WO2020245088A1 - Adjuvans-kombinationen als blattaufnahmebeschleuniger für herbizide zusammensetzungen - Google Patents

Adjuvans-kombinationen als blattaufnahmebeschleuniger für herbizide zusammensetzungen Download PDF

Info

Publication number
WO2020245088A1
WO2020245088A1 PCT/EP2020/065148 EP2020065148W WO2020245088A1 WO 2020245088 A1 WO2020245088 A1 WO 2020245088A1 EP 2020065148 W EP2020065148 W EP 2020065148W WO 2020245088 A1 WO2020245088 A1 WO 2020245088A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfated
sulfonates
alkoxylated
adjuvant
sulphonates
Prior art date
Application number
PCT/EP2020/065148
Other languages
English (en)
French (fr)
Other versions
WO2020245088A9 (de
Inventor
Arianna Martelletti
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to BR112021024263A priority Critical patent/BR112021024263A2/pt
Priority to CA3142289A priority patent/CA3142289A1/en
Priority to EP20729073.5A priority patent/EP3975724A1/de
Priority to US17/615,815 priority patent/US20220322661A1/en
Publication of WO2020245088A1 publication Critical patent/WO2020245088A1/de
Publication of WO2020245088A9 publication Critical patent/WO2020245088A9/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/30Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests characterised by the surfactants

Definitions

  • Adiuvans combinations as foliar uptake accelerators for herbicidal compositions are also known as herbicidal compositions.
  • the present invention relates to agrochemically active herbicidal compositions and their use for controlling harmful plants.
  • the present invention further relates to adjuvant combinations for improving the bioavailability, in particular the cuticle penetration, of herbicidal active ingredients.
  • the present invention relates to adjuvant combinations containing tris (2-ethylhexyl phosphate (hereinafter TEHP), at least one adjuvant from the class of the alkyl ether phosphate ammonium salts and at least one emulsifier and / or wetting agent, preferably at least one emulsifier and at least one wetting agent .
  • TEHP 2-ethylhexyl phosphate
  • the present invention further relates to agrochemically active herbicidal compositions in conjunction with the above-mentioned adjuvant combination according to the invention.
  • herbicidal compositions are particularly well suited for combating undesirable harmful plants, the adjuvant combination in particular improving bioavailability and cuticle penetration.
  • liquid adjuvants can improve the herbicidal effectiveness of agrochemical active ingredients, in particular of herbicides.
  • Adjuvants in agrochemical formulations can have various functions, such as, for example, improving the application of spray mixtures, increasing the effectiveness of agrochemical active ingredients, and reducing drift of the active ingredients.
  • ASTM E-1519 describes various functions of adjuvants known in industry and academic research.
  • WO 2008/049618 A1 describes herbicidal compositions containing pinoxades and organic phosphates or phosphonates, including tris (2-ethylhexyl phosphate.
  • Pinoxaden is known, for example, from "The Pesticide Manual", 16th edition, The British Crop Protection Council and the Royal Soc. Of Chemistry, 2012, where it is described as a herbicidal active ingredient for use against harmful plants in wheat and barley.
  • the object of the present invention was to provide adjuvant combinations and herbicidal compositions which have increased bioavailability and cuticle penetration and thus a better effect with low active ingredient application.
  • the present invention thus relates to adjuvant combinations containing:
  • the subject matter of the present invention is an adjuvant combination containing:
  • Component a) is in the adjuvant combination preferably in 40% by weight to 60% by weight, more preferably in 45% by weight to 55% by weight, and particularly preferably 48% by weight to 52% by weight , based on the total weight of the adjuvant combination.
  • Component b) is preferably in the adjuvant combination in 20 wt .-% to 35 wt .-%, more preferably in 25 wt .-% to 35 wt .-%, and particularly preferably 28 wt .-% to 32 wt .-% , based on the total weight of the adjuvant combination. If either component c) or component d) is present, these are in the adjuvant combination preferably in 10% by weight to 25% by weight, more preferably in 12% by weight to 23% by weight, and particularly preferably 12% by weight .-% to 22% by weight, based on the total weight of the adjuvant combination.
  • Component c) is preferably in the adjuvant combination in 5 wt .-% to 10 wt .-%, more preferably in 6 wt .-% to 8 wt .-%, and particularly preferably 6 wt .-% to 7 wt .-% , based on the total weight of the adjuvant combination.
  • Component d) is preferably in the adjuvant combination in 10 wt .-% to 15 wt .-%, more preferably in 10 wt .-% to 14 wt .-%, and particularly preferably 12 wt .-% to 14 wt .-% , based on the total weight of the adjuvant combination.
  • Herbicidal active ingredients for the purposes of the present invention also include safeners and plant growth regulators, unless stated otherwise.
  • lists of ingredients in an open formulation are also intended to disclose these lists, which are closed and contain no further ingredients, unless otherwise stated in the present invention.
  • the present invention further relates to herbicidal compositions based on the above-mentioned adjuvant combination according to the invention containing:
  • At least one agrochemical active ingredient selected from the group comprising herbicides, plant growth regulators and safeners, and
  • the herbicidal compositions according to the invention are usually used as so-called self-emulsifiable finished formulations. It is also possible to add components a) and b) to component A using the tank mix method as described above.
  • the herbicidal compositions according to the invention usually contain in the ready-diluted spray liquor
  • Adjuvant combination preferably from 3 to 8 g / L, more preferably from 5 to 7 g / L, and particularly preferably from 6 to 7 g / L.
  • Active ingredients A) to be used according to the invention are selected from the group consisting of bicyclopyrone, mesotrione, fomesafen, tralkoxydim, napropamide, amitraz, propanil, pyrimethanil, diclorane, tecnazene, tooclofos-methyl, flamprop M, 2,4-D, MCPA, mecoprop , Clodinafop-propargyl, Cyhalofop-butyl, Diclofop-methyl, Haloxyfop, Quizalofop-P, Indol-3-ylacetic acid, 1-Naphthylessigkla, Isoxaben, Tebutam, Chlorthal-dimethyl, Benomyl, Benfuresate, Dicamba, Dichlobenil, Benazoline , Teflubenzuron, Phenmedipham, Acetochlor, Alachlor, Metolachlor, Pretilachlor, Thenylchlor, Alloxydim
  • the active ingredient A) is preferably selected from the group consisting of Bicyclopyrone, Bixlozone, Dicamba, Cinmethylin, Isoxaflutole, Mesotrione, Metribuzin,, Tembotrione, Pyroxasulfone, Rinskor TM, Sulcotrione, Tolpyralate, Topramezone, Prohexadione-Cypros-Ca, cloquamido Mefenpyr diethyl.
  • the active ingredient A) is particularly preferably selected from the group comprising Tembotrione, Isoxaflutole, Bixlozone, Pyroxasulfone, XDE-848 (Rinskor TM), Thiafenacil, Prohexadione-Ca, Mefenpyr-diethyl and Cyprosulfamide.
  • b) is preferably an alkyl ether phosphate ammonium salt, more preferably b) a 70% blend of C8-C10 mono- and di-alkyl ether phosphate ammonium salts with free C8-C10 alcohols ⁇ 10% and ⁇ 10% triethylene glycol monobutyl ether .
  • the emulsifier c) is preferably selected from the group of nonionic dispersants, ethoxylated nonylphenols, ethylene oxide-propylene oxide block copolymers, end-group-capped and non-end-group-capped alkoxylated linear and branched, saturated and unsaturated alcohols (for example butoxy polyethylene propylene glycols with ethylene oxide), reaction products of alkylphenols and / or propylene oxide, ethylene oxide-propylene oxide block copolymers, polyethylene glycols and polypropylene glycols, also fatty acid esters, fatty acid polyglycol ether esters, alkyl sulfonates, alkyl sulfates, aryl sulfates, ethoxylated arylalkylphenols, such as, for example, tristyryl-propoxol-ethoxylated units per molecule, furthermore, tristyryl-propoxol-ethoxylated
  • Ricinusölpolyglykoletherestem for example, Targeted TM CO 30th
  • the wetting agent d) is preferably selected from the group consisting of the alkali, alkaline earth or ammonium salts of sulfonates, sulfates, in particular of alkyl ether sulfates, more preferably the sodium salts of alkyl ether sulfates, phosphates, carboxylates and mixtures thereof, e.g.
  • alkylsulphonic acids or alkylphosphoric acids and also alkylarylsulphonic or alkylarylphosphoric acids diphenylsulphonates, alpha-olefin sulphonates, lignin sulphonates, sulphonates of fatty acids and oils, sulphonates of ethoxylated alkylphenols, sulphonates of alkoxylated sulfonates and triolphenols, sulfonates of sulfonates of alkoxylated aryl phenols, sulfonates of sulfonates and traphthalene naphthalenes, sulfonates of sulfonates of kaphthalenes, sulfonates of sulfonates of kaphthalenes, sulfonates of alkoxylated aryl phenols, sulfonates of alkoxylated aryl phenols, sulfon
  • Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols or of fatty acid esters.
  • Examples of phosphates are phosphate esters.
  • Examples of carboxylates are alkyl carboxylates and carboxylated alcohol or alkylphenol ethoxylates.
  • the group of anionic emulsifiers of the alkali metal, alkaline earth metal and ammonium salts of polystyrene sulfonic acids, salts of polyvinylsulphonic acids, salts of alkylnaphthalenesulphonic acids, salts of alkylnaphthalenesulphonic acid-formaldehyde, and formaldehyde products, salts of condensation products of naphthalenesulfonic acid are also suitable.
  • Kalziumdodecylbenzensulfonat ® Rhodocal 70 / B Solvay
  • Phenylsulfonat CA100 Clariant
  • Isopropylammoniumdodecylbenzenesulfonate as Atlox ® 3300B (Croda).
  • the wetting agent is more preferably selected from the group consisting of the alkali, alkaline earth or ammonium salts of sulfonates and sulfates and linear alcohols with ethylene oxide, particularly preferably of alkyl ether sulfates, and very particularly preferably the sodium salts of alkyl ether sulfates and linear alcohols with ethylene oxide, comprising, for example Genapol ® LRO, Genapol ® LRO paste and Genapol ® X-060th
  • the herbicidal compositions according to the invention can be used in customary formulations known to the person skilled in the art. Possible formulation options are, for example: wettable powders (WP), water-soluble powders (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions , Suspension concentrates (SC), oil-based dispersions (OD), soluble liquids (SF), suspoemulsions (SE), dispersible concentrates (DC), oil-miscible solutions, capsule suspensions (CS), dusts (DP), dressings, granules for the Litter and soil application, granules (GR) in the form of micro, spray, lift and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), UFV formulations, microcapsules and waxes.
  • WP
  • combinations with other pesticidally active substances such as e.g. Manufacture insecticides, acaricides, herbicides, fungicides, as well as with safeners, fertilizers and / or growth regulators, e.g. in the form of a finished formulation or as a tank mix.
  • pesticidally active substances such as e.g. Manufacture insecticides, acaricides, herbicides, fungicides, as well as with safeners, fertilizers and / or growth regulators, e.g. in the form of a finished formulation or as a tank mix.
  • Wettable powders are preparations which are uniformly dispersible in water and which, in addition to the active ingredient, contain a diluent or inert substance as well as surfactants of an ionic and / or nonionic type (wetting agents, dispersants.
  • the herbicidal active ingredients are, for example, in conventional equipment such as hammer mills, blower mills and air jet mills finely ground and mixed at the same time or afterwards with the formulation auxiliaries.
  • Emulsifiable concentrates are made by dissolving the active ingredient in an organic solvent, for example butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents with the addition of one or several surfactants of ionic and / or non-ionic type (emulsifiers).
  • organic solvent for example butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents with the addition of one or several surfactants of ionic and / or non-ionic type (emulsifiers).
  • Dusts are obtained by grinding the active ingredient with finely divided solid substances, e.g. Talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • finely divided solid substances e.g. Talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • Suspension concentrates can be water or oil based. They can be produced, for example, by wet grinding using commercially available pearl mills.
  • Emulsions e.g. Oil-in-water emulsions (EW) can be prepared, for example, by means of stirrers, colloid mills and / or static mixers using aqueous organic solvents and optionally surfactants, such as are e.g. are already listed above for the other formulation types.
  • EW Oil-in-water emulsions
  • Granules can be produced either by spraying the active ingredient onto adsorptive, granulated inert material or by applying active ingredient concentrates by means of adhesives, e.g. Polyvinyl alcohol, polyacrylic acid sodium or mineral oils, on the surface of carrier materials such as sand, kaolinite or granulated inert material.
  • adhesives e.g. Polyvinyl alcohol, polyacrylic acid sodium or mineral oils
  • Water-dispersible granules are generally produced by the customary processes such as spray drying, fluidized bed granulation, plate granulation, mixing with high-speed mixers and extrusion without solid inert material.
  • the active ingredient formulations mentioned can optionally contain the respective customary adhesives, preservatives, antifreeze and solvents, a bactericide, fillers, carriers and dyes, defoamers, fragrances, evaporation inhibitors and agents which influence the pH and viscosity, which very are well known to those skilled in the art.
  • Standard formulation publications contain examples of such components suitable for use in this invention (e.g. Chemistry and Technology of Agrochemical Formulations, Ed. Alan Knowles, published by Kluwer Academic Publishers, The Netherlands in 1998; and Adjuvants and Additives: 2006 Edition by Alan Knowles, Agrow Report DS256, published by Informa UK Ltd, December 2006).
  • formulations available in commercially available form optionally in Usually diluted, for example with wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules, using water. Preparations in dust form, soil granules or granules as well as sprayable solutions are usually no longer diluted with other inert substances before use.
  • the herbicidal compositions according to the invention are usually used as so-called finished formulations. It is also possible to add the adjuvant combinations B) according to the invention to component A) in the tank mix process.
  • the herbicidal compositions according to the invention can be applied in a manner known to the person skilled in the art, for example together (for example as a co-formulation or as a tank mix) or also staggered in quick succession (splitting), e.g. on the plants, plant parts, plant seeds or the area on which the plants grow.
  • the application of the individual active ingredients or the herbicidal compositions in several portions e.g. B. after pre-emergence applications, followed by post-emergence applications, or after early post-emergence applications, followed by medium or late post-emergence applications.
  • the application rate of component A is usually 5 to 450 g of active substance (a. I.) Per hectare, preferably 40 to 400 g of a. i./ha, particularly preferably 100 to 200g a. i./ha.
  • the herbicidal compositions according to the invention When using the herbicidal compositions according to the invention, a very broad spectrum of harmful plants is controlled by the pre- and post-emergence method, e.g. annual and perennial monocotyledon or dicotyledon weeds and undesirable crops.
  • the herbicidal compositions according to the invention are particularly suitable for use in crops such as corn and sugar cane and for use in permanent crops, plantations and on non-cultivated land. Their use in crops of corn and sugar cane is preferred. They are also very suitable for use in transgenic crops of maize.
  • the present invention thus furthermore relates to a method for controlling undesirable plants in plant crops, which is characterized in that components A and B of the herbicidal compositions according to the invention are applied to the plants (for example harmful plants such as monocotyledonous or dicotyledonous weeds or undesired crop plants), the area on which the plants grow are applied, e.g. together or separately.
  • Undesired plants are to be understood as meaning all plants which grow in locations where they are undesirable. These can be, for example, harmful plants (for example monocotyledon or dicotyledon weeds or undesired crop plants).
  • Monocot weeds come from, for example, the genera Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittpalum, Eleochusaris, Sagittaria, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera.
  • Dicot weeds come from the genera Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonicum, Cirsium, Carduus Rorippa, Rotala, Lindemia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, Taraxacum, Euphorbia.
  • the invention also relates to the use of the herbicidal compositions according to the invention for controlling undesired vegetation, preferably in crops of useful plants.
  • the herbicidal compositions of the invention can be prepared by known methods e.g. be prepared as mixed formulations of the individual components, optionally with other active ingredients, additives and / or customary formulation auxiliaries, which are then diluted with water in the usual way, or prepared as so-called tank mixes by jointly diluting the separately formulated or partially separately formulated individual components with water will.
  • the staggered application (split application) of the separately formulated or partially separately formulated individual components is also possible. It is also possible to use the individual components or the herbicidal compositions in several portions (sequence application), e.g. B. after pre-emergence applications, followed by post-emergence applications, or after early post-emergence applications, followed by medium or late post-emergence applications. Preference is given here to using the active ingredients of the respective combination together or at the same time.
  • the herbicidal compositions according to the invention can also be used for controlling harmful plants in crops of known or genetically modified plants which are yet to be developed.
  • the transgenic plants are generally distinguished by particularly advantageous properties, for example by resistance to certain pesticides, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other special properties relate to e.g. B. the harvest in terms of quantity, quality, shelf life, composition and special ingredients.
  • transgenic plants with an increased starch content or a changed quality of the starch or those with a different fatty acid composition of the harvested material are known.
  • More special Properties can be in a tolerance or resistance to abiotic stressors e.g. B. harbor heat, cold, drought, salt and ultraviolet radiation.
  • transgenic crop plants which are resistant to certain herbicides of the glufosinate type (cf., for example, EP-A-0242236, EP-A-242246) or glyphosates (WO 92/00377) or the sulfonylureas (EP-A-0257993, US-A -5013659) are resistant,
  • transgenic crop plants for example cotton, with the ability to produce Bacillus thuringiensis toxins (Bt toxins) which make the plants resistant to certain pests (EP-A-0142924, EP-A-0193259).
  • Bacillus thuringiensis toxins Bacillus thuringiensis toxins
  • transgenic crop plants with modified fatty acid composition (WO 91/13972).
  • transgenic crops that are characterized by higher yields or better quality transgenic crops that are characterized by a combination z.
  • nucleic acid molecules can be introduced into plasmids which allow mutagenesis or a sequence change by recombination of DNA sequences. With the help of standard procedures z. B. base exchanges made, partial sequences removed or natural or synthetic sequences added.
  • adapters or linkers can be attached to the fragments, see e.g. B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; or Winnacker "Genes and Clones", VCH Weinheim 2nd edition 1996
  • the production of plant cells with a reduced activity of a gene product can be achieved, for example, by expressing at least one corresponding antisense RNA, one sense RNA to achieve a cosuppression effect or expressing at least one appropriately constructed ribozyme that specifically cleaves transcripts of the gene product mentioned above.
  • DNA molecules can be used that include the entire coding sequence of a gene product including any flanking sequences that may be present, as well as DNA molecules that only include parts of the coding sequence, these parts having to be long enough to be in the cells to bring about an antisense effect. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product, but
  • the synthesized protein When nucleic acid molecules are expressed in plants, the synthesized protein can be localized in any desired compartment of the plant cell. But to achieve the localization in a certain compartment, z. B. the coding region can be linked to DNA sequences that ensure localization in a specific compartment. Such sequences are known to the person skilled in the art (see, for example, Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991): 95-106). The expression of the nucleic acid molecules can also take place in the organelles of the plant cells.
  • the transgenic plant cells can be regenerated into whole plants using known techniques.
  • the transgenic plants can be plants of any plant species, i.e. both monocotyledonous and dicotyledonous plants.
  • compositions according to the invention can preferably be used in transgenic cultures which are resistant to growth substances such as, for. B. Dicamba or against herbicides, the essential plant enzymes, z. B. Acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydroxyphenylpyruvate dioxygenases (HPPD) inhibit or are resistant to herbicides from the group of sulfonylureas, glyphosate, glufosinate or benzoylisoxazole and analogous active ingredients.
  • ALS Acetolactate synthases
  • EPSP synthases glutamine synthases
  • HPPD hydroxyphenylpyruvate dioxygenases
  • compositions according to the invention are used in transgenic crops, in addition to the effects on harmful plants observed in other crops, effects often occur which are specific for application in the respective transgenic crop, for example a modified or specially expanded spectrum of weeds that can be controlled Application rates which can be used for the application, preferably good compatibility with the herbicides to which the transgenic culture is resistant, and influencing the growth and yield of the transgenic crop plants.
  • the invention therefore also relates to the use of the compositions according to the invention for controlling harmful plants in transgenic crop plants.
  • the components A and B can be used together or separately in conventional formulations e.g. for spraying, pouring and spraying applications, such as solutions, emulsions, suspensions, powders, foams, pastes, granulates, aerosols, active ingredient-impregnated natural and synthetic substances, finest encapsulations in polymeric substances.
  • the formulations can contain the usual auxiliaries and additives.
  • formulations are prepared in a known manner, e.g. by mixing components A and B with extenders, i.e. liquid solvents, pressurized liquefied gases and / or solid carriers, optionally using surface-active agents, i.e. emulsifiers and / or dispersants and / or foam-generating agents.
  • extenders i.e. liquid solvents, pressurized liquefied gases and / or solid carriers
  • surface-active agents i.e. emulsifiers and / or dispersants and / or foam-generating agents.
  • organic solvents can also be used as auxiliary solvents.
  • the following liquid solvents are essentially: aromatics such as xylene, toluene, alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylene, or methylene chloride, aliphatic hydrocarbons such as cyclohexane or paraffins, e.g.
  • Petroleum fractions mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide or dimethyl sulfoxide, and water.
  • alcohols such as butanol or glycol and their ethers and esters
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • strongly polar solvents such as dimethylformamide or dimethyl sulfoxide, and water.
  • Suitable solid carriers are: for example ammonium salts and ground natural minerals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and ground synthetic minerals such as highly disperse silica, aluminum oxide and silicates;
  • Solid carriers for granules are: for example broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules made from inorganic and organic flours and granules made from organic material such as sawdust, coconut shells, corn cobs and tobacco stalks;
  • suitable emulsifiers and / or foam-generating agents are: eg non-ionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl
  • Adhesives such as carboxymethylcellulose and natural and synthetic, powdery, granular or latent polymers, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, and also natural phospholipids, such as cephalins and lecithins and synthetic phospholipids, can be used in the formulations. Further additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the components according to Table 1 are weighed out and mixed with stirring, Disflamoll® TOF being added first.
  • the batch sizes vary from 50 ml to 20 L without any further restrictions.
  • Table 2b Contact angle on Abuti Ion theophrasti (ABUTH) and Chenopodium album (CHEAL) in ° (easily and difficult to wet weeds) of the adjuvant combination TEHP-Premix I and TEHP-Premix I in combination with Gravamol® Hot 5902:
  • Table 2b shows that
  • Spray retention was measured against Kuraray Poval® 26-88 as the standard on barley.
  • Application rate according to table 3, at 300 L / ha water, spray booth parameters: pressure 3 bar, nozzle XR11002VS.
  • Spray retention of the adjuvant combination according to the invention is comparable or better compared to the comparison samples according to Table 3.
  • the dynamic surface tension was determined using the bubble pressure method (BP2100 tensiometer, Krüss).
  • Table 4 TEHP premix V solo and as a tank mix; TEHP premix I, 6.25 g / L + Geronol® CF / AR-E, 3 g / L.
  • the dynamic surface tension was measured for the various adjuvants / combinations and for the individual components. The results are shown in Table 4.
  • the adjuvant combinations according to the invention have a DST close to that of the very good wetting agents Genapol® LRO Paste and Genapol® X-060, as can be seen in Table 4.
  • the adjuvant combinations according to the invention have better properties at 200 ms (relevant time frame between spraying a drop and touching the leaf) than the two main components of the adjuvant combination in the individual test.
  • the tests were carried out on Euphorbia pulcherrima leaves with droplet application. Each test was repeated with 2 x 10 ml spotted on the same sheet. After drying, after 24 hours, the phytotoxic effects were determined using a separate checklist.
  • the standard is Genapol® 100. Measured concentrations 0.1 - 0.3 - 1.0 - 3.0 g / L. For TEHP-Premix V, phytotoxic effects (brown spots) were only observed at the highest concentration used, while the standard already showed these effects at 1 g / L.
  • Example 6 Penetration properties of various herbicides, plant growth regulators (PGRs) and safeners.
  • the properties of the adjuvant combinations according to the invention as penetration enhancers were measured in a membrane penetration test on the cuticle of apple leaves.
  • the leaf cuticles were enzymatically isolated as described in the literature.
  • the stomata-free cuticles were first air-dried and placed in stainless steel diffusion cells. After the test liquids had been applied to the original upper side of the leaf and the liquid had evaporated, the diffusion cells were transferred to thermostat blocks and loaded with water. Aliquot samples were taken at regular intervals and the amount of diffused active ingredient was determined by means of HPLC. During the experiment, the relative humidity was kept constant at 56% at a constant 25 ° C.
  • a spray solution of the active ingredient (0.5 g active ingredient / L) was prepared. An aliquot was placed on an apple cuticle and allowed to dry. The process was repeated 10 times. The amount absorbed by the cuticle in the absorption solution is determined by means of HPLC as described above. The measurements were made after 0, 6, 12, 24, 36 or 48 hours. The temperature was increased from 25 ° C. to 35 ° C. after 24 hours in order to check the solubility effects of the adjuvant. For some measurements the temperature was kept at 25 ° C or 35 ° C from the start.
  • Table 5 shows that none of the individual components of the adjuvant combination according to the invention acts as a penetration enhancer for tembotrione, while, surprisingly, TEHP premix shows a clear increase. Effect of TBEP compared to TEHP in the adjuvant combination according to the invention.
  • TBEP is a well known solvent that is used in EC formulations. It is structurally similar to the TEHP.
  • Table 6 shows that TBEP does not increase the uptake of tembotrione.
  • Table 7 TBEP vs TEHP with Bixlozone as standard (standard SC formulation).
  • Table 7 shows that TBEP shows a significantly lower uptake of Bixlozone than TEHP.
  • Table 8 TBEP vs TEHP with mefenpyr-diethyl (SC formulation as described in WO2017144497).
  • Table 8 shows that here too TEHP has the better penetration-promoting properties compared to the combination of TB EP.
  • Table 9 also shows the faster absorption with the adjuvant combination according to the invention.
  • Table 10 Mero® vs TEHP with Pyroxasulfone (SC formulation).
  • Table 10 shows that even in the case of the water-insoluble pyroxasulfone, the adjuvant combinations according to the invention show a slightly improved absorption.
  • Table 14 Tembotrione SC formulation (Suspension Concentrate). Cuticle from 2016
  • Table 15 Tembotrione SC formulation (Suspension Concentrate). Cuticle from 2015
  • Table 16 Tembotrione SC formulation (Suspension Concentrate). Cuticle from 2014
  • Table 17 Tembotrione OD formulation (Oil Dispersion).
  • Table 24 Compound 3 WP20 formulation. Cuticle from 2016
  • Table 25 Compound 3 WP20 formulation, cuticle from 2016, but different batch than in Table 24
  • Table 26 Bixlozone EC formulation.
  • the adjuvant combinations according to the invention show very good properties as penetration enhancers for a number of different agrochemical active ingredients in different types of formulation.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Die vorliegende Erfindung betrifft agrochemisch wirksame herbizide Zusammensetzungen sowie deren Verwendung zur Bekämpfung von Schadpflanzen. Ferner betrifft die vorliegende Erfindung Adjuvanskombinationen zur Verbesserung der Bioverfügbarkeit, insbesondere der Kutikelpenetration, von herbiziden Wirkstoffen.

Description

Adiuvans-Kombinationen als Blattaufnahmebeschleuniger für herbizide Zusammensetzungen.
Die vorliegende Erfindung betrifft agrochemisch wirksame herbizide Zusammensetzungen sowie deren Verwendung zur Bekämpfung von Schadpflanzen. Ferner betrifft die vorliegende Erfindung Adjuvanskombinationen zur Verbesserung der Bioverfügbarkeit, insbesondere der Kutikelpenetration, von herbiziden Wirkstoffen.
Im Besonderen betrifft die vorliegende Erfindung Adjuvans-Kombinationen enthaltend Tris(2- ethylhexyljphosphat (im folgenden TEHP), mindestens ein Adjuvans aus der Klasse der Alkyletherphosphat-Ammonium-Salze und mindestens einen Emulgator und/oder Netzmittel, vorzugsweise mindestens einen Emulgator und mindestens ein Netzmittel.
Desweiteren betrifft die vorliegende Erfindung agrochemisch wirksame herbizide Zusammensetzungen in Verbindung mit den oben genannten erfindungsgemäßen Adjuvanskombination.
Diese herbiziden Zusammensetzungen sind zur Bekämpfung unerwünschter Schadpflanzen besonders gut geeignet, wobei die Adjuvanskombination insbesondere Bioverfügbarkeit und Kutikelpenetration verbessert.
Es ist bekannt, dass die Verwendung flüssiger Adjuvantien die herbizide Wirksamkeit von agrochemischen Wirkstoffen, im Besonderen von Herbiziden, verbessern kann.
Adjuvantien in agrochemischen Formulierungen können verschiedene Funktionen aufweisen, wie beispielsweise die Verbesserung der Applikation von Spritzbrühen, Erhöhung der Wirksamkeit von agrochemischen Wirkstoffen, sowie der Reduktion von Drift der Wirkstoffe. In der ASTM E-1519 werden verschiedene Funktionen von Adjuvantien beschrieben, die in Industrie und akademische Forschung bekannt sind.
Aus dem Stand der Technik sind bereits einige herbizide Zusammensetzungen enthaltend Tris(2- ethylhexyljphosphat bekannt, wie auch die verbesserte biologische Wirkung von agrochemischen Wirkstoffen durch dieses Adjuvans. WO 2008/049618 Al beschreibt herbizide Zusammensetzungen enthaltend Pinoxaden und organische Phosphate oder Phosphonate, darunter auch Tris(2- ethylhexyljphosphat. Pinoxaden ist beispielsweise aus "The Pesticide Manual", 16th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012 bekannt und wird dort als herbizider Wirkstoff zur Anwendung gegen Schadpflanzen in Weizen und Gerste beschrieben.
Die Verträglichkeit der aus WO 2008/049618 Al bekannten herbiziden Zusammensetzungen gegenüber weiteren Kulturpflanzen, wie Mais, Raps, Soja, Baumwolle und Zuckerrohr, und auch die herbizide Wirkung dieser Zusammensetzungen gegenüber solchen Schadpflanzen, die typischerweise in Anpflanzungen der zuletzt genannten Kulturpflanzen auftreten, ist nicht zufriedenstellend. Ferner sind Alkylethoxyphosphat-Ammonium-Salze, wie beispielsweise Geronol® CF/AR-E von Solvay, zur Verwendung in Glyphosatformulierungen bekannt. Aufgrund der hohen Wasserlöslichkeit dieses Wirkstoffs weisen diese aber grundsätzlich andere Charakteristika und Anforderungen auf als lipophile, in organischen Lösungsmitteln lösliche Wirkstoffe und Adjuvantien.
Aufgabe vorliegender Erfindung bestand in der Bereitstellung von Adjuvans-Kombinationen und herbiziden Zusammensetzungen, die eine erhöhte Bioverfügbarkeit und Kutikelpenetration und somit eine bessere Wirkung bei geringer Wirkstoffausbringung aufweisen.
Es wurde nun gefunden, dass die erfmdungsgemäßen Adjuvans-Kombinationen in herbiziden Zusammensetzungen enthaltend bestimmte Verbindungen eine sehr gute Wirkung und eine gute Verträglichkeit gegenüber wichtigen Kulturpflanzen aufweisen.
Insbesondere wurde gefünden, dass Adjuvans-Kombinationen mit Tris(2-ethylhexyl)phosphat und Alkyletherphosphat-Ammonium-Salzen zu einer verbesserten Wirkung gegenüber den einzelnen Adjuvantien führen.
Gegenstand vorliegender Erfindung sind somit Adjuvans-Kombinationen enthaltend:
a) Tris(2-ethylhexyl)phosphat,
b) mindestens ein Alkyletherphosphat-Ammoniumsalz, und
c) mindestens einen Emulgator oder ein Netzmittel.
In einer alternativen Ausführungsforms ist der Gegenstand vorliegender Erfindung eine Adjuvans- Kombinationen enthaltend:
a) Tris(2-ethylhexyl)phosphat,
b) mindestens ein Alkyletherphosphat-Ammoniumsalz,
c) mindestens einen Emulgator, und
d) mindestens ein Netzmittel
Komponente a) ist in der Adjuvanskombination vorzugsweise in 40 Gew.-% bis 60 Gew.-%, weiter bevorzugt in 45 Gew.-% bis 55 Gew.-%, und besonders bevorzugt 48 Gew.-% bis 52 Gew.-%, bezogen auf das Gesamtgewicht der Adjuvans-Kombination enthalten.
Komponente b) ist in der Adjuvanskombination vorzugsweise in 20 Gew.-% bis 35 Gew.-%, weiter bevorzugt in 25 Gew.-% bis 35 Gew.-%, und besonders bevorzugt 28 Gew.-% bis 32 Gew.-%, bezogen auf das Gesamtgewicht der Adjuvans-Kombination enthalten. Sofern entweder Komponente c) oder Komponente d) vorliegt, sind diese in der Adjuvanskombination vorzugsweise in 10 Gew.-% bis 25 Gew.-%, weiter bevorzugt in 12 Gew.-% bis 23 Gew.-%, und besonders bevorzugt 12 Gew.-% bis 22 Gew.-%, bezogen auf das Gesamtgewicht der Adjuvans- Kombination enthalten.
Liegen sowohl c) als auch d) vor, gelten die folgenen Mengenangaben.
Komponente c) ist in der Adjuvanskombination vorzugsweise in 5 Gew.-% bis 10 Gew.-%, weiter bevorzugt in 6 Gew.-% bis 8 Gew.-%, und besonders bevorzugt 6 Gew.-% bis 7 Gew.-%, bezogen auf das Gesamtgewicht der Adjuvans-Kombination enthalten.
Komponente d) ist in der Adjuvanskombination vorzugsweise in 10 Gew.-% bis 15 Gew.-%, weiter bevorzugt in 10 Gew.-% bis 14 Gew.-%, und besonders bevorzugt 12 Gew.-% bis 14 Gew.-%, bezogen auf das Gesamtgewicht der Adjuvans-Kombination enthalten.
Auch wenn nicht jede einzelne Kombination der verschiedenen Vorzugsbereiche angegeben ist, so ist für den Fachmann ohne weiteres ersichtlich, daß sich alle Vorzugsbereiche der einzelnen Komponenten miteinander Kombinieren lassen, vorzugsweise aber solche gleicher Vorzugsebene und insbesondere die jeweils am stärkksten bevorzugten Bereiche.
Soweit nicht anders angebeben addieren sich Gew.-% in der vorliegenden Anmeldung zu 100%.
Herbizide Wirkstoffe im Sinne der vorliegenden Erfindung umfassen auch Safener und Pflanzenwachstumsregulatoren, soweit nichts anderes angegeben ist.
Listen von Inhaltsstoffen in offener Formulierung sollen in einer bevorzugten Ausführungsform auch diese Listen offenbaren, die abgeschlossen sind und keine weiteren Inhaltsstoffe enthalten, sofern nichts anderes in der vorliegenden Erfindung angegeben ist.
Die vorliegende Erfindung betrifft weiterhin herbizide Zusammensetzungen auf Basis der oben genannten erfmdungsgemäßen Adjuvanzkombination enthaltend:
A) mindestes einen agrochemischen Wirkstoff ausgewählt aus der Gruppe umfassend die Herbizide, Pflanzenwachstumsregulatoren und Safener, und
B) die erfindungsgemäßen Adjuvans-Kombinationen wie oben beschrieben.
Die erfmdungsgemäßen herbiziden Zusammensetzungen werden üblicherweise als sogenannte selbst- emulgierbarer Fertigformulierungen eingesetzt. Ebenso möglich ist es die Kompnenten a) und b) wie oben beschrieben im Tankmix-Verfahren der Komponente A zuzugeben. Die erfmdungsgemäßen herbiziden Zusammensetzungen enthalten üblicherweise in der fertig verdünnten Spritzbrühe
A) mindestens einen Wirkstoff in vorzugsweise 0,1 -1,5 g/L, weiter bevorzugt 0,2 - 1,0 g/L und besonders bevorzugt 0,4 - 0,8 g/L, und
B) Adjuvans-Kombination vorzugsweise von 3 - 8 g/L, weiter bevorzugt 5 - 7 g/L, und besonders bevorzugt 6 - 7 g/L.
Erfmdungsgemäß einzusetzende Wirkstoffe A) sind ausgewählt aus der Gruppe, die aus, Bicyclopyrone, Mesotrione, Fomesafen, Tralkoxydim, Napropamide, Amitraz, Propanil, Pyrimethanil, Dicloran, Tecnazene, Toclofos-methyl, Flamprop M, 2,4-D, MCPA, Mecoprop, Clodinafop-propargyl, Cyhalofop- butyl, Diclofop methyl, Haloxyfop, Quizalofop-P, Indol-3-ylacetic acid, 1-Naphthylessigsäure, Isoxaben, Tebutam, Chlorthal-dimethyl, Benomyl, Benfuresate, Dicamba, Dichlobenil, Benazolin, Triazoxide, Fluazuron, Teflubenzuron, Phenmedipham, Acetochlor, Alachlor, Metolachlor, Pretilachlor, Thenylchlor, Alloxydim, Butroxydim, Clethodim, Cyclodim, Sethoxydim, Tepraloxydim, Pendimethalin, Dinoterb, Bifenox, Oxyfluorfen, Acifluorfen, Fluazifop, S-Metolachlor, Glyphosate, Glufosinate, Paraquat, Diquat, Fluoroglycofen-ethyl, Bromoxynil, Ioxynil, Imazamethabenz-methyl, Imazapyr, Imazaquin, Imazethapyr, Imazapic, Imazamox, Flumiclorac-pentyl, Picloram, Amidosulfuron, Chlorsulfuron, Nicosulfuron, Rimsulfuron, Triasulfuron, Triallate, Pebulate, Prosulfocarb, Molinate, Atrazine, Simazine, Cyanazine, Ametryn, Prometryn, Terbuthylazine, Terbutryn, Sulcotrione, Isoproturon, Finuron, Fenuron, Chlorotoluron, Metoxuron, Diflufenican, Flufenacet, Fluroxypyr, Aminopyralid, Pyroxsulam, XDE-848 Rinskor™, Halauxifen-methyl, Tembotrione, Isoxaflutole, Metribuzin, Topramezone, Pyroxasulfone, Bixlozone, sowie Prohexadion und Prohexadion-Ca und Benoxacor, Cloquintocet-mexyl, Cyometrinil, Dichlormid, Fenchlorazole-ethyl, Fenclorim, Flurazole, Fluxofenim, Mefenpyr-diethyl, MG-191, Naphthylanhydrid, und Oxabetrinil, Isoxadifen-ethyl, Furilazole, Cyprosulfamide besteht.
Vorzugsweise ist der Wirkstoff A) ausgewählt aus der Gruppe, die Bicyclopyrone, Bixlozone, Dicamba, Cinmethylin, Isoxaflutole, Mesotrione, Metribuzin, , Tembotrione, Pyroxasulfone, Rinskor™, Sulcotrione, Tolpyralate, Topramezone, Prohexadion-Ca, Cloquintocet-mexyl, Cyprosulfamid, Mefenpyr-diethyl umfaßt.
Besonders bevorzugt ist der Wirkstoff A) ausgewählt aus der Gruppe, die Tembotrione, Isoxaflutole, Bixlozone, Pyroxasulfone, XDE-848 (Rinskor™), Thiafenacil, Prohexadion-Ca, Mefenpyr-diethyl und Cyprosulfamid umfaßt.
In der Adjuvans-Kombination ist a) wie oben definiert.
In der Adjuvans-Kombination ist b) vorzugsweise ein Alkyletherphosphat-Ammoniumsalz, weiter bevorzugt ist b) ein 70%iger Blend von C8-C10 Mono- und Di-Alkyletherphosphat-Ammoniumsalzen mit freien C8-C10 Alkoholen < 10% und < 10% Triethylenglycolmonobutylether. Der Emulgator c) ist vorzugsweise ausgewählt aus der Gruppe der nichtionische Dispergiermittel die ethoxylierte Nonylphenole, Ethylenoxid-Propylenoxid-Blockcopolymere, Endgruppen-verschlossene und nicht Endgruppen-verschlossene alkoxylierte lineare und verzweigte, gesättigte und ungesättigte Alkohole (z.B. Butoxypolyethylenpropylenglycole), Umsetzungsprodukte von Alkylphenolen mit Ethylenoxid und/oder Propylenoxid, Ethylenoxid- Propylenoxid-Blockcopolymere, Polyethylenglykole und Polypropylenglykole, weiterhin Fettsäureester, Fettsäurepolyglykoletherester, Alkylsulfonate, Alkylsulfate, Arylsulfate, ethoxylierte Arylalkylphenole, wie zum Beispiel Tristyryl-phenol-ethoxylat mit durchschnittlich 16 Ethylenoxid-Einheiten pro Molekül, weiterhin ethoxylierte und propoxylierte Arylalkylphenole sowie sulfatierte oder phosphatierte Arylalkylphenol-ethoxylate bzw. -ethoxy- und - propoxylate umfaßt.
Weiter bevorzugt sind Ricinusölpolyglykoletherestem, beispielsweise Lucramul® CO 30.
Das Netzmittel d) ist vorzugsweise ausgewählt aus der Gruppe, die Alkali-, Erdalkali- oder Ammoniumsalze von Sulfonaten, Sulfaten, insbesondere von Alkylethersulfaten, weiter bevorzugt die Natriumsalze von Alkylethersulfaten, Phosphaten, Carboxylaten und deren Mischungen wie z.B. die Salze der Alkylsulphonsäuren oder Alkylphosphorsäuren sowie Alkylarylsulphon- oder Alkylarylphosphorsäuren, Diphenylsulfonate, alpha-Olefinsulfonate, Ligninsulfonate, Sulfonate von Fettsäuren und Ölen, Sulfonate von ethoxylierten Alkylphenolen, Sulfonate von alkoxylierten Arylphenolen, Sulfonate von kondensierten Naphthalinen, Sulfonate von Dodecyl- und Tridecylbenzolen, Sulfonate von Naphthalinen und Alkylnaphthalinen, Sulfosuccinate oder Sulfosuccinamate, sowie nichtionische Netzmittel, die Umsetzungsprodukte von linearen oder verzweigten Alkoholen mit Ethylenoxid sind, wobei diese Endgruppen-verschlossen oder nicht Endgruppen-verschlossen sein können, umfaßt, sowie auch deren Mischungen.
Beispiele für Sulfate sind Sulfate von Fettsäuren und Ölen, von ethoxylierten Alkylphenolen, von Alkoholen, von ethoxylierten Alkoholen oder von Fettsäureestem. Beispiele für Phosphate sind Phosphatester. Beispiele für Carboxylate sind Alkylcarboxylate sowie carboxylierte Alkohol- oder Alkylphenolethoxylate. Ebenfalls geeignet ist die Gruppe der anionischen Emulgatoren der Alkalimetall- , Erdalkalimetall- und Ammoniumsalze der Polystyrolsulfonsäuren, Salze der Polyvinylsulphonsäuren, Salze der Alkylnaphthalinsulphonsäuren, Salze von Alkylnaphthalinsulphonsäure-Formaldehyd Kondensationsprodukte, Salze von Kondensationsprodukte der Naphthalinsulphonsäure, Phenolsulphonsäure und Formaldehyd. Beispiele sind Kalziumdodecylbenzensulfonat wie Rhodocal® 70/B (Solvay), Phenylsulfonat CA100 (Clariant) oder Isopropylammoniumdodecylbenzenesulfonate wie Atlox® 3300B (Croda).
Weiter bevorzugt ist das Netzmittel ausgewählt aus der Gruppe, die die Alkali-, Erdalkali- oder Ammoniumsalze von Sulfonaten, und Sulfaten sowie lineare Alkohole mit Ethylenoxid, besonders bevorzugt von Alkylethersulfaten, und ganz besonders bevorzugt die Natriumsalze von Alkylethersulfaten sowie lineare Alkohole mit Ethylenoxid, umfaßt, beispielsweise Genapol® LRO, Genapol®LRO Paste und Genapol® X-060.
Die erfindungsgemäßen herbiziden Zusammensetzungen können in üblichen, dem Fachmann bekannten Formulierungen verwendet werden. Als Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (WP), wasserlösliche Pulver (SP), wasserlösliche Konzentrate, emulgierbare Konzentrate (EC), Emulsionen (EW), wie Öl-in-Wasser- und Wasser-in-Öl-Emulsionen, versprühbare Fösungen, Suspensionskonzentrate (SC), Dispersionen auf Öl- basis (OD), lösliche Flüssigkeiten (SF), Suspoemulsionen (SE), dispergierbare Konzentrate (DC), ölmischbare Fösungen, Kapselsuspensionen (CS), Stäubemittel (DP), Beizmittel, Granulate für die Streu- und Bodenapplikation, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (W G), wasserlösliche Granulate (SG), UFV-Formulierungen, Mikrokapseln und Wachse. Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl. 1986, Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker, N.Y., 1973, K. Martens, "Spray Drying" Handbook, 3rd Ed. 1979, G. Goodwin Ftd. Fondon.
Die notwendigen Formulierungshilfsmittel wie Inertmateriahen, Tenside, Fösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y., C. Marsden, "Solvente Guide", 2nd Ed., Interscience, N.Y. 1963, McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J., Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Ine., N.Y. 1964, Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976, Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl. 1986.
Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren hersteilen, z.B. in Form einer Fertigformulierung oder als Tankmix.
Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Tenside ionischer und/oder nichtionischer Art (Netzmittel, Dispergiermittel enthalten. Zur Herstellung der Spritzpulver werden die herbiziden Wirkstoffe beispielsweise in üblichen Apparaturen wie Hammermühlen, Gebläsemühlen und Fuftstrahlmühlen feingemahlen und gleichzeitig oder anschließend mit den Formulierungshilfsmitteln vermischt.
Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Fösungsmittel z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen oder Mischungen der organischen Fösungsmittel unter Zusatz von einem oder mehreren Tensiden ionischer und/oder nichtionischer Art (Emulgatoren) hergestellt.
Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde.
Suspensionskonzentrate können auf Wasser- oder Ölbasis sein. Sie können beispielsweise durch Naß-Vermahlung mittels handelsüblicher Perlmühlen hergestellt werden.
Emulsionen, z.B. Öl-in-Wasser-Emulsionen (EW), lassen sich beispielsweise mittels Rührern, Kolloidmühlen und/oder statischen Mischern unter Verwendung von wäßrigen organischen Lösungsmitteln und gegebenenfalls Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, hersteilen.
Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Wasserdispergierbare Granulate werden in der Regel nach den üblichen Verfahren wie Sprühtrocknung, Wirbelbett-Granulierung, Teller-Granulierung, Mischung mit Hochgeschwindigkeitsmischem und Extrusion ohne festes Inertmaterial hergestellt.
Zur Herstellung von Teller-, Fließbett-, Extruder- und Sprühgranulate siehe z.B. Verfahren in "Spray-Drying Handbook" 3rd ed. 1979, G. Goodwin Ltd., London, J.E. Browning, "Agglomeration", Chemical and Engineering 1967, Seiten 147 ff, "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, S. 8-57. Für weitere Einzelheiten zur Formulierung von Pflanzenschutzmitteln siehe z.B. G.C. Klingman, "Weed Control as a Science", John Wiley and Sons, Ine., New York, 1961, Seiten 81-96 und J.D. Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, Seiten 101-103.
Daneben können die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Konservierungs-, Frostschutz- und Lösungsmittel, ein Bakterizid, Füll-, Träger- und Farbstoffe, Entschäumer, Duftstoff, Verdunstungshemmer und den pH-Wert und die Viskosität beeinflussende Mittel enthalten, welche sehr gut der Fachmann bekannt sind. Standard Formulierungspublikationen enthalten beispiele für soclhe Komponente, geeignet für die Anwendung in dieser Erfindung (zB. Chemistry and Technology of Agrochemical Formulations, Ed. Alan Knowles, published by Kluwer Academic Publishers, The Netherlands in 1998; and Adjuvants and Additives: 2006 Edition by Alan Knowles, Agrow Report DS256, published by Informa UK Ltd, December 2006).
Zur Anwendung werden, die in handelsüblicher Form vorliegenden Formulierungen, gegebenenfalls in üblicher Weise verdünnt z.B. bei Spritzpulvem, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw. Streugranulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.
Die erfmdungsgemäßen herbiziden Zusammensetzungen werden üblicherweise als sogenannte Fertigformulierungen eingesetzt. Ebenso möglich ist es, die erfmdungsgemäßen adjuvant-Kombinationen B) im Tankmix-Verfahren der Komponente A) zuzugeben.
Die erfmdungsgemäßen herbiziden Zusammensetzungen können auf dem Fachmann bekannte Weise angewendet werden, beispielsweise gemeinsam (beispielsweise als Co-Formulierung oder als Tank- Mischung) oder auch zeitlich kurz hintereinander versetzt (Splitting), z.B. auf die Pflanzen, Pflanzenteile, Pflanzensamen oder die Fläche, auf der die Pflanzen wachsen. Möglich ist z.B. die Anwendung der Einzelwirkstoffe oder der herbiziden Zusammensetzungen in mehreren Portionen (Sequenzanwendung), z. B. nach Anwendungen im Vorauflauf, gefolgt von Nachauflauf- Applikationen oder nach frühen Nachauflaufanwendungen, gefolgt von Applikationen im mittleren oder späten Nachauflauf.
In den erfmdungsgemäßen herbiziden Zusammensetzungen beträgt die Aufwandmenge der Komponente A üblicherweise 5 bis 450 g Aktivsusbstanz (a. i.) pro Hektar, bevorzugt 40 bis 400 g a. i./ha, insbesondere bevorzugt 100 bis 200g a. i./ha.
Bei Anwendung der erfmdungsgemäßen herbiziden Zusammensetzungen wird im Vor- und NachauflaufVerfahren ein sehr breites Spektrum an Schadpflanzen bekämpft, z.B. annuellen und perennierenden mono- oder dikotylen Unkräutern sowie an unerwünschten Kulturpflanzen. Die erfmdungsgemäßen herbiziden Zusammensetzungen eignen sich besonders zum Einsatz in Kulturen wie Mais und Zuckerrohr sowie für den Einsatz in Dauerkulturen, Plantagen und auf Nichtkulturland. Bevorzugt ist ihre Anwendung in Kulturen von Mais und Zuckerrohr. Ebenso eigenen sie sich sehr gut für den Einsatz in transgenen Kulturen von Mais.
Gegenstand der vorliegenden Erfindung ist somit weiterhin ein Verfahren zur Bekämpfung von unerwünschten Pflanzen in Pflanzenkulturen, das dadurch gekennzeichnet ist, dass die Komponenten A und B der erfmdungsgemäßen herbiziden Zusammensetzungen auf die Pflanzen (z.B. Schadpflanzen wie mono- oder dikotyle Unkräuter oder unerwünschte Kulturpflanzen), oder die Fläche, auf der die Pflanzen wachsen ausgebracht werden, z.B. gemeinsam oder getrennt.
Unter unerwünschten Pflanzen sind alle Pflanzen zu verstehen, die an Orten wachsen, wo sie unerwünscht sind. Dies können z.B. Schadpflanzen (z.B. mono- oder dikotyle Unkräuter oder unerwünschte Kulturpflanzen) sein. Monokotyle Unkräuter entstammen z.B. den Gattungen Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, Apera. Dikotyle Unkräuter entstammen z.B. den Gattungen Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindemia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, Taraxacum, Euphorbia.
Gegenstand der Erfindung ist auch die Verwendung der erfindungsgemäßen herbiziden Zusammensetzungen zur Bekämpfung von unerwünschtem Pflanzenwuchs, vorzugsweise in Kulturen von Nutzpflanzen.
Die erfindungsgemäßen herbiziden Zusammensetzungen können nach bekannten Verfahren z.B. als Mischformulierungen der Einzelkomponenten, gegebenenfalls mit weiteren Wirkstoffen, Zusatzstoffen und/oder üblichen Formulierungshilfsmitteln hergestellt werden, die dann in üblicher Weise mit Wasser verdünnt zur Anwendung gebracht werden, oder als sogenannte Tankmischungen durch gemeinsame Verdünnung der getrennt formulierten oder partiell getrennt formulierten Einzelkomponenten mit Wasser hergestellt werden. Ebenfalls möglich ist die zeitlich versetzte Anwendung (Splitapplikation) der getrennt formulierten oder partiell getrennt formulierten Einzelkomponenten. Möglich ist auch die Anwendung der Einzelkomponenten oder der herbiziden Zusammensetzungen in mehreren Portionen (Sequenzanwendung), z. B. nach Anwendungen im Vorauflauf, gefolgt von Nachauflauf-Applikationen oder nach frühen Nachauflaufanwendungen, gefolgt von Applikationen im mittleren oder späten Nachauflauf. Bevorzugt ist dabei die gemeinsame oder die zeitnahe Anwendung der Wirkstoffe der jeweiligen Kombination.
Die erfmdungsgemäßen herbiziden Zusammensetzungen können auch zur Bekämpfung von Schadpflanzen in Kulturen von bekannten oder noch zu entwickelnden gentechnisch veränderten Pflanzen eingesetzt werden.
Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten Pestiziden, vor allem bestimmten Herbiziden, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z. B. das Emtegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Emteguts bekannt. Weitere besondere Eigenschaften können in einer Toleranz oder Resistenz gegen abiotische Stressoren z. B. Hitze, Kälte, Trockenheit, Salz und ultraviolette Strahlung hegen.
Herkömmliche Wege zur Herstellung neuer Pflanzen, die im Vergleich zu bisher vorkommenden Pflanzen modifizierte Eigenschaften aufweisen, bestehen beispielsweise in klassischen Züchtungsverfahren und der Erzeugung von Mutanten. Alternativ können neue Pflanzen mit veränderten Eigenschaften mit Hilfe gentechnischer Verfahren erzeugt werden (siehe z. B. EP-A-0221044, EP-A-0131624). Beschrieben wurden beispielsweise in mehreren Fällen
gentechnische Veränderungen von Kulturpflanzen zwecks Modifikation der in den Pflanzen synthetisierten Stärke (z. B. WO 92/11376, WO 92/14827, WO 91/19806),
transgene Kulturpflanzen, welche gegen bestimmte Herbizide vom Typ Glufosinate (vgl. z. B. EP-A-0242236, EP-A-242246) oder Glyphosate (WO 92/00377) oder der Sulfonylharnstoffe (EP-A-0257993, US-A-5013659) resistent sind,
transgene Kulturpflanzen, beispielsweise Baumwolle, mit der Fähigkeit Bacillus thuringiensis- Toxine (Bt-Toxine) zu produzieren, welche die Pflanzen gegen bestimmte Schädlinge resistent machen (EP-A-0142924, EP-A-0193259).
transgene Kulturpflanzen mit modifizierter Fettsäurezusammensetzung (WO 91/13972).
gentechnisch veränderte Kulturpflanzen mit neuen Inhalts- oder Sekundärstoffen z. B. neuen Phytoalexinen, die eine erhöhte Krankheitsresistenz verursachen (EPA 309862, EPA0464461) gentechnisch veränderte Pflanzen mit reduzierter Photorespiration, die höhere Erträge und höhere Stresstoleranz aufweisen (EPA 0305398).
Transgene Kulturpflanzen, die pharmazeutisch oder diagnostisch wichtige Proteine produzieren („molecular pharming“)
transgene Kulturpflanzen, die sich durch höhere Erträge oder bessere Qualität auszeichnen transgene Kulturpflanzen die sich durch eine Kombination z. B. der o. g. neuen Eigenschaften auszeichnen („gene stacking“)
Zahlreiche molekularbiologische Techniken, mit denen neue transgene Pflanzen mit veränderten Eigenschaften hergestellt werden können, sind im Prinzip bekannt; siehe z. B. I. Potrykus und G. Spangenberg (eds.) Gene Transfer to Plants, Springer Lab Manual (1995), Springer Verlag Berlin, Heidelberg oder Christou, "Trends in Plant Science" 1 (1996) 423-431).
Für derartige gentechnische Manipulationen können Nucleinsäuremoleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA-Sequenzen erlauben. Mit Hilfe von Standardverfahren können z. B. Basenaustausche vorgenommen, Teilsequenzen entfernt oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA- Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden, siehe z. B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; oder Winnacker "Gene und Klone", VCH Weinheim 2. Auflage 1996
Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines Genprodukts kann beispielsweise erzielt werden durch die Expression mindestens einer entsprechenden antisense-RNA, einer sense-RNA zur Erzielung eines Cosuppressionseffektes oder die Expression mindestens eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte des obengenannten Genprodukts spaltet.
Hierzu können zum einen DNA-Moleküle verwendet werden, die die gesamte codierende Sequenz eines Genprodukts einschließlich eventuell vorhandener flankierender Sequenzen umfassen, als auch DNA- Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Möglich ist auch die Verwendung von DNA- Sequenzen, die einen hohen Grad an Homologie zu den codiereden Sequenzen eines Genprodukts aufweisen, aber
Bei der Expression von Nucleinsäuremolekülen in Pflanzen kann das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein. Um aber die Lokalisation in einem bestimmten Kompartiment zu erreichen, kann z. B. die codierende Region mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in einem bestimmten Kompartiment gewährleisten. Derartige Sequenzen sind dem Fachmann bekannt (siehe beispielsweise Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sei. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106). Die Expression der Nukleinsäuremoleküle kann auch in den Organellen der Pflanzenzellen stattfinden.
Die transgenen Pflanzenzellen können nach bekannten Techniken zu ganzen Pflanzen regeneriert werden. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h., sowohl monokotyle als auch dikotyle Pflanzen.
So sind transgene Pflanzen erhältlich, die veränderte Eigenschaften durch Überexpression, Suppression oder Inhibierung homologer (= natürlicher) Gene oder Gensequenzen oder Expression heterologer (= fremder) Gene oder Gensequenzen aufweisen.
Vorzugsweise können die erfmdungsgemäßen Zusammensetzungen in transgenen Kulturen eingesetzt werden, welche gegen Wuchsstoffe, wie z. B. Dicamba oder gegen Herbizide, die essentielle Pflanzenenzyme, z. B. Acetolactatsynthasen (ALS), EPSP Synthasen, Glutaminsynthasen (GS) oder Hydroxyphenylpyruvat Dioxygenasen (HPPD) hemmen, respektive gegen Herbizide aus der Gruppe der Sulfonylharnstoffe, der Glyphosate, Glufosinate oder Benzoylisoxazole und analogen Wirkstoffe, resistent sind. Bei der Anwendung der erfindungsgemäßen Zusammensetzungen in transgenen Kulturen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber Schadpflanzen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Unkrautspektrum, das bekämpft werden kann, veränderte Aufwandmengen, die für die Applikation eingesetzt werden können, vorzugsweise gute Kombinierbarkeit mit den Herbiziden, gegenüber denen die transgene Kultur resistent ist, sowie Beeinflussung von Wuchs und Ertrag der transgenen Kulturpflanzen.
Gegenstand der Erfindung ist deshalb auch die Verwendung der erfmdungsgemäßen Zusammensetzungen zur Bekämpfung von Schadpflanzen in transgenen Kulturpflanzen.
Die Komponenten A und B können gemeinsam oder getrennt in übliche Formulierungen z.B. zur Sprüh-, Gieß- und Spritzanwendung übergeführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Wirkstoff-imprägnierte Natur- und synthetische Stoffe, Feinstverkapselungen in polymeren Stoffen. Die Formulierungen können die üblichen Hilfs- und Zusatzstoffe enthalten.
Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Komponenten A und B mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.
Im Falle der Benutzung von Wasser als Streckmittel könne z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen infrage: Aromaten, wie Xylol, Toluol, Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene, oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cy clohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid oder Dimethylsulfoxid, sowie Wasser.
Als feste Trägerstoffe kommen in Frage: z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate; als feste Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengel; als Emulgier-und/oder schaumerzeugende Mittel kommen infrage: z.B. nicht ionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäureester, Polyoxyethylen- Fettalkohol-Ether, z.B. Alkylarylpolyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate; als Dispergiermittel kommen infrage: z.B. Figninsulfitablaugen und Methylcellulose.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische, pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Beispiele
Verwendete Materialien
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000017_0001
Folgende Beispiele zeigen den Effekt auf die biologische Wirksamkeit der erfmdungsgemäßen Adjuvanskombination im Vergleich zu anderen Adjuvantien, wie beispiels weise AMS, Mero®, Genapol® X-060, Genapol® C 100, Biopower®.
Beispiel 1:
Die Komponenten gemäß Tabelle 1 werden ausgewogen und unter Rühren gemischt, wobei Disflamoll® TOF zuerst zugegeben wird. Die Ansatzgrößen variieren von 50 ml bis 20 L ohne weitere Beschränkungen.
Tabelle 1 : Zusammensetzungen TEHP-Premix V
Figure imgf000018_0001
Die Ergebnisse in Tabelle 2a zeigen, daß die erfmdungsgemäßen Adjuvans-Kombinationen ausgezeichnete Benetzungseigenschaften, auch bei schwer benetzbaren Gerstenblättem, und insbesondere bei höherer Konzentration aufweisen.
Tabelle 2b: Kontaktwinkel auf Abuti Ion theophrasti (ABUTH) und Chenopodium album (CHEAL) in ° (leicht und schwer benetzbare Unkräuter) der der Adjuvans-Kombination TEHP-Premix I und TEHP- Premix I in Kombination mit Lucramol® Hot 5902:
Figure imgf000018_0002
Tabelle 2b zeigt, daß Lucramul® HOT 5902 die Eigenschaften des TEHP-Premix I nicht signifikant verbessert.
Beispiel 3: "Spray retention" Eigenschaften von TEHP-Premix V:
Spray retention (statische Benetzung) wurde gegen Kuraray Poval® 26-88 als Standard auf Gerste gemessen. Applikationsrate gemäß Tabelle 3, bei 300 L/ha Wasser, Sprühkabinenparameter: Druck 3 bar, Düse XR11002VS.
Tabelle 3 : Ergebnisse in %.
Figure imgf000018_0003
Figure imgf000019_0001
Spray retention der erfmdungsgemäßen Adjuvans-Kombination ist vergleichbar oder besser verglichen zu den Vergleichsproben gemäß Tabelle 3.
Beispiel 4: Dynamische Oberflächenspannung (DST)
Die dynamische Oberflächenspannung wurde über die Blasendruck-Methode bestimmt (BP2100 Tensiometer, Krüss).
Ein Wert von 50 mN/m (bei 20-21 °C) bezogen auf Wasser (72.8 mN/m) zeigt eine Verbesserung in der Adhesion von "Null Adhesion" (0%) auf ca. 50% (Baur P., Pontzen R.; 2007; Basic features of plant surface wettability and deposit formation and the impact of adjuvant; in R. E. Gaskin ed. Proceedings of the 8th International Symposium on Adjuvants for Agrochemicals; Publisher: International Society for Agrochemical Adjuvants (ISAA), Columbus, Ohio, USA).
Tabelle 4: TEHP-Premix V solo und als Tank-mix; TEHP-Premix I, 6,25 g/L + Geronol® CF/AR-E, 3g/L. Die dynamische Oberflächenspannung wurde für die verschiedenen Adjuvantien / Kombinationen und für die Einzelkomponenten gemessen. Die Ergebnisse sind in Tabelle 4 dargestellt.
Figure imgf000019_0002
Figure imgf000020_0001
Die erfindungsgemäßen Adjuvans-Kombinationen weisen eine DST nahe der der sehr guten Benetzungsmittel Genapol® LRO Paste und Genapol® X-060 auf, wie in Tabelle 4 zu sehen ist. Die erfindungsgemäßen Adjuvans-Kombinationen weisen bei 200 ms (relevanter Zeitrahmen zwischen Sprühen eines Tropfens und Berührung des Blattes) bessere Eigenschaften auf als die beiden Hauptbestandtteile der Adjuvans-Kombination im Einzeltest.
Beispiel 5 : Pflanzenverträglichkeit - Phytoxizität
Die Tests wurden an Euphorbia pulcherrima Blättern mit Tröpfchen-Applikation durchgeführt. Jeder Test wurde mit 2x10ml aufgetropft auf dasselbe Blatt wiederholt. Nach dem Trocknen, nach 24 h, wurden die phytotoxischen Effekte unter Verwendung einer eigenen Checkliste bestimmt. Standard ist Genapol® 100. Gemessene Konzentrationen 0,1 - 0,3 - 1,0 - 3,0 g/L. Für TEHP-Premix V wurden phytotoxische Effekte (braune Flecken) lediglich bei der höchsten verwendeten Konzentration beobachtet, während der Standard diese Effekte bereits bei lg/L zeigte.
Beispiel 6: Penetrationseigenschaften verschiedener Herbizide, Pflanzenwachstumsregulatoren (PGRs) und Safener.
Die Eigenschaften der erfindungsgemäßen Adjuvans-Kombinationen als Penetrationsenhancer wurden in Membranpenetrationstest an der Cuticula von Apfelblättem gemessen.
Bestimmung der Bioverfügbarkeit verschiedener Herbizide, Pflanzenwachstumsregulatoren (PGRs) und Safener mittels Kutikel-Penetrationstest.
Das Prinzip der Bestimmung wurde bereits veröffentlicht (e.g. WO-A-2005/194844; Baur, 1997; Baur, Grayson and Schönherr 1999; Baur, Bodeion and Lowe, 2012), so daß im Folgenden nur die besonderen Bedingungen gegeben werden.
Die Blatt-Kutikel wurden enzymatisch wie in der Literatur beschrieben isoliert. Die Stomata-freien Kutikel wurden zunächst an der Luft getrocknet und in Edelstahl-Diffüsionszellen eingebracht. Nach dem aufbringen der Testflüssigkeiten auf die ursprüngliche Blattoberseite und verdunsten der Flüssigkeit wurden die Diffusionszellen in Thermostatblöcke überführt mit Wasser beladen. In regelmäßigen Intervallen wurden Aliquot-Proben genommen und die Menge diffündierten Wirkstoffs mittels HPLC bestimmt. Während des Versuchs wurde die relative Luftfeuchte konstant bei 56% gehalten bei konstant 25 °C. Die analytische Bestimmung durch HPLC (1260 II lnfinity, Agilent) wurde auf einer Kinetex Säule 50x2,1 mm, 2.6 m C18 (Phenomenex), mit einer Flussrate von 0,8 ml/min in Acetonitrile/Reinstwasser +0,0 IM H3PO4 als Laufmittel durchgeführt, wobei 20 pL Aliquots als Probe verwendet wurden. Die Detektion erfolgte mit einem DAD Detektor. Es werden jeweils die geometrischen Mittelwerte der Penetration an den mittleren Messzeiten gegeben. Gemäß der Varianz wurden je 10 Wiederholungsmessungen durchgeführt. Der Variationskoeffizient lag unter 35%, was einem typischen Wert der biologischen Variabilität für die Penetration verschiedener Pflanzen entspricht (Baur 1997).
Typischer Weise wurde eine Sprühlösung des aktiven Wirkstoffs (0,5 g aktiver Wirkstoff /L) hergestellt. Ein Aliquot wurde auf eine Apfel-Kutikel gegeben und trocknen gelassen. Der Vorgang wurde 10 mal wiederholt. Die durch die Kutikel aufgenommene Menge in der Aufnahmelösung wird mittels HPLC wie oben beschrieben bestirnt. Die Messungen wurden nach 0, 6, 12, 24, 36 oder 48 h, gemacht. Die Temperatur wurde nach 24h von 25°C auf 35°C erhöht, um Löslichkeitseffekte des Adjuvans zu überprüfen. Bei einigen Messungen wurde die Temperatur von Anfang an auf 25°C oder 35 °C gehalten.
Tabelle 5: Effekt verschiedener Adjuvantien / Adjuvans-Kombinationen auf die Kutikel-Penetrationmit Tembotrione als Standard (Laudis™ SC)
Figure imgf000021_0001
Tabelle 5 zeigt, daß keiner der Einzelbestandteile der erfmdungsgemäßen Adjuvans-Kombiation als Penetrationsenhancer für Tembotrione wirkt, während überraschenderweise TEHP-Premix eine deutliche Verstärkung zeigt. Effekt von TBEP im Vergleich zu TEHP in der erfmdungsgemäßen Adjuvanskombination.
TBEP ist ein bekanntes Lösemittel, das in EC-Formulierungen verwendet wird. Es ist strukturell dem TEHP ähnlich.
Tabelle 6: TBEP vs TEHP mit Tembotrione (Laudis™ SC) als Standard
Figure imgf000022_0001
Tabelle 6 zeigt, daß TBEP die Aufnahme von Tembotrione nicht verstärkt.
Tabelle 7: TBEP vs TEHP mit Bixlozone als Standard (Standard SC Formulierung).
Figure imgf000022_0002
Tabelle 7 zeigt, daß TBEP eine deutlich geringere Aufnahme von Bixlozone zeigt als TEHP.
Tabelle 8: TBEP vs TEHP mit Mefenpyr-diethyl (SC Formulierung wie in WO2017144497 beschrieben).
Figure imgf000023_0001
Tabelle 8 zeigt, daß auch hier TEHP die besseren penetrationsfördemden Eigenschaften gegenüber TB EP in der Kombination aufweist.
Tabelle 9: Biopower® vs TEHP mit Mefenpyr-diethyl (SC Formulierung wie in WO2017144497 beschrieben).
Figure imgf000023_0002
Tabelle 9 zeigt auch hier die schnellere Aufnahme mit der erfmdungsgemäßen Adjuvans-Kombination. Tabelle 10: Mero® vs TEHP mit Pyroxasulfone (SC Formulierung).
Figure imgf000023_0003
Figure imgf000024_0004
Tabelle 10 zeigt, dass auch im Falle des wasserunlöslichen Pyroxasulfone die erfmdungsgemäßen Adjuvans-Kombinationen eine leicht verbesserte Aufnahme zeigen.
Tabelle 11: Cyprosulfamide WP20 formulation (Wettable Powder).
Figure imgf000024_0001
Tabelle 12: Rinskor™ EC Formulierung (Emulsifiable Concentrate).
Figure imgf000024_0002
Tabelle 13: Isoxaflutole OD Formulierung (Oil Dispersion) mit unterschiedlicher Beladung
Figure imgf000024_0003
Figure imgf000025_0001
Tabelle 14: Tembotrione SC Formulierung (Suspension Concentrate). Kutikel aus 2016
Figure imgf000025_0002
Tabelle 15: Tembotrione SC Formulierung (Suspension Concentrate). Kutikel aus 2015
Figure imgf000025_0003
Figure imgf000026_0001
Tabelle 16: Tembotrione SC Formulierung (Suspension Concentrate). Kutikel aus 2014
Figure imgf000026_0002
Tabelle 17: Tembotrione OD Formulierung (Oil Dispersion).
Figure imgf000026_0003
Tabelle 18: Cinmethylin WP20 Formulierung.
Figure imgf000027_0002
Andere Adjuvans-Klassen (ethoxylierte Castoröle, ethoxylierte Nonylphenol, ethoxylierte NPEs) sind unwirksam.
Tabelle 19: Bixlozone SC Formulierung (suspension concentrate)
Figure imgf000027_0001
Tabelle 20: Prohexadione-Ca EC Formulierung
Figure imgf000027_0003
Figure imgf000028_0001
Tabelle 21 : Verbindung 1 EC-Formulierung
Figure imgf000028_0002
Tabelle 22: Verbindung 1 EC Formulierung im Vergleich mit WP20
Figure imgf000028_0003
Tabelle 23: Verbindung 2 WP20 Formulierung.
Figure imgf000029_0001
Tabelle 24: Verbindung 3 WP20 Formulierung. Kutikel aus 2016
Figure imgf000029_0002
Tabelle 25: Verbindung 3 WP20 Formulierung, Kutikel aus 2016, aber andere Charge als in Tabelle 24
Figure imgf000029_0003
Figure imgf000030_0001
Tabelle 26: Bixlozone EC Formulierung.
Figure imgf000030_0002
Tabelle 27: Tolpyralate EC Formulierung.
Figure imgf000030_0003
Tabelle 28: Verbindung 4 WP20 Formulierung
Figure imgf000031_0001
Tabelle 29: Verbindung 4 EC Formulierung.
Figure imgf000031_0002
Tabelle 30: Verbindung 5 WP20 Formulierung
Figure imgf000031_0003
Figure imgf000032_0001
Tabelle 31: Verbindung 6 WP20 Formulierung
Figure imgf000032_0002
Wie die vorangehenden Beispiele zeigen, zeigen die erfindungsgemäßen Adjuvans-Kombinationen sehr gute Eigenschaftgen als Penetrationsenhancer für eine Reihe unterschiedlicher agrochemischer Wirkstoffe in unterschiedlichen Formulierungstypen.

Claims

Patentansprüche
1. Adjuvans-Kombination enthaltend
a) Tris(2-ethylhexyl)phosphat (TEHP),
b) mindestens ein Alkyletherphosphat-Ammoniumsalz, und
c) mindestens einen Emulgator oder ein Netzmittel.
2. Adjuvans-Kombinationen enthaltend:
a) Tris(2-ethylhexyl)phosphat,
b) mindestens ein Alkyletherphosphat-Ammoniumsalz,
c) mindestens einen Emulgator, und
d) mindestens ein Netzmittel
3. Adjuvans-Kombinationen nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Komponente a) enthalten ist in 40 Gew.-% bis 60 Gew.-%, weiter bevorzugt in 45 Gew.-% bis 55 Gew.-%, und besonders bevorzugt 48 Gew.-% bis 52 Gew.-%, bezogen auf das Gesamtgewicht der Adjuvans- Kombination.
4. Adjuvans-Kombinationen nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Komponente b) enthalten ist in 20 Gew.-% bis 35 Gew.-%, weiter bevorzugt in 25 Gew.-% bis 35 Gew.-%, und besonders bevorzugt 28 Gew.-% bis 32 Gew.-%, bezogen auf das Gesamtgewicht der Adjuvans- Kombination enthalten.
5. Adjuvans-Kombinationen nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sofern entweder Komponente c) oder Komponente d) vorliegt, diese in der Adjuvanskombination in 10 Gew.-% bis 25 Gew.-%, weiter bevorzugt in 12 Gew.-% bis 23 Gew.-%, und besonders bevorzugt 12 Gew.-% bis 22 Gew.-%, bezogen auf das Gesamtgewicht der Adjuvans-Kombination enthalten sind.
6. Adjuvans-Kombinationen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß b) ein 70%iger Blend von C8-C10 Mono- und Di-Alkyletherphosphat-Ammoniumsalzen mit freien C8-C10 Alkoholen < 10% und < 10% Triethylenglycolmonobutylether ist.
7. Adjuvans-Kombinationen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß c) ausgewählt ist aus der Gruppe der nichtionische Dispergiermittel die ethoxylierte Nonylphenole, Ethylenoxid-Propylenoxid-Blockcopolymere, Endgruppen-verschlossene und nicht Endgruppen-verschlossene alkoxylierte lineare und verzweigte, gesättigte und ungesättigte Alkohole (z.B. Butoxypolyethylenpropylenglycole), Umsetzungsprodukte von Alkylphenolen mit Ethylenoxid und/oder Propylenoxid, Ethylenoxid- Propylenoxid-Blockcopolymere, Polyethylenglykole und Polypropylenglykole, weiterhin Fettsäureester, Fettsäurepolyglykoletherester, Alkylsulfonate, Alkylsulfate, Arylsulfate, ethoxylierte Arylalkylphenole, weiterhin ethoxylierte und propoxylierte Arylalkylphenole sowie sulfatierte oder phosphatierte Arylalkylphenol-ethoxylate bzw. -ethoxy- und -propoxylate, sowie deren Mischungen umfaßt.
8. Adjuvans-Kombinationen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß d) ausgewählt ist aus der Gruppe, die Alkali-, Erdalkali- oder Ammoniumsalze von Sulfonaten, Sulfaten, insbesondere von Alkylethersulfaten, weiter bevorzugt die Natriumsalze von Alkylethersulfaten, Phosphaten, Carboxylaten und deren Mischungen wie z.B. die Salze der Alkylsulphonsäuren oder Alkylphosphorsäuren sowie Alkylarylsulphon- oder Alkylarylphosphorsäuren, Diphenylsulfonate, alpha-Olefinsulfonate, Ligninsulfonate, Sulfonate von Fettsäuren und Ölen, Sulfonate von ethoxy lierten Alkylphenolen, Sulfonate von alkoxylierten Arylphenolen, Sulfonate von kondensierten Naphthalinen, Sulfonate von Dodecyl- und Tridecylbenzolen, Sulfonate von Naphthalinen und Alkylnaphthalinen, Sulfosuccinate oder Sulfosuccinamate, sowie nichtionische Netzmittel, die Umsetzungsprodukte von linearen oder verzweigten Alkoholen mit Ethylenoxid sind, wobei diese Endgruppen-verschlossen oder nicht Endgruppen-verschlossen sein können, umfaßt, sowie auch deren Mischungen.
9. Herbizide Zusammensetzungen enthaltend:
A) mindestes einen agrochemischen Wirkstoff ausgewählt aus der Gruppe umfassend die Herbizide, Pflanzenwachstumsregulatoren und Safener, und
B) eine Adjuvans-Kombinationen nach Anspruch 1 oder 2.
10. Herbizide Zusammensetzungen nach Anspruch 9, dadurch gekennzeichnet, daß der agrochemische Wirkstoff ausgewählt ist aus der Gruppe bestehend aus Bicyclopyrone, Mesotrione, Fomesafen, Tralkoxydim, Napropamide, Amitraz, Propanil, Pyrimethanil, Dicloran, Tecnazene, Toclofos-methyl, Flamprop M, 2,4-D, MCPA, Mecoprop, Clodinafop-propargyl, Cyhalofop-butyl, Diclofop methyl, Haloxyfop, Quizalofop-P, Indol-3-ylacetic acid, 1-Naphthylessigsäure, Isoxaben, Tebutam, Chlorthal-dimethyl, Benomyl, Benfuresate, Dicamba, Dichlobenil, Benazolin, Triazoxide, Fluazuron, Teflubenzuron, Phenmedipham, Acetochlor, Alachlor, Metolachlor, Pretilachlor, Thenylchlor, Alloxydim, Butroxydim, Clethodim, Cyclodim, Sethoxydim, Tepraloxydim, Pendimethalin, Dinoterb, Bifenox, Oxyfluorfen, Acifluorfen, Fluazifop, S-Metolachlor, Glyphosate, Glufosinate, Paraquat, Diquat, Fluoroglycofen-ethyl, Bromoxynil, Ioxynil, Imazamethabenz-methyl, Imazapyr, Imazaquin, Imazethapyr, Imazapic, Imazamox, Flumiclorac-pentyl, Picloram, Amidosulfuron, Chlorsulfuron, Nicosulfuron, Rimsulfuron, Triasulfuron, Triallate, Pebulate, Prosulfocarb, Molinate, Atrazine, Simazine, Cyanazine, Ametryn, Prometryn, Terbuthylazine, Terbutryn, Sulcotrione, Isoproturon, Linuron, Fenuron, Chlorotoluron, Metoxuron, Diflufenican, Flufenacet, Fluroxypyr, Aminopyralid, Pyroxsulam, XDE-848 RinskorTM, Halauxifen-methyl, Tembotrione, Isoxaflutole, Metribuzin, Topramezone, Pyroxasulfone, Bixlozone, sowie Prohexadion und Prohexadion-Ca und Benoxacor, Cloquintocet-mexyl, Cyometrinil, Dichlormid, Fenchlorazole- ethyl, Fenclorim, Flurazole, Fluxofenim, Mefenpyr-diethyl, MG- 191, Naphthylanhydrid, und Oxabetrinil, Isoxadifen-ethyl, Furilazole und Cyprosulfamide.
11. Herbizide Zusammensetzung nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß sie als Emulsionskonzentrats, Öldispersion, Suspensionsemulsion, Kapselsupension, dispergierbares Konzentrat, lösliche Flüssigkeit, Emulsion in Wasser, Suspensionskonzentrat oder Spritzpulversvorliegt.
12. Herbizide Zusammensetzungen nach Anspruch 9 bis 11, dadurch gekennzeichnet, daß die Komponenten A) und B) in der anwendungsfertig verdünnten Spritzbrühe enthalten sind in in der fertig verdünnten Spritzbrühe
A) 0, 1-1,5 g/L, weiter bevorzugt 0,2 - 1,0 g/L und besonders bevorzugt 0,4 - 0,8 g/L, und
B) 3 - 8 g/L, weiter bevorzugt 5 - 7 g/L, und besonders bevorzugt 6 - 7 g/L.
13. Verwendung der Adjuvans-Kombination nach Anspruch 1 oder 2 zur Verbesserung der
Blattaufnahme von Herbiziden, Pflanzenwachstumsregulatoren und Safenern.
PCT/EP2020/065148 2019-06-03 2020-06-02 Adjuvans-kombinationen als blattaufnahmebeschleuniger für herbizide zusammensetzungen WO2020245088A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112021024263A BR112021024263A2 (pt) 2019-06-03 2020-06-02 Combinações adjuvantes como aceleradores de absorção foliar para composições herbicidas
CA3142289A CA3142289A1 (en) 2019-06-03 2020-06-02 Adjuvant combinations as foliar uptake accelerators for herbicidal compositions
EP20729073.5A EP3975724A1 (de) 2019-06-03 2020-06-02 Adjuvans-kombinationen als blattaufnahmebeschleuniger für herbizide zusammensetzungen
US17/615,815 US20220322661A1 (en) 2019-06-03 2020-06-02 Adjuvant combinations as foliar uptake accelerator for herbicidal compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19177998 2019-06-03
EP19177998.2 2019-06-03

Publications (2)

Publication Number Publication Date
WO2020245088A1 true WO2020245088A1 (de) 2020-12-10
WO2020245088A9 WO2020245088A9 (de) 2022-09-15

Family

ID=66751939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/065148 WO2020245088A1 (de) 2019-06-03 2020-06-02 Adjuvans-kombinationen als blattaufnahmebeschleuniger für herbizide zusammensetzungen

Country Status (6)

Country Link
US (1) US20220322661A1 (de)
EP (1) EP3975724A1 (de)
AR (1) AR119067A1 (de)
BR (1) BR112021024263A2 (de)
CA (1) CA3142289A1 (de)
WO (1) WO2020245088A1 (de)

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0131624A1 (de) 1983-01-17 1985-01-23 Monsanto Co Plasmide zur transformation von pflanzenzellen.
EP0142924A2 (de) 1983-09-26 1985-05-29 Mycogen Plant Science, Inc. Insektresistente Pflanzen
EP0193259A1 (de) 1985-01-18 1986-09-03 Plant Genetic Systems N.V. Modifikation von Pflanzen auf pentechnologischem Wege zur Bekämpfung oder zur Kontrolle von Insekten
EP0221044A1 (de) 1985-10-25 1987-05-06 Monsanto Company Pflanzenvektoren
EP0242236A1 (de) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Durch Gentechnologie erhaltene und gegen Glutaminsynthetase-Inhibitoren resistente Pflanzenzellen
EP0257993A2 (de) 1986-08-26 1988-03-02 E.I. Du Pont De Nemours And Company Herbizid-resistante Pflanzen-Acetolactatsynthase kodierendes Nucleinsäurefragment
EP0305398A1 (de) 1986-05-01 1989-03-08 Honeywell Inc Verbindungsanordnung für mehrere integrierte schaltungen.
EP0309862A1 (de) 1987-09-30 1989-04-05 Bayer Ag Stilbensynthase-Gen
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
WO1991013972A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Plant desaturases - compositions and uses
WO1991019806A1 (en) 1990-06-18 1991-12-26 Monsanto Company Increased starch content in plants
EP0464461A2 (de) 1990-06-29 1992-01-08 Bayer Ag Stilbensynthase-Gene aus Weinrebe
WO1992000377A1 (en) 1990-06-25 1992-01-09 Monsanto Company Glyphosate tolerant plants
WO1992011376A1 (en) 1990-12-21 1992-07-09 Amylogene Hb Genetically engineered modification of potato to form amylopectin-type starch
WO1992014827A1 (en) 1991-02-13 1992-09-03 Institut Für Genbiologische Forschung Berlin Gmbh Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids
US5198012A (en) * 1984-04-23 1993-03-30 Kao Corporation Phosphate activators for cyclohexenone herbicides
US5763462A (en) * 1984-04-23 1998-06-09 Kao Corporation Activator for herbicide
EP1741339A1 (de) * 2005-07-04 2007-01-10 Sumitomo Chemical Company, Limited Pestizide Zusammensetzung
WO2008049618A2 (en) 2006-10-27 2008-05-02 Syngenta Participations Ag Herbicidal compositions
WO2014060557A2 (en) * 2012-10-19 2014-04-24 Syngenta Participations Ag Liquid agrochemical compositions comprising a polymeric thickener and an alcohol-containing solvent system, and liquid herbicidal compositions having an alcohol-containing solvent system
EP3023006A1 (de) * 2007-07-13 2016-05-25 Ishihara Sangyo Kaisha, Ltd. Herbizidzusammensetzung
WO2017144497A1 (de) 2016-02-26 2017-08-31 Bayer Cropscience Aktiengesellschaft Lösungsmittelfreie formulierungen von niedrig schmelzenden wirkstoffen

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19963381A1 (de) * 1999-12-28 2001-07-12 Aventis Cropscience Gmbh Tensid/Lösungsmittel-Systeme

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0131624A1 (de) 1983-01-17 1985-01-23 Monsanto Co Plasmide zur transformation von pflanzenzellen.
EP0142924A2 (de) 1983-09-26 1985-05-29 Mycogen Plant Science, Inc. Insektresistente Pflanzen
US5198012A (en) * 1984-04-23 1993-03-30 Kao Corporation Phosphate activators for cyclohexenone herbicides
US5763462A (en) * 1984-04-23 1998-06-09 Kao Corporation Activator for herbicide
EP0193259A1 (de) 1985-01-18 1986-09-03 Plant Genetic Systems N.V. Modifikation von Pflanzen auf pentechnologischem Wege zur Bekämpfung oder zur Kontrolle von Insekten
EP0221044A1 (de) 1985-10-25 1987-05-06 Monsanto Company Pflanzenvektoren
EP0242236A1 (de) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Durch Gentechnologie erhaltene und gegen Glutaminsynthetase-Inhibitoren resistente Pflanzenzellen
EP0242246A1 (de) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Durch Gentechnologie erhaltene und gegen Glutaminsynthetase-Inhibitoren resistente Pflanzenzellen
EP0305398A1 (de) 1986-05-01 1989-03-08 Honeywell Inc Verbindungsanordnung für mehrere integrierte schaltungen.
EP0257993A2 (de) 1986-08-26 1988-03-02 E.I. Du Pont De Nemours And Company Herbizid-resistante Pflanzen-Acetolactatsynthase kodierendes Nucleinsäurefragment
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
EP0309862A1 (de) 1987-09-30 1989-04-05 Bayer Ag Stilbensynthase-Gen
WO1991013972A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Plant desaturases - compositions and uses
WO1991019806A1 (en) 1990-06-18 1991-12-26 Monsanto Company Increased starch content in plants
WO1992000377A1 (en) 1990-06-25 1992-01-09 Monsanto Company Glyphosate tolerant plants
EP0464461A2 (de) 1990-06-29 1992-01-08 Bayer Ag Stilbensynthase-Gene aus Weinrebe
WO1992011376A1 (en) 1990-12-21 1992-07-09 Amylogene Hb Genetically engineered modification of potato to form amylopectin-type starch
WO1992014827A1 (en) 1991-02-13 1992-09-03 Institut Für Genbiologische Forschung Berlin Gmbh Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids
EP1741339A1 (de) * 2005-07-04 2007-01-10 Sumitomo Chemical Company, Limited Pestizide Zusammensetzung
WO2008049618A2 (en) 2006-10-27 2008-05-02 Syngenta Participations Ag Herbicidal compositions
EP3023006A1 (de) * 2007-07-13 2016-05-25 Ishihara Sangyo Kaisha, Ltd. Herbizidzusammensetzung
WO2014060557A2 (en) * 2012-10-19 2014-04-24 Syngenta Participations Ag Liquid agrochemical compositions comprising a polymeric thickener and an alcohol-containing solvent system, and liquid herbicidal compositions having an alcohol-containing solvent system
WO2017144497A1 (de) 2016-02-26 2017-08-31 Bayer Cropscience Aktiengesellschaft Lösungsmittelfreie formulierungen von niedrig schmelzenden wirkstoffen

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
"Chemistry and Technology of Agrochemical Formulations", 1998, KLUWER ACADEMIC PUBLISHERS
"Gene Transfer to Plants, Springer Lab Manual", 1995, SPRINGER VERLAG BERLIN
"The Pesticide Manual", THE BRITISH CROP PROTECTION COUNCIL AND THE ROYAL SOC. OF CHEMISTRY, 2012
ALAN KNOWLES: "Agrow Report DS256", December 2006, INFORMA UK LTD, article "Adjuvants and Additives"
BAUR P.PONTZEN R.: "Proceedings of the 8th International Symposium on Adjuvants for Agrochemicals", 2007, INTERNATIONAL SOCIETY FOR AGROCHEMICAL ADJUVANTS (ISAA, article "Basic features of plant surface wettability and deposit formation and the impact of adjuvant"
BRAUN ET AL., EMBO J., vol. 11, 1992, pages 3219 - 3227
CHRISTOU, TRENDS IN PLANT SCIENCE, vol. 1, 1996, pages 423 - 431
G.C. KLINGMAN: "Weed Control as a Science", 1961, JOHN WILEY AND SONS, INC., pages: 81 - 96
H.V. OLPHEN: "Handbook of Insecticide Dust Diluents and Carriers", 1963, J. WILEY & SONS
J.D. FREYERS.A. EVANS: "Weed Control Handbook", 1968, BLACKWELL SCIENTIFIC PUBLICATIONS, pages: 101 - 103
J.E. BROWNING: "Agglomeration", CHEMICAL AND ENGINEERING, 1967, pages 147 ff
K. MARTENS: "Spray-Drying Handbook", 1979, G. GOODWIN LTD.
KATJA ARAND ET AL: "The Mode of Action of Adjuvants-Relevance of Physicochemical Properties for Effects on the Foliar Application, Cuticular Permeability, and Greenhouse Performance of Pinoxaden", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 66, no. 23, 13 June 2018 (2018-06-13), US, pages 5770 - 5777, XP055625575, ISSN: 0021-8561, DOI: 10.1021/acs.jafc.8b01102 *
MCCUTCHEON'S: "Encyclopedia of Surface Active Agents", 1964, CHEM. PUBL. CO. INC.
SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
SCHÖNFELDT: "Grenzflächenaktive Äthylenoxidaddukte", 1976, WISS. VERLAGSGESELL.
SOLVAY ET AL: "China International Agrochemical", BREAKTHROUGH INNOVATIVE AND SUSTAINABLE SOLUTION FOR HERBICIDE, 1 March 2017 (2017-03-01), pages 1 - 19, XP055626554 *
SONNEWALD ET AL., PLANT J., vol. 1, 1991, pages 95 - 106
WADE VAN VALKENBURG: "Perry's Chemical Engineer's Handbook", 1973, MARCEL DEKKER, pages: 8 - 57
WINNACKER: "Gene und Klone", 1996, VCH
WINNACKER-KÜCHLER: "Chemische Technologie", vol. 7, 1986, C. HANSER VERLAG
WOLTER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 846 - 850

Also Published As

Publication number Publication date
BR112021024263A2 (pt) 2022-01-11
WO2020245088A9 (de) 2022-09-15
US20220322661A1 (en) 2022-10-13
EP3975724A1 (de) 2022-04-06
AR119067A1 (es) 2021-11-24
CA3142289A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
EP3121172B1 (de) Natriumsalz von 2-chlor-3-(methylsulfanyl)-n-(1-methyl-1h-tetrazol-5-yl)-4-(trifluoromethyl)benzamid und dessen verwendung als herbizid
EP2434884B1 (de) Synergistische herbizid-kombinationen enthaltend tembotrione
RU2632942C2 (ru) Гербицидные композиции, содержащие 4-амино-3-хлор-5-фтор-6-(4-хлор-2-фтор-3-метоксифенил)пиридин-2-карбоновую кислоту или ее производное и диметоксипиримидин и его производные
EP2327305B1 (de) Herbizide Mittel für tolerante oder resistente Sojakulturen
RU2632969C2 (ru) Гербицидные композиции, содержащие 4-амино-3-хлор-5-фтор-6-(4-хлор-2-фтор-3-метоксифенил)пиридин-2-карбоновую кислоту
EP2319315B1 (de) Herbizide Mittel für tolerante oder resistente Maiskulturen
EP1104232B1 (de) Herbizide mittel
RU2629256C2 (ru) Гербицидные композиции, содержащие 4-амино-3-хлор-5-фтор-6-(4-хлор-2-фтор-3-метоксифенил)пиридин-2-карбоновую кислоту
RU2632970C2 (ru) Гербицидные композиции, содержащие 4-амино-3-хлор-5-фтор-6-(4-хлор-2-фтор-3-метоксифенил) пиридин-2-карбоновую кислоту
DE102005031787A1 (de) Kulturpflanzenverträgliche herbizide Mittel enthaltend Herbizide Safener
WO2011144691A1 (de) Herbizide mittel für tolerante oder resistente maiskulturen
WO2011144683A1 (de) Herbizide mittel für tolerante oder resistente rapskulturen
EP2934129B1 (de) Herbizide mittel enthaltend aclonifen
WO2009007013A1 (de) Herbizid-kombinationen mit speziellen 3-(2-alkoxy-4-chlor-6-alkyl-phenyl)-substituierten tetramaten
EP4305025A1 (de) Chirale n-(1,3,4-oxadiazol-2-yl)phenylcarbonsäureamide und ihre verwendung als herbizide
WO2003043422A1 (de) Synergistische herbizide mittel enthaltend herbizide aus der gruppe der benzoylpyrazole
DE102006056207A1 (de) Herbizide Mittel enthaltend Diflufenican
DE10022990A1 (de) Kombination von Pflanzenschutzmitteln mit Wasserstoffbrücken bildenden Polymeren
EP1286587A1 (de) Kombinationen von pflanzenschutzmitteln mit anionischen polymeren
WO2020245088A1 (de) Adjuvans-kombinationen als blattaufnahmebeschleuniger für herbizide zusammensetzungen
WO2014095681A1 (de) Herbizide mittel enthaltend aclonifen
WO2001084925A2 (de) Kombinationen von pflanzenschutzmitteln mit kationischen polymeren
EP2934125B1 (de) Herbizide mittel enthaltend aclonifen
EP2775833B1 (de) Verwendung von ionischen verbindungen zur bekämpfung von glyphosat-resistenten pflanzen
RU2658667C2 (ru) Гербицидно-антидотные композиции, включающие 4-амино-3-хлор-5-фтор-6-(4-хлор-2-фтор-3-метоксифенил)пиридин-2-карбоновую кислоту или ее производное, для применения в кукурузе (маисе)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20729073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3142289

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021024263

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020729073

Country of ref document: EP

Effective date: 20220103

ENP Entry into the national phase

Ref document number: 112021024263

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211201