WO2020246003A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2020246003A1
WO2020246003A1 PCT/JP2019/022629 JP2019022629W WO2020246003A1 WO 2020246003 A1 WO2020246003 A1 WO 2020246003A1 JP 2019022629 W JP2019022629 W JP 2019022629W WO 2020246003 A1 WO2020246003 A1 WO 2020246003A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
fluid
heat exchanger
resistance
inflow port
Prior art date
Application number
PCT/JP2019/022629
Other languages
French (fr)
Japanese (ja)
Inventor
潤 宮本
亮介 末光
長谷川 泰士
和島 一喜
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to PCT/JP2019/022629 priority Critical patent/WO2020246003A1/en
Priority to US17/612,483 priority patent/US20220221232A1/en
Priority to CN201980095333.8A priority patent/CN113677946A/en
Publication of WO2020246003A1 publication Critical patent/WO2020246003A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities

Definitions

  • the present disclosure relates to a heat exchanger constituting a condenser or an evaporator of a refrigerator such as a turbo chiller, for example.
  • shell & tube heat exchangers Conventionally, shell & tube heat exchangers, fin & tube heat exchangers, plate heat exchangers, plate fin heat exchangers, etc. have been used as heat exchangers that accompany fluid phase changes such as evaporators and condensers. ing.
  • the shell and tube heat exchanger is configured to allow a single-phase fluid to flow through the tube, heat / cool the external fluid, and evaporate / condense the external fluid.
  • the fin and tube heat exchanger is configured to allow gas to flow between the fins outside the tube to heat / cool the fluid inside the tube and evaporate / condense the fluid inside the tube.
  • Plate heat exchangers and plate fin heat exchangers have a configuration in which a single-phase fluid flows between one plate and the fluid between the other plates is heated / cooled to evaporate / condense.
  • the plate fin heat exchanger for example, the following Patent Documents 1 to 3 have been reported.
  • the fluid evaporates or condenses, the fluid undergoes a phase change, so the fluid volume changes significantly during the heat exchange process.
  • the fluid volume in the fluid flow path becomes very large, and an excessive pressure loss may occur.
  • the fluid flow path is determined so that excessive pressure loss does not occur in the flow on the gas side, the flow velocity on the liquid side (the part where the fluid inside is in the liquid phase state) is significantly reduced, and the heat transfer performance is improved. There is a problem of decline.
  • the present disclosure has been made in view of such circumstances, and is a compact heat capable of suppressing the occurrence of excessive pressure loss and ensuring an appropriate flow velocity in response to the volume change of the fluid due to the phase change.
  • the purpose is to provide a switch.
  • the present disclosure includes an inflow port into which a fluid flows in and an outflow port from which the inflowing fluid flows out, and a flow path in which a phase change is performed from a liquid phase to a gas phase between the inflow port and the outflow port.
  • the fluid flowing into the flow path changes (evaporates) from the liquid phase to the gas phase by heat exchange in the flow path
  • the fluid volume increases.
  • an excessive pressure loss may occur due to an increase in the fluid volume.
  • the magnitude of the flow path resistance applied to the flow of the fluid inside the flow path is larger on the outlet side than on the inlet side (for example, in five stages). A smaller resistance shape is formed. Therefore, on the outlet side (gas side), the magnitude of the flow path resistance applied to the fluid flow is small, so that the occurrence of excessive pressure loss can be suppressed.
  • the present disclosure includes an inflow port into which a fluid flows in and an outflow port from which the inflowing fluid flows out, and a flow path in which a phase change is performed from a gas phase to a liquid phase between the inflow port and the outflow port.
  • a heat exchanger having a resistance shape formed inside the flow path so that the magnitude of the flow path resistance applied to the flow of the fluid is larger on the outlet side than on the inlet side.
  • the fluid flowing into the flow path changes (condenses) from the gas phase to the liquid phase by heat exchange in the flow path
  • the fluid volume decreases.
  • excessive pressure loss may occur on the inflow port side due to the large fluid volume.
  • the magnitude of the flow path resistance applied to the fluid flow inside the flow path is larger on the outlet side than on the inlet side (for example, in five stages). A resistance shape that increases is formed. Therefore, on the inflow port side (gas side), the magnitude of the flow path resistance applied to the fluid flow is small, so that the occurrence of excessive pressure loss can be suppressed.
  • the resistance shape is preferably formed by a plate forming the flow path or a plurality of fins provided on the plate.
  • the resistance shape formed inside the flow path is thus formed by the plate forming the flow path (for example, in the plate heat exchanger) and the plurality of fins provided on the plate (for example, in the plate fin heat exchanger). Can be formed. Specifically, in the portion where the flow path resistance is increased, the plates and fins are arranged perpendicular to the fluid flow direction. On the other hand, in the portion where the flow path resistance is reduced, the plates and fins are arranged parallel to the fluid flow direction. By doing so, the resistance shape can be formed. Therefore, the heat exchangers of the present disclosure are particularly suitably applicable to plate heat exchangers and plate fin heat exchangers. Since the plate heat exchanger and the plate fin heat exchanger can be made compact, if the heat exchanger of the present disclosure is applied to the plate heat exchanger and the plate fin heat exchanger, the heat transfer performance is improved and compact. It becomes a heat exchanger.
  • a separate flow path for heat exchange with the fluid flowing through the flow path is provided adjacent to the flow path.
  • heat exchanger of the present disclosure by providing a separate flow path as described above, heat exchange can be performed between the fluid flowing through the flow path and the fluid flowing through the separate flow path.
  • the same flow path resistance is imparted to the inside of the separate flow path between the inflow port where the fluid flowing through the separate flow path flows in and the outflow port where the inflowing fluid flows out. It is preferable that a resistance shape is formed.
  • one fluid can be obtained. It can be suitably applied to a heat exchanger having a single-phase structure in which the other fluid undergoes a phase change.
  • the inside of the separate flow path has a resistance shape in which the flow path resistance is larger at the outlet where the inflowing fluid flows out than at the inflow port where the fluid flowing through the separate flow path flows in. It is preferable that a resistance shape having a small flow path resistance is formed.
  • the flow path in the first aspect and the flow path in the second aspect can be combined. That is, the heat exchanger of the present disclosure can be suitably applied to a heat exchanger in which one fluid evaporates in the flow path and the other fluid condenses in the flow path. ..
  • the heat exchanger of the present disclosure is a compact heat exchanger that can suppress the occurrence of excessive pressure loss in response to the volume change of the fluid due to the phase change and can secure an appropriate flow velocity.
  • FIG. 5 is an image view of a flow path and another flow path in the heat exchanger according to the fourth embodiment of the present disclosure as viewed from the longitudinal side surface.
  • FIG. 1 is a perspective exploded view showing the structure of the heat exchanger (plate fin heat exchanger) according to the present embodiment.
  • the heat exchanger 1 shown in FIG. 1 is used for a condenser or an evaporator of a refrigerator such as a turbo chiller, for example.
  • plates (first plate) 2a and plates (second plate) 2b are alternately laminated and joined, bosses 3a and 3b are attached to the first plate 2a at the start end, and the first plate at the end ends.
  • It has a structure in which the cover plate 4 is attached to 2a.
  • Inner fins 5a and 5b are provided on the surfaces of the first plate 2a and the second plate 2b on the cover plate 4 side, respectively.
  • the fluid (first fluid) 6 flows into the heat exchanger 1 from the boss 3a, and the fluid (second fluid) 7 flows into the heat exchanger 1 from the boss 3b.
  • the first fluid 6 circulates in the flow path 8 formed between the second plate 2b and the inner fin 5a.
  • the second fluid 7 is formed between the first plate 2a and the inner fin 5b, and circulates in another flow path 9 adjacent to the flow path 8.
  • the flow path 8 of the first fluid 6 and the separate flow path 9 of the second fluid 7 are alternately arranged, and between the two fluids 6 and 7.
  • the structure is such that heat exchange is performed.
  • FIG. 2 is a plan view showing a flow path 8 in the heat exchanger 1 of the present embodiment.
  • the flow path 8 has an inflow port 10 into which the first fluid 6 flows in and an outflow port 11 from which the inflowing first fluid 6 flows out.
  • the first fluid 6 undergoes a phase change from a liquid phase to a gas phase between the inflow port 10 and the outflow port 11. That is, the heat exchanger 1 is used as an evaporator for evaporating the refrigerant.
  • a resistance shape 12 is formed in which the magnitude of the flow path resistance applied to the flow of the first fluid 6 is smaller on the outflow port 11 side than on the inflow port 10 side.
  • the resistance shape 12 is formed so that the magnitude of the flow path resistance decreases in five steps from the inflow port 10 side to the outflow port 11 side.
  • the resistance shape 12 is formed by a plurality of fins 13 provided on the first plate 2a.
  • the fins 13 are arranged perpendicular to the flow direction of the fluid 6, and the fins 13 are arranged from the inflow port 10 side toward the outflow port 11 side. (The length in the direction perpendicular to the flow direction of the fluid 6) is shortened.
  • the fins 13 are arranged parallel to the flow direction of the fluid 6, and the number of fins 13 increases from the inflow port 10 side toward the outflow port 11. Arrange from dense to coarse.
  • the magnitude of the flow path resistance applied to the flow of the fluid 6 inside the flow path 8 becomes smaller in five steps from the inflow port 10 side to the outflow port 11 side. 12 is formed. Therefore, on the outlet 11 side (gas side), the magnitude of the flow path resistance applied to the flow of the fluid 6 is small, so that the occurrence of excessive pressure loss can be suppressed. On the other hand, on the inflow port 10 side (liquid side), since the magnitude of the flow path resistance applied to the flow of the fluid 6 is large, it is possible to prevent the flow velocity of the fluid 6 from being significantly reduced (that is, an appropriate flow velocity can be secured).
  • heat exchanger 1 As described above, in the heat exchanger 1 according to the present embodiment, it is possible to suppress the occurrence of excessive pressure loss and promote turbulence in response to the volume change of the fluid 6 due to the phase change. Therefore, such a heat exchanger 1 is a heat exchanger 1 having high heat transfer performance (evaporation heat transfer performance). Since it is only necessary to form a specific resistance shape 12 inside the flow path 8, the heat exchanger 1 can be made compact.
  • the resistance shape 12 formed inside the flow path 8 can be formed by a plurality of fins 13 provided on the first plate 2a (in the plate fin heat exchanger) in this way. Therefore, the heat exchanger 1 of the present embodiment is particularly suitably applicable to the plate fin heat exchanger. Since the plate fin heat exchanger can be made compact, if the heat exchanger 1 of the present embodiment is applied to the plate fin heat exchanger, the heat transfer performance is improved and the heat exchanger 1 becomes compact.
  • the resistance shape 12 described above can also be formed by the first plate 2a constituting the flow path 8 (in the plate heat exchanger). Therefore, the heat exchanger 1 of the present embodiment is also suitably applicable to the plate heat exchanger. Since the plate heat exchanger can also be made compact, if the heat exchanger 1 of the present embodiment is applied to the plate heat exchanger, the heat transfer performance is improved and the heat exchanger 1 becomes compact as described above.
  • a resistance shape 12 is formed in which the magnitude of the flow path resistance applied to the flow of the fluid 6 decreases in five steps from the inflow port 10 side to the outflow port 11 side.
  • the magnitude of the flow path resistance can be reduced from the inflow port 10 side to the outflow port 11 side, preferably in 3 to 10 steps.
  • the basic configuration of the present embodiment is basically the same as that of the first embodiment, but the first embodiment is a point in which the first fluid 26 undergoes a phase change from a gas phase to a liquid phase in the flow path 28. , And the structure of the resistance shape 22 is different. Therefore, in the present embodiment, this different part will be described, and the description of other overlapping parts will be omitted.
  • the same components as those in the first embodiment are designated by the same reference numerals, and the duplicated description thereof will be omitted.
  • FIG. 3 is a plan view showing a flow path 28 in the heat exchanger 21 of the present embodiment.
  • the first fluid 26 undergoes a phase change from a gas phase to a liquid phase between the inflow port 10 and the outflow port 11. That is, the heat exchanger 1 is used as a condenser for condensing the refrigerant.
  • a resistance shape 22 is formed inside the flow path 28, in which the magnitude of the flow path resistance applied to the flow of the first fluid 26 is larger on the outflow port 11 side than on the inflow port 10 side.
  • the resistance shape 22 is formed so that the magnitude of the flow path resistance increases in five steps from the inflow port 10 side to the outflow port 11 side.
  • the resistance shape 22 is formed by a plurality of fins 13 provided on the first plate 2a as in the first embodiment.
  • the fins 13 are arranged parallel to the flow direction of the fluid 26, and the fins 13 are arranged from the inflow port 10 side toward the outflow port 11 side. Arrange so that the number of is coarse to dense.
  • the fins 13 are arranged perpendicular to the flow direction of the fluid 26, and the length of the fins 13 increases from the inflow port 10 side to the outflow port 11 side. (Length in the direction perpendicular to the flow direction of the fluid 26) is lengthened.
  • the magnitude of the flow path resistance applied to the flow of the fluid 26 inside the flow path 28 increases in five steps from the inflow port 10 side to the outflow port 11 side. 22 is formed. Therefore, on the inflow port 10 side (gas side), the magnitude of the flow path resistance applied to the flow of the fluid 26 is small, so that the occurrence of excessive pressure loss can be suppressed. On the other hand, on the outlet 11 side (liquid side), since the magnitude of the flow path resistance applied to the flow of the fluid 26 is large, it is possible to prevent the flow velocity of the fluid 26 from being significantly reduced (that is, an appropriate flow velocity can be secured). ), And turbulence can be promoted.
  • heat exchanger 21 As described above, in the heat exchanger 21 according to the present embodiment, it is possible to suppress the occurrence of excessive pressure loss and promote turbulence in response to the volume change of the fluid 26 due to the phase change. Therefore, such a heat exchanger 21 is a heat exchanger 21 having high heat transfer performance (condensation performance). Since it is only necessary to form a specific resistance shape 22 inside the flow path 28, the heat exchanger 21 can be made compact.
  • the basic configuration of the present embodiment is basically the same as that of the second embodiment, but is the same as that of the second embodiment inside the separate flow path 49 between the inflow port 40 and the outflow port 41.
  • the difference is that the resistance shape 42 that imparts the flow path resistance of is formed. Therefore, in the present embodiment, this different part will be described, and the description of other overlapping parts will be omitted.
  • the same components as those in the second embodiment are designated by the same reference numerals, and the duplicated description thereof will be omitted.
  • the shapes of the resistance shapes 22 and 42 are conceptually shown, but this is just an image diagram.
  • FIG. 4 is an image view of the flow path 28 and the separate flow path 49 in the heat exchanger 31 according to the present embodiment as viewed from the side surface in the longitudinal direction.
  • the first fluid 26 undergoes a phase change from a gas phase to a liquid phase between the inflow port 10 and the outflow port 11.
  • a resistance shape 22 is formed inside the flow path 28, in which the magnitude of the flow path resistance applied to the flow of the first fluid 26 is larger on the outflow port 11 side than on the inflow port 10 side.
  • the separate flow path 49 has an inflow port 40 into which the second fluid 47 flows in and an outflow port 41 from which the inflowing second fluid 47 flows out.
  • the second fluid 47 does not undergo a phase change between the inflow port 40 and the outflow port 41, and flows through the separate flow path 49 as a liquid phase (that is, is a single phase).
  • a resistance shape 42 that imparts the same flow path resistance is formed between the inflow port 40 and the outflow port 41.
  • the internal resistance shape 42 is a separate flow path 49 having a resistance shape 42 in which the magnitude of the flow path resistance applied to the flow of the fluid 47 is constant, and the flow path according to the second embodiment described above. Can be combined with 28. That is, the present disclosure can be suitably applied to the heat exchanger 31 in which one fluid 47 is single-phase and the other fluid 26 undergoes a phase change.
  • the basic configuration of the present embodiment is basically the same as that of the third embodiment, but the configuration of the resistance shape 52 formed inside the separate flow path 59 is different from that of the third embodiment. Therefore, in the present embodiment, this different part will be described, and the description of other overlapping parts will be omitted.
  • the same components as those in the third embodiment are designated by the same reference numerals, and the duplicated description thereof will be omitted.
  • the shapes of the resistance shapes 22 and 52 are conceptually shown, but this is just an image diagram.
  • FIG. 5 is an image view of the flow path 28 and the separate flow path 59 in the heat exchanger 51 according to the present embodiment as viewed from the side surface in the longitudinal direction.
  • the second fluid 57 undergoes a phase change from a liquid phase to a gas phase between the inflow port 40 and the outflow port 41.
  • a resistance shape 52 is formed inside the separate flow path 59 in which the flow path resistance of the outflow port 41 is smaller than that of the inflow port 40. That is, the configuration of the separate flow path 59 is substantially the same as the configuration of the flow path 8 in the first embodiment.
  • the following functions and effects are obtained by the configuration described above.
  • the flow path 8 (separate flow path 59) in the first embodiment and the flow path 28 in the second embodiment can be combined. That is, the heat exchanger 51 of the present embodiment is configured such that one fluid 57 evaporates in the flow path 8 (separate flow path 59) and the other fluid 26 condenses in the flow path 28. It can be suitably applied to the exchanger 51.
  • the heat exchanger of the present disclosure is applied to the plate fin heat exchanger as an example, but the present disclosure is not limited to this. Specifically, the heat exchanger of the present disclosure is also applicable to a plate heat exchanger, a fin & tube heat exchanger, and the like.
  • the heat exchangers of the present disclosure are preferably applied to plate heat exchangers and plate fin heat exchangers.

Abstract

The purpose of the present invention is to provide a compact heat exchanger with which the generation of excessive pressure loss can be suppressed and a suitable flow rate can be assured in accordance with the volumetric changes of a fluid due to phase changes. This heat exchanger (1) comprises a flow path (8) which has an inlet (10) into which a fluid (6) flows and an outlet (11) through which the flowed fluid (6) flows out, and in which a phase change from a fluid phase to a gas phase occurs between the inlet (10) and the outlet (11), wherein the inside of the flow path (8) is formed in a resistance shape (12) so that the amount of flow path resistance applied to the flow of the fluid (6) is smaller on the outlet (11) side than the inlet (10) side.

Description

熱交換器Heat exchanger
 本開示は、例えばターボ冷凍機等の冷凍機の凝縮器や蒸発器を構成する熱交換器に関するものである。 The present disclosure relates to a heat exchanger constituting a condenser or an evaporator of a refrigerator such as a turbo chiller, for example.
 従来、蒸発器、凝縮器等の流体の相変化を伴う熱交換器としては、シェル&チューブ熱交換器、フィン&チューブ熱交換器、プレート熱交換器、及びプレートフィン熱交換器等が使用されている。シェル&チューブ熱交換器は、チューブ内に単相流体を流し、外部流体を加熱/冷却して、外部流体を蒸発/凝縮させる構成となっている。フィン&チューブ熱交換器は、チューブ外のフィン間に気体を流し、チューブ内の流体を加熱/冷却してチューブ内流体を蒸発/凝縮させる構成となっている。プレート熱交換器やプレートフィン熱交換器は、一方のプレート間に単相流体を流し、他方のプレート間の流体を加熱/冷却して蒸発/凝縮させる構成となっている。このうち、プレートフィン熱交換器としては、例えば下記特許文献1~3のようなものが報告されている。 Conventionally, shell & tube heat exchangers, fin & tube heat exchangers, plate heat exchangers, plate fin heat exchangers, etc. have been used as heat exchangers that accompany fluid phase changes such as evaporators and condensers. ing. The shell and tube heat exchanger is configured to allow a single-phase fluid to flow through the tube, heat / cool the external fluid, and evaporate / condense the external fluid. The fin and tube heat exchanger is configured to allow gas to flow between the fins outside the tube to heat / cool the fluid inside the tube and evaporate / condense the fluid inside the tube. Plate heat exchangers and plate fin heat exchangers have a configuration in which a single-phase fluid flows between one plate and the fluid between the other plates is heated / cooled to evaporate / condense. Among these, as the plate fin heat exchanger, for example, the following Patent Documents 1 to 3 have been reported.
特表2007-520682号公報Special Table 2007-520682 特開2013-113479号公報Japanese Unexamined Patent Publication No. 2013-11479 特開2013-113480号公報Japanese Unexamined Patent Publication No. 2013-11340
 流体が蒸発又は凝縮する場合、流体は相変化するため、熱交換過程において流体体積が大きく変化する。特に、流体流路のうち、内部の流体が気相の状態にある部分(気体側)においては、流体流路における流体体積が非常に大きくなり、過剰な圧力損失が発生する可能性がある。一方、気体側の流れにおいて過剰な圧力損失が発生しないように流体流路を決定すると、液体側(内部の流体が液相の状態にある部分)での流速が著しく低下し、伝熱性能が低下する問題が発生する。 When the fluid evaporates or condenses, the fluid undergoes a phase change, so the fluid volume changes significantly during the heat exchange process. In particular, in the portion of the fluid flow path in which the internal fluid is in the gas phase (gas side), the fluid volume in the fluid flow path becomes very large, and an excessive pressure loss may occur. On the other hand, if the fluid flow path is determined so that excessive pressure loss does not occur in the flow on the gas side, the flow velocity on the liquid side (the part where the fluid inside is in the liquid phase state) is significantly reduced, and the heat transfer performance is improved. There is a problem of decline.
 シェル&チューブ熱交換器の場合は、流体の熱交換過程の体積変化に対応して、伝熱性能と圧力損失が適正となるようにチューブピッチ等を変化させる不等ピッチが用いられる。しかしながら、この場合、シェル&チューブ熱交換器の体積が大きくなり、相変化を行う側の保有流体量が多くなるという課題がある。一方、フィン&チューブ熱交換器、プレート熱交換器、及びプレートフィン熱交換器は、シェル&チューブ熱交換器に比べてコンパクト化が可能であるが、現状報告されている熱交換器の形状は、上記のような相変化による流体体積変化に対応した形状となっていない。 In the case of shell & tube heat exchangers, unequal pitches are used that change the tube pitch etc. so that the heat transfer performance and pressure loss are appropriate in response to the volume change in the heat exchange process of the fluid. However, in this case, there is a problem that the volume of the shell & tube heat exchanger becomes large and the amount of fluid held on the side performing the phase change increases. On the other hand, fin & tube heat exchangers, plate heat exchangers, and plate fin heat exchangers can be made more compact than shell & tube heat exchangers, but the shape of the heat exchangers currently reported is , The shape does not correspond to the fluid volume change due to the phase change as described above.
 本開示は、このような事情に鑑みてなされたものであって、相変化による流体の体積変化に対応して、過剰な圧力損失の発生を抑制できるとともに、適正な流速を確保できるコンパクトな熱交換器を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and is a compact heat capable of suppressing the occurrence of excessive pressure loss and ensuring an appropriate flow velocity in response to the volume change of the fluid due to the phase change. The purpose is to provide a switch.
 上記課題を解決するために、本開示は以下の手段を採用する。
 本開示は、流体が流入する流入口及び流入した前記流体が流出する流出口を有するとともに、前記流入口と前記流出口との間で液相から気相へと相変化が行われる流路を備え、前記流路の内部には、前記流体の流れに加わる流路抵抗の大きさが、前記流入口側よりも前記流出口側の方が小さくなる抵抗形状が形成されている熱交換器を提供する。
In order to solve the above problems, the present disclosure employs the following means.
The present disclosure includes an inflow port into which a fluid flows in and an outflow port from which the inflowing fluid flows out, and a flow path in which a phase change is performed from a liquid phase to a gas phase between the inflow port and the outflow port. A heat exchanger having a resistance shape formed inside the flow path in which the magnitude of the flow path resistance applied to the flow of the fluid is smaller on the outlet side than on the inlet side. provide.
 流路に流入した流体が流路内で熱交換により液相から気相へと相変化(蒸発)すると、流体体積が増加する。この場合、流出口側においては、流体体積の増加によって過剰な圧力損失が発生する可能性がある。しかしながら、本開示の第1態様に係る熱交換器においては、流路の内部に、流体の流れに加わる流路抵抗の大きさが、流入口側よりも流出口側の方が(例えば5段階で)小さくなる抵抗形状が形成されている。従って、流出口側(気体側)においては、流体の流れに加わる流路抵抗の大きさが小さいため、過剰な圧力損失の発生を抑制できる。一方、流入口側(液体側)においては、流体の流れに加わる流路抵抗の大きさが大きいため、流体の流速が著しく低下することを防止できる(即ち、適正な流速を確保できる)とともに、乱流を促進できる。このように、本開示の第1態様に係る熱交換器においては、相変化による流体の体積変化に対応して、過剰な圧力損失の発生を抑制できるとともに、乱流を促進できる。従って、このような熱交換器であれば、伝熱性能(蒸発伝熱性能)が高い熱交換器となる。流路の内部に特定の抵抗形状を形成するだけでよいので、熱交換器のコンパクト化が可能となる。 When the fluid flowing into the flow path changes (evaporates) from the liquid phase to the gas phase by heat exchange in the flow path, the fluid volume increases. In this case, on the outlet side, an excessive pressure loss may occur due to an increase in the fluid volume. However, in the heat exchanger according to the first aspect of the present disclosure, the magnitude of the flow path resistance applied to the flow of the fluid inside the flow path is larger on the outlet side than on the inlet side (for example, in five stages). A smaller resistance shape is formed. Therefore, on the outlet side (gas side), the magnitude of the flow path resistance applied to the fluid flow is small, so that the occurrence of excessive pressure loss can be suppressed. On the other hand, on the inflow port side (liquid side), since the magnitude of the flow path resistance applied to the fluid flow is large, it is possible to prevent a significant decrease in the flow velocity of the fluid (that is, an appropriate flow velocity can be ensured). Can promote turbulence. As described above, in the heat exchanger according to the first aspect of the present disclosure, it is possible to suppress the occurrence of excessive pressure loss and promote turbulence in response to the volume change of the fluid due to the phase change. Therefore, such a heat exchanger is a heat exchanger having high heat transfer performance (evaporation heat transfer performance). Since it is only necessary to form a specific resistance shape inside the flow path, the heat exchanger can be made compact.
 本開示は、流体が流入する流入口及び流入した前記流体が流出する流出口を有するとともに、前記流入口と前記流出口との間で気相から液相へと相変化が行われる流路を備え、前記流路の内部には、前記流体の流れに加わる流路抵抗の大きさが、前記流入口側よりも前記流出口側の方が大きくなる抵抗形状が形成されている熱交換器を提供する。 The present disclosure includes an inflow port into which a fluid flows in and an outflow port from which the inflowing fluid flows out, and a flow path in which a phase change is performed from a gas phase to a liquid phase between the inflow port and the outflow port. A heat exchanger having a resistance shape formed inside the flow path so that the magnitude of the flow path resistance applied to the flow of the fluid is larger on the outlet side than on the inlet side. provide.
 流路に流入した流体が流路内で熱交換により気相から液相へと相変化(凝縮)すると、流体体積が減少する。この場合、流入口側においては、流体体積が大きいため過剰な圧力損失が発生する可能性がある。しかしながら、本開示の第2態様に係る熱交換器においては、流路の内部に、流体の流れに加わる流路抵抗の大きさが、流入口側よりも流出口側の方が(例えば5段階で)大きくなる抵抗形状が形成されている。従って、流入口側(気体側)においては、流体の流れに加わる流路抵抗の大きさが小さいため、過剰な圧力損失の発生を抑制できる。一方、流出口側(液体側)においては、流体の流れに加わる流路抵抗の大きさが大きいため、流体の流速が著しく低下することを防止できる(即ち、適正な流速を確保できる)とともに、乱流を促進できる。このように、本開示の第2態様に係る熱交換器においては、相変化による流体の体積変化に対応して、過剰な圧力損失の発生を抑制できるとともに、乱流を促進できる。従って、このような熱交換器であれば、伝熱性能(凝縮性能)が高い熱交換器となる。流路の内部に特定の抵抗形状を形成するだけでよいので、熱交換器のコンパクト化が可能となる。 When the fluid flowing into the flow path changes (condenses) from the gas phase to the liquid phase by heat exchange in the flow path, the fluid volume decreases. In this case, excessive pressure loss may occur on the inflow port side due to the large fluid volume. However, in the heat exchanger according to the second aspect of the present disclosure, the magnitude of the flow path resistance applied to the fluid flow inside the flow path is larger on the outlet side than on the inlet side (for example, in five stages). A resistance shape that increases is formed. Therefore, on the inflow port side (gas side), the magnitude of the flow path resistance applied to the fluid flow is small, so that the occurrence of excessive pressure loss can be suppressed. On the other hand, on the outlet side (liquid side), since the magnitude of the flow path resistance applied to the flow of the fluid is large, it is possible to prevent the flow velocity of the fluid from being significantly reduced (that is, an appropriate flow velocity can be ensured). Can promote turbulence. As described above, in the heat exchanger according to the second aspect of the present disclosure, it is possible to suppress the occurrence of excessive pressure loss and promote turbulence in response to the volume change of the fluid due to the phase change. Therefore, such a heat exchanger is a heat exchanger having high heat transfer performance (condensation performance). Since it is only necessary to form a specific resistance shape inside the flow path, the heat exchanger can be made compact.
 前記熱交換器において、前記抵抗形状は、前記流路を構成するプレート又は該プレートに設けられた複数のフィンにより形成されていることが好ましい。 In the heat exchanger, the resistance shape is preferably formed by a plate forming the flow path or a plurality of fins provided on the plate.
 流路の内部に形成される抵抗形状は、このように、(例えばプレート熱交換器において)流路を構成するプレートや、(例えばプレートフィン熱交換器において)プレートに設けられた複数のフィンにより形成することができる。具体的には、流路抵抗を大きくする部分においては、プレートやフィンを流体の流れ方向に対して垂直に配置する。一方、流路抵抗を小さくする部分においては、プレートやフィンを流体の流れ方向に対して平行に配置する。このようにすれば上記抵抗形状を形成できる。従って、本開示の熱交換器は、特にプレート熱交換器やプレートフィン熱交換器に対して好適に適用可能である。プレート熱交換器やプレートフィン熱交換器はコンパクト化が可能であるため、本開示の熱交換器をプレート熱交換器やプレートフィン熱交換器に適用すれば、伝熱性能が向上され、かつコンパクトな熱交換器となる。 The resistance shape formed inside the flow path is thus formed by the plate forming the flow path (for example, in the plate heat exchanger) and the plurality of fins provided on the plate (for example, in the plate fin heat exchanger). Can be formed. Specifically, in the portion where the flow path resistance is increased, the plates and fins are arranged perpendicular to the fluid flow direction. On the other hand, in the portion where the flow path resistance is reduced, the plates and fins are arranged parallel to the fluid flow direction. By doing so, the resistance shape can be formed. Therefore, the heat exchangers of the present disclosure are particularly suitably applicable to plate heat exchangers and plate fin heat exchangers. Since the plate heat exchanger and the plate fin heat exchanger can be made compact, if the heat exchanger of the present disclosure is applied to the plate heat exchanger and the plate fin heat exchanger, the heat transfer performance is improved and compact. It becomes a heat exchanger.
 前記熱交換器において、前記流路に隣接して、該流路を流れる流体と熱交換する別流路が設けられていることが好ましい。 In the heat exchanger, it is preferable that a separate flow path for heat exchange with the fluid flowing through the flow path is provided adjacent to the flow path.
 本開示の熱交換器においては、上記のように別流路を設けることで、流路を流れる流体と別流路を流れる流体との間で熱交換が行われる構成とすることができる。 In the heat exchanger of the present disclosure, by providing a separate flow path as described above, heat exchange can be performed between the fluid flowing through the flow path and the fluid flowing through the separate flow path.
 前記熱交換器において、前記別流路の内部には、該別流路を流れる流体が流入する流入口及び流入した前記流体が流出する流出口との間に亘って同一の流路抵抗を付与する抵抗形状が形成されていることが好ましい。 In the heat exchanger, the same flow path resistance is imparted to the inside of the separate flow path between the inflow port where the fluid flowing through the separate flow path flows in and the outflow port where the inflowing fluid flows out. It is preferable that a resistance shape is formed.
 上記のように、内部の抵抗形状が、流体の流れに加わる流路抵抗の大きさが一定となる抵抗形状とされた別流路と、上記の流路とを組み合わせれば、一方の流体が単相で、他方の流体が相変化を行う構成とされた熱交換器に対して好適に適用することができる。 As described above, if the above-mentioned flow path is combined with another flow path whose internal resistance shape is a resistance shape in which the magnitude of the flow path resistance applied to the fluid flow is constant, one fluid can be obtained. It can be suitably applied to a heat exchanger having a single-phase structure in which the other fluid undergoes a phase change.
 前記熱交換器において、前記別流路の内部には、該別流路を流れる流体が流入する流入口よりも流入した前記流体が流出する流出口の方が流路抵抗が大きい抵抗形状、又は、流路抵抗が小さい抵抗形状が形成されていることが好ましい。 In the heat exchanger, the inside of the separate flow path has a resistance shape in which the flow path resistance is larger at the outlet where the inflowing fluid flows out than at the inflow port where the fluid flowing through the separate flow path flows in. It is preferable that a resistance shape having a small flow path resistance is formed.
 本開示の熱交換器においては、例えば上記第1態様における流路と、上記第2態様における流路とを組み合わせることができる。即ち、本開示の熱交換器は、一方の流体が流路内で蒸発を行い、他方の流体が流路内で凝縮を行う構成とされた熱交換器に対して好適に適用することができる。 In the heat exchanger of the present disclosure, for example, the flow path in the first aspect and the flow path in the second aspect can be combined. That is, the heat exchanger of the present disclosure can be suitably applied to a heat exchanger in which one fluid evaporates in the flow path and the other fluid condenses in the flow path. ..
 本開示の熱交換器であれば、相変化による流体の体積変化に対応して、過剰な圧力損失の発生を抑制できるとともに、適正な流速を確保できるコンパクトな熱交換器となる。 The heat exchanger of the present disclosure is a compact heat exchanger that can suppress the occurrence of excessive pressure loss in response to the volume change of the fluid due to the phase change and can secure an appropriate flow velocity.
本開示の第1実施形態に係る熱交換器(プレートフィン熱交換器)の構造を示す斜視分解図である。It is a perspective exploded view which shows the structure of the heat exchanger (plate fin heat exchanger) which concerns on 1st Embodiment of this disclosure. 本開示の第1実施形態に係る熱交換器における流路を示す平面図である。It is a top view which shows the flow path in the heat exchanger which concerns on 1st Embodiment of this disclosure. 本開示の第2実施形態に係る熱交換器における流路を示す平面図である。It is a top view which shows the flow path in the heat exchanger which concerns on 2nd Embodiment of this disclosure. 本開示の第3実施形態に係る熱交換器における流路及び別流路を長手方向側面から見たイメージ図である。It is an image figure which looked at the flow path and another flow path in the heat exchanger which concerns on 3rd Embodiment of this disclosure from the side surface in the longitudinal direction. 本開示の第4実施形態に係る熱交換器における流路及び別流路を長手方向側面から見たイメージ図である。FIG. 5 is an image view of a flow path and another flow path in the heat exchanger according to the fourth embodiment of the present disclosure as viewed from the longitudinal side surface.
 以下に、本開示に係る熱交換器の一実施形態について、図面を参照して説明する。
 以下の実施形態では、本開示に係る熱交換器をプレートフィン熱交換器に適用する場合を例に挙げて説明する。
Hereinafter, an embodiment of the heat exchanger according to the present disclosure will be described with reference to the drawings.
In the following embodiment, a case where the heat exchanger according to the present disclosure is applied to a plate fin heat exchanger will be described as an example.
〔第1実施形態〕
 以下、本開示の第1実施形態について、図1~図2を用いて説明する。
 図1は本実施形態に係る熱交換器(プレートフィン熱交換器)の構造を示す斜視分解図である。図1に示す熱交換器1は、例えばターボ冷凍機等の冷凍機の凝縮器や蒸発器に用いられる。熱交換器1は、プレート(第1プレート)2aとプレート(第2プレート)2bとを交互に積層して接合し、始端の第1プレート2aにボス3a,3bを取り付け、終端の第1プレート2aにカバープレート4を取り付けた構造のものである。第1プレート2a及び第2プレート2bにおけるカバープレート4側の面には、それぞれインナーフィン5a,5bが設けられている。
[First Embodiment]
Hereinafter, the first embodiment of the present disclosure will be described with reference to FIGS. 1 and 2.
FIG. 1 is a perspective exploded view showing the structure of the heat exchanger (plate fin heat exchanger) according to the present embodiment. The heat exchanger 1 shown in FIG. 1 is used for a condenser or an evaporator of a refrigerator such as a turbo chiller, for example. In the heat exchanger 1, plates (first plate) 2a and plates (second plate) 2b are alternately laminated and joined, bosses 3a and 3b are attached to the first plate 2a at the start end, and the first plate at the end ends. It has a structure in which the cover plate 4 is attached to 2a. Inner fins 5a and 5b are provided on the surfaces of the first plate 2a and the second plate 2b on the cover plate 4 side, respectively.
 熱交換器1には、ボス3aから流体(第1流体)6が流入し、ボス3bから流体(第2流体)7が流入する。第1流体6は、第2プレート2bとインナーフィン5aとの間に形成される流路8内を流通する。第2流体7は、第1プレート2aとインナーフィン5bとの間に形成され、流路8に隣接する別流路9内を流通する。 The fluid (first fluid) 6 flows into the heat exchanger 1 from the boss 3a, and the fluid (second fluid) 7 flows into the heat exchanger 1 from the boss 3b. The first fluid 6 circulates in the flow path 8 formed between the second plate 2b and the inner fin 5a. The second fluid 7 is formed between the first plate 2a and the inner fin 5b, and circulates in another flow path 9 adjacent to the flow path 8.
 このような構成とすることで、熱交換器1においては、第1流体6の流路8と第2流体7の別流路9とが交互に配置されて、両流体6,7の間で熱交換が行われる構造となっている。 With such a configuration, in the heat exchanger 1, the flow path 8 of the first fluid 6 and the separate flow path 9 of the second fluid 7 are alternately arranged, and between the two fluids 6 and 7. The structure is such that heat exchange is performed.
 次に、図2を示して本実施形態の流路8についてさらに詳しく説明する。
 図2は、本実施形態の熱交換器1における流路8を示す平面図である。
Next, FIG. 2 is shown, and the flow path 8 of the present embodiment will be described in more detail.
FIG. 2 is a plan view showing a flow path 8 in the heat exchanger 1 of the present embodiment.
 図2に示すように、流路8は、第1流体6が流入する流入口10及び流入した第1流体6が流出する流出口11を有する。この流路8内において、第1流体6は、流入口10と流出口11との間で液相から気相へと相変化する。即ち、熱交換器1は冷媒を蒸発させる蒸発器として用いられる。 As shown in FIG. 2, the flow path 8 has an inflow port 10 into which the first fluid 6 flows in and an outflow port 11 from which the inflowing first fluid 6 flows out. In the flow path 8, the first fluid 6 undergoes a phase change from a liquid phase to a gas phase between the inflow port 10 and the outflow port 11. That is, the heat exchanger 1 is used as an evaporator for evaporating the refrigerant.
 流路8の内部には、第1流体6の流れに加わる流路抵抗の大きさが、流入口10側よりも流出口11側の方が小さくなる抵抗形状12が形成されている。この抵抗形状12は、流路抵抗の大きさが、流入口10側から流出口11側にかけて5段階で小さくなるように形成されている。本実施形態においては、抵抗形状12は、第1プレート2aに設けられた複数のフィン13により形成されている。 Inside the flow path 8, a resistance shape 12 is formed in which the magnitude of the flow path resistance applied to the flow of the first fluid 6 is smaller on the outflow port 11 side than on the inflow port 10 side. The resistance shape 12 is formed so that the magnitude of the flow path resistance decreases in five steps from the inflow port 10 side to the outflow port 11 side. In the present embodiment, the resistance shape 12 is formed by a plurality of fins 13 provided on the first plate 2a.
 具体的には、流路抵抗を大きくする部分(液体側)においては、フィン13を流体6の流れ方向に対して垂直に配置し、流入口10側から流出口11側に向かうにつれて、フィン13の長さ(流体6の流れ方向に対して垂直方向の長さ)を短くする。一方、流路抵抗を小さくする部分(気体側)においては、フィン13を流体6の流れ方向に対して平行に配置し、流入口10側から流出口11側に向かうにつれて、フィン13の数が密から粗になるように配置する。 Specifically, in the portion where the flow path resistance is increased (liquid side), the fins 13 are arranged perpendicular to the flow direction of the fluid 6, and the fins 13 are arranged from the inflow port 10 side toward the outflow port 11 side. (The length in the direction perpendicular to the flow direction of the fluid 6) is shortened. On the other hand, in the portion where the flow path resistance is reduced (gas side), the fins 13 are arranged parallel to the flow direction of the fluid 6, and the number of fins 13 increases from the inflow port 10 side toward the outflow port 11. Arrange from dense to coarse.
 以上に説明の構成により、本実施形態によれば、以下の作用効果を奏する。
 本実施形態に係る熱交換器1においては、流路8の内部に、流体6の流れに加わる流路抵抗の大きさが、流入口10側から流出口11側にかけて5段階で小さくなる抵抗形状12が形成されている。従って、流出口11側(気体側)においては、流体6の流れに加わる流路抵抗の大きさが小さいため、過剰な圧力損失の発生を抑制できる。一方、流入口10側(液体側)においては、流体6の流れに加わる流路抵抗の大きさが大きいため、流体6の流速が著しく低下することを防止できる(即ち、適正な流速を確保できる)とともに、乱流を促進できる。このように、本実施形態に係る熱交換器1においては、相変化による流体6の体積変化に対応して、過剰な圧力損失の発生を抑制できるとともに、乱流を促進できる。従って、このような熱交換器1であれば、伝熱性能(蒸発伝熱性能)が高い熱交換器1となる。流路8の内部に特定の抵抗形状12を形成するだけでよいので、熱交換器1のコンパクト化が可能となる。
According to the present embodiment, the following functions and effects are obtained by the configuration described above.
In the heat exchanger 1 according to the present embodiment, the magnitude of the flow path resistance applied to the flow of the fluid 6 inside the flow path 8 becomes smaller in five steps from the inflow port 10 side to the outflow port 11 side. 12 is formed. Therefore, on the outlet 11 side (gas side), the magnitude of the flow path resistance applied to the flow of the fluid 6 is small, so that the occurrence of excessive pressure loss can be suppressed. On the other hand, on the inflow port 10 side (liquid side), since the magnitude of the flow path resistance applied to the flow of the fluid 6 is large, it is possible to prevent the flow velocity of the fluid 6 from being significantly reduced (that is, an appropriate flow velocity can be secured). ) And turbulence can be promoted. As described above, in the heat exchanger 1 according to the present embodiment, it is possible to suppress the occurrence of excessive pressure loss and promote turbulence in response to the volume change of the fluid 6 due to the phase change. Therefore, such a heat exchanger 1 is a heat exchanger 1 having high heat transfer performance (evaporation heat transfer performance). Since it is only necessary to form a specific resistance shape 12 inside the flow path 8, the heat exchanger 1 can be made compact.
 流路8の内部に形成される抵抗形状12は、このように、(プレートフィン熱交換器において)第1プレート2aに設けられた複数のフィン13により形成することができる。従って、本実施形態の熱交換器1は、特にプレートフィン熱交換器に対して好適に適用可能である。プレートフィン熱交換器はコンパクト化が可能であるため、本実施形態の熱交換器1をプレートフィン熱交換器に適用すれば、伝熱性能が向上され、かつコンパクトな熱交換器1となる。 The resistance shape 12 formed inside the flow path 8 can be formed by a plurality of fins 13 provided on the first plate 2a (in the plate fin heat exchanger) in this way. Therefore, the heat exchanger 1 of the present embodiment is particularly suitably applicable to the plate fin heat exchanger. Since the plate fin heat exchanger can be made compact, if the heat exchanger 1 of the present embodiment is applied to the plate fin heat exchanger, the heat transfer performance is improved and the heat exchanger 1 becomes compact.
 上記の抵抗形状12は、(プレート熱交換器において)流路8を構成する第1プレート2aによって形成することもできる。従って、本実施形態の熱交換器1は、プレート熱交換器に対しても好適に適用可能である。プレート熱交換器もコンパクト化が可能であるため、本実施形態の熱交換器1をプレート熱交換器に適用すれば、上記同様伝熱性能が向上され、かつコンパクトな熱交換器1となる。 The resistance shape 12 described above can also be formed by the first plate 2a constituting the flow path 8 (in the plate heat exchanger). Therefore, the heat exchanger 1 of the present embodiment is also suitably applicable to the plate heat exchanger. Since the plate heat exchanger can also be made compact, if the heat exchanger 1 of the present embodiment is applied to the plate heat exchanger, the heat transfer performance is improved and the heat exchanger 1 becomes compact as described above.
 本実施形態においては、図2に示すように、流体6の流れに加わる流路抵抗の大きさが、流入口10側から流出口11側にかけて5段階で小さくなる抵抗形状12が形成される場合を例にして説明したが、これに限定されない。流路抵抗の大きさは、流入口10側から流出口11側にかけて、好ましくは3~10段階で小さくすることができる。 In the present embodiment, as shown in FIG. 2, a resistance shape 12 is formed in which the magnitude of the flow path resistance applied to the flow of the fluid 6 decreases in five steps from the inflow port 10 side to the outflow port 11 side. However, the explanation is not limited to this. The magnitude of the flow path resistance can be reduced from the inflow port 10 side to the outflow port 11 side, preferably in 3 to 10 steps.
〔第2実施形態〕
 次に、本開示の第2実施形態について、図3を用いて説明する。
 本実施形態の基本構成は、第1実施形態と基本的に同様であるが、第1実施形態とは、第1流体26が、流路28内において気相から液相へと相変化する点、及び抵抗形状22の構成が異なっている。よって、本実施形態においては、この異なっている部分を説明し、その他の重複するものについては説明を省略する。
 第1実施形態と同一の構成要素については、同一の符号を付してその重複した説明を省略する。
[Second Embodiment]
Next, the second embodiment of the present disclosure will be described with reference to FIG.
The basic configuration of the present embodiment is basically the same as that of the first embodiment, but the first embodiment is a point in which the first fluid 26 undergoes a phase change from a gas phase to a liquid phase in the flow path 28. , And the structure of the resistance shape 22 is different. Therefore, in the present embodiment, this different part will be described, and the description of other overlapping parts will be omitted.
The same components as those in the first embodiment are designated by the same reference numerals, and the duplicated description thereof will be omitted.
 図3は、本実施形態の熱交換器21における流路28を示す平面図である。
 図3に示す流路28内において、第1流体26は、流入口10と流出口11との間で気相から液相へと相変化する。即ち、熱交換器1は冷媒を凝縮させる凝縮器として用いられる。流路28の内部には、第1流体26の流れに加わる流路抵抗の大きさが、流入口10側よりも流出口11側の方が大きくなる抵抗形状22が形成されている。この抵抗形状22は、流路抵抗の大きさが、流入口10側から流出口11側にかけて5段階で大きくなるように形成されている。この抵抗形状22は、第1実施形態同様、第1プレート2aに設けられた複数のフィン13により形成されている。
FIG. 3 is a plan view showing a flow path 28 in the heat exchanger 21 of the present embodiment.
In the flow path 28 shown in FIG. 3, the first fluid 26 undergoes a phase change from a gas phase to a liquid phase between the inflow port 10 and the outflow port 11. That is, the heat exchanger 1 is used as a condenser for condensing the refrigerant. Inside the flow path 28, a resistance shape 22 is formed in which the magnitude of the flow path resistance applied to the flow of the first fluid 26 is larger on the outflow port 11 side than on the inflow port 10 side. The resistance shape 22 is formed so that the magnitude of the flow path resistance increases in five steps from the inflow port 10 side to the outflow port 11 side. The resistance shape 22 is formed by a plurality of fins 13 provided on the first plate 2a as in the first embodiment.
 具体的には、流路抵抗を小さくする部分(気体側)においては、フィン13を流体26の流れ方向に対して平行に配置し、流入口10側から流出口11側に向かうにつれて、フィン13の数が粗から密になるように配置する。一方、流路抵抗を大きくする部分(液体側)においては、フィン13を流体26の流れ方向に対して垂直に配置し、流入口10側から流出口11側に向かうにつれて、フィン13の長さ(流体26の流れ方向に対して垂直方向の長さ)を長くする。 Specifically, in the portion where the flow path resistance is reduced (gas side), the fins 13 are arranged parallel to the flow direction of the fluid 26, and the fins 13 are arranged from the inflow port 10 side toward the outflow port 11 side. Arrange so that the number of is coarse to dense. On the other hand, in the portion where the flow path resistance is increased (liquid side), the fins 13 are arranged perpendicular to the flow direction of the fluid 26, and the length of the fins 13 increases from the inflow port 10 side to the outflow port 11 side. (Length in the direction perpendicular to the flow direction of the fluid 26) is lengthened.
 以上に説明の構成により、本実施形態によれば、以下の作用効果を奏する。
 本実施形態に係る熱交換器21においては、流路28の内部に、流体26の流れに加わる流路抵抗の大きさが、流入口10側から流出口11側にかけて5段階で大きくなる抵抗形状22が形成されている。従って、流入口10側(気体側)においては、流体26の流れに加わる流路抵抗の大きさが小さいため、過剰な圧力損失の発生を抑制できる。一方、流出口11側(液体側)においては、流体26の流れに加わる流路抵抗の大きさが大きいため、流体26の流速が著しく低下することを防止できる(即ち、適正な流速を確保できる)とともに、乱流を促進できる。このように、本実施形態に係る熱交換器21においては、相変化による流体26の体積変化に対応して、過剰な圧力損失の発生を抑制できるとともに、乱流を促進できる。従って、このような熱交換器21であれば、伝熱性能(凝縮性能)が高い熱交換器21となる。流路28の内部に特定の抵抗形状22を形成するだけでよいので、熱交換器21のコンパクト化が可能となる。
According to the present embodiment, the following functions and effects are obtained by the configuration described above.
In the heat exchanger 21 according to the present embodiment, the magnitude of the flow path resistance applied to the flow of the fluid 26 inside the flow path 28 increases in five steps from the inflow port 10 side to the outflow port 11 side. 22 is formed. Therefore, on the inflow port 10 side (gas side), the magnitude of the flow path resistance applied to the flow of the fluid 26 is small, so that the occurrence of excessive pressure loss can be suppressed. On the other hand, on the outlet 11 side (liquid side), since the magnitude of the flow path resistance applied to the flow of the fluid 26 is large, it is possible to prevent the flow velocity of the fluid 26 from being significantly reduced (that is, an appropriate flow velocity can be secured). ), And turbulence can be promoted. As described above, in the heat exchanger 21 according to the present embodiment, it is possible to suppress the occurrence of excessive pressure loss and promote turbulence in response to the volume change of the fluid 26 due to the phase change. Therefore, such a heat exchanger 21 is a heat exchanger 21 having high heat transfer performance (condensation performance). Since it is only necessary to form a specific resistance shape 22 inside the flow path 28, the heat exchanger 21 can be made compact.
 本実施形態においては、図3に示すように、流体26の流れに加わる流路抵抗の大きさが、流入口10側から流出口11側にかけて5段階で大きくなる抵抗形状22が形成される場合を例にして説明したが、これに限定されない。流路抵抗の大きさは、流入口10側から流出口11側にかけて、好ましくは3~10段階で大きくすることができる。 In the present embodiment, as shown in FIG. 3, when a resistance shape 22 is formed in which the magnitude of the flow path resistance applied to the flow of the fluid 26 increases in five steps from the inflow port 10 side to the outflow port 11 side. However, the explanation is not limited to this. The magnitude of the flow path resistance can be increased from the inflow port 10 side to the outflow port 11 side, preferably in 3 to 10 steps.
〔第3実施形態〕
 次に、本開示の第3実施形態について、図4を用いて説明する。
 本実施形態の基本構成は、第2実施形態と基本的に同様であるが、第2実施形態とは、別流路49の内部に、流入口40及び流出口41との間に亘って同一の流路抵抗を付与する抵抗形状42が形成されている点が異なっている。よって、本実施形態においては、この異なっている部分を説明し、その他の重複するものについては説明を省略する。
 第2実施形態と同一の構成要素については、同一の符号を付してその重複した説明を省略する。図4では、抵抗形状22,42の形状を概念的に示しているが、これはあくまでイメージ図である。
[Third Embodiment]
Next, the third embodiment of the present disclosure will be described with reference to FIG.
The basic configuration of the present embodiment is basically the same as that of the second embodiment, but is the same as that of the second embodiment inside the separate flow path 49 between the inflow port 40 and the outflow port 41. The difference is that the resistance shape 42 that imparts the flow path resistance of is formed. Therefore, in the present embodiment, this different part will be described, and the description of other overlapping parts will be omitted.
The same components as those in the second embodiment are designated by the same reference numerals, and the duplicated description thereof will be omitted. In FIG. 4, the shapes of the resistance shapes 22 and 42 are conceptually shown, but this is just an image diagram.
 図4は、本実施形態に係る熱交換器31における流路28及び別流路49を長手方向側面から見たイメージ図である。図4に示すように、流路28内においては、第1流体26は、流入口10と流出口11との間で気相から液相へと相変化する。流路28の内部には、第1流体26の流れに加わる流路抵抗の大きさが、流入口10側よりも流出口11側の方が大きくなる抵抗形状22が形成されている。 FIG. 4 is an image view of the flow path 28 and the separate flow path 49 in the heat exchanger 31 according to the present embodiment as viewed from the side surface in the longitudinal direction. As shown in FIG. 4, in the flow path 28, the first fluid 26 undergoes a phase change from a gas phase to a liquid phase between the inflow port 10 and the outflow port 11. Inside the flow path 28, a resistance shape 22 is formed in which the magnitude of the flow path resistance applied to the flow of the first fluid 26 is larger on the outflow port 11 side than on the inflow port 10 side.
 一方、別流路49は、第2流体47が流入する流入口40及び流入した第2流体47が流出する流出口41を有する。この別流路49内において、第2流体47は、流入口40と流出口41との間で相変化せず、液相のまま別流路49を流通する(即ち、単相である)。別流路49の内部においては、流入口40及び流出口41との間に亘って同一の流路抵抗を付与する抵抗形状42が形成されている。 On the other hand, the separate flow path 49 has an inflow port 40 into which the second fluid 47 flows in and an outflow port 41 from which the inflowing second fluid 47 flows out. In the separate flow path 49, the second fluid 47 does not undergo a phase change between the inflow port 40 and the outflow port 41, and flows through the separate flow path 49 as a liquid phase (that is, is a single phase). Inside the separate flow path 49, a resistance shape 42 that imparts the same flow path resistance is formed between the inflow port 40 and the outflow port 41.
 以上に説明の構成により、本実施形態によれば、以下の作用効果を奏する。
 上記のように、内部の抵抗形状42が、流体47の流れに加わる流路抵抗の大きさが一定となる抵抗形状42とされた別流路49と、上記の第2実施形態に係る流路28とを組み合わせることができる。即ち、本開示は、一方の流体47が単相で、他方の流体26が相変化を行う構成とされた熱交換器31に対して好適に適用することができる。
According to the present embodiment, the following functions and effects are obtained by the configuration described above.
As described above, the internal resistance shape 42 is a separate flow path 49 having a resistance shape 42 in which the magnitude of the flow path resistance applied to the flow of the fluid 47 is constant, and the flow path according to the second embodiment described above. Can be combined with 28. That is, the present disclosure can be suitably applied to the heat exchanger 31 in which one fluid 47 is single-phase and the other fluid 26 undergoes a phase change.
〔第4実施形態〕
 次に、本開示の第4実施形態について、図5を用いて説明する。
 本実施形態の基本構成は、第3実施形態と基本的に同様であるが、第3実施形態とは、別流路59の内部に形成した抵抗形状52の構成が異なっている。よって、本実施形態においては、この異なっている部分を説明し、その他の重複するものについては説明を省略する。
 第3実施形態と同一の構成要素については、同一の符号を付してその重複した説明を省略する。図5では、抵抗形状22,52の形状を概念的に示しているが、これはあくまでイメージ図である。
[Fourth Embodiment]
Next, the fourth embodiment of the present disclosure will be described with reference to FIG.
The basic configuration of the present embodiment is basically the same as that of the third embodiment, but the configuration of the resistance shape 52 formed inside the separate flow path 59 is different from that of the third embodiment. Therefore, in the present embodiment, this different part will be described, and the description of other overlapping parts will be omitted.
The same components as those in the third embodiment are designated by the same reference numerals, and the duplicated description thereof will be omitted. In FIG. 5, the shapes of the resistance shapes 22 and 52 are conceptually shown, but this is just an image diagram.
 図5は、本実施形態に係る熱交換器51における流路28及び別流路59を長手方向側面から見たイメージ図である。図5に示すように、本実施形態に係る別流路59内において、第2流体57は、流入口40と流出口41との間で液相から気相へと相変化する。別流路59の内部においては、流入口40よりも流出口41の方が流路抵抗が小さい抵抗形状52が形成されている。即ち、別流路59の構成は、実質的に第1実施形態における流路8の構成と同一である。 FIG. 5 is an image view of the flow path 28 and the separate flow path 59 in the heat exchanger 51 according to the present embodiment as viewed from the side surface in the longitudinal direction. As shown in FIG. 5, in the separate flow path 59 according to the present embodiment, the second fluid 57 undergoes a phase change from a liquid phase to a gas phase between the inflow port 40 and the outflow port 41. Inside the separate flow path 59, a resistance shape 52 is formed in which the flow path resistance of the outflow port 41 is smaller than that of the inflow port 40. That is, the configuration of the separate flow path 59 is substantially the same as the configuration of the flow path 8 in the first embodiment.
 以上に説明の構成により、本実施形態によれば、以下の作用効果を奏する。
 本実施形態の熱交換器51においては、例えば上記第1実施形態における流路8(別流路59)と、上記第2実施形態における流路28とを組み合わせることができる。即ち、本実施形態の熱交換器51は、一方の流体57が流路8(別流路59)内で蒸発を行い、他方の流体26が流路28内で凝縮を行う構成とされた熱交換器51に対して好適に適用することができる。
According to the present embodiment, the following functions and effects are obtained by the configuration described above.
In the heat exchanger 51 of the present embodiment, for example, the flow path 8 (separate flow path 59) in the first embodiment and the flow path 28 in the second embodiment can be combined. That is, the heat exchanger 51 of the present embodiment is configured such that one fluid 57 evaporates in the flow path 8 (separate flow path 59) and the other fluid 26 condenses in the flow path 28. It can be suitably applied to the exchanger 51.
 なお、以上に説明した実施形態においては、本開示の熱交換器をプレートフィン熱交換器に適用する場合を例に挙げて説明したが、本開示はこれに限定されない。具体的には、本開示の熱交換器はプレート熱交換器やフィン&チューブ熱交換器等にも適用可能である。なお、本開示の熱交換器は、好ましくはプレート熱交換器やプレートフィン熱交換器に適用される。 In the embodiment described above, the case where the heat exchanger of the present disclosure is applied to the plate fin heat exchanger has been described as an example, but the present disclosure is not limited to this. Specifically, the heat exchanger of the present disclosure is also applicable to a plate heat exchanger, a fin & tube heat exchanger, and the like. The heat exchangers of the present disclosure are preferably applied to plate heat exchangers and plate fin heat exchangers.
1,21,31,51 熱交換器
2a プレート(第1プレート)
2b プレート(第2プレート)
3a,3b ボス
4 カバープレート
5a,5b インナーフィン
6,26 流体(第1流体)
7,47,57 流体(第2流体)
8,28 流路
9,49,59 別流路
10,40 流入口
11,41 流出口
12,22,42,52 抵抗形状
13 フィン
1,21,31,51 Heat exchanger 2a plate (first plate)
2b plate (second plate)
3a, 3b Boss 4 Cover plate 5a, 5b Inner fins 6,26 Fluid (first fluid)
7,47,57 fluid (second fluid)
8,28 Channels 9, 49, 59 Separate channels 10, 40 Inlet 11, 41 Outlet 12, 22, 42, 52 Resistance shape 13 fins

Claims (6)

  1.  流体が流入する流入口及び流入した前記流体が流出する流出口を有するとともに、前記流入口と前記流出口との間で液相から気相へと相変化が行われる流路を備え、
     前記流路の内部には、前記流体の流れに加わる流路抵抗の大きさが、前記流入口側よりも前記流出口側の方が小さくなる抵抗形状が形成されている熱交換器。
    It has an inflow port into which a fluid flows in and an outflow port from which the inflowing fluid flows out, and also has a flow path in which a phase change is performed from a liquid phase to a gas phase between the inflow port and the outflow port.
    A heat exchanger in which a resistance shape is formed inside the flow path so that the magnitude of the flow path resistance applied to the flow of the fluid is smaller on the outlet side than on the inlet side.
  2.  流体が流入する流入口及び流入した前記流体が流出する流出口を有するとともに、前記流入口と前記流出口との間で気相から液相へと相変化が行われる流路を備え、
     前記流路の内部には、前記流体の流れに加わる流路抵抗の大きさが、前記流入口側よりも前記流出口側の方が大きくなる抵抗形状が形成されている熱交換器。
    It has an inflow port into which a fluid flows in and an outflow port from which the inflowing fluid flows out, and also has a flow path in which a phase change is performed from a gas phase to a liquid phase between the inflow port and the outflow port.
    A heat exchanger in which a resistance shape is formed inside the flow path so that the magnitude of the flow path resistance applied to the flow of the fluid is larger on the outlet side than on the inlet side.
  3.  前記抵抗形状は、前記流路を構成するプレート又は該プレートに設けられた複数のフィンにより形成されている請求項1又は請求項2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the resistance shape is formed by a plate forming the flow path or a plurality of fins provided on the plate.
  4.  前記流路に隣接して、該流路を流れる流体と熱交換する別流路が設けられている請求項1から請求項3のいずれか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3, wherein a separate flow path for heat exchange with the fluid flowing through the flow path is provided adjacent to the flow path.
  5.  前記別流路の内部には、該別流路を流れる流体が流入する流入口及び流入した前記流体が流出する流出口との間に亘って同一の流路抵抗を付与する抵抗形状が形成されている請求項4に記載の熱交換器。 Inside the separate flow path, a resistance shape is formed that imparts the same flow path resistance between the inflow port into which the fluid flowing through the separate flow path flows in and the outflow port from which the inflowing fluid flows out. The heat exchanger according to claim 4.
  6.  前記別流路の内部には、該別流路を流れる流体が流入する流入口よりも流入した前記流体が流出する流出口の方が流路抵抗が大きい抵抗形状、又は、流路抵抗が小さい抵抗形状が形成されている請求項4に記載の熱交換器。 Inside the separate flow path, the outflow port where the inflowing fluid flows out has a resistance shape in which the flow path resistance is larger or the flow path resistance is smaller than the inflow port where the fluid flowing through the other flow path flows in. The heat exchanger according to claim 4, wherein a resistance shape is formed.
PCT/JP2019/022629 2019-06-06 2019-06-06 Heat exchanger WO2020246003A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/022629 WO2020246003A1 (en) 2019-06-06 2019-06-06 Heat exchanger
US17/612,483 US20220221232A1 (en) 2019-06-06 2019-06-06 Heat exchanger
CN201980095333.8A CN113677946A (en) 2019-06-06 2019-06-06 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/022629 WO2020246003A1 (en) 2019-06-06 2019-06-06 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2020246003A1 true WO2020246003A1 (en) 2020-12-10

Family

ID=73653082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022629 WO2020246003A1 (en) 2019-06-06 2019-06-06 Heat exchanger

Country Status (3)

Country Link
US (1) US20220221232A1 (en)
CN (1) CN113677946A (en)
WO (1) WO2020246003A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5538700A (en) * 1994-12-22 1996-07-23 Uop Process and apparatus for controlling temperatures in reactant channels
WO2014087225A1 (en) * 2012-12-05 2014-06-12 Blue Box Group S.R.L. Heat exchanger
US20140262186A1 (en) * 2013-03-14 2014-09-18 Rochester Institute Of Technology Heat Transfer System and Method Incorporating Tapered Flow Field

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992168A (en) * 1968-05-20 1976-11-16 Kobe Steel Ltd. Heat exchanger with rectification effect
US5709264A (en) * 1996-03-18 1998-01-20 The Boc Group, Inc. Heat exchanger
US7073573B2 (en) * 2004-06-09 2006-07-11 Honeywell International, Inc. Decreased hot side fin density heat exchanger
CN100516758C (en) * 2007-06-12 2009-07-22 缪志先 Strip-free plate-fin heat exchanger
CA2791488C (en) * 2010-03-08 2017-05-23 Arvind Accel Limited Three zone plastic heat exchange element
KR101534497B1 (en) * 2013-10-17 2015-07-09 한국원자력연구원 Heat exchanger for steam generator and steam generator having the same
DE102014004322B4 (en) * 2014-03-25 2020-08-27 Modine Manufacturing Company Heat recovery system and plate heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5538700A (en) * 1994-12-22 1996-07-23 Uop Process and apparatus for controlling temperatures in reactant channels
WO2014087225A1 (en) * 2012-12-05 2014-06-12 Blue Box Group S.R.L. Heat exchanger
US20140262186A1 (en) * 2013-03-14 2014-09-18 Rochester Institute Of Technology Heat Transfer System and Method Incorporating Tapered Flow Field

Also Published As

Publication number Publication date
CN113677946A (en) 2021-11-19
US20220221232A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
US9823025B2 (en) Heat recovery system having a plate heat exchanger
WO2014132602A1 (en) Stacked heat exchanger
JP6094261B2 (en) Laminate heat exchanger
US20140060789A1 (en) Heat exchanger and method of operating the same
US20120181005A1 (en) Compact high performance condenser
US10371461B2 (en) Multi-layered counterflow expanding microchannel cooling architecture and system thereof
JP2020079693A (en) Heat exchanger
JP6160385B2 (en) Laminate heat exchanger
WO2015020048A1 (en) Heat exchanger
JP6016935B2 (en) Plate heat exchanger and refrigeration cycle apparatus equipped with the plate heat exchanger
WO2020246003A1 (en) Heat exchanger
JP2005127529A (en) Heat exchanger
JP2019184133A (en) Heat exchanger
WO2014154547A1 (en) Heat exchanger, especially condenser
JP2009275969A (en) Refrigerating apparatus
JP2009186142A (en) Brazed plate type heat exchanger
WO2020203555A1 (en) Heat exchanger
WO2020110638A1 (en) Heat exchanger
JPS6252238B2 (en)
JP2018096568A (en) Heat exchanger
JPH02143094A (en) Heat exchanger equipped with heat transfer tube
JP7081417B2 (en) Heat exchanger
JP6658242B2 (en) Heat exchanger
JP6865354B2 (en) Plate fin laminated heat exchanger and refrigeration system using it
WO2020100687A1 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/03/2022)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 19932117

Country of ref document: EP

Kind code of ref document: A1