WO2020244624A1 - 一种交叉口绿灯空放时间计算方法和装置 - Google Patents

一种交叉口绿灯空放时间计算方法和装置 Download PDF

Info

Publication number
WO2020244624A1
WO2020244624A1 PCT/CN2020/094618 CN2020094618W WO2020244624A1 WO 2020244624 A1 WO2020244624 A1 WO 2020244624A1 CN 2020094618 W CN2020094618 W CN 2020094618W WO 2020244624 A1 WO2020244624 A1 WO 2020244624A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
vehicle
parameter
phase
idle
Prior art date
Application number
PCT/CN2020/094618
Other languages
English (en)
French (fr)
Inventor
陈俊德
杨继生
Original Assignee
南京慧尔视智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京慧尔视智能科技有限公司 filed Critical 南京慧尔视智能科技有限公司
Publication of WO2020244624A1 publication Critical patent/WO2020244624A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/08Controlling traffic signals according to detected number or speed of vehicles

Definitions

  • the invention relates to the field of intelligent traffic control, in particular to a method for calculating the idle time of green lights at an intersection.
  • the signal control plan is determined on the basis of long-term traffic volume observations. During the operation of the signal control plan, it can basically meet the traffic demand in different directions at the intersection, but cannot adapt to the traffic flow in all directions in a short time. Volatility. When the traffic flow in different directions within the signal cycle fluctuates, it often causes the unbalanced use of the green light time of each phase at the intersection, some are too long, some are too short, and the too long phase green time will cause a certain degree of phase green time empty. The lanes with green lights do not pass, but the lanes with red lights have vehicles queuing up, causing problems such as increased vehicle delays and reduced traffic capacity at intersections.
  • the green light idle time can not only directly reflect the effective utilization of the green time, but also quantify the unbalanced utilization of the green time of each phase at the intersection, which can be used as a signal evaluation indicator to determine the defects of the existing signal timing plan at the intersection. Serve the signal control of the current intersection and improve the traffic capacity of the intersection.
  • the purpose of the present invention is to provide a method for calculating the idle time of green lights at intersections, which is used to solve the technical problem that the effective utilization of green lights and the unbalanced utilization of the existing signalized intersections cannot be quantified.
  • a method for calculating the time of green light at an intersection including the following:
  • Parameter 2 The minimum green light time G mingreen ;
  • T ws The earliest idle time T ws , where T ws is the time when the minimum green light time G mingreen ends;
  • parameter one is not greater than parameter two, the idle time of this phase is 0;
  • the idle time of this phase is T e- T ws ;
  • the passing interval of two adjacent vehicles is obtained in turn from the first vehicle and is The idle interval G D is compared until there is a passing interval of two adjacent vehicles greater than the idle interval G D , and the passing time of the preceding vehicle of the two adjacent vehicles is recorded as T i , then the idle interval of this phase
  • the time is T e -T i ; if there is no passing interval between two adjacent vehicles greater than the idle interval G D until the end of release time T e , the passing time of the last vehicle is recorded as T n , then the phase
  • the idle time is T e -T n .
  • the driving information includes the lane and time of the vehicle entering and leaving the intersection.
  • the release phase information includes a release direction and a release time period.
  • the calculation method of the minimum green time G mingreen of the release phase in different directions is as follows:
  • G mingreen is a preset fixed value
  • G mingreen L/V, where L is the length of the crosswalk and V is the average speed of pedestrians;
  • the value of the largest G mingreen in the current release directions is taken as the minimum green light time G mingreen in this case.
  • the idle interval G D takes a unit of green light to extend the time.
  • the lane position information and steering information of the roads in each direction at the intersection are set in the detection device in advance;
  • the detection equipment distinguishes and recognizes the vehicle according to the distance, speed and azimuth angle of the vehicle, and sets a one-to-one corresponding identifier for the vehicle, and then realizes the tracking of the vehicle's trajectory by detecting the change in the position of the vehicle in real time.
  • the lane position information and steering information set in advance are combined to obtain the lane information and time of the vehicle entering the intersection, that is, the driving direction and time of the vehicle entering the intersection.
  • the invention also discloses a device for calculating the idle time of green lights at an intersection, including:
  • Detection equipment used to detect the driving information of vehicles entering the intersection
  • Signal control platform used to control the signal phase of intersections
  • the data processor is used to collect the vehicle's driving information and release phase information, and calculate the green light idle time according to the following preset calculation methods:
  • Parameter 2 The minimum green light time G mingreen ;
  • T ws The earliest idle time T ws , where T ws is the time when the minimum green light time G mingreen ends;
  • parameter one is not greater than parameter two, the idle time of this phase is 0;
  • the idle time of this phase is T e- T ws ;
  • the passing interval of two adjacent vehicles is obtained in turn from the first vehicle and is The idle interval G D is compared until there is a passing interval of two adjacent vehicles greater than the idle interval G D , and the passing time of the preceding vehicle of the two adjacent vehicles is recorded as T i , then the idle interval of this phase
  • the time is T e -T i ; if there is no passing interval between two adjacent vehicles greater than the idle interval G D until the end of release time T e , the passing time of the last vehicle is recorded as T n , then the phase
  • the idle time is T e -T n .
  • the present invention also discloses an electronic device including a memory and a processor, the memory and the processor are communicatively connected to each other, the memory stores computer instructions, and the processor executes the The computer instruction is used to execute the method for calculating the green light empty time at an intersection.
  • a computer-readable storage medium stores computer instructions, and the computer instructions are used to make the computer execute the aforementioned method for calculating intersection green light empty time.
  • the technical solution of the present invention provides a method and device for calculating the green light empty time at an intersection. By tracking vehicles entering the intersection, all directions in a cycle can be obtained under the condition that pedestrians cross the street safely. Whether there is a green light idle and calculate the specific idle time, it can accurately reflect the green light utilization rate of the signalized intersection.
  • quantifying the degree of imbalance in the use of green time for each phase of the intersection can be used as a signal evaluation indicator to determine the defects of the existing signal timing plan at the intersection, and as a reference for the optimization of signal timing, which is conducive to improving the intersection.
  • the traffic capacity can be used as a signal evaluation indicator to determine the defects of the existing signal timing plan at the intersection, and as a reference for the optimization of signal timing, which is conducive to improving the intersection.
  • FIG. 1 is a schematic diagram of detecting an intersection area by a detection device illustrated in a specific embodiment of the present invention
  • Fig. 2 is a schematic diagram of a passing situation in different situations illustrated in the specific embodiment of the present invention.
  • Embodiment 1 The specific embodiment of the present invention is based on the unreasonable existing signal light timing schemes. For example, some intersections have technical problems of excessive green light emptying or insufficient timing. It is expected that the green light empty can be accurately obtained through the scheme described below. Time is used to accurately reflect the utilization rate of green lights at signalized intersections, so that it can be used as an important basis for evaluating whether the signal light timing is scientific and reasonable.
  • a method for calculating green light empty time at an intersection is applied to an intersection green light empty time calculation system.
  • the green light empty time calculation system at the intersection is electrically connected to detection equipment and signal control equipment to collect detection equipment
  • the above method includes:
  • the detection equipment is activated to detect and collect driving information of vehicles entering the intersection.
  • the driving information here includes the lane and time when the vehicle entered the intersection.
  • the detection device is a microwave detector. The following specifically describes how to detect the above-mentioned driving information through the microwave detector.
  • microwave detectors installed on the poles near the intersection (such as signal light poles, street light poles, etc.).
  • the microwave detector is facing the road to be detected.
  • at least one microwave is provided for each road at the intersection. Detector so that the driving situation on each road can be tracked. Adjust the elevation angle, deflection angle and the horizontal position on the rod of the microwave detector until the beam of the microwave detector can completely cover the road to be detected.
  • the range of the microwave emitted by the microwave detector completely covers the road to be detected in the intersection area. Specifically, it is transformed into a specific data form for presentation in the following way. Take the position of the center of the emission panel of the microwave detector as the coordinate origin O, the direction parallel to the lane as the X axis, and the direction perpendicular to the lane as the Y axis to establish a coordinate system:
  • the sector of the microwave detector scans One side of the area is the X axis, and the other side intersects the point where the stop line of the road is farthest away from the microwave detector.
  • the microwave detector is located in the middle of the road, and the two sides of the scanned sector area are symmetrical with respect to the X axis.
  • the specific location of the microwave detector above is an example, and the implementer can adjust it according to the road conditions on site.
  • the lane position information is transformed into a specific data form for presentation in the following manner.
  • the coordinate range of the first lane is Y0 ⁇ Lane1 ⁇ Y1
  • the coordinate range of the second lane is Y1 ⁇ Lane2 ⁇ Y2
  • the coordinate range of the third lane is Y2 ⁇ Lane3 ⁇ Y3, and so on.
  • the above-mentioned microwave detector is used to distinguish and identify the vehicle according to the distance, speed and azimuth angle of the vehicle, and to set a one-to-one corresponding identifier for the vehicle, and then real-time detection of the change in the position of the vehicle.
  • Trajectory tracking when a vehicle is detected to enter an intersection, combined with pre-set lane position information and steering information to obtain the lane information and time of the vehicle entering the intersection, that is, the driving direction and time of the vehicle entering the intersection.
  • the lane information in the process of tracking the vehicle is transformed into a specific data form for presentation in the following manner.
  • the X coordinate value and Y coordinate value of the target vehicle are determined in the coordinate system established with the location of the microwave detector as the coordinate origin O, and the target vehicle is determined according to the coordinate range where the Y coordinate value is located Lane information.
  • the signal control platform collects the release phase information of the phase period after the end of a complete phase period. Since the objective of the present invention is to calculate the idle time of the green light, only the release phase information is concerned, and the release phase information includes the release direction and the release time.
  • the green light idle time of each phase can be calculated.
  • the specific plan is as follows:
  • Parameter two the minimum green light time G mingreen .
  • T ws is the time when the minimum green light time G mingreen ends.
  • the significance of this parameter is that for the calculation in the existing timing scheme, when considering the starting point of the idle time, the starting point cannot be earlier than this parameter, otherwise, pedestrians will not be able to safely pass through the intersection.
  • the idle time of this phase is 0. That is, the corresponding scenario is that the phase release time is lower than the minimum safe green light time for pedestrians to pass the crosswalk, and the timing here needs to be adjusted to increase the green light time.
  • the passing record is not empty, and the interval between the passing time T l of the first vehicle and the parameter 3 is greater than the preset idle interval G D , the corresponding scene is After the vehicles have passed through in a concentrated manner, the subsequent incoming vehicles will arrive at the intersection with a longer interval, so the following incoming vehicles should be included in the next release cycle to pass, so it is determined that the idle time of this phase is T e- T ws .
  • the passing record is not empty, and the interval between the passing time T l of the first vehicle and the parameter 3 is less than the preset idle interval G D , then sequentially from the first vehicle Obtain the passing interval of two adjacent vehicles and compare it with the empty interval G D until there is a passing interval of two adjacent vehicles greater than the empty interval G D , that is, the corresponding scene is that after the vehicles pass through in a concentrated manner, the subsequent vehicles come to the head
  • the interval between vehicles is short, but there is a longer interval in the subsequent incoming vehicles after the first vehicle, that is, during the green light period, the subsequent vehicles pass efficiency is low, and these vehicles with longer intervals should be included in the next release During the period, especially since the first long passing record interval, the preceding vehicle should be released in the previous green light cycle, and the following vehicle should be released in the green light of the next cycle.
  • This scheme can take into account the following of vehicles. Tightness and the green light are timed. Therefore, the passing time of the previous car of the two adjacent cars is recorded as T i , and the idle time of this phase is T e -T i . Otherwise, as shown in the bottom time axis of Figure 2, if until the release end time T e , there is no passing interval between two adjacent vehicles greater than the empty release interval G D , the passing time of the last vehicle is recorded as T n , the idle time of this phase is T e -T n , and the corresponding scene is that during the whole cycle of the green light, vehicles pass smoothly, the vehicle interval time is shorter, and the passage efficiency is higher. Then the idle time of this phase is longer Short, T e -T n .
  • the idle time interval G D is set as the unit green light extension time, generally 3s-5s.
  • Embodiment 2 Another embodiment of the present invention discloses an intersection green light empty time calculation device, including
  • Detection equipment used to detect the driving information of vehicles entering the intersection
  • Signal control equipment used to control the signal light phase of the intersection
  • the data processor is used to collect the vehicle's driving information and release phase information, and calculate the green light idle time according to the following preset calculation methods:
  • Parameter 2 The minimum green light time G mingreen ;
  • T ws The earliest idle time T ws , where T ws is the time when the minimum green light time G mingreen ends;
  • parameter one is not greater than parameter two, the idle time of this phase is 0;
  • the idle time of this phase is T e- T ws ;
  • the passing interval of two adjacent vehicles is obtained in turn from the first vehicle and is The idle interval G D is compared until there is a passing interval of two adjacent vehicles greater than the idle interval G D , and the passing time of the preceding vehicle of the two adjacent vehicles is recorded as T i , then the idle interval of this phase
  • the time is T e -T i ; if there is no passing interval between two adjacent vehicles greater than the idle interval G D until the end of release time T e , the passing time of the last vehicle is recorded as T n , then the phase
  • the idle time is T e -T n .
  • Embodiment 3 Another embodiment of the present invention discloses an electronic device, including a memory and a processor, the memory and the processor are communicatively connected to each other, for example, connected by a bus or other means, and the memory stores There are computer instructions, and the processor executes the method for calculating the green light empty time at an intersection by executing the computer instructions.
  • the memory as a non-transitory computer-readable storage medium, can be used to store non-transitory software programs, non-transitory computer executable programs and modules, as in the embodiment of the present invention corresponding to the method for calculating the green light empty time at an intersection
  • the processor executes various functional applications and data processing of the processor by running the non-transitory software programs, instructions and modules stored in the memory, that is, to realize a kind of intersection green light in the above method embodiment Empty time calculation method.
  • the memory may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created by the processor and the like.
  • the memory is preferably but not limited to a high-speed random access memory.
  • it may also be a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid state storage devices.
  • the memory may also optionally include a memory remotely arranged with respect to the processor, and these remote memories may be connected to the processor through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the implementation of all or part of the processes in the above-mentioned embodiment methods is a program that can be completed by a computer program instructing relevant hardware, and can be stored in a computer readable storage medium. At this time, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium can be magnetic disk, optical disk, read-only memory (Read-Only Memory, ROM), random access memory (RAM), flash memory (Flash Memory), hard disk (Hard Disk Drive) , Abbreviation: HDD) or solid-state drive (Solid-State Drive, SSD), etc.; the storage medium may also include a combination of the foregoing types of memories.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种交叉口绿灯空放时间计算方法和装置,通过对进入交叉口车辆的跟踪,在满足行人安全过街的情况下,能够在一个完整相位周期结束后计算出该相位周期内各相位的绿灯空放时间,可直接反映信号交叉口各相位绿灯时间的有效利用程度,并对利用不均衡的程度进行量化。

Description

一种交叉口绿灯空放时间计算方法和装置 技术领域
本发明涉及智能交通控制领域,特别是关于一种交叉口绿灯空放时间计算方法。
背景技术
传统信号控制交叉口,通常保持车道功能不变,且各个时段内各相位的信号配时固定。其信号控制方案的确定是以长时间的交通量观测结果为依据制定的,在整个信号控制方案运行期间,基本能满足交叉口不同方向上的交通需求,但不能适应短时内各方向交通流的波动情况。当信号周期内不同方向交通流波动时,往往造成交叉口各相位绿灯时间利用的不均衡,有的过长、有的过短,过长的相位绿灯时间则会造成一定程度的相位绿灯时间空放,即亮绿灯的车道没有车辆通行,而亮红灯的车道却有车辆排队,造成车辆延误增大、交叉口通行能力下降等问题。
绿灯空放时间不仅能够直接反映绿灯时间的有效利用程度,而且能够将交叉口各相位绿灯时间利用不均衡的程度进行量化,可作为信号评价指标,确定交叉口现有信号配时方案的缺陷,服务于当前路口的信号控制,提升交叉口的通行能力。
发明内容
本发明目的在于提供一种交叉口绿灯空放时间计算方法,用于解决现有的信号交叉口中绿灯有效利用程度及利用不均衡程度无法量化的技术问题。
为达成上述目的,本发明提出如下技术方案:一种交叉口绿灯空放时间计算方法,包括以下内容:
启动检测设备对进入交叉口的车辆行驶信息进行检测并收集;
启动信号控制平台并在一个完整相位周期结束后收集该相位周期的放行相位信息;
获得与该放行相位相关的如下参数:
参数一、放行时间G f,G f=T e-T s,其中,T s为放行开始时刻,T e为放行结束时刻;
参数二、最小绿灯时间G mingreen
参数三、最早空放时刻T ws,其中,T ws为最小绿灯时间G mingreen结束的时刻;
对比参数一和参数二的大小,
若参数一不大于参数二,则此相位空放时间为0;
若参数一大于参数二,则进一步获得参数三到放行结束时刻T e之间的过车记录:
若过车记录为空,则此相位的空放时间为T e-T ws
若过车记录非空,且首车过车时刻T l与参数三之间的间隔大于预设的空放间隔G D,则此相位的空放时间为T e-T ws
若过车记录非空,且首车过车时刻T l与参数三之间的间隔小于预设的空放间隔G D,则从首车起依次获得相邻两车的过车间隔并与空放间隔G D进行比较,直到存在相邻两车的过车间隔大于空放间隔G D,记该相邻两车的前一辆车的过车时刻为T i,则此相位的空放时间 为T e-T i;若直到放行结束时刻T e,不存在相邻两车的过车间隔大于空放间隔G D,记最后一辆车的过车时刻为T n,则此相位的空放时间为T e-T n
进一步的,在上述方法中,所述行驶信息包括车辆进出交叉口的车道和时间。
进一步的,在上述方法中,所述放行相位信息包括放行方向和放行时间段。
进一步的,在上述方法中,不同方向放行相位的最小绿灯时间G mingreen的计算方法如下:
转向相位,G mingreen为预设固定值;
直行相位,G mingreen=L/V,其中,L为人行横道的长度,V为行人平均速度;
同时有多个方向放行时,取当前各个放行方向中最大的G mingreen的值为该情况下的最小绿灯时间G mingreen
进一步的,在上述方法中,空放间隔G D取单位绿灯延长时间。
进一步的,在上述方法中,预先在检测设备内设置交叉口处各方向道路的车道位置信息及转向信息;
当车辆进入检测区域时,检测设备根据车辆的距离、速度和方位角区分并识别车辆,并给车辆设置一一对应的标识符,再通过实时检测车辆的位置变化实现对车辆的轨迹跟踪,当检测到车辆进入交叉口时,结合预先设置的车道位置信息及转向信息,获得车辆进入交叉口的车道信息和时间,即车辆进入交叉口的行驶方向和时间。
本发明还同时公开了一种交叉口绿灯空放时间计算装置,包括,
检测设备,用于对进入交叉口的车辆行驶信息进行检测;
信号控制平台,用于控制交叉口的信号灯相位;
数据处理器,用于收集车辆的行驶信息和放行相位信息,并根据预设的以下计算方式计算绿灯空放时间:
获得与该放行相位相关的如下参数:
参数一、放行时间G f,G f=T e-T s,其中,T s为放行开始时刻,T e为放行结束时刻;
参数二、最小绿灯时间G mingreen
参数三、最早空放时刻T ws,其中,T ws为最小绿灯时间G mingreen结束的时刻;
对比参数一和参数二的大小,
若参数一不大于参数二,则此相位空放时间为0;
若参数一大于参数二,则进一步获得参数三到放行结束时刻T e之间的过车记录:
若过车记录为空,则此相位的空放时间为T e-T ws
若过车记录非空,且首车过车时刻T l与参数三之间的间隔大于预设的空放间隔G D,则此相位的空放时间为T e-T ws
若过车记录非空,且首车过车时刻T l与参数三之间的间隔小于预设的空放间隔G D,则从首车起依次获得相邻两车的过车间隔并与空放间隔G D进行比较,直到存在相邻两车的过车间隔大于空放间隔G D,记该相邻两车的前一辆车的过车时刻为T i,则此相位的空放时间为T e-T i;若直到放行结束时刻T e,不存在相邻两车的过车间隔大于空放间隔G D,记最后一辆车的过车时刻为T n,则此相位的空放时间为T e-T n
此外,本发明同时开公开了一种电子设备,包括存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述 计算机指令,从而执行所述一种交叉口绿灯空放时间计算方法。
此外,一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行所述的一种交叉口绿灯空放时间计算方法。
有益效果:
由以上技术方案可知,本发明的技术方案提供了一种交叉口绿灯空放时间计算方法和装置,通过对进入交叉口车辆的跟踪,在满足行人安全过街的情况下,获得一个周期内各个方向的绿灯配时是否存在绿灯空放并计算出具体的空放时间,能够准确反映出信号交叉口绿灯的利用率。
进一步的,将交叉口各相位绿灯时间利用不均衡的程度进行量化,可以作为信号评价指标,确定交叉口现有信号配时方案的缺陷,并作为信号灯配时优化的参考,有利于提升交叉口的通行能力。
应当理解,前述构思以及在下面更加详细地描述的额外构思的所有组合只要在这样的构思不相互矛盾的情况下都可以被视为本公开的发明主题的一部分。
结合附图从下面的描述中可以更加全面地理解本发明教导的前述和其他方面、实施例和特征。本发明的其他附加方面例如示例性实施方式的特征和/或有益效果将在下面的描述中显见,或通过根据本发明教导的具体实施方式的实践中得知。
附图说明
附图不意在按比例绘制。在附图中,在各个图中示出的每个相同或近似相同的组成部分可以用相同的标号表示。为了清晰起见,在每个图中,并非每个组成部分均被标记。现在,将通过例子并参考附图来描述本发明的各个方面的实施例,其中:
图1为本发明的具体实施例中所示意的检测设备对交叉口区域进行检测的示意图;
图2为本发明的具体实施例中所示意的不同情况下的过车情况示意图。
具体实施方式
为了更了解本发明的技术内容,特举具体实施例并配合所附图式说明如下。
在本公开中参照附图来描述本发明的各方面,附图中示出了许多说明的实施例。本公开的实施例不必定意在包括本发明的所有方面。应当理解,上面介绍的多种构思和实施例,以及下面更加详细地描述的那些构思和实施方式可以以很多方式中任意一种来实施,这是因为本发明所公开的构思和实施例并不限于任何实施方式。另外,本发明公开的一些方面可以单独使用,或者与本发明公开的其他方面的任何适当组合来使用。
实施例一、本发明的具体实施例基于现有的信号灯配时方案不合理,例如有的路口存在绿灯空放较多或配时不足的技术问题,期望通过以下介绍的方案以准确获得绿灯空放时间,用于准确反映出信号交叉口绿灯的利用率,以便后期作为评估信号灯配时是否科学、合理的重要依据。
由此,一种交叉口绿灯空放时间计算方法,应用于一种交叉口绿灯空放时间计算系统,该交叉口绿灯空放时间计算系统与检测设备、信号控制设备电连接,收集检测设备检测到的行驶数据和信号控制设备的放行相位信息,并根据这些信息具体计算绿灯空放时 间。具体的,上述方法包括:
一方面,启动检测设备对进入交叉口的车辆行驶信息进行检测并收集。这里的行驶信息包括车辆进入交叉口的车道和时间。
在某些具体的实施例中,检测设备为微波检测器,下面具体介绍如何通过微波检测器检测上述行驶信息。
首先在交叉口附近的杆件上(如信号灯杆、路灯杆等)布设好微波检测器,微波检测器正对要检测的道路,一般的,对交叉口的每条道路均配备至少一台微波检测器,以便对每条道路上的行车情况都能跟踪到。调整微波检测器的俯仰角、偏转角及在杆件上的水平位置,直到微波检测器的波束能够完全覆盖要检测的道路。
如图1所示,微波检测器所发射的微波的范围在交叉口区域内完全覆盖了待检测的道路。具体的,通过以下方式转化为具体的数据形式呈现。以微波检测器的发射面板中心所在的位置为坐标原点O,以平行于车道方向为X轴,垂直于车道的方向为Y轴建立坐标系:在图1的示例中,微波检测器扫描的扇形区域的一侧为X轴,另一侧边与道路的停止线远离微波检测器方向最远的点相交。在其他实施例中,微波检测器位于道路的中间位置,扫描的扇形区域的两侧边相对于X轴对称。以上微波检测器的具体位置为举例说明,实施者可根据现场道路的情况自行调整。
还需要预先在检测设备内设置交叉口处各方向道路的车道位置信息及转向信息。具体的,车道位置信息通过以下方式转化为具体的数据形式呈现。对每一条车道进行编号,并确定每一条车道在Y轴上的坐标范围。例如,第一车道的坐标范围为Y0≤Lane1<Y1,第二车道的坐标范围为Y1≤Lane2<Y2,第三车道的坐标范围为Y2≤Lane3<Y3,以此类推。
接着,当车辆进入检测区域时,利用上述微波检测器根据车辆的距离、速度和方位角区分并识别车辆,并给车辆设置一一对应的标识符,再通过实时检测车辆的位置变化实现对车辆的轨迹跟踪,当检测到车辆进入交叉口时,结合预先设置的车道位置信息及转向信息,获得车辆进入交叉口的车道信息和时间,即车辆进入交叉口的行驶方向和时间。
上述过程中,具体从回波信号中提取位置、速度、方位角等信息属于现有技术中微波检测的常规技术,具体可参见现有技术,此处不再赘述。
进一步的,上述对车辆的跟踪过程中的车道信息,通过如下方式转化为具体的数据形式呈现。在获取目标车辆的位置信息后,再以微波检测器所在的位置为坐标原点O建立的坐标系中确定目标车辆的X坐标值和Y坐标值,根据Y坐标值所在的坐标范围即确定目标车辆所处的车道信息。
另一方面,信号控制平台在一个完整相位周期结束后收集该相位周期的放行相位信息。由于本发明的目标是针对绿灯空放时间进行计算,因此只关注放行相位信息,并且放行相位信息包括放行方向和放行时间。
上述两方面信息都收集到后,可以计算各个相位的绿灯空放时间,具体方案如下:
获得与该放行相位相关的如下参数:
参数一、放行时间G f,G f=T e-T s,其中,T s为放行开始时刻,T e为放行结束时刻。
参数二、最小绿灯时间G mingreen。不同的方向放行相位的最小绿灯时间T mingreen的计算方法如下:转向相位,G mingreen为预设固定值,默认值为15秒;直行相位,G mingreen=L/V,其中,L为人行横道的长度,V为行人平均速度,主要是考虑至少让行人能够安全通过绿灯所需 的时间;若同时有多个方向放行时,取当前各个放行方向中最大的G mingreen的值为该情况下的最小绿灯时间G mingreen
参数三、最早空放时刻T ws,其中,T ws为最小绿灯时间G mingreen结束的时刻。该参数的意义在于,针对现有的配时方案中计算,考虑空放时间的起点时,起点不能早于该参数,否则,行人将无法安全通过路口。
接着,对比参数一和参数二的大小,这里参数二的选择根据放行相位而定:即当转向车道放行时,选择预设固定值例如15秒作为参数二;当直行方向放行时,选择G mingreen作为参数二;当多个方向放行时,选择各方向最小绿灯时间中较大的那个值作为参数二。
若参数一不大于参数二,则此相位空放时间为0。即对应的场景为,该相位放行时间低于行人通过人行横道的最小安全绿灯时间,需调整此处的配时,增大绿灯时间。
若参数一大于参数二,则进一步获得参数三到结束放行时刻T e之间的过车记录:
若过车记录为空,即对应的场景为车辆集中通过后,最小绿灯时间G mingreen后无车辆再次通过,那么这段时间就全部是空放时间,因此判定此相位的空放时间为T e-T ws
如图2的最上方的时间轴所示,若过车记录非空,且首车过车时刻T l与参数三之间的间隔大于预设的空放间隔G D,即对应的场景为车辆集中通过后,后续来车间隔较长时间才到达交叉口,那么理应将后续来车纳入下一个放行周期内通过,因此判定此相位的空放时间为T e-T ws
如图2的中间的时间轴所示,若过车记录非空,且首车过车时刻T l与参数三之间的间隔小于预设的空放间隔G D,则从首车起依次获得相邻两车的过车间隔并与空放间隔G D进行比较,直到存在相邻两车的过车间隔大于空放间隔G D,即对应的场景为车辆集中通过后,后续来车首车间隔时间较短,但首车之后的后续来车中存在间隔时间较长的情况,即在绿灯周期内,后续的车辆通行效率较低,理应将这些间隔时间较长的车辆纳入下一个放行周期内通过,尤其是自第一个较长的过车记录间隔中的前车车辆应在前一个绿灯周期中放行,而后车车辆应在下一个周期的绿灯中放行,此方案可以兼顾车辆的跟紧度和绿灯配时,因此,记该相邻两车的前一辆车的过车时刻为T i,则此相位的空放时间为T e-T i。否则,如图2的最下方的时间轴所示,若直到放行结束时刻T e,不存在相邻两车的过车间隔大于空放间隔G D,记最后一辆车的过车时刻为T n,则此相位的空放时间为T e-T n,对应的场景为在绿灯的整个周期内,车辆通行顺畅,车辆间隔时间较短,通行效率较高,那么此相位的空放时间较短,为T e-T n
在某些具体的实施例中,空放时间间隔G D定为单位绿灯延长时间,一般是3s-5s。
实施例二、本发明的另一个实施例公开一种交叉口绿灯空放时间计算装置,包括
检测设备,用于对进入交叉口的车辆行驶信息进行检测;
信号控制设备,用于控制交叉口的信号灯相位;
数据处理器,用于收集车辆的行驶信息和放行相位信息,并根据预设的以下计算方式计算绿灯空放时间:
获得与该放行相位相关的如下参数:
参数一、放行时间G f,G f=T e-T s,其中,T s为放行开始时刻,T e为放行结束时刻;
参数二、最小绿灯时间G mingreen
参数三、最早空放时刻T ws,其中,T ws为最小绿灯时间G mingreen结束的时刻;
对比参数一和参数二的大小,
若参数一不大于参数二,则此相位空放时间为0;
若参数一大于参数二,则进一步获得参数三到放行结束时刻T e之间的过车记录:
若过车记录为空,则此相位的空放时间为T e-T ws
若过车记录非空,且首车过车时刻T l与参数三之间的间隔大于预设的空放间隔G D,则此相位的空放时间为T e-T ws
若过车记录非空,且首车过车时刻T l与参数三之间的间隔小于预设的空放间隔G D,则从首车起依次获得相邻两车的过车间隔并与空放间隔G D进行比较,直到存在相邻两车的过车间隔大于空放间隔G D,记该相邻两车的前一辆车的过车时刻为T i,则此相位的空放时间为T e-T i;若直到放行结束时刻T e,不存在相邻两车的过车间隔大于空放间隔G D,记最后一辆车的过车时刻为T n,则此相位的空放时间为T e-T n
实施例三、本发明的另一个实施例公开一种电子设备,包括存储器和处理器,所述存储器和所述处理器之间互相通信连接,例如通过总线或者其他方式连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行所述一种交叉口绿灯空放时间计算方法。
处理器优选但不限于是中央处理器(Central Processing Unit,CPU)。例如,处理器还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(FieldProgrammable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者品体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本发明实施例中的一种交叉口绿灯空放时间计算方法对应的程序指令/模块,处理器通过运行存储在存储器的非暂态软件程序、指令以及模块,从而执行处理器的各种功能应用以及数据处理,即实现上述方法实施例中的一种交叉口绿灯空放时间计算方法。
存储器可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储处理器所创建的数据等。此外,存储器优选但不限于高速随机存取存储器,例如,还可以是非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器还可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成的程序,可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;存储介质还可以包括上述种类的存储器的组合。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因 此,本发明的保护范围当视权利要求书所界定者为准。

Claims (9)

  1. 一种交叉口绿灯空放时间计算方法,其特征在于:
    启动检测设备对进入交叉口的车辆行驶信息进行检测并收集;
    启动信号控制平台并在一个完整相位周期结束后收集该相位周期的放行相位信息;
    获得与该放行相位相关的如下参数:
    参数一、放行时间G f,G f=T e-T s,其中,T s为放行开始时刻,T e为放行结束时刻;
    参数二、最小绿灯时间G mingreen
    参数三、最早空放时刻T ws,其中,T ws为最小绿灯时间G mingreen结束的时刻;
    对比参数一和参数二的大小,
    若参数一不大于参数二,则此相位空放时间为0;
    若参数一大于参数二,则进一步获得参数三到放行结束时刻T e之间的过车记录:
    若过车记录为空,则此相位的空放时间为T e-T ws
    若过车记录非空,且首车过车时刻T 1与参数三之间的间隔大于预设的空放间隔G D,则此相位的空放时间为T e-T ws
    若过车记录非空,且首车过车时刻T 1与参数三之间的间隔小于预设的空放间隔G D,则从首车起依次获得相邻两车的过车间隔并与空放间隔G D进行比较,直到存在相邻两车的过车间隔大于空放间隔G D,记该相邻两车的前一辆车的过车时刻为T i,则此相位的空放时间为T e-T i;若直到放行结束时刻T e,不存在相邻两车的过车间隔大于空放间隔G D,记最后一辆车的过车时刻为T n,则此相位的空放时间为T e-T n
  2. 根据权利要求1所述的一种交叉口绿灯空放时间计算方法,其特征在于:所述行驶信息包括车辆进入交叉口的车道和时间。
  3. 根据权利要求1所述的一种交叉口绿灯空放时间计算方法,其特征在于:所述放行相位信息包括放行方向和放行时间。
  4. 根据权利要求1所述的一种交叉口绿灯空放时间计算方法,其特征在于:不同方向放行相位的最小绿灯时间G mingreen的计算方法如下:
    转向相位,G mingreen为预设固定值;
    直行相位,G mingreen=L/V,其中,L为人行横道的长度,V为行人平均速度;
    同时有多个方向放行时,取当前各个放行方向中最大的G mingreen的值为该情况下的最小绿灯时间G mingreen
  5. 根据权利要求1所述的一种交叉口绿灯空放时间计算方法,其特征在于:空放间隔G D取单位绿灯延长时间。
  6. 根据权利要求2所述的一种交叉口绿灯空放时间计算方法,其特征在于:
    预先在检测设备内设置交叉口处各方向道路的车道位置信息及转向信息;
    当车辆进入检测区域时,检测设备根据车辆的距离、速度和方位角区分并识别车辆,并给车辆设置一一对应的标识符,再通过实时检测车辆的位置变化实现对车辆的轨迹跟踪,当检测到车辆进入交叉口时,结合预先设置的车道位置信息及转向信息,获得车辆进入交叉口的车道信息和时间,即车辆进入交叉口的行驶方向和时间。
  7. 一种交叉口绿灯空放时间计算装置,其特征在于:包括
    检测设备,用于对进入交叉口的车辆行驶信息进行检测;
    信号控制平台,用于控制交叉口的信号灯相位;
    数据处理器,用于收集车辆的行驶信息和放行相位信息,并根据预设的以下计算方式计算绿灯空放时间:
    获得与该放行相位相关的如下参数:
    参数一、放行时间G f,G f=T e-T s,其中,T s为放行开始时刻,T e为放行结束时刻;
    参数二、最小绿灯时间G mingreen
    参数三、最早空放时刻T ws,其中,T ws为最小绿灯时间G mingreen结束的时刻;
    对比参数一和参数二的大小,
    若参数一不大于参数二,则此相位空放时间为0;
    若参数一大于参数二,则进一步获得参数三到放行结束时刻T e之间的过车记录:
    若过车记录为空,则此相位的空放时间为T e-T ws
    若过车记录非空,且首车过车时刻T 1与参数三之间的间隔大于预设的空放间隔G D,则此相位的空放时间为T e-T ws
    若过车记录非空,且首车过车时刻T 1与参数三之间的间隔小于预设的空放间隔G D,则从首车起依次获得相邻两车的过车间隔并与空放间隔G D进行比较,直到存在相邻两车的过车间隔大于空放间隔G D,记该相邻两车的前一辆车的过车时刻为T i,则此相位的空放时间为T e-T i;若直到放行结束时刻T e,不存在相邻两车的过车间隔大于空放间隔G D,记最后一辆车的过车时刻为T n,则此相位的空放时间为T e-T n
  8. 一种电子设备,其特征在于,包括存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行权利要求1-6任一项所述一种交叉口绿灯空放时间计算方法。
  9. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行权利要求1-6任一项一种交叉口绿灯空放时间计算方法。
PCT/CN2020/094618 2019-06-06 2020-06-05 一种交叉口绿灯空放时间计算方法和装置 WO2020244624A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910489009.6A CN110136444B (zh) 2019-06-06 2019-06-06 一种交叉口绿灯空放时间计算方法和装置
CN201910489009.6 2019-06-06

Publications (1)

Publication Number Publication Date
WO2020244624A1 true WO2020244624A1 (zh) 2020-12-10

Family

ID=67580359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094618 WO2020244624A1 (zh) 2019-06-06 2020-06-05 一种交叉口绿灯空放时间计算方法和装置

Country Status (2)

Country Link
CN (1) CN110136444B (zh)
WO (1) WO2020244624A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114120673A (zh) * 2022-01-28 2022-03-01 腾讯科技(深圳)有限公司 用于信号灯的信息处理方法、装置、设备及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110136444B (zh) * 2019-06-06 2020-07-10 南京慧尔视智能科技有限公司 一种交叉口绿灯空放时间计算方法和装置
CN111429721B (zh) * 2020-03-27 2021-11-09 江苏智通交通科技有限公司 基于排队消散时间的路口交通信号方案优化方法
CN111540204B (zh) * 2020-05-08 2021-05-11 青岛海信网络科技股份有限公司 一种面向交叉口问题诊断的交通运行状态评估方法及装置
CN111951572B (zh) * 2020-07-07 2022-11-08 永嘉县公安局交通警察大队 一种城市道路交叉口多时段信号控制方案的时段划分优化方法
CN113516857B (zh) * 2021-04-19 2022-08-16 安徽达尔智能控制系统股份有限公司 一种基于雷达监测的交叉口信号配时动态调配方法及系统
CN114627660B (zh) * 2022-03-11 2023-01-20 公安部交通管理科学研究所 面向非均衡交通流的交叉口信号实时迭代优化控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028096A (ja) * 1999-07-14 2001-01-30 Transportation Systems Electric Corp 交通信号機を利用したアイドリング制御信号送信システム
CN106997673A (zh) * 2017-06-05 2017-08-01 南通大学 确定车道的交通信号灯冗余时长的方法及系统
CN107331170A (zh) * 2017-09-01 2017-11-07 山东创飞客交通科技有限公司 基于绿灯损失时间的交叉口信号配时评价方法及系统
CN108389395A (zh) * 2018-04-25 2018-08-10 迈锐数据(北京)有限公司 交通控制的评价方法及装置
CN109191851A (zh) * 2018-10-25 2019-01-11 金华市中奥鼎鹏科技有限公司 一种交通灯冗余时间计算方法及装置
CN109841068A (zh) * 2019-03-28 2019-06-04 广东振业优控科技股份有限公司 基于路口中心处交通流冲突点占有率的交通信号控制方法
CN110136444A (zh) * 2019-06-06 2019-08-16 南京慧尔视智能科技有限公司 一种交叉口绿灯空放时间计算方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176172A (ja) * 2008-01-27 2009-08-06 Masahiro Watanabe 交差点無停止走行制御方法
KR20090116173A (ko) * 2008-05-06 2009-11-11 최상우 고정수 또는 패턴수와 결합된 교통 신호기의 점등 잔여시간표시방법
CN103956060B (zh) * 2014-05-05 2016-08-24 北京易华录信息技术股份有限公司 一种能减少绿灯损失时间的路口控制机及控制方法
CN108305468B (zh) * 2017-01-13 2020-10-30 普天信息技术有限公司 一种基于多策略的交通控制方法和系统
CN109461316A (zh) * 2018-11-16 2019-03-12 北方工业大学 一种城市道路交叉口信号切换控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028096A (ja) * 1999-07-14 2001-01-30 Transportation Systems Electric Corp 交通信号機を利用したアイドリング制御信号送信システム
CN106997673A (zh) * 2017-06-05 2017-08-01 南通大学 确定车道的交通信号灯冗余时长的方法及系统
CN107331170A (zh) * 2017-09-01 2017-11-07 山东创飞客交通科技有限公司 基于绿灯损失时间的交叉口信号配时评价方法及系统
CN108389395A (zh) * 2018-04-25 2018-08-10 迈锐数据(北京)有限公司 交通控制的评价方法及装置
CN109191851A (zh) * 2018-10-25 2019-01-11 金华市中奥鼎鹏科技有限公司 一种交通灯冗余时间计算方法及装置
CN109841068A (zh) * 2019-03-28 2019-06-04 广东振业优控科技股份有限公司 基于路口中心处交通流冲突点占有率的交通信号控制方法
CN110136444A (zh) * 2019-06-06 2019-08-16 南京慧尔视智能科技有限公司 一种交叉口绿灯空放时间计算方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114120673A (zh) * 2022-01-28 2022-03-01 腾讯科技(深圳)有限公司 用于信号灯的信息处理方法、装置、设备及存储介质
CN114120673B (zh) * 2022-01-28 2022-05-13 腾讯科技(深圳)有限公司 用于信号灯的信息处理方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN110136444B (zh) 2020-07-10
CN110136444A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
WO2020244624A1 (zh) 一种交叉口绿灯空放时间计算方法和装置
WO2020259301A1 (zh) 交叉口车辆延误时间与停车次数的计算方法和装置
TWI766895B (zh) 一種道路交通優化方法、裝置以及電子設備
CN101968929B (zh) 一种饱和交通状态下单路口信号优化控制方法
CN104332058B (zh) 一种智能交通灯控制方法和系统
CN109191830B (zh) 一种基于视频图像处理的道路拥堵检测方法
CN103903465B (zh) 一种道路拥堵原因实时发布方法及系统
CN107067768B (zh) 一种城市过饱和交通流自组织信号控制方法
CN103366568B (zh) 交通路段车辆排队视频检测方法及系统
CN104794910A (zh) 基于排队长度的具有跳相功能的全感应信号控制方法
CN102254439B (zh) 交通信号灯分配时长的获取方法及装置
WO2022036765A1 (zh) 一种微波雷达智能可变车道感知系统及方法
CN103680157A (zh) 一种面向城市瓶颈路段的车辆排队溢流预判方法
CN106600992A (zh) 城市热点片区交通信号优化控制方法
CN106920403A (zh) 一种基于阵列雷达的单点自适应控制方法
CN103871258A (zh) 一种交叉口防锁死的信号控制方法
US11798408B2 (en) Green wave speed determination method, electronic device and storage medium
CN112859062B (zh) 一种基于雷达的车辆排队长度检测方法及系统
CN113822285A (zh) 一种用于复杂应用场景的车辆违停识别方法
CN103150913A (zh) 一种动态自适应交通信号控制装置及方法
CN110415522A (zh) 一种基于多目标雷达的可变车道的控制方法及装置
CN115601983A (zh) 交通信号灯的周期时长确定方法、装置、设备和存储介质
CN205050341U (zh) 一种视频排队检测装置及城市交通告警控制系统
CN107393320B (zh) 一种用于预防车辆排队溢出的现代有轨电车优先的检测器布设方法
CN113436448B (zh) 一种信号交叉口借道左转车道设计方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20819513

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20819513

Country of ref document: EP

Kind code of ref document: A1