WO2020244077A1 - 一种正交悬臂梁结构的二维湍流传感器 - Google Patents

一种正交悬臂梁结构的二维湍流传感器 Download PDF

Info

Publication number
WO2020244077A1
WO2020244077A1 PCT/CN2019/103479 CN2019103479W WO2020244077A1 WO 2020244077 A1 WO2020244077 A1 WO 2020244077A1 CN 2019103479 W CN2019103479 W CN 2019103479W WO 2020244077 A1 WO2020244077 A1 WO 2020244077A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensitive element
sheath
probe
dimensional
turbulence
Prior art date
Application number
PCT/CN2019/103479
Other languages
English (en)
French (fr)
Inventor
宋大雷
杨华
王向东
李坤乾
陈朝晖
吴立新
Original Assignee
中国海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国海洋大学 filed Critical 中国海洋大学
Publication of WO2020244077A1 publication Critical patent/WO2020244077A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels

Definitions

  • the invention relates to the field of turbulence sensors, in particular to a two-dimensional turbulence sensor with an orthogonal cantilever beam structure.
  • Ocean turbulence is one of the most important forms of ocean mixing. It has a huge effect on the momentum, heat and mass transport of seawater. It has become an important research field of physical oceanography. In the process of formation and dissipation of turbulence, it is not physically isotropic, but on the scale, it shows certain spatial distribution characteristics.
  • the current research status of turbulence sensors at home and abroad are mainly one-dimensional sensors.
  • Single-point one-dimensional turbulence sensors can only achieve single-point one-dimensional turbulence measurement. Because turbulence is not isotropic and two-dimensional spatial distribution characteristics during the formation and dissipation of turbulence, one-dimensional sensors cannot capture multi-dimensional scale information of turbulence space. It is very unfavorable for understanding the mechanism of turbulent motion. There are very few cases of single-point two-dimensional turbulence sensors. To realize the two-dimensional observation of turbulence, the conventional method is to assemble two single-point one-dimensional turbulence sensors in orthogonal directions.
  • This configuration has a big drawback: it is necessary to avoid the turbulence coupling of the two sensors. , The two sensors need to be separated by a certain distance. If the distance is too large, this approximate equivalent actually cannot accurately obtain a single-point turbulent two-dimensional model; if the distance is too small, the coupling disturbance of the sensor will be serious, and it will bring challenges to the processing and installation process.
  • This kind of two-dimensional turbulence observation program Can not achieve single-point high-precision, two-dimensional observation of turbulence under microstructure.
  • turbulence sensor technology is mainly concentrated in the United States, Germany, Canada and other countries, and there is a high cost problem.
  • foreign PNS series and SPM series turbulence sensors are single-point one-dimensional sensors, and the unit price is at least tens of thousands of yuan. This brings about cost problems for large-area and wide-sea ocean observations, and greatly hinders human understanding, exploration, and development and utilization of the ocean.
  • the present invention proposes a two-dimensional turbulence sensor with an orthogonal cantilever beam structure.
  • a two-dimensional turbulence sensor with an orthogonal cantilever beam structure including a probe, a sheath, a front beam, a first sensitive element, a conversion connector, a rear beam, a second sensitive element, a rear seat, a sealing rod and a conditioning circuit;
  • the probe is installed at the front end of the sheath, and a certain distance is reserved between the front end face of the sheath and the probe;
  • the sheath is a spindle-shaped shell structure with a hollow interior, and the front beam is installed inside the front section of the sheath;
  • the front beam is an equal-strength beam with a plane triangle structure, which is placed vertically, a connecting rod is arranged at the tip of the head of the front beam, and a hole matching the connecting rod is arranged at the tail of the probe, and the connecting rod is inserted into the hole;
  • the first sensitive element is installed on the front beam;
  • the cross section of the conversion connector is cross-shaped, the front end surface of the conversion connector is provided with a vertical slot in the vertical direction, the tail of the front beam is inserted into the vertical slot, and the rear surface of the conversion connector is provided with a horizontal slot in the horizontal direction ;
  • the rear beam is an equal-strength beam with a flat trapezoidal structure, the head is narrow, the tail is wide, and placed horizontally, the head of the rear beam is inserted into the horizontal slot, and the second sensitive element is installed on the rear beam;
  • the front beam and the rear beam are spatially Orthogonal and vertical distribution, the two together form a cantilever beam structure;
  • the rear part of the rear beam is connected with the rear seat, the front end of the rear seat is provided with an installation notch, the rear part of the rear beam is inserted into the installation notch, the rear end of the rear seat is connected with the front end of the sealing rod, and the rear end of the sealing rod is connected to the carrier platform;
  • the sealing rod has a hollow structure
  • the conditioning circuit is installed inside the sealing rod, and the first sensitive element and the second sensitive element are both connected with the conditioning circuit through wires.
  • the probe has a wing-shaped structure, the rear end surface of the probe is equal to the outer diameter of the front end of the sheath, and the two-dimensional turbulence sensor is streamlined as a whole.
  • the first sensitive element is a MEMS bridge element, the first sensitive element is installed on one or both sides of the front beam, and the exterior is watertight; the first sensitive element is a two-half bridge structure or A full bridge structure.
  • the second sensitive element is a MEMS bridge element
  • the second sensitive element is installed on one or both sides of the back beam, and the exterior is watertightly treated
  • the second sensitive element is two half-bridge structures or one Full bridge structure.
  • the sealing rod has a cylindrical structure and includes a connecting body and a base, both of which are hollow inside; wherein the outer diameter of the connecting body is smaller than the inner diameter of the rear end of the sheath, and the connecting body is inserted into the rear end of the sheath;
  • the outer diameter of the base body is consistent with the outer diameter of the rear end of the sheath, and a threaded hole for connecting the back-end carrier platform is provided at the tail of the base body.
  • a watertight material that can withstand pressure and isolate the water environment is filled between the conditioning circuit and the sealing rod.
  • the present invention realizes the high-resolution observation of the two-dimensional physical and spatial characteristics of turbulence, which can be used for the formation and disappearance mechanism and movement of micro-scale turbulence.
  • Research on trajectory provides highly reliable detection methods. It is of great significance for understanding the multi-dimensional dynamic evolution process of turbulence and clarifying the energy exchange mechanism of turbulence.
  • the invention adopts an equal-strength orthogonal cantilever beam structure to ingeniously realize the two-dimensional scale detection of turbulence, and realize the equal-strength orthogonal fixed connection of the cantilever beam through the conversion connector, which can greatly reduce the manufacture of two-dimensional turbulence observation sensors.
  • Process complexity greatly reduce the size of the sensor, realize the miniaturization and low cost of the sensor for multi-dimensional spatial scale turbulence observation, suitable for mobile platforms such as smart buoys, and meet the needs of multidisciplinary comprehensive observation.
  • Figure 1 is a schematic diagram of the three-dimensional structure of a two-dimensional turbulence sensor of the present invention
  • FIG. 2 is a schematic diagram of the vertical cross-sectional three-dimensional structure of the two-dimensional turbulence sensor of the present invention
  • Fig. 3 is a schematic view of the vertical cross-sectional front view of the two-dimensional turbulence sensor of the present invention
  • FIG. 4 is a schematic diagram of the horizontal cross-sectional three-dimensional structure of the two-dimensional turbulence sensor of the present invention.
  • FIG. 5 is a schematic diagram of the horizontal cross-sectional top view structure of the two-dimensional turbulence sensor of the present invention.
  • FIG. 6 is a schematic diagram of the three-dimensional structure of the two-dimensional turbulence sensor of the present invention with the wing-shaped probe and the sheath removed;
  • FIG. 7 is a schematic diagram of the front view of the connecting part of the rear seat and the sealing rod in the two-dimensional turbulence sensor of the present invention.
  • FIG. 8 is a schematic diagram of the top structure of the connecting part of the rear seat and the sealing rod in the two-dimensional turbulence sensor of the present invention.
  • Fig. 9 is a schematic diagram of the three-dimensional structure of the conversion connector in the two-dimensional turbulence sensor of the present invention.
  • a two-dimensional turbulence sensor with an orthogonal cantilever beam structure includes a probe 1, a sheath 2, a front beam 3, a first sensitive element 4, a conversion connector 5, a rear beam 6, a second sensitive element 7, and a rear Seat 8, sealing rod 9 and conditioning circuit 10.
  • the probe 1 is installed at the front end of the sheath 2, and a certain distance is reserved between the front end of the sheath 2 and the probe.
  • the sheath 2 is a spindle-shaped shell structure with a hollow interior.
  • the front beam 3 is installed inside the front section of the sheath 2.
  • the front beam 3 is a flat triangular structure and is placed vertically.
  • a connecting rod 3a is provided at the tip of the head of the front beam, and a jack matching the connecting rod is provided at the tail of the probe 1, and the connecting rod is inserted into the jack.
  • the first sensitive element 4 is installed on the front beam 3.
  • the cross section of the conversion connector 5 is cross-shaped, the front end surface of the conversion connector 5 is provided with a vertical slot 5a in the vertical direction, the tail of the front beam is inserted into the vertical slot 5a, and the rear end surface of the conversion connector 5 is horizontal.
  • a horizontal notch 5b is provided in the direction.
  • the rear beam 6 has a flat trapezoidal structure with a narrow head and a wide tail. It is placed horizontally.
  • the head of the rear beam 6 is inserted into the horizontal slot 5b, and the second sensitive element 7 is installed on the rear beam 6.
  • the front beam 3 and the rear beam 6 are orthogonally and vertically distributed in space, and the two together form a cantilever beam structure.
  • the rear part of the rear beam 6 is connected to the rear seat 8.
  • the front end of the rear seat 8 is provided with a mounting notch, the rear part of the rear beam is inserted into the mounting notch, the rear end of the rear seat is connected to the front end of the sealing rod, and the rear end of the sealing rod is connected to the carrier platform.
  • the sealing rod 9 has a hollow structure, the conditioning circuit 10 is installed inside the sealing rod, and the first sensitive element 4 and the second sensitive element 7 are both connected to the conditioning circuit 10 through wires.
  • the probe 1 has a wing-shaped structure and is made of lightweight materials, and is installed at the front end surface of the front beam 3 to realize the tactile function of the external force of the ocean current.
  • the sheath 2 is a spindle-shaped shell structure with a hollow interior for placing components such as the front beam 3, and is fixed at the front end of the rear seat 8; a certain distance is reserved between the front end of the sheath 2 and the probe 1 , For the probe 1 to deform.
  • the preparation material of the sheath 2 can be corrosion resistant materials such as 316L stainless steel and titanium alloy.
  • the outer shape of the sheath 2 is streamlined to reduce drag.
  • the diameter of the inner hole at the front end of the sheath 2 is similar to the diameter of the rear surface of the probe 1, which not only reduces drag, but also reduces or avoids external force disturbance to the sensitive components in the sheath 2 by the water flow at the front end.
  • the front beam 3 is a triangular cantilever beam structure and is placed vertically.
  • the front tip of the front beam 3 is provided with a connecting rod 3 a for fixing the probe 1, and the rear part is connected and fixed to the conversion connector 5.
  • the front beam 3 is the front half of the cantilever beam, which can realize the function of sensing force along a direction that is not parallel to the wall surface.
  • the first sensitive element 4 is a MEMS bridge element, mechanically: installed on one or both sides of the front beam 3, and externally watertight; and electrically: connected to the back-end conditioning circuit 10 through a wire.
  • the first sensitive element 4 can detect the deformation of the front beam 3 and realize the function of sensing weak force signals.
  • the first sensitive element 4 can be two half-bridges or a full-bridge structure. If it is a two half-bridge structure, the number of the first sensitive elements 4 is two, and they are installed on the front beam respectively. 3 on both sides; if it is a single full bridge structure, the number of the first sensitive element 4 is one, which can be installed on either side of the front beam 3.
  • the conversion connector 5 has a cross section and a certain thickness.
  • a vertical notch 5a is provided in the vertical direction of the front end surface for placing the front beam 3
  • a horizontal notch 5b is provided on the rear end surface in the horizontal direction for placing The back beam 6.
  • the conversion connector 5 can be made of light and rigid materials to reduce the force loss between the front beam 3 and the rear beam 6.
  • the rear beam 6 is a trapezoidal cantilever beam structure, horizontally arranged, the front part is connected with the conversion connector 5, and the rear part is connected and fixed on the rear seat 8.
  • the rear beam 6 is the rear half of the cantilever beam, which can realize the function of sensing force along a direction that is not parallel to the wall surface.
  • the front beam 3 and the rear beam 6 are orthogonally and vertically distributed in space; the front beam 3 and the rear beam 6 can form a complete cantilever beam structure.
  • the second sensitive element 7 is a MEMS bridge element, mechanically: installed on one or both sides of the rear beam 6 and externally treated with watertightness; electrically: connected to the back-end conditioning circuit 10 through a wire.
  • the second sensitive element 7 can detect the deformation of the back beam 6 and realize the function of sensing weak force signals.
  • the second sensitive element 7 may be two half-bridges or a full-bridge structure. If it is a two half-bridge structure, the number of the second sensitive elements 7 is two, which are installed on the rear beam 6 respectively. On both sides; if it is a single full bridge structure, the number of the second sensitive element 7 is one, which can be installed on either side of the rear beam 6.
  • the rear seat 8 has a block structure, and an installation notch 8a is provided at the front end for fixing the rear beam 6. The rear end of the rear seat 8 is also connected and fixed to the sealing rod 9.
  • the sealing rod 9 has a cylindrical structure and includes a connecting body 9a and a base 9b.
  • the connecting body 9a is hollow and has an outer diameter slightly smaller than the inner diameter of the rear end of the sheath 2 for connecting and fixing the sheath 2.
  • the base body 9b has a cylindrical structure with a hollow inside and is provided with threads for connecting to the back end carrier platform, and the outer diameter is the same as the outer diameter of the back end of the sheath 2.
  • the conditioning circuit 10 can be placed inside the connecting body 9a and the base 9b.
  • the conditioning circuit 10 can realize the signal collection, conversion and conditioning functions of the first sensitive element 4 and the second sensitive element 7.
  • a watertight material is filled between the conditioning circuit 10 and the sealing rod 9 to withstand pressure and isolate the water environment.
  • the detection mechanism of the two-dimensional turbulence sensor with the orthogonal cantilever beam structure of the present invention is as follows:
  • the velocity wave action of the seawater is used for the probe 1, and the shear force of the external turbulence can be transmitted along the axis through the probe 1 and before the probe 1 is connected.
  • a force is formed at the end face of the beam 3.
  • the force acting on the front beam 3 continues to be transmitted backwards.
  • the front beam 3 since the front beam 3 is placed vertically, it is not sensitive to the component force in the vertical upward or downward direction along its horizontal axis, and is most sensitive to the component force in the horizontal direction along its horizontal axis, so it is removed from the probe 1
  • the transmitted horizontal component force will deform in the horizontal direction on the front beam 3, and then the deformation measurement is performed by the first sensitive element 4, so as to be converted into the action value of the external force component in the horizontal direction.
  • the front beam 3 Since the front beam 3 is placed vertically, its vertical rigidity is relatively large, so the vertical component force transmitted from the front beam 3 will continue to be transmitted backwards, and will be transferred to the rear beam 6 through the conversion connector 5 . Since the rear beam 6 is placed horizontally, it is not sensitive to the horizontal left or right component force along its horizontal axis, but is sensitive to the vertical component force along its horizontal axis, so it is transmitted from the front beam 3 and the conversion connector 5. The vertical component of the force will undergo vertical deformation on the rear beam 6, and then the deformation measurement is performed by the second sensitive element 7 to convert it into the value of the external force in the vertical component. That is, the front beam 3 and the rear beam 6 present equal intensity orthogonal in the spatial distribution, so as to realize the two-dimensional scale detection of turbulence respectively.
  • the force of the turbulence is between horizontal and vertical, the front beam 3 and the rear beam 6 are deformed, the first sensor 4 and the second sensor 7 on the two beams have signal output, and the output The magnitude of is into a sine function, and the direction and magnitude of the touch force sensed by the sensitive element can be inversely calculated by detecting the output parameter.
  • the conditioning circuit 10 detects the deformation of the corresponding front beam 3 and the rear beam 6 through the first sensitive element 4 and the second sensitive element 7, and deduces the direction and value of the external force, thereby converting parameters such as the magnitude of turbulence and spatial characteristics.
  • the present invention provides a two-dimensional turbulence sensor with an orthogonal cantilever beam structure, which can realize the high-resolution observation of the two-dimensional physical and spatial characteristics of turbulence, and can be used for the formation and disappearance mechanism and movement of micro-scale turbulence.
  • Research on trajectory provides highly reliable detection methods. It is of great significance for understanding the multi-dimensional dynamic evolution process of turbulence and clarifying the energy exchange mechanism of turbulence.
  • the present invention can greatly reduce the manufacturing process complexity of the two-dimensional turbulence observation sensor, greatly reduce the size of the sensor, and realize the miniaturization and low cost of the sensor for multi-dimensional spatial scale turbulence observation.

Abstract

一种正交悬臂梁结构的二维湍流传感器,包括探头(1)、护套(2)、前梁(3)、第一敏感元件(4)、转换连接器(5)、后梁(6)、第二敏感元件(7)、后座(8)、密封杆(9)和调理电路(10);探头安装在护套的前端,前梁安装在护套(2)的前段内部,前梁竖直放置,第一敏感元件安装在前梁上;所述转换连接器的前端面设置垂向槽口(5a),前梁的尾部插入垂向槽口中,后端面水平方向上设置水平槽口(5b),后梁的头部插入水平槽口中,所述第二敏感元件安装在后梁上;前梁和后梁在空间上呈正交垂直分布,组成悬臂梁结构;第一敏感元件和第二敏感元件均与调理电路相连接。传感器实现了对湍流的二维物理特性和空间特征的高分辨率观测,可为微尺度湍流的形成、消失机理及运动轨迹等研究提供高可靠探测手段。

Description

一种正交悬臂梁结构的二维湍流传感器 技术领域
本发明涉及湍流传感器领域,具体地说是涉及一种正交悬臂梁结构的二维湍流传感器。
背景技术
海洋湍流是引起海洋混合最重要的形式之一,它对海水的动量、热量和质量输运有巨大作用,目前已成为物理海洋学的重要研究领域。湍流在形成和消散过程中,在物理性质上并非各向同性,而在尺度上,则呈现一定空间分布特性。
随着人类对海洋湍流的重要性认知度增加、对湍流机理研究更加深入和细致,密跃层、边界层、深海等典型海洋现象对湍流观测提出了高分辨的矢量演化信息需求。海洋湍流的观测主要通过海洋观测仪器实现,由于湍流混合具有极强的间歇性和各项异性特性,故能否研制可实现对湍流二维形成和消散等机理特性观测的二维、高分辨率、低成本的测湍传感器,成为人类能否进一步关心海洋、认识海洋和经略海洋的关键。
技术问题
国内外当前湍流传感器的研究现状,均以一维传感为主。单点式一维湍流传感器只能实现单点一维湍流测量,由于湍流在形成和消散过程中并非各向同性和二维空间分布特性,故一维式传感器无法捕获湍流空间多维尺度信息,这对认识湍流运动机理非常不利。单点式二维湍流传感器目前案例极少。若要实现对湍流的二维观测,常规的方法是采用将两个单点式一维湍流传感器按照正交方向进行装配使用,这种配置方式存在很大弊端:由于需要避免两传感器扰流耦合,两传感器需要间隔一定距离。若距离过大,这样近似等效实际无法精确获取单点的湍流二维模型;若距离过小,传感器的耦合扰动严重,且对加工和安装工艺带来挑战,这种对湍流二维观测方案不能实现单点的高精度、微结构下的湍流二维观测。而采用新型的基于压阻效应,利用纤毛-十字梁和硅纳米线敏感单元实现湍流二维探测的方案,存在探头与十字悬臂梁连接脆弱性等困难,对传感器加工工艺和精度等要求较高,在传感器可靠性和低成本化等方面存在挑战。
另外,湍流传感器技术主要集中在美国、德国和加拿大等国家,普遍存在造价高问题,例如国外的PNS系列和SPM系列湍流传感器,传感器均为单点式一维传感器,且单价至少数万元人民币,这为大面积、广海域的海洋观测带来成本问题,极大的阻碍了人类对海洋的认识、探索和开发利用。
技术解决方案
基于上述技术问题,本发明提出一种正交悬臂梁结构的二维湍流传感器。
本发明所采用的技术解决方案是:
一种正交悬臂梁结构的二维湍流传感器,包括探头、护套、前梁、第一敏感元件、转换连接器、后梁、第二敏感元件、后座、密封杆和调理电路;
所述探头安装在护套的前端,且护套的前端面与探头预留一定距离;护套为纺锤形壳体结构,内部中空,所述前梁安装在护套的前段内部;
前梁为平面三角形结构的等强度梁,竖直放置,前梁的头部尖端处设置有连杆,在探头的尾部设置有与连杆相配合的插孔,连杆插入插孔中;所述第一敏感元件安装在前梁上;
所述转换连接器的截面呈十字形,转换连接器的前端面竖直方向上设置垂向槽口,前梁的尾部插入垂向槽口中,转换连接器的后端面水平方向上设置水平槽口;
所述后梁为平面梯形结构的等强度梁,头部窄,尾部宽,水平放置,后梁的头部插入水平槽口中,所述第二敏感元件安装在后梁上;前梁和后梁在空间上呈正交垂直分布,二者共同组成悬臂梁结构;
后梁的尾部与后座相连接,在后座的前端设置安装槽口,后梁的尾部插入安装槽口中,后座的后端与密封杆的前端相连接,密封杆的后端连接载体平台;
密封杆为中空结构,所述调理电路安装在密封杆的内部,第一敏感元件和第二敏感元件均通过导线与调理电路相连接。
优选的,所述探头呈翼形结构,探头的后端面与护套的前端外直径相等,该二维湍流传感器整体呈流线型。
优选的,所述第一敏感元件为MEMS桥式元件,第一敏感元件安装在所述前梁的一侧或两侧,外部进行水密处理;所述第一敏感元件为两个半桥结构或一个全桥结构。
优选的,所述第二敏感元件为MEMS桥式元件,第二敏感元件安装在所述后梁的一侧或两侧,外部进行水密处理;所述第二敏感元件为两个半桥结构或一个全桥结构。
优选的,所述密封杆为圆柱形结构,包括连接本体和基体,连接本体和基体均内部中空;其中,连接本体的外径小于护套的后端内径,连接本体插入护套的后端;所述基体的外径与所述护套的后端外径一致,在基体的尾部设置有用以连接后端载体平台的螺纹孔。
优选的,所述调理电路与所述密封杆间填充有用以耐压并隔绝水环境的水密材质。
有益效果
(1)本发明通过提出一种正交悬臂梁结构的二维湍流传感器,实现了对湍流的二维物理特性和空间特征的高分辨率观测,可为微尺度湍流的形成、消失机理及运动轨迹等研究提供高可靠探测手段。对认知湍流的多维动态演化过程、明晰湍流能量交换机理意义重大。
(2)本发明采用等强度正交悬臂梁结构可巧妙的实现对湍流的二维尺度检测,通过转换连接器实现悬臂梁的等强度正交固定连接,可大大降低湍流二维观测传感器的制造工艺复杂度,大幅降低传感器尺寸,实现对多维空间尺度湍流观测的传感器微型化、低成本化,适用于智能浮标等移动平台搭载,满足多学科综合观测需求。
附图说明
下面结合附图与具体实施方式对本发明作进一步说明:
图1为本发明二维湍流传感器的立体结构示意图;
图2为本发明二维湍流传感器的垂向剖面立体结构示意图;
图3为本发明二维湍流传感器的垂向剖面主视结构示意图;
图4为本发明二维湍流传感器的水平剖面立体结构示意图;
图5为本发明二维湍流传感器的水平剖面俯视结构示意图;
图6为本发明二维湍流传感器去除翼形探头和护套的立体结构示意图;
图7为本发明二维湍流传感器中后座和密封杆连接部分的主视结构示意图;
图8为本发明二维湍流传感器中后座和密封杆连接部分的俯视结构示意图;
图9为本发明二维湍流传感器中转换连接器的立体结构示意图。
图中:1-探头,2-护套,3-前梁,3a-连杆,4-第一敏感元件,5-转换连接器,5a-垂向槽口,5b-水平槽口,6-后梁,7-第二敏感元件,8-后座,9-密封杆,9a连接本体,9b-基体,10-调理电路。
本发明的实施方式
结合附图,一种正交悬臂梁结构的二维湍流传感器,包括探头1、护套2、前梁3、第一敏感元件4、转换连接器5、后梁6、第二敏感元件7、后座8、密封杆9和调理电路10。所述探头1安装在护套2的前端,且护套2的前端面与探头预留一定距离。护套2为纺锤形壳体结构,内部中空,所述前梁3安装在护套2的前段内部。前梁3为平面三角形结构,竖直放置,前梁的头部尖端处设置有连杆3a,在探头1的尾部设置有与连杆相配合的插孔,连杆插入插孔中。所述第一敏感元件4安装在前梁3上。所述转换连接器5的截面呈十字形,转换连接器5的前端面竖直方向上设置垂向槽口5a,前梁的尾部插入垂向槽口5a中,转换连接器5的后端面水平方向上设置水平槽口5b。所述后梁6为平面梯形结构,头部窄,尾部宽,水平放置,后梁6的头部插入水平槽口5b中,所述第二敏感元件7安装在后梁6上。前梁3和后梁6在空间上呈正交垂直分布,二者共同组成悬臂梁结构。后梁6的尾部与后座8相连接,在后座8的前端设置安装槽口,后梁的尾部插入安装槽口中,后座的后端与密封杆的前端相连接,密封杆的后端连接载体平台。密封杆9为中空结构,所述调理电路10安装在密封杆的内部,第一敏感元件4和第二敏感元件7均通过导线与调理电路10相连接。
下面分别对本发明二维湍流传感器的各组件进行详细说明。
所述探头1为翼形结构,采用轻质材料制成,安装在前梁3前端面处,用以实现对海流外力的感触功能。
所述护套2为纺锤形壳体结构,内部中空用以放置前梁3等组件,固定在后座8前端面处;所述护套2前端面与所述探头1之间预留一定距离,供所述探头1形变。护套2的制备材料可为316L不锈钢、钛合金等耐腐蚀材料。护套2外形为流线型以减阻。
进一步的,所述护套2前端内孔直径与所述探头1后端面直径相近,不仅可减阻,还可减少或避免前端水流对护套2内的敏感元件等的外力扰动。
所述前梁3为三角形悬臂梁结构,竖直放置。所述前梁3的前部尖端设置连杆3a用以固定所述探头1,后部连接固定所述转换连接器5。前梁3为悬臂梁的前半截断体,可实现对沿非平行于壁面方向的受力感触功能。
所述第一敏感元件4为MEMS桥式元件,机械上:安装在所述前梁3一侧或两侧,外部进行水密处理;电气上:通过丝线连接后端调理电路10。所述第一敏感元件4可实现对所述前梁3形变检测,实现对微弱力信号感测功能。
进一步的,所述第一敏感元件4可以是两个半桥或一个全桥结构,若为两个半桥结构,则所述第一敏感元件4数量为两个,分别安装在所述前梁3两侧;若为单个全桥结构,则所述第一敏感元件4数量为一个,可安装在所述前梁3的任意一侧。
所述转换连接器5截面为十字,具有一定厚度,前端面竖直方向上设置垂向槽口5a,用以安放所述前梁3,后端面水平方向上设置水平槽口5b,用以安放所述后梁6。所述转换连接器5可采用轻质、刚性材料,以降低在所述前梁3和后梁6间的力损。
所述后梁6为梯形悬臂梁结构,水平横置,前部连接所述转换连接器5,后部连接固定在所述后座8上。后梁6为悬臂梁的后半截断体,可实现对沿非平行于壁面方向的受力感触功能。
所述前梁3和所述后梁6在空间上呈正交垂直分布;前梁3和后梁6可组成一整套悬臂梁结构。
所述第二敏感元件7为MEMS桥式元件,机械上:安装在所述后梁6一侧或两侧,外部进行水密处理;电气上:通过丝线连接后端调理电路10。所述第二敏感元件7可实现对所述后梁6形变检测,实现对微弱力信号感测功能。
进一步的,所述第二敏感元件7可以是两个半桥或一个全桥结构,若为两个半桥结构,则所述第二敏感元件7数量为两个,分别安装在所述后梁6两侧;若为单个全桥结构,则所述第二敏感元件7数量为一个,可安装在所述后梁6的任意一侧。
所述后座8为方块结构,前端设置安装槽口8a,用以固定所述后梁6。所述后座8后端还连接固定所述密封杆9。
所述密封杆9为圆柱结构,包括连接本体9a和基体9b。所述连接本体9a内部中空,外径略小于所述护套2后端内径,用以连接固定所述护套2。所述基体9b为圆柱结构,内部中空并设置螺纹用以连接后端载体平台,外径与所述护套2后端外径一致。连接本体9a和基体9b的内部可放置所述调理电路10。
所述调理电路10可实现对所述第一敏感元件4和第二敏感元件7的信号采集、转换和调理功能。
进一步的,所述调理电路10与所述密封杆9间填充水密材质用以耐压并隔绝水环境。
本发明正交悬臂梁结构的二维湍流传感器的探测机理如下:
根据流体动力学机翼理论,传感器在水下跟随载体运动时,海水的速度波动作用于探头1,外部湍流的剪切力可通过探头1沿轴线方向传递并在与所述探头1相连的前梁3端面处形成作用力。
作用于所述前梁3的作用力继续向后传递。
一方面:由于所述前梁3呈垂向放置,对沿其水平轴线垂直向上或向下方向的分力不敏感,而对沿其水平轴线水平方向的分力最敏感,故从探头1上传递过来的水平方向的分力会在所述前梁3上发生水平方向形变,进而通过所述第一敏感元件4进行形变测量,从而换算成外力在水平方向分量的作用值。
另一方面:由于前梁3呈垂向放置,其垂向刚度较大,故从前梁3传递过来的垂向分力会继续向后传递,经所述转换连接器5后传递至后梁6上。由于后梁6呈水平放置,对沿其水平轴线水平向左或向右方向的分力不敏感,而对沿其水平轴线垂向的分力敏感,故从前梁3、转换连接器5上传递过来的垂向分力会在后梁6上发生垂向形变,进而通过所述第二敏感元件7进行形变测量,从而换算成外力在垂向上分量的作用值。即:前梁3和后梁6在空间分布上呈现等强度正交,从而分别实现对湍流的二维尺度检测。
进一步的,当湍流的作用力介于水平与垂直之间时,前梁3与后梁6都有形变,两个梁上的第一敏感元件4与第二敏感元件7都有信号输出,输出量的大小成正弦函数的规律,通过检测输出量参数,实现对敏感元件所感触力的方向和大小反推计算。
调理电路10通过第一敏感元件4、第二敏感元件7检测出对应的前梁3和后梁6的形变,并反推出外力方向和数值,从而换算出湍流大小和空间特征等参数。
工业实用性
综上,本发明通过提出一种正交悬臂梁结构的二维湍流传感器,可实现对湍流的二维物理特性和空间特征的高分辨率观测,可为微尺度湍流的形成、消失机理及运动轨迹等研究提供高可靠探测手段。对认知湍流的多维动态演化过程、明晰湍流能量交换机理意义重大。另外,本发明可大大降低湍流二维观测传感器的制造工艺复杂度,大幅降低传感器尺寸,实现对多维空间尺度湍流观测的传感器微型化、低成本化。

Claims (6)

  1. 一种正交悬臂梁结构的二维湍流传感器,其特征在于:包括探头、护套、前梁、第一敏感元件、转换连接器、后梁、第二敏感元件、后座、密封杆和调理电路;
    所述探头安装在护套的前端,且护套的前端面与探头预留一定距离;护套为纺锤形壳体结构,内部中空,所述前梁安装在护套的前段内部;
    前梁为平面三角形结构,竖直放置,前梁的头部尖端处设置有连杆,在探头的尾部设置有与连杆相配合的插孔,连杆插入插孔中;所述第一敏感元件安装在前梁上;
    所述转换连接器的截面呈十字形,转换连接器的前端面竖直方向上设置垂向槽口,前梁的尾部插入垂向槽口中,转换连接器的后端面水平方向上设置水平槽口;
    所述后梁为平面梯形结构,头部窄,尾部宽,水平放置,后梁的头部插入水平槽口中,所述第二敏感元件安装在后梁上;前梁和后梁在空间上呈正交垂直分布,二者共同组成悬臂梁结构;
    后梁的尾部与后座相连接,在后座的前端设置安装槽口,后梁的尾部插入安装槽口中,后座的后端与密封杆的前端相连接,密封杆的后端连接载体平台;
    密封杆为中空结构,所述调理电路安装在密封杆的内部,第一敏感元件和第二敏感元件均通过导线与调理电路相连接。
  2. 根据权利要求1所述的一种正交悬臂梁结构的二维湍流传感器,其特征在于:所述探头呈翼形结构,探头的后端面与护套的前端外直径相等,该二维湍流传感器整体呈流线型。
  3. 根据权利要求1所述的一种正交悬臂梁结构的二维湍流传感器,其特征在于:所述第一敏感元件为MEMS桥式元件,第一敏感元件安装在所述前梁的一侧或两侧,外部进行水密处理;所述第一敏感元件为两个半桥结构或一个全桥结构。
  4. 根据权利要求1所述的一种正交悬臂梁结构的二维湍流传感器,其特征在于:所述第二敏感元件为MEMS桥式元件,第二敏感元件安装在所述后梁的一侧或两侧,外部进行水密处理;所述第二敏感元件为两个半桥结构或一个全桥结构。
  5. 根据权利要求1所述的一种正交悬臂梁结构的二维湍流传感器,其特征在于:所述密封杆为圆柱形结构,包括连接本体和基体,连接本体和基体均内部中空;其中,连接本体的外径小于护套的后端内径,连接本体插入护套的后端;所述基体的外径与所述护套的后端外径一致,在基体的尾部设置有用以连接后端载体平台的螺纹孔。
  6. 根据权利要求1所述的一种正交悬臂梁结构的二维湍流传感器,其特征在于:所述调理电路与所述密封杆间填充有用以耐压并隔绝水环境的水密材质。
PCT/CN2019/103479 2019-06-05 2019-08-30 一种正交悬臂梁结构的二维湍流传感器 WO2020244077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910486737.1 2019-06-05
CN201910486737.1A CN110333047B (zh) 2019-06-05 2019-06-05 一种正交悬臂梁结构的二维湍流传感器

Publications (1)

Publication Number Publication Date
WO2020244077A1 true WO2020244077A1 (zh) 2020-12-10

Family

ID=68140335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103479 WO2020244077A1 (zh) 2019-06-05 2019-08-30 一种正交悬臂梁结构的二维湍流传感器

Country Status (2)

Country Link
CN (1) CN110333047B (zh)
WO (1) WO2020244077A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110333047B (zh) * 2019-06-05 2021-03-16 中国海洋大学 一种正交悬臂梁结构的二维湍流传感器
CN115096270A (zh) * 2022-05-11 2022-09-23 嘉庚创新实验室 一种高敏感度耐用型湍流探测器及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309974A (ja) * 2003-04-10 2004-11-04 Seiko Instruments Inc 微動アクチュエータ
CN102269615A (zh) * 2011-05-07 2011-12-07 大连理工大学 一种基于槽型悬臂梁结构的微质量传感器
CN103852051A (zh) * 2013-11-01 2014-06-11 浙江工业大学 一种求解Si3N4/p+Si/Si三层MEMS悬臂梁结构的弹性变形的方法
CN106289624A (zh) * 2016-11-07 2017-01-04 中国海洋大学 一种基于mems的海洋湍流传感器
CN106556490A (zh) * 2016-11-29 2017-04-05 西安交通大学 一种三角梁结构湍流传感器
CN110333047A (zh) * 2019-06-05 2019-10-15 中国海洋大学 一种正交悬臂梁结构的二维湍流传感器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012306B (zh) * 2010-11-19 2013-04-17 上海交通大学 双向剪切流下斜置立管的涡激振动旋转测试装置
CN104062632B (zh) * 2014-05-28 2017-01-04 苏州中盛纳米科技有限公司 一种四纤毛仿生mems矢量水声传感器微结构
CN106568569B (zh) * 2016-10-08 2019-02-22 中北大学 一种mems二维湍流传感器结构及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309974A (ja) * 2003-04-10 2004-11-04 Seiko Instruments Inc 微動アクチュエータ
CN102269615A (zh) * 2011-05-07 2011-12-07 大连理工大学 一种基于槽型悬臂梁结构的微质量传感器
CN103852051A (zh) * 2013-11-01 2014-06-11 浙江工业大学 一种求解Si3N4/p+Si/Si三层MEMS悬臂梁结构的弹性变形的方法
CN106289624A (zh) * 2016-11-07 2017-01-04 中国海洋大学 一种基于mems的海洋湍流传感器
CN106556490A (zh) * 2016-11-29 2017-04-05 西安交通大学 一种三角梁结构湍流传感器
CN110333047A (zh) * 2019-06-05 2019-10-15 中国海洋大学 一种正交悬臂梁结构的二维湍流传感器

Also Published As

Publication number Publication date
CN110333047A (zh) 2019-10-15
CN110333047B (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2020244077A1 (zh) 一种正交悬臂梁结构的二维湍流传感器
US11422057B2 (en) Dynamic five-hole probe
CN103983397B (zh) 一种基于矢量分解与合成机理的三维传感量测系统及方法
CN103543287B (zh) 一种球形风速风向传感器结构
CN106568569B (zh) 一种mems二维湍流传感器结构及其制备方法
CN102853898A (zh) 三维mems单片集成矢量水声传感器
CN103954346B (zh) 具有目标定位及判别功能的磁复合三维矢量水听器及该水听器的目标定位及判别方法
WO2018097236A1 (ja) 風計測装置
CN110108469B (zh) 一种悬浮隧道管段姿态测量装置、试验系统及试验方法
CN101788566B (zh) 三维流速传感器
CN105606201A (zh) 复合式mems仿生水听器
CN101776696B (zh) 一种三维流速传感器
CN109781329A (zh) 一种六梁结构的六维力传感器
CN100459031C (zh) 硅微机械两维倾角传感器芯片及制作方法
CN105841869B (zh) 波浪滑翔器浮体受力监测装置及受力计算方法
CN202886401U (zh) 超声风速温度仪
CN210321841U (zh) 一种浮球涡街对射式光纤流量传感器
CN108180955A (zh) 一种超微弯型科里奥利质量流量计
CN211453678U (zh) 基于pvdf压力传感器的三维流速仪
CN112824226B (zh) 一种用于挂载声学传感器的潜航器延展翼
CN110388899B (zh) 用于涌潮流速垂向分布计算的专用组件
CN112985758B (zh) 测量复杂气液两相流中涡体尺度的实验装置及方法
CN2233081Y (zh) 六分量力和力矩传感器
Cao et al. Application of Triboelectric Nanogenerator in Fluid Dynamics Sensing: Past and Future. Nanomaterials 2022, 12, 3261
CN106556490B (zh) 一种三角梁结构湍流传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932182

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19932182

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19932182

Country of ref document: EP

Kind code of ref document: A1