WO2020246047A1 - Lens shape measurement device, lens shape measurement method, lens optical property measurement device, program, and recording medium - Google Patents

Lens shape measurement device, lens shape measurement method, lens optical property measurement device, program, and recording medium Download PDF

Info

Publication number
WO2020246047A1
WO2020246047A1 PCT/JP2019/029274 JP2019029274W WO2020246047A1 WO 2020246047 A1 WO2020246047 A1 WO 2020246047A1 JP 2019029274 W JP2019029274 W JP 2019029274W WO 2020246047 A1 WO2020246047 A1 WO 2020246047A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
axis direction
unit
laser
measurement
Prior art date
Application number
PCT/JP2019/029274
Other languages
French (fr)
Japanese (ja)
Inventor
小出 珠貴
Original Assignee
株式会社レクザム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レクザム filed Critical 株式会社レクザム
Publication of WO2020246047A1 publication Critical patent/WO2020246047A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/255Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring radius of curvature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties

Definitions

  • the present invention relates to a lens shape measuring device, a lens shape measuring method, a lens optical characteristic measuring device, a program, and a recording medium.
  • Patent Document 1 As a conventional optical characteristic measuring device for eyeglass lenses, for example, there is a device capable of measuring optical characteristics such as refractive index and ultraviolet transmittance (Patent Document 1).
  • an object of the present invention is to provide a lens shape measuring device capable of measuring the surface shape of a lens and the thickness of a lens with high accuracy, and a lens shape measuring method.
  • the lens shape measuring device of the present invention is used. It is provided with a lens holding unit, a measurement control unit, a laser irradiation unit, a laser light receiving unit, a lens front surface position detection unit, a lens back surface position detection unit, a measurement calculation unit, and an output unit. Further, at least one of the lens position moving portion and the laser irradiation portion moving portion is provided.
  • the lens holding portion holds the lens and holds the lens.
  • the lens position moving portion can move the lens held by the lens holding portion in at least one direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the X ⁇ direction, the Y ⁇ direction, and the Z ⁇ direction.
  • the X-axis direction and the Y-axis direction are directions orthogonal to each other in the vertical direction or the plane perpendicular to the optical axis direction.
  • the Z-axis direction is the vertical direction or the optical axis direction.
  • the X ⁇ direction is the circumferential direction of a virtual circle whose rotation center axis is the X-axis at an arbitrary position on the plane formed by the Y-axis direction and the Z-axis direction.
  • the Y ⁇ direction is the circumferential direction of a virtual circle whose rotation center axis is the Y-axis at an arbitrary position on the plane formed by the X-axis direction and the Z-axis direction.
  • the Z ⁇ direction is the circumferential direction of a virtual circle whose rotation center axis is the Z axis at an arbitrary position on the plane formed by the X-axis direction and the Y-axis direction.
  • the measurement control unit generates measurement control information including a lens surface shape measurement mode and a lens thickness measurement mode.
  • the laser irradiation unit irradiates the lens with a laser, and the laser is a line laser or a dot laser.
  • the laser irradiation unit moving unit can move the laser irradiation unit in at least one direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the X ⁇ direction, the Y ⁇ direction, and the Z ⁇ direction.
  • the laser light receiving unit receives the scattered light of the laser irradiated to the lens, and receives the scattered light.
  • the lens surface position detection unit detects a specific position on the lens surface and
  • the lens back surface position detection unit detects a specific position on the back surface of the lens and
  • the measurement calculation unit calculates the surface shape of the lens based on the information of the laser light receiving unit, and the thickness information of the lens is based on the information from the lens surface position detection unit and the lens back surface position detection unit. Is calculated and
  • the output unit outputs the calculated surface shape information and thickness information of the lens.
  • the lens position moving unit moves the lens in the X-axis direction, or the laser irradiation unit moving unit moves the laser irradiation unit in the X-axis direction.
  • the laser irradiation unit irradiates the lens surface with a laser parallel to the Y-axis direction scanned in the X-axis direction, or
  • the lens position moving portion moves the lens in the Y-axis direction, or the laser irradiation portion moving portion moves the laser irradiation portion in the Y-axis direction.
  • the laser irradiation unit irradiates the lens surface with a laser parallel to the X-axis direction scanned in the Y-axis direction.
  • the laser light receiving unit receives the scattered light of the laser irradiated to the lens, and receives the scattered light.
  • the measurement calculation unit calculates front and back image data of the lens from the scattered light received by the laser light receiving unit.
  • the lens position moving portion moves the lens in the Z-axis direction, or the laser irradiation portion is moved in the Z-axis direction, and the lens surface position detecting portion moves the lens surface position in the Z-axis direction.
  • the lens back surface position is detected by the lens back surface position detection unit, and the lens back surface position in the Z-axis direction is detected.
  • the measurement calculation unit calculates the thickness information of the lens from the lens front surface position in the Z-axis direction, the lens back surface position in the Z-axis direction, and the lens movement distance in the Z-axis direction. It is a device.
  • the lens shape measuring method of the present invention Including the lens surface shape measurement process and the lens thickness measurement process
  • the lens is irradiated with a laser
  • the laser is a line laser or a dot laser.
  • At least one of the lens and the laser can move in at least one direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the X ⁇ direction, the Y ⁇ direction, and the Z ⁇ direction.
  • the X-axis direction and the Y-axis direction are directions orthogonal to each other in the vertical direction or the plane perpendicular to the optical axis direction.
  • the Z-axis direction is the vertical direction or the optical axis direction.
  • the X ⁇ direction is the circumferential direction of a virtual circle whose rotation center axis is the X-axis at an arbitrary position on the plane formed by the Y-axis direction and the Z-axis direction.
  • the Y ⁇ direction is the circumferential direction of a virtual circle whose rotation center axis is the Y-axis at an arbitrary position on the plane formed by the X-axis direction and the Z-axis direction.
  • the Z ⁇ direction is the circumferential direction of a virtual circle whose rotation center axis is the Z axis at an arbitrary position on the plane formed by the X-axis direction and the Y-axis direction.
  • the lens surface shape measuring step is While irradiating the lens with a laser parallel to the Y-axis direction, the lens is moved in the X-axis direction, or the laser is moved in the X-axis direction to X the laser parallel to the Y-axis direction.
  • the lens surface is irradiated in a state of scanning in the axial direction, or the lens is moved in the Y-axis direction while irradiating the lens with a laser parallel to the X-axis direction, or the laser is moved in the Y-axis direction.
  • the lens surface is irradiated with the laser parallel to the X-axis direction scanned in the Y-axis direction, the scattered light of the laser irradiated to the lens is received, and the received scattered light is received.
  • the front and back image data of the lens is calculated from The lens thickness measuring step is The lens is moved in the Z-axis direction, or the laser is moved in the Z-axis direction to detect the lens front surface position and the lens back surface position, and the lens front surface position, the lens back surface position, and the lens back surface position are detected. This is a method of calculating the thickness information of the lens from the moving distance of the lens in the Z-axis direction.
  • the surface shape of the lens and the thickness of the lens can be measured with high accuracy.
  • FIG. 1 is a diagram showing an example of the configuration of the device of the present invention.
  • FIG. 2 is a diagram showing an example of lens surface shape measurement of the present invention.
  • FIG. 3 is a diagram showing an example of measuring the thickness of the lens of the present invention.
  • FIG. 4 is a diagram showing an example of the configuration of the device of the present invention.
  • FIG. 5 is a diagram showing an example of the configuration of the device of the present invention.
  • FIG. 6 is a diagram showing an example of the configuration of the device of the present invention.
  • FIG. 7 is a diagram showing an example of the configuration of the device of the present invention.
  • FIG. 8 is a diagram showing an example of the configuration of the device of the present invention.
  • FIG. 9 is a diagram showing an example of the configuration of the device of the present invention.
  • FIG. 10 is a diagram showing an example of the configuration of the device of the present invention.
  • FIG. 11 is a diagram showing an example of the configuration of the device of the present invention.
  • FIG. 12 is a diagram showing an example of the configuration of the device of the present invention.
  • FIG. 13 is a diagram showing an example of the configuration of the device of the present invention.
  • FIG. 14 is a diagram showing an example of the configuration of the device of the present invention.
  • FIG. 15 is a diagram showing an example of the configuration of the device of the present invention.
  • FIG. 16 is a diagram showing an example of the configuration of the device of the present invention.
  • FIG. 17 is a diagram showing an example of the configuration of the device of the present invention.
  • FIG. 18 is an explanatory diagram of an example of in-lens coordinates in the present invention.
  • FIG. 19 is an explanatory diagram of an example of the divided measurement of the present invention.
  • FIG. 20 is an explanatory diagram of an example of the divided measurement of the present invention.
  • FIG. 21 is an explanatory diagram of an example of synchronous movement measurement of the lens of the present invention.
  • FIG. 22 is an explanatory view of an example of mounting a cup on the lens of the present invention.
  • FIG. 23 is a flow chart showing an example of a process of lens shape analysis in the lens shape measuring device or the lens shape measuring method of the present invention.
  • the X-axis direction and the Y-axis direction can be freely defined.
  • the left-right direction of the front direction may be the X-axis direction
  • the front-rear direction of the front may be the X-axis direction.
  • At least one of the six directions of the X-axis direction, the Y-axis direction, the Z-axis direction, the X ⁇ direction, the Y ⁇ direction, and the Z ⁇ direction, which will be described later, is not particularly limited, and only one of the six directions may be used. It may be at least two directions in the six directions, at least three directions in the six directions, or the like, and may be, for example, one direction, two directions, three directions, four directions, five directions, or six directions in the six directions. Further, at least two directions of the six directions, at least three directions of the six directions, and the like are not particularly limited.
  • At least three directions of the six directions are three directions of the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • X ⁇ direction, Y-axis direction and Z-axis direction three directions
  • Y ⁇ direction, X-axis direction and Z-axis direction three directions
  • the optical characteristics of the lens may be measured while continuously changing the position and direction of the lens, or measured at each position and direction while changing the position and direction of the lens stepwise. May be good.
  • the measurement at each position of the lens includes the measurement of each part of the lens.
  • the direction of the lens includes the inclination of the lens and the direction of the lens.
  • the optical characteristics of the lens are not particularly limited, and for example, relative refractive index, absolute refractive index, Abbe number, prism refractive power, spherical power (S), random vision power (C), random vision axis angle (A), and so on.
  • the lens when irradiating the lens with a laser, for example, as in each embodiment described later, the lens may be irradiated from the front surface side of the lens, or from other directions (back surface side of the lens, lateral direction, etc.). You may irradiate.
  • the lens surface position detecting unit detects a specific position on the lens surface
  • the lens back surface position detecting unit detects a specific position on the lens back surface.
  • the "specific position" of the lens to be detected is changed, for example, by moving the lens in at least one direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the X ⁇ direction, the Y ⁇ direction, and the Z ⁇ direction. It is possible.
  • the "specific position" of the lens to be detected moves, for example, the laser irradiation unit in at least one direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the X ⁇ direction, the Y ⁇ direction, and the Z ⁇ direction. It can be changed by letting it.
  • the lens surface position detecting unit includes the laser irradiation unit and the laser receiving unit, and the lens is moved in the Z-axis direction by the lens position moving unit, or the laser.
  • the irradiation unit is moved in the Z-axis direction, the laser irradiated by the laser irradiation unit is scattered on the lens surface, the scattered light is received by the laser light receiving unit, and the width of the emission line of the scattered light is minimized.
  • the lens surface position may be specified by specifying the position in the Z-axis direction.
  • the surface image data of the lens is two-dimensional image data
  • the surface shape data of the lens is calculated by approximating the two-dimensional image data with a Zernike polynomial. It may be in the form of doing.
  • the measurement calculation unit may perform correction processing by projective transformation (homography) on the surface image data of the lens.
  • the lens position moving unit moves the lens to the Z-axis. Either the lens irradiation unit is moved in the direction, or the laser irradiation unit is moved in the Z-axis direction, and the lens back surface position detection unit detects the lens back surface position in the Z-axis direction, or the lens back surface position detection unit. After detecting the position of the back surface of the lens in the Z-axis direction, the lens position moving portion moves the lens in the Z-axis direction, or the laser irradiation portion is moved in the Z-axis direction to move the lens.
  • the surface position detecting unit may detect the lens surface position in the Z-axis direction.
  • the lens thickness measuring step may be an embodiment in which the lens front surface position in the Z-axis direction and the lens back surface position in the Z-axis direction are simultaneously detected.
  • the lens shape measuring method of the present invention in the lens thickness measuring step, after detecting the lens surface position in the Z-axis direction, the lens is moved in the Z-axis direction or the laser is moved in the Z-axis direction.
  • the lens back surface position in the Z-axis direction is detected, or the lens back surface position in the Z-axis direction is detected and then the lens is moved in the Z-axis direction, or the laser is moved in the Z-axis direction.
  • the lens surface position in the Z-axis direction may be detected by moving the lens to.
  • the lens shape measuring method of the present invention in the lens surface position detection, when the lens is moved in the Z-axis direction or the laser is moved in the Z-axis direction, the irradiated laser is scattered on the lens surface.
  • the lens surface position may be specified by receiving the scattered light and specifying the position in the Z-axis direction where the width of the emission line of the scattered light is minimized.
  • the surface image data of the lens is two-dimensional image data
  • the surface shape data of the lens is calculated by approximating the two-dimensional image data with a Zernike polynomial. You may.
  • the surface image data of the lens may be corrected by projective transformation (homography).
  • the lens optical characteristic measuring device of the present invention includes a lens holding unit, an operation input unit, a measurement control unit, a measurement calculation unit, a light irradiation unit, a light receiving unit, and an output unit.
  • the lens holding portion holds the lens and holds the lens.
  • the operation input unit inputs operation information including the measurement content to the measurement control unit.
  • the measurement control unit generates measurement control information based on the input operation information, and generates measurement control information.
  • the light irradiation unit irradiates the lens with light based on the measurement control information.
  • the light receiving unit receives the measurement light emitted from the lens irradiated with the light and generates measurement information.
  • the measurement calculation unit generates optical characteristic information of the lens based on the measurement information.
  • the output unit outputs the optical characteristic information and outputs the optical characteristic information.
  • the lens shape measuring device of the present invention is included.
  • the lens holding portion also serves as the lens holding portion of the lens shape measuring device.
  • the measurement control unit also serves as the measurement control unit of the lens shape measuring device.
  • the light receiving unit also serves as the laser light receiving unit of the lens shape measuring device.
  • the measurement calculation unit also serves as the measurement calculation unit of the lens shape measuring device.
  • the output unit also serves as the output unit of the lens shape measuring device. Based on the measurement control information, the lens position moving unit moves the lens held by the lens holding unit to at least one in the X-axis direction, the Y-axis direction, the Z-axis direction, the X ⁇ direction, the Y ⁇ direction, and the Z ⁇ direction.
  • the X-axis direction, Y-axis direction, Z-axis direction, X ⁇ direction, Y ⁇ direction, and Z ⁇ direction are the X-axis direction, Y-axis direction, Z-axis direction, X ⁇ direction, Y ⁇ direction, and the lens shape measuring device. It is the same as the Z ⁇ direction,
  • the laser irradiation unit moving unit is a device capable of moving the laser irradiation unit in at least one direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the X ⁇ direction, the Y ⁇ direction, and the Z ⁇ direction.
  • the measurement control unit can generate lens synchronous movement information
  • the lens position moving unit is a lens held by the lens holding unit based on the lens synchronous movement information.
  • the lens can be rotated in the X ⁇ direction at the optical center point of the lens by moving in synchronization with the X ⁇ direction, the Y-axis direction, and the Z-axis direction. According to this aspect, it is not necessary to take a wide space for moving (including rotation) of the lens (advantageous in terms of space), and it is possible to shorten the time for changing the position and direction of the lens.
  • the operation input unit can input operation information including the in-lens coordinate setting information, and the in-lens coordinate setting information includes the LX axis direction and the LY axis direction. It is two-dimensional coordinate information, and the two-dimensional coordinates are two-dimensional coordinates on a plane perpendicular to the optical axis of the lens in the lens, and in the LX axis direction, two alignment marks in the lens are formed.
  • the LY axis direction is an axial direction orthogonal to the LX axis direction
  • the operation information input by the operation input unit includes the in-lens coordinate setting information
  • the measurement control unit Generates measurement control information including the coordinate setting information in the lens
  • the measurement calculation unit extracts two alignment mark position information from the measurement information based on the coordinate setting information in the lens, and aligns the two alignments. From the mark position information, the in-lens coordinate information including the LX-axis direction and the LY-axis direction in the lens is generated, and the output unit outputs the optical characteristic information including the in-lens coordinate information. May be the embodiment.
  • the measurement calculation unit may generate optical characteristic information of each position of the lens defined by the coordinates in the lens, and the output unit may output optical characteristic information of each position of the lens.
  • the coordinates can be set in the lens, and as a result, the optical characteristics of each part of the lens can be accurately defined.
  • the operation input unit can input operation information including division measurement instruction information, and the division measurement instruction information measures the optical characteristics by dividing the lens into each part. , All or part of the optical characteristics of each part of the lens measured separately are integrated into the optical characteristics of the whole or a part of the lens, and the operation information input by the operation input unit is divided and measured.
  • the measurement control unit When the instruction information is included, the measurement control unit generates measurement control information including the division measurement instruction information, and the lens position moving unit is applied to each division of the lens based on the division measurement instruction information.
  • the lens is moved so that the light irradiation unit can irradiate light, and the light irradiation unit irradiates each divided portion of the lens with light based on the division measurement instruction information.
  • the measurement light emitted from each divided portion of the lens is received to generate the divided measurement information of each part of the lens, and the measurement calculation unit is based on the divided measurement information.
  • the mode may be such that the divided optical characteristic information of the lens is generated, and all or a part of the divided optical characteristic information is integrated to generate the optical characteristic information of the whole or a part of the lens. According to this aspect, it is possible to measure the optical characteristics even with a lens (large lens) having a diameter exceeding the range (area) of the irradiated light.
  • the cup mounting portion further includes a cup mounting portion, and the cup mounting portion is a cup holding portion that holds the cup and a moving portion that is connected to the cup holding portion and moves the cup holding portion.
  • the moving portion when the cup holding portion is arranged at a position where the cup holding portion does not interfere with the optical characteristic measurement when the optical characteristics are measured, and when the cup is arranged on the lens, the moving portion is described.
  • the cup holding portion is arranged above the lens, and the lens position moving portion assumes an arbitrary point in the lens with respect to the cup of the cup holding portion arranged above the lens, and is formed on a surface passing through the arbitrary point.
  • the position and orientation of the lens are adjusted so that the orthogonal axes align with the central axis of the cup, and at least one of the lens position moving portion and the moving portion of the cup mounting portion is at least one of the lens and the cup.
  • the lens By moving the lens, the lens may be brought into contact with the cup to attach the cup to the lens.
  • a cup also referred to as a sanction cup
  • the cup can be accurately attached to the lens by the lens position moving portion.
  • the optional points include, for example, the optical center point of the lens, the eye point of the lens, and the like.
  • the method for measuring the optical characteristics of a lens of the present invention is a method for measuring the optical characteristics of a lens by irradiating the lens with light and receiving the measurement light emitted from the lens to measure the optical characteristics of the lens, in the X-axis direction.
  • Y-axis direction, Z-axis direction, X ⁇ direction, Y ⁇ direction, and Z ⁇ direction, the X-axis direction and the Y-axis direction are perpendicular to each other in the vertical direction or the plane perpendicular to the optical axis direction.
  • the Z-axis direction is the vertical direction or the optical axis direction
  • the X ⁇ direction is the circumference of a virtual circle whose rotation center axis is the X-axis at an arbitrary position on the plane formed by the Y-axis direction and the Z-axis direction.
  • the Y ⁇ direction is the circumferential direction of the virtual circle whose rotation center axis is the Y-axis at an arbitrary position on the plane formed by the X-axis direction and the Z-axis direction
  • the Z ⁇ direction is the X-axis direction and the Z-axis direction.
  • the lens On the surface formed by the Y-axis direction, the lens is irradiated with light at the positions and directions defined in the six directions, which is the circumferential direction of the virtual circle whose rotation center axis is the Z-axis at an arbitrary position. This is a method for measuring the optical characteristics of the lens.
  • the in-lens coordinate defining step is further included, and the in-lens coordinates are two-dimensional coordinates including the LX axis direction and the LY axis direction, and the two-dimensional coordinates are said.
  • the LX axis direction is an axial direction that overlaps with two alignment marks in the lens
  • the LY axis direction is the LX.
  • the axial direction is orthogonal to the axial direction, and the in-lens coordinate defining step irradiates the lens with light, detects two alignment mark positions from the measured light emitted, and from the two alignment mark positions, the lens.
  • the in-lens coordinates including the LX axis direction and the LY axis direction are defined.
  • the optical characteristic distribution information generation step further includes an optical characteristic distribution information generation step, in which the optical characteristic distribution information generation step associates the optical characteristics of each position with each position of the lens defined by the in-lens coordinate defining step. , Is preferable.
  • the coordinates can be set in the lens, and as a result, the optical characteristics of each part of the lens can be accurately defined.
  • the lens optical characteristic measuring method of the present invention further includes a divisional measurement step, in which the divisional measurement divides the lens into individual parts to measure the optical characteristics, and all of the optical characteristics of the divided and measured parts of the lens are measured.
  • a part of the lens is integrated into the optical characteristics of the whole or a part of the lens, and in the division measurement step, the lens is arranged in the six directions so that the divided parts of the lens can be irradiated with light. It is moved in at least one direction of the lens, irradiates light on each divided portion of the lens, receives measurement light emitted from each divided portion of the lens, and generates divided measurement information of each portion of the lens.
  • the program of the present invention is a program capable of executing the method of the present invention on a computer.
  • the recording medium of the present invention is a computer-readable recording medium on which the program of the present invention is recorded.
  • FIG. 1 shows the configuration of each part of the lens shape measuring device 1 of the present embodiment.
  • the apparatus 1 includes an operation input unit 11, a measurement control unit 12, a measurement calculation unit 13, a storage unit 14, an output unit 15, a lens position moving unit 16, a line laser irradiation unit 7a, and a line laser light receiving unit 7b. , The lens holding unit 18, and the lens back surface position detecting unit 23.
  • the operation input unit 11, the measurement control unit 12, the measurement calculation unit 13, the storage unit 14, and the output unit 15 are configured in, for example, a central processing unit such as a CPU or GPU.
  • the lens holding unit 18 holds the lens to be measured.
  • the operation input unit 11 is connected to an input device (not shown) such as a touch panel, a mouse, or a keyboard, and inputs operation information including measurement contents to the measurement control unit 12.
  • the measurement control unit 12 generates measurement control information based on the input operation information, and the line laser irradiation unit 7a sends a line laser (upper arrow in FIG. 1) to the lens holding unit 18 based on the measurement control information. Irradiate the held lens (not shown).
  • the line laser light receiving unit 7b receives a line laser (lower arrow in FIG. 1) reflected from the lens irradiated with the line laser.
  • the surface shape of the lens can be measured by the line laser irradiation unit 7a and the line laser light receiving unit 7b.
  • the line laser irradiation unit 7a and the line laser light receiving unit 7b also serve as the lens surface position detection unit 22, and detect the lens surface position in the Z-axis direction.
  • the lens back surface position detection unit 23 detects the lens back surface position in the Z-axis direction.
  • the lens surface shape information, the lens surface position information, the lens back surface position information, and the lens Z-axis movement distance information are input to the measurement calculation unit 13, and the measurement calculation unit 13 determines the lens surface shape information and the lens based on the respective information.
  • the surface shape information of the lens and the thickness information of the lens are stored in the storage unit 14 and output by the output unit 15.
  • the output unit 15 is connected to an output device (not shown) such as a display and a printer, and the surface shape information of the lens and the thickness information of the lens are displayed on the display or printed by the printer.
  • the storage unit 14 is, for example, a memory.
  • Examples of the memory include a main memory (main storage device).
  • the main memory is, for example, a RAM (random access memory).
  • the memory may be, for example, a ROM (read-only memory).
  • the storage device may be, for example, a combination of a storage medium and a drive that reads and writes to the storage medium.
  • the storage medium is not particularly limited, and may be an internal type or an external type, and examples thereof include HD (hard disk), CD-ROM, CD-R, CD-RW, MO, DVD, flash memory, and memory card. ..
  • the storage device may be, for example, a hard disk drive (HDD) in which a storage medium and a drive are integrated.
  • the storage unit 14 is an arbitrary component and is not essential.
  • the device 1 may further include a communication device (not shown) and communicate with the external device by the communication device via an external communication network (network).
  • the communication network include an Internet line, WWW (World Wide Web), telephone line, LAN (Local Area Network), DTN (Delay Tolerant Networking), and the like.
  • Communication by the communication device may be wired or wireless.
  • wireless communication include WiFi (Wireless Fidelity), Bluetooth (registered trademark), and the like.
  • the wireless communication may be either a form in which each device directly communicates (Ad Hoc communication) or an indirect communication via an access point.
  • the external device include a server, a database, a terminal (personal computer, tablet, smartphone, mobile phone, etc.), a printer, a display, and the like.
  • the lens position moving unit 16 is connected to the lens holding unit 18, and the lens held by the lens position moving unit 16 in the lens holding unit 18 is moved in three directions of the X-axis direction, the Y-axis direction, and the Z-axis direction. It is possible to move to.
  • the X-axis direction and the Y-axis direction are directions orthogonal to each other in the vertical direction or the plane perpendicular to the optical axis direction.
  • the Z-axis direction is the vertical direction or the optical axis direction.
  • FIG. 2 shows an example of lens surface shape measurement in the lens surface shape measurement mode.
  • the lens Le is held by the lens holding portion 18, and the lens Le is moved in the X-axis direction by the lens position moving portion 16 connected to the lens holding portion 18.
  • the line laser irradiation unit 7a irradiates the lens Le surface with the line laser parallel to the Y axis from diagonally above while being moved in the X-axis direction.
  • a part of the irradiated line laser is reflected by the lens Le surface, and the reflected line laser is received by the line laser light receiving unit 7b.
  • the measurement calculation unit 13 calculates the surface image data of the lens from the reflected light received by the line laser light receiving unit 7b.
  • the surface image data of the lens is two-dimensional image data
  • the measurement calculation unit 13 calculates the surface shape data of the lens by approximating the two-dimensional image data with a Zernike polynomial, for example.
  • the reflected light of the line laser includes the refracted light on the back surface of the lens, but the refracted light on the back surface is not used (cancelled). Further, the measurement calculation unit 13 may perform a correction process by projective transformation (homography) on the surface image data of the lens.
  • FIG. 3 shows an example of lens thickness measurement in the lens thickness measurement mode.
  • the lens Le is set and held on the chuck (not shown) of the lens holding portion 18.
  • the lens position moving unit 16 causes the lens Le held by the lens holding unit 18 in the Z-axis direction (vertical direction in the figure). Move to.
  • the line laser irradiated by the line laser irradiation unit 7a is scattered on the lens Le surface, and the scattered light is received by the line laser light receiving unit 7b.
  • the position in the Z-axis direction where the width of the emission line of the scattered light is minimized is defined as the lens Le surface position.
  • the lens Le surface From the initial position of the lens Le and the amount of movement of the lens Le in the Z-axis direction from the initial position to the surface position of the lens Le (for example, it can be calculated from the number of steps of movement in the Z-axis direction by the stepping motor), the lens Le surface.
  • the position can be calculated.
  • the order of movement of the lens Le in the Z-axis direction is not particularly limited.
  • the initial position of the lens Le may be set high and lowered first, or conversely, the initial position of the lens Le may be set low and raised first.
  • the lens position moving unit 16 moves the lens Le held by the lens holding unit 18 in the Z-axis direction (downward in the figure), and a non-contact touch switch (lens back surface detecting unit) arranged at a predetermined position. ) 23, the position where the back surface of the lens Le comes into contact with the lens Le and is turned on is defined as the position on the back surface of the lens in the Z-axis direction.
  • the ON position of the touch switch 23 By specifying the ON position of the touch switch 23 prior to the measurement, the position of the back surface of the lens in the Z-axis direction can be specified.
  • the measurement calculation unit 13 calculates the thickness information of the lens from the lens front surface position in the Z-axis direction, the lens back surface position in the Z-axis direction, and the lens movement distance in the Z-axis direction.
  • the configuration of the optical system is not limited to FIG. 3, and may be, for example, the configuration shown in FIGS. 12 or 13 of the embodiment described later.
  • the laser light receiving unit may be the light receiving unit 19 of FIG. 12 or 13 instead of the line laser light receiving unit 7b of FIG. 3, and the width of the emission line may be measured by the CMOS 19c of FIG. 12 or 13.
  • a dot laser may be used instead of the line laser.
  • the dot laser is not particularly limited, and may be, for example, a general dot laser or a dot laser using a DOE (diffraction optical element).
  • DOE diffiffraction optical element
  • a laser emitted from a laser diode can be made into a dot laser by passing through DOE.
  • DOE for example, the shape of the beam can be freely designed. Therefore, according to DOE, for example, it is easy to increase the number of points (for example, 20 ⁇ 20).
  • the brightness of the point on the lens can be increased, so that the position accuracy for obtaining the brightness center of gravity can be further improved as compared with, for example, a line laser.
  • the surface shape can be obtained by using the point cloud by DOE.
  • a dot laser may be used instead of the line laser, and the dot laser is not particularly limited, and for example, a general dot laser may be used, or DOE is used. It may be a dot laser that has been used.
  • the lens can be moved in three directions of the X-axis direction, the Y-axis direction, and the Z-axis direction by the lens position moving portion.
  • the present invention is not limited to this, and for example, in addition to or in place of the lens position moving portion, the laser irradiating portion moving portion is provided, and the laser irradiating portion moving portion causes the laser irradiating portion to be X. It may be movable in three directions of the axial direction, the Y-axis direction, and the Z-axis direction.
  • the lens position moving portion is not limited to the example in which it can move in the three directions of the X-axis direction, the Y-axis direction, and the Z-axis direction, and the X-axis direction, the Y-axis direction, and the Z-axis direction. It suffices if it can move in at least one direction of the X ⁇ direction, the Y ⁇ direction, and the Z ⁇ direction. The same applies to the moving unit of the laser irradiation unit.
  • the laser irradiating portion moving portion is provided, and the laser irradiating portion moving portion causes the laser irradiating portion to be moved in the X-axis direction, the Y-axis direction, and the Z-axis.
  • the example is not limited to the example of being movable in three directions, and may be movable in at least one direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the X ⁇ direction, the Y ⁇ direction, and the Z ⁇ direction. The same applies to each of the following embodiments.
  • FIG. 4 shows the configuration of each part of the lens optical characteristic measuring device 1 of the present embodiment.
  • the lens optical characteristic measuring device 1 of the present embodiment includes, for example, the lens shape measuring device 1 of the first embodiment.
  • the apparatus 1 includes an operation input unit 11, a measurement control unit 12, a measurement calculation unit 13, a storage unit 14, an output unit 15, a lens position moving unit 16, a light irradiation unit 17, a lens holding unit 18, and a lens holding unit 18. , A light receiving unit 19.
  • the operation input unit 11, the measurement control unit 12, the measurement calculation unit 13, the storage unit 14, and the output unit 15 are configured in, for example, a central processing unit such as a CPU or GPU.
  • the lens holding unit 18 holds the lens to be measured.
  • the operation input unit 11 is connected to an input device (not shown) such as a touch panel, a mouse, or a keyboard, and inputs operation information including measurement contents to the measurement control unit 12.
  • the measurement control unit 12 generates measurement control information based on the input operation information, and the light irradiation unit 17 holds light (upper arrow in FIG. 4) in the lens holding unit 18 based on the measurement control information. Irradiate the lens (not shown).
  • the light receiving unit 19 receives the measurement light (lower arrow in FIG. 1) emitted from the lens irradiated with the light to generate measurement information, and the measurement calculation unit 13 optics the lens based on the measurement information. Generate characteristic information.
  • the optical characteristics of the lens are stored in the storage unit 14, and the output unit 15 outputs the optical characteristic information.
  • the output unit 15 is connected to an output device (not shown) such as a display and a printer, and the optical characteristic information is displayed on the display or printed by the printer.
  • the storage unit 14 is, for example, a memory.
  • Examples of the memory include a main memory (main storage device).
  • the main memory is, for example, a RAM (random access memory).
  • the memory may be, for example, a ROM (read-only memory).
  • the storage device may be, for example, a combination of a storage medium and a drive that reads and writes to the storage medium.
  • the storage medium is not particularly limited, and may be an internal type or an external type, and examples thereof include HD (hard disk), CD-ROM, CD-R, CD-RW, MO, DVD, flash memory, and memory card. ..
  • the storage device may be, for example, a hard disk drive (HDD) in which a storage medium and a drive are integrated.
  • the storage unit 14 is an arbitrary component and is not essential.
  • the device 1 may further include a communication device (not shown) and communicate with the external device by the communication device via an external communication network (network).
  • the communication network include an Internet line, WWW (World Wide Web), telephone line, LAN (Local Area Network), DTN (Delay Tolerant Networking), and the like.
  • Communication by the communication device may be wired or wireless.
  • wireless communication include WiFi (Wireless Fidelity), Bluetooth (registered trademark), and the like.
  • the wireless communication may be either a form in which each device directly communicates (Ad Hoc communication) or an indirect communication via an access point.
  • the external device include a server, a database, a terminal (personal computer, tablet, smartphone, mobile phone, etc.), a printer, a display, and the like.
  • the lens position moving portion 16 is connected to the lens holding portion 18, and the lens held by the lens holding portion 18 by the lens position moving portion 16 is moved in the X-axis direction, the Y-axis direction, the Z-axis direction, the X ⁇ direction, and the Y ⁇ . It can move in six directions, the direction and the Z ⁇ direction.
  • the X-axis direction and the Y-axis direction are directions orthogonal to each other in the vertical direction or the plane perpendicular to the optical axis direction.
  • the Z-axis direction is the vertical direction or the optical axis direction.
  • the X ⁇ direction is the circumferential direction of a virtual circle having the X-axis at an arbitrary position as the rotation center axis on the plane formed by the Y-axis direction and the Z-axis direction.
  • the Y ⁇ direction is the circumferential direction of a virtual circle whose rotation center axis is the Y-axis at an arbitrary position on the plane formed by the X-axis direction and the Z-axis direction.
  • the Z ⁇ direction is the circumferential direction of a virtual circle having the Z-axis at an arbitrary position as the rotation center axis on the plane formed by the X-axis direction and the Y-axis direction.
  • the position of the lens and the orientation of the lens can be changed by combining the movement of the lens in six directions, and as a result, the lens in various positions and directions can be changed. It is possible to measure the optical characteristics.
  • FIG. 5 shows a perspective view of the lens optical characteristic measuring device of the present embodiment.
  • the present apparatus includes a display / touch panel 2, a start switch 4, a case body 5, a printer 6, a lens holding portion 18, an X-axis slider 16x1, and an arm cover 16x ⁇ 1.
  • Reference numeral 3 denotes spectacles held by the lens holding portion 18.
  • the lens holding portion 18 includes a nose pad 18a, and when the eyeglasses 3 are held, the nose pad portion of the eyeglasses 3 comes into contact with the nose pad 18a of the lens holding portion 16 to fix the nose pad portion of the eyeglasses 3.
  • the present device further includes an operation input unit 11, a measurement control unit 12, a measurement calculation unit 13, a storage unit 14, an output unit 15, a lens position moving unit 16, a light irradiation unit 17, and a light receiving unit.
  • FIG. 6 is a cross-sectional view of the side surface of the apparatus, and the light irradiation unit 17 is shown.
  • the operation input unit 11 and the output unit 15 are connected to the display / touch panel 2.
  • the output unit 15 is also connected to the printer 6.
  • the arm cover 16x ⁇ 1 houses an arm or the like (described later) for moving in the X ⁇ direction, which forms a part of the lens position moving portion 16.
  • the X-axis slider 16x1 constitutes a part of the lens position moving portion 16 and moves the lens holding portion 18 in the X-axis direction.
  • the power of the present device can be turned on / off by the start switch 4.
  • Various mechanisms and the like constituting the present device are arranged in the case main body 5.
  • the X-axis direction is the left-right direction on the front surface of the device (the surface on which the display and touch panel 2 is located), the Y-axis direction is the front-rear direction of the device, and the Z-axis direction is the height direction of the device.
  • the X ⁇ direction is the circumferential direction of a virtual circle having a center point below the lens on the side surface of the device (the direction of rotation in the front-rear direction of the front of the device, the circumferential direction with the X-axis as the center of rotation).
  • the Y ⁇ direction is the circumferential direction of the virtual circle having the center point below the lens in the front of the device (the direction of rotation in the left-right direction of the front of the device, the circumferential direction with the Y axis as the center of rotation).
  • the Z ⁇ direction is the circumferential direction of a virtual circle having a center point on the outside behind the device of the lens in the device plane (the circumferential direction of the device plane, the circumferential direction with the Z axis as the rotation center axis).
  • FIG. 7 shows the X-axis slider 16x1 of the lens position moving means 16.
  • the X-axis slider 16x1 is a mechanism for moving the lens holding portion 18 in the X-axis direction, and includes an X-axis gear 16x2, an X-axis motor 16x3, and an X-axis rack 16x4.
  • the X-axis rack 16x4 is connected to the lens holding portion 18, and a gear portion is formed, and this gear portion meshes with the X-axis gear 16x2.
  • the X-axis gear 16x2 also meshes with the gear of the X-axis motor 16x3.
  • the X-axis motor 16x3 rotates, a rotational driving force is transmitted to the X-axis rack 16x4 via the X-axis gear 16x2, and the rotational driving force causes the X-axis rack 16x4 to move in the X-axis direction.
  • the lens holding portion 18 connected to the X-axis rack 16x4 moves in the X-axis direction.
  • the X-axis motor 16x3 is controlled based on the measurement control information of the measurement control unit 12, the moving direction of the X-axis can be controlled by the rotation direction, and the moving distance in the X-axis direction can be controlled by the rotation speed.
  • the X-axis motor 16x3 is a stepping motor, the moving distance in the X-axis direction can be controlled by controlling the number of steps.
  • two wires 18b are stretched over the lens holding portion 18 so as to support the left and right lenses of the spectacles 3.
  • FIG. 8 shows the Y-axis slider of the lens position moving means 16.
  • the Y-axis slider is a mechanism for moving the lens holding portion 18 in the Y-axis direction, and includes a Y-axis motor 16y1 and a Y-axis rack 16y2.
  • the Y-axis rack 16y2 is connected to the lens holding portion 18, and a gear portion is formed, and this gear portion directly meshes with the gear of the Y-axis motor 16y1.
  • the rotation of the Y-axis motor 16y1 transmits a rotational driving force to the Y-axis rack 16y2, and this rotational driving force causes the Y-axis rack 16y2 to move in the Y-axis direction, and as a result, is connected to the Y-axis rack 16y2.
  • the lens holding portion 18 is moved in the Y-axis direction.
  • the Y-axis motor 16y1 is controlled based on the measurement control information of the measurement control unit 12, the movement direction of the Y-axis can be controlled by the rotation direction, and the movement distance in the Y-axis direction can be controlled by the rotation speed.
  • the Y-axis motor 16y1 is a stepping motor, the moving distance in the Y-axis direction can be controlled by controlling the number of steps.
  • FIG. 9 shows the Z-axis slider of the lens position moving means 16.
  • the Z-axis slider is a mechanism for moving the lens holding portion 18 in the Z-axis direction, and includes a Z-axis motor 16z1, a Z-axis guide pin 16z2, and a Z-axis screw 16z3.
  • the Z-axis screw 16z3 is connected to the lens holding portion 18.
  • the Z-axis screw 16z3 has an uneven thread groove structure.
  • the rotation axis of the Z-axis motor 16z1 is connected to the Z-axis screw 16z3, and when the Z-axis motor 16z1 rotates, the Z-axis screw 16z3 also rotates and moves in the Z-axis direction due to the thread groove structure, and as a result, the lens.
  • the holding portion 18 also moves in the Z-axis direction.
  • the Z-axis guide pin 16z2 is for guiding the lens holding portion 18 so as not to move in the Z-axis direction.
  • the Z-axis motor 16z1 is controlled based on the measurement control information of the measurement control unit 12, the moving direction of the Z-axis can be controlled by the rotation direction, and the moving distance in the Z-axis direction can be controlled by the rotation speed.
  • the Z-axis motor 16z1 is a stepping motor, the moving distance in the Z-axis direction can be controlled by controlling the number of steps.
  • FIG. 10 shows the X ⁇ direction moving mechanism of the lens position moving means 16.
  • the X ⁇ direction moving mechanism is composed of a pair of arms 16x ⁇ 2, an X ⁇ rack (gear portion) 16x ⁇ 4 formed on the upper part of the arms 16x ⁇ 2, two X ⁇ gears 16x ⁇ 3, and an X ⁇ motor (not shown).
  • the arm 16x ⁇ 2 has an arc shape protruding upward and is connected to the lens holding portion 18.
  • the X ⁇ rack (gear portion) 16x ⁇ 4 is engaged with one gear 16x ⁇ 3 (upper gear in FIG. 10), one X ⁇ gear 16x ⁇ 3 is engaged with the other X ⁇ gear 16x ⁇ 3, and the other X ⁇ gear 16x ⁇ 3 is X ⁇ .
  • the X ⁇ motor rotates, a rotational driving force is transmitted to the pair of arms 16x ⁇ 2 via the two X ⁇ gears 16x ⁇ 3 and the X ⁇ rack 16x ⁇ 4, and the rotational driving force causes the pair of arms 16x ⁇ 2 to move in the X ⁇ direction.
  • the lens holding portion 18 connected to the pair of arms 16x ⁇ 2 moves in the X ⁇ direction.
  • the X ⁇ motor is controlled based on the measurement control information of the measurement control unit 12, the moving direction in the X ⁇ direction can be controlled by the rotation direction, and the moving distance in the X ⁇ direction can be controlled by the rotation speed.
  • the moving distance in the X ⁇ direction can be controlled by controlling the number of steps.
  • FIG. 11 shows the Y ⁇ direction moving mechanism of the lens position moving means 16.
  • the Y ⁇ direction moving mechanism is composed of a Y ⁇ arm 16y ⁇ 1, a Y ⁇ gear 16y ⁇ 2, a Y ⁇ motor 16y ⁇ 3, and a Y ⁇ rack 16y ⁇ 4.
  • One end of the Y ⁇ arm 16y ⁇ 1 (lower end in FIG. 11) and one end of the Y ⁇ rack 16y ⁇ 4 (lower end in FIG. 11) are connected, and both are rotatably mounted on the device with the same rotation center.
  • the other end (upper end in FIG. 11) of the Y ⁇ arm 16y ⁇ 1 is connected to the lens holding portion 18.
  • the gear portion of the Y ⁇ rack 16y ⁇ 4 meshes with the Y ⁇ gear 16y ⁇ 2, and the Y ⁇ gear 16y ⁇ 2 meshes with the gear mounted on the rotation shaft of the Y ⁇ motor 16y ⁇ 3.
  • a rotational driving force is transmitted to the Y ⁇ arm 16y ⁇ 1 via the Y ⁇ gear 16y ⁇ 2 and the Y ⁇ rack 16y ⁇ 4, and the rotational driving force causes the arm 16y ⁇ 1 to move in the Y ⁇ direction, resulting in the result.
  • the lens holding portion 18 connected to the Y ⁇ arm 16y ⁇ 1 moves in the Y ⁇ direction.
  • the Y ⁇ motor 16y ⁇ 3 is controlled based on the measurement control information of the measurement control unit 12, the moving direction in the Y ⁇ direction can be controlled by the rotation direction, and the moving distance in the Y ⁇ direction can be controlled by the rotation speed.
  • the Y ⁇ motor 16y ⁇ 3 is a stepping motor, the moving distance in the X ⁇ direction can be controlled by controlling the number of steps.
  • the origin position is detected by a sensor (for example, a photo interrupter) and the cumulative number of steps of the stepping motor is reset to repeat the movement.
  • Positional accuracy can be ensured.
  • the position accuracy of the lens holding portion 18 in the XY axis direction is low, for example, the alignment mark of the lens is detected and the XY axis direction is corrected, and the measurement result of the optical characteristics of the lens uses the corrected coordinates. It may be output (mapping, etc.).
  • FIG. 12 shows the configuration of the optical system of this device.
  • the optical system of this device is a telecentric optical system on both sides, and is composed of a light irradiation unit 17 and a light receiving unit 19.
  • the light irradiation unit 17 is arranged below the lens holding unit 18, and the light receiving unit 19 is arranged above the lens holding unit 18.
  • the light irradiation unit 17 is composed of an LED substrate 17a on which a plurality of LEDs (light emitting diodes) are mounted, a diffuser plate 17b, and a target sheet 17c.
  • the diffuser plate 17b is arranged above the LED substrate 17a and diffuses.
  • the optotype sheet 17c is arranged on the upper surface of the plate 17b.
  • the light receiving unit 19 is composed of a collimating lens 19a, an optical mirror 19b, and a COMP (Complementary Metal Oxide Sensor) 19c.
  • the alternate long and short dash line indicates the light path.
  • the light (straight light) emitted from the LED of the LED substrate 17a is diffused by the diffuser plate 17b and is irradiated to the lens Le, and the measurement light corresponding to the optical characteristics of the lens Le is emitted. Will be done.
  • the measurement light emitted from the lens Le passes through the collimating lens 19a, is reflected by the optical mirror 19b, is made parallel light by the imaging lens 19d, enters the CMOS 19c, and the optical signal of the measurement light is an electric signal by the CMOS 19c. Is converted to.
  • the optotype sheet 17c is, for example, a superposition of a periodic checkered pattern and shades of color (for example, a SIN curve), and is used to measure the optical characteristics of the lens due to the displacement of the optotype on the CMOS 19c with or without the lens. belongs to.
  • FIG. 13 shows the configuration of another optical system of this device.
  • the optical system shown in FIG. 13 is the same as the optical system of FIG. 12, except that the line laser irradiation unit 7 is arranged obliquely above the lens holding unit 18, and the optical system shown in FIG. 13 is the present invention. It also serves as a part of the optical system of the lens shape measuring device.
  • the line laser irradiation unit 7 irradiates the lens surface with line laser light from an obliquely upward direction, and the laser light reflected on the lens surface passes through the collimating lens 19a and the optical mirror 19b.
  • the imaging lens 19d makes the light parallel, and the light enters the CMOS 19c.
  • the light receiving unit 19 composed of the collimating lens 19a, the optical mirror 19b, the imaging lens 19d, and the CMOS 19c also serves as a line laser light receiving unit.
  • the lens can be moved in the Z-axis direction (height direction) by the lens position moving unit 16 connected to the lens holding unit 18, and as described above, from the line laser irradiation unit 7.
  • the lens surface position can be detected by receiving the reflected light on the lens surface of the irradiated line laser with the light receiving unit 19.
  • the lens can be moved in the X-axis direction by the lens position moving unit 16 connected to the lens holding unit 18, and as described above, the reflected light on the lens surface of the line laser irradiated from the line laser irradiation unit 7.
  • the lens surface shape can be measured by receiving light from the light receiving unit 19.
  • the optical systems of FIGS. 12 and 13 are examples, and the present invention is not limited or limited.
  • the light source of the light irradiation unit 17 may be an LED or a normal lamp. Further, the light source may be a plurality of light sources having different wavelengths.
  • the light receiving element of the light receiving unit 19 is not limited to CMOS, and may be another light receiving element.
  • FIGS. 14 and 15 show an example of the configuration of the lens holding portion 18.
  • 14 is a perspective view of the lens holding portion 18
  • FIG. 15 (A) is a plan view of the lens holding portion 18
  • FIG. 14 (B) is a sectional view in the EE direction.
  • the lens holding portion 18 has a substantially rectangular mold 18h, four arms 18f, four sliders 18e, four springs 18g, a cover 18c, a lens retainer 18d, and two synchronous shafts. It is composed of 18i, a nose pad 18a, and two wires 18b.
  • the two arrows indicate the left-right direction and the front-back direction.
  • the formwork 18h has a left-right direction and a front-rear direction, and four arms 18f are arranged in the formwork 18h in a symmetrical state with respect to a center point in the formwork 18h. ..
  • Each end of each of the two pairs of arms 18f out of the four arms 18f is rotatably arranged at the left end of the formwork 18h, and of the other two pairs of arms 18f of the four arms 18f.
  • Each end is rotatably arranged at the right end of the mold 18h.
  • Gear portions are formed at one ends of the pair of arms 18f arranged at the left and right ends of the formwork 18h, and mesh with each other.
  • a slider 18e is connected to each other end of each of the four arms 18f in a state where it can move (slide) in the left-right direction.
  • a lens contact portion that comes into contact with the lens Le is formed at the end of the slider 18e in the mold center direction.
  • a cylindrical sliding portion 18k is formed at the end portion of the slider 18e in the left-right direction of the mold 18h, and both ends of the synchronization shaft 18i for synchronizing the pair of arms 18f can slide on the sliding portion 18k. It is inserted like this.
  • springs 18g are arranged at each of the four corners of the mold 18h, and the four sliding portions 18k are brought into contact with each other in a urgency state.
  • a cover 18c is arranged above the lens contact portion of the slider 18e.
  • Two wires 18b are stretched in the front-rear direction of the mold 18h to support the round lens Le from below.
  • Two lens retainers 18d are arranged at the center of the mold 18h in the left-right direction, respectively, and the round lens Le is pressed from above.
  • a lens receiver 18j is formed in the lower part of the mold 18h in a state of facing the lens retainer 18d.
  • the nose pad 18a is in an upright state. It is preferable that the slider 18e in the foreground can be temporarily fixed in the open state, and the temporary fixing can be easily released.
  • the settability (easiness of setting) of the round lens Le with respect to the chuck of the lens holding portion 18 is improved. Further, if the chuck itself can be moved toward the front, the settability is further improved.
  • the four arms 18f and the four sliders 18e are symmetrically and symmetrically synchronized by the gear portions formed for each pair of arms 18f and the synchronization shaft 18i. Since the four sliders 18e are urged by the four springs 18g, pressure is applied to the lens contact portion of each of the four sliders toward the center point of the mold 18h. There is. Therefore, the round lens Le is automatically held by the lens holding portion 18 in a state where the center point of the mold 18h and the center point of the round lens Le are coaxial (centering).
  • FIGS. 16 and 17 show the same lens holding portion 18 as the lens holding portion 18 shown in FIGS. 14 and 15.
  • 16 is a perspective view of the lens holding portion 18
  • FIG. 17A is a plan view of the lens holding portion 18
  • FIG. 16B is a sectional view taken in the DD direction.
  • the lens holding portion 18 of FIGS. 16 and 17 holds the glasses 3 instead of the round lens.
  • the nose pad 18a is in contact with the nose pad portion of the spectacles 3 in a state of being tilted forward.
  • the lens Le is laser-engraved with two alignment marks at a point 17 mm away from the center point based on the JIS standard (JIS T 7315 (ISO 8980-2: 2004)). Moreover, it is printed on the lens surface.
  • the in-lens coordinates are two-dimensional coordinates consisting of the LX axis direction and the LY axis direction, and the LX axis direction is the axial direction in which the two alignment marks in the lens Le overlap.
  • the LY axis direction is an axial direction orthogonal to the LX axis direction in the plane direction of the lens Le.
  • the LX axis is defined using the printed alignment mark as an index, but since the lens has a curved surface shape, the alignment mark is often printed at a position shifted during printing. For this reason, in the past, it was difficult to accurately define the in-lens coordinates.
  • the lens is irradiated with light, the two accurate alignment mark positions engraved by the laser are detected from the measured light emitted, and the inside of the lens is detected from the two accurate alignment mark positions.
  • the in-lens coordinates consisting of the LX axis direction and the LY axis direction. Therefore, in the present invention, it is possible to specify accurate in-lens coordinates. Then, if the position of each part of the lens is specified and the optical characteristics are linked based on the accurate coordinates in the lens, the optical characteristics of each part of the lens can be accurately defined.
  • the measurement areas 1 to 3 indicate the size (area) of the light measurement area of the light irradiation unit 17, but the size of the lens Le to be measured is the measurement area. Greater than 1 to 3.
  • the measurement is performed in three steps of the measurement area 1, the measurement area 2, and the measurement area 3.
  • the measurement results of the measurement areas 1 to 3 are integrated (synthesized) to generate the synthetic measurement area ES.
  • 19B is a portion that could not be measured by the divided measurement in the X ⁇ direction.
  • the measurement is performed in three steps of the measurement area 1, the measurement area 2, and the measurement area 3.
  • the measurement results of the measurement areas 1 to 3 are integrated (synthesized) to generate the synthetic measurement area ES.
  • the shaded portion in FIG. 20B is a portion that could not be measured by the divided measurement in the Y ⁇ direction. Then, by integrating (synthesizing) both the composite measurement area ES in the X ⁇ direction shown in FIG. 19 (B) and the composite measurement area ES in the Y ⁇ direction shown in FIG.
  • the optical characteristics of the entire lens Le are obtained. Can be measured. As described above, even if the lens has a size larger than the light irradiation area of the light irradiation unit 17, the optical characteristics of the entire lens can be measured by the divided measurement of the present invention. Therefore, according to the present invention, it is possible to measure a large lens even if the device is miniaturized.
  • the examples of FIGS. 19 and 20 are divided measurements in the X ⁇ direction and the Y ⁇ direction, but the present invention is not limited to this, and for example, divided measurements in the X-axis direction and the Y-axis direction are also possible. In addition, divided measurement in at least one of the six directions is also possible. Further, in the divided measurement, it is necessary to accurately associate the optical characteristics of each part of the lens with each part of the lens, and at that time, if the two-dimensional coordinate regulation inside the lens of the present invention is used, accurate divided measurement can be performed.
  • FIG. 21 is an example of synchronous movement in which the lens is moved simultaneously in two or more directions in the present invention.
  • FIG. 21 shows synchronous movement in three directions, and as shown in the figure, the lens is moved in the X ⁇ direction (X ⁇ rotation), the Y-axis direction (Y-axis slide), and the Z-axis direction (Z-axis slide).
  • X ⁇ rotation the X ⁇ direction
  • Y-axis direction the Y-axis direction
  • Z-axis slide Z-axis slide
  • the lens is moved by simultaneously performing three movements of the lens in the Y ⁇ direction (Y ⁇ rotation), the X-axis direction (X-axis slide), and the Z-axis direction (Z-axis slide). It is also possible to rotate the lens in the Y ⁇ direction with an axis parallel to the Y axis passing through the optical center point as a rotation axis.
  • FIG. 22 shows an example of mounting the cup on the lens.
  • the cup mounting portion 20 is composed of a cup holding portion 20a that holds the cup C and a moving portion 20b that is connected to the cup holding portion 20a and moves the cup holding portion 20a.
  • the lens Le is held by the lens holding portion 18.
  • the lens Le is supported from below by the lens support pin 21a arranged on the lens support base 21b.
  • the lens support pin 21a is reinforced by two reinforcing ribs 21c.
  • the moving portion 20b arranges the cup holding portion 20a at a position that does not interfere with the optical characteristic measurement when measuring the optical characteristics, and when the cup C is attached to the lens Le, the cup is as shown in FIG.
  • the holding portion 20a is arranged above the lens Le.
  • the lens position moving portion (not shown in FIG. 22) has an optical axis (in FIG. 22) orthogonal to the plane passing through the optical center point of the lens Le with respect to the cup C of the cup holding portion 20a arranged above the lens Le. , One-dot chain line) adjusts the position and orientation of the lens Le so that it aligns with the central axis of the cup C.
  • the moving portion 20b lowers the cup holding portion 20a as shown by an arrow, brings the cup C into contact with the lens Le, and attaches the cup C to the lens Le.
  • the lens Le to which the cup C is mounted is removed from the lens holding portion 18 and processed by a lens processing machine.
  • the cup C is lowered and attached to the lens Le, but conversely, the lens holding portion 18 may be raised to attach the cup C to the lens Le.
  • the lens holding portion 18 is provided with a cushion mechanism using an urging member such as a spring in order to absorb the pressure applied to the lens Le when the cup C is mounted.
  • the cup holding portion 20a and the lens support pin 21a also have a cushion mechanism using an urging member such as a spring.
  • the lens support pin 21a enables three-dimensional tilting and tracing of the lens Le.
  • FIG. 23 is a flow chart showing an example of a process of lens shape analysis in the lens shape measuring device or the lens shape measuring method of the present invention.
  • a lens shape measuring instrument using a line laser or a dot laser reads a plurality of image files (for example, TIFF format) measured while moving the lens in the X-axis direction (S101).
  • the image size is reduced by pixel binning processing (S102).
  • the image is binarized by the line detection filter by the convolution operation (S103).
  • a plurality of binarized images are combined to create three-dimensional pixel data (S104).
  • the front surface data and the back surface data are separated by a three-dimensional fill operation that traces adjacent pixels (S105).
  • a three-dimensional coordinate list representing the shape of the front surface and the back surface of the lens is created (S106). Further, the lens surface shape is approximated by a Zernike polynomial (S107). Further, the effect of refraction is calculated by ray tracing, and the lens back surface shape data is corrected to the actual shape (S108). Then, the shape of the back surface of the lens is approximated by the Zernike polynomial (S109). Further, the spherical frequency distribution, the cylindrical frequency distribution, and the cylindrical axis angle are calculated by ray tracing (S110). Next, it is confirmed whether or not the refractive index of the lens is determined (S111).
  • the refractive index of the lens is calculated from the spherical power at the center of the lens (S112), and then S108 to S110 are executed again.
  • the maximum value, the minimum value, etc. of the spherical power of the lens are displayed based on the determination (S113). For example, when the Abbe number of the lens has been measured, the refractive index of the lens with respect to the laser (for example, e-line) irradiated to the lens has already been determined. Further, the curvature (principal curvature) distributions of the front surface and the back surface of the lens are calculated and displayed (S114). These steps S101 to S114 can be performed, for example, by the measurement calculation unit in the lens shape measuring device of the present invention.
  • the program of the present embodiment is a program capable of executing the method of the present invention on a computer. Further, the program of the present embodiment may be recorded on a computer-readable recording medium, for example.
  • the recording medium is not particularly limited, and examples thereof include a read-only memory (ROM), a hard disk (HD), and an optical disk.
  • the surface shape and thickness of the lens can be measured with high accuracy.
  • the present invention is useful in the field of using lenses such as microscopes, telescopes, cameras, and laser processing machines in addition to spectacle lenses.
  • Lens shape measuring device 11 Operation input unit 12 Measurement control unit 13 Measurement calculation unit 14 Storage unit 15 Output unit 16 Lens position moving unit 7a Line laser irradiation unit 7b Line laser light receiving unit 22 Lens front surface position detection unit 23 Lens back surface position detection unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

Provided is a lens shape measurement device that can measure the surface shape and the thickness of a lens with high accuracy. In a lens shape measurement device (1) according to the present invention: a lens position movement unit (16) moves a lens in an X-axis direction, so that a line laser irradiation unit (7a) irradiates a lens surface with a line laser parallel to the Y-axis direction in a state of being scanned in the X-axis direction; a line laser reception unit (7b) receives reflected light of the line laser with which the lens is irradiated; a measurement calculation unit (13) calculates surface image data on the lens from the reflected light received by the line laser reception unit (7b); the lens position movement unit (16) moves the lens in a Z-axis direction; a lens surface position detection unit (22) detects a lens surface position in the Z-axis direction; a lens reverse-surface position detection unit (23) detects a lens reverse-surface position in the Z-axis direction; and the measurement calculation unit (13) calculates thickness information on the lens on the basis of the lens surface position in the Z-axis direction, the lens reverse-surface position in the Z-axis direction, and a lens movement distance in the Z-axis direction.

Description

レンズ形状測定装置、レンズ形状測定方法、レンズ光学特性測定装置、プログラム、及び、記録媒体Lens shape measuring device, lens shape measuring method, lens optical characteristic measuring device, program, and recording medium
 本発明は、レンズ形状測定装置、レンズ形状測定方法、レンズ光学特性測定装置、プログラム、及び、記録媒体に関する。 The present invention relates to a lens shape measuring device, a lens shape measuring method, a lens optical characteristic measuring device, a program, and a recording medium.
 従来の眼鏡レンズの光学特性測定装置としては、例えば、屈折率及び紫外線透過率等の光学特性を測定できる装置がある(特許文献1)。 As a conventional optical characteristic measuring device for eyeglass lenses, for example, there is a device capable of measuring optical characteristics such as refractive index and ultraviolet transmittance (Patent Document 1).
特開2006-58247号公報Japanese Unexamined Patent Publication No. 2006-58247
 しかしながら、従来の光学特性測定装置では、レンズの表面形状及びレンズの厚みを高精度で測定するものは無かった。 However, there is no conventional optical characteristic measuring device that measures the surface shape of the lens and the thickness of the lens with high accuracy.
 そこで、本発明は、レンズの表面形状及びレンズの厚みを高精度で測定可能なレンズ形状測定装置、及び、レンズ形状測定方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a lens shape measuring device capable of measuring the surface shape of a lens and the thickness of a lens with high accuracy, and a lens shape measuring method.
 前記目的を達成するために、本発明のレンズ形状測定装置は、
レンズ保持部、測定制御部、レーザ照射部、レーザ受光部、レンズ表面位置検出部、レンズ裏面位置検出部、測定演算部、及び、出力部を備え、
さらに、レンズ位置移動部及びレーザ照射部移動部の少なくとも一方を備え、
前記レンズ保持部は、レンズを保持し、
前記レンズ位置移動部は、前記レンズ保持部に保持されたレンズを、X軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向の少なくとも1方向に移動可能であり、
X軸方向及びY軸方向は、鉛直方向又は光軸方向と垂直な面で互いに直交する方向であり、
Z軸方向は、鉛直方向又は光軸方向であり、
Xθ方向は、Y軸方向及びZ軸方向が形成する面において、任意の位置のX軸を回転中心軸とする仮想円の円周方向であり、
Yθ方向は、X軸方向及びZ軸方向が形成する面において、任意の位置のY軸を回転中心軸とする仮想円の円周方向であり、
Zθ方向は、X軸方向及びY軸方向が形成する面において、任意の位置のZ軸を回転中心軸とする仮想円の円周方向であり、
前記測定制御部は、レンズ表面形状測定モード、及び、レンズ厚み測定モードを含む測定制御情報を生成し、
前記レーザ照射部は、前記レンズにレーザを照射し、前記レーザは、ラインレーザまたはドットレーザであり、
前記レーザ照射部移動部は、前記レーザ照射部を、X軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向の少なくとも1方向に移動可能であり、
前記レーザ受光部は、前記レンズに照射されたレーザの散乱光を受光し、
前記レンズ表面位置検出部は、前記レンズ表面の特定の位置を検出し、
前記レンズ裏面位置検出部は、前記レンズ裏面の特定の位置を検出し、
前記測定演算部は、前記レーザ受光部の情報に基づき、前記レンズの表面形状を算出し、かつ、前記レンズ表面位置検出部及び前記レンズ裏面位置検出部からの情報に基づき、前記レンズの厚み情報を算出し、
前記出力部は、算出された前記レンズの表面形状情報及び厚み情報を出力し、
前記レンズ表面形状測定モードの場合、
前記レンズ位置移動部が前記レンズをX軸方向に移動するか、若しくは、前記レーザ照射部移動部が前記レーザ照射部をX軸方向に移動することにより、
前記レーザ照射部が、Y軸方向に平行なレーザをX軸方向に走査した状態で前記レンズ表面に照射するか、または、
前記レンズ位置移動部が前記レンズをY軸方向に移動するか、若しくは、前記レーザ照射部移動部が前記レーザ照射部をY軸方向に移動することにより、
前記レーザ照射部が、X軸方向に平行なレーザをY軸方向に走査した状態で前記レンズ表面に照射し、
前記レーザ受光部は、前記レンズに照射された前記レーザの散乱光を受光し、
前記測定演算部は、前記レーザ受光部が受光した散乱光から前記レンズの表裏面画像データを算出し、
前記レンズ厚み測定モードの場合、
前記レンズ位置移動部により、前記レンズをZ軸方向に移動させるか、又は、前記レーザ照射部をZ軸方向に移動させて、前記レンズ表面位置検出部により、Z軸方向の前記レンズ表面位置を検出し、かつ、前記レンズ裏面位置検出部により、Z軸方向の前記レンズ裏面位置を検出し、
前記測定演算部は、Z軸方向の前記レンズ表面位置、Z軸方向の前記レンズ裏面位置、及び、前記Z軸方向のレンズ移動距離から前記レンズの厚み情報を算出する、
装置である。
In order to achieve the above object, the lens shape measuring device of the present invention is used.
It is provided with a lens holding unit, a measurement control unit, a laser irradiation unit, a laser light receiving unit, a lens front surface position detection unit, a lens back surface position detection unit, a measurement calculation unit, and an output unit.
Further, at least one of the lens position moving portion and the laser irradiation portion moving portion is provided.
The lens holding portion holds the lens and holds the lens.
The lens position moving portion can move the lens held by the lens holding portion in at least one direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the Xθ direction, the Yθ direction, and the Zθ direction.
The X-axis direction and the Y-axis direction are directions orthogonal to each other in the vertical direction or the plane perpendicular to the optical axis direction.
The Z-axis direction is the vertical direction or the optical axis direction.
The Xθ direction is the circumferential direction of a virtual circle whose rotation center axis is the X-axis at an arbitrary position on the plane formed by the Y-axis direction and the Z-axis direction.
The Yθ direction is the circumferential direction of a virtual circle whose rotation center axis is the Y-axis at an arbitrary position on the plane formed by the X-axis direction and the Z-axis direction.
The Zθ direction is the circumferential direction of a virtual circle whose rotation center axis is the Z axis at an arbitrary position on the plane formed by the X-axis direction and the Y-axis direction.
The measurement control unit generates measurement control information including a lens surface shape measurement mode and a lens thickness measurement mode.
The laser irradiation unit irradiates the lens with a laser, and the laser is a line laser or a dot laser.
The laser irradiation unit moving unit can move the laser irradiation unit in at least one direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the Xθ direction, the Yθ direction, and the Zθ direction.
The laser light receiving unit receives the scattered light of the laser irradiated to the lens, and receives the scattered light.
The lens surface position detection unit detects a specific position on the lens surface and
The lens back surface position detection unit detects a specific position on the back surface of the lens and
The measurement calculation unit calculates the surface shape of the lens based on the information of the laser light receiving unit, and the thickness information of the lens is based on the information from the lens surface position detection unit and the lens back surface position detection unit. Is calculated and
The output unit outputs the calculated surface shape information and thickness information of the lens.
In the case of the lens surface shape measurement mode,
The lens position moving unit moves the lens in the X-axis direction, or the laser irradiation unit moving unit moves the laser irradiation unit in the X-axis direction.
The laser irradiation unit irradiates the lens surface with a laser parallel to the Y-axis direction scanned in the X-axis direction, or
The lens position moving portion moves the lens in the Y-axis direction, or the laser irradiation portion moving portion moves the laser irradiation portion in the Y-axis direction.
The laser irradiation unit irradiates the lens surface with a laser parallel to the X-axis direction scanned in the Y-axis direction.
The laser light receiving unit receives the scattered light of the laser irradiated to the lens, and receives the scattered light.
The measurement calculation unit calculates front and back image data of the lens from the scattered light received by the laser light receiving unit.
In the case of the lens thickness measurement mode,
The lens position moving portion moves the lens in the Z-axis direction, or the laser irradiation portion is moved in the Z-axis direction, and the lens surface position detecting portion moves the lens surface position in the Z-axis direction. The lens back surface position is detected by the lens back surface position detection unit, and the lens back surface position in the Z-axis direction is detected.
The measurement calculation unit calculates the thickness information of the lens from the lens front surface position in the Z-axis direction, the lens back surface position in the Z-axis direction, and the lens movement distance in the Z-axis direction.
It is a device.
 本発明のレンズ形状測定方法は、
レンズ表面形状測定工程、及び、レンズ厚み測定工程を含み、
前記レンズ表面形状測定工程及びレンズ厚み測定工程において、前記レンズにレーザを照射し、前記レーザは、ラインレーザまたはドットレーザであり、
前記レンズ及び前記レーザの少なくとも一方が、X軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向の少なくとも1方向に移動可能であり、
X軸方向及びY軸方向は、鉛直方向又は光軸方向と垂直な面で互いに直交する方向であり、
Z軸方向は、鉛直方向又は光軸方向であり、
Xθ方向は、Y軸方向及びZ軸方向が形成する面において、任意の位置のX軸を回転中心軸とする仮想円の円周方向であり、
Yθ方向は、X軸方向及びZ軸方向が形成する面において、任意の位置のY軸を回転中心軸とする仮想円の円周方向であり、
Zθ方向は、X軸方向及びY軸方向が形成する面において、任意の位置のZ軸を回転中心軸とする仮想円の円周方向であり、
前記レンズ表面形状測定工程は、
Y軸方向に平行なレーザを前記レンズに照射しながら、前記レンズをX軸方向に移動するか、若しくは、前記レーザをX軸方向に移動することにより、Y軸方向に平行な前記レーザをX軸方向に走査した状態で前記レンズ表面に照射するか、または、X軸方向に平行なレーザを前記レンズに照射しながら、前記レンズをY軸方向に移動するか、若しくは、前記レーザをY軸方向に移動することにより、X軸方向に平行な前記レーザをY軸方向に走査した状態で前記レンズ表面に照射し、前記レンズに照射された前記レーザの散乱光を受光し、受光した散乱光から前記レンズの表裏面画像データを算出し、
前記レンズ厚み測定工程は、
前記レンズをZ軸方向に移動させるか、又は、前記レーザをZ軸方向に移動させて、前記レンズ表面位置及び前記レンズ裏面位置を検出し、前記レンズ表面位置、前記レンズ裏面位置、及び、前記Z軸方向のレンズ移動距離から前記レンズの厚み情報を算出する、方法である。
The lens shape measuring method of the present invention
Including the lens surface shape measurement process and the lens thickness measurement process
In the lens surface shape measuring step and the lens thickness measuring step, the lens is irradiated with a laser, and the laser is a line laser or a dot laser.
At least one of the lens and the laser can move in at least one direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the Xθ direction, the Yθ direction, and the Zθ direction.
The X-axis direction and the Y-axis direction are directions orthogonal to each other in the vertical direction or the plane perpendicular to the optical axis direction.
The Z-axis direction is the vertical direction or the optical axis direction.
The Xθ direction is the circumferential direction of a virtual circle whose rotation center axis is the X-axis at an arbitrary position on the plane formed by the Y-axis direction and the Z-axis direction.
The Yθ direction is the circumferential direction of a virtual circle whose rotation center axis is the Y-axis at an arbitrary position on the plane formed by the X-axis direction and the Z-axis direction.
The Zθ direction is the circumferential direction of a virtual circle whose rotation center axis is the Z axis at an arbitrary position on the plane formed by the X-axis direction and the Y-axis direction.
The lens surface shape measuring step is
While irradiating the lens with a laser parallel to the Y-axis direction, the lens is moved in the X-axis direction, or the laser is moved in the X-axis direction to X the laser parallel to the Y-axis direction. The lens surface is irradiated in a state of scanning in the axial direction, or the lens is moved in the Y-axis direction while irradiating the lens with a laser parallel to the X-axis direction, or the laser is moved in the Y-axis direction. By moving in the direction, the lens surface is irradiated with the laser parallel to the X-axis direction scanned in the Y-axis direction, the scattered light of the laser irradiated to the lens is received, and the received scattered light is received. The front and back image data of the lens is calculated from
The lens thickness measuring step is
The lens is moved in the Z-axis direction, or the laser is moved in the Z-axis direction to detect the lens front surface position and the lens back surface position, and the lens front surface position, the lens back surface position, and the lens back surface position are detected. This is a method of calculating the thickness information of the lens from the moving distance of the lens in the Z-axis direction.
 本発明によれば、レンズの表面形状及びレンズの厚みを高精度で測定可能である。 According to the present invention, the surface shape of the lens and the thickness of the lens can be measured with high accuracy.
図1は、本発明の装置の構成の一例を示す図である。FIG. 1 is a diagram showing an example of the configuration of the device of the present invention. 図2は、本発明のレンズ表面形状測定の一例を示す図である。FIG. 2 is a diagram showing an example of lens surface shape measurement of the present invention. 図3は、本発明のレンズの厚み測定の一例を示す図である。FIG. 3 is a diagram showing an example of measuring the thickness of the lens of the present invention. 図4は、本発明の装置の構成の一例を示す図である。FIG. 4 is a diagram showing an example of the configuration of the device of the present invention. 図5は、本発明の装置の構成の一例を示す図である。FIG. 5 is a diagram showing an example of the configuration of the device of the present invention. 図6は、本発明の装置の構成の一例を示す図である。FIG. 6 is a diagram showing an example of the configuration of the device of the present invention. 図7は、本発明の装置の構成の一例を示す図である。FIG. 7 is a diagram showing an example of the configuration of the device of the present invention. 図8は、本発明の装置の構成の一例を示す図である。FIG. 8 is a diagram showing an example of the configuration of the device of the present invention. 図9は、本発明の装置の構成の一例を示す図である。FIG. 9 is a diagram showing an example of the configuration of the device of the present invention. 図10は、本発明の装置の構成の一例を示す図である。FIG. 10 is a diagram showing an example of the configuration of the device of the present invention. 図11は、本発明の装置の構成の一例を示す図である。FIG. 11 is a diagram showing an example of the configuration of the device of the present invention. 図12は、本発明の装置の構成の一例を示す図である。FIG. 12 is a diagram showing an example of the configuration of the device of the present invention. 図13は、本発明の装置の構成の一例を示す図である。FIG. 13 is a diagram showing an example of the configuration of the device of the present invention. 図14は、本発明の装置の構成の一例を示す図である。FIG. 14 is a diagram showing an example of the configuration of the device of the present invention. 図15は、本発明の装置の構成の一例を示す図である。FIG. 15 is a diagram showing an example of the configuration of the device of the present invention. 図16は、本発明の装置の構成の一例を示す図である。FIG. 16 is a diagram showing an example of the configuration of the device of the present invention. 図17は、本発明の装置の構成の一例を示す図である。FIG. 17 is a diagram showing an example of the configuration of the device of the present invention. 図18は、本発明におけるレンズ内座標の一例の説明図である。FIG. 18 is an explanatory diagram of an example of in-lens coordinates in the present invention. 図19は、本発明の分割測定の一例の説明図である。FIG. 19 is an explanatory diagram of an example of the divided measurement of the present invention. 図20は、本発明の分割測定の一例の説明図である。FIG. 20 is an explanatory diagram of an example of the divided measurement of the present invention. 図21は、本発明のレンズの同期移動測定の一例の説明図である。FIG. 21 is an explanatory diagram of an example of synchronous movement measurement of the lens of the present invention. 図22は、本発明のレンズへのカップ装着の一例の説明図である。FIG. 22 is an explanatory view of an example of mounting a cup on the lens of the present invention. 図23は、本発明のレンズ形状測定装置またはレンズ形状測定方法におけるレンズ形状解析の工程の一例を示すフロー図である。FIG. 23 is a flow chart showing an example of a process of lens shape analysis in the lens shape measuring device or the lens shape measuring method of the present invention.
 つぎに、本発明について、例を挙げて説明する。ただし、本発明は、以下の説明により、なんら限定されない。 Next, the present invention will be described with an example. However, the present invention is not limited by the following description.
 本発明において、X軸方向及びY軸方向は、自由に定義できる。例えば、本発明の装置の正面方向を規定した場合、前記正面方向の左右方向をX軸方向としてもよいし、前記正面の前後方向をX軸方向としてもよい。 In the present invention, the X-axis direction and the Y-axis direction can be freely defined. For example, when the front direction of the device of the present invention is defined, the left-right direction of the front direction may be the X-axis direction, or the front-rear direction of the front may be the X-axis direction.
 本発明において、後述のX軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向の6方向の少なくとも1方向は、特に限定されず、前記6方向の1方向のみでもよいし、前記6方向の少なくとも2方向、前記6方向の少なくとも3方向等でもよく、例えば、前記6方向の1方向、2方向、3方向、4方向、5方向又は6方向のいずれでもよい。また、前記6方向の少なくとも2方向、前記6方向の少なくとも3方向等は、特に制限されず、例えば、前記6方向の少なくとも3方向は、X軸方向、Y軸方向及びZ軸方向の三方向、Xθ方向、Y軸方向及びZ軸方向の三方向、Yθ方向、X軸方向及びZ軸方向の三方向、X軸方向、Y軸方向、Z軸方向、Xθ方向及びYθ方向の五方向等がある。本発明において、レンズの光学特性の測定は、レンズの位置及び方向を連続的に変えながら測定してもよいし、レンズの位置及び方向を段階的に変えながら各位置及び各方向で測定してもよい。本発明において、前記レンズの各位置での測定は、レンズの各部の測定を含む。本発明において、前記レンズの方向は、レンズの傾き、及び、レンズの向きを含む。 In the present invention, at least one of the six directions of the X-axis direction, the Y-axis direction, the Z-axis direction, the Xθ direction, the Yθ direction, and the Zθ direction, which will be described later, is not particularly limited, and only one of the six directions may be used. It may be at least two directions in the six directions, at least three directions in the six directions, or the like, and may be, for example, one direction, two directions, three directions, four directions, five directions, or six directions in the six directions. Further, at least two directions of the six directions, at least three directions of the six directions, and the like are not particularly limited. For example, at least three directions of the six directions are three directions of the X-axis direction, the Y-axis direction, and the Z-axis direction. , Xθ direction, Y-axis direction and Z-axis direction three directions, Yθ direction, X-axis direction and Z-axis direction three directions, X-axis direction, Y-axis direction, Z-axis direction, Xθ direction and Yθ direction five directions, etc. There is. In the present invention, the optical characteristics of the lens may be measured while continuously changing the position and direction of the lens, or measured at each position and direction while changing the position and direction of the lens stepwise. May be good. In the present invention, the measurement at each position of the lens includes the measurement of each part of the lens. In the present invention, the direction of the lens includes the inclination of the lens and the direction of the lens.
 本発明において、レンズの光学特性は特に制限されず、例えば、相対屈折率、絶対屈折率、アッベ数、プリズム屈折力、球面度数(S)、乱視度数(C)、乱視軸角度(A)、光透過率、紫外線透過率、ブルーライト透過率、等がある。 In the present invention, the optical characteristics of the lens are not particularly limited, and for example, relative refractive index, absolute refractive index, Abbe number, prism refractive power, spherical power (S), random vision power (C), random vision axis angle (A), and so on. There are light transmittance, ultraviolet transmittance, blue light transmittance, and the like.
 本発明において、レンズにレーザを照射する場合、例えば、後述の各実施例のように、レンズの表面側から照射してもよいし、それ以外の方向(レンズの裏面側、横方向等)から照射してもよい。 In the present invention, when irradiating the lens with a laser, for example, as in each embodiment described later, the lens may be irradiated from the front surface side of the lens, or from other directions (back surface side of the lens, lateral direction, etc.). You may irradiate.
 本発明のレンズ形状測定装置において、前記レンズ表面位置検出部は、前記レンズ表面の特定の位置を検出し、前記レンズ裏面位置検出部は、前記レンズ裏面の特定の位置を検出する。検出する前記レンズの「特定の位置」は、例えば、前記レンズを、X軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向の少なくとも1方向に移動させることにより変更可能である。又は、検出する前記レンズの「特定の位置」は、例えば、前記レーザ照射部を、X軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向の少なくとも1方向に移動させることにより変更可能である。 In the lens shape measuring device of the present invention, the lens surface position detecting unit detects a specific position on the lens surface, and the lens back surface position detecting unit detects a specific position on the lens back surface. The "specific position" of the lens to be detected is changed, for example, by moving the lens in at least one direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the Xθ direction, the Yθ direction, and the Zθ direction. It is possible. Alternatively, the "specific position" of the lens to be detected moves, for example, the laser irradiation unit in at least one direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the Xθ direction, the Yθ direction, and the Zθ direction. It can be changed by letting it.
 本発明のレンズ形状測定装置において、前記レンズ表面位置検出部は、前記レーザ照射部及び前記レーザ受光部を含み、前記レンズを前記レンズ位置移動部によりZ軸方向に移動させるか、又は、前記レーザ照射部をZ軸方向に移動させた場合、前記レーザ照射部が照射したレーザが前記レンズ表面で散乱され、前記散乱光を前記レーザ受光部が受光し、前記散乱光の輝線の幅が最小となるZ軸方向の位置を特定することで、前記レンズ表面位置を特定する、という態様であってもよい。 In the lens shape measuring device of the present invention, the lens surface position detecting unit includes the laser irradiation unit and the laser receiving unit, and the lens is moved in the Z-axis direction by the lens position moving unit, or the laser. When the irradiation unit is moved in the Z-axis direction, the laser irradiated by the laser irradiation unit is scattered on the lens surface, the scattered light is received by the laser light receiving unit, and the width of the emission line of the scattered light is minimized. The lens surface position may be specified by specifying the position in the Z-axis direction.
 本発明のレンズ形状測定装置において、前記測定演算部において、前記レンズの表面画像データが、二次元画像データであり、前記二次元画像データをゼルニケ多項式で近似して前記レンズの表面形状データを算出する、という態様であってもよい。 In the lens shape measuring device of the present invention, in the measurement calculation unit, the surface image data of the lens is two-dimensional image data, and the surface shape data of the lens is calculated by approximating the two-dimensional image data with a Zernike polynomial. It may be in the form of doing.
 本発明のレンズ形状測定装置において、前記測定演算部は、前記レンズの表面画像データに対し射影変換(ホモグラフィ)による補正処理を行う、という態様であってもよい。 In the lens shape measuring device of the present invention, the measurement calculation unit may perform correction processing by projective transformation (homography) on the surface image data of the lens.
 本発明のレンズ形状測定装置において、前記レンズ厚み測定モードの場合、前記レンズ表面位置検出部により、Z軸方向の前記レンズ表面位置を検出した後に、前記レンズ位置移動部により、前記レンズをZ軸方向に移動させるか、若しくは、前記レーザ照射部をZ軸方向に移動させて、前記レンズ裏面位置検出部により、Z軸方向の前記レンズ裏面位置を検出するか、または、前記レンズ裏面位置検出部により、Z軸方向の前記レンズ裏面位置を検出した後に、前記レンズ位置移動部により、前記レンズをZ軸方向に移動させるか、若しくは、前記レーザ照射部をZ軸方向に移動させて、前記レンズ表面位置検出部により、Z軸方向の前記レンズ表面位置を検出する、という態様であってもよい。 In the lens shape measuring device of the present invention, in the lens thickness measurement mode, after the lens surface position detecting unit detects the lens surface position in the Z-axis direction, the lens position moving unit moves the lens to the Z-axis. Either the lens irradiation unit is moved in the direction, or the laser irradiation unit is moved in the Z-axis direction, and the lens back surface position detection unit detects the lens back surface position in the Z-axis direction, or the lens back surface position detection unit. After detecting the position of the back surface of the lens in the Z-axis direction, the lens position moving portion moves the lens in the Z-axis direction, or the laser irradiation portion is moved in the Z-axis direction to move the lens. The surface position detecting unit may detect the lens surface position in the Z-axis direction.
 本発明のレンズ形状測定方法において、前記レンズ厚み測定工程は、Z軸方向の前記レンズ表面位置およびZ軸方向の前記レンズ裏面位置を同時に検出する、という態様であってもよい。 In the lens shape measuring method of the present invention, the lens thickness measuring step may be an embodiment in which the lens front surface position in the Z-axis direction and the lens back surface position in the Z-axis direction are simultaneously detected.
 本発明のレンズ形状測定方法において、前記レンズ厚み測定工程は、Z軸方向の前記レンズ表面位置を検出した後に、前記レンズをZ軸方向に移動させるか、若しくは、前記レーザをZ軸方向に移動させて、Z軸方向の前記レンズ裏面位置を検出するか、または、Z軸方向の前記レンズ裏面位置を検出した後に、前記レンズをZ軸方向に移動させるか、若しくは、前記レーザをZ軸方向に移動させて、Z軸方向の前記レンズ表面位置を検出する、という態様であってもよい。 In the lens shape measuring method of the present invention, in the lens thickness measuring step, after detecting the lens surface position in the Z-axis direction, the lens is moved in the Z-axis direction or the laser is moved in the Z-axis direction. The lens back surface position in the Z-axis direction is detected, or the lens back surface position in the Z-axis direction is detected and then the lens is moved in the Z-axis direction, or the laser is moved in the Z-axis direction. The lens surface position in the Z-axis direction may be detected by moving the lens to.
 本発明のレンズ形状測定方法において、前記レンズ表面位置検出は、前記レンズをZ軸方向に移動させるか、若しくは、前記レーザをZ軸方向に移動させた場合、照射したレーザが前記レンズ表面で散乱され、前記散乱光を受光し前記散乱光の輝線の幅が最少となるZ軸方向の位置を特定することで、前記レンズ表面位置を特定する、という態様であってもよい。 In the lens shape measuring method of the present invention, in the lens surface position detection, when the lens is moved in the Z-axis direction or the laser is moved in the Z-axis direction, the irradiated laser is scattered on the lens surface. The lens surface position may be specified by receiving the scattered light and specifying the position in the Z-axis direction where the width of the emission line of the scattered light is minimized.
 本発明のレンズ形状測定方法において、前記レンズの表面画像データが、二次元画像データであり、前記二次元画像データをゼルニケ多項式で近似して前記レンズの表面形状データを算出する、という態様であってもよい。 In the lens shape measuring method of the present invention, the surface image data of the lens is two-dimensional image data, and the surface shape data of the lens is calculated by approximating the two-dimensional image data with a Zernike polynomial. You may.
 本発明のレンズ形状測定方法において、前記レンズの表面画像データに対し射影変換(ホモグラフィ)による補正処理を行う、という態様であってもよい。 In the lens shape measuring method of the present invention, the surface image data of the lens may be corrected by projective transformation (homography).
 本発明のレンズ光学特性測定装置は、レンズ保持部、操作入力部、測定制御部、測定演算部、光照射部、受光部、及び、出力部を備え、
前記レンズ保持部は、レンズを保持し、
前記操作入力部は、測定内容を含む操作情報を測定制御部に入力し、
前記測定制御部は、入力された前記操作情報に基づき測定制御情報を生成し、
前記光照射部は、前記測定制御情報に基づいて光を前記レンズに照射し、
前記受光部は、前記光を照射されたレンズから出射される測定光を受光して測定情報を生成し、
前記測定演算部は、前記測定情報に基づきレンズの光学特性情報を生成し、
前記出力部は、前記光学特性情報を出力し、
さらに、本発明のレンズ形状測定装置を含み、
前記レンズ保持部は、前記レンズ形状測定装置の前記レンズ保持部を兼ね、
前記測定制御部は、前記レンズ形状測定装置の前記測定制御部を兼ね、
前記受光部は、前記レンズ形状測定装置の前記レーザ受光部を兼ね、
前記測定演算部は、前記レンズ形状測定装置の前記測定演算部を兼ね、
前記出力部は、前記レンズ形状測定装置の前記出力部を兼ね、
前記レンズ位置移動部は、前記測定制御情報に基づき、前記レンズ保持部に保持されたレンズを、X軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向の少なくとも1方向に移動可能であり、
X軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向は、前記レンズ形状測定装置のX軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向と同一であり、
前記レーザ照射部移動部は、前記レーザ照射部を、X軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向の少なくとも1方向に移動可能である、装置である。
The lens optical characteristic measuring device of the present invention includes a lens holding unit, an operation input unit, a measurement control unit, a measurement calculation unit, a light irradiation unit, a light receiving unit, and an output unit.
The lens holding portion holds the lens and holds the lens.
The operation input unit inputs operation information including the measurement content to the measurement control unit.
The measurement control unit generates measurement control information based on the input operation information, and generates measurement control information.
The light irradiation unit irradiates the lens with light based on the measurement control information.
The light receiving unit receives the measurement light emitted from the lens irradiated with the light and generates measurement information.
The measurement calculation unit generates optical characteristic information of the lens based on the measurement information.
The output unit outputs the optical characteristic information and outputs the optical characteristic information.
Further, the lens shape measuring device of the present invention is included.
The lens holding portion also serves as the lens holding portion of the lens shape measuring device.
The measurement control unit also serves as the measurement control unit of the lens shape measuring device.
The light receiving unit also serves as the laser light receiving unit of the lens shape measuring device.
The measurement calculation unit also serves as the measurement calculation unit of the lens shape measuring device.
The output unit also serves as the output unit of the lens shape measuring device.
Based on the measurement control information, the lens position moving unit moves the lens held by the lens holding unit to at least one in the X-axis direction, the Y-axis direction, the Z-axis direction, the Xθ direction, the Yθ direction, and the Zθ direction. Movable in the direction,
The X-axis direction, Y-axis direction, Z-axis direction, Xθ direction, Yθ direction, and Zθ direction are the X-axis direction, Y-axis direction, Z-axis direction, Xθ direction, Yθ direction, and the lens shape measuring device. It is the same as the Zθ direction,
The laser irradiation unit moving unit is a device capable of moving the laser irradiation unit in at least one direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the Xθ direction, the Yθ direction, and the Zθ direction.
 本発明のレンズ光学特性測定装置において、前記測定制御部は、レンズ同期移動情報を生成可能であり、前記レンズ位置移動部は、前記レンズ同期移動情報に基づき、前記レンズ保持部に保持されたレンズを同期して少なくとも二方向に移動する、という態様であってもよい。例えば、後述するように、Xθ方向、Y軸方向及びZ軸方向に同期させて移動することにより、レンズの光学中心点でレンズをXθ方向に回転させることが可能である。本態様によれば、レンズの移動(回転を含む)スペースを広くとる必要が無く(スペース的に有利)、また、レンズの位置及び方向を変化させる時間を短縮することが可能である。 In the lens optical characteristic measuring device of the present invention, the measurement control unit can generate lens synchronous movement information, and the lens position moving unit is a lens held by the lens holding unit based on the lens synchronous movement information. May be in the form of moving in at least two directions in synchronization with each other. For example, as will be described later, the lens can be rotated in the Xθ direction at the optical center point of the lens by moving in synchronization with the Xθ direction, the Y-axis direction, and the Z-axis direction. According to this aspect, it is not necessary to take a wide space for moving (including rotation) of the lens (advantageous in terms of space), and it is possible to shorten the time for changing the position and direction of the lens.
 本発明のレンズ光学特性測定装置において、前記操作入力部は、レンズ内座標設定情報を含む操作情報を入力可能であり、前記レンズ内座標設定情報は、LX軸方向、及び、LY軸方向からなる二次元座標情報であり、前記二次元座標は、前記レンズにおいて、前記レンズの光軸と垂直に交わる平面上の二次元座標であり、前記LX軸方向は、前記レンズ内の二つのアライメントマークが重なる軸方向であり、前記LY軸方向は、前記LX軸方向と直交する軸方向であり、前記操作入力部により入力された操作情報に前記レンズ内座標設定情報が含まれる場合、前記測定制御部は、前記レンズ内座標設定情報を含む測定制御情報を生成し、前記測定演算部は、前記レンズ内座標設定情報に基づき、前記測定情報から二つのアライメントマーク位置情報を抽出し、前記二つのアライメントマーク位置情報から、前記レンズ内の前記LX軸方向、及び、前記LY軸方向からなるレンズ内座標情報を生成し、前記出力部は、前記レンズ内座標情報を含む前記光学特性情報を出力する、という態様であってもよい。本態様の場合、前記測定演算部は、前記レンズ内座標で規定されたレンズの各位置の光学特性情報を生成し、前記出力部は、前記レンズ各位置の光学特性情報を出力する、ことが好ましい。本態様によれば、レンズ内に座標を設定することができ、その結果、レンズ各部の光学特性を正確に規定できる。 In the lens optical characteristic measuring device of the present invention, the operation input unit can input operation information including the in-lens coordinate setting information, and the in-lens coordinate setting information includes the LX axis direction and the LY axis direction. It is two-dimensional coordinate information, and the two-dimensional coordinates are two-dimensional coordinates on a plane perpendicular to the optical axis of the lens in the lens, and in the LX axis direction, two alignment marks in the lens are formed. When the overlapping axial directions, the LY axis direction is an axial direction orthogonal to the LX axis direction, and the operation information input by the operation input unit includes the in-lens coordinate setting information, the measurement control unit Generates measurement control information including the coordinate setting information in the lens, and the measurement calculation unit extracts two alignment mark position information from the measurement information based on the coordinate setting information in the lens, and aligns the two alignments. From the mark position information, the in-lens coordinate information including the LX-axis direction and the LY-axis direction in the lens is generated, and the output unit outputs the optical characteristic information including the in-lens coordinate information. May be the embodiment. In the case of this embodiment, the measurement calculation unit may generate optical characteristic information of each position of the lens defined by the coordinates in the lens, and the output unit may output optical characteristic information of each position of the lens. preferable. According to this aspect, the coordinates can be set in the lens, and as a result, the optical characteristics of each part of the lens can be accurately defined.
 本発明のレンズ光学特性測定装置において、前記操作入力部は、分割測定指示情報を含む操作情報を入力可能であり、前記分割測定指示情報は、前記レンズを各部に分割して光学特性を測定し、分割して測定されたレンズ各部の光学特性の全部又は一部を統合して前記レンズの全体又は一部の光学特性とするものであり、前記操作入力部により入力された操作情報に分割測定指示情報が含まれる場合、前記測定制御部は、前記分割測定指示情報を含む測定制御情報を生成し、前記レンズ位置移動部は、前記分割測定指示情報に基づき、前記レンズの分割された各部に、前記光照射部が光を照射できるように前記レンズを移動させ、前記光照射部は、前記分割測定指示情報に基づき、前記レンズの分割された各部に光を照射し、前記受光部は、前記分割測定指示情報に基づき、前記レンズの分割された各部から出射される測定光を受光して前記レンズの各部の分割測定情報を生成し、前記測定演算部は、前記分割測定情報に基づき、前記レンズの分割光学特性情報を生成し、かつ、前記各分割光学特性情報の全部又は一部を統合して前記レンズ全体又は一部分の光学特性情報を生成する、という態様であってもよい。本態様によれば、照射される光の範囲(面積)を超える口径のレンズ(大型レンズ)であっても、光学特性の測定が可能となる。 In the lens optical characteristic measuring device of the present invention, the operation input unit can input operation information including division measurement instruction information, and the division measurement instruction information measures the optical characteristics by dividing the lens into each part. , All or part of the optical characteristics of each part of the lens measured separately are integrated into the optical characteristics of the whole or a part of the lens, and the operation information input by the operation input unit is divided and measured. When the instruction information is included, the measurement control unit generates measurement control information including the division measurement instruction information, and the lens position moving unit is applied to each division of the lens based on the division measurement instruction information. The lens is moved so that the light irradiation unit can irradiate light, and the light irradiation unit irradiates each divided portion of the lens with light based on the division measurement instruction information. Based on the divided measurement instruction information, the measurement light emitted from each divided portion of the lens is received to generate the divided measurement information of each part of the lens, and the measurement calculation unit is based on the divided measurement information. The mode may be such that the divided optical characteristic information of the lens is generated, and all or a part of the divided optical characteristic information is integrated to generate the optical characteristic information of the whole or a part of the lens. According to this aspect, it is possible to measure the optical characteristics even with a lens (large lens) having a diameter exceeding the range (area) of the irradiated light.
 本発明のレンズ光学特性測定装置において、さらに、カップ装着部を含み、前記カップ装着部は、カップを保持するカップ保持部、及び、前記カップ保持部と連結し前記カップ保持部を移動させる移動部を含み、前記移動部は、光学特性測定の際には、前記カップ保持部を前記光学特性測定の支障がない位置にカップ保持部を配置し、カップを前記レンズに配置する際には、前記カップ保持部を前記レンズの上方に配置し、前記レンズ位置移動部は、前記レンズ上方に配置されたカップ保持部のカップに対し、前記レンズにおいて任意点を想定し、前記任意点を通る面に直交する軸が、前記カップの中心軸と合うように前記レンズの位置と向きを調整し、前記レンズ位置移動部及び前記カップ装着部の移動部の少なくとも一方が、前記レンズ及び前記カップの少なくとも一方を移動させることにより、前記カップに前記レンズを当接して前記レンズにカップを装着させる、という態様であってもよい。通常、眼鏡の場合、玉レンズの光学特性を測定した後、眼鏡フレームに合わせて加工する際に、レンズを保持するため、レンズ頂点にカップ(サンクションカップともいう)を装着する。本態様によれば、前記レンズ位置移動部によって、正確にレンズにカップを装着できる。前記任意点は、例えば、レンズの光学中心点、レンズのアイポイント等がある。 In the lens optical characteristic measuring apparatus of the present invention, the cup mounting portion further includes a cup mounting portion, and the cup mounting portion is a cup holding portion that holds the cup and a moving portion that is connected to the cup holding portion and moves the cup holding portion. In the moving portion, when the cup holding portion is arranged at a position where the cup holding portion does not interfere with the optical characteristic measurement when the optical characteristics are measured, and when the cup is arranged on the lens, the moving portion is described. The cup holding portion is arranged above the lens, and the lens position moving portion assumes an arbitrary point in the lens with respect to the cup of the cup holding portion arranged above the lens, and is formed on a surface passing through the arbitrary point. The position and orientation of the lens are adjusted so that the orthogonal axes align with the central axis of the cup, and at least one of the lens position moving portion and the moving portion of the cup mounting portion is at least one of the lens and the cup. By moving the lens, the lens may be brought into contact with the cup to attach the cup to the lens. Usually, in the case of spectacles, a cup (also referred to as a sanction cup) is attached to the apex of the lens in order to hold the lens when processing it according to the spectacle frame after measuring the optical characteristics of the ball lens. According to this aspect, the cup can be accurately attached to the lens by the lens position moving portion. The optional points include, for example, the optical center point of the lens, the eye point of the lens, and the like.
 本発明のレンズの光学特性測定方法は、光をレンズに照射し、レンズから出射される測定光を受光して前記レンズの光学特性を測定するレンズの光学特性測定方法であって、X軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向の6つの方向において、X軸方向及びY軸方向は、鉛直方向又は光軸方向と垂直な面で互いに直交する方向であり、Z軸方向は、鉛直方向又は光軸方向であり、Xθ方向は、Y軸方向及びZ軸方向が形成する面において、任意の位置のX軸を回転中心軸とする仮想円の円周方向であり、Yθ方向は、X軸方向及びZ軸方向が形成する面において、任意の位置のY軸を回転中心軸とする仮想円の円周方向であり、Zθ方向は、X軸方向及びY軸方向が形成する面において、任意の位置のZ軸を回転中心軸とする仮想円の円周方向であり、前記6つの方向で規定される位置及び方向の前記レンズに対し光を照射して、前記レンズの光学特性を測定する、方法である。 The method for measuring the optical characteristics of a lens of the present invention is a method for measuring the optical characteristics of a lens by irradiating the lens with light and receiving the measurement light emitted from the lens to measure the optical characteristics of the lens, in the X-axis direction. , Y-axis direction, Z-axis direction, Xθ direction, Yθ direction, and Zθ direction, the X-axis direction and the Y-axis direction are perpendicular to each other in the vertical direction or the plane perpendicular to the optical axis direction. Yes, the Z-axis direction is the vertical direction or the optical axis direction, and the Xθ direction is the circumference of a virtual circle whose rotation center axis is the X-axis at an arbitrary position on the plane formed by the Y-axis direction and the Z-axis direction. The Yθ direction is the circumferential direction of the virtual circle whose rotation center axis is the Y-axis at an arbitrary position on the plane formed by the X-axis direction and the Z-axis direction, and the Zθ direction is the X-axis direction and the Z-axis direction. On the surface formed by the Y-axis direction, the lens is irradiated with light at the positions and directions defined in the six directions, which is the circumferential direction of the virtual circle whose rotation center axis is the Z-axis at an arbitrary position. This is a method for measuring the optical characteristics of the lens.
 本発明のレンズ光学特性測定方法において、さらに、レンズ内座標規定工程を含み、前記レンズ内座標は、LX軸方向、及び、LY軸方向からなる二次元座標であり、前記二次元座標は、前記レンズにおいて、前記レンズの光軸と垂直に交わる平面上の二次元座標であり、前記LX軸方向は、前記レンズ内の二つのアライメントマークと重なる軸方向であり、前記LY軸方向は、前記LX軸方向と直交する軸方向であり、前記レンズ内座標規定工程は、前記レンズに光を照射し、出射する測定光から二つのアライメントマーク位置を検出し、前記二つのアライメントマーク位置から、前記レンズ内の前記LX軸方向、及び、前記LY軸方向からなるレンズ内座標を規定する、という態様であってもよい。本態様の場合、さらに、光学特性分布情報生成工程を含み、前記光学特性分布情報生成工程は、前記レンズ内座標規定工程で規定された前記レンズの各位置に、各位置の光学特性を紐づける、ことが好ましい。本態様によれば、レンズ内に座標を設定することができ、その結果、レンズ各部の光学特性を正確に規定できる。 In the lens optical characteristic measuring method of the present invention, the in-lens coordinate defining step is further included, and the in-lens coordinates are two-dimensional coordinates including the LX axis direction and the LY axis direction, and the two-dimensional coordinates are said. In a lens, it is a two-dimensional coordinate on a plane that intersects the optical axis of the lens perpendicularly, the LX axis direction is an axial direction that overlaps with two alignment marks in the lens, and the LY axis direction is the LX. The axial direction is orthogonal to the axial direction, and the in-lens coordinate defining step irradiates the lens with light, detects two alignment mark positions from the measured light emitted, and from the two alignment mark positions, the lens. It may be an embodiment in which the in-lens coordinates including the LX axis direction and the LY axis direction are defined. In the case of this aspect, the optical characteristic distribution information generation step further includes an optical characteristic distribution information generation step, in which the optical characteristic distribution information generation step associates the optical characteristics of each position with each position of the lens defined by the in-lens coordinate defining step. , Is preferable. According to this aspect, the coordinates can be set in the lens, and as a result, the optical characteristics of each part of the lens can be accurately defined.
 本発明のレンズ光学特性測定方法において、さらに、分割測定工程を含み、前記分割測定は、前記レンズを各部に分割して光学特性を測定し、分割して測定されたレンズ各部の光学特性の全部又は一部を統合して前記レンズの全体又は一部の光学特性とするものであり、前記分割測定工程は、前記レンズの分割された各部に光を照射できるように、前記レンズを前記6方向の少なくとも1方向に移動させ、前記レンズの分割された各部に光を照射し、前記レンズの分割された各部から出射される測定光を受光して前記レンズの各部の分割測定情報を生成し、前記分割測定情報に基づき、前記レンズの分割光学特性情報を生成し、かつ、前記各分割光学特性情報の全部又は一部を統合して前記レンズ全体又は一部分の光学特性情報を生成する、という態様であってもよい。本態様によれば、照射される光の範囲(面積)を超える口径のレンズ(大型レンズ)であっても、光学特性の測定が可能となる。 The lens optical characteristic measuring method of the present invention further includes a divisional measurement step, in which the divisional measurement divides the lens into individual parts to measure the optical characteristics, and all of the optical characteristics of the divided and measured parts of the lens are measured. Alternatively, a part of the lens is integrated into the optical characteristics of the whole or a part of the lens, and in the division measurement step, the lens is arranged in the six directions so that the divided parts of the lens can be irradiated with light. It is moved in at least one direction of the lens, irradiates light on each divided portion of the lens, receives measurement light emitted from each divided portion of the lens, and generates divided measurement information of each portion of the lens. An embodiment in which the divided optical characteristic information of the lens is generated based on the divided measurement information, and all or a part of the divided optical characteristic information is integrated to generate the optical characteristic information of the whole or a part of the lens. It may be. According to this aspect, it is possible to measure the optical characteristics even with a lens (large lens) having a diameter exceeding the range (area) of the irradiated light.
 本発明のプログラムは、本発明の方法をコンピュータ上で実行可能なプログラムである。 The program of the present invention is a program capable of executing the method of the present invention on a computer.
 本発明の記録媒体は、本発明のプログラムを記録しているコンピュータ読み取り可能な記録媒体である。 The recording medium of the present invention is a computer-readable recording medium on which the program of the present invention is recorded.
 次に、本発明の実施形態について図を用いて説明する。本発明は、以下の実施形態には限定されない。以下の各図において、同一部分には、同一符号を付している。また、各実施形態の説明は、特に言及がない限り、互いの説明を援用でき、各実施形態の構成は、特に言及がない限り、組合せ可能である。 Next, an embodiment of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments. In each of the following figures, the same parts are designated by the same reference numerals. Further, the explanations of the respective embodiments can be referred to each other unless otherwise specified, and the configurations of the respective embodiments can be combined unless otherwise specified.
[実施形態1]
 図1に、本実施形態のレンズ形状測定装置1の各部の構成を示す。図示のように、本装置1は、操作入力部11、測定制御部12、測定演算部13、記憶部14、出力部15、レンズ位置移動部16、ラインレーザ照射部7a、ラインレーザ受光部7b、レンズ保持部18、及び、レンズ裏面位置検出部23、を備える。操作入力部11、測定制御部12、測定演算部13、記憶部14、及び、出力部15は、例えば、CPU又はGPU等の中央演算処理装置内で構成されている。レンズ保持部18は、測定対象のレンズを保持する。操作入力部11は、タッチパネル、マウス又はキーボード等の入力装置(図示せず)と接続されており、測定内容を含む操作情報を測定制御部12に入力する。測定制御部12は、入力された操作情報に基づき測定制御情報を生成し、ラインレーザ照射部7aは、測定制御情報に基づいてラインレーザ(図1において上側の矢印)を、レンズ保持部18に保持されているレンズ(図示せず)に照射する。ラインレーザ受光部7bは、前記ラインレーザを照射されたレンズから反射されるラインレーザ(図1において下側の矢印)を受光する。ラインレーザ照射部7a及びラインレーザ受光部7bにより、レンズの表面形状が測定できる。また、ラインレーザ照射部7a及びラインレーザ受光部7bは、レンズ表面位置検出部22を兼ねており、Z軸方向のレンズ表面位置を検出する。レンズ裏面位置検出部23は、Z軸方向のレンズ裏面位置を検出する。レンズ表面形状情報、レンズ表面位置情報、レンズ裏面位置情報、レンズのZ軸移動距離情報は、測定演算部13に入力され、測定演算部13は、前記各情報に基づきレンズの表面形状情報及びレンズの厚み情報を生成する。レンズの表面形状情報及びレンズの厚み情報は、記憶部14に記憶され、また、出力部15により、出力される。出力部15は、ディスプレー及びプリンター等の出力装置(図示せず)に接続され、レンズの表面形状情報及びレンズの厚み情報は、ディスプレーに表示されたり、プリンターによって印刷されたりする。
[Embodiment 1]
FIG. 1 shows the configuration of each part of the lens shape measuring device 1 of the present embodiment. As shown in the figure, the apparatus 1 includes an operation input unit 11, a measurement control unit 12, a measurement calculation unit 13, a storage unit 14, an output unit 15, a lens position moving unit 16, a line laser irradiation unit 7a, and a line laser light receiving unit 7b. , The lens holding unit 18, and the lens back surface position detecting unit 23. The operation input unit 11, the measurement control unit 12, the measurement calculation unit 13, the storage unit 14, and the output unit 15 are configured in, for example, a central processing unit such as a CPU or GPU. The lens holding unit 18 holds the lens to be measured. The operation input unit 11 is connected to an input device (not shown) such as a touch panel, a mouse, or a keyboard, and inputs operation information including measurement contents to the measurement control unit 12. The measurement control unit 12 generates measurement control information based on the input operation information, and the line laser irradiation unit 7a sends a line laser (upper arrow in FIG. 1) to the lens holding unit 18 based on the measurement control information. Irradiate the held lens (not shown). The line laser light receiving unit 7b receives a line laser (lower arrow in FIG. 1) reflected from the lens irradiated with the line laser. The surface shape of the lens can be measured by the line laser irradiation unit 7a and the line laser light receiving unit 7b. Further, the line laser irradiation unit 7a and the line laser light receiving unit 7b also serve as the lens surface position detection unit 22, and detect the lens surface position in the Z-axis direction. The lens back surface position detection unit 23 detects the lens back surface position in the Z-axis direction. The lens surface shape information, the lens surface position information, the lens back surface position information, and the lens Z-axis movement distance information are input to the measurement calculation unit 13, and the measurement calculation unit 13 determines the lens surface shape information and the lens based on the respective information. Generates thickness information for. The surface shape information of the lens and the thickness information of the lens are stored in the storage unit 14 and output by the output unit 15. The output unit 15 is connected to an output device (not shown) such as a display and a printer, and the surface shape information of the lens and the thickness information of the lens are displayed on the display or printed by the printer.
 記憶部14は、例えば、メモリである。メモリは、例えば、メインメモリ(主記憶装置)が挙げられる。メインメモリは、例えば、RAM(ランダムアクセスメモリ)である。また、メモリは、例えば、ROM(読み出し専用メモリ)であってもよい。記憶装置は、例えば、記憶媒体と、記憶媒体に読み書きするドライブとの組合せであってもよい。記憶媒体は、特に制限されず、例えば、内蔵型でも外付け型でもよく、HD(ハードディスク)、CD-ROM、CD-R、CD-RW、MO、DVD、フラッシュメモリー、メモリーカード等が挙げられる。記憶装置は、例えば、記憶媒体とドライブとが一体化されたハードディスクドライブ(HDD)であってもよい。なお、本発明において、記憶部14は、任意の構成要素であり、必須ではない。 The storage unit 14 is, for example, a memory. Examples of the memory include a main memory (main storage device). The main memory is, for example, a RAM (random access memory). Further, the memory may be, for example, a ROM (read-only memory). The storage device may be, for example, a combination of a storage medium and a drive that reads and writes to the storage medium. The storage medium is not particularly limited, and may be an internal type or an external type, and examples thereof include HD (hard disk), CD-ROM, CD-R, CD-RW, MO, DVD, flash memory, and memory card. .. The storage device may be, for example, a hard disk drive (HDD) in which a storage medium and a drive are integrated. In the present invention, the storage unit 14 is an arbitrary component and is not essential.
 本装置1において、さらに通信デバイス(図示せず)を含み、通信デバイスにより、外部の通信回線網(ネットワーク)を介して、外部装置と通信してもよい。通信回線網としては、例えば、インターネット回線、WWW(World Wide Web)、電話回線、LAN(Local Area Network)、DTN(Delay Tolerant Networking)等がある。通信デバイスによる通信は、有線でも無線でもよい。無線通信としては、WiFi(Wireless Fidelity)、Bluetooth(登録商標)、等が挙げられる。無線通信としては、各装置が直接通信する形態(Ad Hoc通信)、アクセスポイントを介した間接通信のいずれであってもよい。外部装置としては、例えば、サーバ、データベース、端末(パーソナルコンピュータ、タブレット、スマートフォン、携帯電話等)、プリンター、ディスプレー等がある。 The device 1 may further include a communication device (not shown) and communicate with the external device by the communication device via an external communication network (network). Examples of the communication network include an Internet line, WWW (World Wide Web), telephone line, LAN (Local Area Network), DTN (Delay Tolerant Networking), and the like. Communication by the communication device may be wired or wireless. Examples of wireless communication include WiFi (Wireless Fidelity), Bluetooth (registered trademark), and the like. The wireless communication may be either a form in which each device directly communicates (Ad Hoc communication) or an indirect communication via an access point. Examples of the external device include a server, a database, a terminal (personal computer, tablet, smartphone, mobile phone, etc.), a printer, a display, and the like.
 レンズ位置移動部16は、レンズ保持部18に連結し、レンズ位置移動部16により、レンズ保持部18に保持されているレンズを、X軸方向、Y軸方向、及び、Z軸方向の3方向に移動可能である。 The lens position moving unit 16 is connected to the lens holding unit 18, and the lens held by the lens position moving unit 16 in the lens holding unit 18 is moved in three directions of the X-axis direction, the Y-axis direction, and the Z-axis direction. It is possible to move to.
 X軸方向及びY軸方向は、鉛直方向又は光軸方向と垂直な面で互いに直交する方向である。Z軸方向は、鉛直方向又は光軸方向である。 The X-axis direction and the Y-axis direction are directions orthogonal to each other in the vertical direction or the plane perpendicular to the optical axis direction. The Z-axis direction is the vertical direction or the optical axis direction.
 図2に、レンズ表面形状測定モードにおける、レンズ表面形状測定の一例を示す。レンズLeはレンズ保持部18に保持されており、レンズ保持部18に連結しているレンズ位置移動部16により、レンズLeはX軸方向に移動する。X軸方向に移動させた状態で、ラインレーザ照射部7aが、斜め上方からレンズLe表面にY軸に平行なラインレーザを照射する。照射されたラインレーザの一部はレンズLe表面で反射され、反射されたラインレーザをラインレーザ受光部7bで受光する。測定演算部13は、ラインレーザ受光部7bが受光した反射光からレンズの表面画像データを算出する。 FIG. 2 shows an example of lens surface shape measurement in the lens surface shape measurement mode. The lens Le is held by the lens holding portion 18, and the lens Le is moved in the X-axis direction by the lens position moving portion 16 connected to the lens holding portion 18. The line laser irradiation unit 7a irradiates the lens Le surface with the line laser parallel to the Y axis from diagonally above while being moved in the X-axis direction. A part of the irradiated line laser is reflected by the lens Le surface, and the reflected line laser is received by the line laser light receiving unit 7b. The measurement calculation unit 13 calculates the surface image data of the lens from the reflected light received by the line laser light receiving unit 7b.
 レンズの表面画像データは、二次元画像データであり、測定演算部13は、例えば、二次元画像データをゼルニケ多項式で近似してレンズの表面形状データを算出する。なお、ラインレーザの反射光はレンズ裏面の屈折光も含んでいるが、裏面の屈折光は使用しない(キャンセル)。また、測定演算部13において、レンズの表面画像データに対し射影変換(ホモグラフィ)による補正処理を行ってもよい。 The surface image data of the lens is two-dimensional image data, and the measurement calculation unit 13 calculates the surface shape data of the lens by approximating the two-dimensional image data with a Zernike polynomial, for example. The reflected light of the line laser includes the refracted light on the back surface of the lens, but the refracted light on the back surface is not used (cancelled). Further, the measurement calculation unit 13 may perform a correction process by projective transformation (homography) on the surface image data of the lens.
 図3に、レンズ厚み測定モードにおける、レンズの厚み測定の一例を示す。まず、レンズLeを、レンズ保持部18のチャック(図示せず)にセットして保持する。つぎに、ラインレーザ照射部7aによってラインレーザを連続的又は断続的に照射しながら、レンズ位置移動部16により、レンズ保持部18に保持されたレンズLeをZ軸方向(同図において上下方向)に移動させる。このとき、ラインレーザ照射部7aが照射したラインレーザがレンズLe表面で散乱され、その散乱光をラインレーザ受光部7bが受光する。そして、前記散乱光の輝線の幅が最少となったZ軸方向の位置を、レンズLe表面位置とする。レンズLeの初期位置と、その初期位置からレンズLe表面位置までの、レンズLeのZ軸方向の移動量(例えば、ステッピングモータによるZ軸方向移動のステップ数から算出可能)とから、レンズLe表面位置を算出できる。なお、レンズLeのZ軸方向移動の順序は、特に限定されない。例えば、レンズLeの初期位置を高く設定し、最初に下降させてもよいし、逆に、レンズLeの初期位置を低く設定し、最初に上昇させてもよい。また、レンズ位置移動部16により、レンズ保持部18に保持されたレンズLeをZ軸方向(同図において下方向)に移動させ、所定の位置に配置された無接点タッチスイッチ(レンズ裏面検出部)23にレンズLe裏面が接触し、ON状態となった位置を、Z軸方向のレンズ裏面位置とする。測定に先立ってタッチスイッチ23のON位置を特定しておくことで、Z軸方向のレンズ裏面位置を特定できる。そして、測定演算部13において、Z軸方向のレンズ表面位置、Z軸方向のレンズ裏面位置、及び、Z軸方向のレンズ移動距離からレンズの厚み情報を算出する。なお、本発明の装置において、光学系の構成は、図3に限定されず、例えば、後述する実施形態の図12又は13に示す構成等でもよい。例えば、レーザ受光部が、図3のラインレーザ受光部7bに代えて図12又は13の受光部19であり、前記輝線の幅を図12又は13のCMOS19cで測定してもよい。 FIG. 3 shows an example of lens thickness measurement in the lens thickness measurement mode. First, the lens Le is set and held on the chuck (not shown) of the lens holding portion 18. Next, while the line laser irradiation unit 7a continuously or intermittently irradiates the line laser, the lens position moving unit 16 causes the lens Le held by the lens holding unit 18 in the Z-axis direction (vertical direction in the figure). Move to. At this time, the line laser irradiated by the line laser irradiation unit 7a is scattered on the lens Le surface, and the scattered light is received by the line laser light receiving unit 7b. Then, the position in the Z-axis direction where the width of the emission line of the scattered light is minimized is defined as the lens Le surface position. From the initial position of the lens Le and the amount of movement of the lens Le in the Z-axis direction from the initial position to the surface position of the lens Le (for example, it can be calculated from the number of steps of movement in the Z-axis direction by the stepping motor), the lens Le surface. The position can be calculated. The order of movement of the lens Le in the Z-axis direction is not particularly limited. For example, the initial position of the lens Le may be set high and lowered first, or conversely, the initial position of the lens Le may be set low and raised first. Further, the lens position moving unit 16 moves the lens Le held by the lens holding unit 18 in the Z-axis direction (downward in the figure), and a non-contact touch switch (lens back surface detecting unit) arranged at a predetermined position. ) 23, the position where the back surface of the lens Le comes into contact with the lens Le and is turned on is defined as the position on the back surface of the lens in the Z-axis direction. By specifying the ON position of the touch switch 23 prior to the measurement, the position of the back surface of the lens in the Z-axis direction can be specified. Then, the measurement calculation unit 13 calculates the thickness information of the lens from the lens front surface position in the Z-axis direction, the lens back surface position in the Z-axis direction, and the lens movement distance in the Z-axis direction. In the apparatus of the present invention, the configuration of the optical system is not limited to FIG. 3, and may be, for example, the configuration shown in FIGS. 12 or 13 of the embodiment described later. For example, the laser light receiving unit may be the light receiving unit 19 of FIG. 12 or 13 instead of the line laser light receiving unit 7b of FIG. 3, and the width of the emission line may be measured by the CMOS 19c of FIG. 12 or 13.
 なお、本実施形態では、ラインレーザを用いる例について説明したが、本発明では、ラインレーザに代えてドットレーザを用いてもよい。前記ドットレーザは特に限定されず、例えば、一般的なドットレーザでもよいし、DOE(回折光学素子)を用いたドットレーザであってもよい。例えば、レーザダイオードから出射されたレーザを、DOEを通すことで、ドットレーザとすることができる。DOEによれば、例えば、ビームの形状を、自由に設計可能である。このため、DOEによれば、例えば、多点化(例えば、20×20)も容易である。また、DOEを用いると、レンズ上の点の輝度を高く出来るため、例えば、ラインレーザよりも、輝度重心を求める位置精度をさらに向上させることができる。また、DOEによる点群を用い、面形状を求めることができる。なお、以下の各実施形態においても、同様に、ラインレーザに代えてドットレーザを用いてもよいし、前記ドットレーザは特に限定されず、例えば、一般的なドットレーザでもよいし、DOEを用いたドットレーザであってもよい。 Although an example of using a line laser has been described in the present embodiment, in the present invention, a dot laser may be used instead of the line laser. The dot laser is not particularly limited, and may be, for example, a general dot laser or a dot laser using a DOE (diffraction optical element). For example, a laser emitted from a laser diode can be made into a dot laser by passing through DOE. According to DOE, for example, the shape of the beam can be freely designed. Therefore, according to DOE, for example, it is easy to increase the number of points (for example, 20 × 20). Further, when DOE is used, the brightness of the point on the lens can be increased, so that the position accuracy for obtaining the brightness center of gravity can be further improved as compared with, for example, a line laser. Moreover, the surface shape can be obtained by using the point cloud by DOE. Similarly, in each of the following embodiments, a dot laser may be used instead of the line laser, and the dot laser is not particularly limited, and for example, a general dot laser may be used, or DOE is used. It may be a dot laser that has been used.
 また、本実施形態では、レンズ位置移動部によってレンズをX軸方向、Y軸方向、及び、Z軸方向の3方向に移動可能な例を示した。しかし、本発明はこれに限定されず、例えば、レンズ位置移動部に加え、又はそれに代えて、前記レーザ照射部移動部を有し、前記レーザ照射部移動部によって、前記レーザ照射部を、X軸方向、Y軸方向、及び、Z軸方向の3方向に移動可能であってもよい。また、レンズ位置移動部は、前述のとおり、X軸方向、Y軸方向、及び、Z軸方向の3方向に移動可能な例に限定されず、X軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向の少なくとも1方向に移動可能であればよい。レーザ照射部移動部も同様である。例えば、レンズ位置移動部に加え、又はそれに代えて、前記レーザ照射部移動部を有し、前記レーザ照射部移動部によって、前記レーザ照射部を、X軸方向、Y軸方向、及び、Z軸方向の3方向に移動可能な例に限定されず、X軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向の少なくとも1方向に移動可能であってもよい。以下の各実施形態においても同様である。 Further, in the present embodiment, an example is shown in which the lens can be moved in three directions of the X-axis direction, the Y-axis direction, and the Z-axis direction by the lens position moving portion. However, the present invention is not limited to this, and for example, in addition to or in place of the lens position moving portion, the laser irradiating portion moving portion is provided, and the laser irradiating portion moving portion causes the laser irradiating portion to be X. It may be movable in three directions of the axial direction, the Y-axis direction, and the Z-axis direction. Further, as described above, the lens position moving portion is not limited to the example in which it can move in the three directions of the X-axis direction, the Y-axis direction, and the Z-axis direction, and the X-axis direction, the Y-axis direction, and the Z-axis direction. It suffices if it can move in at least one direction of the Xθ direction, the Yθ direction, and the Zθ direction. The same applies to the moving unit of the laser irradiation unit. For example, in addition to or instead of the lens position moving portion, the laser irradiating portion moving portion is provided, and the laser irradiating portion moving portion causes the laser irradiating portion to be moved in the X-axis direction, the Y-axis direction, and the Z-axis. The example is not limited to the example of being movable in three directions, and may be movable in at least one direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the Xθ direction, the Yθ direction, and the Zθ direction. The same applies to each of the following embodiments.
[実施形態2]
 図4に、本実施形態のレンズ光学特性測定装置1の各部の構成を示す。本実施形態のレンズ光学特性測定装置1は、例えば、実施形態1のレンズ形状測定装置1を含む。図示のように、本装置1は、操作入力部11、測定制御部12、測定演算部13、記憶部14、出力部15、レンズ位置移動部16、光照射部17、レンズ保持部18、及び、受光部19、を備える。操作入力部11、測定制御部12、測定演算部13、記憶部14、及び、出力部15は、例えば、CPU又はGPU等の中央演算処理装置内で構成されている。レンズ保持部18は、測定対象のレンズを保持する。操作入力部11は、タッチパネル、マウス又はキーボード等の入力装置(図示せず)と接続されており、測定内容を含む操作情報を測定制御部12に入力する。測定制御部12は、入力された操作情報に基づき測定制御情報を生成し、光照射部17は、測定制御情報に基づいて光(図4において上側の矢印)を、レンズ保持部18に保持されているレンズ(図示せず)に照射する。受光部19は、前記光を照射されたレンズから出射される測定光(図1において下側の矢印)を受光して測定情報を生成し、測定演算部13は、測定情報に基づきレンズの光学特性情報を生成する。レンズの光学特性は、記憶部14に記憶され、また、出力部15により、前記光学特性情報を出力する。出力部15は、ディスプレー及びプリンター等の出力装置(図示せず)に接続され、光学特性情報は、ディスプレーに表示されたり、プリンターによって印刷されたりする。
[Embodiment 2]
FIG. 4 shows the configuration of each part of the lens optical characteristic measuring device 1 of the present embodiment. The lens optical characteristic measuring device 1 of the present embodiment includes, for example, the lens shape measuring device 1 of the first embodiment. As shown in the figure, the apparatus 1 includes an operation input unit 11, a measurement control unit 12, a measurement calculation unit 13, a storage unit 14, an output unit 15, a lens position moving unit 16, a light irradiation unit 17, a lens holding unit 18, and a lens holding unit 18. , A light receiving unit 19. The operation input unit 11, the measurement control unit 12, the measurement calculation unit 13, the storage unit 14, and the output unit 15 are configured in, for example, a central processing unit such as a CPU or GPU. The lens holding unit 18 holds the lens to be measured. The operation input unit 11 is connected to an input device (not shown) such as a touch panel, a mouse, or a keyboard, and inputs operation information including measurement contents to the measurement control unit 12. The measurement control unit 12 generates measurement control information based on the input operation information, and the light irradiation unit 17 holds light (upper arrow in FIG. 4) in the lens holding unit 18 based on the measurement control information. Irradiate the lens (not shown). The light receiving unit 19 receives the measurement light (lower arrow in FIG. 1) emitted from the lens irradiated with the light to generate measurement information, and the measurement calculation unit 13 optics the lens based on the measurement information. Generate characteristic information. The optical characteristics of the lens are stored in the storage unit 14, and the output unit 15 outputs the optical characteristic information. The output unit 15 is connected to an output device (not shown) such as a display and a printer, and the optical characteristic information is displayed on the display or printed by the printer.
 記憶部14は、例えば、メモリである。メモリは、例えば、メインメモリ(主記憶装置)が挙げられる。メインメモリは、例えば、RAM(ランダムアクセスメモリ)である。また、メモリは、例えば、ROM(読み出し専用メモリ)であってもよい。記憶装置は、例えば、記憶媒体と、記憶媒体に読み書きするドライブとの組合せであってもよい。記憶媒体は、特に制限されず、例えば、内蔵型でも外付け型でもよく、HD(ハードディスク)、CD-ROM、CD-R、CD-RW、MO、DVD、フラッシュメモリー、メモリーカード等が挙げられる。記憶装置は、例えば、記憶媒体とドライブとが一体化されたハードディスクドライブ(HDD)であってもよい。なお、本発明において、記憶部14は、任意の構成要素であり、必須ではない。 The storage unit 14 is, for example, a memory. Examples of the memory include a main memory (main storage device). The main memory is, for example, a RAM (random access memory). Further, the memory may be, for example, a ROM (read-only memory). The storage device may be, for example, a combination of a storage medium and a drive that reads and writes to the storage medium. The storage medium is not particularly limited, and may be an internal type or an external type, and examples thereof include HD (hard disk), CD-ROM, CD-R, CD-RW, MO, DVD, flash memory, and memory card. .. The storage device may be, for example, a hard disk drive (HDD) in which a storage medium and a drive are integrated. In the present invention, the storage unit 14 is an arbitrary component and is not essential.
 本装置1において、さらに通信デバイス(図示せず)を含み、通信デバイスにより、外部の通信回線網(ネットワーク)を介して、外部装置と通信してもよい。通信回線網としては、例えば、インターネット回線、WWW(World Wide Web)、電話回線、LAN(Local Area Network)、DTN(Delay Tolerant Networking)等がある。通信デバイスによる通信は、有線でも無線でもよい。無線通信としては、WiFi(Wireless Fidelity)、Bluetooth(登録商標)、等が挙げられる。無線通信としては、各装置が直接通信する形態(Ad Hoc通信)、アクセスポイントを介した間接通信のいずれであってもよい。外部装置としては、例えば、サーバ、データベース、端末(パーソナルコンピュータ、タブレット、スマートフォン、携帯電話等)、プリンター、ディスプレー等がある。 The device 1 may further include a communication device (not shown) and communicate with the external device by the communication device via an external communication network (network). Examples of the communication network include an Internet line, WWW (World Wide Web), telephone line, LAN (Local Area Network), DTN (Delay Tolerant Networking), and the like. Communication by the communication device may be wired or wireless. Examples of wireless communication include WiFi (Wireless Fidelity), Bluetooth (registered trademark), and the like. The wireless communication may be either a form in which each device directly communicates (Ad Hoc communication) or an indirect communication via an access point. Examples of the external device include a server, a database, a terminal (personal computer, tablet, smartphone, mobile phone, etc.), a printer, a display, and the like.
 レンズ位置移動部16は、レンズ保持部18に連結し、レンズ位置移動部16により、レンズ保持部18に保持されているレンズを、X軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向の6方向に移動可能である。 The lens position moving portion 16 is connected to the lens holding portion 18, and the lens held by the lens holding portion 18 by the lens position moving portion 16 is moved in the X-axis direction, the Y-axis direction, the Z-axis direction, the Xθ direction, and the Yθ. It can move in six directions, the direction and the Zθ direction.
 X軸方向及びY軸方向は、鉛直方向又は光軸方向と垂直な面で互いに直交する方向である。Z軸方向は、鉛直方向又は光軸方向である。Xθ方向は、Y軸方向及びZ軸方向が形成する面において、任意の位置のX軸を回転中心軸とする仮想円の円周方向である。Yθ方向は、X軸方向及びZ軸方向が形成する面において、任意の位置のY軸を回転中心軸とする仮想円の円周方向である。Zθ方向は、X軸方向及びY軸方向が形成する面において、任意の位置のZ軸を回転中心軸とする仮想円の円周方向である。 The X-axis direction and the Y-axis direction are directions orthogonal to each other in the vertical direction or the plane perpendicular to the optical axis direction. The Z-axis direction is the vertical direction or the optical axis direction. The Xθ direction is the circumferential direction of a virtual circle having the X-axis at an arbitrary position as the rotation center axis on the plane formed by the Y-axis direction and the Z-axis direction. The Yθ direction is the circumferential direction of a virtual circle whose rotation center axis is the Y-axis at an arbitrary position on the plane formed by the X-axis direction and the Z-axis direction. The Zθ direction is the circumferential direction of a virtual circle having the Z-axis at an arbitrary position as the rotation center axis on the plane formed by the X-axis direction and the Y-axis direction.
 本発明では、例えば、本実施形態で示したように、6方向のレンズの移動を組み合わせることにより、レンズの位置及びレンズの向きを変えることができ、その結果、様々な位置及び方向のレンズの光学特性を測定することが可能である。 In the present invention, for example, as shown in the present embodiment, the position of the lens and the orientation of the lens can be changed by combining the movement of the lens in six directions, and as a result, the lens in various positions and directions can be changed. It is possible to measure the optical characteristics.
[実施形態3]
 次に、図5から図17に基づき、本発明のレンズ光学特性測定装置の構成の一例を説明する。
[Embodiment 3]
Next, an example of the configuration of the lens optical characteristic measuring apparatus of the present invention will be described with reference to FIGS. 5 to 17.
 図5に、本実施形態のレンズ光学特性測定装置の斜視図を示す。図示のように、本装置は、ディスプレー兼タッチパネル2、スタートスイッチ4、ケース本体5、プリンター6、レンズ保持部18、X軸スライダー16x1、アームカバー16xθ1を備える。3は、レンズ保持部18に保持された眼鏡である。レンズ保持部18は、鼻当て18aを含み、眼鏡3が保持されると眼鏡3の鼻当て部が、レンズ保持部16の鼻当て18aに当接して眼鏡3の鼻当て部が固定される。図示していないが、本装置は、さらに、操作入力部11、測定制御部12、測定演算部13、記憶部14、出力部15、レンズ位置移動部16、光照射部17、及び、受光部19を含む。図6は、本装置の側面の断面図であり、光照射部17が示されている。操作入力部11及び出力部15は、ディスプレー兼タッチパネル2に接続されている。また、出力部15は、プリンター6とも接続している。アームカバー16xθ1は、レンズ位置移動部16の一部を構成するXθ方向移動のためのアーム等(後述)が格納されている。X軸スライダー16x1は、レンズ位置移動部16の一部を構成し、レンズ保持部18をX軸方向に移動させる。スタートスイッチ4により、本装置の電源のオンオフができる。ケース本体5内には、本装置を構成する各種機構等が配置されている。 FIG. 5 shows a perspective view of the lens optical characteristic measuring device of the present embodiment. As shown in the figure, the present apparatus includes a display / touch panel 2, a start switch 4, a case body 5, a printer 6, a lens holding portion 18, an X-axis slider 16x1, and an arm cover 16xθ1. Reference numeral 3 denotes spectacles held by the lens holding portion 18. The lens holding portion 18 includes a nose pad 18a, and when the eyeglasses 3 are held, the nose pad portion of the eyeglasses 3 comes into contact with the nose pad 18a of the lens holding portion 16 to fix the nose pad portion of the eyeglasses 3. Although not shown, the present device further includes an operation input unit 11, a measurement control unit 12, a measurement calculation unit 13, a storage unit 14, an output unit 15, a lens position moving unit 16, a light irradiation unit 17, and a light receiving unit. Includes 19. FIG. 6 is a cross-sectional view of the side surface of the apparatus, and the light irradiation unit 17 is shown. The operation input unit 11 and the output unit 15 are connected to the display / touch panel 2. The output unit 15 is also connected to the printer 6. The arm cover 16xθ1 houses an arm or the like (described later) for moving in the Xθ direction, which forms a part of the lens position moving portion 16. The X-axis slider 16x1 constitutes a part of the lens position moving portion 16 and moves the lens holding portion 18 in the X-axis direction. The power of the present device can be turned on / off by the start switch 4. Various mechanisms and the like constituting the present device are arranged in the case main body 5.
 本装置において、X軸方向は、装置正面(ディスプレー兼タッチパネル2が位置する面)において、左右方向であり、Y軸方向は、装置の前後方向であり、Z軸方向は、装置の高さ方向である。また、本装置において、Xθ方向は、装置側面において、レンズ下方に中心点を有する仮想円の円周方向(装置正面の前後方向に回転する方向、X軸を回転中心軸とする円周方向)であり、Yθ方向は、装置正面において、レンズ下方に中心点を有する仮想円の円周方向(装置正面の左右方向に回転する方向、Y軸を回転中心軸とする円周方向)であり、Zθ方向は、装置平面において、レンズの装置後方の外側に中心点を有する仮想円の円周方向(装置平面の円周方向、Z軸を回転中心軸とする円周方向)である。 In this device, the X-axis direction is the left-right direction on the front surface of the device (the surface on which the display and touch panel 2 is located), the Y-axis direction is the front-rear direction of the device, and the Z-axis direction is the height direction of the device. Is. Further, in this device, the Xθ direction is the circumferential direction of a virtual circle having a center point below the lens on the side surface of the device (the direction of rotation in the front-rear direction of the front of the device, the circumferential direction with the X-axis as the center of rotation). The Yθ direction is the circumferential direction of the virtual circle having the center point below the lens in the front of the device (the direction of rotation in the left-right direction of the front of the device, the circumferential direction with the Y axis as the center of rotation). The Zθ direction is the circumferential direction of a virtual circle having a center point on the outside behind the device of the lens in the device plane (the circumferential direction of the device plane, the circumferential direction with the Z axis as the rotation center axis).
 図7に、レンズ位置移動手段16のX軸スライダー16x1を示す。X軸スライダー16x1は、レンズ保持部18をX軸方向に移動させる機構であり、X軸ギヤ16x2、X軸モータ16x3、及び、X軸ラック16x4を備える。X軸ラック16x4は、レンズ保持部18と連結しており、かつ、ギヤ部が形成され、このギヤ部がX軸ギヤ16x2とかみ合っている。X軸ギヤ16x2は、X軸モータ16x3のギヤともかみ合っている。X軸モータ16x3が回転することにより、X軸ギヤ16x2を介して、X軸ラック16x4に回転駆動力が伝達し、この回転駆動力により、X軸ラック16x4が、X軸方向に移動し、その結果、X軸ラック16x4に連結したレンズ保持部18がX軸方向に移動することになる。X軸モータ16x3は、測定制御部12の測定制御情報に基づき制御され、回転方向によりX軸の移動方向が制御でき、回転数により、X軸方向の移動距離が制御できる。また、X軸モータ16x3がステッピングモータの場合、ステップ数を制御することで、X軸方向の移動距離が制御できる。 FIG. 7 shows the X-axis slider 16x1 of the lens position moving means 16. The X-axis slider 16x1 is a mechanism for moving the lens holding portion 18 in the X-axis direction, and includes an X-axis gear 16x2, an X-axis motor 16x3, and an X-axis rack 16x4. The X-axis rack 16x4 is connected to the lens holding portion 18, and a gear portion is formed, and this gear portion meshes with the X-axis gear 16x2. The X-axis gear 16x2 also meshes with the gear of the X-axis motor 16x3. When the X-axis motor 16x3 rotates, a rotational driving force is transmitted to the X-axis rack 16x4 via the X-axis gear 16x2, and the rotational driving force causes the X-axis rack 16x4 to move in the X-axis direction. As a result, the lens holding portion 18 connected to the X-axis rack 16x4 moves in the X-axis direction. The X-axis motor 16x3 is controlled based on the measurement control information of the measurement control unit 12, the moving direction of the X-axis can be controlled by the rotation direction, and the moving distance in the X-axis direction can be controlled by the rotation speed. When the X-axis motor 16x3 is a stepping motor, the moving distance in the X-axis direction can be controlled by controlling the number of steps.
 なお、図7に示すように、レンズ保持部18には、二本のワイヤー18bが、眼鏡3の左右の各レンズを支えるように張り渡されている。 As shown in FIG. 7, two wires 18b are stretched over the lens holding portion 18 so as to support the left and right lenses of the spectacles 3.
 図8に、レンズ位置移動手段16のY軸スライダーを示す。Y軸スライダーは、レンズ保持部18をY軸方向に移動させる機構であり、Y軸モータ16y1、及び、Y軸ラック16y2を備える。Y軸ラック16y2は、レンズ保持部18と連結しており、かつ、ギヤ部が形成され、このギヤ部がY軸モータ16y1のギヤと直接かみ合っている。Y軸モータ16y1が回転することにより、Y軸ラック16y2に回転駆動力が伝達し、この回転駆動力により、Y軸ラック16y2が、Y軸方向に移動し、その結果、Y軸ラック16y2に連結したレンズ保持部18がY軸方向に移動することになる。Y軸モータ16y1は、測定制御部12の測定制御情報に基づき制御され、回転方向によりY軸の移動方向が制御でき、回転数により、Y軸方向の移動距離が制御できる。また、Y軸モータ16y1がステッピングモータの場合、ステップ数を制御することで、Y軸方向の移動距離が制御できる。 FIG. 8 shows the Y-axis slider of the lens position moving means 16. The Y-axis slider is a mechanism for moving the lens holding portion 18 in the Y-axis direction, and includes a Y-axis motor 16y1 and a Y-axis rack 16y2. The Y-axis rack 16y2 is connected to the lens holding portion 18, and a gear portion is formed, and this gear portion directly meshes with the gear of the Y-axis motor 16y1. The rotation of the Y-axis motor 16y1 transmits a rotational driving force to the Y-axis rack 16y2, and this rotational driving force causes the Y-axis rack 16y2 to move in the Y-axis direction, and as a result, is connected to the Y-axis rack 16y2. The lens holding portion 18 is moved in the Y-axis direction. The Y-axis motor 16y1 is controlled based on the measurement control information of the measurement control unit 12, the movement direction of the Y-axis can be controlled by the rotation direction, and the movement distance in the Y-axis direction can be controlled by the rotation speed. When the Y-axis motor 16y1 is a stepping motor, the moving distance in the Y-axis direction can be controlled by controlling the number of steps.
 図9に、レンズ位置移動手段16のZ軸スライダーを示す。Z軸スライダーは、レンズ保持部18をZ軸方向に移動させる機構であり、Z軸モータ16z1、Z軸ガイドピン16z2、及び、Z軸スクリュー16z3を備える。Z軸スクリュー16z3は、レンズ保持部18と連結している。Z軸スクリュー16z3は、凹凸のねじ溝構造を持つ。Z軸モータ16z1の回転軸は、Z軸スクリュー16z3と連結しており、Z軸モータ16z1が回転するとZ軸スクリュー16z3も回転し、ねじ溝構造により、Z軸方向に移動し、その結果、レンズ保持部18もZ軸方向に移動する。Z軸ガイドピン16z2は、レンズ保持部18のZ軸方向の移動がぶれないようにガイドするためのものである。Z軸モータ16z1は、測定制御部12の測定制御情報に基づき制御され、回転方向によりZ軸の移動方向が制御でき、回転数により、Z軸方向の移動距離が制御できる。また、Z軸モータ16z1がステッピングモータの場合、ステップ数を制御することで、Z軸方向の移動距離が制御できる。 FIG. 9 shows the Z-axis slider of the lens position moving means 16. The Z-axis slider is a mechanism for moving the lens holding portion 18 in the Z-axis direction, and includes a Z-axis motor 16z1, a Z-axis guide pin 16z2, and a Z-axis screw 16z3. The Z-axis screw 16z3 is connected to the lens holding portion 18. The Z-axis screw 16z3 has an uneven thread groove structure. The rotation axis of the Z-axis motor 16z1 is connected to the Z-axis screw 16z3, and when the Z-axis motor 16z1 rotates, the Z-axis screw 16z3 also rotates and moves in the Z-axis direction due to the thread groove structure, and as a result, the lens. The holding portion 18 also moves in the Z-axis direction. The Z-axis guide pin 16z2 is for guiding the lens holding portion 18 so as not to move in the Z-axis direction. The Z-axis motor 16z1 is controlled based on the measurement control information of the measurement control unit 12, the moving direction of the Z-axis can be controlled by the rotation direction, and the moving distance in the Z-axis direction can be controlled by the rotation speed. When the Z-axis motor 16z1 is a stepping motor, the moving distance in the Z-axis direction can be controlled by controlling the number of steps.
 図10に、レンズ位置移動手段16のXθ方向移動機構を示す。Xθ方向移動機構は、一対のアーム16xθ2、前記アーム16xθ2の上部に形成されたXθラック(ギヤ部)16xθ4、2つのXθギヤ16xθ3、及び、Xθモータ(図示せず)から構成されている。アーム16xθ2は、上方に張り出した円弧形状であり、レンズ保持部18に連結している。Xθラック(ギヤ部)16xθ4は、一方のギヤ16xθ3(図10において上側のギヤ)とかみ合っており、一方のXθギヤ16xθ3は他方のXθギヤ16xθ3とかみ合っており、他方のXθギヤ16xθ3は、Xθモータの回転軸に装着されたギヤ(図示せず)とかみ合っている。Xθモータが回転することにより、2つのXθギヤ16xθ3及びXθラック16xθ4を介して、一対のアーム16xθ2に回転駆動力が伝達し、この回転駆動力により、一対のアーム16xθ2が、Xθ方向に移動し、その結果、一対のアーム16xθ2に連結したレンズ保持部18がXθ方向に移動することになる。Xθモータは、測定制御部12の測定制御情報に基づき制御され、回転方向によりXθ方向の移動方向が制御でき、回転数により、Xθ方向の移動距離が制御できる。また、Xθモータがステッピングモータの場合、ステップ数を制御することで、Xθ方向の移動距離が制御できる。 FIG. 10 shows the Xθ direction moving mechanism of the lens position moving means 16. The Xθ direction moving mechanism is composed of a pair of arms 16xθ2, an Xθ rack (gear portion) 16xθ4 formed on the upper part of the arms 16xθ2, two Xθ gears 16xθ3, and an Xθ motor (not shown). The arm 16xθ2 has an arc shape protruding upward and is connected to the lens holding portion 18. The Xθ rack (gear portion) 16xθ4 is engaged with one gear 16xθ3 (upper gear in FIG. 10), one Xθ gear 16xθ3 is engaged with the other Xθ gear 16xθ3, and the other Xθ gear 16xθ3 is Xθ. It meshes with a gear (not shown) mounted on the rotating shaft of the motor. When the Xθ motor rotates, a rotational driving force is transmitted to the pair of arms 16xθ2 via the two Xθ gears 16xθ3 and the Xθ rack 16xθ4, and the rotational driving force causes the pair of arms 16xθ2 to move in the Xθ direction. As a result, the lens holding portion 18 connected to the pair of arms 16xθ2 moves in the Xθ direction. The Xθ motor is controlled based on the measurement control information of the measurement control unit 12, the moving direction in the Xθ direction can be controlled by the rotation direction, and the moving distance in the Xθ direction can be controlled by the rotation speed. When the Xθ motor is a stepping motor, the moving distance in the Xθ direction can be controlled by controlling the number of steps.
 図11に、レンズ位置移動手段16のYθ方向移動機構を示す。Yθ方向移動機構は、Yθアーム16yθ1、Yθギヤ16yθ2、Yθモータ16yθ3、及び、Yθラック16yθ4から構成されている。Yθアーム16yθ1の一端(図11において下方端)及びYθラック16yθ4の一端(図11において下方端)は連結し、両者は回転中心を同一として装置に回動自在に装着されている。Yθアーム16yθ1の他端(図11において上方端)は、レンズ保持部18と連結している。Yθラック16yθ4のギヤ部は、Yθギヤ16yθ2とかみ合っており、Yθギヤ16yθ2は、Yθモータ16yθ3の回転軸に装着されたギヤとかみ合っている。Yθモータ16yθ1が回転することにより、Yθギヤ16yθ2及びYθラック16yθ4を介して、Yθアーム16yθ1に回転駆動力が伝達し、この回転駆動力により、アーム16yθ1が、Yθ方向に移動し、その結果、Yθアーム16yθ1に連結したレンズ保持部18がYθ方向に移動することになる。Yθモータ16yθ3は、測定制御部12の測定制御情報に基づき制御され、回転方向によりYθ方向の移動方向が制御でき、回転数により、Yθ方向の移動距離が制御できる。また、Yθモータ16yθ3がステッピングモータの場合、ステップ数を制御することで、Xθ方向の移動距離が制御できる。 FIG. 11 shows the Yθ direction moving mechanism of the lens position moving means 16. The Yθ direction moving mechanism is composed of a Yθ arm 16yθ1, a Yθ gear 16yθ2, a Yθ motor 16yθ3, and a Yθ rack 16yθ4. One end of the Yθ arm 16yθ1 (lower end in FIG. 11) and one end of the Yθ rack 16yθ4 (lower end in FIG. 11) are connected, and both are rotatably mounted on the device with the same rotation center. The other end (upper end in FIG. 11) of the Yθ arm 16yθ1 is connected to the lens holding portion 18. The gear portion of the Yθ rack 16yθ4 meshes with the Yθ gear 16yθ2, and the Yθ gear 16yθ2 meshes with the gear mounted on the rotation shaft of the Yθ motor 16yθ3. As the Yθ motor 16yθ1 rotates, a rotational driving force is transmitted to the Yθ arm 16yθ1 via the Yθ gear 16yθ2 and the Yθ rack 16yθ4, and the rotational driving force causes the arm 16yθ1 to move in the Yθ direction, resulting in the result. The lens holding portion 18 connected to the Yθ arm 16yθ1 moves in the Yθ direction. The Yθ motor 16yθ3 is controlled based on the measurement control information of the measurement control unit 12, the moving direction in the Yθ direction can be controlled by the rotation direction, and the moving distance in the Yθ direction can be controlled by the rotation speed. When the Yθ motor 16yθ3 is a stepping motor, the moving distance in the Xθ direction can be controlled by controlling the number of steps.
 本装置のX軸方向等の6方向の移動機構において、例えば、センサー(例えば、フォトインタラプタ―)により原点位置を検出し、ステッピングモータの累積ステップ数をリセットすることで、移動の際の繰り返しの位置精度を確保することができる。また、レンズ保持部18のXY軸方向の位置精度が低い場合、例えば、レンズのアライメントマークを検出してXY軸方向を補正し、レンズの光学特性の測定結果は、補正後の座標を用いて出力(マッピング等)してもよい。 In the movement mechanism in 6 directions such as the X-axis direction of this device, for example, the origin position is detected by a sensor (for example, a photo interrupter) and the cumulative number of steps of the stepping motor is reset to repeat the movement. Positional accuracy can be ensured. When the position accuracy of the lens holding portion 18 in the XY axis direction is low, for example, the alignment mark of the lens is detected and the XY axis direction is corrected, and the measurement result of the optical characteristics of the lens uses the corrected coordinates. It may be output (mapping, etc.).
 図12に、本装置の光学系の構成を示す。本装置の光学系は、両側テレセントリック光学系であり、光照射部17及び受光部19から構成される。本装置において、光照射部17は、レンズ保持部18の下方に配置され、受光部19は、レンズ保持部18の上方に配置されている。光照射部17は、複数のLED(発光ダイオード)を搭載したLED基板17a、拡散板17b、及び、視標シート17cから構成されており、LED基板17aの上方に拡散板17bが配置され、拡散板17bの上面に視標シート17cが配置されている。受光部19は、コリメートレンズ19a、光学ミラー19b、及び、COMS(Complementary Metal Oxide Semiconductor)19cから構成されている。図12において、一点鎖線は、光の経路を示す。図12に示すように、LED基板17aのLEDから出射された光(直線光)は、拡散板17bにより拡散光となってレンズLeに照射され、レンズLeの光学特性に応じた測定光が出射される。レンズLeから出射した測定光は、コリメートレンズ19aを通り、光学ミラー19bで反射されて、結像レンズ19dで平行光にされて、CMOS19cに入光し、CMOS19cで測定光の光信号が電気信号に変換される。視標シート17cは、例えば、周期的な市松模様と色の濃淡を重畳(例えば、SINカーブ)したものであり、レンズ有無のCMOS19c上の視標位置ずれにより、レンズの光学特性を測定するためのものである。 FIG. 12 shows the configuration of the optical system of this device. The optical system of this device is a telecentric optical system on both sides, and is composed of a light irradiation unit 17 and a light receiving unit 19. In this device, the light irradiation unit 17 is arranged below the lens holding unit 18, and the light receiving unit 19 is arranged above the lens holding unit 18. The light irradiation unit 17 is composed of an LED substrate 17a on which a plurality of LEDs (light emitting diodes) are mounted, a diffuser plate 17b, and a target sheet 17c. The diffuser plate 17b is arranged above the LED substrate 17a and diffuses. The optotype sheet 17c is arranged on the upper surface of the plate 17b. The light receiving unit 19 is composed of a collimating lens 19a, an optical mirror 19b, and a COMP (Complementary Metal Oxide Sensor) 19c. In FIG. 12, the alternate long and short dash line indicates the light path. As shown in FIG. 12, the light (straight light) emitted from the LED of the LED substrate 17a is diffused by the diffuser plate 17b and is irradiated to the lens Le, and the measurement light corresponding to the optical characteristics of the lens Le is emitted. Will be done. The measurement light emitted from the lens Le passes through the collimating lens 19a, is reflected by the optical mirror 19b, is made parallel light by the imaging lens 19d, enters the CMOS 19c, and the optical signal of the measurement light is an electric signal by the CMOS 19c. Is converted to. The optotype sheet 17c is, for example, a superposition of a periodic checkered pattern and shades of color (for example, a SIN curve), and is used to measure the optical characteristics of the lens due to the displacement of the optotype on the CMOS 19c with or without the lens. belongs to.
 図13に、本装置の別の光学系の構成を示す。図13に示す光学系では、ラインレーザ照射部7が、レンズ保持部18の斜め上方に配置されている他は、図12の光学系と同じであり、図13に示す光学系は、本発明のレンズ形状測定装置の光学系を一部兼ねるものである。図13に示す光学系では、ラインレーザ照射部7から、レンズ表面に上斜め方向からラインレーザ光が照射され、レンズ表面で反射されたレーザー光が、コリメートレンズ19a、及び、光学ミラー19bを介し、結像レンズ19dで平行光にされて、CMOS19cに入光する。図13において、コリメートレンズ19a、光学ミラー19b、結像レンズ19d、及び、CMOS19cから構成される受光部19は、ラインレーザ受光部を兼ねる。図13に示すように、レンズ保持部18に連結したレンズ位置移動部16により、レンズはZ軸方向(高さ方向)に移動することができ、前述のように、ラインレーザ照射部7からの照射されたラインレーザのレンズ表面での反射光を受光部19で受光することにより、レンズ表面位置を検出できる。また、レンズ保持部18に連結したレンズ位置移動部16により、レンズはX軸方向に移動することができ、前述のように、ラインレーザ照射部7から照射されたラインレーザのレンズ表面の反射光を受光部19で受光することにより、レンズ表面形状を測定できる。 FIG. 13 shows the configuration of another optical system of this device. The optical system shown in FIG. 13 is the same as the optical system of FIG. 12, except that the line laser irradiation unit 7 is arranged obliquely above the lens holding unit 18, and the optical system shown in FIG. 13 is the present invention. It also serves as a part of the optical system of the lens shape measuring device. In the optical system shown in FIG. 13, the line laser irradiation unit 7 irradiates the lens surface with line laser light from an obliquely upward direction, and the laser light reflected on the lens surface passes through the collimating lens 19a and the optical mirror 19b. , The imaging lens 19d makes the light parallel, and the light enters the CMOS 19c. In FIG. 13, the light receiving unit 19 composed of the collimating lens 19a, the optical mirror 19b, the imaging lens 19d, and the CMOS 19c also serves as a line laser light receiving unit. As shown in FIG. 13, the lens can be moved in the Z-axis direction (height direction) by the lens position moving unit 16 connected to the lens holding unit 18, and as described above, from the line laser irradiation unit 7. The lens surface position can be detected by receiving the reflected light on the lens surface of the irradiated line laser with the light receiving unit 19. Further, the lens can be moved in the X-axis direction by the lens position moving unit 16 connected to the lens holding unit 18, and as described above, the reflected light on the lens surface of the line laser irradiated from the line laser irradiation unit 7. The lens surface shape can be measured by receiving light from the light receiving unit 19.
 本発明において、図12及び図13の光学系は例示であり、本発明を制限又は限定しない。本発明において、光照射部17の光源は、LEDでもよいし、通常のランプでもよい。また、光源は、波長の異なる複数の光源であってもよい。本発明において、受光部19の受光素子は、CMOSに限定されず、他の受光素子であってよい。 In the present invention, the optical systems of FIGS. 12 and 13 are examples, and the present invention is not limited or limited. In the present invention, the light source of the light irradiation unit 17 may be an LED or a normal lamp. Further, the light source may be a plurality of light sources having different wavelengths. In the present invention, the light receiving element of the light receiving unit 19 is not limited to CMOS, and may be another light receiving element.
 図14及び図15に、レンズ保持部18の構成の一例を示す。図14は、レンズ保持部18の斜視図であり、図15(A)は、レンズ保持部18の平面図であり、同図(B)は、E-E方向断面図である。図14及び図15に示すように、レンズ保持部18は、略矩形の型枠18h、4本のアーム18f、4つのスライダー18e、4つのバネ18g、カバー18c、レンズ押え18d、2つの同期シャフト18i、鼻当て18a、2本のワイヤー18bから構成されている。図14において、二つの矢印は、左右方向、及び、前後方向を示す。型枠18hは、左右方向及び前後方向を有し、型枠18h内において、4本のアーム18fが、型枠18h内の中心点を基準点として左右対称かつ前後対称の状態で配置されている。4本のアーム18fのうち2本の一対のアーム18fの各一端が型枠18hの左側端部に回動自在に配置され、4本のアーム18fのうち他の2本の一対のアーム18fの各一端が型枠18hの右側端部に回動自在に配置されている。型枠18hの各左右端部に配置された一対のアーム18fの一端には、それぞれギヤ部が形成されて、相互にかみ合っている。4本のアーム18fの各他端には、スライダー18eが左右方向移動(スライド)可能な状態で連結している。スライダー18eの型枠中心方向の端部にはレンズLeと当接するレンズ当接部が形成されている。また、スライダー18eの型枠18h左右方向の端部には、円筒状の摺動部18kが形成され、一対のアーム18fが同期するための同期シャフト18iの両端が摺動部18kに摺動可能なように挿入されている。また、型枠18hの4角のそれぞれにバネ18gが配置されて4つの各摺動部18kに付勢を付けた状態で当接している。スライダー18eのレンズ当接部の上方には、カバー18cが配置されている。型枠18hの前後方向において二本のワイヤー18bが張り渡されており、丸レンズLeを下方から支えている。型枠18hの左右方向中央部には、それぞれ二つのレンズ押え18dが配置されており、丸レンズLeを上方向から押さえている。また、図15(B)に示すように、型枠18hの下部には、レンズ押え18dに対向する状態でレンズ受18jが形成されている。なお、図14及び図15では、レンズ保持部18は丸レンズを保持しているため、鼻当て18aは起立状態になっている。なお、手前のスライダー18eは、開いた状態で仮固定可能であり、前記仮固定を容易に解除できることが好ましい。これにより、レンズ保持部18のチャック(丸レンズLeを保持する部分であり、レンズ押え18d及びレンズ受け18jにより構成される)に対する丸レンズLeのセット性(セットの容易さ)が向上する。また、前記チャック自体を手前に移動させることが可能であれば、さらにセット性が向上する。 14 and 15 show an example of the configuration of the lens holding portion 18. 14 is a perspective view of the lens holding portion 18, FIG. 15 (A) is a plan view of the lens holding portion 18, and FIG. 14 (B) is a sectional view in the EE direction. As shown in FIGS. 14 and 15, the lens holding portion 18 has a substantially rectangular mold 18h, four arms 18f, four sliders 18e, four springs 18g, a cover 18c, a lens retainer 18d, and two synchronous shafts. It is composed of 18i, a nose pad 18a, and two wires 18b. In FIG. 14, the two arrows indicate the left-right direction and the front-back direction. The formwork 18h has a left-right direction and a front-rear direction, and four arms 18f are arranged in the formwork 18h in a symmetrical state with respect to a center point in the formwork 18h. .. Each end of each of the two pairs of arms 18f out of the four arms 18f is rotatably arranged at the left end of the formwork 18h, and of the other two pairs of arms 18f of the four arms 18f. Each end is rotatably arranged at the right end of the mold 18h. Gear portions are formed at one ends of the pair of arms 18f arranged at the left and right ends of the formwork 18h, and mesh with each other. A slider 18e is connected to each other end of each of the four arms 18f in a state where it can move (slide) in the left-right direction. A lens contact portion that comes into contact with the lens Le is formed at the end of the slider 18e in the mold center direction. Further, a cylindrical sliding portion 18k is formed at the end portion of the slider 18e in the left-right direction of the mold 18h, and both ends of the synchronization shaft 18i for synchronizing the pair of arms 18f can slide on the sliding portion 18k. It is inserted like this. Further, springs 18g are arranged at each of the four corners of the mold 18h, and the four sliding portions 18k are brought into contact with each other in a urgency state. A cover 18c is arranged above the lens contact portion of the slider 18e. Two wires 18b are stretched in the front-rear direction of the mold 18h to support the round lens Le from below. Two lens retainers 18d are arranged at the center of the mold 18h in the left-right direction, respectively, and the round lens Le is pressed from above. Further, as shown in FIG. 15B, a lens receiver 18j is formed in the lower part of the mold 18h in a state of facing the lens retainer 18d. In addition, in FIGS. 14 and 15, since the lens holding portion 18 holds the round lens, the nose pad 18a is in an upright state. It is preferable that the slider 18e in the foreground can be temporarily fixed in the open state, and the temporary fixing can be easily released. As a result, the settability (easiness of setting) of the round lens Le with respect to the chuck of the lens holding portion 18 (the portion that holds the round lens Le and is composed of the lens holder 18d and the lens receiver 18j) is improved. Further, if the chuck itself can be moved toward the front, the settability is further improved.
 図14及び図15のレンズ保持部18において、4本のアーム18fと4つのスライダー18eは、一対のアーム18f毎に形成されたギヤ部、及び、同期シャフト18iにより、左右対称かつ前後対称に同期して動き、4つのバネ18gにより、4つの各スライダー18eが付勢されているため、4つの各スライダーのレンズ当接部は、型枠18hの中心点に向かって圧力がかかるようになっている。このため、丸レンズLeは、自動的に型枠18hの中心点と丸レンズLeの中心点が同軸となる状態で(センタリング)、レンズ保持部18に保持される。 In the lens holding portions 18 of FIGS. 14 and 15, the four arms 18f and the four sliders 18e are symmetrically and symmetrically synchronized by the gear portions formed for each pair of arms 18f and the synchronization shaft 18i. Since the four sliders 18e are urged by the four springs 18g, pressure is applied to the lens contact portion of each of the four sliders toward the center point of the mold 18h. There is. Therefore, the round lens Le is automatically held by the lens holding portion 18 in a state where the center point of the mold 18h and the center point of the round lens Le are coaxial (centering).
 図16及び図17には、図14及び図15に示したレンズ保持部18と同じレンズ保持部18が示されている。図16は、レンズ保持部18の斜視図であり、図17(A)は、レンズ保持部18の平面図であり、同図(B)は、D-D方向断面図である。図16及び図17のレンズ保持部18は、丸レンズに代えて眼鏡3が保持されている。図16及び図17において、鼻当て18aは前方向に倒された状態で眼鏡3の鼻当て部と当接している。 16 and 17 show the same lens holding portion 18 as the lens holding portion 18 shown in FIGS. 14 and 15. 16 is a perspective view of the lens holding portion 18, FIG. 17A is a plan view of the lens holding portion 18, and FIG. 16B is a sectional view taken in the DD direction. The lens holding portion 18 of FIGS. 16 and 17 holds the glasses 3 instead of the round lens. In FIGS. 16 and 17, the nose pad 18a is in contact with the nose pad portion of the spectacles 3 in a state of being tilted forward.
[実施形態4]
 図18に基づき、レンズ内座標の規定について説明する。図18に示すように、レンズLeには、JIS規格(JIS T 7315(ISO 8980-2:2004))に基づき、中心点から17mm離れた点に二つのアライメントマークがレーザーにより刻印されており、かつ、レンズ表面に印刷されている。レンズ内座標は、LX軸方向、及び、LY軸方向からなる二次元座標であり、LX軸方向は、レンズLe内の二つのアライメントマークが重なる軸方向である。LY軸方向は、レンズLeの面方向でLX軸方向と直交する軸方向である。眼鏡レンズの加工において、印刷されたアライメントマークを指標にLX軸を規定するが、レンズが曲面形状であるため、印刷の際にずれた位置にアライメントマークが印刷されることが多い。このため、従来では、正確なレンズ内座標の規定は困難であった。これに対し、本発明の装置では、レンズに光を照射し、出射する測定光から、レーザーで刻印された正確な二つのアライメントマーク位置を検出し、正確な二つのアライメントマーク位置から、レンズ内のLX軸方向、及び、LY軸方向からなるレンズ内座標を規定する。このため、本発明では、正確なレンズ内座標を規定することが可能である。そして、正確なレンズ内座標に基づき、レンズの各部の位置を特定して光学特性を紐づければ、レンズ各部の光学特性を正確に規定できる。
[Embodiment 4]
The definition of the coordinates in the lens will be described with reference to FIG. As shown in FIG. 18, the lens Le is laser-engraved with two alignment marks at a point 17 mm away from the center point based on the JIS standard (JIS T 7315 (ISO 8980-2: 2004)). Moreover, it is printed on the lens surface. The in-lens coordinates are two-dimensional coordinates consisting of the LX axis direction and the LY axis direction, and the LX axis direction is the axial direction in which the two alignment marks in the lens Le overlap. The LY axis direction is an axial direction orthogonal to the LX axis direction in the plane direction of the lens Le. In the processing of spectacle lenses, the LX axis is defined using the printed alignment mark as an index, but since the lens has a curved surface shape, the alignment mark is often printed at a position shifted during printing. For this reason, in the past, it was difficult to accurately define the in-lens coordinates. On the other hand, in the apparatus of the present invention, the lens is irradiated with light, the two accurate alignment mark positions engraved by the laser are detected from the measured light emitted, and the inside of the lens is detected from the two accurate alignment mark positions. Defines the in-lens coordinates consisting of the LX axis direction and the LY axis direction. Therefore, in the present invention, it is possible to specify accurate in-lens coordinates. Then, if the position of each part of the lens is specified and the optical characteristics are linked based on the accurate coordinates in the lens, the optical characteristics of each part of the lens can be accurately defined.
[実施形態5]
 図19及び図20に基づき、分割測定の一例を説明する。まず、図19(A)に示すように、測定エリア1から3は、光照射部17の光の測定エリアの大きさ(面積)を示すが、測定対象のレンズLeの大きさは、測定エリア1から3よりも大きい。この場合、図19(A)に示すように、レンズLeをXθ方向に移動させながら、測定エリア1、測定エリア2、及び、測定エリア3と三回に分けて測定する。そして、図19(B)に示すように、測定エリア1から3の測定結果を統合(合成)して、合成測定エリアESを生成する。なお、図19(B)の斜線部分は、Xθ方向の分割測定では測定できなかった部分である。次に、図20(A)に示すように、レンズLeをYθ方向に移動させながら、測定エリア1、測定エリア2、及び、測定エリア3と三回に分けて測定する。そして、図20(B)に示すように、測定エリア1から3の測定結果を統合(合成)して、合成測定エリアESを生成する。なお、図20(B)の斜線部分は、Yθ方向の分割測定では測定できなかった部分である。そして、図19(B)に示すXθ方向の合成測定エリアES、及び、図20(B)に示すYθ方向の合成測定エリアESの両者を統合(合成)することで、レンズLe全体の光学特性を測定することができる。このように、光照射部17の光照射エリアよりも大きいサイズのレンズであっても、本発明の分割測定によりレンズ全体の光学特性の測定が可能である。このため、本発明によれば、装置を小型化しても大型レンズの測定が可能である。なお、図19及び図20の例は、Xθ方向及びYθ方向での分割測定であるが、本発明はこれに限定されず、例えば、X軸方向及びY軸方向の分割測定も可能であり、その他、6方向の少なくとも一つの方向の分割測定も可能である。また、分割測定では、レンズ各部の光学特性をレンズ各部に正確に紐づける必要があり、その際に、本発明のレンズ内部の二次元座標の規定を用いれば、正確な分割測定を実施できる。
[Embodiment 5]
An example of divided measurement will be described with reference to FIGS. 19 and 20. First, as shown in FIG. 19A, the measurement areas 1 to 3 indicate the size (area) of the light measurement area of the light irradiation unit 17, but the size of the lens Le to be measured is the measurement area. Greater than 1 to 3. In this case, as shown in FIG. 19A, while moving the lens Le in the Xθ direction, the measurement is performed in three steps of the measurement area 1, the measurement area 2, and the measurement area 3. Then, as shown in FIG. 19B, the measurement results of the measurement areas 1 to 3 are integrated (synthesized) to generate the synthetic measurement area ES. The shaded portion in FIG. 19B is a portion that could not be measured by the divided measurement in the Xθ direction. Next, as shown in FIG. 20 (A), while moving the lens Le in the Yθ direction, the measurement is performed in three steps of the measurement area 1, the measurement area 2, and the measurement area 3. Then, as shown in FIG. 20B, the measurement results of the measurement areas 1 to 3 are integrated (synthesized) to generate the synthetic measurement area ES. The shaded portion in FIG. 20B is a portion that could not be measured by the divided measurement in the Yθ direction. Then, by integrating (synthesizing) both the composite measurement area ES in the Xθ direction shown in FIG. 19 (B) and the composite measurement area ES in the Yθ direction shown in FIG. 20 (B), the optical characteristics of the entire lens Le are obtained. Can be measured. As described above, even if the lens has a size larger than the light irradiation area of the light irradiation unit 17, the optical characteristics of the entire lens can be measured by the divided measurement of the present invention. Therefore, according to the present invention, it is possible to measure a large lens even if the device is miniaturized. The examples of FIGS. 19 and 20 are divided measurements in the Xθ direction and the Yθ direction, but the present invention is not limited to this, and for example, divided measurements in the X-axis direction and the Y-axis direction are also possible. In addition, divided measurement in at least one of the six directions is also possible. Further, in the divided measurement, it is necessary to accurately associate the optical characteristics of each part of the lens with each part of the lens, and at that time, if the two-dimensional coordinate regulation inside the lens of the present invention is used, accurate divided measurement can be performed.
[実施形態6]
 図21は、本発明において、二つ以上の方向にレンズを同時に移動させる同期移動の例である。図21では、3方向の同期移動を示し、同図に示すように、レンズを、Xθ方向の移動(Xθ回転)、Y軸方向の移動(Y軸スライド)、及び、Z軸方向の移動(Z軸スライド)の3つの移動を同時に行うことにより、レンズの光学中心点を通るX軸と平行な軸を回転軸としてレンズをXθ方向に回転させることが可能である。同様に、レンズを、Yθ方向の移動(Yθ回転)、X軸方向の移動(X軸スライド)、及び、Z軸方向の移動(Z軸スライド)の3つの移動を同時に行うことにより、レンズの光学中心点を通るY軸と平行な軸を回転軸としてレンズをYθ方向に回転させることも可能である。
[Embodiment 6]
FIG. 21 is an example of synchronous movement in which the lens is moved simultaneously in two or more directions in the present invention. FIG. 21 shows synchronous movement in three directions, and as shown in the figure, the lens is moved in the Xθ direction (Xθ rotation), the Y-axis direction (Y-axis slide), and the Z-axis direction (Z-axis slide). By simultaneously performing the three movements of the Z-axis slide), it is possible to rotate the lens in the Xθ direction with the axis parallel to the X-axis passing through the optical center point of the lens as the rotation axis. Similarly, the lens is moved by simultaneously performing three movements of the lens in the Yθ direction (Yθ rotation), the X-axis direction (X-axis slide), and the Z-axis direction (Z-axis slide). It is also possible to rotate the lens in the Yθ direction with an axis parallel to the Y axis passing through the optical center point as a rotation axis.
[実施形態7]
 図22に、レンズへのカップの装着の一例を示す。図22に示すように、カップ装着部20は、カップCを保持するカップ保持部20a、及び、カップ保持部20aと連結しカップ保持部20aを移動させる移動部20bから構成されている。また、レンズLeは、レンズ保持部18に保持されている。レンズLeは、レンズ支持台21b上に配置されたレンズ支持ピン21aにより、下方から支持されている。レンズ支持ピン21aは、二つの補強リブ21cにより、補強されている。移動部20bは、光学特性測定の際には、カップ保持部20aを光学特性測定の支障がない位置に配置し、カップCをレンズLeに装着する際には、図22に示すように、カップ保持部20aをレンズLeの上方に配置する。レンズ位置移動部(図22には図示せず)は、レンズLe上方に配置されたカップ保持部20aのカップCに対し、レンズLeの光学中心点を通る面に直交する光軸(図22において、一点鎖線)が、カップCの中心軸と合うようにレンズLeの位置と向きを調整する。そして、移動部20bにより、矢印で示すように、カップ保持部20aを降下させて、カップCをレンズLeに当接してレンズLeにカップCを装着する。カップCが装着されたレンズLeは、レンズ保持部18から取り外され、レンズ加工機によって加工される。なお、本例では、カップCを降下させてレンズLeに装着したが、これとは逆に、レンズ保持部18を上昇させてカップCをレンズLeに装着させてもよい。なお、レンズ保持部18は、カップC装着時にレンズLeにかかる圧力を吸収するために、バネ等の付勢部材を用いたクッション機構を備えることが好ましい。同様に、カップ保持部20a及びレンズ支持ピン21aにも、バネ等の付勢部材を用いたクッション機構を備えることが好ましい。また、レンズ支持ピン21aにより、レンズLeの三次元的な傾動及びトレースが可能になる。
[Embodiment 7]
FIG. 22 shows an example of mounting the cup on the lens. As shown in FIG. 22, the cup mounting portion 20 is composed of a cup holding portion 20a that holds the cup C and a moving portion 20b that is connected to the cup holding portion 20a and moves the cup holding portion 20a. Further, the lens Le is held by the lens holding portion 18. The lens Le is supported from below by the lens support pin 21a arranged on the lens support base 21b. The lens support pin 21a is reinforced by two reinforcing ribs 21c. The moving portion 20b arranges the cup holding portion 20a at a position that does not interfere with the optical characteristic measurement when measuring the optical characteristics, and when the cup C is attached to the lens Le, the cup is as shown in FIG. The holding portion 20a is arranged above the lens Le. The lens position moving portion (not shown in FIG. 22) has an optical axis (in FIG. 22) orthogonal to the plane passing through the optical center point of the lens Le with respect to the cup C of the cup holding portion 20a arranged above the lens Le. , One-dot chain line) adjusts the position and orientation of the lens Le so that it aligns with the central axis of the cup C. Then, the moving portion 20b lowers the cup holding portion 20a as shown by an arrow, brings the cup C into contact with the lens Le, and attaches the cup C to the lens Le. The lens Le to which the cup C is mounted is removed from the lens holding portion 18 and processed by a lens processing machine. In this example, the cup C is lowered and attached to the lens Le, but conversely, the lens holding portion 18 may be raised to attach the cup C to the lens Le. It is preferable that the lens holding portion 18 is provided with a cushion mechanism using an urging member such as a spring in order to absorb the pressure applied to the lens Le when the cup C is mounted. Similarly, it is preferable that the cup holding portion 20a and the lens support pin 21a also have a cushion mechanism using an urging member such as a spring. In addition, the lens support pin 21a enables three-dimensional tilting and tracing of the lens Le.
[実施形態8]
 図23は、本発明のレンズ形状測定装置またはレンズ形状測定方法におけるレンズ形状解析の工程の一例を示すフロー図である。まず、ラインレーザまたはドットレーザを用いたレンズ形状測定器で、レンズをX軸方向移動させながら計測した複数の画像ファイル(例えばTIFF形式)を読み込む(S101)。つぎに、ピクセルビニング処理により画像サイズを縮小する(S102)。さらに、畳み込み演算による線検出フィルタにより、画像を二値化する(S103)。さらに、複数の二値化画像を結合し、三次元ピクセルデータを作成する(S104)。さらに、隣接ピクセルをたどる三次元塗りつぶし演算により、表面と裏面のデータを分離する(S105)。そして、作成した三次元ピクセルデータから、レンズ表面および裏面形状を表す三次元座標リストを作成する(S106)。さらに、レンズ表面形状をゼルニケ多項式で近似する(S107)。さらに、光線追跡により屈折の影響を計算し、レンズ裏面形状データを実際の形状に補正する(S108)。そして、レンズ裏面形状をゼルニケ多項式で近似する(S109)。さらに、光線追跡により、球面度数分布、円柱度数分布、円柱軸角度を計算する(S110)。つぎに、レンズの屈折率が決定されているか否かを確認する(S111)。レンズの屈折率が不明の場合は、レンズ中心部の球面度数から屈折率を算出し(S112)、その後、S108~S110を再度実行する。レンズの屈折率が決定されている場合は、それに基づき、レンズの球面度数の最大値、最小値等を表示する(S113)。なお、例えば、レンズのアッベ数を測定済の場合は、レンズに照射されるレーザ(例えばe線)に対するレンズの屈折率がすでに決定されていることになる。さらに、レンズ表面および裏面の曲率(主曲率)分布を計算し、表示する(S114)。なお、これらの工程S101~S114は、例えば、本発明のレンズ形状測定装置における前記測定演算部で行うことができる。
[Embodiment 8]
FIG. 23 is a flow chart showing an example of a process of lens shape analysis in the lens shape measuring device or the lens shape measuring method of the present invention. First, a lens shape measuring instrument using a line laser or a dot laser reads a plurality of image files (for example, TIFF format) measured while moving the lens in the X-axis direction (S101). Next, the image size is reduced by pixel binning processing (S102). Further, the image is binarized by the line detection filter by the convolution operation (S103). Further, a plurality of binarized images are combined to create three-dimensional pixel data (S104). Further, the front surface data and the back surface data are separated by a three-dimensional fill operation that traces adjacent pixels (S105). Then, from the created three-dimensional pixel data, a three-dimensional coordinate list representing the shape of the front surface and the back surface of the lens is created (S106). Further, the lens surface shape is approximated by a Zernike polynomial (S107). Further, the effect of refraction is calculated by ray tracing, and the lens back surface shape data is corrected to the actual shape (S108). Then, the shape of the back surface of the lens is approximated by the Zernike polynomial (S109). Further, the spherical frequency distribution, the cylindrical frequency distribution, and the cylindrical axis angle are calculated by ray tracing (S110). Next, it is confirmed whether or not the refractive index of the lens is determined (S111). If the refractive index of the lens is unknown, the refractive index is calculated from the spherical power at the center of the lens (S112), and then S108 to S110 are executed again. When the refractive index of the lens is determined, the maximum value, the minimum value, etc. of the spherical power of the lens are displayed based on the determination (S113). For example, when the Abbe number of the lens has been measured, the refractive index of the lens with respect to the laser (for example, e-line) irradiated to the lens has already been determined. Further, the curvature (principal curvature) distributions of the front surface and the back surface of the lens are calculated and displayed (S114). These steps S101 to S114 can be performed, for example, by the measurement calculation unit in the lens shape measuring device of the present invention.
[実施形態9]
 本実施形態のプログラムは、本発明の方法を、コンピュータ上で実行可能なプログラムである。また、本実施形態のプログラムは、例えば、コンピュータ読み取り可能な記録媒体に記録されていてもよい。前記記録媒体としては、特に限定されず、例えば、読み出し専用メモリ(ROM)、ハードディスク(HD)、光ディスク等が挙げられる。
[Embodiment 9]
The program of the present embodiment is a program capable of executing the method of the present invention on a computer. Further, the program of the present embodiment may be recorded on a computer-readable recording medium, for example. The recording medium is not particularly limited, and examples thereof include a read-only memory (ROM), a hard disk (HD), and an optical disk.
 以上、実施形態を参照して本発明を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をできる。 Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the structure and details of the present invention within the scope of the present invention.
 以上、説明したとおり、本発明によれば、レンズの表面形状及び厚みを高精度で測定可能である。本発明は、眼鏡レンズの他、顕微鏡、望遠鏡、カメラ、及び、レーザー加工機等のレンズを使用する分野において有用である。 As described above, according to the present invention, the surface shape and thickness of the lens can be measured with high accuracy. The present invention is useful in the field of using lenses such as microscopes, telescopes, cameras, and laser processing machines in addition to spectacle lenses.
 この出願は、2019年6月4日に出願された日本出願特願2019-104899を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese application Japanese Patent Application No. 2019-104899 filed on June 4, 2019, and incorporates all of its disclosures herein.
1  レンズ形状測定装置
11 操作入力部
12 測定制御部
13 測定演算部
14 記憶部
15 出力部
16 レンズ位置移動部
7a ラインレーザ照射部
7b ラインレーザ受光部
22 レンズ表面位置検出部
23 レンズ裏面位置検出部
1 Lens shape measuring device 11 Operation input unit 12 Measurement control unit 13 Measurement calculation unit 14 Storage unit 15 Output unit 16 Lens position moving unit 7a Line laser irradiation unit 7b Line laser light receiving unit 22 Lens front surface position detection unit 23 Lens back surface position detection unit

Claims (19)

  1. レンズ保持部、測定制御部、レーザ照射部、レーザ受光部、レンズ表面位置検出部、レンズ裏面位置検出部、測定演算部、及び、出力部を備え、
    さらに、レンズ位置移動部及びレーザ照射部移動部の少なくとも一方を備え、
    前記レンズ保持部は、レンズを保持し、
    前記レンズ位置移動部は、前記レンズ保持部に保持されたレンズを、X軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向の少なくとも1方向に移動可能であり、
    X軸方向及びY軸方向は、鉛直方向又は光軸方向と垂直な面で互いに直交する方向であり、
    Z軸方向は、鉛直方向又は光軸方向であり、
    Xθ方向は、Y軸方向及びZ軸方向が形成する面において、任意の位置のX軸を回転中心軸とする仮想円の円周方向であり、
    Yθ方向は、X軸方向及びZ軸方向が形成する面において、任意の位置のY軸を回転中心軸とする仮想円の円周方向であり、
    Zθ方向は、X軸方向及びY軸方向が形成する面において、任意の位置のZ軸を回転中心軸とする仮想円の円周方向であり、
    前記測定制御部は、レンズ表面形状測定モード、及び、レンズ厚み測定モードを含む測定制御情報を生成し、
    前記レーザ照射部は、前記レンズにレーザを照射し、前記レーザは、ラインレーザまたはドットレーザであり、
    前記レーザ照射部移動部は、前記レーザ照射部を、X軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向の少なくとも1方向に移動可能であり、
    前記レーザ受光部は、前記レンズに照射されたレーザの散乱光を受光し、
    前記レンズ表面位置検出部は、前記レンズ表面の特定の位置を検出し、
    前記レンズ裏面位置検出部は、前記レンズ裏面の特定の位置を検出し、
    前記測定演算部は、前記レーザ受光部の情報に基づき、前記レンズの表面形状を算出し、かつ、前記レンズ表面位置検出部及び前記レンズ裏面位置検出部からの情報に基づき、前記レンズの厚み情報を算出し、
    前記出力部は、算出された前記レンズの表面形状情報及び厚み情報を出力し、
    前記レンズ表面形状測定モードの場合、
    前記レンズ位置移動部が前記レンズをX軸方向に移動するか、若しくは、前記レーザ照射部移動部が前記レーザ照射部をX軸方向に移動することにより、
    前記レーザ照射部が、Y軸方向に平行なレーザをX軸方向に走査した状態で前記レンズ表面に照射するか、または、
    前記レンズ位置移動部が前記レンズをY軸方向に移動するか、若しくは、前記レーザ照射部移動部が前記レーザ照射部をY軸方向に移動することにより、
    前記レーザ照射部が、X軸方向に平行なレーザをY軸方向に走査した状態で前記レンズ表面に照射し、
    前記レーザ受光部は、前記レンズに照射された前記レーザの散乱光を受光し、
    前記測定演算部は、前記レーザ受光部が受光した散乱光から前記レンズの表裏面画像データを算出し、
    前記レンズ厚み測定モードの場合、
    前記レンズ位置移動部により、前記レンズをZ軸方向に移動させるか、又は、前記レーザ照射部をZ軸方向に移動させて、前記レンズ表面位置検出部により、Z軸方向の前記レンズ表面位置を検出し、かつ、前記レンズ裏面位置検出部により、Z軸方向の前記レンズ裏面位置を検出し、
    前記測定演算部は、Z軸方向の前記レンズ表面位置、Z軸方向の前記レンズ裏面位置、及び、前記Z軸方向のレンズ移動距離から前記レンズの厚み情報を算出する、
    レンズ形状測定装置。
    It is provided with a lens holding unit, a measurement control unit, a laser irradiation unit, a laser light receiving unit, a lens front surface position detection unit, a lens back surface position detection unit, a measurement calculation unit, and an output unit.
    Further, at least one of the lens position moving portion and the laser irradiation portion moving portion is provided.
    The lens holding portion holds the lens and holds the lens.
    The lens position moving portion can move the lens held by the lens holding portion in at least one direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the Xθ direction, the Yθ direction, and the Zθ direction.
    The X-axis direction and the Y-axis direction are directions orthogonal to each other in the vertical direction or the plane perpendicular to the optical axis direction.
    The Z-axis direction is the vertical direction or the optical axis direction.
    The Xθ direction is the circumferential direction of a virtual circle whose rotation center axis is the X-axis at an arbitrary position on the plane formed by the Y-axis direction and the Z-axis direction.
    The Yθ direction is the circumferential direction of a virtual circle whose rotation center axis is the Y-axis at an arbitrary position on the plane formed by the X-axis direction and the Z-axis direction.
    The Zθ direction is the circumferential direction of a virtual circle whose rotation center axis is the Z axis at an arbitrary position on the plane formed by the X-axis direction and the Y-axis direction.
    The measurement control unit generates measurement control information including a lens surface shape measurement mode and a lens thickness measurement mode.
    The laser irradiation unit irradiates the lens with a laser, and the laser is a line laser or a dot laser.
    The laser irradiation unit moving unit can move the laser irradiation unit in at least one direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the Xθ direction, the Yθ direction, and the Zθ direction.
    The laser light receiving unit receives the scattered light of the laser irradiated to the lens, and receives the scattered light.
    The lens surface position detection unit detects a specific position on the lens surface and
    The lens back surface position detection unit detects a specific position on the back surface of the lens and
    The measurement calculation unit calculates the surface shape of the lens based on the information of the laser light receiving unit, and the thickness information of the lens is based on the information from the lens surface position detection unit and the lens back surface position detection unit. Is calculated and
    The output unit outputs the calculated surface shape information and thickness information of the lens.
    In the case of the lens surface shape measurement mode,
    The lens position moving unit moves the lens in the X-axis direction, or the laser irradiation unit moving unit moves the laser irradiation unit in the X-axis direction.
    The laser irradiation unit irradiates the lens surface with a laser parallel to the Y-axis direction scanned in the X-axis direction, or
    The lens position moving portion moves the lens in the Y-axis direction, or the laser irradiation portion moving portion moves the laser irradiation portion in the Y-axis direction.
    The laser irradiation unit irradiates the lens surface with a laser parallel to the X-axis direction scanned in the Y-axis direction.
    The laser light receiving unit receives the scattered light of the laser irradiated to the lens, and receives the scattered light.
    The measurement calculation unit calculates front and back image data of the lens from the scattered light received by the laser light receiving unit.
    In the case of the lens thickness measurement mode,
    The lens position moving portion moves the lens in the Z-axis direction, or the laser irradiation portion is moved in the Z-axis direction, and the lens surface position detecting portion moves the lens surface position in the Z-axis direction. The lens back surface position is detected by the lens back surface position detection unit, and the lens back surface position in the Z-axis direction is detected.
    The measurement calculation unit calculates the thickness information of the lens from the lens front surface position in the Z-axis direction, the lens back surface position in the Z-axis direction, and the lens movement distance in the Z-axis direction.
    Lens shape measuring device.
  2. 前記レンズ表面位置検出部は、前記レーザ照射部及び前記レーザ受光部を含み、
    前記レンズを前記レンズ位置移動部によりZ軸方向に移動させるか、又は、前記レーザ照射部をZ軸方向に移動させた場合、前記レーザ照射部が照射したレーザが前記レンズ表面で散乱され、前記散乱光を前記レーザ受光部が受光し、前記散乱光の輝線の幅が最小となるZ軸方向の位置を特定することで、前記レンズ表面位置を特定する請求項1記載のレンズ形状測定装置。
    The lens surface position detection unit includes the laser irradiation unit and the laser light receiving unit.
    When the lens is moved in the Z-axis direction by the lens position moving portion or the laser irradiation portion is moved in the Z-axis direction, the laser irradiated by the laser irradiation portion is scattered on the lens surface, and the laser is scattered on the lens surface. The lens shape measuring device according to claim 1, wherein the laser light receiving unit receives the scattered light, and the lens surface position is specified by specifying the position in the Z-axis direction where the width of the emission line of the scattered light is minimized.
  3. 前記測定演算部において、前記レンズの表裏面画像データが、二次元画像データであり、前記二次元画像データをゼルニケ多項式で近似して前記レンズの表裏面形状データを算出する、
    請求項1又は2記載のレンズ形状測定装置。
    In the measurement calculation unit, the front and back image data of the lens is two-dimensional image data, and the front and back shape data of the lens is calculated by approximating the two-dimensional image data with a Zernike polynomial.
    The lens shape measuring device according to claim 1 or 2.
  4. 前記測定演算部は、前記レンズの表面画像データに対し射影変換(ホモグラフィ)による補正処理を行う、
    請求項1から3のいずれか一項に記載のレンズ形状測定装置。
    The measurement calculation unit performs a correction process by projective transformation (homography) on the surface image data of the lens.
    The lens shape measuring device according to any one of claims 1 to 3.
  5. 前記レンズ厚み測定モードの場合、
    前記レンズ表面位置検出部により、Z軸方向の前記レンズ表面位置を検出した後に、前記レンズ位置移動部により、前記レンズをZ軸方向に移動させるか、若しくは、前記レーザ照射部をZ軸方向に移動させて、前記レンズ裏面位置検出部により、Z軸方向の前記レンズ裏面位置を検出するか、または、
    前記レンズ裏面位置検出部により、Z軸方向の前記レンズ裏面位置を検出した後に、前記レンズ位置移動部により、前記レンズをZ軸方向に移動させるか、若しくは、前記レーザ照射部をZ軸方向に移動させて、前記レンズ表面位置検出部により、Z軸方向の前記レンズ表面位置を検出する、
    請求項1から4のいずれか一項に記載のレンズ形状測定装置。
    In the case of the lens thickness measurement mode,
    After the lens surface position detecting unit detects the lens surface position in the Z-axis direction, the lens position moving unit either moves the lens in the Z-axis direction or moves the laser irradiation unit in the Z-axis direction. Move it to detect the lens back surface position in the Z-axis direction by the lens back surface position detection unit, or
    After the lens back surface position detecting unit detects the lens back surface position in the Z-axis direction, the lens position moving unit either moves the lens in the Z-axis direction or moves the laser irradiation unit in the Z-axis direction. The lens surface position is detected by the lens surface position detection unit in the Z-axis direction.
    The lens shape measuring device according to any one of claims 1 to 4.
  6. レンズ保持部、操作入力部、測定制御部、測定演算部、光照射部、受光部、及び、出力部を備え、
    前記レンズ保持部は、レンズを保持し、
    前記操作入力部は、測定内容を含む操作情報を測定制御部に入力し、
    前記測定制御部は、入力された前記操作情報に基づき測定制御情報を生成し、
    前記光照射部は、前記測定制御情報に基づいて光を前記レンズに照射し、
    前記受光部は、前記光を照射されたレンズから出射される測定光を受光して測定情報を生成し、
    前記測定演算部は、前記測定情報に基づきレンズの光学特性情報を生成し、
    前記出力部は、前記光学特性情報を出力し、
    さらに、請求項1から5のいずれか一項に記載のレンズ形状測定装置を含み、
    前記レンズ保持部は、前記レンズ形状測定装置の前記レンズ保持部を兼ね、
    前記測定制御部は、前記レンズ形状測定装置の前記測定制御部を兼ね、
    前記受光部は、前記レンズ形状測定装置の前記レーザ受光部を兼ね、
    前記測定演算部は、前記レンズ形状測定装置の前記測定演算部を兼ね、
    前記出力部は、前記レンズ形状測定装置の前記出力部を兼ね、
    前記レンズ位置移動部は、前記測定制御情報に基づき、前記レンズ保持部に保持されたレンズを、X軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向の少なくとも1方向に移動可能であり、
    X軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向は、前記レンズ形状測定装置のX軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向と同一であり、
    前記レーザ照射部移動部は、前記レーザ照射部を、X軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向の少なくとも1方向に移動可能である、
    レンズ光学特性測定装置。
    It is equipped with a lens holding unit, an operation input unit, a measurement control unit, a measurement calculation unit, a light irradiation unit, a light receiving unit, and an output unit.
    The lens holding portion holds the lens and holds the lens.
    The operation input unit inputs operation information including the measurement content to the measurement control unit.
    The measurement control unit generates measurement control information based on the input operation information, and generates measurement control information.
    The light irradiation unit irradiates the lens with light based on the measurement control information.
    The light receiving unit receives the measurement light emitted from the lens irradiated with the light and generates measurement information.
    The measurement calculation unit generates optical characteristic information of the lens based on the measurement information.
    The output unit outputs the optical characteristic information and outputs the optical characteristic information.
    Further, the lens shape measuring device according to any one of claims 1 to 5 is included.
    The lens holding portion also serves as the lens holding portion of the lens shape measuring device.
    The measurement control unit also serves as the measurement control unit of the lens shape measuring device.
    The light receiving unit also serves as the laser light receiving unit of the lens shape measuring device.
    The measurement calculation unit also serves as the measurement calculation unit of the lens shape measuring device.
    The output unit also serves as the output unit of the lens shape measuring device.
    Based on the measurement control information, the lens position moving unit moves the lens held by the lens holding unit to at least one in the X-axis direction, the Y-axis direction, the Z-axis direction, the Xθ direction, the Yθ direction, and the Zθ direction. Movable in the direction,
    The X-axis direction, Y-axis direction, Z-axis direction, Xθ direction, Yθ direction, and Zθ direction are the X-axis direction, Y-axis direction, Z-axis direction, Xθ direction, Yθ direction, and the lens shape measuring device. It is the same as the Zθ direction,
    The laser irradiation unit moving unit can move the laser irradiation unit in at least one direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the Xθ direction, the Yθ direction, and the Zθ direction.
    Lens optical characteristic measuring device.
  7. 前記測定制御部は、レンズ同期移動情報を生成可能であり、
    前記レンズ位置移動部は、前記レンズ同期移動情報に基づき、前記レンズ保持部に保持されたレンズを同期して少なくとも二方向に移動する、
    請求項6記載のレンズ光学特性測定装置。
    The measurement control unit can generate lens-synchronized movement information.
    Based on the lens synchronous movement information, the lens position moving portion synchronously moves the lens held by the lens holding portion in at least two directions.
    The lens optical characteristic measuring apparatus according to claim 6.
  8. 前記操作入力部は、レンズ内座標設定情報を含む操作情報を入力可能であり、
    前記レンズ内座標設定情報は、LX軸方向、及び、LY軸方向からなる二次元座標情報であり、
    前記二次元座標は、前記レンズにおいて、前記レンズの光軸と垂直に交わる平面上の二次元座標であり、
    前記LX軸方向は、前記レンズ内の二つのアライメントマークが重なる軸方向であり、
    前記LY軸方向は、前記LX軸方向と直交する軸方向であり、
    前記操作入力部により入力された操作情報に前記レンズ内座標設定情報が含まれる場合、前記測定制御部は、前記レンズ内座標設定情報を含む測定制御情報を生成し、
    前記測定演算部は、前記レンズ内座標設定情報に基づき、前記測定情報から二つのアライメントマーク位置情報を抽出し、前記二つのアライメントマーク位置情報から、前記レンズ内の前記LX軸方向、及び、前記LY軸方向からなるレンズ内座標情報を生成し、
    前記出力部は、前記レンズ内座標情報を含む前記光学特性情報を出力する、
    請求項6又は7記載のレンズ光学特性測定装置。
    The operation input unit can input operation information including the coordinate setting information in the lens.
    The in-lens coordinate setting information is two-dimensional coordinate information including the LX axis direction and the LY axis direction.
    The two-dimensional coordinates are two-dimensional coordinates on a plane that intersects the optical axis of the lens perpendicularly in the lens.
    The LX axial direction is the axial direction in which the two alignment marks in the lens overlap.
    The LY axis direction is an axial direction orthogonal to the LX axis direction.
    When the operation information input by the operation input unit includes the in-lens coordinate setting information, the measurement control unit generates measurement control information including the in-lens coordinate setting information.
    The measurement calculation unit extracts two alignment mark position information from the measurement information based on the in-lens coordinate setting information, and from the two alignment mark position information, the LX axis direction in the lens and the said. Generates in-lens coordinate information consisting of the LY axis direction,
    The output unit outputs the optical characteristic information including the coordinate information in the lens.
    The lens optical characteristic measuring apparatus according to claim 6 or 7.
  9. 前記測定演算部は、前記レンズ内座標で規定されたレンズの各位置の光学特性情報を生成し、
    前記出力部は、前記レンズ各位置の光学特性情報を出力する、
    請求項8記載のレンズ光学特性測定装置。
    The measurement calculation unit generates optical characteristic information of each position of the lens defined by the coordinates in the lens.
    The output unit outputs optical characteristic information of each position of the lens.
    The lens optical characteristic measuring apparatus according to claim 8.
  10. 前記操作入力部は、分割測定指示情報を含む操作情報を入力可能であり、
    前記分割測定指示情報は、前記レンズを各部に分割して光学特性を測定し、分割して測定されたレンズ各部の光学特性の全部又は一部を統合して前記レンズの全体又は一部の光学特性とするものであり、
    前記操作入力部により入力された操作情報に分割測定指示情報が含まれる場合、前記測定制御部は、前記分割測定指示情報を含む測定制御情報を生成し、
    前記レンズ位置移動部は、前記分割測定指示情報に基づき、前記レンズの分割された各部に、前記光照射部が光を照射できるように前記レンズを移動させ、
    前記光照射部は、前記分割測定指示情報に基づき、前記レンズの分割された各部に光を照射し、
    前記受光部は、前記分割測定指示情報に基づき、前記レンズの分割された各部から出射される測定光を受光して前記レンズの各部の分割測定情報を生成し、
    前記測定演算部は、前記分割測定情報に基づき、前記レンズの分割光学特性情報を生成し、かつ、前記各分割光学特性情報の全部又は一部を統合して前記レンズ全体又は一部分の光学特性情報を生成する、
    請求項6から9のいずれか一項に記載のレンズ光学特性測定装置。
    The operation input unit can input operation information including division measurement instruction information.
    The division measurement instruction information divides the lens into individual parts to measure the optical characteristics, and integrates all or part of the optical characteristics of the divided and measured parts of the lens to integrate all or part of the optical characteristics of the lens. It is a characteristic
    When the operation information input by the operation input unit includes the divided measurement instruction information, the measurement control unit generates the measurement control information including the divided measurement instruction information.
    Based on the division measurement instruction information, the lens position moving unit moves the lens to each of the divided parts of the lens so that the light irradiation unit can irradiate light.
    The light irradiating unit irradiates each divided part of the lens with light based on the divided measurement instruction information.
    Based on the divided measurement instruction information, the light receiving unit receives measurement light emitted from each divided portion of the lens to generate divided measurement information of each portion of the lens.
    The measurement calculation unit generates divided optical characteristic information of the lens based on the divided measurement information, and integrates all or a part of each divided optical characteristic information to obtain optical characteristic information of the whole or a part of the lens. To generate,
    The lens optical characteristic measuring apparatus according to any one of claims 6 to 9.
  11. さらに、カップ装着部を含み、
    前記カップ装着部は、カップを保持するカップ保持部、及び、前記カップ保持部と連結し前記カップ保持部を移動させる移動部を含み、
    前記移動部は、光学特性測定の際には、前記カップ保持部を前記光学特性測定の支障がない位置にカップ保持部を配置し、カップを前記レンズに配置する際には、前記カップ保持部を前記レンズの上方に配置し、
    前記レンズ位置移動部は、前記レンズ上方に配置されたカップ保持部のカップに対し、前記レンズにおいて任意点を想定し、前記任意点を通る面に直交する軸が、前記カップの中心軸と合うように前記レンズの位置と向きを調整し、
    前記レンズ位置移動部及び前記カップ装着部の移動部の少なくとも一方が、前記レンズ及び前記カップの少なくとも一方を移動させることにより、前記カップに前記レンズを当接して前記レンズにカップを装着させる、
    請求項6から10のいずれか一項に記載のレンズ光学特性測定装置。
    In addition, including the cup mounting part,
    The cup mounting portion includes a cup holding portion that holds the cup and a moving portion that is connected to the cup holding portion and moves the cup holding portion.
    In the moving portion, the cup holding portion is arranged at a position where the cup holding portion does not interfere with the optical characteristic measurement when measuring the optical characteristics, and the cup holding portion is arranged when the cup is arranged on the lens. Placed above the lens
    The lens position moving portion assumes an arbitrary point in the lens with respect to the cup of the cup holding portion arranged above the lens, and an axis orthogonal to the plane passing through the arbitrary point coincides with the central axis of the cup. Adjust the position and orientation of the lens so that
    At least one of the moving portion of the lens position moving portion and the moving portion of the cup mounting portion moves at least one of the lens and the cup so that the lens is brought into contact with the cup and the cup is mounted on the lens.
    The lens optical characteristic measuring apparatus according to any one of claims 6 to 10.
  12. レンズ表面形状測定工程、及び、レンズ厚み測定工程を含み、
    前記レンズ表面形状測定工程及びレンズ厚み測定工程において、前記レンズにレーザを照射し、前記レーザは、ラインレーザまたはドットレーザであり、
    前記レンズ及び前記レーザの少なくとも一方が、X軸方向、Y軸方向、Z軸方向、Xθ方向、Yθ方向、及び、Zθ方向の少なくとも1方向に移動可能であり、
    X軸方向及びY軸方向は、鉛直方向又は光軸方向と垂直な面で互いに直交する方向であり、
    Z軸方向は、鉛直方向又は光軸方向であり、
    Xθ方向は、Y軸方向及びZ軸方向が形成する面において、任意の位置のX軸を回転中心軸とする仮想円の円周方向であり、
    Yθ方向は、X軸方向及びZ軸方向が形成する面において、任意の位置のY軸を回転中心軸とする仮想円の円周方向であり、
    Zθ方向は、X軸方向及びY軸方向が形成する面において、任意の位置のZ軸を回転中心軸とする仮想円の円周方向であり、
    前記レンズ表面形状測定工程は、
    Y軸方向に平行なレーザを前記レンズに照射しながら、前記レンズをX軸方向に移動するか、若しくは、前記レーザをX軸方向に移動することにより、Y軸方向に平行な前記レーザをX軸方向に走査した状態で前記レンズ表面に照射するか、または、X軸方向に平行なレーザを前記レンズに照射しながら、前記レンズをY軸方向に移動するか、若しくは、前記レーザをY軸方向に移動することにより、X軸方向に平行な前記レーザをY軸方向に走査した状態で前記レンズ表面に照射し、前記レンズに照射された前記レーザの散乱光を受光し、受光した散乱光から前記レンズの表裏面画像データを算出し、
    前記レンズ厚み測定工程は、
    前記レンズをZ軸方向に移動させるか、又は、前記レーザをZ軸方向に移動させて、前記レンズ表面位置及び前記レンズ裏面位置を検出し、前記レンズ表面位置、前記レンズ裏面位置、及び、前記Z軸方向のレンズ移動距離から前記レンズの厚み情報を算出する、
    レンズ形状測定方法。
    Including the lens surface shape measurement process and the lens thickness measurement process
    In the lens surface shape measuring step and the lens thickness measuring step, the lens is irradiated with a laser, and the laser is a line laser or a dot laser.
    At least one of the lens and the laser can move in at least one direction of the X-axis direction, the Y-axis direction, the Z-axis direction, the Xθ direction, the Yθ direction, and the Zθ direction.
    The X-axis direction and the Y-axis direction are directions orthogonal to each other in the vertical direction or the plane perpendicular to the optical axis direction.
    The Z-axis direction is the vertical direction or the optical axis direction.
    The Xθ direction is the circumferential direction of a virtual circle whose rotation center axis is the X-axis at an arbitrary position on the plane formed by the Y-axis direction and the Z-axis direction.
    The Yθ direction is the circumferential direction of a virtual circle whose rotation center axis is the Y-axis at an arbitrary position on the plane formed by the X-axis direction and the Z-axis direction.
    The Zθ direction is the circumferential direction of a virtual circle whose rotation center axis is the Z axis at an arbitrary position on the plane formed by the X-axis direction and the Y-axis direction.
    The lens surface shape measuring step is
    While irradiating the lens with a laser parallel to the Y-axis direction, the lens is moved in the X-axis direction, or the laser is moved in the X-axis direction to X the laser parallel to the Y-axis direction. The lens surface is irradiated in a state of scanning in the axial direction, or the lens is moved in the Y-axis direction while irradiating the lens with a laser parallel to the X-axis direction, or the laser is moved in the Y-axis direction. By moving in the direction, the lens surface is irradiated with the laser parallel to the X-axis direction scanned in the Y-axis direction, the scattered light of the laser irradiated to the lens is received, and the received scattered light is received. The front and back image data of the lens is calculated from
    The lens thickness measuring step is
    The lens is moved in the Z-axis direction, or the laser is moved in the Z-axis direction to detect the lens front surface position and the lens back surface position, and the lens front surface position, the lens back surface position, and the lens back surface position are detected. The thickness information of the lens is calculated from the moving distance of the lens in the Z-axis direction.
    Lens shape measurement method.
  13. 前記レンズ厚み測定工程は、
    Z軸方向の前記レンズ表面位置およびZ軸方向の前記レンズ裏面位置を同時に検出する、
    請求項12記載のレンズ形状測定方法。
    The lens thickness measuring step is
    Simultaneously detect the lens front surface position in the Z-axis direction and the lens back surface position in the Z-axis direction.
    The lens shape measuring method according to claim 12.
  14. 前記レンズ厚み測定工程は、
    Z軸方向の前記レンズ表面位置を検出した後に、前記レンズをZ軸方向に移動させるか、若しくは、前記レーザをZ軸方向に移動させて、Z軸方向の前記レンズ裏面位置を検出するか、または、
    Z軸方向の前記レンズ裏面位置を検出した後に、前記レンズをZ軸方向に移動させるか、若しくは、前記レーザをZ軸方向に移動させて、Z軸方向の前記レンズ表面位置を検出する、
    請求項12記載のレンズ形状測定方法。
    The lens thickness measuring step is
    After detecting the lens surface position in the Z-axis direction, the lens is moved in the Z-axis direction, or the laser is moved in the Z-axis direction to detect the lens back surface position in the Z-axis direction. Or,
    After detecting the back surface position of the lens in the Z-axis direction, the lens is moved in the Z-axis direction, or the laser is moved in the Z-axis direction to detect the surface position of the lens in the Z-axis direction.
    The lens shape measuring method according to claim 12.
  15. 前記レンズ表面位置検出は、前記レンズをZ軸方向に移動させるか、若しくは、前記レーザをZ軸方向に移動させた場合、照射したレーザが前記レンズ表面で散乱され、前記散乱光を受光し前記散乱光の輝線の幅が最少となるZ軸方向の位置を特定することで、前記レンズ表面位置を特定する、
    請求項12から14のいずれか一項に記載のレンズ形状測定方法。
    In the lens surface position detection, when the lens is moved in the Z-axis direction or the laser is moved in the Z-axis direction, the irradiated laser is scattered on the lens surface and receives the scattered light to receive the scattered light. The lens surface position is specified by specifying the position in the Z-axis direction where the width of the emission line of the scattered light is minimized.
    The lens shape measuring method according to any one of claims 12 to 14.
  16. 前記レンズの表面画像データが、二次元画像データであり、前記二次元画像データをゼルニケ多項式で近似して前記レンズの表面形状データを算出する、
    請求項12から15のいずれか一項に記載のレンズ形状測定方法。
    The surface image data of the lens is two-dimensional image data, and the surface shape data of the lens is calculated by approximating the two-dimensional image data with a Zernike polynomial.
    The lens shape measuring method according to any one of claims 12 to 15.
  17. 前記レンズの表裏面画像データに対し射影変換(ホモグラフィ)による補正処理を行う、
    請求項12から16のいずれか一項に記載のレンズ形状測定方法。
    The front and back image data of the lens is corrected by projective transformation (homography).
    The lens shape measuring method according to any one of claims 12 to 16.
  18. 請求項12から17のいずれか一項に記載の方法をコンピュータ上で実行可能なプログラム。 A program capable of executing the method according to any one of claims 12 to 17 on a computer.
  19. 請求項18記載のプログラムを記録しているコンピュータ読み取り可能な記録媒体。

     
    A computer-readable recording medium on which the program according to claim 18 is recorded.

PCT/JP2019/029274 2019-06-04 2019-07-25 Lens shape measurement device, lens shape measurement method, lens optical property measurement device, program, and recording medium WO2020246047A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019104899A JP6564545B1 (en) 2019-06-04 2019-06-04 Lens shape measuring device, lens shape measuring method, lens optical property measuring device, program, and recording medium
JP2019-104899 2019-06-04

Publications (1)

Publication Number Publication Date
WO2020246047A1 true WO2020246047A1 (en) 2020-12-10

Family

ID=67692192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029274 WO2020246047A1 (en) 2019-06-04 2019-07-25 Lens shape measurement device, lens shape measurement method, lens optical property measurement device, program, and recording medium

Country Status (2)

Country Link
JP (1) JP6564545B1 (en)
WO (1) WO2020246047A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021038888A1 (en) * 2019-08-30 2021-03-04 株式会社レクザム Lens shape measurement device, lens shape measurement method, lens optical property measurement device, program, and recording medium
JP6715528B1 (en) * 2019-08-30 2020-07-01 株式会社レクザム Lens optical property measuring device, eyewear wearing condition simulation device, eyewear wearing condition simulation system, lens optical property measuring method, eyewear wearing condition simulation method, program, and recording medium
JP6677861B1 (en) * 2019-09-24 2020-04-08 株式会社アサヒビジョン Lens optical characteristic measuring device, lens optical characteristic measuring method, program, and recording medium
JP6710815B1 (en) * 2019-09-27 2020-06-17 株式会社レクザム Lens optical characteristic measuring device, lens optical characteristic measuring method, program, and recording medium
CN115388791B (en) * 2022-10-31 2023-01-24 临沂紫晶光电有限公司 Lens thickness shape detection device and detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304228A (en) * 1995-04-28 1996-11-22 Topcon Corp Lens meter
JP2005249487A (en) * 2004-03-02 2005-09-15 Seiko Epson Corp Surface shape measuring method and characteristics measuring method for spectacle lens
JP2007218931A (en) * 2007-06-06 2007-08-30 Ricoh Co Ltd Method and instrument for measuring shape of optical face, and recording medium
JP2008011878A (en) * 2006-06-30 2008-01-24 Nidek Co Ltd Ophthalmologic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304228A (en) * 1995-04-28 1996-11-22 Topcon Corp Lens meter
JP2005249487A (en) * 2004-03-02 2005-09-15 Seiko Epson Corp Surface shape measuring method and characteristics measuring method for spectacle lens
JP2008011878A (en) * 2006-06-30 2008-01-24 Nidek Co Ltd Ophthalmologic apparatus
JP2007218931A (en) * 2007-06-06 2007-08-30 Ricoh Co Ltd Method and instrument for measuring shape of optical face, and recording medium

Also Published As

Publication number Publication date
JP6564545B1 (en) 2019-08-21
JP2020197485A (en) 2020-12-10

Similar Documents

Publication Publication Date Title
WO2020246047A1 (en) Lens shape measurement device, lens shape measurement method, lens optical property measurement device, program, and recording medium
JP4970149B2 (en) Cup mounting device
JP6581325B1 (en) Lens optical characteristic measuring apparatus, lens optical characteristic measuring method, program, and recording medium.
TWI292033B (en)
WO2020230341A1 (en) Lens optical characteristic measurement device, lens optical characteristic measurement method, program, and recording medium
WO2020230342A1 (en) Lens optical characteristic measurement device
JP2016099306A (en) Image measuring device and measuring device
JP2002139713A (en) Method and device for mounting lens holders of spectacle lens
JP6660508B1 (en) Lens holding device and lens optical characteristic measuring device
WO2021038888A1 (en) Lens shape measurement device, lens shape measurement method, lens optical property measurement device, program, and recording medium
JP2019060760A (en) Lens characteristics measuring device and method for actuating lens characteristics measuring device
JP5662223B2 (en) Shape measuring device
WO2021059515A1 (en) Lens optical-characteristics-measuring device, lens optical-characteristics-measuring method, program, and recording medium
JP6980303B2 (en) Lens optical characteristic measuring device, lens optical characteristic measuring method, program, and recording medium
JP6715528B1 (en) Lens optical property measuring device, eyewear wearing condition simulation device, eyewear wearing condition simulation system, lens optical property measuring method, eyewear wearing condition simulation method, program, and recording medium
JP7161877B2 (en) LENS CHARACTERISTICS MEASURING DEVICE AND METHOD OF OPERATION OF LENS CHARACTERISTICS MEASURING DEVICE
WO2021059355A1 (en) Lens optical-characteristics measuring device, lens optical-characteristics measuring method, program, and recording medium
JP6338042B2 (en) Glasses parameter calculation device, glasses parameter calculation program
JP7225644B2 (en) lens measuring device
JP2019060851A (en) Lens characteristics measuring device and method for actuating lens characteristics measuring device
JP2022003307A (en) Lens optical characteristic measuring apparatus, lens optical characteristic measuring method, program and recording medium
JP2021162813A (en) Lens optical characteristic measuring device, glasses wearing state simulation device, glasses wearing state simulation system, lens optical characteristic measurement method, glasses wearing state simulation method, program, and recording medium
JP2011220752A (en) Three-dimensional shape measurement apparatus and calibration method for three-dimensional shape measurement apparatus
JP6885763B2 (en) Lens meter
JP2020180832A (en) Image measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931915

Country of ref document: EP

Kind code of ref document: A1