WO2020243896A1 - 光纤光栅方向性压力传感器、光纤光栅制备方法及装置 - Google Patents

光纤光栅方向性压力传感器、光纤光栅制备方法及装置 Download PDF

Info

Publication number
WO2020243896A1
WO2020243896A1 PCT/CN2019/089956 CN2019089956W WO2020243896A1 WO 2020243896 A1 WO2020243896 A1 WO 2020243896A1 CN 2019089956 W CN2019089956 W CN 2019089956W WO 2020243896 A1 WO2020243896 A1 WO 2020243896A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
optical fiber
double
grating
hole
Prior art date
Application number
PCT/CN2019/089956
Other languages
English (en)
French (fr)
Inventor
何俊
王义平
鞠帅
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2019/089956 priority Critical patent/WO2020243896A1/zh
Publication of WO2020243896A1 publication Critical patent/WO2020243896A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Definitions

  • the invention relates to the technical field of optical fiber sensing, in particular to a fiber grating directional pressure sensor, a method and device for preparing the fiber grating.
  • pressure sensor As a kind of optical fiber sensor, pressure sensor is widely used in the measurement of stress such as smart robot finger, vehicle gravity, static surface water pressure, surface tension of device due to its simple principle, strong anti-electromagnetic interference ability, and resistance to corrosion.
  • Current pressure sensors mainly use ordinary single-mode fiber, polarization-maintaining fiber, micro-structured fiber and other optical fibers that conduct light based on the principle of total internal reflection of the fiber. The external load is detected by engraving various periods of Bragg gratings in the fiber to form Lateral pressure sensor.
  • the sensitivity of the pressure sensor made by engraving the Bragg grating on the ordinary single-mode fiber is general, and the pressure sensor made by engraving the Bragg grating on the polarization-maintaining fiber is not sensitive to the directionality.
  • the number is large, so there is the influence of scattering.
  • the pressure sensor formed by the Bragg grating made in the above three kinds of fibers does not have the characteristics of directionality, so it is necessary to design a high sensitivity, directionality and writing program Simple pressure sensor.
  • the main purpose of the present invention is to provide a fiber grating directional pressure sensor, a fiber grating preparation method and device, so as to solve the problem that the pressure sensor formed by fabricating the Bragg grating in the optical fiber in the prior art has no directionality and the pressure sensor has low sensitivity.
  • the production process is cumbersome and complicated.
  • the first aspect of the embodiments of the present invention provides a fiber grating directional pressure sensor, including a double-hole fiber, a bearing plate, a force plate, and a spectrum analysis module:
  • the double-sided hole optical fiber is placed between the load-bearing plate and the stress plate, and the output end of the double-sided hole fiber is connected to the spectrum analysis module;
  • the double-hole optical fiber includes an optical fiber cladding, an optical fiber core placed in the optical fiber cladding, and two air holes.
  • the two air holes are located at both ends of the optical fiber core.
  • the diameter of the air hole is greater than the diameter of the optical fiber core and smaller than the radius of the optical fiber cladding
  • the double-hole optical fiber is used to access the measuring beam, and after being refracted by the Bragg grating, output the test beam to the spectrum analysis module;
  • the spectrum analysis module is used to demodulate the spectrum of the test beam to obtain the magnitude and direction of the force applied to the force plate.
  • the fiber grating directional pressure sensor further includes a bilateral hole supporting optical fiber
  • the double-sided hole supporting optical fiber and the double-sided hole optical fiber are placed side by side between the bearing plate and the force receiving plate.
  • the center of the two air holes and the center of the optical fiber core are on the same straight line.
  • the length of the Bragg grating is 535um.
  • the second aspect of the embodiments of the present invention provides a fiber grating preparation method, which is applied to the preparation of a fiber grating directional pressure sensor, including:
  • the method includes:
  • writing a directional Bragg grating in a double-hole optical fiber through the grating writing system includes:
  • the third aspect of the embodiments of the present invention provides a fiber grating preparation device, which is applied to the preparation of fiber grating directional pressure sensors, including high temperature and high pressure reactor, charge coupling device image sensor CCD, ultraviolet laser, light source, lens group, phase Mask plate, electric rotating fixture, three-dimensional adjustment frame, PC module and transmitted light analysis module;
  • a fiber grating preparation device which is applied to the preparation of fiber grating directional pressure sensors, including high temperature and high pressure reactor, charge coupling device image sensor CCD, ultraviolet laser, light source, lens group, phase Mask plate, electric rotating fixture, three-dimensional adjustment frame, PC module and transmitted light analysis module;
  • the ultraviolet laser, the lens group and the phase mask are connected in sequence;
  • a double-sided optical fiber is placed in the electric rotating fixture, the electric rotating fixture is placed on the three-dimensional adjustment frame, and the PC module is placed on the electric rotating fixture and connected to the CCD;
  • the phase mask is placed above the double-sided hole fiber, the beam is focused on the double-sided hole fiber, the transmitted light analysis module is connected to the double-sided hole fiber output end, and the light source is input to the double-sided hole fiber End connection
  • the high temperature and high pressure reactor is used to carry hydrogen to the double-hole optical fiber
  • the CCD is used to calibrate the direction of the bilateral holes
  • the ultraviolet laser is used to provide coherent light when writing Bragg gratings in the double-hole fiber
  • the lens group is used to process the coherent light and focus the coherent light
  • the phase mask is used for diffracting light beams of different orders to the double-hole optical fiber according to the focused coherent light, and writing the Bragg grating according to the calibrated direction;
  • the electric rotating clamp is used to fix the position and rotation direction of the optical fiber
  • the three-dimensional adjustment frame is used to adjust the position of the bilateral hole optical fiber
  • the PC module is used to display CCD imaging and control the direction of the electric rotating fixture
  • the transmitted light analysis module is used to collect and analyze the transmitted light signal in the Bragg grating.
  • the lens group includes a mirror, a diaphragm and a cylindrical lens arranged in sequence.
  • the embodiment of the present invention provides a fiber grating directional pressure sensor, the main body is a double-hole fiber, wherein the double-hole fiber includes a fiber cladding, and there are only two air holes in the fiber cladding, and a Optical fiber core, the fiber core is also written with a directional Bragg grating. Therefore, a double-hole fiber with a directional Bragg grating is written in combination with a bearing plate, a force plate and a spectrum analysis module.
  • the pressure sensor is directional; in terms of structure, because the number of air holes is small, the diameter is large, and the influence of scattering is small, the process of writing a double-hole fiber in the fiber core will not be affected by scattering, which reduces the writing of fiber gratings Difficulty;
  • the double-hole fiber due to the two large air holes, when the external force is applied in different directions along the double-hole fiber, the double-hole fiber has different sensitivity in different directions compared with the polarization maintaining fiber, which is compared with ordinary single-mode fiber.
  • the fiber grating directional pressure sensor provided by the embodiment of the present invention has directivity and can improve the sensitivity while reducing the difficulty of manufacturing.
  • FIG. 1 is a schematic structural diagram of a fiber grating directional pressure sensor according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of a double-hole optical fiber according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of different pressure sensitivities in different directions of the fiber grating directional pressure sensor according to the first embodiment of the present invention
  • FIG. 4 is a schematic diagram of the implementation process of the fiber grating preparation method provided by the second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a detailed implementation process of step S102 in FIG. 4;
  • FIG. 6 is a transmission spectrum diagram of a double-hole optical fiber according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of the composition structure of a fiber grating preparation device provided in Embodiment 3 of the present invention.
  • an embodiment of the present invention provides a fiber grating directional pressure sensor 100, which includes a double-hole fiber 10, a bearing plate 20, a force plate 30 and a spectrum analysis module 40.
  • connection relationship of each part of the fiber grating directional pressure sensor is as follows:
  • the double-hole optical fiber 10 is placed between the bearing plate 20 and the force-bearing plate 30.
  • the double-hole fiber 10 and the force-receiving plate 30 are both placed on the bearing plate 20.
  • the external force that needs to be measured is applied to the force-bearing plate 30.
  • the output end of the optical fiber 10 is connected to the spectrum analysis module 40, and the light beam input by the double-sided hole fiber 10 is output to the spectrum analysis module 40.
  • the beam is refracted in the double-sided hole fiber 10, which can be specifically set in the spectrum analysis module 40. Perform spectral analysis.
  • placing a double-hole optical fiber between the load-bearing plate and the load-bearing plate makes it difficult to fix the double-hole optical fiber while maintaining the natural deformation of the double-hole optical fiber.
  • the fiber grating directional pressure sensor 100 provided by the embodiment of the present invention further includes a double-sided hole supporting fiber 50.
  • the double-sided hole supporting fiber 50 and the double-sided hole fiber 10 are placed side by side on the bearing plate 20 and the force plate. Between 30, as a support and protection and reference structure.
  • the main body of the fiber grating directional pressure sensor 100 is the double-hole optical fiber 10, and the embodiment of the present invention also describes its structure in detail.
  • the double-hole optical fiber 10 includes an optical fiber cladding 11, an optical fiber core 12 placed in the optical fiber cladding 11, and two air holes 13.
  • the two air holes 13 are located at both ends of the optical fiber core 12, and the optical fiber core 12 is also written There is a Bragg grating 14 with directivity.
  • the double-hole optical fiber 10 is used to access the measuring beam, and after being refracted by the Bragg grating, output the test beam to the spectrum analysis module;
  • the spectrum analysis module 40 is used to demodulate the spectrum of the test beam to obtain the magnitude and direction of the force applied to the force plate.
  • the center of the two air holes 13 and the center of the fiber core 12 are on the same straight line; by setting the positional relationship between the air holes and the fiber core, the inner and outer sides of the double-hole fiber are symmetrical, thereby increasing the bilateral The measurement accuracy of the hole fiber grating pressure sensor.
  • the length of the Bragg grating 14 is 535 um; the grating is the function structure of optical fiber modulation and demodulation, and its sub-micron size determines that the fiber grating directional pressure sensor has sub-micron resolution.
  • the diameter of the air hole 13 is larger than the diameter of the fiber core 12 and smaller than the radius of the fiber cladding 11.
  • the value of the diameter of the air hole is greater than four times the value of the fiber core diameter.
  • the number of air holes in the optical fiber is large, which will cause the light beam to scatter when propagating in the optical fiber.
  • the number of air holes in the double-hole fiber is small. The diameter is large and the influence of scattering is small, so the process of writing a double-hole fiber in the fiber core will not be affected by scattering.
  • the double-hole fiber when the diameter of the air hole is set to a larger diameter, if the external force is applied in different directions along the double-hole fiber, the double-hole fiber will have different sensitivity in different directions compared with the polarization-maintaining fiber, which is comparable to ordinary single-mode fiber. Than improved sensitivity.
  • the embodiment of the present invention also provides different pressure sensitivities of the fiber grating directional pressure sensor in different directions.
  • the scale in Figure 3 represents the difference between the propagation peaks of the light beam when it propagates in the fiber grating.
  • the optical fiber grating directional pressure sensor has a main body of a double-hole optical fiber, wherein the double-hole optical fiber includes an optical fiber cladding, and there are only two air holes in the optical fiber cladding, and an optical fiber placed between the two air holes
  • the fiber core, the fiber core is also written with a directional Bragg grating. Therefore, the double-hole fiber with a directional Bragg grating, combined with the bearing plate, the force plate and the spectrum analysis module, is composed of pressure.
  • the sensor is directional; in terms of structure, because the number of air holes is small, the diameter is large, and the influence of scattering is small, the process of writing a double-hole fiber in the fiber core will not be affected by scattering, which reduces the difficulty of writing fiber gratings
  • the double-sided hole fiber due to the two large air holes, when the external force is applied in different directions along the double-sided hole fiber, the double-sided hole fiber has different sensitivity in different directions compared with the polarization maintaining fiber, which is improved compared with the ordinary single-mode fiber
  • the fiber grating directional pressure sensor provided by the embodiment of the present invention has directivity, and can improve the sensitivity while reducing the difficulty of manufacturing.
  • an embodiment of the present invention provides a method for preparing a fiber grating, which is applied to the preparation of a fiber grating directional pressure sensor, including but not limited to the following steps:
  • the grating writing system uses the characteristics of the refractive index change of the photo-induced core, and uses a special process, such as ultraviolet light thermal processing, to make the refractive index of the fiber core undergo a permanent periodic change to form a specific grating; the characteristics of the grating Similar to the wavelength selector, it can reflect the human light whose wavelength meets the Bragg reflection condition.
  • the Bragg grating is a diffraction grating formed by the axially periodic modulation of the refractive index of the fiber core, and the directionality of the Bragg grating is expressed as the lateral stress of the double-hole fiber.
  • the embodiment of the present invention shows a detailed implementation process of the above step S102, including:
  • the grating processing position is calibrated in the double-hole optical fiber, and the progress direction of the double-hole optical fiber is calibrated.
  • the progress direction of the double-sided hole fiber is the direction from the input position to the output position of the light beam in the double-sided hole fiber.
  • the double-sided hole fiber is fixed at the designated position before calibrating the grating processing position.
  • the designated position is based on the grating preparation system, that is, the double-sided hole fiber is fixed at the designated position of the grating preparation system.
  • the grating preparation system uses ultraviolet light thermal processing to realize grating writing.
  • the main process is: first connect the ultraviolet laser, and process it, and focus the processed ultraviolet laser on the double-hole fiber , The refractive index of the fiber core is changed, and the grating preparation is completed.
  • S1025 Determine whether the writing of the Bragg grating is completed according to the changes in the spectral quality and the position of the resonance peak.
  • the optical parameters of the light beam after passing through the Bragg grating can be analyzed through the transmission spectrum.
  • the embodiment of the present invention also shows the transmission spectrum of the double-hole fiber.
  • the horizontal axis represents the wavelength value, the unit is nm; the vertical axis represents the transmission value, the unit is dB.
  • the wavelength of the light beam passing through the double-sided hole fiber is between 1553 nm and 1554 nm.
  • the double-hole optical fiber can also be loaded before writing the directional Bragg grating in the double-hole optical fiber through the grating writing system. Hydrogen treatment.
  • the hydrogen-carrying treatment of the double-hole optical fiber can be carried out in a high temperature and high pressure reactor.
  • the embodiment of the present invention provides a fiber grating preparation device 200, which is applied to the preparation of a fiber grating directional pressure sensor, and includes a high temperature and high pressure reactor 201, a charge coupling device image sensor CCD202, an ultraviolet laser 203, a light source 204, and a lens group 205 , Phase mask 206, electric rotating jig 207, three-dimensional adjustment frame 208, PC module 209, and transmitted light analysis module 210.
  • a fiber grating preparation device 200 which is applied to the preparation of a fiber grating directional pressure sensor, and includes a high temperature and high pressure reactor 201, a charge coupling device image sensor CCD202, an ultraviolet laser 203, a light source 204, and a lens group 205 , Phase mask 206, electric rotating jig 207, three-dimensional adjustment frame 208, PC module 209, and transmitted light analysis module 210.
  • the fiber grating preparation device 200 provided by the embodiment of the present invention is used to prepare Bragg gratings in double-hole optical fibers. In specific applications, after preparing the Bragg gratings in the double-hole optical fibers by the fiber grating preparation device, it is necessary to follow the second embodiment.
  • the fiber grating preparation method is used to prepare the fiber grating directional pressure sensor.
  • connection relationship between the various parts of the above-mentioned fiber grating preparation device is as follows:
  • the ultraviolet laser 203, the lens group 205 and the phase mask plate 206 are connected in sequence.
  • the ultraviolet laser 203 provides laser light and processes the laser light through the lens group 205 and the phase mask plate 206;
  • the electric rotating jig 207 is equipped with a double-hole optical fiber 10 and the electric rotating jig 207 Placed on the three-dimensional adjustment frame 208, the PC module 209 is placed on the electric rotating fixture 207 and connected to the CCD 202;
  • the phase mask 206 is placed on the double-hole fiber 10, the beam is focused on the double-hole fiber 10, and the transmitted light analysis module 210 Connected to the output end of the double-sided hole fiber 10, and the light source 204 is connected to the input end of the double-sided hole fiber 10; among them, the electric rotating clamp 207 and the three-dimensional adjustment frame 208 fix the double-sided hole fiber 10, but the three-dimensional rotating frame 208 can be rotated and adjusted horizontally.
  • the analysis module 210 is connected to the output end of the double-sided hole fiber 10, what it actually analyzes is the light beam of the Bragg grating that has been written or unwritten in the double-sided hole fiber 10.
  • the high temperature and high pressure reactor 201 is used to carry hydrogen to the double-hole optical fiber
  • CCD202 used to calibrate the direction of bilateral holes
  • Ultraviolet laser 203 used to provide coherent light when writing Bragg gratings in double-hole fiber
  • the lens group 204 is used to process the coherent light and focus the coherent light
  • the lens group 204 includes a mirror, an aperture, and a cylindrical lens arranged in sequence.
  • the phase mask 205 is used to diffract light beams of different orders to the double-hole fiber according to the focused coherent light, and write the Bragg grating according to the calibrated direction;
  • Electric rotating clamp 206 used to fix the position and rotation direction of the optical fiber
  • Three-dimensional adjustment frame 207 used to adjust the position of the double-hole fiber
  • the PC module 208 is used to display CCD imaging and control the direction of the electric rotating fixture
  • the transmitted light analysis module 209 is used to collect and analyze the transmitted light signal in the Bragg grating.
  • each electric rotating clamp is provided with a PC module, and one of the PC modules is connected to the CCD for direction calibration and monitoring.
  • the embodiment of the present invention shows the preparation process of the fiber grating directional pressure sensor to illustrate the realization process of the fiber grating preparation method provided in the second embodiment and the working principle of the fiber grating preparation device provided in the third embodiment.
  • the preparation process of fiber grating directional pressure sensor can be divided into fiber grating preparation and fiber grating directional pressure sensor preparation.
  • the fiber grating When preparing the fiber grating, first, select a double-hole fiber. High-temperature and high-pressure hydrogen-carrying treatment is performed on it through a high-temperature and high-pressure reactor to increase the photosensitivity of the optical fiber.
  • a grating writing system is constructed.
  • the structure of the grating writing system is shown in Figure 7, including charge coupling device image sensor CCD, ultraviolet laser, light source, lens group, phase mask, electric rotating fixture, three-dimensional adjustment frame, PC module and The optical path built by the transmitted light analysis module, wherein the lens group includes a mirror, a diaphragm and a cylindrical lens.
  • the realization of the fiber grating preparation method and the working principle of the fiber grating preparation device can be expressed as:
  • the ultraviolet laser of the above-mentioned grating writing system provides a laser with a wavelength of 266 nm. After being reflected by the mirror, it enters the diaphragm, and the size of the spot can be controlled by the diaphragm; the laser from the diaphragm passes through a cylindrical lens to transform the circular spot Converge into a linear spot to increase the energy density of the laser spot.
  • the focal length of the cylindrical lens is 50.2 mm; and finally through the phase mask, the laser is diffracted into different orders, and the energy is mainly concentrated on ⁇ 1.
  • the phase mask The period of the template is 1070 nm; at the position close to the phase mask, the distance is about 150-200 um, and the light intensity of ⁇ 1 will interfere with the light intensity distribution.
  • the ultraviolet laser will act on the processing position after passing the lens group and the phase mask, using the interference of the light intensity distribution Phenomenon, the fiber grating is written on the double-sided hole fiber core, and at the same time, the output end of the light source is connected to the input end of the double-sided hole fiber, and the double-sided hole fiber output end is connected to the transmitted light analysis module, and the real-time transmission is performed through the transmitted light analysis module. Record and monitor to determine the degree of fiber grating preparation.
  • the grating written in the double-hole fiber by the optical fiber writing system is a Bragg grating, and the length of the Bragg grating is 535um.
  • the double-sided hole fiber and the double-sided hole supporting fiber are placed on the bearing plate in parallel at this time, and the bearing plate is covered. Under the application of the measuring force, the spectrum change and demodulation are analyzed through the spectrum analysis module to obtain the magnitude and direction of the external force.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Optical Transform (AREA)

Abstract

一种光纤光栅方向性压力传感器(100)、光纤光栅制备方法及光纤光栅制备装置(200),光纤光栅方向性压力传感器(100)包括双边孔光纤(10)、承重板(20)、受力板(30)和光谱分析模块(40);双边孔光纤(10)包括光纤包层(11)、置于光纤包层(11)中的光纤纤芯(12)和两个空气孔(13),两个空气孔(13)位于光纤纤芯(12)两端,光纤纤芯(12)中还写制有具有方向性的布拉格光栅(14);空气孔(13)的直径大于光纤纤芯(12)的直径,且小于光纤包层(11)的半径;双边孔光纤(10),用于接入测量光束,通过布拉格光栅(14)折射后,输出试验光束至光谱分析模块(40);光谱分析模块(40),用于解调试验光束的光谱,获得施加于受力板(30)上的力的大小和方向。光纤光栅方向性压力传感器(10)既具有方向性,又能够在降低制作难度的前提下,提高灵敏度。

Description

光纤光栅方向性压力传感器、光纤光栅制备方法及装置 技术领域
本发明涉及光纤传感技术领域,尤其涉及一种光纤光栅方向性压力传感器、光纤光栅制备方法及装置。
背景技术
压力传感器作为光纤传感器中的一种,由于原理简单,抗电磁干扰能力强,不易腐蚀等特性,广泛应用于智能机器人手指,车载重力,静面水压力,器件的表面张力等应力的测量。目前的压力传感器主要采用普通单模光纤、保偏光纤、微结构光纤等基于光纤全内反射原理进行导光的光纤,通过在光纤内刻制各种周期的布拉格光栅对外界负载进行检测,形成横向压力传感器。
但是,在普通单模光纤上刻制布拉格光栅制作的压力传感器灵敏度一般,在保偏光纤刻制布拉格光栅制作的压力传感器方向性不灵敏,在微结构光纤上刻制布拉格光栅的压力传感器由于孔数量较多所以存在散射的影响至于刻写过程过于繁琐复杂,并且在以上三种光纤中制作布拉格光栅形成的压力传感器不具有方向性的特点,因此需要设计一种灵敏度高、具有方向性且刻写程序简单的压力传感器。
技术问题
本发明的主要目的在于提出一种光纤光栅方向性压力传感器、光纤光栅制备方法及装置,以解决现有技术在光纤中制作布拉格光栅形成的压力传感器不具有方向性,且压力传感器的灵敏度低,制作过程繁琐复杂的问题。
技术解决方案
为实现上述目的,本发明实施例第一方面提供一种光纤光栅方向性压力传感器,包括双边孔光纤、承重板、受力板和光谱分析模块:
所述双边孔光纤放置在所述承重板和所述受力板之间,所述双边孔光纤的输出端与所述光谱分析模块连接;
所述双边孔光纤包括光纤包层、置于所述光纤包层中的光纤纤芯和两个空气孔,两个所述空气孔位于所述光纤纤芯两端,所述光纤纤芯中还写制有具有方向性的布拉格光栅;
所述空气孔的直径大于所述光纤纤芯的直径,且小于所述光纤包层的半径;
所述双边孔光纤,用于接入测量光束,通过所述布拉格光栅折射后,输出试验光束至所述光谱分析模块;
所述光谱分析模块,用于解调所述试验光束的光谱,获得施加于所述受力板上的力的大小和方向。
可选地,光纤光栅方向性压力传感器还包括双边孔支撑光纤;
所述双边孔支撑光纤与所述双边孔光纤并列放置在所述承重板和所述受力板之间。
可选地,两个所述空气孔的圆心与所述光纤纤芯的圆心在同一直线上。
可选地,所述布拉格光栅的长度为535um。
本发明实施例第二方面提供了一种光纤光栅制备方法,应用于光纤光栅方向性压力传感器的制备,包括:
构建光栅写制系统;
通过所述光栅写制系统在双边孔光纤中写制具有方向性的布拉格光栅;
将写制有布拉格光栅的双边孔光纤,放置在承重板和受力板之间,并将其输出端与光谱分析模块连接。
可选地,构建光栅写制系统之后,通过所述光栅写制系统在双边孔光纤中写制具有方向性的布拉格光栅之前,包括:
对双边孔光纤进行载氢处理。
可选地,通过所述光栅写制系统在双边孔光纤中写制具有方向性的布拉格光栅,包括:
在所述双边孔光纤中标定光栅加工位置,并标定所述双边孔光纤的进行方向;
调整所述双边孔光纤的位置,以使所述光栅制备系统在所述光栅加工位置聚焦;
在所述光栅写制系统对所述双边孔光纤进行加工时,获取所述布拉格光栅的透射谱;
根据所述透射谱,分析光谱质量和谐振峰位置的变化;
根据光谱质量和谐振峰位置的变化,判断所述布拉格光栅是否写制完成。
本发明实施例第三方面提供了一种光纤光栅制备装置,应用于光纤光栅方向性压力传感器的制备,包括高温高压反应釜、电荷藕合器件图像传感器CCD、紫外激光器、光源、透镜组、相位掩模板、电动旋转夹具、三维调整架、PC模块和透射光分析模块;
所述紫外激光器、所述透镜组和所述相位掩模板依次连接;
所述电动旋转夹具中放置有双边孔光纤,所述电动旋转夹具置于所述三维调整架上,所述PC模块置于所述电动旋转夹具上,并与CCD连接;
所述相位掩模板置于所述双边孔光纤上方,在所述双边孔光纤上聚焦光束,所述透射光分析模块与所述双边孔光纤输出端连接,所述光源与所述双边孔光纤输入端连接;
所述高温高压反应釜,用于对所述双边孔光纤进行载氢;
所述CCD,用于双边孔方向的标定;
所述紫外激光器,用于在所述双边孔光纤中写制布拉格光栅时提供相干光;
所述透镜组,用于对所述相干光进行处理,并使所述相干光聚焦;
所述相位掩模板,用于根据聚焦后的所述相干光,衍射不同级次光束至所述双边孔光纤上,根据标定的方向进行所述布拉格光栅的写制;
所述电动旋转夹具,用于固定光纤位置与旋转方向;
所述三维调整架,用于调整所述双边孔光纤位置;
所述PC模块,用于显示CCD成像以及控制所述电动旋转夹具的方向;
所述透射光分析模块,用于采集分析所述布拉格光栅中的透射光信号。
可选地,所述透镜组包括依次排布的反射镜、光阑和柱透镜。
有益效果
本发明实施例提出一种光纤光栅方向性压力传感器,主体为双边孔光纤,其中,双边孔光纤包括光纤包层,光纤包层中仅有两个空气孔,和置于两个空气孔中间的光纤纤芯,光纤纤芯中还写制有具有方向性的布拉格光栅,因此,将写制有具有方向性的布拉格光栅的双边孔光纤、与承重板、受力板和光谱分析模块结合组成的压力传感器具有方向性;在结构上,由于空气孔的数量少,直径大,散射的影响小,因此在光纤纤芯中写制双边孔光纤的过程将不受散射影响,降低了光纤光栅写制难度;此外,由于具有两个大的空气孔,当外力沿着双边孔光纤不同方向施加上去时,双边孔光纤与保偏光纤相比又具有不同方向不同的灵敏度,与普通单模光纤相比提高了灵敏度,则本发明实施例提供的光纤光栅方向性压力传感器即具有方向性,又能够在降低制作难度的前提下,提高灵敏度。
附图说明
图1为本发明实施例一提供的光纤光栅方向性压力传感器的结构示意图;
图2为本发明实施例一提供的双边孔光纤的结构示意图;
图3为本发明实施例一提供的光纤光栅方向性压力传感器在不同方向上的不同压力灵敏度示意图;
图4为本发明实施例二提供的光纤光栅制备方法的实现流程示意图;
图5为图4中步骤S102的详细实现流程示意图;
图6为本发明实施例二提供的双边孔光纤的透射谱图;
图7为本发明实施例三提供的光纤光栅制备装置的组成结构示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本文中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本发明的说明,其本身并没有特定的意义。因此,"模块"与"部件"可以混合地使用。
在后续的描述中,发明实施例序号仅仅为了描述,不代表实施例的优劣。
实施例一
如图1所示,本发明实施例提供了一种光纤光栅方向性压力传感器100,包括双边孔光纤10、承重板20、受力板30和光谱分析模块40。
在本发明实施例中,光纤光栅方向性压力传感器各部位连接关系如下:
双边孔光纤10放置在承重板20和受力板30之间,双边孔光纤10和受力板30均放置在承重板20上,则需要测量的外力施加在受力板30上,而双边孔光纤10的输出端与光谱分析模块40连接,将由双边孔光纤10输入的光束,输出到光谱分析模块40中,测量时,光束在双边孔光纤10中的发生折射,具体可以在光谱分析模块40中进行光谱分析。
在具体应用中,将一个双边孔光纤放置在承重板和受力板之间,难以在维持双边孔光纤受力自然形变的情况下,固定双边孔光纤。
因此,如图1所示,本发明实施例提供的光纤光栅方向性压力传感器100,还包括双边孔支撑光纤50,双边孔支撑光纤50与双边孔光纤10并列放置在承重板20和受力板30之间,作为支撑和保护以及参考的结构。
在具体应用中,光纤光栅方向性压力传感器100的主体是双边孔光纤10,本发明实施例还对其结构进行详细说明。
如图2所示,为双边孔光纤10的端面结构和截面结构。双边孔光纤10包括光纤包层11、置于光纤包层11中的光纤纤芯12和两个空气孔13,两个空气孔13位于光纤纤芯12两端,光纤纤芯12中还写制有具有方向性的布拉格光栅14。
在具体应用中,双边孔光纤10,用于接入测量光束,通过布拉格光栅折射后,输出试验光束至光谱分析模块;
光谱分析模块40,用于解调试验光束的光谱,获得施加于受力板上的力的大小和方向。
在一个实施例中,两个所述空气孔13的圆心与光纤纤芯12的圆心在同一直线上;通过设置空气孔和光纤纤芯的位置关系,使双边孔光纤内外为对称结构,从而增加双边孔光纤光栅压力传感器测量的精确度。
在一个实施例中,布拉格光栅14的长度为535um;光栅作为光纤的调制解调功能结构,其亚微米级的尺寸,决定了光纤光栅方向性压力传感器具有亚微米级分辨率。
如图2示出的双边孔光纤10中,空气孔13的直径大于光纤纤芯12的直径,且小于光纤包层11的半径。
在具体应用中,空气孔的直径数值大于四倍的光纤纤芯直径的数值。
在压力传感器中,光纤中的空气孔数量较多,则会使得光束在光纤中传播时产生散射,而发明实施例提供的光纤光栅方向性压力传感器中,双边孔光纤的空气孔的数量少,直径大,散射的影响小,因此在光纤纤芯中写制双边孔光纤的过程将不受散射影响。
此外,将空气孔的直径设为较大直径时,若外力沿着双边孔光纤不同方向施加,则双边孔光纤与保偏光纤相比,将具有不同方向不同的灵敏度,与普通单模光纤相比提高了灵敏度。
如图3所示,本发明实施例还提供了光纤光栅方向性压力传感器在不同方向上的不同压力灵敏度,图3中的标尺表示光束在光纤光栅中传播时,传播峰值之间的差值,与施加在受力板上的外力的比值,单位为nm/N,而图3中,靠近0°~180°的点表示其灵敏度小,靠近90°~270°的点表示其灵敏度高。
本发明实施例提供的光纤光栅方向性压力传感器,主体为双边孔光纤,其中,双边孔光纤包括光纤包层,光纤包层中仅有两个空气孔,和置于两个空气孔中间的光纤纤芯,光纤纤芯中还写制有具有方向性的布拉格光栅,因此,将写制有具有方向性的布拉格光栅的双边孔光纤、与承重板、受力板和光谱分析模块结合组成的压力传感器具有方向性;在结构上,由于空气孔的数量少,直径大,散射的影响小,因此在光纤纤芯中写制双边孔光纤的过程将不受散射影响,降低了光纤光栅写制难度;此外,由于具有两个大的空气孔,当外力沿着双边孔光纤不同方向施加上去时,双边孔光纤与保偏光纤相比又具有不同方向不同的灵敏度,与普通单模光纤相比提高了灵敏度,则本发明实施例提供的光纤光栅方向性压力传感器即具有方向性,又能够在降低制作难度的前提下,提高灵敏度。
实施例二
如图4所示,本发明实施例提供了一种光纤光栅制备方法,应用于光纤光栅方向性压力传感器的制备,包括但不限于以下步骤:
S101、构建光栅写制系统。
在上述步骤S101中,光栅写制系统利用光致纤芯折射率变化特性, 用特殊工艺,如紫外光的热加工,使得光纤纤芯的折射率发生永久性周期变化形成特定光栅;光栅的特性类似于波长选择器,能对波长满足布拉格反射条件的人射光产生反射。
在本发明实施例中,光栅写制系统用于写制布拉格光栅,其中心波长满足:λB=2neffΛ,其中2neff为光纤纤芯的有效折射率,Λ为光栅周期。
S102、通过所述光栅写制系统在双边孔光纤中写制具有方向性的布拉格光栅。
在上述步骤S102中,布拉格光栅为光纤纤芯的折射率发生轴向周期性调制而形成的衍射光栅,则布拉格光栅的方向性表现为双边孔光纤的横向应力。
如图5所示,本发明实施例示出了上述步骤S102的详细实现流程,包括:
S1021、在所述双边孔光纤中标定光栅加工位置,并标定所述双边孔光纤的进行方向。
在上述步骤S1021中,双边孔光纤的进行方向为光束在双边孔光纤中的输入位置至输出位置的方向。
在具体应用中,标定光栅加工位置之前,先将双边孔光纤固定在指定位置,指定位置以光栅制备系统为参考,即双边孔光纤固定在光栅制备系统的指定位置。
S1022、调整所述双边孔光纤的位置,以使所述光栅制备系统在所述光栅加工位置聚焦。
在上述步骤S1022中,光栅制备系统使用紫外光的热加工方式实现光栅的写制,主要过程为:先接入紫外激光,并对其进行处理,将处理后的紫外激光聚焦在双边孔光纤上,使光纤纤芯折射率变化,完成光栅制备。
S1023、在所述光栅写制系统对所述双边孔光纤进行加工时,获取所述布拉格光栅的透射谱。
S1024、根据所述透射谱,分析光谱质量和谐振峰位置的变化;
S1025、根据光谱质量和谐振峰位置的变化,判断所述布拉格光栅是否写制完成。
在上述步骤S1023至步骤S1025中,通过透射谱可以分析光束透过布拉格光栅后的光学参量。
如图6所示,本发明实施例还示出了双边孔光纤的透射谱图。其中,横轴表示波长值,单位为nm;纵轴表示透射值,单位为dB。图6中,处理后的紫外激光通过双边孔光纤后,透过双边孔光纤的光束的波长在1553nm至1554nm之间。
S103、将写制有布拉格光栅的双边孔光纤,放置在承重板和受力板之间,并将其输出端与光谱分析模块连接。
在具体应用中,为了增加光纤的光敏性,在构建光栅写制系统之后,通过所述光栅写制系统在双边孔光纤中写制具有方向性的布拉格光栅之前,还可对双边孔光纤进行载氢处理。
其中,双边孔光纤的载氢处理,可以在高温高压反应釜中进行。
实施例三
本发明实施例提供了一种光纤光栅制备装置200,应用于光纤光栅方向性压力传感器的制备,包括高温高压反应釜201、电荷藕合器件图像传感器CCD202、紫外激光器203、光源204、透镜组205、相位掩模板206、电动旋转夹具207、三维调整架208、PC模块209和透射光分析模块210。
本发明实施例提供的光纤光栅制备装置200,用于在双边孔光纤中制备布拉格光栅,在具体应用中,通过光纤光栅制备装置在双边孔光纤中制备布拉格光栅后,还需根据实施例二中的光纤光栅制备方法,制备光纤光栅方向性压力传感器。
如图7所示,上述光纤光栅制备装置各部位连接关系如下:
紫外激光器203、透镜组205和相位掩模板206依次连接,紫外激光器203提供激光,并通过透镜组205和相位掩模板206处理激光;电动旋转夹具207中放置有双边孔光纤10,电动旋转夹具207置于三维调整架208上,PC模块209置于电动旋转夹具207上,并与CCD202连接;相位掩模板206置于双边孔光纤10上方,在双边孔光纤10上聚焦光束,透射光分析模块210与双边孔光纤10输出端连接,光源204与双边孔光纤10的输入端连接;其中,电动旋转夹具207和三维调整架208将双边孔光纤10固定,但三维旋转架208可以进行水平旋转,调整双边孔光纤10位置;由于处理后的紫外激光的入射方位是不变的,因此可以电动旋转夹具207调整双边光纤10,使其进行轴向转动,改变处理后的紫外激光的作用位置,透射光分析模块210虽然接入的是双边孔光纤10的输出端,但其实际分析的是经过双边孔光纤10中写制完成或未写制完成的布拉格光栅的光束。
在本发明实施例中,高温高压反应釜201,用于对双边孔光纤进行载氢;
CCD202,用于双边孔方向的标定;
紫外激光器203,用于在双边孔光纤中写制布拉格光栅时提供相干光;
透镜组204,用于对相干光进行处理,并使相干光聚焦;
在本发明实施例中,透镜组204包括依次排布的反射镜、光阑和柱透镜。
相位掩模板205,用于根据聚焦后的相干光,衍射不同级次光束至双边孔光纤上,根据标定的方向进行布拉格光栅的写制;
电动旋转夹具206,用于固定光纤位置与旋转方向;
三维调整架207,用于调整双边孔光纤位置;
PC模块208,用于显示CCD成像以及控制电动旋转夹具的方向;
透射光分析模块209,用于采集分析布拉格光栅中的透射光信号。
在本发明实施例中,设置两个电动旋转夹具,以使双边孔光纤各部位同步旋转,同时每个电动旋转夹具上设置有PC模块,其中一个PC模块连接CCD,以进行方向标定和监控。
实施例四
本发明实施例示出了光纤光栅方向性压力传感器的制备过程,以说明实施例二所提供的光纤光栅制备方法的实现过程,以及实施例三所提供的光纤光栅制备装置的工作原理。
光纤光栅方向性压力传感器的制备过程可以分为光纤光栅的制备和光纤光栅方向性压力传感器制备。
在制备光纤光栅时,首先,选取双边孔光纤。通过高温高压反应釜对其进行高温高压载氢处理,增加光纤的光敏性。
然后,构建光栅写制系统,光栅写制系统的结构参见图7,包括电荷藕合器件图像传感器CCD、紫外激光器、光源、透镜组、相位掩模板、电动旋转夹具、三维调整架、PC模块和透射光分析模块所搭建光路,其中,透镜组包括反射镜、光阑和柱透镜。
其中,光纤光栅制备方法的实现,以及光纤光栅制备装置的工作原理可以表现为:
通过上述光栅写制系统的紫外激光器提供波长为266 nm的激光,经过反射镜反射后,射入光阑,通过光阑可以控制光斑大小;光阑出社的激光再经过柱透镜,将圆型光斑汇聚成线型光斑,增加激光光斑能量密度,其中,柱透镜的焦距大小为50.2 mm;最后经过相位掩模板,将激光衍射为不同的级次,能量主要集中在±1上,其中,相位掩模板的周期为1070 nm;在靠近相位掩模板的位置,距离约为150-200 um,±1的光会发生光强强弱分布的干涉现象。光栅写制系统构建完成后,将载氢后双边孔光纤放置电动旋转夹具上,通过CCD106成像进行方向的标定,和加工位置的标定,通过CCD106成像对其旋转角度进行控制,同时通过PC模块获取CCD成像及电动旋转夹具的方向;然后调整三维调整架使双边孔光纤位于最佳聚焦状态,则紫外激光通过透镜组和相位掩模板后,作用在加工位置上,利用光强强弱分布的干涉现象,在双边孔光纤纤芯上进行光纤光栅的写制,同时,光源输出端与双边孔光纤的输入端连接,双边孔光纤输出端与透射光分析模块连接,通过透射光分析模块进行实时的记录与监测,判断光纤光栅的制备程度。
在本发明实施例中,光纤写制系统在双边孔光纤中写制的光栅为布拉格光栅,布拉格光栅的长度为535um。
在制备光纤光栅方向性压力传感器时,双边孔光纤中已经制备好布拉格光栅后,此时将双边孔光纤和双边孔支撑光纤一起平行放在承重板上,盖上受力板,在外界所需测量力的施加下,通过光谱分析模块分析光谱变化和解调,得到外力的大小以及方向。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种光纤光栅方向性压力传感器,其特征在于,包括双边孔光纤、承重板、受力板和光谱分析模块:
    所述双边孔光纤放置在所述承重板和所述受力板之间,所述双边孔光纤的输出端与所述光谱分析模块连接;
    所述双边孔光纤包括光纤包层、置于所述光纤包层中的光纤纤芯和两个空气孔,两个所述空气孔位于所述光纤纤芯两端,所述光纤纤芯中还写制有具有方向性的布拉格光栅;
    所述空气孔的直径大于所述光纤纤芯的直径,且小于所述光纤包层的半径;
    所述双边孔光纤,用于接入测量光束,通过所述布拉格光栅折射后,输出试验光束至所述光谱分析模块;
    所述光谱分析模块,用于解调所述试验光束的光谱,获得施加于所述受力板上的力的大小和方向。
  2. 如权利要求1所述的光纤光栅方向性压力传感器,其特征在于,还包括双边孔支撑光纤;
    所述双边孔支撑光纤与所述双边孔光纤并列放置在所述承重板和所述受力板之间。
  3. 如权利要求1所述的双边孔光纤光栅压力传感器,其特征在于,两个所述空气孔的圆心与所述光纤纤芯的圆心在同一直线上。
  4. 如权利要求1所述的光纤光栅方向性压力传感器,其特征在于,所述布拉格光栅的长度为535um。
  5. 一种光纤光栅制备方法,其特征在于,应用于光纤光栅方向性压力传感器的制备,包括:
    构建光栅写制系统;
    通过所述光栅写制系统在双边孔光纤中写制具有方向性的布拉格光栅;
    将写制有布拉格光栅的双边孔光纤,放置在承重板和受力板之间,并将其输出端与光谱分析模块连接。
  6. 如权利要求5所述的光纤光栅制备方法,其特征在于,构建光栅写制系统之后,通过所述光栅写制系统在双边孔光纤中写制具有方向性的布拉格光栅之前,包括:
    对双边孔光纤进行载氢处理。
  7. 如权利要求5所述的光纤光栅制备方法,其特征在于,通过所述光栅写制系统在双边孔光纤中写制具有方向性的布拉格光栅,包括:
    在所述双边孔光纤中标定光栅加工位置,并标定所述双边孔光纤的进行方向;
    调整所述双边孔光纤的位置,以使所述光栅制备系统在所述光栅加工位置聚焦;
    在所述光栅写制系统对所述双边孔光纤进行加工时,获取所述布拉格光栅的透射谱;
    根据所述透射谱,分析光谱质量和谐振峰位置的变化;
    根据光谱质量和谐振峰位置的变化,判断所述布拉格光栅是否写制完成。
  8. 一种光纤光栅制备装置,其特征在于,应用于光纤光栅方向性压力传感器的制备,包括高温高压反应釜、电荷藕合器件图像传感器CCD、紫外激光器、光源、透镜组、相位掩模板、电动旋转夹具、三维调整架、PC模块和透射光分析模块;
    所述紫外激光器、所述透镜组和所述相位掩模板依次连接;
    所述电动旋转夹具中放置有双边孔光纤,所述电动旋转夹具置于所述三维调整架上,所述PC模块置于所述电动旋转夹具上,并与CCD连接;
    所述相位掩模板置于所述双边孔光纤上方,在所述双边孔光纤上聚焦光束,所述透射光分析模块与所述双边孔光纤输出端连接,所述光源与所述双边孔光纤输入端连接;
    所述高温高压反应釜,用于对所述双边孔光纤进行载氢;
    所述CCD,用于双边孔方向的标定;
    所述紫外激光器,用于在所述双边孔光纤中写制布拉格光栅时提供相干光;
    所述透镜组,用于对所述相干光进行处理,并使所述相干光聚焦;
    所述相位掩模板,用于根据聚焦后的所述相干光,衍射不同级次光束至所述双边孔光纤上,根据标定的方向进行所述布拉格光栅的写制;
    所述电动旋转夹具,用于固定光纤位置与旋转方向;
    所述三维调整架,用于调整所述双边孔光纤位置;
    所述PC模块,用于显示CCD成像以及控制所述电动旋转夹具的方向;
    所述透射光分析模块,用于采集分析所述布拉格光栅中的透射光信号。
  9. 如权利要求8所述的光纤光栅制备装置,其特征在于,所述透镜组包括依次排布的反射镜、光阑和柱透镜。
PCT/CN2019/089956 2019-06-04 2019-06-04 光纤光栅方向性压力传感器、光纤光栅制备方法及装置 WO2020243896A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/089956 WO2020243896A1 (zh) 2019-06-04 2019-06-04 光纤光栅方向性压力传感器、光纤光栅制备方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/089956 WO2020243896A1 (zh) 2019-06-04 2019-06-04 光纤光栅方向性压力传感器、光纤光栅制备方法及装置

Publications (1)

Publication Number Publication Date
WO2020243896A1 true WO2020243896A1 (zh) 2020-12-10

Family

ID=73652704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089956 WO2020243896A1 (zh) 2019-06-04 2019-06-04 光纤光栅方向性压力传感器、光纤光栅制备方法及装置

Country Status (1)

Country Link
WO (1) WO2020243896A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032863A1 (en) * 1997-12-19 1999-07-01 Optoplan As Method for application of an optical fibre as a hydrostatic pressure sensor
CN1269881A (zh) * 1997-07-07 2000-10-11 施卢默格海外有限公司 光纤压力传感器以及包括这种压力传感器的压力传感系统
WO2003104758A1 (en) * 2002-06-07 2003-12-18 Cidra Corporation A pressure transducer featuring large diameter optical waveguide having bragg grating and being configured for reducing the bulk modulus of compressiblity thereof
US20040165809A1 (en) * 2003-02-21 2004-08-26 Weatherford/Lamb, Inc. Side-hole cane waveguide sensor
CN204241138U (zh) * 2014-10-11 2015-04-01 扬州市润特光电科技有限公司 一种基于光纤光栅的压力传感器
CN107765361A (zh) * 2017-11-17 2018-03-06 深圳大学 相移光纤布拉格光栅制备方法、装置和相移光纤布拉格光栅
WO2019097213A1 (en) * 2017-11-20 2019-05-23 Smart Fibres Limited A method for forming a pressure sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1269881A (zh) * 1997-07-07 2000-10-11 施卢默格海外有限公司 光纤压力传感器以及包括这种压力传感器的压力传感系统
WO1999032863A1 (en) * 1997-12-19 1999-07-01 Optoplan As Method for application of an optical fibre as a hydrostatic pressure sensor
WO2003104758A1 (en) * 2002-06-07 2003-12-18 Cidra Corporation A pressure transducer featuring large diameter optical waveguide having bragg grating and being configured for reducing the bulk modulus of compressiblity thereof
US20040165809A1 (en) * 2003-02-21 2004-08-26 Weatherford/Lamb, Inc. Side-hole cane waveguide sensor
CN204241138U (zh) * 2014-10-11 2015-04-01 扬州市润特光电科技有限公司 一种基于光纤光栅的压力传感器
CN107765361A (zh) * 2017-11-17 2018-03-06 深圳大学 相移光纤布拉格光栅制备方法、装置和相移光纤布拉格光栅
WO2019097213A1 (en) * 2017-11-20 2019-05-23 Smart Fibres Limited A method for forming a pressure sensor

Similar Documents

Publication Publication Date Title
CN110160685A (zh) 光纤光栅方向性压力传感器、光纤光栅制备方法及装置
Wang et al. A novel long period fiber grating sensor measuring curvature and determining bend-direction simultaneously
Bouzid et al. Fiber-optic four-detector polarimeter
Barrera et al. Multipoint two-dimensional curvature optical fiber sensor based on a nontwisted homogeneous four-core fiber
Kong et al. Pure directional bending measurement with a fiber Bragg grating at the connection joint of eccentric-core and single-mode fibers
US6678433B2 (en) Apparatus and method for measuring residual stress and photoelastic effect of optical fiber
US20170059446A1 (en) Lens array, wavefront sensor, wavefront measurement apparatus, shape measurement apparatus, aberration measurement apparatus, manufacturing method of optical element, and manufacturing method of optical device
CN101881854A (zh) 内壁融嵌式多芯单模保偏光纤光栅及制作方法
CN112146799B (zh) 一种扭转和湿度一体化测量的光纤传感装置
Liu et al. Quasi-distributed directional bending sensor based on fiber Bragg gratings array in triangle-four core fiber
Yang et al. Highly sensitive bending sensor based on multicore optical fiber with diagonal cores reflector at the fiber tip
CN210180567U (zh) 光纤光栅方向性压力传感器和光纤光栅制备装置
Chen et al. Compact vector bend sensor using dual-off-axis innermost cladding-type FBGs
Yang et al. Dual-FBG and FP cavity compound optical fiber sensor for simultaneous measurement of bending, temperature and strain
Lai et al. Two-axis bending sensor based on asymmetric grid long-period fiber grating
WO2020243896A1 (zh) 光纤光栅方向性压力传感器、光纤光栅制备方法及装置
CN207456742U (zh) 自聚焦透镜透射波前测量装置
US6809805B2 (en) Residual stress measuring device for optical fiber
CN100437168C (zh) 一种保偏光纤切趾双光栅的制作方法
Yang et al. Temperature-insensitive polarimetric torsion sensor based on a pair of angularly cascaded LPFGs
Wang et al. 3-D parallel fiber Bragg gratings bending sensor based on single-channel measurement
JP2011226935A (ja) 軸外透過波面測定装置
Idrisov et al. Optimisation of fibre Bragg gratings inscription in multicore fibres
CN103954235B (zh) 一种光学凸球面面形的检测装置及方法
CN113758565B (zh) 一种用于光谱传感系统中的连接部件及光谱仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.03.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19931927

Country of ref document: EP

Kind code of ref document: A1