリレン等、気体として蒸着される材料により形成されるため、割れ目や狭い部分にも均一に層を形成することが可能である一方で、第2伸縮樹脂層9は、材料特性上、割れ目や狭い部分においては均一に層を形成することができない。このため、図5に示すように、隣接する2つの線部LPの間の領域R1においては、第2伸縮樹脂層9と第1伸縮樹脂層8との間に、線部LPの第3方向D3の長さ(高さ)に起因した気泡(隙間)が生じてしまう。この気泡によれば、領域R1において、第2伸縮樹脂層9が第1伸縮樹脂層8の第1面SF1と接する面積が小さくなるため、フレキシブル基板100Aが繰り返し使用され、第1伸縮樹脂層8および第2伸縮樹脂層9が伸縮を繰り返すにつれて、第2伸縮樹脂層9が第1伸縮樹脂層8から剥がれ落ちてしまう可能性がある。 As described above, since the coating layer 7 is formed of a material that is vapor-deposited as a gas, such as parylene, it is possible to uniformly form the layer even in cracks and narrow portions, while the second elastic resin. Due to the material properties of the layer 9, the layer cannot be uniformly formed in a crack or a narrow portion. Therefore, as shown in FIG. 5, in the region R1 between the two adjacent line portions LP, the third direction of the line portion LP is between the second elastic resin layer 9 and the first elastic resin layer 8. Bubbles (gap) due to the length (height) of D3 are generated. According to the bubbles, in the region R1, the area where the second elastic resin layer 9 contacts the first surface SF1 of the first elastic resin layer 8 becomes smaller, so that the flexible substrate 100A is repeatedly used and the first elastic resin layer 8 is used. As the second elastic resin layer 9 repeatedly expands and contracts, the second elastic resin layer 9 may peel off from the first elastic resin layer 8.
 一方で、本実施形態に係るフレキシブル基板100の場合、コーティング層7は、信号線2だけでなく、線部LP全体および第1伸縮樹脂層8を覆うように設けられているので、隣接する2つの線部LPの間の領域R1においては、図3に示したように、コーティング層7が線部LPの側面と第1伸縮樹脂層8の第1面SF1の全面とに亘って接し、線部LPの高さ(配線段差)に起因した気泡の発生を抑制することができる。これによれば、コーティング層7が第1伸縮樹脂層8の第1面SF1と接する面積が十分に確保されるため、フレキシブル基板100Aが繰り返し使用されたとしても、コーティング層7が第1伸縮樹脂層8から剥がれ落ちてしまう可能性を抑制することが可能であり、ひいては、平坦なコーティング層7の全面に亘って設けられる第2伸縮樹脂層9が剥がれ落ちてしまう可能性も抑制することが可能である。 On the other hand, in the case of the flexible substrate 100 according to the present embodiment, since the coating layer 7 is provided so as to cover not only the signal line 2 but also the entire line portion LP and the first elastic resin layer 8, the adjacent 2 In the region R1 between the two line portions LP, as shown in FIG. 3, the coating layer 7 is in contact with the side surface of the line portion LP and the entire surface of the first surface SF1 of the first elastic resin layer 8 to form a line. It is possible to suppress the generation of air bubbles due to the height of the part LP (wiring step). According to this, since the area where the coating layer 7 is in contact with the first surface SF1 of the first stretchable resin layer 8 is sufficiently secured, even if the flexible substrate 100A is repeatedly used, the coating layer 7 is the first stretchable resin. It is possible to suppress the possibility of peeling off from the layer 8, and it is also possible to suppress the possibility of the second elastic resin layer 9 provided over the entire surface of the flat coating layer 7 peeling off. It is possible.
 以上説明したように、一実施形態によれば、配線段差に起因した経時劣化を抑制することが可能なフレキシブル基板を提供することができる。 As described above, according to one embodiment, it is possible to provide a flexible substrate capable of suppressing deterioration over time due to a wiring step.
 また、比較例に係る構成の場合、線部LPの高さを高くしてしまうと、第2伸縮樹脂層9の材料特性上、図6に示すように、第2伸縮樹脂層9が第1伸縮樹脂層8の第1面SF1と接する面積が図5に示した場合に比べてさらに小さくなり、第2伸縮樹脂層9が第1伸縮樹脂層8から剥がれ落ちる可能性がさらに高まるという問題があるが、本実施形態に係る構成の場合、割れ目や狭い部分にも均一に層を形成し、配線段差に起因した気泡の発生を抑制することが可能となるので、線部LPの高さをより高くするも可能である。 Further, in the case of the configuration according to the comparative example, if the height of the line portion LP is increased, the second stretchable resin layer 9 becomes the first stretchable resin layer 9 as shown in FIG. 6 due to the material characteristics of the second stretchable resin layer 9. The area of the elastic resin layer 8 in contact with the first surface SF1 is smaller than that shown in FIG. 5, and there is a problem that the possibility that the second elastic resin layer 9 is peeled off from the first elastic resin layer 8 is further increased. However, in the case of the configuration according to the present embodiment, it is possible to uniformly form a layer even in a crack or a narrow portion and suppress the generation of air bubbles due to a wiring step, so that the height of the wire portion LP can be increased. It can be higher.
 さらに、比較例に係る構成の場合、隣接する2つの線部LPの間の領域を狭くしてしまうと(狭ピッチ化を試みると)、第2伸縮樹脂層9の材料特性上、図7に示すように、第2伸縮樹脂層9が第1伸縮樹脂層8の第1面SF1と接する面積が図5に示した場合に比べてさらに小さくなり、第2伸縮樹脂層9が第1伸縮樹脂層8から剥がれ落ちる可能性がさらに高まるという問題があるが、本実施形態に係る構成の場合、割れ目や狭い部分にも均一に層を形成し、配線段差に起因した気泡の発生を抑制することが可能となるので、線部LPの狭ピッチ化を実現することも可能である。 Further, in the case of the configuration according to the comparative example, if the area between the two adjacent line portions LP is narrowed (when an attempt is made to narrow the pitch), the material characteristics of the second elastic resin layer 9 show that FIG. As shown, the area where the second elastic resin layer 9 is in contact with the first surface SF1 of the first elastic resin layer 8 is smaller than that in the case shown in FIG. 5, and the second elastic resin layer 9 is the first elastic resin. There is a problem that the possibility of peeling off from the layer 8 is further increased, but in the case of the configuration according to the present embodiment, the layer is uniformly formed even in the cracks and narrow portions, and the generation of air bubbles due to the wiring step is suppressed. Therefore, it is also possible to realize a narrow pitch of the line portion LP.
 以上のように、本実施形態に係る構成の場合、フレキシブル基板100の設計の自由度を向上させることも可能となる。 As described above, in the case of the configuration according to the present embodiment, it is possible to improve the degree of freedom in designing the flexible substrate 100.
 なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
 2…信号線、4…絶縁基材、5…第1有機絶縁層、6…第2有機絶縁層、7…コーティング層、8…第1伸縮樹脂層、9…第2伸縮樹脂層、100…フレキシブル基板、LP…線部、SF1…第1面、R1…領域。 2 ... signal line, 4 ... insulating base material, 5 ... first organic insulating layer, 6 ... second organic insulating layer, 7 ... coating layer, 8 ... first elastic resin layer, 9 ... second elastic resin layer, 100 ... Flexible substrate, LP ... wire part, SF1 ... first surface, R1 ... region.

Claims (6)

  1.  可撓性の絶縁基材と、前記絶縁基材の上に設けられる配線とからなる複数の線部と、
     前記絶縁基材を支持する第1伸縮樹脂層と、
     前記線部と前記第1伸縮樹脂層とを覆うコーティング層と、
     前記コーティング層を覆う第2伸縮樹脂層と、
     を具備し、
     前記コーティング層は、隣接する2つの前記線部の間の領域において、前記線部の側面と前記第1伸縮樹脂層と前記第2伸縮樹脂層とに接して形成されている、
     フレキシブル基板。
    A plurality of wire portions composed of a flexible insulating base material and wiring provided on the insulating base material,
    The first elastic resin layer that supports the insulating base material and
    A coating layer that covers the wire portion and the first elastic resin layer,
    A second elastic resin layer covering the coating layer and
    Equipped with
    The coating layer is formed in a region between two adjacent wire portions in contact with the side surface of the wire portion, the first stretchable resin layer, and the second stretchable resin layer.
    Flexible board.
  2.  前記コーティング層は、蒸着プロセスによって形成される、請求項1に記載のフレキシブル基板。 The flexible substrate according to claim 1, wherein the coating layer is formed by a thin-film deposition process.
  3.  前記コーティング層は、
     前記第2伸縮樹脂層に比べて水蒸気透過率が小さく、かつ、破断伸長率が小さい材料によって形成される、
     請求項1に記載のフレキシブル基板。
    The coating layer is
    It is formed of a material having a small water vapor transmittance and a low elongation at break as compared with the second stretchable resin layer.
    The flexible substrate according to claim 1.
  4.  前記コーティング層は、
     ポリ-p-キシリレン構造体によって形成される、
     請求項1に記載のフレキシブル基板。
    The coating layer is
    Formed by a poly-p-xylylene structure,
    The flexible substrate according to claim 1.
  5.  前記線部は、
     第1方向に延出し前記第1方向と交差する第2方向に並んで配置される複数の走査線を含む第1線部と、前記第2方向に延出し前記第1方向に並んで配置される複数の信号線を含む第2線部と、を含み、
     前記コーティング層は、
     隣接する2つの前記第1線部の間の領域、ならびに、隣接する2つの前記第2線部の間の領域において、前記第1及び第2線部の側面と前記第1伸縮樹脂層と前記第2伸縮樹脂層とに接して形成されている、
     請求項1に記載のフレキシブル基板。
    The line part is
    A first line portion including a plurality of scanning lines extending in the first direction and arranged side by side in the second direction intersecting the first direction, and extending in the second direction and arranged side by side in the first direction. Includes a second line section containing a plurality of signal lines,
    The coating layer is
    In the region between the two adjacent first line portions and the region between the two adjacent second line portions, the side surfaces of the first and second wire portions, the first elastic resin layer, and the said. Formed in contact with the second elastic resin layer,
    The flexible substrate according to claim 1.
  6.  前記第1線部及び前記第2線部は、前記第1伸縮樹脂層上で蛇行して形成されている、請求項5に記載のフレキシブル基板。 The flexible substrate according to claim 5, wherein the first wire portion and the second wire portion meander on the first elastic resin layer.
PCT/JP2020/016342 2019-06-06 2020-04-13 Flexible substrate WO2020246142A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-106151 2019-06-06
JP2019106151A JP2020202209A (en) 2019-06-06 2019-06-06 Flexible substrate

Publications (1)

Publication Number Publication Date
WO2020246142A1 true WO2020246142A1 (en) 2020-12-10

Family

ID=73652777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016342 WO2020246142A1 (en) 2019-06-06 2020-04-13 Flexible substrate

Country Status (2)

Country Link
JP (1) JP2020202209A (en)
WO (1) WO2020246142A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231018A (en) * 2011-04-26 2012-11-22 Nippon Mektron Ltd Flexible circuit body and method for manufacturing the same
US20150351221A1 (en) * 2014-05-27 2015-12-03 Gwangju Institute Of Science And Technology Electrode arrangement with 3d structure and fabrication method thereof
WO2017003531A1 (en) * 2015-06-30 2017-01-05 Apple Inc. Electronic devices with soft input-output components
JP2017113088A (en) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 Biological sensor device
JP2018066933A (en) * 2016-10-21 2018-04-26 株式会社ジャパンディスプレイ Display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231018A (en) * 2011-04-26 2012-11-22 Nippon Mektron Ltd Flexible circuit body and method for manufacturing the same
US20150351221A1 (en) * 2014-05-27 2015-12-03 Gwangju Institute Of Science And Technology Electrode arrangement with 3d structure and fabrication method thereof
WO2017003531A1 (en) * 2015-06-30 2017-01-05 Apple Inc. Electronic devices with soft input-output components
JP2017113088A (en) * 2015-12-21 2017-06-29 パナソニックIpマネジメント株式会社 Biological sensor device
JP2018066933A (en) * 2016-10-21 2018-04-26 株式会社ジャパンディスプレイ Display

Also Published As

Publication number Publication date
JP2020202209A (en) 2020-12-17

Similar Documents

Publication Publication Date Title
CN107680984B (en) Organic light emitting display module
CN106796947B (en) Display device with micro-cover layer and manufacturing method thereof
CN106796364B (en) Flexible display device including wiring having reinforced portion and method of manufacturing the same
KR20180073352A (en) Organic light emitting display device
US20170302772A1 (en) Flexible display device with reduced bend stress wires
WO2020217784A1 (en) Flexible substrate
KR20190087886A (en) Stretchable Display
US20190250441A1 (en) Display device and flexible wiring board
WO2020246142A1 (en) Flexible substrate
JP6120400B2 (en) Liquid device
US20220416182A1 (en) Electronic device
WO2020110421A1 (en) Flexible substrate
WO2021149320A1 (en) Flexible substrate
WO2020230496A1 (en) Flexible substrate
WO2021106421A1 (en) Flexible substrate
WO2021192506A1 (en) Electronic device
WO2020246110A1 (en) Flexible substrate
WO2020110422A1 (en) Flexible substrate
JP7341728B2 (en) flexible circuit board
WO2021149322A1 (en) Flexible substrate
JP2022183831A (en) Electronic apparatus
WO2021124667A1 (en) Flexible substrate
JP2021150583A (en) Electronic apparatus
JP2019075420A (en) Wiring board
JP2022173804A (en) sensor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20817942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20817942

Country of ref document: EP

Kind code of ref document: A1