WO2020246004A1 - Sic powder and manufacturing method thereof, honeycomb structure of electrical heating type and manufacturing method thereof - Google Patents
Sic powder and manufacturing method thereof, honeycomb structure of electrical heating type and manufacturing method thereof Download PDFInfo
- Publication number
- WO2020246004A1 WO2020246004A1 PCT/JP2019/022634 JP2019022634W WO2020246004A1 WO 2020246004 A1 WO2020246004 A1 WO 2020246004A1 JP 2019022634 W JP2019022634 W JP 2019022634W WO 2020246004 A1 WO2020246004 A1 WO 2020246004A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sic
- powder
- sic powder
- particle size
- honeycomb structure
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 200
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 39
- 238000010438 heat treatment Methods 0.000 title description 13
- 239000002245 particle Substances 0.000 claims abstract description 75
- 238000009826 distribution Methods 0.000 claims abstract description 39
- 230000001186 cumulative effect Effects 0.000 claims abstract description 38
- 238000007561 laser diffraction method Methods 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims description 43
- 229910052751 metal Inorganic materials 0.000 claims description 37
- 238000010304 firing Methods 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 28
- 239000002994 raw material Substances 0.000 claims description 27
- 229910052710 silicon Inorganic materials 0.000 claims description 25
- 230000007547 defect Effects 0.000 claims description 24
- 230000002093 peripheral effect Effects 0.000 claims description 22
- 239000010703 silicon Substances 0.000 claims description 22
- 238000001035 drying Methods 0.000 claims description 16
- 238000000465 moulding Methods 0.000 claims description 15
- 238000005192 partition Methods 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 13
- 239000004927 clay Substances 0.000 claims description 13
- 239000011148 porous material Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 11
- 239000012298 atmosphere Substances 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 229910052796 boron Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 229910021332 silicide Inorganic materials 0.000 claims description 8
- 229910052726 zirconium Inorganic materials 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 7
- 229910052733 gallium Inorganic materials 0.000 claims description 6
- 229910052732 germanium Inorganic materials 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 5
- 239000002923 metal particle Substances 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 194
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 157
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 63
- 239000011863 silicon-based powder Substances 0.000 description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 239000011230 binding agent Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 239000000919 ceramic Substances 0.000 description 12
- 238000002441 X-ray diffraction Methods 0.000 description 11
- 238000002156 mixing Methods 0.000 description 11
- 239000012300 argon atmosphere Substances 0.000 description 9
- 239000006229 carbon black Substances 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 239000010949 copper Substances 0.000 description 8
- 239000011812 mixed powder Substances 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 229920000609 methyl cellulose Polymers 0.000 description 7
- 239000001923 methylcellulose Substances 0.000 description 7
- 235000010981 methylcellulose Nutrition 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000005485 electric heating Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- -1 hydroxypropoxyl Chemical group 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910052878 cordierite Inorganic materials 0.000 description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- SBEQWOXEGHQIMW-UHFFFAOYSA-N silicon Chemical compound [Si].[Si] SBEQWOXEGHQIMW-UHFFFAOYSA-N 0.000 description 3
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 239000004375 Dextrin Substances 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- 239000004909 Moisturizer Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- 238000007604 dielectric heating drying Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000007602 hot air drying Methods 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 230000001333 moisturizer Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- WEAMLHXSIBDPGN-UHFFFAOYSA-N (4-hydroxy-3-methylphenyl) thiocyanate Chemical compound CC1=CC(SC#N)=CC=C1O WEAMLHXSIBDPGN-UHFFFAOYSA-N 0.000 description 1
- 229910000505 Al2TiO5 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910021431 alpha silicon carbide Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 1
- 229910021334 nickel silicide Inorganic materials 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- AABBHSMFGKYLKE-SNAWJCMRSA-N propan-2-yl (e)-but-2-enoate Chemical compound C\C=C\C(=O)OC(C)C AABBHSMFGKYLKE-SNAWJCMRSA-N 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910001753 sapphirine Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910021341 titanium silicide Inorganic materials 0.000 description 1
- 238000012982 x-ray structure analysis Methods 0.000 description 1
- 229910021355 zirconium silicide Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
- C01B32/956—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/87—Ceramics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/022—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/027—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C1/00—Details
- H01C1/08—Cooling, heating or ventilating arrangements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
- H05B3/14—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
Definitions
- the present invention relates to SiC powder and a method for producing the same.
- the present invention also relates to a honeycomb structure that can also function as a heater by applying a voltage and a method for manufacturing the honeycomb structure.
- a ceramic honeycomb structure has been used as a base material for an electric heating catalyst (EHC) for purifying exhaust gas and a ceramic heater.
- EHC electric heating catalyst
- a metal terminal is connected to a pair of electrode portions of the honeycomb structure, and a voltage is applied to heat the honeycomb structure.
- the EHC is an exhaust purification device provided in an exhaust path of an automobile or the like to purify the exhaust gas discharged from the engine.
- a catalyst is supported on this EHC, and by heating the EHC, the catalyst is heated to a temperature required for activation.
- the electrode portion is made of a porous body in which particles made of silicon carbide as an aggregate are bonded by a binder, and the electrode portion is used as the aggregate constituting the electrode portion.
- the silicon carbide of Silicon Carbide contains ⁇ -SiC having a stacking defect of 2% or less
- the binder constituting the electrode portion contains silicon and a metal siliceous product.
- Patent Document 1 describes that the electrical resistivity of the electrode portion can be made lower than that of the electrode portion of the conventional honeycomb structure by the configuration. Then, it is described that the current supplied to one of the pair of electrode portions is satisfactorily transmitted to the entire area of the electrode portion, and the current flows uniformly from the electrode portion to the entire honeycomb structure. Has been done.
- the average particle size of the particles made of silicon carbide as an aggregate is preferably 10 to 70 ⁇ m, more preferably 10 to 50 ⁇ m, and 15 to 40 ⁇ m.
- the average particle diameter of the particles made of silicon carbide contained in the electrode portion is less than 10 ⁇ m, the electric resistance of the electrode portion tends to be high, and the silicon carbide contained in the electrode portion tends to be high.
- the average particle size of the particles made of silicon is more than 70 ⁇ m, the strength of the electrode portion tends to decrease.
- Patent Document 1 discloses a technical idea of lowering the electrical resistivity of the electrode portion in order to allow current to flow uniformly throughout the honeycomb structure. Then, in order to reduce the electrical resistivity of the electrode portion, ⁇ -SiC having a stacking defect of 2% or less is used as the aggregate constituting the electrode portion, and the average particle diameter of the aggregate particles is set to 10 to 70 ⁇ m. It is specifically proposed to control.
- Patent Document 1 lacks consideration of changes in electrical resistivity over time, and even if a low electrical resistivity is initially obtained, there is a concern that the electrical resistivity will increase if it is used for a long period of time. there were. According to the results of the study by the present inventor, it has been found that ⁇ -SiC described in Patent Document 1 tends to increase the electrical resistivity due to long-term use and may reduce the heating performance of the honeycomb structure. .. Therefore, it is desirable to provide an electrically heated honeycomb structure in which the electrical resistivity does not easily increase even after long-term use.
- An object of the present invention is to provide a SiC powder whose electrical resistivity does not easily increase with time and a method for producing the same in one embodiment.
- An object of the present invention is to provide, in another embodiment, an electrically heated honeycomb structure manufactured by using such SiC powder and a method for manufacturing the same.
- [1] Contains 70% by mass or more of ⁇ -SiC A SiC powder having a D50 of 8 to 35 ⁇ m and a D10 of 5 ⁇ m or more in a volume-based cumulative particle size distribution measured by a laser diffraction method.
- [2] The SiC powder according to [1], wherein the cumulative volume of particles having a particle size of 5 ⁇ m or less in the volume-based cumulative particle size distribution measured by a laser diffraction method is 7% or less.
- [3] The SiC powder according to [1] or [2], wherein D50 is 15 to 35 ⁇ m and D10 is 7 to 20 ⁇ m in the volume-based cumulative particle size distribution measured by the laser diffraction method.
- the SiC powder according to. [9] The SiC powder according to [8], wherein the total concentration of the metal elements in the powder is 6% by mass or less. [10] A process of molding a mixture containing a SiC raw material powder and a metal powder to prepare a molded product, and A step of firing the molded product at a temperature of 1800 ° C. or lower in an inert atmosphere to obtain a fired product containing ⁇ -SiC.
- the metal powder contains one or more metal particles selected from the group consisting of Ni, Al, B, N, Ga, Ge, Ti, Cu, Co and Zr [10] to [13].
- the process of obtaining a columnar honeycomb molded body having a partition wall The electrode portion forming paste is applied to the first region and the second region of the side surface of the honeycomb molded product or the honeycomb molded product obtained by firing, respectively, and the electrode portion is formed.
- a step of forming an electrode portion by drying and firing the paste to form a pair of electrode portions is provided.
- One or both of the clay and the electrode portion-forming paste contains the SiC powder according to any one of [1] to [9].
- a method for manufacturing an electrically heated honeycomb structure [18] An electrically heated honeycomb structure obtained by the production method according to [17]. [19] An electrically heated honeycomb structure containing the SiC powder according to any one of [1] to [9].
- a SiC powder whose electrical resistivity does not easily increase with time and a method for producing the same.
- this SiC powder as a raw material for an electrically heated honeycomb structure, it is possible to obtain an electrically heated honeycomb structure having excellent durability and whose electrical resistance does not easily increase even after long-term use.
- the SiC powder according to the present invention is Contains 70% by mass or more of ⁇ -SiC In the volume-based cumulative particle size distribution measured by the laser diffraction method, D50 is 8 to 35 ⁇ m, and D10 is 5 ⁇ m or more.
- the SiC powder according to the present invention has a D50 of 8 to 35 ⁇ m and a D10 of 5 ⁇ m or more in the volume-based cumulative particle size distribution measured by the laser diffraction method.
- D50 is 15-35 ⁇ m and D10 is 7-20 ⁇ m. More preferably, D50 is 20 to 30 ⁇ m and D10 is 12 to 20 ⁇ m.
- D50 is a particle size of 50% of the cumulative volume in the cumulative particle size distribution measured above.
- D10 is a particle size of 10% of the cumulative volume in the cumulative particle size distribution measured above.
- the D50 of the SiC powder is 8 ⁇ m or more and the D10 is 5 ⁇ m or more, the oxidation of SiC is suppressed and the electrical resistivity of the SiC powder itself is less likely to increase with time, and this is produced as a raw material powder. An advantage is obtained that an increase in the electrical resistivity of the fired body over time is suppressed. Further, when D10 is 20 ⁇ m or less and D50 is 35 ⁇ m or less, moldability can be ensured.
- the SiC powder according to the present invention has an integrated volume of particles having a particle size of 5 ⁇ m or less in a volume-based cumulative particle size distribution measured by a laser diffraction method of 7% or less.
- the small integrated volume of particles having a particle size of 5 ⁇ m or less further suppresses the oxidation of SiC, further improving the effect of making it difficult for the electrical resistivity of the SiC powder itself to increase over time. It is possible to obtain an advantage that an increase in the electrical resistivity of the fired product produced using the above as a raw material powder with time is further suppressed.
- the integrated volume of particles having a particle size of 5 ⁇ m or less is preferably 5% or less, more preferably 2% or less, and even more preferably 1% or less.
- the SiC powder according to the present invention has a D90 of 100 ⁇ m or less in a volume-based cumulative particle size distribution measured by a laser diffraction method.
- the D90 of the SiC powder is 100 ⁇ m or less, the moldability of the SiC powder is improved.
- the D90 of the SiC powder is preferably 80 ⁇ m or less, more preferably 60 ⁇ m or less, and even more preferably 50 ⁇ m or less.
- D90 is a particle size of 90% of the cumulative volume in the cumulative particle size distribution measured above.
- the SiC powder according to the present invention contains 70% by mass or more of ⁇ -SiC. Since the SiC powder contains ⁇ -SiC as a main component, the initial electrical resistivity of the SiC powder itself can be suppressed to a low level, and the initial electrical resistivity of a fired product produced using this as a raw material powder can be lowered. it can.
- the SiC powder preferably contains 75% by mass or more of ⁇ -SiC, and more preferably contains 80% by mass or more of ⁇ -SiC. There is no upper limit to the concentration of ⁇ -SiC in the SiC powder, and it can be substantially 100% by mass.
- the concentration of ⁇ -SiC in the SiC powder is usually 90% by mass or less, and typically 85% by mass or less.
- the SiC powder according to the present invention may further contain one or both of metallic silicon and metallic silicide.
- Metallic silicon is not particularly required, but metallic silicon used as a raw material for SiC powder may remain.
- the metal silicide can be formed by reacting a metal described later, which is added to suppress a stacking defect of ⁇ -SiC, with metallic silicon used as a raw material for SiC powder.
- the SiC powder according to the present invention contains one or more metal elements selected from the group consisting of Ni, Al, B, N, Ga, Ge, Ti, Cu, Co and Zr. .. Among these, it is more preferable to contain one or more metal elements selected from the group consisting of Ni, Al and Cu. These metal elements contribute to suppressing the initial electrical resistivity of the SiC powder itself by suppressing the stacking defects of ⁇ -SiC, and the initial electrical resistance of the fired product produced using this as the raw material powder. It can contribute to keeping the rate low.
- the total concentration of the metal elements in the SiC powder is preferably 1% by mass or more, and more preferably 3% by mass or more.
- the concentration of the metal element in the SiC powder becomes too high, the coefficient of thermal expansion of the fired body produced using the SiC powder as the raw material powder may increase. Therefore, the total concentration of the metal elements in the SiC powder is preferably 15% by mass or less, more preferably 10% by mass or less, and even more preferably 6% by mass or less.
- the SiC powder according to the present invention can have a stacking defect of ⁇ -SiC contained in the powder of 5% or less, 3% or less, or 2% or less. it can.
- the SiC powder according to the present invention can have a stacking defect of ⁇ -SiC contained in the powder of more than 2%, 3% or more, and 4% or more. It can also be, for example, 3 to 5%.
- a stacking defect is a kind of planar lattice defect (plane defect), and when it is considered that a perfect crystal is formed by periodic stacking of atomic planes, the regularity (order) of this stacking is disturbed. It means that is occurring.
- the stacking defect (%) of ⁇ -SiC refers to a value calculated by the following formula (1).
- a in the following (1) is a value calculated by the following formula (2).
- the "33.6 ° peak intensity” in the formula (2) is the peak intensity when the scattering angle (2 ⁇ ) is 33.6 ° in the X-ray diffraction spectrum by X-ray diffraction (XRD).
- "41.4 ° peak intensity” is the peak intensity when the scattering angle (2 ⁇ ) is 41.4 ° in the X-ray diffraction spectrum by X-ray diffraction (XRD).
- X-ray diffraction a graphite monochromator is used, and X-ray diffraction analysis is performed with CuK ⁇ rays having a wavelength of 1.54 ⁇ .
- the tube voltage is 50 kV and the tube current is 300 mA.
- the stacking defect of ⁇ -SiC can be obtained.
- the measurement is performed by sampling the SiC powder a plurality of times (eg, 5 times or more), and the average value is used as the measured value.
- References 1 and 2 below can be mentioned as references describing the stacking defects of ⁇ -SiC.
- Reference 1 Journal of the Ceramic Society of Japan 99 [12], p1179-1184 (1991).
- Reference 2 Journal of the Ceramic Society of Japan, 106 [5], p483-487, (1998).
- the crystallite size of ⁇ -SiC is preferably 900 ⁇ or more, more preferably 900 to 500,000 ⁇ , and particularly preferably 1000 to 500,000 ⁇ .
- the crystallite size of ⁇ -SiC refers to a value calculated by the following formula (3).
- the following equation (3) is Scheller's equation.
- one crystal grain is composed of fine crystals that can be regarded as a plurality of single crystals, and these fine crystals are called crystallites.
- the size of this crystallite is the above-mentioned "crystallite size".
- the crystallite size of ⁇ -SiC is 900 ⁇ or more, it contributes to keeping the initial electrical resistivity of the SiC powder itself low, and the initial electrical resistivity of the fired product produced using this as a raw material powder is satisfactorily lowered. Can be made to.
- T ( ⁇ )” in the formula (3) indicates the crystallite size ( ⁇ ).
- ⁇ indicates the X-ray wavelength (1.54 ⁇ ).
- B indicates the half width of the peak having a scattering angle (2 ⁇ ) of 35.6 °.
- the X-ray diffraction spectrum by X-ray diffraction (XRD) can be measured by the same method as described in the above-described method for calculating ⁇ -SiC stacking defects. The measurement is performed by sampling the SiC powder a plurality of times (eg, 5 times or more), and the average value is used as the measured value.
- Reference 3 below can be mentioned as a reference describing the crystallite size.
- Reference 3 Yoshio Waseda and Eiichiro Matsubara, "X-ray structure analysis: Determining the arrangement of atoms (material science series)", Ryozuru Uchida, September 30, 1999, 2nd edition, p119-123.
- the SiC powder according to the above-described embodiment can be produced, for example, by the following production method.
- a mixture containing SiC raw material powder and metal powder is molded to prepare a molded product.
- a pore-forming material may be added to the mixture as appropriate.
- the SiC raw material powder is not particularly limited as long as it is a raw material powder capable of producing SiC after firing, but a combination of metallic silicon powder and carbonaceous powder is typically used.
- the D50 of the metallic silicon powder is preferably 5 ⁇ m or more, more preferably 15 ⁇ m or more, because it controls the pore size of the fired body and facilitates pulverization.
- the D50 of the metallic silicon powder is preferably 300 ⁇ m or less, more preferably 100 ⁇ m or less, for the reason of ease of forming a molded product.
- the D50 of the metallic silicon powder is preferably 5 to 300 ⁇ m, more preferably 15 to 100 ⁇ m.
- D50 of the metallic silicon powder is a particle size of 50% of the cumulative volume in the volume-based cumulative particle size distribution measured by the laser diffraction method.
- the purity of the metallic silicon powder is preferably 90% by mass or more, more preferably 95% by mass or more.
- the amount of oxygen in the metallic silicon powder is 3.0% by mass, more preferably 1% by mass or less.
- the carbonaceous powder may be either crystalline or amorphous, but amorphous carbonaceous powder is preferable, and carbon black is particularly preferable.
- the carbonaceous powder may be used alone or in combination of two or more, but the carbonaceous powder is such as graphite (that is, graphite) because it is easily converted into SiC.
- Amorphous carbonaceous powder is preferable to crystalline carbon (in other words, carbon having a well-developed crystal structure).
- the specific surface area of the carbonaceous powder is preferably 30 m 2 / g or more, and more preferably 50 m 2 / g or more because it is easily converted into SiC.
- the specific surface area of the carbonaceous powder is not particularly set, but is usually 2000 m 2 / g or less, typically 1000 m 2 / g or less, and more typically 200 m 2 / g or less. is there.
- the specific surface area of the carbonaceous powder is measured by the nitrogen adsorption method.
- the metal powder may contain one or more metal particles selected from the group consisting of Ni, Al, B, N, Ga, Ge, Ti, Cu, Co and Zr, but not limited to. preferable.
- the metal powder more preferably contains one or more metal particles selected from the group consisting of Ni, Al and Cu.
- the purity of the carbonaceous powder is preferably 95% by mass or more, more preferably 98% by mass or more.
- a mixture containing a SiC raw material powder and a metal powder can be obtained, for example, by mixing these powders with water.
- the carbonaceous powder so as to be 20 to 40 parts by mass, and more preferably 25 to 35 parts by mass with respect to 100 parts by mass of the metallic silicon powder. It is even more preferable to mix the mixture so as to have 30 to 35 parts by mass.
- metal powders other than metallic silicon so as to have 1 to 10 atomic numbers with respect to 100 atomic numbers of metallic silicon powder, and more preferably to mix so as to have 3 to 8 atomic numbers. It is even more preferable to mix them so that the number of atoms is 3 to 5.
- the total mass of the metallic silicon powder, the carbonaceous powder, and the metal powder other than the metallic silicon is 100 parts by mass, it is preferable to add 20 to 100 parts by mass of water.
- the mixing method is not particularly limited, but for example, a vertical stirrer can be used.
- the obtained mixture is molded by press molding, extrusion molding or the like to prepare a molded product.
- the shape of the molded product is not particularly limited, and examples thereof include a cylinder, a disk, and a square disk.
- the molded product is preferably dried, for example, it can be dried at a drying temperature of 50 to 100 ° C.
- the molded product is fired at a temperature of 1800 ° C. or lower in an inert atmosphere to obtain a fired product containing ⁇ -SiC.
- the molding is preferably fired in an inert atmosphere such as argon or in vacuum to prevent oxidation.
- the firing temperature is preferably 1800 ° C. or lower, and more preferably 1300 to 1500 ° C., from the viewpoint of suppressing the formation of ⁇ -SiC and preferentially producing ⁇ -SiC.
- the firing time can be, for example, 1 to 20 hours.
- the SiC produced by this method is called reaction-sintered SiC.
- the reaction-sintered SiC is SiC generated by utilizing the reaction between raw materials.
- the fired body is preferably porous because it is easy to crush.
- the porosity of the fired body is preferably 35% or more, and more preferably 40% or more, from the viewpoint of ease of pulverization.
- the upper limit of the porosity of the fired body is not particularly set, it is preferably 80% or less, and more preferably 75% or less, from the viewpoint of ease of manufacturing the molded body and shape retention. Therefore, in one embodiment, the porosity of the fired body can be 35% to 80%, preferably 40 to 75%.
- the porosity of the fired body can be controlled, for example, by a method of changing the molding pressure. To increase the porosity of the fired body, a pore-forming material may be added or the molding pressure may be lowered, and conversely, to reduce the porosity of the fired body, the molding pressure may be increased.
- the average pore diameter of the fired body is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more because it is easy to pulverize. Further, the average pore diameter of the fired body is preferably 300 ⁇ m or less, and more preferably 150 ⁇ m or less because it easily flows during molding and the molded body is easily obtained. Therefore, in one embodiment, the average pore diameter of the fired body can be 5 to 300 ⁇ m, preferably 10 to 150 ⁇ m.
- the average pore diameter of the fired body can be controlled, for example, by changing the particle size of the metal silicon powder and / or the pore-forming material as a raw material. To increase the average pore diameter of the fired body, the particle size may be increased, and conversely, to decrease the average pore diameter of the fired body, the particle size may be reduced.
- the fired body thus obtained is crushed to obtain a crushed fired body.
- the crushing method is not particularly limited, but crushing can be performed by, for example, an impact crusher or a mortar. Since the particle size distribution is not controlled only by crushing, the crushed fired body is classified by a sieve, an air classifier, or the like to obtain a SiC powder having a desired particle size distribution.
- the SiC powder may contain metallic silicon, metals other than metallic silicon, and metal silicide.
- the present invention By forming and drying the clay, the outer peripheral side wall and a plurality of cells which are arranged on the inner peripheral side of the outer peripheral side wall and extend from the first bottom surface to the second bottom surface to serve as a fluid flow path are formed.
- a step of forming an electrode portion by drying and firing the paste to form a pair of electrode portions is provided.
- One or both of the clay and the electrode portion-forming paste contains the SiC powder according to the present invention described above.
- honeycomb molded product In this step, by molding and drying the clay, a plurality of cells are arranged on the outer peripheral side wall and the inner peripheral side of the outer peripheral side wall, extend from the first bottom surface to the second bottom surface, and serve as a fluid flow path.
- a columnar honeycomb molded body having a partition forming a partition is obtained.
- the honeycomb molded body can be produced according to the method for producing a honeycomb molded body in the known method for producing a honeycomb structure. For example, first, in addition to ceramic raw materials such as SiC powder (silicon carbide powder) and metallic silicon powder, a binder, a surfactant, a pore-forming material, water, and the like are mixed to prepare a molding raw material.
- the above-mentioned SiC powder according to the present invention can be used as at least a part of the SiC powder. Further, in another embodiment, only the SiC powder according to the present invention described above can be used as the SiC powder.
- the metallic silicon powder needs to be added when the material of the honeycomb structure is a silicon-silicon carbide composite material, but is added when the material of the honeycomb structure is substantially silicon carbide. There is no need.
- the content of the metallic silicon powder is not particularly limited, but can be 15 to 50 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass.
- the D50 of the metallic silicon powder is not particularly limited, but can be 3 to 50 ⁇ m.
- D50 of the metallic silicon powder is a particle size of 50% of the cumulative volume in the volume-based cumulative particle size distribution measured by the laser diffraction method. As described above, the D50 of the SiC powder is preferably 8 to 35 ⁇ m.
- binder examples include methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinyl alcohol and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type. Among these, it is preferable to use methyl cellulose and hydroxypropoxyl cellulose in combination.
- the binder content is preferably 2 to 15 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass.
- the water content is preferably 20 to 60 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass.
- ethylene glycol, dextrin, fatty acid soap, polyalcohol and the like can be used. These may be used individually by 1 type, or may be used in combination of 2 or more type.
- the content of the surfactant is preferably 0.1 to 2.0 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass.
- the pore-forming material is not particularly limited as long as it becomes pores after firing, and examples thereof include graphite, starch, foamed resin, water-absorbent resin, and silica gel. These may be used individually by 1 type, or may be used in combination of 2 or more type.
- the content of the pore-forming material is preferably 0.5 to 10.0 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass.
- the D50 of the pore-forming material is preferably 10 to 30 ⁇ m. D50 of the pore-forming material means a particle size of 50% of the cumulative volume in the volume-based cumulative particle size distribution measured by the laser diffraction method.
- the average particle diameter of the pore-forming material is the average particle diameter after water absorption.
- the obtained molding raw material is kneaded to form a clay.
- the method of kneading the honeycomb molding raw materials to form the clay is not particularly limited, and examples thereof include a method using a kneader, a vacuum clay kneader, and the like.
- honeycomb molded body a mouthpiece having a desired overall shape, cell shape, partition wall thickness, cell density and the like can be used. It is preferable to dry the obtained honeycomb molded product.
- the dried honeycomb molded body may be referred to as a "honeycomb dried body".
- the drying method is not particularly limited, and examples thereof include an electromagnetic wave heating method such as microwave heating drying and high frequency dielectric heating drying, and an external heating method such as hot air drying and superheated steam drying.
- the entire molded product can be dried quickly and uniformly without cracking, and after drying a certain amount of water by the electromagnetic wave heating method, the remaining water is dried by the external heating method. It is preferable to let it.
- the dried honeycomb molded body may be referred to as a “honeycomb dried body”.
- the length in the central axis direction of the honeycomb molded body is not the desired length, both bottom portions of the honeycomb molded body can be cut to obtain the desired length.
- the electrode portion forming paste is applied and applied to the first region and the second region of the side surface of the honeycomb molded product or the honeycomb molded product obtained by firing the honeycomb molded product, respectively.
- the processed electrode portion forming paste is dried and fired to form a pair of electrode portions.
- the electrode portion forming paste preferably contains the SiC powder according to the present invention. Further, as the SiC powder in the electrode portion forming paste, it is more preferable to contain only the SiC powder according to the present invention.
- the electrode portion forming paste can be prepared, for example, by adding additives such as a binder, a moisturizing agent, a dispersant, and water in addition to the SiC powder and the metallic silicon powder according to the present invention, and kneading them.
- additives such as a binder, a moisturizing agent, a dispersant, and water
- the SiC powder functions as an aggregate
- the metallic silicon powder functions as a binder between the aggregates.
- Metals (metals silicon, metals other than metallic silicon) and / or metal silicides that can be contained in the SiC powder also function as binders.
- the kneading method is not particularly limited, and for example, a vertical stirrer can be used.
- the content of the metallic silicon powder is preferably 5 to 40 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass. More preferably, it is 10 to 30 parts by mass.
- the D50 of the metallic silicon powder is preferably 1 to 50 ⁇ m, and more preferably 4 to 20 ⁇ m, for the reason that the SiC powder can be easily bonded with the metallic silicon.
- D50 of the metallic silicon powder means a particle size of 50% of the cumulative volume in the volume-based cumulative particle size distribution measured by the laser diffraction method. As described above, the D50 of the SiC powder is preferably 8 to 35 ⁇ m.
- binder examples include methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinyl alcohol and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type.
- the binder content is preferably 0.1 to 5.0 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass.
- Glycerin can be mentioned as a moisturizer.
- the content of the moisturizer is preferably 0 to 10 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass.
- the dispersant for example, glycerin, ethylene glycol, dextrin, fatty acid soap, polyalcohol, polyacrylic acid-based dispersant and the like can be used as the surfactant. These may be used individually by 1 type, or may be used in combination of 2 or more type.
- the content of the surfactant is preferably 0.1 to 2.0 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass.
- the water content is preferably 15 to 60 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass.
- the electrode portion-forming paste can contain an oxide because it lowers the porosity and thereby lowers the electrical resistivity of the electrode portion.
- the oxide is not particularly limited, but one or two selected from the group consisting of B, Mg, Al, Si, P, Ti, Zr, Pb, Li, Na, Ba, Ca, Fe and Sr. Oxides of the above elements can be mentioned, preferably oxides of one or more elements selected from the group consisting of B, Mg, Al, Si, P, Ti and Zr. Among the oxides, oxides of one or more elements selected from the group consisting of Mg, Al and Si are more preferable from the viewpoint of low thermal expansion.
- oxides include oxides of one element such as MgO, SiO 2 , and Al 2 O 3 , as well as 2 MgO, 2Al 2 O 3 , which are compounds of MgO, SiO 2, and Al 2 O 3. Crystallized glass containing elementite as a main component, such as 5SiO 2 (corgerite) and MgO-SiO-Al 2 O 3- B 2 O 3 , Al TiO 5 (titanium), which is a compound of Al 2 O 3 and TiO 2. Oxides (composite oxides) of two or more elements such as aluminum acid) can be mentioned. From the viewpoint of enhancing high temperature durability, it is preferable that at least a part of the oxide in the electrode portion is crystalline.
- One type of oxide may be used alone, or two or more types may be used in combination.
- the above oxides are preferably contained in a total of 1 to 10 parts by volume, and more preferably 1 to 5 parts by volume.
- the obtained electrode portion forming paste is applied to the first region and the second region of the side surface of the honeycomb molded body or the honeycomb molded body obtained by firing the honeycomb molded body, respectively.
- the electrode portion forming paste has a cross section orthogonal to the extending direction of the cell of the honeycomb molded body or the honeycomb fired body, and the first region is the honeycomb molded body or the honeycomb with respect to the second region. It is preferable to apply the coating so that it is located on the opposite side of the center of the fired body.
- the method of applying the electrode portion forming raw material to the honeycomb molded body or the side surface of the honeycomb molded body obtained by firing the honeycomb molded body is not particularly limited, but for example, a printing method such as screen printing may be used. it can.
- the coating thickness is not limited, but can be 25 to 500 ⁇ m, typically 75 to 350 ⁇ m.
- the electrode portion forming paste is preferable to apply to the side surface of the dried honeycomb molded body.
- the firing conditions of the honeycomb molded body the same conditions as the firing conditions of the electrode portion forming paste described later can be adopted.
- the electrode portion forming paste coated on the side surface of the honeycomb molded body or the honeycomb fired body is preferable to dry.
- the drying conditions are preferably 50 to 120 ° C. and 1 to 24 hours. Then, by firing the honeycomb molded body with the electrode portion forming paste or the honeycomb fired body with the electrode portion forming paste, a honeycomb structure having a pair of electrode portions can be produced.
- the calcination can be carried out in an air atmosphere at 400 to 500 ° C. for 0.5 to 20 hours.
- Subsequent firing conditions are preferably 1350 to 1500 ° C. for 1 to 20 hours in an inert atmosphere such as nitrogen or argon.
- the method of tentative firing and firing is not particularly limited, and firing can be performed using an electric furnace, a gas furnace, or the like.
- after firing it is preferable to carry out an oxidation treatment at 1000 to 1350 ° C. for 1 to 10 hours in order to improve durability.
- the purpose of the oxidation treatment is mainly to oxidize metallic silicon.
- the SiC powder can also be oxidized, but as described above, since the SiC powder according to the present invention is difficult to be oxidized, the oxidation of the SiC powder by the oxidation treatment is limited.
- FIG. 1 is a perspective view schematically showing an embodiment of an electrically heated honeycomb structure according to the present invention.
- the electrically heated honeycomb structure 100 according to the illustrated embodiment is arranged on the outer peripheral side wall 112 and the inner peripheral side of the outer peripheral side wall 112, and extends from the first bottom surface 114 to the second bottom surface 116 to flow a fluid flow path.
- Each cell may penetrate from the first bottom surface 114 to the second bottom surface 116 by opening both the first bottom surface 114 and the second bottom surface 116 (flow-through type honeycomb structure).
- the honeycomb structure portion 110 extends from the first bottom surface 114 to the second bottom surface 116, and is first.
- a plurality of first cells in which the bottom surface 114 is opened and the second bottom surface 116 is sealed, and the first bottom surface 114 extends from the first bottom surface 114 to the second bottom surface 116, and the first bottom surface 114 is sealed and the second bottom surface 116 is sealed.
- the first cell and the second cell can be alternately arranged adjacent to each other with the partition wall 118 so that both bottom surfaces have a checkered pattern.
- the honeycomb structure Since the honeycomb structure is advantageous for electric heating, it can be formed of ceramics containing one or both of Si (metal silicon) and SiC (silicon carbide). Examples of ceramics containing one or both of Si and SiC include silicon-silicon carbide composite material, silicon-oxide composite material, silicon carbide-oxide composite material, and silicon-silicon carbide-silicon nitride composite material. Be done.
- the SiC constituting the honeycomb structure is derived from the SiC powder according to the present invention, and in a more preferable embodiment, the SiC constituting the honeycomb structure is substantially derived only from the SiC powder according to the present invention. .. In the present invention, even when the columnar honeycomb structure is formed only of Si, it is referred to as ceramic as long as it is a sintered body.
- the total volume ratio of Si and SiC is more preferably 60% or more, further preferably 80% or more, and even more preferably 95% or more. Is even more preferable.
- Ceramics that can be contained in the honeycomb structure are not limited, but are ceramics such as cordierite, mullite, zirconate, aluminum titanate, silicon nitride, zirconia, spinel, indialite, sapphirine, corundum, and titania. Can be mentioned. As for these other ceramics, only one kind may be used, or two or more kinds may be used in combination.
- the coefficient of thermal expansion of the honeycomb structure 110 is preferably 3.5 to 6.0 ppm / K, more preferably 3.5 to 4.5 ppm / K, from the viewpoint of thermal shock resistance.
- the coefficient of thermal expansion refers to a coefficient of linear thermal expansion of 25 to 800 ° C. measured by a method according to JIS R1618: 2002, unless otherwise specified.
- As the thermal expansion meter "TD5000S (trade name)" manufactured by BrukerAXS can be used.
- the honeycomb structure can be energized when a voltage is applied between the pair of electrodes and generate heat due to Joule heat. Therefore, the electrically heated honeycomb structure according to the present invention can be suitably used as a heater.
- the applied voltage is preferably 12 to 900 V, but the applied voltage can be changed as appropriate.
- volume resistivity of the honeycomb structure there is no particular limitation on the volume resistivity of the honeycomb structure as long as it can generate heat due to Joule heat.
- the volume resistivity of the honeycomb structure may be appropriately selected according to the application in which the electrically heated honeycomb structure is used.
- the volume resistivity of the honeycomb structure can be 0.01 to 200 ⁇ cm, preferably 0.05 to 50 ⁇ cm, and even more preferably 0.1 to 5 ⁇ cm.
- the volume resistivity of the honeycomb structure portion here is a value measured at room temperature (25 ° C.) by the 4-terminal method.
- the partition wall can be porous.
- the porosity of the partition wall of the honeycomb structure is not particularly limited, but can be, for example, 35 to 60%, preferably 35 to 45%.
- the porosity is a value measured by a mercury porosimeter.
- the average pore diameter of the partition wall of the honeycomb structure is not particularly limited, but can be, for example, 2 to 15 ⁇ m, preferably 3 to 8 ⁇ m.
- the average pore diameter is a value measured by a mercury porosimeter.
- the thickness of the partition wall in the honeycomb structure can be, for example, 0.1 to 0.3 mm, preferably 0.1 to 0.15 mm.
- the cell density can be, for example, 40 to 150 cells / cm 2 in a cross section orthogonal to the cell flow path direction, and is preferably 60 to 100 cells / cm 2 .
- the shape of the cell in the cross section orthogonal to the flow path direction of the cell is preferably a quadrangle, a hexagon, an octagon, or a combination thereof. Of these, squares and hexagons are preferred.
- the outer shape of the honeycomb structure is not particularly limited as long as it is columnar.
- the bottom surface is a circular columnar shape (cylindrical shape), the bottom surface is an oval-shaped columnar shape, and the bottom surface is a polygonal shape (quadrangle, pentagon, hexagon, heptagon, octagon). It can have a columnar shape (such as a polygon).
- the size of the honeycomb structure portion, in view of thermal shock resistance it is preferable that the area of the bottom is 2000 ⁇ 20000 mm 2, further preferably 4000 ⁇ 15000 2.
- the length of the honeycomb structure portion in the central axis direction is preferably 30 to 200 mm, more preferably 30 to 120 mm, from the viewpoint of thermal shock resistance.
- the electrically heated honeycomb structure 100 includes a pair of electrode portions 120 joined to the outer surface of the outer peripheral side wall 112 of the columnar honeycomb structure portion 110.
- a pair of electrode portions 120 are extended in a band shape in the cell flow path direction on the outer surface of the outer peripheral side wall 112 of the honeycomb structure portion 110 with the central axis of the honeycomb structure portion 110 interposed therebetween.
- the electrically heated honeycomb structure 100 can suppress the bias of the current flowing in the honeycomb structure 110 when a voltage is applied between the pair of electrode portions 120, and the temperature distribution in the honeycomb structure 110 can be suppressed. It is possible to suppress the bias of.
- the electrode unit 120 may be provided with a terminal connection unit 122 for facilitating terminal connection.
- the electrode portion has a porous structure in which SiC particles as an aggregate are bonded by a binder.
- the SiC particles constituting the electrode portion are derived from the SiC powder according to the present invention, and in a more preferred embodiment, the SiC constituting the electrode portion is substantially derived only from the SiC powder according to the present invention.
- the binder constituting the electrode portion contains one, two or three types of binder selected from the group consisting of metallic silicon, a metal other than metallic silicon, and metal silicide.
- the average thickness of the electrode portion is preferably 25 ⁇ m or more, more preferably 50 ⁇ m or more, and even more preferably 75 ⁇ m or more, from the viewpoint of enhancing uniform heat generation. Further, the average thickness of the electrode portion is preferably 500 ⁇ m or less, more preferably 350 ⁇ m or less, still more preferably 250 ⁇ m or less, from the viewpoint of preventing cracks and peeling due to firing.
- the average thickness of the electrode portion is calculated by measuring the thickness of the electrode portion at a plurality of locations from an image obtained by imaging a cross section of the electrically heated honeycomb structure perpendicular to the extending direction of the cell with a scanning electron microscope (SEM). can do.
- SEM scanning electron microscope
- the volume resistivity of the electrode portion is preferably 0.01 to 0.8 ⁇ cm, more preferably 0.01 to 0.4 ⁇ cm, from the viewpoint of enhancing uniform heat generation.
- the volume resistivity of the electrode portion can be obtained by the 4-terminal method.
- each of the pair of electrode portions 120 is from one bottom surface to the other bottom surface in the flow path direction of the cell of the honeycomb structure portion 110. It is formed in an extending band shape.
- the pair of electrode portions 120 are arranged between both bottom surfaces of the honeycomb structure portion 110, so that when a voltage is applied between the pair of electrode portions 120, the current flows through the honeycomb structure portion 110.
- the bias of the current can be suppressed more effectively.
- the bias of the temperature distribution in the honeycomb structure 110 can be suppressed more effectively.
- Each of the pair of electrode portions 120 is formed in a band shape extending from one bottom surface to the other bottom surface in the direction of the cell flow path of the honeycomb structure portion 110" means that one cell flow path of each electrode portion 120 is formed.
- the directional end is in contact with the peripheral edge of one bottom surface 114 of the honeycomb structure 110, and the other end of the electrode portion 120 in the direction of the cell flow path is in contact with the peripheral edge of the other bottom surface 116 of the honeycomb structure 110.
- the energization resistance can be 100 ⁇ or less.
- the energization resistance is obtained under the following measurement conditions. Terminals 130 are connected to the central portion in the extending direction of the cells of each electrode portion and to the central portion in the outer peripheral direction of the honeycomb structure portion (see FIG. 2). Next, after applying a voltage of 30 V between both terminals, the resistance value is obtained based on the current value after 30 seconds have elapsed.
- the energization resistance is preferably 100 ⁇ or less, more preferably 50 ⁇ or less, and can be, for example, 2 to 40 ⁇ .
- the electrically heated honeycomb structure according to the present invention can be used, for example, as a ceramic heater or as a catalyst carrier.
- the electrically heated honeycomb structure according to the present invention can be used as an EHC by supporting a catalyst.
- the electrically heated honeycomb structure according to the present invention can also be used as a wall flow type exhaust gas filter (DPF, GPF, etc.). In this case, a method of energizing and generating heat in the electrically heated honeycomb structure during heating for filter regeneration can be considered.
- SiC fired body 1 Manufacture of SiC fired body> (SiC fired body 1) 74.5 g of metallic silicon powder (density 2.33 g / cm 3 ) with a D50 of 79 ⁇ m, 25.5 g of carbon black powder with a specific surface area of 110 m 2 / g, 7.8 g of Ni powder with a D50 of 35 ⁇ m, and water. was prepared in an amount of 50 g.
- the mixed powder obtained by mixing these with a rotation / revolution stirrer was press-molded to prepare a cylindrical molded body having a diameter of 25 mm and a diameter of H15 mm. Next, the obtained molded product was dried at 100 ° C. and then fired at 1450 ° C. in an argon atmosphere for 2 hours to obtain a fired product.
- SiC fired body 2 73.7 g of metallic silicon powder (density 2.33 g / cm 3 ) with a D50 of 79 ⁇ m, 26.3 g of carbon black powder with a specific surface area of 110 m 2 / g, 7.7 g of Ni powder with a D50 of 35 ⁇ m, and water. was prepared in an amount of 50 g.
- the mixed powder obtained by mixing these with a rotation / revolution stirrer was press-molded to prepare a cylindrical molded body having a diameter of 25 mm and a diameter of H15 mm. Next, the obtained molded product was dried at 100 ° C. and then fired at 1450 ° C. in an argon atmosphere for 2 hours to obtain a fired product.
- composition of each of the SiC powders of Examples and Comparative Examples was analyzed by X-ray diffraction (XRD). Composition analysis was performed by pattern fitting using the WPPD (whole-powder-pattern-decomposition) method. The results are shown in Table 2.
- XRD X-ray diffraction
- Nickel silicide in the example using the SiC fired bodies 1 to 3 aluminum in the example using the SiC fired body 4, zirconium silicide in the example using the SiC fired body 5, copper ceiling and SiC in the example using the SiC fired body 6.
- Cobalt silicide was detected in the example in which the fired body 7 was used, and titanium silicide was detected in the example in which the SiC fired body 8 was used.
- honeycomb molding raw material was prepared by mixing 6 kg of metallic silicon powder, 14 kg of SiC powder, 1 kg of cordierite powder, 1.6 kg of methyl cellulose, and 8 kg of water, and kneading with a kneader. Next, the obtained honeycomb molding raw material was vacuum-kneaded to obtain clay, and the obtained clay was extruded to obtain a columnar honeycomb molded body. The obtained honeycomb molded product was dried at 120 ° C. to obtain a honeycomb dried product.
- a pre-prepared electrode portion forming paste is applied to the side surface of the obtained honeycomb dried body to a thickness of 200 ⁇ m and dried at 80 ° C. to obtain a honeycomb dried body with an electrode forming slurry. It was.
- the specific coating conditions are as follows.
- the electrode portion-forming paste has a central angle defined by two line segments connecting both ends of each slurry and the central axis of the dried honeycomb when the dried honeycomb is observed in a cross section orthogonal to the flow path direction of the cell.
- the screen was printed in two places in a strip shape over the entire length between both bottom surfaces of the dried honeycomb so that the temperature was 50 °. Further, the electrode portion-forming pastes at the two locations were arranged so as to be on opposite sides of the central axis of the dried honeycomb body.
- the dried honeycomb structure with the electrode portion forming paste was degreased, fired, and oxidized to prepare an electrically heated honeycomb structure.
- Solventing was performed in the air at 450 ° C. for 5 hours.
- the firing was carried out for 2 hours in an argon atmosphere at 1450 ° C.
- the oxidation treatment was carried out in the air at 1000 ° C. for 5 hours.
- the honeycomb structure portion of the obtained electrically heated honeycomb structure had a partition wall thickness of 101.6 ⁇ m and a cell density of 93 cells / cm 2 .
- the diameter of both bottom surfaces of the honeycomb structure was 100 mm, and the length of the cell in the extending direction was 100 mm.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Geology (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Toxicology (AREA)
- Ceramic Products (AREA)
Abstract
SiC powder with electrical resistivity that is unlikely to increase with time and a manufacturing method thereof are provided. The SiC powder includes 70% by mass or more of β-SiC, and has a D50 of 8-35 μm and a D10 of 5 μm or more in a volume-based cumulative particle size distribution measured by a laser diffraction method.
Description
本発明はSiC粉末及びその製造方法に関する。また、本発明は電圧を印加することによりヒーターとしても機能することができるハニカム構造体及びその製造方法に関する。
The present invention relates to SiC powder and a method for producing the same. The present invention also relates to a honeycomb structure that can also function as a heater by applying a voltage and a method for manufacturing the honeycomb structure.
従来、セラミックス製のハニカム構造体は、排ガス浄化用の電気加熱式触媒(EHC)及びセラミックヒータの基材等として用いられている。このような用途においては、ハニカム構造体が有する一対の電極部に対して金属端子を接続し、電圧を印加することで、ハニカム構造体を加熱する操作を伴う。例えば、EHCは、自動車等の排気経路中に設けられ、エンジンから排出される排気ガスを浄化する排気浄化装置である。このEHCには、触媒が担持されており、EHCを加熱することにより、活性化に必要な温度まで触媒が加熱される。
Conventionally, a ceramic honeycomb structure has been used as a base material for an electric heating catalyst (EHC) for purifying exhaust gas and a ceramic heater. In such an application, a metal terminal is connected to a pair of electrode portions of the honeycomb structure, and a voltage is applied to heat the honeycomb structure. For example, the EHC is an exhaust purification device provided in an exhaust path of an automobile or the like to purify the exhaust gas discharged from the engine. A catalyst is supported on this EHC, and by heating the EHC, the catalyst is heated to a temperature required for activation.
従来、EHCに流れる電流の均一性を高めるために、電極部の電気抵抗率に着目した技術が知られている。特開2014-198320号公報(特許文献1)においては、電極部が、骨材としての炭化珪素からなる粒子が結合材により結合された多孔体からなり、前記電極部を構成する前記骨材としての炭化珪素が、積層欠陥が2%以下のβ-SiCを含み、且つ、前記電極部を構成する前記結合材が、珪素、及び金属珪化物を含むことを提案している。特許文献1には、当該構成によって、電極部の電気抵抗率を、従来のハニカム構造体の電極部に比して、低くすることができることが記載されている。そして、これにより、一対の電極部のうちの一方の電極部に供給された電流が、当該電極部全域に良好に伝達し、電極部からハニカム構造体全体に均一に電流が流れることになると記載されている。
Conventionally, a technique focusing on the electrical resistivity of the electrode portion has been known in order to improve the uniformity of the current flowing through the EHC. In Japanese Patent Application Laid-Open No. 2014-198320 (Patent Document 1), the electrode portion is made of a porous body in which particles made of silicon carbide as an aggregate are bonded by a binder, and the electrode portion is used as the aggregate constituting the electrode portion. It is proposed that the silicon carbide of Silicon Carbide contains β-SiC having a stacking defect of 2% or less, and the binder constituting the electrode portion contains silicon and a metal siliceous product. Patent Document 1 describes that the electrical resistivity of the electrode portion can be made lower than that of the electrode portion of the conventional honeycomb structure by the configuration. Then, it is described that the current supplied to one of the pair of electrode portions is satisfactorily transmitted to the entire area of the electrode portion, and the current flows uniformly from the electrode portion to the entire honeycomb structure. Has been done.
また、特許文献1の段落0047には、「骨材としての炭化珪素からなる粒子の平均粒子径が、10~70μmであることが好ましく、10~50μmであることが更に好ましく、15~40μmであることが特に好ましい。電極部に含まれる炭化珪素からなる粒子の平均粒子径が、10μm未満であると、電極部の電気抵抗率が高くなる傾向にある。また、電極部に含まれる炭化珪素からなる粒子の平均粒子径が、70μm超であると、電極部の強度が低下する傾向にある。」と記載されている。
Further, in paragraph 0047 of Patent Document 1, "The average particle size of the particles made of silicon carbide as an aggregate is preferably 10 to 70 μm, more preferably 10 to 50 μm, and 15 to 40 μm. When the average particle diameter of the particles made of silicon carbide contained in the electrode portion is less than 10 μm, the electric resistance of the electrode portion tends to be high, and the silicon carbide contained in the electrode portion tends to be high. When the average particle size of the particles made of silicon is more than 70 μm, the strength of the electrode portion tends to decrease. ”
特許文献1には、ハニカム構造体全体へ均一に電流が流れるようにするために、電極部の電気抵抗率を低くするという技術思想が開示されている。そして、電極部の電気抵抗率を低くするために、電極部を構成する骨材として積層欠陥が2%以下のβ-SiCを使用することや、骨材粒子の平均粒子径を10~70μmに制御することが具体的に提案されている。
Patent Document 1 discloses a technical idea of lowering the electrical resistivity of the electrode portion in order to allow current to flow uniformly throughout the honeycomb structure. Then, in order to reduce the electrical resistivity of the electrode portion, β-SiC having a stacking defect of 2% or less is used as the aggregate constituting the electrode portion, and the average particle diameter of the aggregate particles is set to 10 to 70 μm. It is specifically proposed to control.
しかしながら、特許文献1には、電気抵抗率の経時変化に関する考察が不足しており、当初は低い電気抵抗率が得られたとしても、長期的に使用し続けると電気抵抗率が上昇する懸念があった。本発明者の検討結果によると、特許文献1において記載されるβ-SiCは、長期的な使用によって電気抵抗率が上昇しやすく、ハニカム構造体の加熱性能を低下させるおそれがあることが分かった。このため、長期的に使用しても電気抵抗率の上昇しにくい電気加熱式ハニカム構造体が提供されることが望ましい。
However, Patent Document 1 lacks consideration of changes in electrical resistivity over time, and even if a low electrical resistivity is initially obtained, there is a concern that the electrical resistivity will increase if it is used for a long period of time. there were. According to the results of the study by the present inventor, it has been found that β-SiC described in Patent Document 1 tends to increase the electrical resistivity due to long-term use and may reduce the heating performance of the honeycomb structure. .. Therefore, it is desirable to provide an electrically heated honeycomb structure in which the electrical resistivity does not easily increase even after long-term use.
上記事情に鑑みて、本発明は一実施形態において、電気抵抗率が経時的に上昇しにくいSiC粉末及びその製造方法を提供することを課題とする。本発明は別の一実施形態において、そのようなSiC粉末を用いて製造される電気加熱式ハニカム構造体及びその製造方法を提供することを課題とする。
In view of the above circumstances, it is an object of the present invention to provide a SiC powder whose electrical resistivity does not easily increase with time and a method for producing the same in one embodiment. An object of the present invention is to provide, in another embodiment, an electrically heated honeycomb structure manufactured by using such SiC powder and a method for manufacturing the same.
[1]
β-SiCを70質量%以上含有し、
レーザー回折法により測定される体積基準の累積粒度分布におけるD50が8~35μmであり、D10が5μm以上であるSiC粉末。
[2]
レーザー回折法により測定される体積基準の累積粒度分布における粒度5μm以下の粒子の積算体積が7%以下である[1]に記載のSiC粉末。
[3]
レーザー回折法により測定される体積基準の累積粒度分布におけるD50が15~35μmであり、D10が7~20μmである[1]又は[2]に記載のSiC粉末。
[4]
レーザー回折法により測定される体積基準の累積粒度分布におけるD90が100μm以下である[1]~[3]の何れか一項に記載のSiC粉末。
[5]
前記粉末中に含まれるβ-SiCの積層欠陥が5%以下である[1]~[4]の何れか一項に記載のSiC粉末。
[6]
前記粉末中に含まれるβ-SiCの積層欠陥が2%超である[1]~[5]の何れか一項に記載のSiC粉末。
[7]
金属珪素及び金属シリサイドの一方又は両方を更に含有する[1]~[6]の何れか一項に記載のSiC粉末。
[8]
Ni、Al、B、N、Ga、Ge、Ti、Cu、Co及びZrよりなる群から選択される1種又は2種以上の金属元素を含有する[1]~[7]の何れか一項に記載のSiC粉末。
[9]
前記粉末中の前記金属元素の合計濃度が6質量%以下である[8]に記載のSiC粉末。
[10]
SiC化原料粉末及び金属粉末を含む混合物を成形して成形体を作製する工程と、
前記成形体を不活性雰囲気下、1800℃以下の温度で焼成してβ-SiCを含有する焼成体を得る工程と、
前記焼成体を粉砕して粉砕された焼成体を得る工程と、
前記粉砕された焼成体を分級して、レーザー回折法により測定される体積基準の累積粒度分布におけるD50が8~35μmであり、D10が5μm以上である粉末を得る工程と、
を含むSiC粉末の製造方法。
[11]
前記粉末は、レーザー回折法により測定される体積基準の累積粒度分布における粒度5μm以下の粒子の積算体積が7%以下である[10]に記載のSiC粉末の製造方法。
[12]
前記粉末は、レーザー回折法により測定される体積基準の累積粒度分布におけるD50が15~35μmであり、D10が7~20μmである[10]又は[11]に記載のSiC粉末の製造方法。
[13]
前記粉末は、レーザー回折法により測定される体積基準の累積粒度分布におけるD90が100μm以下である[10]~[12]の何れか一項に記載のSiC粉末の製造方法。
[14]
前記金属粉末は、Ni、Al、B、N、Ga、Ge、Ti、Cu、Co及びZrよりなる群から選択される1種又は2種以上の金属粒子を含有する[10]~[13]の何れか一項に記載のSiC粉末の製造方法。
[15]
前記焼成体の気孔率が35~80%である[10]~[14]の何れか一項に記載のSiC粉末の製造方法。
[16]
前記焼成体の平均気孔径が5~300μmである[10]~[15]の何れか一項に記載のSiC粉末の製造方法。
[17]
坏土を成形及び乾燥することにより、外周側壁と、当該外周側壁よりも内周側に配設され、第一底面から第二底面まで延び、流体の流路となる複数のセルを区画形成する隔壁とを有する柱状のハニカム成形体を得る工程と、
前記ハニカム成形体又は前記ハニカム成形体を焼成して得られたハニカム焼成体の側面の第一の領域及び第二の領域に、電極部形成ペーストをそれぞれ塗工し、塗工した前記電極部形成ペーストを乾燥及び焼成して、一対の電極部を形成する電極部形成工程を備え、
前記坏土及び前記電極部形成ペーストの一方又は両方が、[1]~[9]の何れか一項に記載のSiC粉末を含む、
電気加熱式ハニカム構造体の製造方法。
[18]
[17]に記載の製造方法によって得られた電気加熱式ハニカム構造体。
[19]
[1]~[9]の何れか一項に記載のSiC粉末を含む、電気加熱式ハニカム構造体。 [1]
Contains 70% by mass or more of β-SiC
A SiC powder having a D50 of 8 to 35 μm and a D10 of 5 μm or more in a volume-based cumulative particle size distribution measured by a laser diffraction method.
[2]
The SiC powder according to [1], wherein the cumulative volume of particles having a particle size of 5 μm or less in the volume-based cumulative particle size distribution measured by a laser diffraction method is 7% or less.
[3]
The SiC powder according to [1] or [2], wherein D50 is 15 to 35 μm and D10 is 7 to 20 μm in the volume-based cumulative particle size distribution measured by the laser diffraction method.
[4]
The SiC powder according to any one of [1] to [3], wherein D90 in the volume-based cumulative particle size distribution measured by a laser diffraction method is 100 μm or less.
[5]
The SiC powder according to any one of [1] to [4], wherein the β-SiC stacking defect contained in the powder is 5% or less.
[6]
The SiC powder according to any one of [1] to [5], wherein the β-SiC stacking defect contained in the powder is more than 2%.
[7]
The SiC powder according to any one of [1] to [6], which further contains one or both of metallic silicon and metallic silicide.
[8]
Any one of [1] to [7] containing one or more metal elements selected from the group consisting of Ni, Al, B, N, Ga, Ge, Ti, Cu, Co and Zr. The SiC powder according to.
[9]
The SiC powder according to [8], wherein the total concentration of the metal elements in the powder is 6% by mass or less.
[10]
A process of molding a mixture containing a SiC raw material powder and a metal powder to prepare a molded product, and
A step of firing the molded product at a temperature of 1800 ° C. or lower in an inert atmosphere to obtain a fired product containing β-SiC.
A step of crushing the fired body to obtain a crushed fired body, and
A step of classifying the crushed fired body to obtain a powder having a D50 of 8 to 35 μm and a D10 of 5 μm or more in the volume-based cumulative particle size distribution measured by a laser diffraction method.
A method for producing a SiC powder containing.
[11]
The method for producing SiC powder according to [10], wherein the powder has an integrated volume of particles having a particle size of 5 μm or less in a volume-based cumulative particle size distribution measured by a laser diffraction method of 7% or less.
[12]
The method for producing a SiC powder according to [10] or [11], wherein the powder has a D50 of 15 to 35 μm and a D10 of 7 to 20 μm in a volume-based cumulative particle size distribution measured by a laser diffraction method.
[13]
The method for producing a SiC powder according to any one of [10] to [12], wherein the powder has a D90 of 100 μm or less in a volume-based cumulative particle size distribution measured by a laser diffraction method.
[14]
The metal powder contains one or more metal particles selected from the group consisting of Ni, Al, B, N, Ga, Ge, Ti, Cu, Co and Zr [10] to [13]. The method for producing SiC powder according to any one of the above.
[15]
The method for producing SiC powder according to any one of [10] to [14], wherein the fired body has a porosity of 35 to 80%.
[16]
The method for producing SiC powder according to any one of [10] to [15], wherein the fired body has an average pore diameter of 5 to 300 μm.
[17]
By forming and drying the clay, the outer peripheral side wall and a plurality of cells which are arranged on the inner peripheral side of the outer peripheral side wall and extend from the first bottom surface to the second bottom surface to serve as a fluid flow path are formed. The process of obtaining a columnar honeycomb molded body having a partition wall,
The electrode portion forming paste is applied to the first region and the second region of the side surface of the honeycomb molded product or the honeycomb molded product obtained by firing, respectively, and the electrode portion is formed. A step of forming an electrode portion by drying and firing the paste to form a pair of electrode portions is provided.
One or both of the clay and the electrode portion-forming paste contains the SiC powder according to any one of [1] to [9].
A method for manufacturing an electrically heated honeycomb structure.
[18]
An electrically heated honeycomb structure obtained by the production method according to [17].
[19]
An electrically heated honeycomb structure containing the SiC powder according to any one of [1] to [9].
β-SiCを70質量%以上含有し、
レーザー回折法により測定される体積基準の累積粒度分布におけるD50が8~35μmであり、D10が5μm以上であるSiC粉末。
[2]
レーザー回折法により測定される体積基準の累積粒度分布における粒度5μm以下の粒子の積算体積が7%以下である[1]に記載のSiC粉末。
[3]
レーザー回折法により測定される体積基準の累積粒度分布におけるD50が15~35μmであり、D10が7~20μmである[1]又は[2]に記載のSiC粉末。
[4]
レーザー回折法により測定される体積基準の累積粒度分布におけるD90が100μm以下である[1]~[3]の何れか一項に記載のSiC粉末。
[5]
前記粉末中に含まれるβ-SiCの積層欠陥が5%以下である[1]~[4]の何れか一項に記載のSiC粉末。
[6]
前記粉末中に含まれるβ-SiCの積層欠陥が2%超である[1]~[5]の何れか一項に記載のSiC粉末。
[7]
金属珪素及び金属シリサイドの一方又は両方を更に含有する[1]~[6]の何れか一項に記載のSiC粉末。
[8]
Ni、Al、B、N、Ga、Ge、Ti、Cu、Co及びZrよりなる群から選択される1種又は2種以上の金属元素を含有する[1]~[7]の何れか一項に記載のSiC粉末。
[9]
前記粉末中の前記金属元素の合計濃度が6質量%以下である[8]に記載のSiC粉末。
[10]
SiC化原料粉末及び金属粉末を含む混合物を成形して成形体を作製する工程と、
前記成形体を不活性雰囲気下、1800℃以下の温度で焼成してβ-SiCを含有する焼成体を得る工程と、
前記焼成体を粉砕して粉砕された焼成体を得る工程と、
前記粉砕された焼成体を分級して、レーザー回折法により測定される体積基準の累積粒度分布におけるD50が8~35μmであり、D10が5μm以上である粉末を得る工程と、
を含むSiC粉末の製造方法。
[11]
前記粉末は、レーザー回折法により測定される体積基準の累積粒度分布における粒度5μm以下の粒子の積算体積が7%以下である[10]に記載のSiC粉末の製造方法。
[12]
前記粉末は、レーザー回折法により測定される体積基準の累積粒度分布におけるD50が15~35μmであり、D10が7~20μmである[10]又は[11]に記載のSiC粉末の製造方法。
[13]
前記粉末は、レーザー回折法により測定される体積基準の累積粒度分布におけるD90が100μm以下である[10]~[12]の何れか一項に記載のSiC粉末の製造方法。
[14]
前記金属粉末は、Ni、Al、B、N、Ga、Ge、Ti、Cu、Co及びZrよりなる群から選択される1種又は2種以上の金属粒子を含有する[10]~[13]の何れか一項に記載のSiC粉末の製造方法。
[15]
前記焼成体の気孔率が35~80%である[10]~[14]の何れか一項に記載のSiC粉末の製造方法。
[16]
前記焼成体の平均気孔径が5~300μmである[10]~[15]の何れか一項に記載のSiC粉末の製造方法。
[17]
坏土を成形及び乾燥することにより、外周側壁と、当該外周側壁よりも内周側に配設され、第一底面から第二底面まで延び、流体の流路となる複数のセルを区画形成する隔壁とを有する柱状のハニカム成形体を得る工程と、
前記ハニカム成形体又は前記ハニカム成形体を焼成して得られたハニカム焼成体の側面の第一の領域及び第二の領域に、電極部形成ペーストをそれぞれ塗工し、塗工した前記電極部形成ペーストを乾燥及び焼成して、一対の電極部を形成する電極部形成工程を備え、
前記坏土及び前記電極部形成ペーストの一方又は両方が、[1]~[9]の何れか一項に記載のSiC粉末を含む、
電気加熱式ハニカム構造体の製造方法。
[18]
[17]に記載の製造方法によって得られた電気加熱式ハニカム構造体。
[19]
[1]~[9]の何れか一項に記載のSiC粉末を含む、電気加熱式ハニカム構造体。 [1]
Contains 70% by mass or more of β-SiC
A SiC powder having a D50 of 8 to 35 μm and a D10 of 5 μm or more in a volume-based cumulative particle size distribution measured by a laser diffraction method.
[2]
The SiC powder according to [1], wherein the cumulative volume of particles having a particle size of 5 μm or less in the volume-based cumulative particle size distribution measured by a laser diffraction method is 7% or less.
[3]
The SiC powder according to [1] or [2], wherein D50 is 15 to 35 μm and D10 is 7 to 20 μm in the volume-based cumulative particle size distribution measured by the laser diffraction method.
[4]
The SiC powder according to any one of [1] to [3], wherein D90 in the volume-based cumulative particle size distribution measured by a laser diffraction method is 100 μm or less.
[5]
The SiC powder according to any one of [1] to [4], wherein the β-SiC stacking defect contained in the powder is 5% or less.
[6]
The SiC powder according to any one of [1] to [5], wherein the β-SiC stacking defect contained in the powder is more than 2%.
[7]
The SiC powder according to any one of [1] to [6], which further contains one or both of metallic silicon and metallic silicide.
[8]
Any one of [1] to [7] containing one or more metal elements selected from the group consisting of Ni, Al, B, N, Ga, Ge, Ti, Cu, Co and Zr. The SiC powder according to.
[9]
The SiC powder according to [8], wherein the total concentration of the metal elements in the powder is 6% by mass or less.
[10]
A process of molding a mixture containing a SiC raw material powder and a metal powder to prepare a molded product, and
A step of firing the molded product at a temperature of 1800 ° C. or lower in an inert atmosphere to obtain a fired product containing β-SiC.
A step of crushing the fired body to obtain a crushed fired body, and
A step of classifying the crushed fired body to obtain a powder having a D50 of 8 to 35 μm and a D10 of 5 μm or more in the volume-based cumulative particle size distribution measured by a laser diffraction method.
A method for producing a SiC powder containing.
[11]
The method for producing SiC powder according to [10], wherein the powder has an integrated volume of particles having a particle size of 5 μm or less in a volume-based cumulative particle size distribution measured by a laser diffraction method of 7% or less.
[12]
The method for producing a SiC powder according to [10] or [11], wherein the powder has a D50 of 15 to 35 μm and a D10 of 7 to 20 μm in a volume-based cumulative particle size distribution measured by a laser diffraction method.
[13]
The method for producing a SiC powder according to any one of [10] to [12], wherein the powder has a D90 of 100 μm or less in a volume-based cumulative particle size distribution measured by a laser diffraction method.
[14]
The metal powder contains one or more metal particles selected from the group consisting of Ni, Al, B, N, Ga, Ge, Ti, Cu, Co and Zr [10] to [13]. The method for producing SiC powder according to any one of the above.
[15]
The method for producing SiC powder according to any one of [10] to [14], wherein the fired body has a porosity of 35 to 80%.
[16]
The method for producing SiC powder according to any one of [10] to [15], wherein the fired body has an average pore diameter of 5 to 300 μm.
[17]
By forming and drying the clay, the outer peripheral side wall and a plurality of cells which are arranged on the inner peripheral side of the outer peripheral side wall and extend from the first bottom surface to the second bottom surface to serve as a fluid flow path are formed. The process of obtaining a columnar honeycomb molded body having a partition wall,
The electrode portion forming paste is applied to the first region and the second region of the side surface of the honeycomb molded product or the honeycomb molded product obtained by firing, respectively, and the electrode portion is formed. A step of forming an electrode portion by drying and firing the paste to form a pair of electrode portions is provided.
One or both of the clay and the electrode portion-forming paste contains the SiC powder according to any one of [1] to [9].
A method for manufacturing an electrically heated honeycomb structure.
[18]
An electrically heated honeycomb structure obtained by the production method according to [17].
[19]
An electrically heated honeycomb structure containing the SiC powder according to any one of [1] to [9].
本発明の一実施形態によれば、電気抵抗率が経時的に上昇しにくいSiC粉末及びその製造方法が提供される。このSiC粉末を電気加熱式ハニカム構造体の原料として使用することにより、長期間使用しても電気抵抗が上昇しにくい、耐久性に優れた電気加熱式ハニカム構造体を得ることが可能となる。
According to one embodiment of the present invention, there is provided a SiC powder whose electrical resistivity does not easily increase with time and a method for producing the same. By using this SiC powder as a raw material for an electrically heated honeycomb structure, it is possible to obtain an electrically heated honeycomb structure having excellent durability and whose electrical resistance does not easily increase even after long-term use.
次に本発明を実施するための形態を図面を参照しながら詳細に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。
Next, a mode for carrying out the present invention will be described in detail with reference to the drawings. It is understood that the present invention is not limited to the following embodiments, and design changes, improvements, etc. may be appropriately made based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. Should be.
(1.SiC粉末)
本発明に係るSiC粉末は一実施形態において、
β-SiCを70質量%以上含有し、
レーザー回折法により測定される体積基準の累積粒度分布におけるD50が8~35μmであり、D10が5μm以上である。 (1. SiC powder)
In one embodiment, the SiC powder according to the present invention is
Contains 70% by mass or more of β-SiC
In the volume-based cumulative particle size distribution measured by the laser diffraction method, D50 is 8 to 35 μm, and D10 is 5 μm or more.
本発明に係るSiC粉末は一実施形態において、
β-SiCを70質量%以上含有し、
レーザー回折法により測定される体積基準の累積粒度分布におけるD50が8~35μmであり、D10が5μm以上である。 (1. SiC powder)
In one embodiment, the SiC powder according to the present invention is
Contains 70% by mass or more of β-SiC
In the volume-based cumulative particle size distribution measured by the laser diffraction method, D50 is 8 to 35 μm, and D10 is 5 μm or more.
(1-1 SiC粉末の粒度分布)
本発明に係るSiC粉末は一実施形態において、レーザー回折法により測定される体積基準の累積粒度分布におけるD50が8~35μmであり、D10が5μm以上である。好ましくは、D50が15~35μmであり、D10が7~20μmである。より好ましくは、D50が20~30μmであり、D10が12~20μmである。D50とは、上記で測定された累積粒度分布における累積体積50%の粒度のことである。D10とは、上記で測定された累積粒度分布における累積体積10%の粒度のことである。SiC粉末のD50が8μm以上であり、且つ、D10が5μm以上であることで、SiCの酸化が抑制され、SiC粉末自体の電気抵抗率が経時的に上昇しにくくなり、これを原料粉として製造した焼成体の電気抵抗率の経時的な上昇が抑制されるという利点が得られる。また、D10が20μm以下であったり、D50が35μm以下であったりすることで、成形性を確保することができる。 (1-1 Particle size distribution of SiC powder)
In one embodiment, the SiC powder according to the present invention has a D50 of 8 to 35 μm and a D10 of 5 μm or more in the volume-based cumulative particle size distribution measured by the laser diffraction method. Preferably, D50 is 15-35 μm and D10 is 7-20 μm. More preferably, D50 is 20 to 30 μm and D10 is 12 to 20 μm. D50 is a particle size of 50% of the cumulative volume in the cumulative particle size distribution measured above. D10 is a particle size of 10% of the cumulative volume in the cumulative particle size distribution measured above. When the D50 of the SiC powder is 8 μm or more and the D10 is 5 μm or more, the oxidation of SiC is suppressed and the electrical resistivity of the SiC powder itself is less likely to increase with time, and this is produced as a raw material powder. An advantage is obtained that an increase in the electrical resistivity of the fired body over time is suppressed. Further, when D10 is 20 μm or less and D50 is 35 μm or less, moldability can be ensured.
本発明に係るSiC粉末は一実施形態において、レーザー回折法により測定される体積基準の累積粒度分布におけるD50が8~35μmであり、D10が5μm以上である。好ましくは、D50が15~35μmであり、D10が7~20μmである。より好ましくは、D50が20~30μmであり、D10が12~20μmである。D50とは、上記で測定された累積粒度分布における累積体積50%の粒度のことである。D10とは、上記で測定された累積粒度分布における累積体積10%の粒度のことである。SiC粉末のD50が8μm以上であり、且つ、D10が5μm以上であることで、SiCの酸化が抑制され、SiC粉末自体の電気抵抗率が経時的に上昇しにくくなり、これを原料粉として製造した焼成体の電気抵抗率の経時的な上昇が抑制されるという利点が得られる。また、D10が20μm以下であったり、D50が35μm以下であったりすることで、成形性を確保することができる。 (1-1 Particle size distribution of SiC powder)
In one embodiment, the SiC powder according to the present invention has a D50 of 8 to 35 μm and a D10 of 5 μm or more in the volume-based cumulative particle size distribution measured by the laser diffraction method. Preferably, D50 is 15-35 μm and D10 is 7-20 μm. More preferably, D50 is 20 to 30 μm and D10 is 12 to 20 μm. D50 is a particle size of 50% of the cumulative volume in the cumulative particle size distribution measured above. D10 is a particle size of 10% of the cumulative volume in the cumulative particle size distribution measured above. When the D50 of the SiC powder is 8 μm or more and the D10 is 5 μm or more, the oxidation of SiC is suppressed and the electrical resistivity of the SiC powder itself is less likely to increase with time, and this is produced as a raw material powder. An advantage is obtained that an increase in the electrical resistivity of the fired body over time is suppressed. Further, when D10 is 20 μm or less and D50 is 35 μm or less, moldability can be ensured.
本発明に係るSiC粉末は一実施形態において、レーザー回折法により測定される体積基準の累積粒度分布における粒度5μm以下の粒子の積算体積が7%以下である。D50及びD10に加えて、粒度5μm以下の粒子の積算体積が少ないことで、SiCの酸化が更に抑制され、SiC粉末自体の電気抵抗率が経時的に上昇しにくくなる効果が一層向上し、これを原料粉として製造した焼成体の電気抵抗率の経時的な上昇が更に抑制されるという利点が得られる。粒度5μm以下の粒子の積算体積は好ましくは5%以下であり、より好ましくは2%以下であり、更により好ましくは1%以下である。
In one embodiment, the SiC powder according to the present invention has an integrated volume of particles having a particle size of 5 μm or less in a volume-based cumulative particle size distribution measured by a laser diffraction method of 7% or less. In addition to D50 and D10, the small integrated volume of particles having a particle size of 5 μm or less further suppresses the oxidation of SiC, further improving the effect of making it difficult for the electrical resistivity of the SiC powder itself to increase over time. It is possible to obtain an advantage that an increase in the electrical resistivity of the fired product produced using the above as a raw material powder with time is further suppressed. The integrated volume of particles having a particle size of 5 μm or less is preferably 5% or less, more preferably 2% or less, and even more preferably 1% or less.
本発明に係るSiC粉末は一実施形態において、レーザー回折法により測定される体積基準の累積粒度分布におけるD90が100μm以下である。SiC粉末のD90が100μm以下であることで、SiC粉末の成形性が向上する。SiC粉末のD90は好ましくは80μm以下であり、より好ましくは60μm以下であり、更により好ましくは50μm以下である。D90とは、上記で測定された累積粒度分布における累積体積90%の粒度のことである。
In one embodiment, the SiC powder according to the present invention has a D90 of 100 μm or less in a volume-based cumulative particle size distribution measured by a laser diffraction method. When the D90 of the SiC powder is 100 μm or less, the moldability of the SiC powder is improved. The D90 of the SiC powder is preferably 80 μm or less, more preferably 60 μm or less, and even more preferably 50 μm or less. D90 is a particle size of 90% of the cumulative volume in the cumulative particle size distribution measured above.
(1-2 SiC粉末の組成)
本発明に係るSiC粉末は一実施形態において、β-SiCを70質量%以上含有する。SiC粉末がβ-SiCを主成分とすることで、SiC粉末自体の初期の電気抵抗率を低く抑えることができ、これを原料粉として製造した焼成体の初期の電気抵抗率を低くすることができる。SiC粉末は好ましくはβ-SiCを75質量%以上含有し、より好ましくはβ-SiCを80質量%以上含有する。SiC粉末中のβ-SiCの含有濃度に上限はなく、実質的に100質量%とすることもできるが、積層欠陥を抑制するために後述する金属元素を添加することや、未反応原料の残留を考慮すると、SiC粉末中のβ-SiCの濃度は90質量%以下であるのが通常であり、85質量%以下であることが典型的である。 (1-2 SiC powder composition)
In one embodiment, the SiC powder according to the present invention contains 70% by mass or more of β-SiC. Since the SiC powder contains β-SiC as a main component, the initial electrical resistivity of the SiC powder itself can be suppressed to a low level, and the initial electrical resistivity of a fired product produced using this as a raw material powder can be lowered. it can. The SiC powder preferably contains 75% by mass or more of β-SiC, and more preferably contains 80% by mass or more of β-SiC. There is no upper limit to the concentration of β-SiC in the SiC powder, and it can be substantially 100% by mass. However, in order to suppress stacking defects, a metal element described later may be added, or unreacted raw materials remain. In consideration of the above, the concentration of β-SiC in the SiC powder is usually 90% by mass or less, and typically 85% by mass or less.
本発明に係るSiC粉末は一実施形態において、β-SiCを70質量%以上含有する。SiC粉末がβ-SiCを主成分とすることで、SiC粉末自体の初期の電気抵抗率を低く抑えることができ、これを原料粉として製造した焼成体の初期の電気抵抗率を低くすることができる。SiC粉末は好ましくはβ-SiCを75質量%以上含有し、より好ましくはβ-SiCを80質量%以上含有する。SiC粉末中のβ-SiCの含有濃度に上限はなく、実質的に100質量%とすることもできるが、積層欠陥を抑制するために後述する金属元素を添加することや、未反応原料の残留を考慮すると、SiC粉末中のβ-SiCの濃度は90質量%以下であるのが通常であり、85質量%以下であることが典型的である。 (1-2 SiC powder composition)
In one embodiment, the SiC powder according to the present invention contains 70% by mass or more of β-SiC. Since the SiC powder contains β-SiC as a main component, the initial electrical resistivity of the SiC powder itself can be suppressed to a low level, and the initial electrical resistivity of a fired product produced using this as a raw material powder can be lowered. it can. The SiC powder preferably contains 75% by mass or more of β-SiC, and more preferably contains 80% by mass or more of β-SiC. There is no upper limit to the concentration of β-SiC in the SiC powder, and it can be substantially 100% by mass. However, in order to suppress stacking defects, a metal element described later may be added, or unreacted raw materials remain. In consideration of the above, the concentration of β-SiC in the SiC powder is usually 90% by mass or less, and typically 85% by mass or less.
本発明に係るSiC粉末は一実施形態において、金属珪素及び金属シリサイドの一方又は両方を更に含有してもよい。金属珪素は特に必要ではないが、SiC粉末の原料として使用する金属珪素が残留し得る。また、金属シリサイドは、β-SiCの積層欠陥を抑制するために添加する後述の金属がSiC粉末の原料として使用する金属珪素と反応して形成され得る。
In one embodiment, the SiC powder according to the present invention may further contain one or both of metallic silicon and metallic silicide. Metallic silicon is not particularly required, but metallic silicon used as a raw material for SiC powder may remain. Further, the metal silicide can be formed by reacting a metal described later, which is added to suppress a stacking defect of β-SiC, with metallic silicon used as a raw material for SiC powder.
本発明に係るSiC粉末は一実施形態において、Ni、Al、B、N、Ga、Ge、Ti、Cu、Co及びZrよりなる群から選択される1種又は2種以上の金属元素を含有する。これらの中でも、Ni、Al、Cuよりなる群から選択される1種又は2種以上の金属元素を含有することがより好ましい。これらの金属元素はβ-SiCの積層欠陥を抑制することで、SiC粉末自体の初期の電気抵抗率を低く抑えるのに寄与し、そして、これを原料粉として製造した焼成体の初期の電気抵抗率を低く抑えるのに寄与することができる。
In one embodiment, the SiC powder according to the present invention contains one or more metal elements selected from the group consisting of Ni, Al, B, N, Ga, Ge, Ti, Cu, Co and Zr. .. Among these, it is more preferable to contain one or more metal elements selected from the group consisting of Ni, Al and Cu. These metal elements contribute to suppressing the initial electrical resistivity of the SiC powder itself by suppressing the stacking defects of β-SiC, and the initial electrical resistance of the fired product produced using this as the raw material powder. It can contribute to keeping the rate low.
β-SiCの積層欠陥を抑制する効果を高めるため、SiC粉末中の上記金属元素の合計濃度は、1質量%以上であることが好ましく、3質量%以上であることがより好ましい。一方で、SiC粉末中の上記金属元素の濃度が高くなりすぎると、SiC粉末を原料粉として製造した焼成体の熱膨張率が大きくなるおそれがある。そこで、SiC粉末中の上記金属元素の合計濃度は、15質量%以下であることが好ましく、10質量%以下であることがより好ましく、6質量%以下であることが更により好ましい。
In order to enhance the effect of suppressing stacking defects of β-SiC, the total concentration of the metal elements in the SiC powder is preferably 1% by mass or more, and more preferably 3% by mass or more. On the other hand, if the concentration of the metal element in the SiC powder becomes too high, the coefficient of thermal expansion of the fired body produced using the SiC powder as the raw material powder may increase. Therefore, the total concentration of the metal elements in the SiC powder is preferably 15% by mass or less, more preferably 10% by mass or less, and even more preferably 6% by mass or less.
(1-3 積層欠陥)
本発明に係るSiC粉末は一実施形態において、前記粉末中に含まれるβ-SiCの積層欠陥を5%以下とすることができ、3%以下とすることもでき、2%以下とすることもできる。一方で、本発明に係るSiC粉末は一実施形態において、前記粉末中に含まれるβ-SiCの積層欠陥を2%超とすることができ、3%以上とすることもでき、4%以上とすることもでき、例えば3~5%とすることができる。SiC粉末の粒度分布を上述した範囲に制御することで、β-SiCの積層欠陥が多くても、SiC粉末自体の電気抵抗率が経時的に上昇しにくくなる効果に悪影響を及ぼすことはほとんどない。 (1-3 Stacking defect)
In one embodiment, the SiC powder according to the present invention can have a stacking defect of β-SiC contained in the powder of 5% or less, 3% or less, or 2% or less. it can. On the other hand, in one embodiment, the SiC powder according to the present invention can have a stacking defect of β-SiC contained in the powder of more than 2%, 3% or more, and 4% or more. It can also be, for example, 3 to 5%. By controlling the particle size distribution of the SiC powder within the above range, even if there are many β-SiC stacking defects, there is almost no adverse effect on the effect that the electrical resistivity of the SiC powder itself is unlikely to increase over time. ..
本発明に係るSiC粉末は一実施形態において、前記粉末中に含まれるβ-SiCの積層欠陥を5%以下とすることができ、3%以下とすることもでき、2%以下とすることもできる。一方で、本発明に係るSiC粉末は一実施形態において、前記粉末中に含まれるβ-SiCの積層欠陥を2%超とすることができ、3%以上とすることもでき、4%以上とすることもでき、例えば3~5%とすることができる。SiC粉末の粒度分布を上述した範囲に制御することで、β-SiCの積層欠陥が多くても、SiC粉末自体の電気抵抗率が経時的に上昇しにくくなる効果に悪影響を及ぼすことはほとんどない。 (1-3 Stacking defect)
In one embodiment, the SiC powder according to the present invention can have a stacking defect of β-SiC contained in the powder of 5% or less, 3% or less, or 2% or less. it can. On the other hand, in one embodiment, the SiC powder according to the present invention can have a stacking defect of β-SiC contained in the powder of more than 2%, 3% or more, and 4% or more. It can also be, for example, 3 to 5%. By controlling the particle size distribution of the SiC powder within the above range, even if there are many β-SiC stacking defects, there is almost no adverse effect on the effect that the electrical resistivity of the SiC powder itself is unlikely to increase over time. ..
ここで、β-SiCの積層欠陥について説明する。まず、積層欠陥とは、面状の格子欠陥(面欠陥)の一種であり、完全結晶が原子面の周期的な積み重ねによって作られていると考えるとき、この積み重ねの規則性(順序)に乱れを生じていることをいう。本明細書において、β-SiCの積層欠陥(%)は、下記式(1)によって算出される値のことをいう。ここで、下記(1)におけるAは、下記式(2)によって算出される値である。
Here, the stacking defect of β-SiC will be described. First, a stacking defect is a kind of planar lattice defect (plane defect), and when it is considered that a perfect crystal is formed by periodic stacking of atomic planes, the regularity (order) of this stacking is disturbed. It means that is occurring. In the present specification, the stacking defect (%) of β-SiC refers to a value calculated by the following formula (1). Here, A in the following (1) is a value calculated by the following formula (2).
式(2)における「33.6°ピーク強度」は、X線回折(XRD)によるX線回折スペクトルにおいて、散乱角(2θ)が33.6°でのピーク強度のことである。また、「41.4°ピーク強度」は、X線回折(XRD)によるX線回折スペクトルにおいて、散乱角(2θ)が41.4°でのピーク強度のことである。上記のX線回折においては、黒鉛モノクロメーターを使用し、波長が1.54ÅのCuKα線によってX線回折分析を行う。管電圧は50kV、管電流は300mAとする。走査速度は、2θ=2°min-1とし、受光スリット(Recieving Slit)は0.3mmとする。このようにして、X線回折スペクトルにおける散乱角2θ=33.6°でのピーク強度と散乱角2θ=41.4°でのピーク強度を測定し、上記式(2)により「A」を算出し、上記式(1)に従い、β-SiCの積層欠陥を求めることができる。当該測定は、SiC粉末から複数回(例:5回以上)サンプリングして行い、その平均値を測定値とする。なお、β-SiCの積層欠陥について記載された参考文献として、例えば、下記の参考文献1及び2を挙げることができる。参考文献1:日本セラミックス協会学術論文誌 99[12],p1179-1184,(1991)。参考文献2:Journal of the Ceramic Society of Japan,106[5],p483-487,(1998)。
The "33.6 ° peak intensity" in the formula (2) is the peak intensity when the scattering angle (2θ) is 33.6 ° in the X-ray diffraction spectrum by X-ray diffraction (XRD). Further, "41.4 ° peak intensity" is the peak intensity when the scattering angle (2θ) is 41.4 ° in the X-ray diffraction spectrum by X-ray diffraction (XRD). In the above X-ray diffraction, a graphite monochromator is used, and X-ray diffraction analysis is performed with CuKα rays having a wavelength of 1.54 Å. The tube voltage is 50 kV and the tube current is 300 mA. The scanning speed is 2θ = 2 ° min -1 , and the light receiving slit (Receiving Slit) is 0.3 mm. In this way, the peak intensity at the scattering angle 2θ = 33.6 ° and the peak intensity at the scattering angle 2θ = 41.4 ° in the X-ray diffraction spectrum are measured, and “A” is calculated by the above equation (2). Then, according to the above formula (1), the stacking defect of β-SiC can be obtained. The measurement is performed by sampling the SiC powder a plurality of times (eg, 5 times or more), and the average value is used as the measured value. References 1 and 2 below can be mentioned as references describing the stacking defects of β-SiC. Reference 1: Journal of the Ceramic Society of Japan 99 [12], p1179-1184 (1991). Reference 2: Journal of the Ceramic Society of Japan, 106 [5], p483-487, (1998).
(1-4 β-SiCの結晶子サイズ)
β-SiCの結晶子サイズは、900Å以上であることが好ましく、900~500000Åであることが更に好ましく、1000~500000Åであることが特に好ましい。β-SiCの結晶子サイズは、下記式(3)によって算出される値のことをいう。下記式(3)は、シェラーの式である。通常、1個の結晶粒は複数の単結晶と見なせるような微細結晶からなり、この微細結晶を結晶子と呼ぶ。この結晶子の大きさが、上記「結晶子サイズ」である。β-SiCの結晶子サイズが900Å以上であると、SiC粉末自体の初期の電気抵抗率を低く抑えるのに寄与し、これを原料粉として製造した焼成体の初期の電気抵抗率を良好に低下させることができる。 (1-4 β-SiC crystallite size)
The crystallite size of β-SiC is preferably 900 Å or more, more preferably 900 to 500,000 Å, and particularly preferably 1000 to 500,000 Å. The crystallite size of β-SiC refers to a value calculated by the following formula (3). The following equation (3) is Scheller's equation. Usually, one crystal grain is composed of fine crystals that can be regarded as a plurality of single crystals, and these fine crystals are called crystallites. The size of this crystallite is the above-mentioned "crystallite size". When the crystallite size of β-SiC is 900 Å or more, it contributes to keeping the initial electrical resistivity of the SiC powder itself low, and the initial electrical resistivity of the fired product produced using this as a raw material powder is satisfactorily lowered. Can be made to.
β-SiCの結晶子サイズは、900Å以上であることが好ましく、900~500000Åであることが更に好ましく、1000~500000Åであることが特に好ましい。β-SiCの結晶子サイズは、下記式(3)によって算出される値のことをいう。下記式(3)は、シェラーの式である。通常、1個の結晶粒は複数の単結晶と見なせるような微細結晶からなり、この微細結晶を結晶子と呼ぶ。この結晶子の大きさが、上記「結晶子サイズ」である。β-SiCの結晶子サイズが900Å以上であると、SiC粉末自体の初期の電気抵抗率を低く抑えるのに寄与し、これを原料粉として製造した焼成体の初期の電気抵抗率を良好に低下させることができる。 (1-4 β-SiC crystallite size)
The crystallite size of β-SiC is preferably 900 Å or more, more preferably 900 to 500,000 Å, and particularly preferably 1000 to 500,000 Å. The crystallite size of β-SiC refers to a value calculated by the following formula (3). The following equation (3) is Scheller's equation. Usually, one crystal grain is composed of fine crystals that can be regarded as a plurality of single crystals, and these fine crystals are called crystallites. The size of this crystallite is the above-mentioned "crystallite size". When the crystallite size of β-SiC is 900 Å or more, it contributes to keeping the initial electrical resistivity of the SiC powder itself low, and the initial electrical resistivity of the fired product produced using this as a raw material powder is satisfactorily lowered. Can be made to.
式(3)における「t(Å)」は、結晶子サイズ(Å)を示す。「λ」は、X線波長(1.54Å)を示す。「B」は、散乱角(2θ)が35.6°のピークの半値幅を示す。「θB」は、散乱角(2θ)の1/2の値、即ち、θB=17.8°である。X線回折(XRD)によるX線回折スペクトルは、上述したβ-SiCの積層欠陥の算出方法にて説明した方法と同様の方法によって測定することができる。当該測定は、SiC粉末から複数回(例:5回以上)サンプリングして行い、その平均値を測定値とする。結晶子サイズについて記載された参考文献として、以下の参考文献3を挙げることができる。参考文献3:早稲田 嘉夫、及び松原 英一郎著,「X線構造解析 原子の配列を決める(材料学シリーズ)」,内田老鶴圃,1999年9月30日,第2版発行,p119-123。
“T (Å)” in the formula (3) indicates the crystallite size (Å). “Λ” indicates the X-ray wavelength (1.54 Å). “B” indicates the half width of the peak having a scattering angle (2θ) of 35.6 °. “Θ B ” is a value of 1/2 of the scattering angle (2θ), that is, θ B = 17.8 °. The X-ray diffraction spectrum by X-ray diffraction (XRD) can be measured by the same method as described in the above-described method for calculating β-SiC stacking defects. The measurement is performed by sampling the SiC powder a plurality of times (eg, 5 times or more), and the average value is used as the measured value. Reference 3 below can be mentioned as a reference describing the crystallite size. Reference 3: Yoshio Waseda and Eiichiro Matsubara, "X-ray structure analysis: Determining the arrangement of atoms (material science series)", Ryozuru Uchida, September 30, 1999, 2nd edition, p119-123.
(2.SiC粉末の製造方法)
上述した実施形態に係るSiC粉末は、例えば以下の製造方法によって製造することができる。
SiC化原料粉末及び金属粉末を含む混合物を成形して成形体を作製する工程と、
前記成形体を不活性雰囲気下、1800℃以下の温度で焼成してβ-SiCを含有する焼成体を得る工程と、
前記焼成体を粉砕して粉砕された焼成体を得る工程と、
前記粉砕された焼成体を分級して、レーザー回折法により測定される体積基準の累積粒度分布におけるD50が8~35μmであり、D10が5μm以上である粉末を得る工程と、
を含むSiC粉末の製造方法。 (2. Method for manufacturing SiC powder)
The SiC powder according to the above-described embodiment can be produced, for example, by the following production method.
A process of molding a mixture containing a SiC raw material powder and a metal powder to prepare a molded product, and
A step of firing the molded product at a temperature of 1800 ° C. or lower in an inert atmosphere to obtain a fired product containing β-SiC.
A step of crushing the fired body to obtain a crushed fired body, and
A step of classifying the crushed fired body to obtain a powder having a D50 of 8 to 35 μm and a D10 of 5 μm or more in a volume-based cumulative particle size distribution measured by a laser diffraction method.
A method for producing a SiC powder containing.
上述した実施形態に係るSiC粉末は、例えば以下の製造方法によって製造することができる。
SiC化原料粉末及び金属粉末を含む混合物を成形して成形体を作製する工程と、
前記成形体を不活性雰囲気下、1800℃以下の温度で焼成してβ-SiCを含有する焼成体を得る工程と、
前記焼成体を粉砕して粉砕された焼成体を得る工程と、
前記粉砕された焼成体を分級して、レーザー回折法により測定される体積基準の累積粒度分布におけるD50が8~35μmであり、D10が5μm以上である粉末を得る工程と、
を含むSiC粉末の製造方法。 (2. Method for manufacturing SiC powder)
The SiC powder according to the above-described embodiment can be produced, for example, by the following production method.
A process of molding a mixture containing a SiC raw material powder and a metal powder to prepare a molded product, and
A step of firing the molded product at a temperature of 1800 ° C. or lower in an inert atmosphere to obtain a fired product containing β-SiC.
A step of crushing the fired body to obtain a crushed fired body, and
A step of classifying the crushed fired body to obtain a powder having a D50 of 8 to 35 μm and a D10 of 5 μm or more in a volume-based cumulative particle size distribution measured by a laser diffraction method.
A method for producing a SiC powder containing.
まず、SiC化原料粉末及び金属粉末を含む混合物を成形して成形体を作製する。混合物には適宜、造孔材を添加してもよい。SiC化原料粉末としては、焼成後にSiCを作製可能な原料粉末であれば特に制限はないが、典型的には金属珪素粉末及び炭素質粉末の組み合わせが挙げられる。金属珪素粉末のD50は、焼成体の気孔径を制御し、粉砕しやすくするという理由から5μm以上が好ましく、15μm以上がより好ましい。また、金属珪素粉末のD50は、成形体の作りやすさの理由から300μm以下が好ましく、100μm以下がより好ましい。従って、金属珪素粉末のD50は5~300μmとすることが好ましく、15~100μmとすることがより好ましい。金属珪素粉末のD50はレーザー回折法により測定される体積基準の累積粒度分布における累積体積50%の粒度である。
First, a mixture containing SiC raw material powder and metal powder is molded to prepare a molded product. A pore-forming material may be added to the mixture as appropriate. The SiC raw material powder is not particularly limited as long as it is a raw material powder capable of producing SiC after firing, but a combination of metallic silicon powder and carbonaceous powder is typically used. The D50 of the metallic silicon powder is preferably 5 μm or more, more preferably 15 μm or more, because it controls the pore size of the fired body and facilitates pulverization. The D50 of the metallic silicon powder is preferably 300 μm or less, more preferably 100 μm or less, for the reason of ease of forming a molded product. Therefore, the D50 of the metallic silicon powder is preferably 5 to 300 μm, more preferably 15 to 100 μm. D50 of the metallic silicon powder is a particle size of 50% of the cumulative volume in the volume-based cumulative particle size distribution measured by the laser diffraction method.
金属珪素粉末の純度は好ましくは90質量%以上であり、より好ましくは95質量%以上である。金属珪素粉末中の酸素量は3.0質量%であり、より好ましくは1質量%以下である。
The purity of the metallic silicon powder is preferably 90% by mass or more, more preferably 95% by mass or more. The amount of oxygen in the metallic silicon powder is 3.0% by mass, more preferably 1% by mass or less.
炭素質粉末としては、結晶質及び非晶質の何れでも構わないが、非晶質な炭素質粉末が好ましく、カーボンブラックが特に好ましい。炭素質粉末は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよいが、SiC化しやすいという理由から、炭素質粉末としては、黒鉛(即ち、グラファイト)のような結晶質な炭素(別言すれば、結晶構造が発達している炭素)よりも、非晶質な炭素質粉末が好ましい。炭素質粉末の比表面積は、SiC化しやすいという理由から30m2/g以上が好ましく、50m2/g以上がより好ましい。また、炭素質粉末の比表面積は、上限は特に設定されないが、通常は2000m2/g以下であり、典型的には1000m2/g以下であり、より典型的には200m2/g以下である。炭素質粉末の比表面積は窒素吸着法により測定される。
The carbonaceous powder may be either crystalline or amorphous, but amorphous carbonaceous powder is preferable, and carbon black is particularly preferable. The carbonaceous powder may be used alone or in combination of two or more, but the carbonaceous powder is such as graphite (that is, graphite) because it is easily converted into SiC. Amorphous carbonaceous powder is preferable to crystalline carbon (in other words, carbon having a well-developed crystal structure). The specific surface area of the carbonaceous powder is preferably 30 m 2 / g or more, and more preferably 50 m 2 / g or more because it is easily converted into SiC. The specific surface area of the carbonaceous powder is not particularly set, but is usually 2000 m 2 / g or less, typically 1000 m 2 / g or less, and more typically 200 m 2 / g or less. is there. The specific surface area of the carbonaceous powder is measured by the nitrogen adsorption method.
更に金属珪素以外の金属粉末を使用することで、生成するβ-SiCの積層欠陥を低下させることができる。金属粉末は、限定的ではないが、Ni、Al、B、N、Ga、Ge、Ti、Cu、Co及びZrよりなる群から選択される1種又は2種以上の金属粒子を含有することが好ましい。これらの中でも、金属粉末は、Ni、Al及びCuよりなる群から選択される1種又は2種以上の金属粒子を含有することがより好ましい。
Further, by using a metal powder other than metallic silicon, it is possible to reduce the stacking defects of β-SiC to be generated. The metal powder may contain one or more metal particles selected from the group consisting of Ni, Al, B, N, Ga, Ge, Ti, Cu, Co and Zr, but not limited to. preferable. Among these, the metal powder more preferably contains one or more metal particles selected from the group consisting of Ni, Al and Cu.
炭素質粉末の純度は好ましくは95質量%以上であり、より好ましくは98質量%以上である。
The purity of the carbonaceous powder is preferably 95% by mass or more, more preferably 98% by mass or more.
SiC化原料粉末及び金属粉末を含む混合物は、例えばこれらの粉末を水と共に混合することで得ることができる。例示的には、金属珪素粉末100質量部に対して、炭素質粉末が20~40質量部となるように混合することが好ましく、25~35質量部となるように混合することがより好ましく、30~35質量部となるように混合することが更により好ましい。また、金属珪素粉末100原子数に対して、金属珪素以外の金属粉末が1~10原子数となるように混合することが好ましく、3~8原子数となるように混合することがより好ましく、3~5原子数となるように混合することが更により好ましい。また、金属珪素粉末、炭素質粉末、及び金属珪素以外の金属粉末の合計質量を100質量部としたときに、水を20~100質量部添加することが好ましい。
A mixture containing a SiC raw material powder and a metal powder can be obtained, for example, by mixing these powders with water. Illustratively, it is preferable to mix the carbonaceous powder so as to be 20 to 40 parts by mass, and more preferably 25 to 35 parts by mass with respect to 100 parts by mass of the metallic silicon powder. It is even more preferable to mix the mixture so as to have 30 to 35 parts by mass. Further, it is preferable to mix metal powders other than metallic silicon so as to have 1 to 10 atomic numbers with respect to 100 atomic numbers of metallic silicon powder, and more preferably to mix so as to have 3 to 8 atomic numbers. It is even more preferable to mix them so that the number of atoms is 3 to 5. Further, when the total mass of the metallic silicon powder, the carbonaceous powder, and the metal powder other than the metallic silicon is 100 parts by mass, it is preferable to add 20 to 100 parts by mass of water.
混合方法には特に制限はないが、例えば、縦型の撹拌機を用いることができる。得られた混合物をプレス成形、押出成形等により成形して成形体を作製する。成形体の形状には特に制限はないが、円柱、円盤、角盤等が挙げられる。成形体は乾燥することが好ましく、例えば、乾燥温度で50~100℃で乾燥することができる。
The mixing method is not particularly limited, but for example, a vertical stirrer can be used. The obtained mixture is molded by press molding, extrusion molding or the like to prepare a molded product. The shape of the molded product is not particularly limited, and examples thereof include a cylinder, a disk, and a square disk. The molded product is preferably dried, for example, it can be dried at a drying temperature of 50 to 100 ° C.
次いで、前記成形体を不活性雰囲気下、1800℃以下の温度で焼成してβ-SiCを含有する焼成体を得る。成形体の焼成は、酸化防止のためにアルゴンなどの不活性雰囲気又は真空中で行うことが好ましい。焼成温度は、α-SiCの生成を抑制し、β-SiCを優先的に生成するという観点から、1800℃以下の温度とすることが好ましく、1300~1500℃がより好ましい。焼成時間は例えば1~20時間とすることができる。一般的に、当該方法で作製されたSiCは、反応焼結SiCと呼ばれている。反応焼結SiCは、原料間の反応を利用して生成させたSiCである。
Next, the molded product is fired at a temperature of 1800 ° C. or lower in an inert atmosphere to obtain a fired product containing β-SiC. The molding is preferably fired in an inert atmosphere such as argon or in vacuum to prevent oxidation. The firing temperature is preferably 1800 ° C. or lower, and more preferably 1300 to 1500 ° C., from the viewpoint of suppressing the formation of α-SiC and preferentially producing β-SiC. The firing time can be, for example, 1 to 20 hours. Generally, the SiC produced by this method is called reaction-sintered SiC. The reaction-sintered SiC is SiC generated by utilizing the reaction between raw materials.
焼成体は、粉砕しやすいという理由により、多孔質であることが好ましい。具体的には焼成体の気孔率は、粉砕しやすさの観点から、35%以上であることが好ましく、40%以上であることがより好ましい。また、焼成体の気孔率に上限は特段設定されないが、成形体の作製容易性や形状保持の観点から、80%以下であることが好ましく、75%以下であることがより好ましい。従って、一実施形態において、焼成体の気孔率は35%~80%とすることができ、40~75%とすることが好ましい。焼成体の気孔率は例えば成形圧を変化させる方法によって制御することができる。焼成体の気孔率を上げるには造孔材を添加したり、成形圧を低くしたりすればよく、逆に焼成体の気孔率を下げるには成形圧を高くすればよい。
The fired body is preferably porous because it is easy to crush. Specifically, the porosity of the fired body is preferably 35% or more, and more preferably 40% or more, from the viewpoint of ease of pulverization. Further, although the upper limit of the porosity of the fired body is not particularly set, it is preferably 80% or less, and more preferably 75% or less, from the viewpoint of ease of manufacturing the molded body and shape retention. Therefore, in one embodiment, the porosity of the fired body can be 35% to 80%, preferably 40 to 75%. The porosity of the fired body can be controlled, for example, by a method of changing the molding pressure. To increase the porosity of the fired body, a pore-forming material may be added or the molding pressure may be lowered, and conversely, to reduce the porosity of the fired body, the molding pressure may be increased.
また、焼成体の平均気孔径は、粉砕しやすいという理由により5μm以上であることが好ましく、10μm以上であることがより好ましい。また、焼成体の平均気孔径は、成形時に流動しやすく、成形体が得やすいという理由により300μm以下であることが好ましく、150μm以下であることがより好ましい。従って、一実施形態において、焼成体の平均気孔径は5~300μmとすることができ、10~150μmとすることが好ましい。焼成体の平均気孔径は例えば、原料である金属珪素粉末及び/又は造孔材の粒径を変える方法によって制御することができる。焼成体の平均気孔径を大きくするには当該粒径を大きくすればよく、逆に焼成体の平均気孔径を小さくするには当該粒径を小さくすればよい。
Further, the average pore diameter of the fired body is preferably 5 μm or more, and more preferably 10 μm or more because it is easy to pulverize. Further, the average pore diameter of the fired body is preferably 300 μm or less, and more preferably 150 μm or less because it easily flows during molding and the molded body is easily obtained. Therefore, in one embodiment, the average pore diameter of the fired body can be 5 to 300 μm, preferably 10 to 150 μm. The average pore diameter of the fired body can be controlled, for example, by changing the particle size of the metal silicon powder and / or the pore-forming material as a raw material. To increase the average pore diameter of the fired body, the particle size may be increased, and conversely, to decrease the average pore diameter of the fired body, the particle size may be reduced.
次いで、このようにして得られた焼成体を粉砕して、粉砕された焼成体を得る。粉砕方法には特に制限はないが、例えば衝撃式粉砕機、乳鉢によって粉砕することができる。粉砕しただけでは粒度分布の制御がなされていないため、粉砕された焼成体を、篩、空気分級機などによって分級し、所望の粒度分布をもつSiC粉末を得る。SiC粉末は、β-SiCの他、金属珪素、金属珪素以外の金属、及び金属シリサイドを含有し得る。
Next, the fired body thus obtained is crushed to obtain a crushed fired body. The crushing method is not particularly limited, but crushing can be performed by, for example, an impact crusher or a mortar. Since the particle size distribution is not controlled only by crushing, the crushed fired body is classified by a sieve, an air classifier, or the like to obtain a SiC powder having a desired particle size distribution. In addition to β-SiC, the SiC powder may contain metallic silicon, metals other than metallic silicon, and metal silicide.
(3.電気加熱式ハニカム構造体の製造方法)
本発明に係るSiC粉末を原料として用いることで、例えば電気加熱式ハニカム構造体を製造することができる。
従って、本発明は一実施形態において、
坏土を成形及び乾燥することにより、外周側壁と、当該外周側壁よりも内周側に配設され、第一底面から第二底面まで延び、流体の流路となる複数のセルを区画形成する隔壁とを有する柱状のハニカム成形体を得る工程と、
前記ハニカム成形体又は前記ハニカム成形体を焼成して得られたハニカム焼成体の側面の第一の領域及び第二の領域に、電極部形成ペーストをそれぞれ塗工し、塗工した前記電極部形成ペーストを乾燥及び焼成して、一対の電極部を形成する電極部形成工程を備え、
前記坏土及び前記電極部形成ペーストの一方又は両方が、上述した本発明に係るSiC粉末を含む、
電気加熱式ハニカム構造体の製造方法を提供する。 (3. Manufacturing method of electrically heated honeycomb structure)
By using the SiC powder according to the present invention as a raw material, for example, an electrically heated honeycomb structure can be manufactured.
Therefore, in one embodiment, the present invention
By forming and drying the clay, the outer peripheral side wall and a plurality of cells which are arranged on the inner peripheral side of the outer peripheral side wall and extend from the first bottom surface to the second bottom surface to serve as a fluid flow path are formed. The process of obtaining a columnar honeycomb molded body having a partition wall,
The electrode portion forming paste is applied to the first region and the second region of the side surface of the honeycomb molded product or the honeycomb molded product obtained by firing, respectively, and the electrode portion is formed. A step of forming an electrode portion by drying and firing the paste to form a pair of electrode portions is provided.
One or both of the clay and the electrode portion-forming paste contains the SiC powder according to the present invention described above.
Provided is a method for manufacturing an electrically heated honeycomb structure.
本発明に係るSiC粉末を原料として用いることで、例えば電気加熱式ハニカム構造体を製造することができる。
従って、本発明は一実施形態において、
坏土を成形及び乾燥することにより、外周側壁と、当該外周側壁よりも内周側に配設され、第一底面から第二底面まで延び、流体の流路となる複数のセルを区画形成する隔壁とを有する柱状のハニカム成形体を得る工程と、
前記ハニカム成形体又は前記ハニカム成形体を焼成して得られたハニカム焼成体の側面の第一の領域及び第二の領域に、電極部形成ペーストをそれぞれ塗工し、塗工した前記電極部形成ペーストを乾燥及び焼成して、一対の電極部を形成する電極部形成工程を備え、
前記坏土及び前記電極部形成ペーストの一方又は両方が、上述した本発明に係るSiC粉末を含む、
電気加熱式ハニカム構造体の製造方法を提供する。 (3. Manufacturing method of electrically heated honeycomb structure)
By using the SiC powder according to the present invention as a raw material, for example, an electrically heated honeycomb structure can be manufactured.
Therefore, in one embodiment, the present invention
By forming and drying the clay, the outer peripheral side wall and a plurality of cells which are arranged on the inner peripheral side of the outer peripheral side wall and extend from the first bottom surface to the second bottom surface to serve as a fluid flow path are formed. The process of obtaining a columnar honeycomb molded body having a partition wall,
The electrode portion forming paste is applied to the first region and the second region of the side surface of the honeycomb molded product or the honeycomb molded product obtained by firing, respectively, and the electrode portion is formed. A step of forming an electrode portion by drying and firing the paste to form a pair of electrode portions is provided.
One or both of the clay and the electrode portion-forming paste contains the SiC powder according to the present invention described above.
Provided is a method for manufacturing an electrically heated honeycomb structure.
(3-1 ハニカム成形体の作製工程)
本工程では、坏土を成形及び乾燥することにより、外周側壁と、当該外周側壁よりも内周側に配設され、第一底面から第二底面まで延び、流体の流路となる複数のセルを区画形成する隔壁とを有する柱状のハニカム成形体を得る。ハニカム成形体の作製は、公知のハニカム構造体の製造方法におけるハニカム成形体の作製方法に準じて行うことができる。例えば、まず、SiC粉末(炭化珪素粉末)及び金属珪素粉末等のセラミックス原料の他に、バインダ、界面活性剤、造孔材、水等を混合して成形原料を作製する。一実施形態においては、SiC粉末の少なくとも一部に、上述した本発明に係るSiC粉末を使用することができる。また、別の一実施形態においては、SiC粉末として上述した本発明に係るSiC粉末のみを使用することができる。なお、金属珪素粉末は、ハニカム構造部の材質を、珪素-炭化珪素複合材とする場合に添加する必要があるが、ハニカム構造部の材質を実質的に炭化珪素とする場合には、添加する必要はない。 (3-1 Manufacturing process of honeycomb molded product)
In this step, by molding and drying the clay, a plurality of cells are arranged on the outer peripheral side wall and the inner peripheral side of the outer peripheral side wall, extend from the first bottom surface to the second bottom surface, and serve as a fluid flow path. A columnar honeycomb molded body having a partition forming a partition is obtained. The honeycomb molded body can be produced according to the method for producing a honeycomb molded body in the known method for producing a honeycomb structure. For example, first, in addition to ceramic raw materials such as SiC powder (silicon carbide powder) and metallic silicon powder, a binder, a surfactant, a pore-forming material, water, and the like are mixed to prepare a molding raw material. In one embodiment, the above-mentioned SiC powder according to the present invention can be used as at least a part of the SiC powder. Further, in another embodiment, only the SiC powder according to the present invention described above can be used as the SiC powder. The metallic silicon powder needs to be added when the material of the honeycomb structure is a silicon-silicon carbide composite material, but is added when the material of the honeycomb structure is substantially silicon carbide. There is no need.
本工程では、坏土を成形及び乾燥することにより、外周側壁と、当該外周側壁よりも内周側に配設され、第一底面から第二底面まで延び、流体の流路となる複数のセルを区画形成する隔壁とを有する柱状のハニカム成形体を得る。ハニカム成形体の作製は、公知のハニカム構造体の製造方法におけるハニカム成形体の作製方法に準じて行うことができる。例えば、まず、SiC粉末(炭化珪素粉末)及び金属珪素粉末等のセラミックス原料の他に、バインダ、界面活性剤、造孔材、水等を混合して成形原料を作製する。一実施形態においては、SiC粉末の少なくとも一部に、上述した本発明に係るSiC粉末を使用することができる。また、別の一実施形態においては、SiC粉末として上述した本発明に係るSiC粉末のみを使用することができる。なお、金属珪素粉末は、ハニカム構造部の材質を、珪素-炭化珪素複合材とする場合に添加する必要があるが、ハニカム構造部の材質を実質的に炭化珪素とする場合には、添加する必要はない。 (3-1 Manufacturing process of honeycomb molded product)
In this step, by molding and drying the clay, a plurality of cells are arranged on the outer peripheral side wall and the inner peripheral side of the outer peripheral side wall, extend from the first bottom surface to the second bottom surface, and serve as a fluid flow path. A columnar honeycomb molded body having a partition forming a partition is obtained. The honeycomb molded body can be produced according to the method for producing a honeycomb molded body in the known method for producing a honeycomb structure. For example, first, in addition to ceramic raw materials such as SiC powder (silicon carbide powder) and metallic silicon powder, a binder, a surfactant, a pore-forming material, water, and the like are mixed to prepare a molding raw material. In one embodiment, the above-mentioned SiC powder according to the present invention can be used as at least a part of the SiC powder. Further, in another embodiment, only the SiC powder according to the present invention described above can be used as the SiC powder. The metallic silicon powder needs to be added when the material of the honeycomb structure is a silicon-silicon carbide composite material, but is added when the material of the honeycomb structure is substantially silicon carbide. There is no need.
金属珪素粉末の含有量は、特に制限はないが、SiC粉末及び金属珪素粉末の合計質量を100質量部としたときに、15~50質量部とすることができる。また、金属珪素粉末のD50は、特に制限はないが、3~50μmとすることができる。金属珪素粉末のD50はレーザー回折法により測定される体積基準の累積粒度分布における累積体積50%の粒度である。なお、SiC粉末のD50は、先述した通り、8~35μmとするのが好ましい。
The content of the metallic silicon powder is not particularly limited, but can be 15 to 50 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass. The D50 of the metallic silicon powder is not particularly limited, but can be 3 to 50 μm. D50 of the metallic silicon powder is a particle size of 50% of the cumulative volume in the volume-based cumulative particle size distribution measured by the laser diffraction method. As described above, the D50 of the SiC powder is preferably 8 to 35 μm.
バインダとしては、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロポキシルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール等を挙げることができる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの中でも、メチルセルロースとヒドロキシプロポキシルセルロースとを併用することが好ましい。バインダの含有量は、SiC粉末及び金属珪素粉末の合計質量を100質量部としたときに、2~15質量部であることが好ましい。
Examples of the binder include methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinyl alcohol and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type. Among these, it is preferable to use methyl cellulose and hydroxypropoxyl cellulose in combination. The binder content is preferably 2 to 15 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass.
水の含有量は、SiC粉末及び金属珪素粉末の合計質量を100質量部としたときに、20~60質量部であることが好ましい。
The water content is preferably 20 to 60 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass.
界面活性剤としては、エチレングリコール、デキストリン、脂肪酸石鹸、ポリアルコール等を用いることができる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。界面活性剤の含有量は、SiC粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.1~2.0質量部であることが好ましい。
As the surfactant, ethylene glycol, dextrin, fatty acid soap, polyalcohol and the like can be used. These may be used individually by 1 type, or may be used in combination of 2 or more type. The content of the surfactant is preferably 0.1 to 2.0 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass.
造孔材としては、焼成後に気孔となるものであれば特に限定されるものではなく、例えば、グラファイト、澱粉、発泡樹脂、吸水性樹脂、シリカゲル等を挙げることができる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。造孔材の含有量は、SiC粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.5~10.0質量部であることが好ましい。造孔材のD50は、10~30μmであることが好ましい。造孔材のD50は、レーザー回折法により測定される体積基準の累積粒度分布における累積体積50%の粒度を意味する。造孔材が吸水性樹脂の場合には、造孔材の平均粒子径は吸水後の平均粒子径のことである。
The pore-forming material is not particularly limited as long as it becomes pores after firing, and examples thereof include graphite, starch, foamed resin, water-absorbent resin, and silica gel. These may be used individually by 1 type, or may be used in combination of 2 or more type. The content of the pore-forming material is preferably 0.5 to 10.0 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass. The D50 of the pore-forming material is preferably 10 to 30 μm. D50 of the pore-forming material means a particle size of 50% of the cumulative volume in the volume-based cumulative particle size distribution measured by the laser diffraction method. When the pore-forming material is a water-absorbent resin, the average particle diameter of the pore-forming material is the average particle diameter after water absorption.
次いて、得られた成形原料を混練して坏土を形成する。ハニカム成形原料を混練して坏土を形成する方法としては特に制限はなく、例えば、ニーダー、真空土練機等を用いる方法を挙げることができる。
Next, the obtained molding raw material is kneaded to form a clay. The method of kneading the honeycomb molding raw materials to form the clay is not particularly limited, and examples thereof include a method using a kneader, a vacuum clay kneader, and the like.
次いで、坏土を押出成形してハニカム成形体を作製する。押出成形に際しては、所望の全体形状、セル形状、隔壁厚み、セル密度等を有する口金を用いることができる。得られたハニカム成形体について、乾燥を行うことが好ましい。乾燥後のハニカム成形体を「ハニカム乾燥体」と称することがある。乾燥の方法は特に限定されず、例えば、マイクロ波加熱乾燥、高周波誘電加熱乾燥等の電磁波加熱方式と、熱風乾燥、過熱水蒸気乾燥等の外部加熱方式とを挙げることができる。これらの中でも、成形体全体を迅速かつ均一に、クラックが生じないように乾燥することができる点で、電磁波加熱方式で一定量の水分を乾燥させた後、残りの水分を外部加熱方式により乾燥させることが好ましい。乾燥の条件として、電磁波加熱方式にて、乾燥前の水分量に対して、30~99質量%の水分を除いた後、外部加熱方式にて、3質量%以下の水分にすることが好ましい。電磁波加熱方式としては、誘電加熱乾燥が好ましく、外部加熱方式としては、熱風乾燥が好ましい。以下、乾燥後のハニカム成形体を「ハニカム乾燥体」と称することがある。ハニカム成形体(ハニカム乾燥体)の中心軸方向長さが、所望の長さではない場合は、ハニカム成形体の両底部を切断して所望の長さとすることができる。
Next, the clay is extruded to produce a honeycomb molded body. In extrusion molding, a mouthpiece having a desired overall shape, cell shape, partition wall thickness, cell density and the like can be used. It is preferable to dry the obtained honeycomb molded product. The dried honeycomb molded body may be referred to as a "honeycomb dried body". The drying method is not particularly limited, and examples thereof include an electromagnetic wave heating method such as microwave heating drying and high frequency dielectric heating drying, and an external heating method such as hot air drying and superheated steam drying. Among these, the entire molded product can be dried quickly and uniformly without cracking, and after drying a certain amount of water by the electromagnetic wave heating method, the remaining water is dried by the external heating method. It is preferable to let it. As a condition for drying, it is preferable that after removing 30 to 99% by mass of water with respect to the amount of water before drying by an electromagnetic wave heating method, the water content is reduced to 3% by mass or less by an external heating method. As the electromagnetic wave heating method, dielectric heating drying is preferable, and as the external heating method, hot air drying is preferable. Hereinafter, the dried honeycomb molded body may be referred to as a “honeycomb dried body”. When the length in the central axis direction of the honeycomb molded body (honeycomb dried body) is not the desired length, both bottom portions of the honeycomb molded body can be cut to obtain the desired length.
(3-2 電極部形成工程)
電極部形成工程では、前記ハニカム成形体又は前記ハニカム成形体を焼成して得られたハニカム焼成体の側面の第一の領域及び第二の領域に、電極部形成ペーストをそれぞれ塗工し、塗工した前記電極部形成ペーストを乾燥及び焼成して、一対の電極部を形成する。電極部形成ペーストは、本発明に係るSiC粉末を含有することが好ましい。また、電極部形成ペースト中のSiC粉末としては、本発明に係るSiC粉末のみを含有することがより好ましい。 (3-2 Electrode part forming process)
In the electrode portion forming step, the electrode portion forming paste is applied and applied to the first region and the second region of the side surface of the honeycomb molded product or the honeycomb molded product obtained by firing the honeycomb molded product, respectively. The processed electrode portion forming paste is dried and fired to form a pair of electrode portions. The electrode portion forming paste preferably contains the SiC powder according to the present invention. Further, as the SiC powder in the electrode portion forming paste, it is more preferable to contain only the SiC powder according to the present invention.
電極部形成工程では、前記ハニカム成形体又は前記ハニカム成形体を焼成して得られたハニカム焼成体の側面の第一の領域及び第二の領域に、電極部形成ペーストをそれぞれ塗工し、塗工した前記電極部形成ペーストを乾燥及び焼成して、一対の電極部を形成する。電極部形成ペーストは、本発明に係るSiC粉末を含有することが好ましい。また、電極部形成ペースト中のSiC粉末としては、本発明に係るSiC粉末のみを含有することがより好ましい。 (3-2 Electrode part forming process)
In the electrode portion forming step, the electrode portion forming paste is applied and applied to the first region and the second region of the side surface of the honeycomb molded product or the honeycomb molded product obtained by firing the honeycomb molded product, respectively. The processed electrode portion forming paste is dried and fired to form a pair of electrode portions. The electrode portion forming paste preferably contains the SiC powder according to the present invention. Further, as the SiC powder in the electrode portion forming paste, it is more preferable to contain only the SiC powder according to the present invention.
電極部形成ペーストは、例えば、本発明に係るSiC粉末及び金属珪素粉末に加えて、バインダ、保湿剤、分散剤、水等の添加物を添加し、混練して調製することができる。典型的には、SiC粉末は骨材として機能し、金属珪素粉末は骨材同士の結合材として機能する。SiC粉末に含まれ得る金属(金属珪素、金属珪素以外の金属)及び/又は金属シリサイドも結合材として機能する。混練の方法は特に限定されず、例えば、縦型の撹拌機を用いることができる。
The electrode portion forming paste can be prepared, for example, by adding additives such as a binder, a moisturizing agent, a dispersant, and water in addition to the SiC powder and the metallic silicon powder according to the present invention, and kneading them. Typically, the SiC powder functions as an aggregate and the metallic silicon powder functions as a binder between the aggregates. Metals (metals silicon, metals other than metallic silicon) and / or metal silicides that can be contained in the SiC powder also function as binders. The kneading method is not particularly limited, and for example, a vertical stirrer can be used.
SiC粉末を金属珪素で効果的に結合するため、金属珪素粉末の含有量は、SiC粉末及び金属珪素粉末の合計質量を100質量部としたときに、5~40質量部であることが好ましく、10~30質量部であることがより好ましい。また、金属珪素粉末のD50は、SiC粉末を金属珪素で結合しやすくするという理由から1~50μmとすることが好ましく、4~20μmとすることがより好ましい。金属珪素粉末のD50は、レーザー回折法により測定される体積基準の累積粒度分布における累積体積50%の粒度を意味する。なお、SiC粉末のD50は、先述した通り、8~35μmとするのが好ましい。
In order to effectively bond the SiC powder with metallic silicon, the content of the metallic silicon powder is preferably 5 to 40 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass. More preferably, it is 10 to 30 parts by mass. Further, the D50 of the metallic silicon powder is preferably 1 to 50 μm, and more preferably 4 to 20 μm, for the reason that the SiC powder can be easily bonded with the metallic silicon. D50 of the metallic silicon powder means a particle size of 50% of the cumulative volume in the volume-based cumulative particle size distribution measured by the laser diffraction method. As described above, the D50 of the SiC powder is preferably 8 to 35 μm.
バインダとしては、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロポキシルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール等を挙げることができる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。バインダの含有量は、SiC粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.1~5.0質量部であることが好ましい。
Examples of the binder include methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropoxyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinyl alcohol and the like. These may be used individually by 1 type, or may be used in combination of 2 or more type. The binder content is preferably 0.1 to 5.0 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass.
保湿剤としては、グリセリンを挙げることができる。保湿剤の含有量は、SiC粉末及び金属珪素粉末の合計質量を100質量部としたときに、0~10質量部であることが好ましい。
Glycerin can be mentioned as a moisturizer. The content of the moisturizer is preferably 0 to 10 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass.
分散剤としては、例えば、界面活性剤として、グリセリン、エチレングリコール、デキストリン、脂肪酸石鹸、ポリアルコール、ポリアクリル酸系分散剤等を用いることができる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。界面活性剤の含有量は、SiC粉末及び金属珪素粉末の合計質量を100質量部としたときに、0.1~2.0質量部であることが好ましい。
As the dispersant, for example, glycerin, ethylene glycol, dextrin, fatty acid soap, polyalcohol, polyacrylic acid-based dispersant and the like can be used as the surfactant. These may be used individually by 1 type, or may be used in combination of 2 or more type. The content of the surfactant is preferably 0.1 to 2.0 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass.
水の含有量は、SiC粉末及び金属珪素粉末の合計質量を100質量部としたときに、15~60質量部であることが好ましい。
The water content is preferably 15 to 60 parts by mass when the total mass of the SiC powder and the metallic silicon powder is 100 parts by mass.
また、電極部形成ペーストは、気孔率を低下させ、これによって電極部の電気抵抗率を低下させるという理由から、酸化物を含有することができる。酸化物としては、特に制限はないが、B、Mg、Al、Si、P、Ti、Zr、Pb、Li、Na、Ba、Ca、Fe及びSrよりなる群から選択される1種又は2種以上の元素の酸化物が挙げられ、好ましくはB、Mg、Al、Si、P、Ti及びZrよりなる群から選択される1種又は2種以上の元素の酸化物が挙げられる。酸化物の中では、Mg、Al及びSiよりなる群から選択される1種又は2種以上の元素の酸化物が、低熱膨張の観点からより好ましい。酸化物の具体例としては、MgO、SiO2、及びAl2O3等の1種の元素の酸化物の他、MgO、SiO2及びAl2O3の化合物である2MgO・2Al2O3・5SiO2(コージェライト)や、MgO-SiO-Al2O3-B2O3のようなコージェライトを主成分とする結晶化ガラス、Al2O3及びTiO2の化合物であるAlTiO5(チタン酸アルミニウム)等の2種以上の元素の酸化物(複合酸化物)が挙げられる。高温耐久性を高める観点からは、電極部内の酸化物の少なくとも一部が結晶質であることが好ましい。酸化物は1種を単独で使用しても良いし、2種以上を組み合わせて使用しても良い。SiC粉末及び金属珪素粉末の合計体積量を100体積部としたときに、上記の酸化物を合計で1~10体積部含むことが好ましく、1~5体積部含むことがより好ましい。
In addition, the electrode portion-forming paste can contain an oxide because it lowers the porosity and thereby lowers the electrical resistivity of the electrode portion. The oxide is not particularly limited, but one or two selected from the group consisting of B, Mg, Al, Si, P, Ti, Zr, Pb, Li, Na, Ba, Ca, Fe and Sr. Oxides of the above elements can be mentioned, preferably oxides of one or more elements selected from the group consisting of B, Mg, Al, Si, P, Ti and Zr. Among the oxides, oxides of one or more elements selected from the group consisting of Mg, Al and Si are more preferable from the viewpoint of low thermal expansion. Specific examples of oxides include oxides of one element such as MgO, SiO 2 , and Al 2 O 3 , as well as 2 MgO, 2Al 2 O 3 , which are compounds of MgO, SiO 2, and Al 2 O 3. Crystallized glass containing elementite as a main component, such as 5SiO 2 (corgerite) and MgO-SiO-Al 2 O 3- B 2 O 3 , Al TiO 5 (titanium), which is a compound of Al 2 O 3 and TiO 2. Oxides (composite oxides) of two or more elements such as aluminum acid) can be mentioned. From the viewpoint of enhancing high temperature durability, it is preferable that at least a part of the oxide in the electrode portion is crystalline. One type of oxide may be used alone, or two or more types may be used in combination. When the total volume of the SiC powder and the metallic silicon powder is 100 parts by volume, the above oxides are preferably contained in a total of 1 to 10 parts by volume, and more preferably 1 to 5 parts by volume.
In addition, the electrode portion-forming paste can contain an oxide because it lowers the porosity and thereby lowers the electrical resistivity of the electrode portion. The oxide is not particularly limited, but one or two selected from the group consisting of B, Mg, Al, Si, P, Ti, Zr, Pb, Li, Na, Ba, Ca, Fe and Sr. Oxides of the above elements can be mentioned, preferably oxides of one or more elements selected from the group consisting of B, Mg, Al, Si, P, Ti and Zr. Among the oxides, oxides of one or more elements selected from the group consisting of Mg, Al and Si are more preferable from the viewpoint of low thermal expansion. Specific examples of oxides include oxides of one element such as MgO, SiO 2 , and Al 2 O 3 , as well as 2 MgO, 2Al 2 O 3 , which are compounds of MgO, SiO 2, and Al 2 O 3. Crystallized glass containing elementite as a main component, such as 5SiO 2 (corgerite) and MgO-SiO-Al 2 O 3- B 2 O 3 , Al TiO 5 (titanium), which is a compound of Al 2 O 3 and TiO 2. Oxides (composite oxides) of two or more elements such as aluminum acid) can be mentioned. From the viewpoint of enhancing high temperature durability, it is preferable that at least a part of the oxide in the electrode portion is crystalline. One type of oxide may be used alone, or two or more types may be used in combination. When the total volume of the SiC powder and the metallic silicon powder is 100 parts by volume, the above oxides are preferably contained in a total of 1 to 10 parts by volume, and more preferably 1 to 5 parts by volume.
次に、得られた電極部形成ペーストを、前記ハニカム成形体又は前記ハニカム成形体を焼成して得られたハニカム焼成体の側面の第一の領域及び第二の領域に、それぞれ塗工する。電極部形成ペーストは、前記ハニカム成形体又は前記ハニカム焼成体の前記セルの延びる方向に直交する断面において、前記第一の領域が、前記第二の領域に対して、前記ハニカム成形体又は前記ハニカム焼成体の中心を挟んで反対側に位置するように塗工することが好ましい。
Next, the obtained electrode portion forming paste is applied to the first region and the second region of the side surface of the honeycomb molded body or the honeycomb molded body obtained by firing the honeycomb molded body, respectively. The electrode portion forming paste has a cross section orthogonal to the extending direction of the cell of the honeycomb molded body or the honeycomb fired body, and the first region is the honeycomb molded body or the honeycomb with respect to the second region. It is preferable to apply the coating so that it is located on the opposite side of the center of the fired body.
電極部形成原料を前記ハニカム成形体又は前記ハニカム成形体を焼成して得られたハニカム焼成体の側面に塗工する方法は、特に限定されないが、例えば、スクリーン印刷等の印刷方法を用いることができる。塗布厚みは、限定的ではないが、25~500μmとすることができ、典型的には、75~350μmとすることができる。
The method of applying the electrode portion forming raw material to the honeycomb molded body or the side surface of the honeycomb molded body obtained by firing the honeycomb molded body is not particularly limited, but for example, a printing method such as screen printing may be used. it can. The coating thickness is not limited, but can be 25 to 500 μm, typically 75 to 350 μm.
焼成工程が1回で済むことから、乾燥後のハニカム成形体の側面に電極部形成ペーストを塗工することが好ましい。但し、乾燥させたハニカム成形体を焼成して、ハニカム焼成体を先に作製し、このハニカム焼成体の側面に電極部形成ペーストを塗工することもできる。なお、ハニカム成形体の焼成条件は、後述する電極部形成ペーストの焼成条件と同じ条件を採用することができる。
Since only one firing step is required, it is preferable to apply the electrode portion forming paste to the side surface of the dried honeycomb molded body. However, it is also possible to fire the dried honeycomb molded body to prepare the honeycomb fired body first, and then apply the electrode portion forming paste to the side surface of the honeycomb fired body. As the firing conditions of the honeycomb molded body, the same conditions as the firing conditions of the electrode portion forming paste described later can be adopted.
次に、ハニカム成形体又はハニカム焼成体の側面に塗工した電極部形成ペーストを乾燥させることが好ましい。乾燥条件は、50~120℃で、1~24時間とすることが好ましい。その後、電極部形成ペースト付きのハニカム成形体又は電極部形成ペースト付きのハニカム焼成体を焼成することにより、一対の電極部を有するハニカム構造体を作製することができる。
Next, it is preferable to dry the electrode portion forming paste coated on the side surface of the honeycomb molded body or the honeycomb fired body. The drying conditions are preferably 50 to 120 ° C. and 1 to 24 hours. Then, by firing the honeycomb molded body with the electrode portion forming paste or the honeycomb fired body with the electrode portion forming paste, a honeycomb structure having a pair of electrode portions can be produced.
乾燥後、焼成前に、バインダ等を除去するため、仮焼成を行うことが好ましい。例示的には、仮焼成は大気雰囲気において、400~500℃で、0.5~20時間行うことができる。その後の焼成条件としては、窒素、アルゴン等の不活性雰囲気において、1350~1500℃で、1~20時間加熱することが好ましい。仮焼成及び焼成の方法は特に限定されず、電気炉、ガス炉等を用いて焼成することができる。また、焼成後、耐久性向上のために、1000~1350℃で、1~10時間、酸化処理を行うことが好ましい。当該酸化処理は主に金属珪素を酸化することが目的である。SiC粉末も酸化され得るが、先述したように、本発明に係るSiC粉末は酸化されにくいので、当該酸化処理によるSiC粉末の酸化は限定的である。
It is preferable to perform temporary firing in order to remove binders and the like after drying and before firing. Illustratively, the calcination can be carried out in an air atmosphere at 400 to 500 ° C. for 0.5 to 20 hours. Subsequent firing conditions are preferably 1350 to 1500 ° C. for 1 to 20 hours in an inert atmosphere such as nitrogen or argon. The method of tentative firing and firing is not particularly limited, and firing can be performed using an electric furnace, a gas furnace, or the like. Further, after firing, it is preferable to carry out an oxidation treatment at 1000 to 1350 ° C. for 1 to 10 hours in order to improve durability. The purpose of the oxidation treatment is mainly to oxidize metallic silicon. The SiC powder can also be oxidized, but as described above, since the SiC powder according to the present invention is difficult to be oxidized, the oxidation of the SiC powder by the oxidation treatment is limited.
(4.電気加熱式ハニカム構造体)
上述した製造方法によって製造可能な電気加熱式ハニカム構造体の構造について例示的に説明する。図1は、本発明に係る電気加熱式ハニカム構造体の一実施形態を概略的に示す斜視図である。図示の実施形態に係る電気加熱式ハニカム構造体100は、外周側壁112と、外周側壁112よりも内周側に配設され、第一底面114から第二底面116まで延び、流体の流路を形成する複数のセルを区画形成する多孔質の隔壁118とを有する柱状のハニカム構造部110、及び、前記柱状のハニカム構造部110の外周側壁112の外面に接合された少なくとも一つの電極部120を備える。 (4. Electric heating type honeycomb structure)
The structure of the electrically heated honeycomb structure that can be manufactured by the above-mentioned manufacturing method will be exemplified. FIG. 1 is a perspective view schematically showing an embodiment of an electrically heated honeycomb structure according to the present invention. The electricallyheated honeycomb structure 100 according to the illustrated embodiment is arranged on the outer peripheral side wall 112 and the inner peripheral side of the outer peripheral side wall 112, and extends from the first bottom surface 114 to the second bottom surface 116 to flow a fluid flow path. A columnar honeycomb structure 110 having a porous partition wall 118 for partitioning a plurality of cells to be formed, and at least one electrode portion 120 joined to the outer surface of the outer peripheral side wall 112 of the columnar honeycomb structure 110. Be prepared.
上述した製造方法によって製造可能な電気加熱式ハニカム構造体の構造について例示的に説明する。図1は、本発明に係る電気加熱式ハニカム構造体の一実施形態を概略的に示す斜視図である。図示の実施形態に係る電気加熱式ハニカム構造体100は、外周側壁112と、外周側壁112よりも内周側に配設され、第一底面114から第二底面116まで延び、流体の流路を形成する複数のセルを区画形成する多孔質の隔壁118とを有する柱状のハニカム構造部110、及び、前記柱状のハニカム構造部110の外周側壁112の外面に接合された少なくとも一つの電極部120を備える。 (4. Electric heating type honeycomb structure)
The structure of the electrically heated honeycomb structure that can be manufactured by the above-mentioned manufacturing method will be exemplified. FIG. 1 is a perspective view schematically showing an embodiment of an electrically heated honeycomb structure according to the present invention. The electrically
各セルは、第一底面114及び第二底面116が共に開口することで第一底面114から第二底面116まで貫通していてもよい(フロースルー型ハニカム構造)。しかしながら、電気加熱式ハニカム構造体をフィルタとして使用する場合の粒状物質(PM)の捕集性能を高めるという観点から、ハニカム構造部110は、第一底面114から第二底面116まで延び、第一底面114が開口して第二底面116が目封止された複数の第1セルと、第一底面114から第二底面116まで延び、第一底面114が目封止されて第二底面116が開口する複数の第2セルとを有することが好ましい(ウォールフロー型ハニカム構造)。この場合、ハニカム構造部110は、両底面が市松模様を呈するように、第1セル及び第2セルが隔壁118を挟んで交互に隣接配置することができる。
Each cell may penetrate from the first bottom surface 114 to the second bottom surface 116 by opening both the first bottom surface 114 and the second bottom surface 116 (flow-through type honeycomb structure). However, from the viewpoint of improving the collection performance of granular substances (PM) when the electrically heated honeycomb structure is used as a filter, the honeycomb structure portion 110 extends from the first bottom surface 114 to the second bottom surface 116, and is first. A plurality of first cells in which the bottom surface 114 is opened and the second bottom surface 116 is sealed, and the first bottom surface 114 extends from the first bottom surface 114 to the second bottom surface 116, and the first bottom surface 114 is sealed and the second bottom surface 116 is sealed. It is preferable to have a plurality of second cells to be opened (wall flow type honeycomb structure). In this case, in the honeycomb structure 110, the first cell and the second cell can be alternately arranged adjacent to each other with the partition wall 118 so that both bottom surfaces have a checkered pattern.
(4-1 ハニカム構造部)
ハニカム構造部は、電気加熱に有利であるため、Si(金属珪素)及びSiC(炭化珪素)の一方又は両方を含有するセラミックスで形成することができる。Si及びSiCの一方又は両方を含有するセラミックスとしては、例えば、珪素-炭化珪素複合材、珪素-酸化物複合材、炭化珪素-酸化物複合材、及び珪素-炭化珪素-窒化珪素複合材が挙げられる。一実施形態において、ハニカム構造部を構成するSiCは本発明に係るSiC粉末に由来し、より好ましい実施形態において、ハニカム構造部を構成するSiCは実質的に本発明に係るSiC粉末のみに由来する。なお、本発明においては、Siのみで柱状のハニカム構造部が形成される場合も、焼結体である限りセラミックスと呼ぶことにする。 (4-1 Honeycomb structure)
Since the honeycomb structure is advantageous for electric heating, it can be formed of ceramics containing one or both of Si (metal silicon) and SiC (silicon carbide). Examples of ceramics containing one or both of Si and SiC include silicon-silicon carbide composite material, silicon-oxide composite material, silicon carbide-oxide composite material, and silicon-silicon carbide-silicon nitride composite material. Be done. In one embodiment, the SiC constituting the honeycomb structure is derived from the SiC powder according to the present invention, and in a more preferable embodiment, the SiC constituting the honeycomb structure is substantially derived only from the SiC powder according to the present invention. .. In the present invention, even when the columnar honeycomb structure is formed only of Si, it is referred to as ceramic as long as it is a sintered body.
ハニカム構造部は、電気加熱に有利であるため、Si(金属珪素)及びSiC(炭化珪素)の一方又は両方を含有するセラミックスで形成することができる。Si及びSiCの一方又は両方を含有するセラミックスとしては、例えば、珪素-炭化珪素複合材、珪素-酸化物複合材、炭化珪素-酸化物複合材、及び珪素-炭化珪素-窒化珪素複合材が挙げられる。一実施形態において、ハニカム構造部を構成するSiCは本発明に係るSiC粉末に由来し、より好ましい実施形態において、ハニカム構造部を構成するSiCは実質的に本発明に係るSiC粉末のみに由来する。なお、本発明においては、Siのみで柱状のハニカム構造部が形成される場合も、焼結体である限りセラミックスと呼ぶことにする。 (4-1 Honeycomb structure)
Since the honeycomb structure is advantageous for electric heating, it can be formed of ceramics containing one or both of Si (metal silicon) and SiC (silicon carbide). Examples of ceramics containing one or both of Si and SiC include silicon-silicon carbide composite material, silicon-oxide composite material, silicon carbide-oxide composite material, and silicon-silicon carbide-silicon nitride composite material. Be done. In one embodiment, the SiC constituting the honeycomb structure is derived from the SiC powder according to the present invention, and in a more preferable embodiment, the SiC constituting the honeycomb structure is substantially derived only from the SiC powder according to the present invention. .. In the present invention, even when the columnar honeycomb structure is formed only of Si, it is referred to as ceramic as long as it is a sintered body.
柱状のハニカム構造部は、電気加熱に有利であるため、Si及びSiCの合計体積割合が、60%以上であることがより好ましく、80%以上であることが更により好ましく、95%以上であることが更により好ましい。
Since the columnar honeycomb structure is advantageous for electric heating, the total volume ratio of Si and SiC is more preferably 60% or more, further preferably 80% or more, and even more preferably 95% or more. Is even more preferable.
ハニカム構造部に含有させることのできる他のセラミックスとしては、限定的ではないが、コージェライト、ムライト、ジルコン、チタン酸アルミニウム、窒化珪素、ジルコニア、スピネル、インディアライト、サフィリン、コランダム、チタニア等のセラミックスが挙げられる。これらの他のセラミックスは、1種のみを使用してもよいが、2種以上を組み合わせて使用してもよい。
Other ceramics that can be contained in the honeycomb structure are not limited, but are ceramics such as cordierite, mullite, zirconate, aluminum titanate, silicon nitride, zirconia, spinel, indialite, sapphirine, corundum, and titania. Can be mentioned. As for these other ceramics, only one kind may be used, or two or more kinds may be used in combination.
ハニカム構造部110の熱膨張率は、耐熱衝撃性の観点から、3.5~6.0ppm/Kが好ましく、3.5~4.5ppm/Kが更に好ましい。本明細書において、熱膨張率は、特に断りのない限り、JIS R1618:2002に準拠した方法により測定される25~800℃の線熱膨張係数を指す。熱膨張計としては、BrukerAXS社製の「TD5000S(商品名)」を用いることができる。
The coefficient of thermal expansion of the honeycomb structure 110 is preferably 3.5 to 6.0 ppm / K, more preferably 3.5 to 4.5 ppm / K, from the viewpoint of thermal shock resistance. In the present specification, the coefficient of thermal expansion refers to a coefficient of linear thermal expansion of 25 to 800 ° C. measured by a method according to JIS R1618: 2002, unless otherwise specified. As the thermal expansion meter, "TD5000S (trade name)" manufactured by BrukerAXS can be used.
ハニカム構造部は、一対の電極部間に電圧を印加すると通電してジュール熱により発熱することが可能である。よって、本発明に係る電気加熱式ハニカム構造体はヒーターとして好適に用いることができる。印加する電圧は12~900Vが好ましいが、印加する電圧は適宜変更可能である。
The honeycomb structure can be energized when a voltage is applied between the pair of electrodes and generate heat due to Joule heat. Therefore, the electrically heated honeycomb structure according to the present invention can be suitably used as a heater. The applied voltage is preferably 12 to 900 V, but the applied voltage can be changed as appropriate.
ハニカム構造部は、ジュール熱により発熱することができれば、その体積抵抗率については特に制限はない。ハニカム構造部の体積抵抗率は、電気加熱式ハニカム構造体を使用する用途に合わせて適宜選択すればよい。例示的には、ハニカム構造部の体積抵抗率は、0.01~200Ωcmとすることができ、0.05~50Ωcmであることが好ましく、0.1~5Ωcmであることが更に好ましい。ここでのハニカム構造部の体積抵抗率は、4端子法により室温(25℃)で測定した値である。
There is no particular limitation on the volume resistivity of the honeycomb structure as long as it can generate heat due to Joule heat. The volume resistivity of the honeycomb structure may be appropriately selected according to the application in which the electrically heated honeycomb structure is used. Illustratively, the volume resistivity of the honeycomb structure can be 0.01 to 200 Ωcm, preferably 0.05 to 50 Ωcm, and even more preferably 0.1 to 5 Ωcm. The volume resistivity of the honeycomb structure portion here is a value measured at room temperature (25 ° C.) by the 4-terminal method.
隔壁は多孔質とすることができる。この場合、ハニカム構造部の隔壁の気孔率は特に制限はないが、例えば35~60%とすることができ、35~45%であることが好ましい。気孔率は、水銀ポロシメータにより測定した値である。
The partition wall can be porous. In this case, the porosity of the partition wall of the honeycomb structure is not particularly limited, but can be, for example, 35 to 60%, preferably 35 to 45%. The porosity is a value measured by a mercury porosimeter.
ハニカム構造部の隔壁の平均細孔径は特に制限はないが、例えば2~15μmとすることができ、3~8μmであることが好ましい。平均細孔径は、水銀ポロシメータにより測定した値である。
The average pore diameter of the partition wall of the honeycomb structure is not particularly limited, but can be, for example, 2 to 15 μm, preferably 3 to 8 μm. The average pore diameter is a value measured by a mercury porosimeter.
ハニカム構造部における隔壁の厚みは、例えば0.1~0.3mmとすることができ、0.1~0.15mmであることが好ましい。
The thickness of the partition wall in the honeycomb structure can be, for example, 0.1 to 0.3 mm, preferably 0.1 to 0.15 mm.
セル密度は、セルの流路方向に直交する断面において、例えば40~150セル/cm2とすることができ、60~100セル/cm2であることが好ましい。
The cell density can be, for example, 40 to 150 cells / cm 2 in a cross section orthogonal to the cell flow path direction, and is preferably 60 to 100 cells / cm 2 .
セルの流路方向に直交する断面におけるセルの形状に制限はないが、四角形、六角形、八角形、又はこれらの組み合わせ、であることが好ましい。これ等のなかでも、正方形及び六角形が好ましい。セル形状をこのようにすることにより、ハニカム構造部に排ガスを流したときの圧力損失が小さくなり、触媒による浄化性能が優れたものとなる。
There is no limitation on the shape of the cell in the cross section orthogonal to the flow path direction of the cell, but it is preferably a quadrangle, a hexagon, an octagon, or a combination thereof. Of these, squares and hexagons are preferred. By making the cell shape in this way, the pressure loss when the exhaust gas is passed through the honeycomb structure portion is reduced, and the purification performance by the catalyst is excellent.
ハニカム構造部の外形は柱状である限り特に限定されず、例えば、底面が円形の柱状(円柱形状)、底面がオーバル形状の柱状、底面が多角形(四角形、五角形、六角形、七角形、八角形等)の柱状等の形状とすることができる。また、ハニカム構造部の大きさは、耐熱衝撃性の観点から、底面の面積が2000~20000mm2であることが好ましく、4000~15000mm2であることが更に好ましい。また、ハニカム構造部の中心軸方向の長さは、耐熱衝撃性の観点から、30~200mmであることが好ましく、30~120mmであることが更に好ましい。
The outer shape of the honeycomb structure is not particularly limited as long as it is columnar. For example, the bottom surface is a circular columnar shape (cylindrical shape), the bottom surface is an oval-shaped columnar shape, and the bottom surface is a polygonal shape (quadrangle, pentagon, hexagon, heptagon, octagon). It can have a columnar shape (such as a polygon). Also, the size of the honeycomb structure portion, in view of thermal shock resistance, it is preferable that the area of the bottom is 2000 ~ 20000 mm 2, further preferably 4000 ~ 15000 2. Further, the length of the honeycomb structure portion in the central axis direction is preferably 30 to 200 mm, more preferably 30 to 120 mm, from the viewpoint of thermal shock resistance.
(4-2 電極部)
本実施形態に係る電気加熱式ハニカム構造体100は、柱状のハニカム構造部110の外周側壁112の外面に接合された一対の電極部120を備える。好ましい実施形態においては、一対の電極部120が、ハニカム構造部110の中心軸を挟んで、ハニカム構造部110の外周側壁112の外面にセルの流路方向に帯状に延設される。これにより、電気加熱式ハニカム構造体100は、一対の電極部120間に電圧を印加した時に、ハニカム構造部110内を流れる電流の偏りを抑制することができ、ハニカム構造部110内の温度分布の偏りを抑制することができる。電極部120には、端子の接続を容易にするための端子接続部122を設けてもよい。 (4-2 Electrode part)
The electricallyheated honeycomb structure 100 according to the present embodiment includes a pair of electrode portions 120 joined to the outer surface of the outer peripheral side wall 112 of the columnar honeycomb structure portion 110. In a preferred embodiment, a pair of electrode portions 120 are extended in a band shape in the cell flow path direction on the outer surface of the outer peripheral side wall 112 of the honeycomb structure portion 110 with the central axis of the honeycomb structure portion 110 interposed therebetween. As a result, the electrically heated honeycomb structure 100 can suppress the bias of the current flowing in the honeycomb structure 110 when a voltage is applied between the pair of electrode portions 120, and the temperature distribution in the honeycomb structure 110 can be suppressed. It is possible to suppress the bias of. The electrode unit 120 may be provided with a terminal connection unit 122 for facilitating terminal connection.
本実施形態に係る電気加熱式ハニカム構造体100は、柱状のハニカム構造部110の外周側壁112の外面に接合された一対の電極部120を備える。好ましい実施形態においては、一対の電極部120が、ハニカム構造部110の中心軸を挟んで、ハニカム構造部110の外周側壁112の外面にセルの流路方向に帯状に延設される。これにより、電気加熱式ハニカム構造体100は、一対の電極部120間に電圧を印加した時に、ハニカム構造部110内を流れる電流の偏りを抑制することができ、ハニカム構造部110内の温度分布の偏りを抑制することができる。電極部120には、端子の接続を容易にするための端子接続部122を設けてもよい。 (4-2 Electrode part)
The electrically
一実施形態において、電極部は、骨材としてのSiC粒子が結合材により結合された多孔質構造を有する。好ましい実施形態において、電極部を構成するSiC粒子は本発明に係るSiC粉末に由来し、より好ましい実施形態において、電極部を構成するSiCは実質的に本発明に係るSiC粉末のみに由来する。また、好ましい実施形態において、電極部を構成する結合材は、金属珪素、金属珪素以外の金属、及び金属シリサイドよりなる群から選択される結合材の1種、2種又は3種を含有する。
In one embodiment, the electrode portion has a porous structure in which SiC particles as an aggregate are bonded by a binder. In a preferred embodiment, the SiC particles constituting the electrode portion are derived from the SiC powder according to the present invention, and in a more preferred embodiment, the SiC constituting the electrode portion is substantially derived only from the SiC powder according to the present invention. Further, in a preferred embodiment, the binder constituting the electrode portion contains one, two or three types of binder selected from the group consisting of metallic silicon, a metal other than metallic silicon, and metal silicide.
電極部の平均厚みは、均一発熱性を高めるという観点から、25μm以上であることが好ましく、50μm以上であることがより好ましく、75μm以上であることが更により好ましい。また、電極部の平均厚みは、焼成によるクラック及び剥離を防止するという観点から、500μm以下であることが好ましく、350μm以下であることがより好ましく、250μm以下であることが更により好ましい。電極部の平均厚みは、電気加熱式ハニカム構造体のセルの延びる方向に垂直な断面を、走査型電子顕微鏡(SEM)によって撮像して得られる画像から電極部の厚みを複数個所測定し、算出することができる。
The average thickness of the electrode portion is preferably 25 μm or more, more preferably 50 μm or more, and even more preferably 75 μm or more, from the viewpoint of enhancing uniform heat generation. Further, the average thickness of the electrode portion is preferably 500 μm or less, more preferably 350 μm or less, still more preferably 250 μm or less, from the viewpoint of preventing cracks and peeling due to firing. The average thickness of the electrode portion is calculated by measuring the thickness of the electrode portion at a plurality of locations from an image obtained by imaging a cross section of the electrically heated honeycomb structure perpendicular to the extending direction of the cell with a scanning electron microscope (SEM). can do.
電極部の体積抵抗率は、均一発熱性を高めるという観点から0.01~0.8Ωcmであることが好ましく、0.01~0.4Ωcmであることがより好ましい。電極部の体積抵抗率は4端子法にて求めることができる。
The volume resistivity of the electrode portion is preferably 0.01 to 0.8 Ωcm, more preferably 0.01 to 0.4 Ωcm, from the viewpoint of enhancing uniform heat generation. The volume resistivity of the electrode portion can be obtained by the 4-terminal method.
図1に示されるように、本実施形態の電気加熱式ハニカム構造体100においては、一対の電極部120のそれぞれが、ハニカム構造部110のセルの流路方向に一方の底面から他方の底面まで延びる帯状に形成されている。このように、一対の電極部120が、ハニカム構造部110の両底面間に亘って配設されていることにより、一対の電極部120間に電圧を印加した時に、ハニカム構造部110内を流れる電流の偏りをより効果的に抑制することができる。そして、ハニカム構造部110内を流れる電流の偏りを抑制することにより、ハニカム構造部110内の温度分布の偏りをより効果的に抑制することができる。「一対の電極部120のそれぞれが、ハニカム構造部110のセルの流路方向に一方の底面から他方の底面まで延びる帯状に形成されている」とは、各電極部120の一方のセル流路方向端部がハニカム構造部110の一方の底面114の周縁に接し、且つ、電極部120の他方のセル流路方向端部がハニカム構造部110の他方の底面116の周縁に接していることを意味する。
As shown in FIG. 1, in the electrically heated honeycomb structure 100 of the present embodiment, each of the pair of electrode portions 120 is from one bottom surface to the other bottom surface in the flow path direction of the cell of the honeycomb structure portion 110. It is formed in an extending band shape. In this way, the pair of electrode portions 120 are arranged between both bottom surfaces of the honeycomb structure portion 110, so that when a voltage is applied between the pair of electrode portions 120, the current flows through the honeycomb structure portion 110. The bias of the current can be suppressed more effectively. Then, by suppressing the bias of the current flowing in the honeycomb structure 110, the bias of the temperature distribution in the honeycomb structure 110 can be suppressed more effectively. "Each of the pair of electrode portions 120 is formed in a band shape extending from one bottom surface to the other bottom surface in the direction of the cell flow path of the honeycomb structure portion 110" means that one cell flow path of each electrode portion 120 is formed. The directional end is in contact with the peripheral edge of one bottom surface 114 of the honeycomb structure 110, and the other end of the electrode portion 120 in the direction of the cell flow path is in contact with the peripheral edge of the other bottom surface 116 of the honeycomb structure 110. means.
本発明に係る電気加熱式ハニカム構造体の一実施形態においては、通電抵抗を100Ω以下とすることができる。通電抵抗は以下の測定条件で求める。各電極部のセルの延びる方向中央部であって、ハニカム構造部の外周方向中央部にそれぞれ端子130を接続する(図2参照)。次いで、両端子間に30Vの電圧を印加してから、30秒経過時の電流値に基づき抵抗値を求める。通電抵抗は好ましくは100Ω以下であり、より好ましくは50Ω以下であり、例えば2~40Ωとすることができる。
In one embodiment of the electrically heated honeycomb structure according to the present invention, the energization resistance can be 100Ω or less. The energization resistance is obtained under the following measurement conditions. Terminals 130 are connected to the central portion in the extending direction of the cells of each electrode portion and to the central portion in the outer peripheral direction of the honeycomb structure portion (see FIG. 2). Next, after applying a voltage of 30 V between both terminals, the resistance value is obtained based on the current value after 30 seconds have elapsed. The energization resistance is preferably 100 Ω or less, more preferably 50 Ω or less, and can be, for example, 2 to 40 Ω.
(4-3 用途)
本発明に係る電気加熱式ハニカム構造体は、例えば、セラミックヒータとして使用することができ、また、触媒担体として使用することもできる。本発明に係る電気加熱式ハニカム構造体は、触媒を担持することでEHCとして使用することができる。更に、本発明に係る電気加熱式ハニカム構造体は、ウォールフロー型の排ガスフィルタ(DPF、GPF等)として使用することもできる。この場合、フィルタ再生のための加熱時に電気加熱式ハニカム構造体を通電発熱する使用方法が考えられる。 (4-3 applications)
The electrically heated honeycomb structure according to the present invention can be used, for example, as a ceramic heater or as a catalyst carrier. The electrically heated honeycomb structure according to the present invention can be used as an EHC by supporting a catalyst. Further, the electrically heated honeycomb structure according to the present invention can also be used as a wall flow type exhaust gas filter (DPF, GPF, etc.). In this case, a method of energizing and generating heat in the electrically heated honeycomb structure during heating for filter regeneration can be considered.
本発明に係る電気加熱式ハニカム構造体は、例えば、セラミックヒータとして使用することができ、また、触媒担体として使用することもできる。本発明に係る電気加熱式ハニカム構造体は、触媒を担持することでEHCとして使用することができる。更に、本発明に係る電気加熱式ハニカム構造体は、ウォールフロー型の排ガスフィルタ(DPF、GPF等)として使用することもできる。この場合、フィルタ再生のための加熱時に電気加熱式ハニカム構造体を通電発熱する使用方法が考えられる。 (4-3 applications)
The electrically heated honeycomb structure according to the present invention can be used, for example, as a ceramic heater or as a catalyst carrier. The electrically heated honeycomb structure according to the present invention can be used as an EHC by supporting a catalyst. Further, the electrically heated honeycomb structure according to the present invention can also be used as a wall flow type exhaust gas filter (DPF, GPF, etc.). In this case, a method of energizing and generating heat in the electrically heated honeycomb structure during heating for filter regeneration can be considered.
以下、本発明及びその利点をより良く理解するための実施例を例示するが、本発明は実施例に限定されるものではない。
Hereinafter, examples for better understanding the present invention and its advantages will be illustrated, but the present invention is not limited to the examples.
<1.SiC焼成体の製造>
(SiC焼成体1)
D50が79μmの金属珪素粉末(密度2.33g/cm3)を74.5g、比表面積が110m2/gのカーボンブラック粉末を25.5g、D50が35μmのNi粉末を7.8g、及び水を50g用意した。これらを自転公転撹拌機で混合して得られた混合粉末を、プレス成形して、φ25mm×H15mmの円柱状の成形体を作製した。次に、得られた成形体を100℃で乾燥した後、1450℃、アルゴン雰囲気にて、2時間焼成して焼成体を得た。 <1. Manufacture of SiC fired body>
(SiC fired body 1)
74.5 g of metallic silicon powder (density 2.33 g / cm 3 ) with a D50 of 79 μm, 25.5 g of carbon black powder with a specific surface area of 110 m 2 / g, 7.8 g of Ni powder with a D50 of 35 μm, and water. Was prepared in an amount of 50 g. The mixed powder obtained by mixing these with a rotation / revolution stirrer was press-molded to prepare a cylindrical molded body having a diameter of 25 mm and a diameter of H15 mm. Next, the obtained molded product was dried at 100 ° C. and then fired at 1450 ° C. in an argon atmosphere for 2 hours to obtain a fired product.
(SiC焼成体1)
D50が79μmの金属珪素粉末(密度2.33g/cm3)を74.5g、比表面積が110m2/gのカーボンブラック粉末を25.5g、D50が35μmのNi粉末を7.8g、及び水を50g用意した。これらを自転公転撹拌機で混合して得られた混合粉末を、プレス成形して、φ25mm×H15mmの円柱状の成形体を作製した。次に、得られた成形体を100℃で乾燥した後、1450℃、アルゴン雰囲気にて、2時間焼成して焼成体を得た。 <1. Manufacture of SiC fired body>
(SiC fired body 1)
74.5 g of metallic silicon powder (density 2.33 g / cm 3 ) with a D50 of 79 μm, 25.5 g of carbon black powder with a specific surface area of 110 m 2 / g, 7.8 g of Ni powder with a D50 of 35 μm, and water. Was prepared in an amount of 50 g. The mixed powder obtained by mixing these with a rotation / revolution stirrer was press-molded to prepare a cylindrical molded body having a diameter of 25 mm and a diameter of H15 mm. Next, the obtained molded product was dried at 100 ° C. and then fired at 1450 ° C. in an argon atmosphere for 2 hours to obtain a fired product.
(SiC焼成体2)
D50が79μmの金属珪素粉末(密度2.33g/cm3)を73.7g、比表面積が110m2/gのカーボンブラック粉末を26.3g、D50が35μmのNi粉末を7.7g、及び水を50g用意した。これらを自転公転撹拌機で混合して得られた混合粉末を、プレス成形して、φ25mm×H15mm円柱状の成形体を作製した。次に、得られた成形体を100℃で乾燥した後、1450℃、アルゴン雰囲気にて、2時間焼成して焼成体を得た。 (SiC fired body 2)
73.7 g of metallic silicon powder (density 2.33 g / cm 3 ) with a D50 of 79 μm, 26.3 g of carbon black powder with a specific surface area of 110 m 2 / g, 7.7 g of Ni powder with a D50 of 35 μm, and water. Was prepared in an amount of 50 g. The mixed powder obtained by mixing these with a rotation / revolution stirrer was press-molded to prepare a cylindrical molded body having a diameter of 25 mm and a diameter of H15 mm. Next, the obtained molded product was dried at 100 ° C. and then fired at 1450 ° C. in an argon atmosphere for 2 hours to obtain a fired product.
D50が79μmの金属珪素粉末(密度2.33g/cm3)を73.7g、比表面積が110m2/gのカーボンブラック粉末を26.3g、D50が35μmのNi粉末を7.7g、及び水を50g用意した。これらを自転公転撹拌機で混合して得られた混合粉末を、プレス成形して、φ25mm×H15mm円柱状の成形体を作製した。次に、得られた成形体を100℃で乾燥した後、1450℃、アルゴン雰囲気にて、2時間焼成して焼成体を得た。 (SiC fired body 2)
73.7 g of metallic silicon powder (density 2.33 g / cm 3 ) with a D50 of 79 μm, 26.3 g of carbon black powder with a specific surface area of 110 m 2 / g, 7.7 g of Ni powder with a D50 of 35 μm, and water. Was prepared in an amount of 50 g. The mixed powder obtained by mixing these with a rotation / revolution stirrer was press-molded to prepare a cylindrical molded body having a diameter of 25 mm and a diameter of H15 mm. Next, the obtained molded product was dried at 100 ° C. and then fired at 1450 ° C. in an argon atmosphere for 2 hours to obtain a fired product.
(SiC焼成体3)
D50が79μmの金属珪素粉末(密度2.33g/cm3)を74.5g、比表面積が110m2/gのカーボンブラック粉末を25.5g、D50が35μmのNi粉末を4.7g、メチルセルロースを4g及び水を50g用意した。これらを自転公転撹拌機で混合して得られた混合粉末を、押し出し成形して、25mm×5mm×50mmの角柱状の成形体を作製した。次に、得られた成形体を100℃で乾燥した後、300℃大気雰囲気にて5時間で脱脂した後、1450℃、アルゴン雰囲気にて、2時間焼成して焼成体を得た。 (SiC fired body 3)
74.5 g of metallic silicon powder (density 2.33 g / cm 3 ) with a D50 of 79 μm, 25.5 g of carbon black powder with a specific surface area of 110 m 2 / g, 4.7 g of Ni powder with a D50 of 35 μm, and methyl cellulose. 4 g and 50 g of water were prepared. The mixed powder obtained by mixing these with a rotation / revolution stirrer was extruded to prepare a prismatic molded body having a size of 25 mm × 5 mm × 50 mm. Next, the obtained molded product was dried at 100 ° C., degreased in an air atmosphere at 300 ° C. for 5 hours, and then calcined at 1450 ° C. in an argon atmosphere for 2 hours to obtain a calcined product.
D50が79μmの金属珪素粉末(密度2.33g/cm3)を74.5g、比表面積が110m2/gのカーボンブラック粉末を25.5g、D50が35μmのNi粉末を4.7g、メチルセルロースを4g及び水を50g用意した。これらを自転公転撹拌機で混合して得られた混合粉末を、押し出し成形して、25mm×5mm×50mmの角柱状の成形体を作製した。次に、得られた成形体を100℃で乾燥した後、300℃大気雰囲気にて5時間で脱脂した後、1450℃、アルゴン雰囲気にて、2時間焼成して焼成体を得た。 (SiC fired body 3)
74.5 g of metallic silicon powder (density 2.33 g / cm 3 ) with a D50 of 79 μm, 25.5 g of carbon black powder with a specific surface area of 110 m 2 / g, 4.7 g of Ni powder with a D50 of 35 μm, and methyl cellulose. 4 g and 50 g of water were prepared. The mixed powder obtained by mixing these with a rotation / revolution stirrer was extruded to prepare a prismatic molded body having a size of 25 mm × 5 mm × 50 mm. Next, the obtained molded product was dried at 100 ° C., degreased in an air atmosphere at 300 ° C. for 5 hours, and then calcined at 1450 ° C. in an argon atmosphere for 2 hours to obtain a calcined product.
(SiC焼成体4)
D50が79μmの金属珪素粉末(密度2.33g/cm3)を7.37g、比表面積が110m2/gのカーボンブラック粉末を26.3g、D50が13μmのAl粉末を3.5g、メチルセルロースを4g及び水を50g用意した。これらを自転公転撹拌機で混合して得られた混合粉末を、押し出し成形して、25mm×5mm×50mmの角柱状の成形体を作製した。次に、得られた成形体を100℃で乾燥した後、300℃大気雰囲気にて5時間で脱脂した後、1450℃、アルゴン雰囲気にて、2時間焼成して焼成体を得た。 (SiC fired body 4)
7.37 g of metallic silicon powder (density 2.33 g / cm 3 ) with a D50 of 79 μm, 26.3 g of carbon black powder with a specific surface area of 110 m 2 / g, 3.5 g of Al powder with a D50 of 13 μm, and methyl cellulose. 4 g and 50 g of water were prepared. The mixed powder obtained by mixing these with a rotation / revolution stirrer was extruded to prepare a prismatic molded body having a size of 25 mm × 5 mm × 50 mm. Next, the obtained molded product was dried at 100 ° C., degreased in an air atmosphere at 300 ° C. for 5 hours, and then calcined at 1450 ° C. in an argon atmosphere for 2 hours to obtain a calcined product.
D50が79μmの金属珪素粉末(密度2.33g/cm3)を7.37g、比表面積が110m2/gのカーボンブラック粉末を26.3g、D50が13μmのAl粉末を3.5g、メチルセルロースを4g及び水を50g用意した。これらを自転公転撹拌機で混合して得られた混合粉末を、押し出し成形して、25mm×5mm×50mmの角柱状の成形体を作製した。次に、得られた成形体を100℃で乾燥した後、300℃大気雰囲気にて5時間で脱脂した後、1450℃、アルゴン雰囲気にて、2時間焼成して焼成体を得た。 (SiC fired body 4)
7.37 g of metallic silicon powder (density 2.33 g / cm 3 ) with a D50 of 79 μm, 26.3 g of carbon black powder with a specific surface area of 110 m 2 / g, 3.5 g of Al powder with a D50 of 13 μm, and methyl cellulose. 4 g and 50 g of water were prepared. The mixed powder obtained by mixing these with a rotation / revolution stirrer was extruded to prepare a prismatic molded body having a size of 25 mm × 5 mm × 50 mm. Next, the obtained molded product was dried at 100 ° C., degreased in an air atmosphere at 300 ° C. for 5 hours, and then calcined at 1450 ° C. in an argon atmosphere for 2 hours to obtain a calcined product.
(SiC焼成体5)
D50が79μmの金属珪素粉末(密度2.33g/cm3)を7.37g、比表面積が110m2/gのカーボンブラック粉末を26.3g、D50が11μmのZr粉末を12.0g、及び水を50g用意した。これらを自転公転撹拌機で混合して得られた混合粉末を、プレス成形して、φ25mm×H15mmの円柱状の成形体を作製した。次に、得られた成形体を100℃で乾燥した後、1450℃、アルゴン雰囲気にて、2時間焼成して焼成体を得た。 (SiC fired body 5)
7.37 g of metallic silicon powder (density 2.33 g / cm 3 ) with a D50 of 79 μm, 26.3 g of carbon black powder with a specific surface area of 110 m 2 / g, 12.0 g of Zr powder with a D50 of 11 μm, and water. Was prepared in an amount of 50 g. The mixed powder obtained by mixing these with a rotation / revolution stirrer was press-molded to prepare a cylindrical molded body having a diameter of 25 mm and a diameter of H15 mm. Next, the obtained molded product was dried at 100 ° C. and then fired at 1450 ° C. in an argon atmosphere for 2 hours to obtain a fired product.
D50が79μmの金属珪素粉末(密度2.33g/cm3)を7.37g、比表面積が110m2/gのカーボンブラック粉末を26.3g、D50が11μmのZr粉末を12.0g、及び水を50g用意した。これらを自転公転撹拌機で混合して得られた混合粉末を、プレス成形して、φ25mm×H15mmの円柱状の成形体を作製した。次に、得られた成形体を100℃で乾燥した後、1450℃、アルゴン雰囲気にて、2時間焼成して焼成体を得た。 (SiC fired body 5)
7.37 g of metallic silicon powder (density 2.33 g / cm 3 ) with a D50 of 79 μm, 26.3 g of carbon black powder with a specific surface area of 110 m 2 / g, 12.0 g of Zr powder with a D50 of 11 μm, and water. Was prepared in an amount of 50 g. The mixed powder obtained by mixing these with a rotation / revolution stirrer was press-molded to prepare a cylindrical molded body having a diameter of 25 mm and a diameter of H15 mm. Next, the obtained molded product was dried at 100 ° C. and then fired at 1450 ° C. in an argon atmosphere for 2 hours to obtain a fired product.
(SiC焼成体6)
D50が79μmの金属珪素粉末(密度2.33g/cm3)を7.37g、比表面積が110m2/gのカーボンブラック粉末を26.3g、D50が28μmのCu粉末を8.3g、及び水を50g用意した。これらを自転公転撹拌機で混合して得られた混合粉末を、プレス成形して、φ25mm×H15mmの円柱状の成形体を作製した。次に、得られた成形体を100℃で乾燥した後、1450℃、アルゴン雰囲気にて、2時間焼成して焼成体を得た。 (SiC fired body 6)
7.37 g of metallic silicon powder (density 2.33 g / cm 3 ) with a D50 of 79 μm, 26.3 g of carbon black powder with a specific surface area of 110 m 2 / g, 8.3 g of Cu powder with a D50 of 28 μm, and water. Was prepared in an amount of 50 g. The mixed powder obtained by mixing these with a rotation / revolution stirrer was press-molded to prepare a cylindrical molded body having a diameter of 25 mm and a diameter of H15 mm. Next, the obtained molded product was dried at 100 ° C. and then fired at 1450 ° C. in an argon atmosphere for 2 hours to obtain a fired product.
D50が79μmの金属珪素粉末(密度2.33g/cm3)を7.37g、比表面積が110m2/gのカーボンブラック粉末を26.3g、D50が28μmのCu粉末を8.3g、及び水を50g用意した。これらを自転公転撹拌機で混合して得られた混合粉末を、プレス成形して、φ25mm×H15mmの円柱状の成形体を作製した。次に、得られた成形体を100℃で乾燥した後、1450℃、アルゴン雰囲気にて、2時間焼成して焼成体を得た。 (SiC fired body 6)
7.37 g of metallic silicon powder (density 2.33 g / cm 3 ) with a D50 of 79 μm, 26.3 g of carbon black powder with a specific surface area of 110 m 2 / g, 8.3 g of Cu powder with a D50 of 28 μm, and water. Was prepared in an amount of 50 g. The mixed powder obtained by mixing these with a rotation / revolution stirrer was press-molded to prepare a cylindrical molded body having a diameter of 25 mm and a diameter of H15 mm. Next, the obtained molded product was dried at 100 ° C. and then fired at 1450 ° C. in an argon atmosphere for 2 hours to obtain a fired product.
(SiC焼成体7)
D50が79μmの金属珪素粉末(密度2.33g/cm3)を7.37g、比表面積が110m2/gのカーボンブラック粉末を26.3g、D50が5μmのCo粉末を7.7g、及び水を50g用意した。これらを自転公転撹拌機で混合して得られた混合粉末を、プレス成形して、φ25mm×H15mmの円柱状の成形体を作製した。次に、得られた成形体を100℃で乾燥した後、1450℃、アルゴン雰囲気にて、2時間焼成して焼成体を得た。 (SiC fired body 7)
7.37 g of metallic silicon powder (density 2.33 g / cm 3 ) with a D50 of 79 μm, 26.3 g of carbon black powder with a specific surface area of 110 m 2 / g, 7.7 g of Co powder with a D50 of 5 μm, and water. Was prepared in an amount of 50 g. The mixed powder obtained by mixing these with a rotation / revolution stirrer was press-molded to prepare a cylindrical molded body having a diameter of 25 mm and a diameter of H15 mm. Next, the obtained molded product was dried at 100 ° C. and then fired at 1450 ° C. in an argon atmosphere for 2 hours to obtain a fired product.
D50が79μmの金属珪素粉末(密度2.33g/cm3)を7.37g、比表面積が110m2/gのカーボンブラック粉末を26.3g、D50が5μmのCo粉末を7.7g、及び水を50g用意した。これらを自転公転撹拌機で混合して得られた混合粉末を、プレス成形して、φ25mm×H15mmの円柱状の成形体を作製した。次に、得られた成形体を100℃で乾燥した後、1450℃、アルゴン雰囲気にて、2時間焼成して焼成体を得た。 (SiC fired body 7)
7.37 g of metallic silicon powder (density 2.33 g / cm 3 ) with a D50 of 79 μm, 26.3 g of carbon black powder with a specific surface area of 110 m 2 / g, 7.7 g of Co powder with a D50 of 5 μm, and water. Was prepared in an amount of 50 g. The mixed powder obtained by mixing these with a rotation / revolution stirrer was press-molded to prepare a cylindrical molded body having a diameter of 25 mm and a diameter of H15 mm. Next, the obtained molded product was dried at 100 ° C. and then fired at 1450 ° C. in an argon atmosphere for 2 hours to obtain a fired product.
(SiC焼成体8)
D50が79μmの金属珪素粉末(密度2.33g/cm3)を7.37g、比表面積が110m2/gのカーボンブラック粉末を26.3g、D50が20μmのTi粉末を6.3g、及び水を50g用意した。これらを自転公転撹拌機で混合して得られた混合粉末を、プレス成形して、φ25mm×H15mmの円柱状の成形体を作製した。次に、得られた成形体を100℃で乾燥した後、1450℃、アルゴン雰囲気にて、2時間焼成して焼成体を得た。 (SiC fired body 8)
7.37 g of metallic silicon powder (density 2.33 g / cm 3 ) with a D50 of 79 μm, 26.3 g of carbon black powder with a specific surface area of 110 m 2 / g, 6.3 g of Ti powder with a D50 of 20 μm, and water. Was prepared in an amount of 50 g. The mixed powder obtained by mixing these with a rotation / revolution stirrer was press-molded to prepare a cylindrical molded body having a diameter of 25 mm and a diameter of H15 mm. Next, the obtained molded product was dried at 100 ° C. and then fired at 1450 ° C. in an argon atmosphere for 2 hours to obtain a fired product.
D50が79μmの金属珪素粉末(密度2.33g/cm3)を7.37g、比表面積が110m2/gのカーボンブラック粉末を26.3g、D50が20μmのTi粉末を6.3g、及び水を50g用意した。これらを自転公転撹拌機で混合して得られた混合粉末を、プレス成形して、φ25mm×H15mmの円柱状の成形体を作製した。次に、得られた成形体を100℃で乾燥した後、1450℃、アルゴン雰囲気にて、2時間焼成して焼成体を得た。 (SiC fired body 8)
7.37 g of metallic silicon powder (density 2.33 g / cm 3 ) with a D50 of 79 μm, 26.3 g of carbon black powder with a specific surface area of 110 m 2 / g, 6.3 g of Ti powder with a D50 of 20 μm, and water. Was prepared in an amount of 50 g. The mixed powder obtained by mixing these with a rotation / revolution stirrer was press-molded to prepare a cylindrical molded body having a diameter of 25 mm and a diameter of H15 mm. Next, the obtained molded product was dried at 100 ° C. and then fired at 1450 ° C. in an argon atmosphere for 2 hours to obtain a fired product.
得られたSiC焼成体1~8のそれぞれのサンプルを用いて、気孔率及び平均気孔径をポロシメータ(マイクロメリテックス社製のオートポアIV9520)を用いて測定した。結果を表1に示す。
Using each sample of the obtained SiC fired bodies 1 to 8, the porosity and the average pore diameter were measured using a porosimeter (Autopore IV9520 manufactured by Micromeritex Co., Ltd.). The results are shown in Table 1.
<2.SiC粉末の製造>
得られたSiC焼成体1~8を表2に記載の試験番号に応じて選択して粉砕し、その後、空気分級機で分級することで、表2に記載の粒度分布をもつ実施例及び比較例のSiC粉末を得た。表2に記載の粒度分布は、HORIBA社製LA-950V2のレーザー回折式粒度分布測定装置により測定される体積基準の累積粒度分布に基づき求めた。 <2. Manufacture of SiC powder>
Examples and comparisons having the particle size distributions shown in Table 2 by selecting and pulverizing the obtained SiC fired bodies 1 to 8 according to the test numbers shown in Table 2 and then classifying them with an air classifier. An example SiC powder was obtained. The particle size distribution shown in Table 2 was determined based on the volume-based cumulative particle size distribution measured by a laser diffraction type particle size distribution measuring device of LA-950V2 manufactured by HORIBA.
得られたSiC焼成体1~8を表2に記載の試験番号に応じて選択して粉砕し、その後、空気分級機で分級することで、表2に記載の粒度分布をもつ実施例及び比較例のSiC粉末を得た。表2に記載の粒度分布は、HORIBA社製LA-950V2のレーザー回折式粒度分布測定装置により測定される体積基準の累積粒度分布に基づき求めた。 <2. Manufacture of SiC powder>
Examples and comparisons having the particle size distributions shown in Table 2 by selecting and pulverizing the obtained SiC fired bodies 1 to 8 according to the test numbers shown in Table 2 and then classifying them with an air classifier. An example SiC powder was obtained. The particle size distribution shown in Table 2 was determined based on the volume-based cumulative particle size distribution measured by a laser diffraction type particle size distribution measuring device of LA-950V2 manufactured by HORIBA.
実施例及び比較例のそれぞれのSiC粉末について、X線回折(XRD)により、SiC結晶相の種別を分析したところ、何れもβ-SiCのみが検出された。また、実施例及び比較例のそれぞれのSiC粉末について、β-SiCの積層欠陥(%)を先述した方法に従って求めた。結果を表2に示す。また、実施例及び比較例のそれぞれのSiC粉末について、結晶子サイズを先述した方法に従って求めたところ、すべて1000Å以上であった。
When the types of SiC crystal phases were analyzed by X-ray diffraction (XRD) for each of the SiC powders of Examples and Comparative Examples, only β-SiC was detected. Further, for each of the SiC powders of Examples and Comparative Examples, the stacking defects (%) of β-SiC were determined according to the method described above. The results are shown in Table 2. Further, when the crystallite size of each of the SiC powders of Examples and Comparative Examples was determined according to the method described above, it was found to be 1000 Å or more.
実施例及び比較例のそれぞれのSiC粉末について、X線回折(XRD)により、組成分析した。組成分析はWPPD(whole-powder-pattern-decomposition)法を用いてパターンフィッティングすることにより行った。結果を表2に示す。SiC焼成体1~3を使用した例ではニッケルシリサイド、SiC焼成体4を使用した例ではアルミニウム、SiC焼成体5を使用した例ではジルコニウムシリサイド、SiC焼成体6を使用した例では銅シリサイド、SiC焼成体7を使用した例ではコバルトシリサイド、SiC焼成体8を使用した例ではチタンシリサイドがそれぞれ検出された。
The composition of each of the SiC powders of Examples and Comparative Examples was analyzed by X-ray diffraction (XRD). Composition analysis was performed by pattern fitting using the WPPD (whole-powder-pattern-decomposition) method. The results are shown in Table 2. Nickel silicide in the example using the SiC fired bodies 1 to 3, aluminum in the example using the SiC fired body 4, zirconium silicide in the example using the SiC fired body 5, copper ceiling and SiC in the example using the SiC fired body 6. Cobalt silicide was detected in the example in which the fired body 7 was used, and titanium silicide was detected in the example in which the SiC fired body 8 was used.
<3.ハニカム構造体の製造>
(1)電極部形成ペーストの調製
上記で製造した実施例及び比較例の各SiC粉末を72g、金属珪素粉末を28g、酸化物粒子としてのコージェライト粉末を1g、メチルセルロースを1g、グリセリンを5g、ポリアクリル酸系分散剤を0.5g、及び水を30g、自転公転撹拌機で混合して、電極部形成ペーストを調製した。 <3. Manufacture of honeycomb structure>
(1) Preparation of Electrode Forming Paste 72 g of each SiC powder of Examples and Comparative Examples produced above, 28 g of metallic silicon powder, 1 g of cordierite powder as oxide particles, 1 g of methyl cellulose, 5 g of glycerin, 0.5 g of a polyacrylic acid-based dispersant and 30 g of water were mixed with a rotating and revolving stirrer to prepare an electrode portion-forming paste.
(1)電極部形成ペーストの調製
上記で製造した実施例及び比較例の各SiC粉末を72g、金属珪素粉末を28g、酸化物粒子としてのコージェライト粉末を1g、メチルセルロースを1g、グリセリンを5g、ポリアクリル酸系分散剤を0.5g、及び水を30g、自転公転撹拌機で混合して、電極部形成ペーストを調製した。 <3. Manufacture of honeycomb structure>
(1) Preparation of Electrode Forming Paste 72 g of each SiC powder of Examples and Comparative Examples produced above, 28 g of metallic silicon powder, 1 g of cordierite powder as oxide particles, 1 g of methyl cellulose, 5 g of glycerin, 0.5 g of a polyacrylic acid-based dispersant and 30 g of water were mixed with a rotating and revolving stirrer to prepare an electrode portion-forming paste.
(2)ハニカム乾燥体の作製
金属珪素粉末を6kg、SiC粉末を14kg、コージェライト粉末を1kg、メチルセルロースを1.6kg、水を8kg、混合し、ニーダー混練してハニカム成形原料を調製した。次に、得られたハニカム成形原料を真空土練して坏土を得、得られた坏土を押出成形して、円柱状のハニカム成形体を得た。得られたハニカム成形体は120℃で乾燥させ、ハニカム乾燥体を得た。 (2) Preparation of Dried Honeycomb Body A honeycomb molding raw material was prepared by mixing 6 kg of metallic silicon powder, 14 kg of SiC powder, 1 kg of cordierite powder, 1.6 kg of methyl cellulose, and 8 kg of water, and kneading with a kneader. Next, the obtained honeycomb molding raw material was vacuum-kneaded to obtain clay, and the obtained clay was extruded to obtain a columnar honeycomb molded body. The obtained honeycomb molded product was dried at 120 ° C. to obtain a honeycomb dried product.
金属珪素粉末を6kg、SiC粉末を14kg、コージェライト粉末を1kg、メチルセルロースを1.6kg、水を8kg、混合し、ニーダー混練してハニカム成形原料を調製した。次に、得られたハニカム成形原料を真空土練して坏土を得、得られた坏土を押出成形して、円柱状のハニカム成形体を得た。得られたハニカム成形体は120℃で乾燥させ、ハニカム乾燥体を得た。 (2) Preparation of Dried Honeycomb Body A honeycomb molding raw material was prepared by mixing 6 kg of metallic silicon powder, 14 kg of SiC powder, 1 kg of cordierite powder, 1.6 kg of methyl cellulose, and 8 kg of water, and kneading with a kneader. Next, the obtained honeycomb molding raw material was vacuum-kneaded to obtain clay, and the obtained clay was extruded to obtain a columnar honeycomb molded body. The obtained honeycomb molded product was dried at 120 ° C. to obtain a honeycomb dried product.
(3)ハニカム構造体の作製
得られたハニカム乾燥体の側面に、予め調製した電極部形成ペーストを厚み200μmで塗工し、80℃で乾燥して、電極形成用スラリー付きハニカム乾燥体を得た。具体的な塗工条件は以下である。電極部形成ペーストは、ハニカム乾燥体をセルの流路方向に直交する断面で観察したときの、各スラリーの両端とハニカム乾燥体の中心軸とを結ぶ二本の線分によって画定される中心角が50°になるように、ハニカム乾燥体の両底面間の全長に亘って帯状に2箇所スクリーン印刷した。また、2箇所の電極部形成ペーストは、ハニカム乾燥体の中心軸を挟んで互いに反対側の位置関係となるように配置した。 (3) Preparation of Honeycomb Structure A pre-prepared electrode portion forming paste is applied to the side surface of the obtained honeycomb dried body to a thickness of 200 μm and dried at 80 ° C. to obtain a honeycomb dried body with an electrode forming slurry. It was. The specific coating conditions are as follows. The electrode portion-forming paste has a central angle defined by two line segments connecting both ends of each slurry and the central axis of the dried honeycomb when the dried honeycomb is observed in a cross section orthogonal to the flow path direction of the cell. The screen was printed in two places in a strip shape over the entire length between both bottom surfaces of the dried honeycomb so that the temperature was 50 °. Further, the electrode portion-forming pastes at the two locations were arranged so as to be on opposite sides of the central axis of the dried honeycomb body.
得られたハニカム乾燥体の側面に、予め調製した電極部形成ペーストを厚み200μmで塗工し、80℃で乾燥して、電極形成用スラリー付きハニカム乾燥体を得た。具体的な塗工条件は以下である。電極部形成ペーストは、ハニカム乾燥体をセルの流路方向に直交する断面で観察したときの、各スラリーの両端とハニカム乾燥体の中心軸とを結ぶ二本の線分によって画定される中心角が50°になるように、ハニカム乾燥体の両底面間の全長に亘って帯状に2箇所スクリーン印刷した。また、2箇所の電極部形成ペーストは、ハニカム乾燥体の中心軸を挟んで互いに反対側の位置関係となるように配置した。 (3) Preparation of Honeycomb Structure A pre-prepared electrode portion forming paste is applied to the side surface of the obtained honeycomb dried body to a thickness of 200 μm and dried at 80 ° C. to obtain a honeycomb dried body with an electrode forming slurry. It was. The specific coating conditions are as follows. The electrode portion-forming paste has a central angle defined by two line segments connecting both ends of each slurry and the central axis of the dried honeycomb when the dried honeycomb is observed in a cross section orthogonal to the flow path direction of the cell. The screen was printed in two places in a strip shape over the entire length between both bottom surfaces of the dried honeycomb so that the temperature was 50 °. Further, the electrode portion-forming pastes at the two locations were arranged so as to be on opposite sides of the central axis of the dried honeycomb body.
次いで、電極部形成ペースト付きハニカム乾燥体を脱脂し、焼成し、酸化処理して、電気加熱式ハニカム構造体を作製した。脱脂は、450℃の大気中で、5時間行った。焼成は、1450℃のアルゴン雰囲気中で、2時間行った。酸化処理は、1000℃の大気中で、5時間行った。
Next, the dried honeycomb structure with the electrode portion forming paste was degreased, fired, and oxidized to prepare an electrically heated honeycomb structure. Solventing was performed in the air at 450 ° C. for 5 hours. The firing was carried out for 2 hours in an argon atmosphere at 1450 ° C. The oxidation treatment was carried out in the air at 1000 ° C. for 5 hours.
得られた電気加熱式ハニカム構造体のハニカム構造部は、隔壁の厚さが101.6μmで、セル密度が93個/cm2であった。また、ハニカム構造部の両底面の直径は100mmで、セルの延びる方向の長さは100mmであった。
The honeycomb structure portion of the obtained electrically heated honeycomb structure had a partition wall thickness of 101.6 μm and a cell density of 93 cells / cm 2 . The diameter of both bottom surfaces of the honeycomb structure was 100 mm, and the length of the cell in the extending direction was 100 mm.
(4)電極部の体積抵抗率
得られた電気加熱式ハニカム構造体から5mm(周方向)×40mm(軸方向)×75μm(厚み)の形状の電極部試験片を採取した。そして、試験片の厚み方向に直角な方向の室温における電気抵抗を4端子法にて測定し、試験片の形状から体積抵抗率を算出した。
また、電極部の体積抵抗率は、得られたハニカム構造体に対して大気雰囲気下、1300℃、50時間のエージングを行った後にも測定した。エージング前後での体積抵抗率の変化率(エージング後体積抵抗率/エージング前体積抵抗率)を表2に示す。想定使用環境下での体積抵抗率の変化率が2.5倍以上であるのは問題である。 (4) Volume resistivity of the electrode portion An electrode portion test piece having a shape of 5 mm (circumferential direction) × 40 mm (axial direction) × 75 μm (thickness) was collected from the obtained electrically heated honeycomb structure. Then, the electrical resistance at room temperature in the direction perpendicular to the thickness direction of the test piece was measured by the 4-terminal method, and the volume resistivity was calculated from the shape of the test piece.
The volume resistivity of the electrode portion was also measured after aging the obtained honeycomb structure at 1300 ° C. for 50 hours in an air atmosphere. Table 2 shows the rate of change in volume resistivity before and after aging (volume resistivity after aging / volume resistivity before aging). It is a problem that the rate of change of volume resistivity under the assumed usage environment is 2.5 times or more.
得られた電気加熱式ハニカム構造体から5mm(周方向)×40mm(軸方向)×75μm(厚み)の形状の電極部試験片を採取した。そして、試験片の厚み方向に直角な方向の室温における電気抵抗を4端子法にて測定し、試験片の形状から体積抵抗率を算出した。
また、電極部の体積抵抗率は、得られたハニカム構造体に対して大気雰囲気下、1300℃、50時間のエージングを行った後にも測定した。エージング前後での体積抵抗率の変化率(エージング後体積抵抗率/エージング前体積抵抗率)を表2に示す。想定使用環境下での体積抵抗率の変化率が2.5倍以上であるのは問題である。 (4) Volume resistivity of the electrode portion An electrode portion test piece having a shape of 5 mm (circumferential direction) × 40 mm (axial direction) × 75 μm (thickness) was collected from the obtained electrically heated honeycomb structure. Then, the electrical resistance at room temperature in the direction perpendicular to the thickness direction of the test piece was measured by the 4-terminal method, and the volume resistivity was calculated from the shape of the test piece.
The volume resistivity of the electrode portion was also measured after aging the obtained honeycomb structure at 1300 ° C. for 50 hours in an air atmosphere. Table 2 shows the rate of change in volume resistivity before and after aging (volume resistivity after aging / volume resistivity before aging). It is a problem that the rate of change of volume resistivity under the assumed usage environment is 2.5 times or more.
100 電気加熱式ハニカム構造体
110 ハニカム構造部
112 外周側壁
114 第一底面
116 第二底面
118 隔壁
120 電極部
122 端子接続部 100 Electric heatingtype honeycomb structure 110 Honeycomb structure 112 Outer peripheral side wall 114 First bottom surface 116 Second bottom surface 118 Partition wall 120 Electrode part 122 Terminal connection part
110 ハニカム構造部
112 外周側壁
114 第一底面
116 第二底面
118 隔壁
120 電極部
122 端子接続部 100 Electric heating
Claims (19)
- β-SiCを70質量%以上含有し、
レーザー回折法により測定される体積基準の累積粒度分布におけるD50が8~35μmであり、D10が5μm以上であるSiC粉末。 Contains 70% by mass or more of β-SiC
A SiC powder having a D50 of 8 to 35 μm and a D10 of 5 μm or more in a volume-based cumulative particle size distribution measured by a laser diffraction method. - レーザー回折法により測定される体積基準の累積粒度分布における粒度5μm以下の粒子の積算体積が7%以下である請求項1に記載のSiC粉末。 The SiC powder according to claim 1, wherein the integrated volume of particles having a particle size of 5 μm or less in the volume-based cumulative particle size distribution measured by a laser diffraction method is 7% or less.
- レーザー回折法により測定される体積基準の累積粒度分布におけるD50が15~35μmであり、D10が7~20μmである請求項1又は2に記載のSiC粉末。 The SiC powder according to claim 1 or 2, wherein D50 is 15 to 35 μm and D10 is 7 to 20 μm in the volume-based cumulative particle size distribution measured by the laser diffraction method.
- レーザー回折法により測定される体積基準の累積粒度分布におけるD90が100μm以下である請求項1~3の何れか一項に記載のSiC粉末。 The SiC powder according to any one of claims 1 to 3, wherein D90 in the volume-based cumulative particle size distribution measured by a laser diffraction method is 100 μm or less.
- 前記粉末中に含まれるβ-SiCの積層欠陥が5%以下である請求項1~4の何れか一項に記載のSiC粉末。 The SiC powder according to any one of claims 1 to 4, wherein the stacking defect of β-SiC contained in the powder is 5% or less.
- 前記粉末中に含まれるβ-SiCの積層欠陥が2%超である請求項1~5の何れか一項に記載のSiC粉末。 The SiC powder according to any one of claims 1 to 5, wherein the stacking defect of β-SiC contained in the powder is more than 2%.
- 金属珪素及び金属シリサイドの一方又は両方を更に含有する請求項1~6の何れか一項に記載のSiC粉末。 The SiC powder according to any one of claims 1 to 6, further containing one or both of metallic silicon and metallic silicide.
- Ni、Al、B、N、Ga、Ge、Ti、Cu、Co及びZrよりなる群から選択される1種又は2種以上の金属元素を含有する請求項1~7の何れか一項に記載のSiC粉末。 The invention according to any one of claims 1 to 7, which contains one or more metal elements selected from the group consisting of Ni, Al, B, N, Ga, Ge, Ti, Cu, Co and Zr. SiC powder.
- 前記粉末中の前記金属元素の合計濃度が6質量%以下である請求項8に記載のSiC粉末。 The SiC powder according to claim 8, wherein the total concentration of the metal elements in the powder is 6% by mass or less.
- SiC化原料粉末及び金属粉末を含む混合物を成形して成形体を作製する工程と、
前記成形体を不活性雰囲気下、1800℃以下の温度で焼成してβ-SiCを含有する焼成体を得る工程と、
前記焼成体を粉砕して粉砕された焼成体を得る工程と、
前記粉砕された焼成体を分級して、レーザー回折法により測定される体積基準の累積粒度分布におけるD50が8~35μmであり、D10が5μm以上である粉末を得る工程と、
を含むSiC粉末の製造方法。 A process of molding a mixture containing a SiC raw material powder and a metal powder to prepare a molded product, and
A step of firing the molded product at a temperature of 1800 ° C. or lower in an inert atmosphere to obtain a fired product containing β-SiC.
A step of crushing the fired body to obtain a crushed fired body, and
A step of classifying the crushed fired body to obtain a powder having a D50 of 8 to 35 μm and a D10 of 5 μm or more in the volume-based cumulative particle size distribution measured by a laser diffraction method.
A method for producing a SiC powder containing. - 前記粉末は、レーザー回折法により測定される体積基準の累積粒度分布における粒度5μm以下の粒子の積算体積が7%以下である請求項10に記載のSiC粉末の製造方法。 The method for producing SiC powder according to claim 10, wherein the powder has an integrated volume of 7% or less of particles having a particle size of 5 μm or less in a volume-based cumulative particle size distribution measured by a laser diffraction method.
- 前記粉末は、レーザー回折法により測定される体積基準の累積粒度分布におけるD50が15~35μmであり、D10が7~20μmである請求項10又は11に記載のSiC粉末の製造方法。 The method for producing a SiC powder according to claim 10 or 11, wherein the powder has a D50 of 15 to 35 μm and a D10 of 7 to 20 μm in a volume-based cumulative particle size distribution measured by a laser diffraction method.
- 前記粉末は、レーザー回折法により測定される体積基準の累積粒度分布におけるD90が100μm以下である請求項10~12の何れか一項に記載のSiC粉末の製造方法。 The method for producing an SiC powder according to any one of claims 10 to 12, wherein the powder has a D90 of 100 μm or less in a volume-based cumulative particle size distribution measured by a laser diffraction method.
- 前記金属粉末は、Ni、Al、B、N、Ga、Ge、Ti、Cu、Co及びZrよりなる群から選択される1種又は2種以上の金属粒子を含有する請求項10~13の何れか一項に記載のSiC粉末の製造方法。 The metal powder is any one of claims 10 to 13 containing one or more metal particles selected from the group consisting of Ni, Al, B, N, Ga, Ge, Ti, Cu, Co and Zr. The method for producing SiC powder according to item 1.
- 前記焼成体の気孔率が35~80%である請求項10~14の何れか一項に記載のSiC粉末の製造方法。 The method for producing SiC powder according to any one of claims 10 to 14, wherein the fired body has a porosity of 35 to 80%.
- 前記焼成体の平均気孔径が5~300μmである請求項10~15の何れか一項に記載のSiC粉末の製造方法。 The method for producing SiC powder according to any one of claims 10 to 15, wherein the average pore diameter of the fired body is 5 to 300 μm.
- 坏土を成形及び乾燥することにより、外周側壁と、当該外周側壁よりも内周側に配設され、第一底面から第二底面まで延び、流体の流路となる複数のセルを区画形成する隔壁とを有する柱状のハニカム成形体を得る工程と、
前記ハニカム成形体又は前記ハニカム成形体を焼成して得られたハニカム焼成体の側面の第一の領域及び第二の領域に、電極部形成ペーストをそれぞれ塗工し、塗工した前記電極部形成ペーストを乾燥及び焼成して、一対の電極部を形成する電極部形成工程を備え、
前記坏土及び前記電極部形成ペーストの一方又は両方が、請求項1~9の何れか一項に記載のSiC粉末を含む、
電気加熱式ハニカム構造体の製造方法。 By forming and drying the clay, the outer peripheral side wall and a plurality of cells which are arranged on the inner peripheral side of the outer peripheral side wall and extend from the first bottom surface to the second bottom surface to serve as a fluid flow path are formed. The process of obtaining a columnar honeycomb molded body having a partition wall,
The electrode portion forming paste is applied to the first region and the second region of the side surface of the honeycomb molded product or the honeycomb molded product obtained by firing, respectively, and the electrode portion is formed. A step of forming an electrode portion by drying and firing the paste to form a pair of electrode portions is provided.
One or both of the clay and the electrode portion-forming paste contains the SiC powder according to any one of claims 1 to 9.
A method for manufacturing an electrically heated honeycomb structure. - 請求項17に記載の製造方法によって得られた電気加熱式ハニカム構造体。 An electrically heated honeycomb structure obtained by the manufacturing method according to claim 17.
- 請求項1~9の何れか一項に記載のSiC粉末を含む、電気加熱式ハニカム構造体。 An electrically heated honeycomb structure containing the SiC powder according to any one of claims 1 to 9.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/022634 WO2020246004A1 (en) | 2019-06-06 | 2019-06-06 | Sic powder and manufacturing method thereof, honeycomb structure of electrical heating type and manufacturing method thereof |
US16/885,654 US11613470B2 (en) | 2019-06-06 | 2020-05-28 | SiC powder and method for manufacturing same, electrically heated honeycomb structure and method for manufacturing same |
DE102020206801.1A DE102020206801A1 (en) | 2019-06-06 | 2020-05-29 | SIC powder and process for its production, electrically heated honeycomb structure and process for its production |
CN202010472737.9A CN112047738B (en) | 2019-06-06 | 2020-05-29 | SiC powder and method for producing same, electrically heated honeycomb structure and method for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/022634 WO2020246004A1 (en) | 2019-06-06 | 2019-06-06 | Sic powder and manufacturing method thereof, honeycomb structure of electrical heating type and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020246004A1 true WO2020246004A1 (en) | 2020-12-10 |
Family
ID=73653086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/022634 WO2020246004A1 (en) | 2019-06-06 | 2019-06-06 | Sic powder and manufacturing method thereof, honeycomb structure of electrical heating type and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020246004A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112960672A (en) * | 2021-02-10 | 2021-06-15 | 北京交通大学 | SiC particles with visible light response and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014198320A (en) * | 2013-03-29 | 2014-10-23 | 日本碍子株式会社 | Honeycomb structure body and method of manufacturing the same |
JP2017188492A (en) * | 2016-04-01 | 2017-10-12 | 株式会社豊田中央研究所 | Thermistor material and production method thereof |
WO2017183223A1 (en) * | 2016-04-22 | 2017-10-26 | 三菱電機株式会社 | Rotating electric machine |
-
2019
- 2019-06-06 WO PCT/JP2019/022634 patent/WO2020246004A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014198320A (en) * | 2013-03-29 | 2014-10-23 | 日本碍子株式会社 | Honeycomb structure body and method of manufacturing the same |
JP2017188492A (en) * | 2016-04-01 | 2017-10-12 | 株式会社豊田中央研究所 | Thermistor material and production method thereof |
WO2017183223A1 (en) * | 2016-04-22 | 2017-10-26 | 三菱電機株式会社 | Rotating electric machine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112960672A (en) * | 2021-02-10 | 2021-06-15 | 北京交通大学 | SiC particles with visible light response and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112047738B (en) | SiC powder and method for producing same, electrically heated honeycomb structure and method for producing same | |
EP1707546B1 (en) | Honeycomb structure and seal material | |
JP5965862B2 (en) | Honeycomb structure and manufacturing method thereof | |
JP6006782B2 (en) | Porous material and honeycomb structure | |
JP6043340B2 (en) | Porous material, honeycomb structure, and method for producing porous material | |
JP5405538B2 (en) | Honeycomb structure | |
JP6211785B2 (en) | Honeycomb structure and manufacturing method thereof | |
JP6912412B2 (en) | Silicon Carbide Porous and Its Manufacturing Method | |
EP2671857B1 (en) | Honeycomb structure in silicon carbide material, and electric-heating type catalyst carrier | |
EP2957548B1 (en) | Honeycomb structure | |
EP2668990B1 (en) | Honeycomb structure | |
WO2005005019A1 (en) | Honeycomb filter for clarifying exhaust gas and method for manufacture thereof | |
JP5193804B2 (en) | Silicon carbide based porous material and method for producing the same | |
WO2012046577A1 (en) | Exhaust gas purification filter, and method for producing same | |
JP6991020B2 (en) | Porous materials, honeycomb structures, and methods for manufacturing porous materials | |
US10882796B2 (en) | Ceramic porous body and method for producing the same, and dust collecting filter | |
JP5856793B2 (en) | Aluminum titanate honeycomb structure | |
WO2020246004A1 (en) | Sic powder and manufacturing method thereof, honeycomb structure of electrical heating type and manufacturing method thereof | |
JP5193805B2 (en) | Silicon carbide based porous material and method for producing the same | |
JP2019167278A (en) | Porous material, cell structure and manufacturing method of porous material | |
JP2022022464A (en) | Sic powder and manufacturing method therefor, and electrical heating type honeycomb structure and manufacturing method therefor | |
JP7038585B2 (en) | Ceramic porous body and dust collection filter | |
JP2012229142A (en) | Aluminum titanate-based honeycomb structure | |
JP2010105860A (en) | Silicon carbide-based porous body and method for manufacturing the same | |
WO2022202903A1 (en) | Silicon carbide-based ceramic honeycomb structure and production method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19932125 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19932125 Country of ref document: EP Kind code of ref document: A1 |