WO2020242009A1 - Spinal motion analysis system and spinal motion analysis method - Google Patents

Spinal motion analysis system and spinal motion analysis method Download PDF

Info

Publication number
WO2020242009A1
WO2020242009A1 PCT/KR2020/001688 KR2020001688W WO2020242009A1 WO 2020242009 A1 WO2020242009 A1 WO 2020242009A1 KR 2020001688 W KR2020001688 W KR 2020001688W WO 2020242009 A1 WO2020242009 A1 WO 2020242009A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
spine
lordosis
spinal
vertebral
Prior art date
Application number
PCT/KR2020/001688
Other languages
French (fr)
Korean (ko)
Inventor
정선근
김기원
이준녕
최민석
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2020242009A1 publication Critical patent/WO2020242009A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4538Evaluating a particular part of the muscoloskeletal system or a particular medical condition
    • A61B5/4566Evaluating the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0024Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system for multiple sensor units attached to the patient, e.g. using a body or personal area network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors

Definitions

  • the present invention relates to a spine motion analysis system and a spine motion analysis method, and more particularly, to determine a spine condition by deriving a parameter from one or more of data measured through a spine posture measurement sensor, an EMG sensor, and an abdominal pressure sensor. It relates to a spinal motion analysis system and a spinal motion analysis method that can be identified.
  • MCST mechanical connective soft tissue
  • MCST lesions affect posture and movement. Therefore, if posture and movement can be quantitatively measured, it is very helpful in evaluating MCST lesions.
  • the biomechanical measurement method has the disadvantage of taking up a lot of time, labor, and space, and it is not widely used clinically because it is difficult to see that the posture and movement measured at a specific time and environment reflect the individual's daily posture and movement. There is a problem that cannot be done.
  • the present invention is to solve the above-described problem, and in more detail, it is possible to determine the state of the spine by deriving a parameter through one or more of data measured through a spine posture measurement sensor, an EMG sensor, and an abdominal pressure sensor. It relates to a spinal motion analysis system and a spinal motion analysis method.
  • the spinal motion analysis system of the present invention for solving the above-described problem is attached to at least one of the thoracic, lumbar, and sacral vertebrae, and is attached to the roll, pitch, and yaw direction.
  • a spinal posture measurement sensor capable of measuring posture and movement;
  • a parameter derivation unit capable of deriving a first parameter through data measured by the spine posture measurement sensor;
  • a control unit for determining a state of the spine by analyzing the first parameter derived through the parameter derivation unit.
  • the spine posture measurement sensor of the spine motion analysis system of the present invention for solving the above-described problem may include a tri-axial accelerometer sensor, a gyroscope sensor, and a magnetometer sensor. .
  • the spinal motion analysis system of the present invention for solving the above-described problems includes an EMG sensor that is attached to the trunk muscle and can measure the activity of the trunk muscle, and an abdominal pressure sensor that is attached to the abdomen and can measure abdominal pressure. It further includes, wherein the parameter derivation unit may derive the first parameter through at least one of data measured by the spine posture measurement sensor, the EMG sensor, and the abdominal pressure sensor.
  • the parameter derivation unit of the spine motion analysis system of the present invention for solving the above-described problem derives a plurality of first parameters, combines the plurality of first parameters to derive a second parameter, and the control unit comprises: By analyzing the second parameter, the state of the spine can be determined.
  • the spinal posture measurement sensor of the spinal motion analysis system of the present invention for solving the above-described problem is attached to two or more points, and the first parameter is an average spinal lordosis angle and a square average spinal lordosis angular velocity, and the average spinal lordosis
  • the angle is a value obtained by integrating the vertebral lordosis angle, which is the difference between the angles measured at two points through the spine posture measurement sensor, for a specified time interval and dividing it by a specified time interval, and the square mean vertebral lordosis angular velocity is, It may be a value obtained by taking the square root after dividing the angular velocity for a specified time interval by squaring the angular velocity of the vertebrae from which the angle was differentiated, and dividing it by the specified time interval.
  • the second parameter of the spinal motion analysis system of the present invention for solving the above-described problem is a spinal lordosis robustness index
  • the spinal lordosis robustness index is a value obtained by dividing the average spinal lordosis angle by the square average spinal lordosis angular velocity.
  • the first parameter of the spine motion analysis system of the present invention for solving the above-described problem is an instantaneous vertebral lordosis angle and an instantaneous vertebral lordosis angular velocity
  • the instantaneous vertebral lordosis angle represents a spine lordosis angle at a specified time point
  • the spinal lordosis angular velocity may be the spinal lordosis angular velocity at a designated time point.
  • the second parameter of the spine motion analysis system of the present invention for solving the above-described problem is an instantaneous vertebral lordosis robustness index
  • the instantaneous vertebral lordosis robustness index is a value obtained by dividing the instantaneous vertebral lordosis angle by the instantaneous vertebral lordosis angular velocity. I can.
  • the first parameter of the spinal motion analysis system of the present invention for solving the above-described problem is a roll direction spine range of motion
  • the roll direction spine range of motion is a maximum spinal dystrophy with a specific time interval or a specific motion progress time. It may be the difference between the angle and the minimum spinal lordosis angle.
  • the spine motion analysis system of the present invention for solving the above-described problem may further include a feedback unit that receives information determined by the control unit and transmits a signal to a subject through the received information.
  • the spine motion analysis method of the present invention for solving the above-described problem is attached to at least one of the thoracic, lumbar, and sacral vertebrae, and is attached to the roll, pitch, and yaw direction.
  • a determination step of determining the state of the spine of the subject through a control unit capable of determining the state of the spine through the first parameter.
  • the spine posture measurement sensor of the spine motion analysis method of the present invention for solving the above-described problem may include a tri-axial accelerometer sensor, a gyroscope sensor, and a magnetometer sensor. .
  • the data collection step of the spinal motion analysis method of the present invention for solving the above-described problem includes an EMG sensor attached to the trunk muscle and capable of measuring the activity of the trunk muscle, and attached to the abdomen, and measuring abdominal pressure. And collecting data through an abdominal pressure sensor capable of performing, and the step of deriving the first parameter may include any one of data measured by the spinal posture measurement sensor, the EMG sensor, and the abdominal pressure sensor through the parameter derivation unit.
  • the first parameter may be derived from one or more data.
  • the first parameter derivation step of the spinal motion analysis method of the present invention for solving the above-described problem is to derive a plurality of first parameters through the parameter derivation unit, and combine the plurality of first parameters through the parameter derivation unit.
  • the second parameter derivation step of combining the second parameters by doing so may further include, wherein the determining step may determine the state of the spine by analyzing the second parameter through the control unit.
  • the spinal posture measurement sensor of the spinal motion analysis method of the present invention for solving the above-described problem is attached to two or more points, and the first parameter is an average spinal lordosis angle and a square average spinal lordosis angular velocity, and the average spinal lordosis
  • the angle is a value obtained by integrating the vertebral lordosis angle, which is the difference between the angles measured at two points through the spine posture measurement sensor, for a specified time interval and dividing it by a specified time interval, and the square mean vertebral lordosis angular velocity is, It may be a value obtained by taking the square root after dividing the angular velocity for a specified time interval by squaring the angular velocity of the vertebral vertebrae from which the angle was differentiated, and dividing it by the specified time interval.
  • the second parameter of the spinal motion analysis method of the present invention for solving the above-described problem is a spinal lordosis robustness index
  • the spinal lordosis robustness index is a value obtained by dividing the average spinal lordosis angle by the square average spinal lordosis angular velocity.
  • the first parameter of the spinal motion analysis method of the present invention for solving the above-described problem is an instantaneous vertebral lordosis angle and an instantaneous vertebral lordosis angular velocity
  • the instantaneous vertebral lordosis angle represents a spine lordosis angle at a specified time point
  • the spinal lordosis angular velocity may be the spinal lordosis angular velocity at a designated time point.
  • the second parameter of the spinal motion analysis method of the present invention for solving the above-described problem is an instantaneous vertebral lordosis robustness index
  • the instantaneous vertebral lordosis robustness index is a value obtained by dividing the instantaneous vertebral lordosis angle by the instantaneous vertebral lordosis angular velocity. I can.
  • the first parameter of the spinal motion analysis method of the present invention for solving the above-described problem is a roll direction spine range of motion
  • the roll direction spine range of motion is a maximum spinal dystrophy with a specific time interval or a specific motion progress time. It may be the difference between the angle and the minimum spinal lordosis angle.
  • the spine motion analysis system of the present invention for solving the above-described problem may further include a feedback step of receiving information determined through the determination step and transmitting a signal to a subject through the received information.
  • the present invention relates to a spinal motion analysis system and a spinal motion analysis method, and the spine lordosis, spinal stability index, spinal instability index, etc. through at least one of data measured through a spine posture measurement sensor, an electromyogram sensor, and an abdominal pressure sensor.
  • the present invention can be applied to the public without individual input constants by determining the state of the spine through the first parameter and the second parameter, and has the advantage of enabling quantitative analysis of the state of the spine through the first parameter and the second parameter. .
  • FIG. 1 is a view showing that the spine posture measurement sensor according to an embodiment of the present invention is attached to at least one of a thoracic, lumbar, and sacral spine.
  • FIG. 2 is a diagram illustrating that a spine posture measurement sensor, an electromyogram sensor, and an abdominal pressure sensor are attached to a subject according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a spine motion analysis system according to an embodiment of the present invention.
  • 4(a) to 4(f) are spinal lordosis angles, average spinal lordosis angles, vertebral lordosis angular velocity, squared average lordosis angular velocity, spinal lordosis robustness index, roll direction range of according to an embodiment of the present invention. This is an expression representing motion.
  • FIG. 5 is a diagram illustrating derivation of spinal lordosis robustness indicators from various motions through a spinal motion analysis system according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a spinal motion analysis method according to an embodiment of the present invention.
  • the present invention relates to a spine motion analysis system and a spine motion analysis method, wherein the spine condition can be determined by deriving a parameter through one or more of data measured through a spine posture measurement sensor, an EMG sensor, and an abdominal pressure sensor. It relates to a spinal motion analysis system and a spinal motion analysis method.
  • the spine motion analysis system includes a spine posture measurement sensor 110, a parameter derivation unit 120, and a control unit 130.
  • the spinal posture measurement sensor 110 is attached to at least one of the thoracic, lumbar, and sacral vertebrae, and is attached to the roll, pitch, and yaw direction. You can measure your posture and movement.
  • three spinal posture measurement sensors 110 may be attached to points T6, T12, and S2 of FIG. 1, but are not limited thereto, and the spine posture
  • the attachment position and the number of attachments of the measurement sensor 110 may be changed according to the purpose of measuring the state of the spine.
  • two or more spinal posture measurement sensors 110 are attached to measure a lordotic angle of the spine.
  • the spine posture measurement sensor 110 is capable of measuring posture and movement in a roll, pitch, and yaw direction of an attached point. Specifically, the spine posture measurement sensor 110 may measure the roll, pitch, angle to yaw, angular velocity, angular acceleration, etc. at the point where the spine posture measurement sensor 110 is attached. I can.
  • the spine posture measurement sensor 110 includes an acceleration sensor, an angular velocity sensor (gyroscope) and an angular acceleration sensor, and the spine posture measurement sensor 110 may measure an angular acceleration through an angular acceleration sensor,
  • the angular velocity can be measured through the angular velocity sensor, the angular velocity can be obtained by integrating the angular acceleration of the angular acceleration sensor, the angle can be obtained by integrating this angular velocity, and the angle can be obtained by integrating the angular velocity of the angular velocity sensor.
  • a more accurate final angle can be obtained by using the weighted average of the angle calculated by integrating twice at and the angle calculated by integrating once by the angular velocity sensor.
  • the spine posture measurement sensor 110 is a 3-axis sensor to measure the roll, pitch, and angle of the yaw, angular velocity, and angular acceleration at the point where the spine posture measurement sensor 110 is attached. It may include a tri-axial accelerometer sensor. In addition, the spine posture measurement sensor 110 may further include a gyroscope sensor and a magnetometer sensor in order to increase the precision of the measurement data value.
  • the spine motion analysis system may further include an EMG sensor 111 (EMG, Electromyography sensor), and an abdominal pressure sensor 112 (ABT, Abdominal Bracing Trainer sensor). 2 and 3, the EMG sensor 111 is attached to the trunk muscle and can measure the activity of the trunk muscle.
  • EMG Electromyography sensor
  • ABT Abdominal Bracing Trainer sensor
  • the EMG sensors 111 may be composed of six including four sensors attached to the abdomen, and each two are symmetrical to the rectus abdominis muscles, obliquus abdominis muscles, and erector spinae muscles. It can be attached to measure the activity of each muscle muscle. However, the number and location of the EMG sensors 111 are not limited thereto, and may be changed according to the type of trunk muscle to be measured and the number of trunk muscles. For example, the EMG sensor 111 may be attached to an internal oblique muscle, an external oblique muscle, and an erector spinae muscle among trunk muscles.
  • the abdominal pressure sensor 112 may be formed of a belt-shaped sensor worn on the abdomen, and may measure abdominal pressure through the abdominal pressure sensor 112. The abdominal pressure measured by the abdominal pressure sensor 112 may be reflected in the average activity of the trunk muscles.
  • the spine motion analysis system evaluates the state of the spine through the spine posture measurement sensor 110, the EMG sensor 111, and the abdominal pressure sensor 112 to evaluate the vertebral lordosis and stability. You can provide feedback that can increase your performance.
  • the EMG sensor 111 and the abdominal pressure sensor 112 may be omitted and used as necessary.
  • the parameter derivation unit 120 is capable of deriving a first parameter through data measured by the spine posture measurement sensor 110, and the control unit 130 is the parameter derivation unit 120 ), the state of the spine can be determined by analyzing the first parameter.
  • the parameter derivation unit 120 may calculate and combine data measured through the spine posture measurement sensor 110 to derive a first parameter.
  • the spine motion analysis system includes the EMG sensor 111 and the abdominal pressure sensor 112
  • the parameter derivation unit 120 includes the spine posture measurement sensor 110 and the EMG
  • a first parameter may be derived from one or more of data measured by the sensor 111 and the abdominal pressure sensor 112, and the spine posture measurement sensor 110, the EMG sensor 111, and the abdomen
  • the first parameter may be derived by calculating and combining data measured by the pressure sensor 112.
  • the first parameter derived through the parameter derivation unit 120 may be a spinal lordosis angle, an average spinal lordosis angle, a spinal lordosis angular velocity, and a square average vertebral lordosis angular velocity.
  • 4(a) shows the spine lordosis angle
  • the spine lordosis angle may be an angle difference between two points measured through the spine posture measurement sensor 110.
  • the spinal posture measurement sensor 110 may be attached to two or more of the thoracic, lumbar, and sacral spines.
  • 4B is an equation representing the average spinal lordosis angle
  • the average spinal lordosis angle may be a value obtained by integrating the spinal lordosis angle for a specified time interval and dividing it by a specified time interval.
  • 4(c) is an equation representing the lordosis angular velocity of the spine, and the lordosis angular velocity of the vertebrae can be obtained by differentiating the lordosis angle of the spine.
  • Fig.4(d) is an equation representing the square mean vertebral lordosis angular velocity
  • the square mean vertebral lordosis angular velocity is the vertebral lordosis angular velocity obtained by differentiating the vertebral lordosis angle by squaring and integrating for a specified time interval, and It may be a value obtained by taking a square root after dividing by an interval.
  • the first parameter is not limited thereto, and may be various parameters.
  • the first parameter may be a minimum vertebral lordosis angle and a maximum vertebral lordosis angle, which are minimum and maximum values of the vertebral lordosis angle measured during a specific time, and may be an initial vertebral lordosis angle, which is the vertebral lordosis angle immediately before performing a specific motion. .
  • the first parameter may be the average bending angular velocity defined as the absolute value of the average vertebral lordosis angular velocity during a time period in which the vertebral lordosis angular velocity is negative, and is defined as the minimum value in which the vertebral lordosis angular velocity is negative during a specific time or specific motion. It may also be the maximum bending angular velocity to be obtained. (Here, the average bending angular velocity and the maximum bending angular velocity may not exist when the angular velocity of the lordosis does not occur within a corresponding time or motion.)
  • the first parameter may be an instantaneous vertebral lordosis angle and an instantaneous vertebral lordosis angular velocity
  • the instantaneous vertebral lordosis angle represents the vertebral lordosis angle at a specified time point
  • the instantaneous vertebral lordosis angular velocity represents the vertebral lordosis angular velocity at a specified time point.
  • the instantaneous vertebral lordosis angle and the instantaneous vertebral lordosis angular velocity are not calculated as an average between specified time intervals, but are obtained at a specified time point (corresponding time point). Can be.
  • the instantaneous vertebral lordosis angular velocity can be obtained by setting a very short interval between specified time intervals. For example, the specified time interval may be about 0.025 seconds.
  • the first parameter may be a range of motion of a spine in a roll direction defined as a difference between a maximum vertebral lordosis angle and a minimum vertebral lordosis angle during a specific time interval or a specific exercise duration.
  • the roll direction spine range of motion is the maximum spinal lordosis angle (max ⁇ lumbar lordosis(t i ⁇ t ⁇ t f ) ⁇ ) and the minimum spine between specific motions or time intervals. It can be obtained by the difference of the lordosis angle (min ⁇ lumbar lordosis(t i ⁇ t ⁇ t f ) ⁇ ), and in the case of cyclic motion such as walking, the difference between the maximum vertebral lordosis angle and the minimum vertebral lordosis angle within one cycle It may be what is saved. (Here, t i : initial time of motion, t f : final time of motion.)
  • the first parameter is average spine lateral bending, minimum spine lateral bending, maximum spine lateral bending, initial spine lateral bending, average spine axial twist, minimum spine axial twist, maximum spine axial twist, initial spine axial twist, average extension angular velocity, Maximum extension angular velocity, square mean spine lateral bending angular velocity, mean spine lateral bending angular velocity, maximum lateral bending angular velocity, square mean spine axial twist angular velocity, mean spine axial twist angular velocity, maximum axial twist angular velocity, square mean vertebral lordosis angular acceleration, mean bending angular acceleration, Maximum bending angular acceleration, average extension angular acceleration, maximum extension angular acceleration, square mean spine lateral bending angular acceleration, mean spine lateral bending angular acceleration, maximum spine lateral bending angular acceleration, pitch direction range of motion, square mean spine axial twist angular acceleration, mean spine axial twist angular acceleration, It can be the maximum spinal axial twist angular acceleration,
  • the parameter derivation unit 120 may derive a plurality of first parameters, combine a plurality of first parameters to derive a second parameter, and the control unit 130 is a second parameter. Analysis of the spine can also be determined.
  • the second parameter may be derived by combining a plurality of first parameters, and the second parameter may be a spinal lordosis robustness index.
  • 4(e) shows the spinal lordosis robustness index, and the spinal lordosis robustness index may be derived through the average vertebral lordosis angle and the square average vertebral lordosis angular velocity, which are first parameters.
  • the spinal lordosis robustness index may be a value obtained by dividing the average vertebral lordosis angle by the square average vertebral lordosis angular velocity.
  • the spinal lordosis robustness index is an index indicating how well lordosis is maintained during a specified time or during exercise of the spine.
  • the unit of the vertebral lordosis robustness index is'second', and the higher the lordosis of the spine becomes larger and stable during the time or exercise, the higher the value. In other words, the better the lordosis of the spine is stably maintained, the higher the index of lordosis robustness is.
  • the second parameter may be an instantaneous spinal lordosis robustness index.
  • the instantaneous vertebral lordosis robustness index may be derived through a value obtained by dividing the instantaneous vertebral lordosis angle by the instantaneous vertebral lordosis angular velocity.
  • the spine motion analysis system may further include a feedback unit 140.
  • the control unit 130 can determine the state of the spine through a first parameter, a second parameter, etc., and the feedback unit 140 receives the information determined by the control unit 130, Through the received information, a signal can be transmitted to the subject.
  • the feedback unit 140 may include a wireless transmitter 141, a wireless receiver 142, and an operation unit 143.
  • the wireless transmission unit 141 is capable of transmitting the information determined by the control unit 130 to the wireless reception unit 142.
  • the spine posture measurement sensor 110, the EMG sensor 111, and the abdominal pressure sensor 112 may also wirelessly transmit data to the parameter derivation unit 120, and the parameter derivation unit 120 Parameter information may be wirelessly transmitted to the controller 130.
  • the feedback unit 140 may also receive a signal from the control unit 130 wirelessly, and may transmit a signal wirelessly.
  • the wireless receiver 142 may receive information from the wireless transmitter 141 and transmit information to the operation unit 143, and the wireless receiver 142 may be a wearable device, a mobile device, or the like. .
  • the operation unit 143 may receive information from the wireless reception unit 142 and transmit a signal to the subject based on this.
  • the operation unit 143 may be a device that generates sound or may be a device that transmits vibration to a subject.
  • the operation unit 143 is not limited thereto, and may be a variety of devices as long as the subject can recognize a signal.
  • the operation unit 143 may be a device for activating the trunk muscle or a device for adjusting abdominal pressure.
  • the operation unit 143 may be provided in the EMG sensor 111 or the abdominal pressure sensor 112, and the operation unit 143 may detect the trunk muscle through information determined by the control unit 130. It can also provide feedback to activate or regulate abdominal pressure.
  • Figure 5 illustrates the spinal lordosis robustness index according to various motions through a motion analysis system according to an embodiment of the present invention.
  • Figure 5 is a sitting and standing on a chair (CS), bending the back (BO), knee bending to pick up (SD), walking (W), stairs up and down (WUS), Squat (S), Wall Plank and Roll ( WPR), Tripod stability (TS) It represents the measurement of the spinal lordosis robustness index for eight dynamic motions.
  • the motion showing the highest spinal lordosis robustness index among the eight motions is WPR
  • the motion showing the lowest spinal lordosis robustness index among seven motions excluding TS was measured by bending the waist and picking up.
  • the male spinal lordosis robustness index was 2.51 ⁇ 1.53s and the female was 2.94 ⁇ 1.27s.
  • the index of vertebral lordosis robustness in men was 0.12 ⁇ 0.35s, and 0.22 ⁇ 0.19s in women.
  • the spine motion analysis system may determine the state of the spine of the testee through the spine lordosis robustness index as described above, and may provide feedback to the testee through this. For example, if the spinal lordosis robustness index is 0.4s or less during a specific motion or a specific time period, feedback such as an alarm may be provided to the user to increase the vertebral lordosis and activate the trunk muscles to perform lumbar stabilization. (Here, the spinal lordosis robustness index, which is a criterion for performing feedback, may be differently defined according to a specific motion and a specific time.)
  • the cause of the low vertebral lordosis robustness index is that the average vertebral lordosis angle is small, a signal to straighten the back can be sent, and the reason that the vertebral lordosis robustness index is low is because the vertebral instability is large and the square mean vertebral lordosis angular velocity is high. If it is because of its size, you can also give feedback to stabilize the spine by applying force to the trunk muscles.
  • the spine motion analysis system may determine the state of the spine by analyzing the first parameter and the second parameter by the control unit 130, and accordingly, may send a feedback to the subject.
  • the criterion for determining the state of the spine through the first parameter and the second parameter by the control unit 130 may be changed according to the type of the first parameter and the second parameter.
  • the index value for men may be measured as 5.00 ⁇ 11.56° and the index value for women may be measured as 12.01 ⁇ 10.38°. From this, feedback to straighten the back can be provided when the average vertebral lordosis angle is less than 8° for men and 15° for women.
  • the male index value was 44.36 ⁇ 13.46°/s
  • the female index value was 56.12 ⁇ 11.64°. From this, when the mean square lordosis angular velocity is 40°/s for men and 50°/s for women, it is possible to provide feedback to stabilize the spine by applying force to the trunk muscles.
  • a method of analyzing spine motion through the spine motion analysis system according to the embodiment of the present invention is as follows.
  • the spine motion analysis method according to the embodiment of the present invention determines the spine condition through the spine motion analysis system according to the above-described embodiment of the present invention, and the configuration used in the spine motion analysis method is the same as the spine motion analysis system. Detailed description is omitted.
  • the features of the spine motion analysis system according to the embodiment of the present invention described above can be applied to all of the spine motion analysis method according to the embodiment of the present invention to be described later.
  • a method for analyzing spine motion includes a data collection step (S110), a first parameter derivation step (S120), and a determination step (S140).
  • the data collection step (S110) is attached to one or more of the thoracic, lumbar, and sacral vertebrae, and can measure the posture and movement of the attached point in the roll, pitch, and yaw direction. This is a step of collecting data through the spine posture measurement sensor 110.
  • the spine posture measurement sensor 110 may include a tri-axial accelerometer sensor, a gyroscope sensor, and a magnetometer sensor.
  • an EMG sensor 111 attached to the trunk muscle and capable of measuring the activity of the trunk muscle, and an abdominal pressure sensor 112 attached to the abdomen and capable of measuring abdominal pressure. It may include the step of collecting data through.
  • data may be collected from one or more of the spine posture measurement sensor 110, the EMG sensor 111, and the abdominal pressure sensor 112, and if necessary, the EMG The sensor 111 and the abdominal pressure sensor 112 may not be used.
  • the first parameter derivation step (S120) is a step of deriving a first parameter from the data measured in the data collection step (S110) through the parameter derivation unit 120, and the determination step (S130) is the first parameter This is a step of determining the state of the spine of the subject through the control unit 130 that can determine the state of the spine.
  • any one of data measured by the spine posture measurement sensor 110, the EMG sensor 111, and the abdominal pressure sensor 112 through the parameter derivation unit 120 can be derived from the above data.
  • the method for analyzing spine motion may further include a second parameter derivation step (S130) and a feedback step (S140 ).
  • a second parameter derivation step (S130) In the first parameter derivation step (S120), a plurality of first parameters may be derived through the parameter derivation unit 120, and the second parameter derivation step (S130) is performed by the parameter derivation unit 120. This is a step of combining the second parameters by combining the first parameters.
  • the step of determining (S140) may determine the state of the spine by analyzing the second parameter through the control unit 130.
  • the feedback step (S150) is a step of receiving the information determined through the determination step (S140) and transmitting a signal to the subject through the received information.
  • the feedback step (S150) may be performed through the feedback unit 140 of the above-described spinal motion analysis system, and the feedback unit 140 includes a wireless transmission unit 141, a wireless reception unit 142, and an operation unit 143. It may include. Since the feedback unit 140 has been described above in the spine motion analysis system according to an embodiment of the present invention, a detailed description will be omitted.
  • the first parameter and the second parameter of the spine motion analysis method according to the embodiment of the present invention are the same as the first parameter and the second parameter of the spine motion analysis system according to the embodiment of the present invention.
  • the first parameter may be a spinal lordosis angle, an average spinal lordosis angle, a spinal lordosis angular velocity, and a square average vertebral lordosis angular velocity.
  • 4(a) is an equation representing the spine lordosis angle
  • the spine lordosis angle may be an angle difference between two points measured through the spine posture measurement sensor 110.
  • the spinal posture measurement sensor 110 may be attached to two or more of the thoracic, lumbar, and sacral spines.
  • 4B is an equation representing the average spinal lordosis angle
  • the average spinal lordosis angle may be a value obtained by integrating the spinal lordosis angle for a specified time interval and dividing it by a specified time interval.
  • 4(c) is an equation representing the lordosis angular velocity of the spine, and the lordosis angular velocity of the vertebrae can be obtained by differentiating the lordosis angle of the spine.
  • Fig. 4(d) is an equation representing the mean square lordosis angular velocity, wherein the square mean vertebral lordosis angular velocity is the vertebral lordosis angular velocity obtained by differentiating the vertebral lordosis angle by squaring and integrating it for a specified time interval. It may be a value obtained by dividing by and taking the square root.
  • the first parameter is not limited thereto, and may be various parameters.
  • the first parameter may be a minimum and maximum vertebral lordosis angle and a maximum vertebral lordosis angle, which are the minimum and maximum values of the vertebral lordosis angle measured during a specific time, and may be an initial vertebral lordosis angle, which is the vertebral lordosis angle just before performing a specific motion. .
  • the first parameter may be the average bending angular velocity defined as the absolute value of the average vertebral lordosis angular velocity during a time period in which the vertebral lordosis angular velocity is negative, and is defined as the minimum value in which the vertebral lordosis angular velocity is negative during a specific time or during a specific motion. It may also be the maximum bending angular velocity to be obtained. (Here, the average bending angular velocity and the maximum bending angular velocity may not exist when the angular velocity of the spine does not occur within a corresponding time or motion.)
  • the first parameter may be an instantaneous vertebral lordosis angle and an instantaneous vertebral lordosis angular velocity
  • the instantaneous vertebral lordosis angle represents the vertebral lordosis angle at a specified time point
  • the instantaneous vertebral lordosis angular velocity represents the vertebral lordosis angular velocity at a specified time point.
  • the instantaneous vertebral lordosis angle and the instantaneous vertebral lordosis angular velocity are not obtained as an average between specified time intervals, but obtained at a specified time point (corresponding time point). Can be.
  • the instantaneous vertebral lordosis angular velocity can be obtained by setting a very short interval between specified time intervals. For example, the specified time interval can be about 0.025 seconds.
  • the first parameter may be a range of motion of a spine in a roll direction defined as a difference between a maximum vertebral lordosis angle and a minimum vertebral lordosis angle during a specific time interval or a specific exercise duration.
  • the roll direction spine range of motion is the maximum spinal lordosis angle (max ⁇ lumbar lordosis(t i ⁇ t ⁇ t f ) ⁇ ) and the minimum spine between specific motions or time intervals. It can be obtained by the difference of the lordosis angle (min ⁇ lumbar lordosis(t i ⁇ t ⁇ t f ) ⁇ ), and in the case of cyclic motion such as walking, the difference between the maximum vertebral lordosis angle and the minimum vertebral lordosis angle within one cycle It may be what is saved. (Here, t i : initial time of motion, t f : final time of motion.)
  • the first parameter is average spine lateral bending, minimum spine lateral bending, maximum spine lateral bending, initial spine lateral bending, average spine axial twist, minimum spine axial twist, maximum spine axial twist, initial spine axial twist, average extension angular velocity, Maximum extension angular velocity, square mean spine lateral bending angular velocity, mean spine lateral bending angular velocity, maximum lateral bending angular velocity, square mean spine axial twist angular velocity, mean spine axial twist angular velocity, maximum axial twist angular velocity, square mean vertebral lordosis angular acceleration, mean bending angular acceleration, Maximum bending angular acceleration, average extension angular acceleration, maximum extension angular acceleration, square mean spine lateral bending angular acceleration, mean spine lateral bending angular acceleration, maximum spine lateral bending angular acceleration, pitch direction range of motion, square mean spine axial twist angular acceleration, mean spine axial twist angular acceleration, It may be the maximum spinal axial twist angular velocity,
  • the second parameter may be derived by combining a plurality of first parameters, and the second parameter may be a spinal lordosis robustness index.
  • 4(e) shows the spinal lordosis robustness index, and the spinal lordosis robustness index may be derived through the average vertebral lordosis angle and the square average vertebral lordosis angular velocity, which are first parameters.
  • the spinal lordosis robustness index may be a value obtained by dividing the average vertebral lordosis angle by the square average vertebral lordosis angular velocity.
  • the spinal lordosis robustness index is an index indicating how well lordosis is maintained during a specified time or during exercise of the spine.
  • the unit of the vertebral lordosis robustness index is'second', and the higher the lordosis of the spine becomes larger and stable during the time or exercise, the higher the value. In other words, the better the lordosis of the spine is stably maintained, the higher the index of lordosis robustness is.
  • the second parameter may be an instantaneous vertebral lordosis robustness index.
  • the instantaneous vertebral lordosis robustness index may be derived through a value obtained by dividing the instantaneous vertebral lordosis angle by the instantaneous vertebral lordosis angular velocity.
  • first parameter and the second parameter are not limited thereto, and other parameters may be used. Since the first parameter and the second parameter have been described above in the spine motion analysis system according to an exemplary embodiment of the present invention, detailed descriptions will be omitted.
  • the spine motion analysis system and spine motion analysis method according to an embodiment of the present invention have the following effects.
  • the conventional spine motion analysis system used a method of giving feedback to a subject when the posture of the spine, such as a spine angle, exceeds a specific range without dynamic analysis of the spine.
  • a method of giving feedback to a subject when the posture of the spine, such as a spine angle, exceeds a specific range without dynamic analysis of the spine does not provide a quantitative index, and there is a problem in that it does not reflect the dynamic analysis of the spine.
  • biomechanical measurement method is used, but biomechanical measurement method has the disadvantage that it takes up a lot of time, labor, and space, and the posture and movement measured in a specific time and environment are There was a problem in not reflecting posture and movement.
  • biomechanical measurement method since the biomechanical measurement method requires a complex model and a large number of input constants for each individual, there is a problem that it is difficult to use it for individual spine status determination.
  • the spine motion analysis system and spine motion analysis method include spinal lordosis, spinal stability index, and spinal instability through any one or more of data measured through a spine posture measurement sensor, an electromyogram sensor, and an abdominal pressure sensor.
  • a first parameter such as an index
  • a second parameter by combining the first parameter.
  • the spine motion analysis system and spine motion analysis method according to the embodiment of the present invention can be applied to the public without individual input constants as the spine condition is determined through the first parameter and the second parameter. It has the advantage of enabling quantitative analysis of spine status through 2 parameters.
  • the spine motion analysis system and spine motion analysis method include kinematic parameters (vertebral posture, angular velocity, angular acceleration, etc.) and kinematic parameters by adding an EMG sensor or an abdominal pressure sensor.
  • kinematic parameters verbral posture, angular velocity, angular acceleration, etc.
  • abdominal pressure sensor an EMG sensor or an abdominal pressure sensor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Physiology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rheumatology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

The present invention relates to a spinal motion analysis system and a spinal motion analysis method. The spinal motion analysis system comprises: a spinal posture measurement sensor, which is attached to at least any one point from among the thoracic vertebrae, the lumbar vertebrae, and the sacral vertebrae and can measure the positioning and the motions of the attached point in roll, pitch, and yaw directions; a parameter derivation unit capable of deriving a first parameter on the basis of data measured by the spinal posture measurement sensor; and a control unit for determining a spinal state by analyzing the first parameter derived through the parameter derivation unit, and the spinal motion analysis method comprises: a data collection step of collecting data through the spinal posture measurement sensor; a first parameter derivation step of deriving the first parameter through the parameter derivation unit; and a determination step of determining the spinal state of a subject through the control unit.

Description

척추 동작 분석 시스템 및 척추 동작 분석 방법Spinal motion analysis system and spine motion analysis method
본 발명은 척추 동작 분석 시스템 및 척추 동작 분석 방법에 관한 것으로, 더욱 상세하게는 척추 자세 측정 센서, 근전도 센서, 복부 압력 센서를 통해 측정된 데이터 중 어느 하나 이상의 데이터를 통해 파라미터를 도출하여 척추 상태를 판별할 수 있는 척추 동작 분석 시스템 및 척추 동작 분석 방법에 관한 것이다. The present invention relates to a spine motion analysis system and a spine motion analysis method, and more particularly, to determine a spine condition by deriving a parameter from one or more of data measured through a spine posture measurement sensor, an EMG sensor, and an abdominal pressure sensor. It relates to a spinal motion analysis system and a spinal motion analysis method that can be identified.
일반적으로 70-85%의 인구가 일생 중 한 번 이상 요통을 경험하며, 요통의 연간 유병률은 15-45%, 특정 시점의 평균 유병률은 30%에 이를 정도로 매우 많은 수의 사람이 요통을 경험한다. 요통은 평생 유병률이 매우 높을 뿐 아니라 통증과 활동 제약으로 삶의 질을 떨어뜨리며, 경제 활동을 저해하는 문제가 있다. In general, a very large number of people experience low back pain, with 70-85% of the population experiencing back pain at least once in their lifetime, with an annual prevalence of back pain of 15-45% and an average prevalence of 30% at any given time. . Not only is the prevalence of low back pain very high in life, but there is also a problem that lowers the quality of life due to pain and activity restrictions, and hinders economic activity.
따라서 요통을 예방하고 치료하는 것이 삶의 질을 개선하고, 노동력 상실로 인한 경제적 어려움을 최소화하는 매우 중요한 과제이다. 요통을 일으키는 척추 질환은 작은 종판(endplate) 손상 또는 섬유륜 파열(annular tear)에서 시작하여 일생 동안 지속적인 재손상과 불완전한 회복의 반복으로 질병이 진행된다. Therefore, preventing and treating back pain is a very important task in improving the quality of life and minimizing the economic difficulties caused by the loss of labor. Spinal disease that causes low back pain begins with a small endplate injury or annular tear and progresses through a repetition of continuous re-injury and incomplete recovery throughout life.
잘못된 자세와 움직임은 mechanical connective soft tissue(MCST)를 손상시키며, MCST 병변이 자세와 움직임에 영향을 미친다. 그러므로 자세와 움직임을 정량적으로 측정할 수 있다면 MCST 병변을 평가하는데 큰 도움이 된다. 그러나 생체역학적(biomechanical) 측정 방법은 시간과 노동력, 공간을 많이 차지한다는 단점이 있고, 특정 시간과 환경에서 측정된 자세와 움직임이 개인의 일상적인 자세와 움직임을 반영한다고 보기 어려워 임상적으로 널리 쓰이지 못하는 문제가 있다. Incorrect posture and movement damage mechanical connective soft tissue (MCST), and MCST lesions affect posture and movement. Therefore, if posture and movement can be quantitatively measured, it is very helpful in evaluating MCST lesions. However, the biomechanical measurement method has the disadvantage of taking up a lot of time, labor, and space, and it is not widely used clinically because it is difficult to see that the posture and movement measured at a specific time and environment reflect the individual's daily posture and movement. There is a problem that cannot be done.
이에 일상생활 및 업무 상황에서 자세와 움직임을 측정할 수 있는 센서 시스템을 개발이 필요하며, 센서 시스템을 통해 얻은 데이터를 분석하여 척추의 상태를 판별할 수 있는 생체역학 지표 개발이 필요한 실정이다. Accordingly, it is necessary to develop a sensor system that can measure posture and movement in everyday life and work situations, and it is necessary to develop a biomechanical index that can determine the state of the spine by analyzing data obtained through the sensor system.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 더욱 상세하게는 척추 자세 측정 센서, 근전도 센서, 복부 압력 센서를 통해 측정된 데이터 중 어느 하나 이상의 데이터를 통해 파라미터를 도출하여 척추 상태를 판별할 수 있는 척추 동작 분석 시스템 및 척추 동작 분석 방법에 관한 것이다. The present invention is to solve the above-described problem, and in more detail, it is possible to determine the state of the spine by deriving a parameter through one or more of data measured through a spine posture measurement sensor, an EMG sensor, and an abdominal pressure sensor. It relates to a spinal motion analysis system and a spinal motion analysis method.
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 시스템은, 흉추, 요추, 천추 중 어느 한 지점 이상에 부착되며, 부착된 지점의 롤(roll), 피치(pitch), 요(yaw) 방향의 자세 및 움직임을 측정할 수 있는 척추 자세 측정 센서; 상기 척추 자세 측정 센서에서 측정된 데이터를 통해 제1파라미터를 도출할 수 있는 파라미터 도출부; 상기 파라미터 도출부를 통해 도출된 제1파라미터를 분석하여 척추 상태를 판별하는 제어부;를 포함하는 것을 특징으로 하는 것이다.The spinal motion analysis system of the present invention for solving the above-described problem is attached to at least one of the thoracic, lumbar, and sacral vertebrae, and is attached to the roll, pitch, and yaw direction. A spinal posture measurement sensor capable of measuring posture and movement; A parameter derivation unit capable of deriving a first parameter through data measured by the spine posture measurement sensor; And a control unit for determining a state of the spine by analyzing the first parameter derived through the parameter derivation unit.
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 시스템의 상기 척추 자세 측정 센서는, 3축 가속도(tri-axial accelerometer) 센서, 자이로스코프(gyroscope) 센서, 자력계(magnetometer) 센서를 포함할 수 있다. The spine posture measurement sensor of the spine motion analysis system of the present invention for solving the above-described problem may include a tri-axial accelerometer sensor, a gyroscope sensor, and a magnetometer sensor. .
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 시스템은 체간근에 부착되며, 체간근의 활성도를 측정할 수 있는 근전도 센서와, 복부에 부착되며, 복부의 복압을 측정할 수 있는 복부 압력 센서를 더 포함하며, 상기 파라미터 도출부는, 상기 척추 자세 측정 센서, 상기 근전도 센서, 상기 복부 압력 센서에서 측정된 데이터 중 어느 하나 이상의 데이터를 통해 제1파라미터를 도출할 수 있다. The spinal motion analysis system of the present invention for solving the above-described problems includes an EMG sensor that is attached to the trunk muscle and can measure the activity of the trunk muscle, and an abdominal pressure sensor that is attached to the abdomen and can measure abdominal pressure. It further includes, wherein the parameter derivation unit may derive the first parameter through at least one of data measured by the spine posture measurement sensor, the EMG sensor, and the abdominal pressure sensor.
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 시스템의 상기 파라미터 도출부는, 복수 개의 제1파라미터를 도출하고, 복수 개의 상기 제1파라미터를 조합하여 제2파라미터를 도출하며, 상기 제어부는, 상기 제2파라미터를 분석하여 척추 상태를 판별할 수 있다. The parameter derivation unit of the spine motion analysis system of the present invention for solving the above-described problem derives a plurality of first parameters, combines the plurality of first parameters to derive a second parameter, and the control unit comprises: By analyzing the second parameter, the state of the spine can be determined.
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 시스템의 상기 척추 자세 측정 센서는 두 지점 이상에 부착되며, 상기 제1파라미터는, 평균 척추 전만 각도와 제곱 평균 척추 전만 각속도이며, 상기 평균 척추 전만 각도는, 상기 척추 자세 측정 센서를 통해 두 지점에서 측정된 각도의 차이 값인 척추 전만 각도를 지정된 시간 간격에 대하여 적분하고, 지정된 시간 간격으로 나눈 값이며, 상기 제곱 평균 척추 전만 각속도는, 상기 척추 전만 각도를 미분한 척추 전만 각속도를 제곱하여 지정된 시간 간격에 대하여 적분하고, 지정된 시간 간격으로 나눈 이후 제곱근을 취한 값일 수 있다. The spinal posture measurement sensor of the spinal motion analysis system of the present invention for solving the above-described problem is attached to two or more points, and the first parameter is an average spinal lordosis angle and a square average spinal lordosis angular velocity, and the average spinal lordosis The angle is a value obtained by integrating the vertebral lordosis angle, which is the difference between the angles measured at two points through the spine posture measurement sensor, for a specified time interval and dividing it by a specified time interval, and the square mean vertebral lordosis angular velocity is, It may be a value obtained by taking the square root after dividing the angular velocity for a specified time interval by squaring the angular velocity of the vertebrae from which the angle was differentiated, and dividing it by the specified time interval.
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 시스템의 상기 제2파라미터는, 척추 전만 강건성 지표이며, 상기 척추 전만 강건성 지표는, 상기 평균 척추 전만 각도를 상기 제곱 평균 척추 전만 각속도로 나눈 값일 수 있다. The second parameter of the spinal motion analysis system of the present invention for solving the above-described problem is a spinal lordosis robustness index, and the spinal lordosis robustness index is a value obtained by dividing the average spinal lordosis angle by the square average spinal lordosis angular velocity. have.
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 시스템의 상기 제1파라미터는, 순간 척추 전만 각도와 순간 척추 전만 각속도이며, 상기 순간 척추 전만 각도는, 지정 시점의 척추 전만 각도를 나타내며, 상기 순간 척추 전만 각속도는 지정 시점의 척추 전만 각속도일 수 있다. The first parameter of the spine motion analysis system of the present invention for solving the above-described problem is an instantaneous vertebral lordosis angle and an instantaneous vertebral lordosis angular velocity, and the instantaneous vertebral lordosis angle represents a spine lordosis angle at a specified time point, The spinal lordosis angular velocity may be the spinal lordosis angular velocity at a designated time point.
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 시스템의 상기 제2파라미터는, 순간 척추 전만 강건성 지표이며, 상기 순간 척추 전만 강건성 지표는, 상기 순간 척추 전만 각도를 상기 순간 척추 전만 각속도로 나눈 값일 수 있다. The second parameter of the spine motion analysis system of the present invention for solving the above-described problem is an instantaneous vertebral lordosis robustness index, and the instantaneous vertebral lordosis robustness index is a value obtained by dividing the instantaneous vertebral lordosis angle by the instantaneous vertebral lordosis angular velocity. I can.
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 시스템의 상기 제1파라미터는, 롤 방향 척추 range of motion 이며, 상기 롤 방향 척추 range of motion은, 특정 시간 간격 또는 특정 운동 진행 시간 동의 최대 척추 전만 각도와 최소 척추 전만 각도의 차일 수 있다. The first parameter of the spinal motion analysis system of the present invention for solving the above-described problem is a roll direction spine range of motion, and the roll direction spine range of motion is a maximum spinal dystrophy with a specific time interval or a specific motion progress time. It may be the difference between the angle and the minimum spinal lordosis angle.
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 시스템은 상기 제어부에서 판별된 정보를 수신하며, 수신된 정보를 통해 피측정자에게 신호를 전달할 수 있는 피드백부를 더 포함할 수 있다. The spine motion analysis system of the present invention for solving the above-described problem may further include a feedback unit that receives information determined by the control unit and transmits a signal to a subject through the received information.
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 방법은, 흉추, 요추, 천추 중 어느 한 지점 이상에 부착되며, 부착된 지점의 롤(roll), 피치(pitch), 요(yaw) 방향의 자세 및 움직임을 측정할 수 있는 척추 자세 측정 센서를 통해 데이터를 수집하는 데이터 수집 단계; 파라미터 도출부를 통해 상기 데이터 수집 단계에서 측정된 데이터에서 제1파라미터를 도출하는 제1파라미터 도출 단계; 상기 제1파라미터를 통해 척추 상태를 판별할 수 있는 제어부를 통해 피측정자의 척추 상태를 판별하는 판별 단계;를 포함하는 것을 특징으로 하는 것이다. The spine motion analysis method of the present invention for solving the above-described problem is attached to at least one of the thoracic, lumbar, and sacral vertebrae, and is attached to the roll, pitch, and yaw direction. A data collection step of collecting data through a spinal posture measurement sensor capable of measuring posture and movement; A first parameter derivation step of deriving a first parameter from the data measured in the data collection step through a parameter derivation unit; And a determination step of determining the state of the spine of the subject through a control unit capable of determining the state of the spine through the first parameter.
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 방법의 상기 척추 자세 측정 센서는, 3축 가속도(tri-axial accelerometer) 센서, 자이로스코프(gyroscope) 센서, 자력계(magnetometer) 센서를 포함할 수 있다. The spine posture measurement sensor of the spine motion analysis method of the present invention for solving the above-described problem may include a tri-axial accelerometer sensor, a gyroscope sensor, and a magnetometer sensor. .
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 방법의 상기 데이터 수집 단계는, 체간근에 부착되며, 체간근의 활성도를 측정할 수 있는 근전도 센서와, 복부에 부착되며, 복부의 복압을 측정할 수 있는 복부 압력 센서를 통해 데이터를 수집하는 단계를 포함하며, 상기 제1파라미터 도출 단계는, 상기 파라미터 도출부를 통해 상기 척추 자세 측정 센서, 상기 근전도 센서, 상기 복부 압력 센서에서 측정된 데이터 중 어느 하나 이상의 데이터를 통해 제1파라미터를 도출할 수 있다. The data collection step of the spinal motion analysis method of the present invention for solving the above-described problem includes an EMG sensor attached to the trunk muscle and capable of measuring the activity of the trunk muscle, and attached to the abdomen, and measuring abdominal pressure. And collecting data through an abdominal pressure sensor capable of performing, and the step of deriving the first parameter may include any one of data measured by the spinal posture measurement sensor, the EMG sensor, and the abdominal pressure sensor through the parameter derivation unit. The first parameter may be derived from one or more data.
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 방법의 상기 제1파라미터 도출 단계는, 상기 파라미터 도출부를 통해 복수 개의 제1파라미터를 도출하며, 상기 파라미터 도출부를 통해 복수 개의 상기 제1파라미터를 조합하여 제2파라미터를 조합하는 제2파라미터 도출 단계;를 더 포함하며, 상기 판별 단계는, 상기 제어부를 통해 상기 제2파라미터를 분석하여 척추 상태를 판별할 수 있다. The first parameter derivation step of the spinal motion analysis method of the present invention for solving the above-described problem is to derive a plurality of first parameters through the parameter derivation unit, and combine the plurality of first parameters through the parameter derivation unit. The second parameter derivation step of combining the second parameters by doing so may further include, wherein the determining step may determine the state of the spine by analyzing the second parameter through the control unit.
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 방법의 상기 척추 자세 측정 센서는 두 지점 이상에 부착되며, 상기 제1파라미터는, 평균 척추 전만 각도와 제곱 평균 척추 전만 각속도이며, 상기 평균 척추 전만 각도는, 상기 척추 자세 측정 센서를 통해 두 지점에서 측정된 각도의 차이 값인 척추 전만 각도를 지정된 시간 간격에 대하여 적분하고, 지정된 시간 간격으로 나눈 값이며, 상기 제곱 평균 척추 전만 각속도는, 상기 척추 전만 각도를 미분한 척추 전만 각속도를 제곱하여 지정된 시간 간격에 대하여 적분하고, 지정된 시간 간격으로 나눈 이후 제곱근을 취한 값일 수 있다. The spinal posture measurement sensor of the spinal motion analysis method of the present invention for solving the above-described problem is attached to two or more points, and the first parameter is an average spinal lordosis angle and a square average spinal lordosis angular velocity, and the average spinal lordosis The angle is a value obtained by integrating the vertebral lordosis angle, which is the difference between the angles measured at two points through the spine posture measurement sensor, for a specified time interval and dividing it by a specified time interval, and the square mean vertebral lordosis angular velocity is, It may be a value obtained by taking the square root after dividing the angular velocity for a specified time interval by squaring the angular velocity of the vertebral vertebrae from which the angle was differentiated, and dividing it by the specified time interval.
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 방법의 상기 제2파라미터는, 척추 전만 강건성 지표이며, 상기 척추 전만 강건성 지표는, 상기 평균 척추 전만 각도를 상기 제곱 평균 척추 전만 각속도로 나눈 값일 수 있다. The second parameter of the spinal motion analysis method of the present invention for solving the above-described problem is a spinal lordosis robustness index, and the spinal lordosis robustness index is a value obtained by dividing the average spinal lordosis angle by the square average spinal lordosis angular velocity. have.
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 방법의 상기 제1파라미터는, 순간 척추 전만 각도와 순간 척추 전만 각속도이며, 상기 순간 척추 전만 각도는, 지정 시점의 척추 전만 각도를 나타내며, 상기 순간 척추 전만 각속도는 지정 시점의 척추 전만 각속도를 일 수 있다. The first parameter of the spinal motion analysis method of the present invention for solving the above-described problem is an instantaneous vertebral lordosis angle and an instantaneous vertebral lordosis angular velocity, and the instantaneous vertebral lordosis angle represents a spine lordosis angle at a specified time point, The spinal lordosis angular velocity may be the spinal lordosis angular velocity at a designated time point.
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 방법의 상기 제2파라미터는, 순간 척추 전만 강건성 지표이며, 상기 순간 척추 전만 강건성 지표는, 상기 순간 척추 전만 각도를 상기 순간 척추 전만 각속도로 나눈 값일 수 있다.The second parameter of the spinal motion analysis method of the present invention for solving the above-described problem is an instantaneous vertebral lordosis robustness index, and the instantaneous vertebral lordosis robustness index is a value obtained by dividing the instantaneous vertebral lordosis angle by the instantaneous vertebral lordosis angular velocity. I can.
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 방법의 상기 제1파라미터는, 롤 방향 척추 range of motion 이며, 상기 롤 방향 척추 range of motion은, 특정 시간 간격 또는 특정 운동 진행 시간 동의 최대 척추 전만 각도와 최소 척추 전만 각도의 차일 수 있다. The first parameter of the spinal motion analysis method of the present invention for solving the above-described problem is a roll direction spine range of motion, and the roll direction spine range of motion is a maximum spinal dystrophy with a specific time interval or a specific motion progress time. It may be the difference between the angle and the minimum spinal lordosis angle.
상술한 문제점을 해결하기 위한 본 발명의 척추 동작 분석 시스템은 상기 판별 단계를 통해 판별된 정보를 수신하여, 수신된 정보를 통해 피측정자에게 신호를 전달할 수 있는 피드백 단계를 더 포함할 수 있다. The spine motion analysis system of the present invention for solving the above-described problem may further include a feedback step of receiving information determined through the determination step and transmitting a signal to a subject through the received information.
본 발명은 척추 동작 분석 시스템 및 척추 동작 분석 방법에 관한 것으로, 척추 자세 측정 센서, 근전도 센서, 복부 압력 센서를 통해 측정된 데이터 중 어느 하나 이상의 데이터를 통해 척추 전만과 척추 안정성 지표, 척추 불안정성 지표 등의 제1파라미터를 도출하며, 제1파라미터를 조합하여 제2파라미터를 도출함에 따라 척추 상태를 판별할 수 있는 장점이 있다. The present invention relates to a spinal motion analysis system and a spinal motion analysis method, and the spine lordosis, spinal stability index, spinal instability index, etc. through at least one of data measured through a spine posture measurement sensor, an electromyogram sensor, and an abdominal pressure sensor. There is an advantage of being able to determine the state of the spine by deriving the first parameter of and deriving the second parameter by combining the first parameter.
또한, 본 발명은 제1파라미터 및 제2파라미터를 통해 척추 상태를 판별함에 따라 개인별 입력 상수가 없이 대중에게 적용 가능하며, 제1파라미터 및 제2파라미터를 통해 정량적인 척추 상태 분석이 가능한 장점이 있다. In addition, the present invention can be applied to the public without individual input constants by determining the state of the spine through the first parameter and the second parameter, and has the advantage of enabling quantitative analysis of the state of the spine through the first parameter and the second parameter. .
도 1은 본 발명의 실시 예에 따른 척추 자세 측정 센서가 흉추, 요추, 천추 중 어느 한 지점 이상에 부착되는 것을 나타내는 도면이다. 1 is a view showing that the spine posture measurement sensor according to an embodiment of the present invention is attached to at least one of a thoracic, lumbar, and sacral spine.
도 2는 본 발명의 실시 예에 따른 척추 자세 측정 센서, 근전도 센서, 복부 압력 센서가 피측정자에게 부착된 것을 나타내는 도면이다. 2 is a diagram illustrating that a spine posture measurement sensor, an electromyogram sensor, and an abdominal pressure sensor are attached to a subject according to an embodiment of the present invention.
도 3은 본 발명의 실시 예에 따른 척추 동작 분석 시스템의 구성도이다. 3 is a block diagram of a spine motion analysis system according to an embodiment of the present invention.
도 4(a) 내지 도 4(f)는 본 발명의 실시 예에 따른 척추 전만 각도, 평균 척추 전만 각도, 척추 전만 각속도, 제곱 평균 척추 전만 각속도, 척추 전만 강건성 지표, 롤(roll) 방향 range of motion 을 나타내는 식이다. 4(a) to 4(f) are spinal lordosis angles, average spinal lordosis angles, vertebral lordosis angular velocity, squared average lordosis angular velocity, spinal lordosis robustness index, roll direction range of according to an embodiment of the present invention. This is an expression representing motion.
도 5는 본 발명의 실시 예에 따를 척추 동작 분석 시스템을 통해 다양한 동작에서 척추 전만 강건성 지표를 도출한 것을 나타내는 도면이다. FIG. 5 is a diagram illustrating derivation of spinal lordosis robustness indicators from various motions through a spinal motion analysis system according to an embodiment of the present invention.
도 6은 본 발명의 실시 예에 따를 척추 동작 분석 방법의 공정도이다. 6 is a flowchart of a spinal motion analysis method according to an embodiment of the present invention.
이하, 본 발명의 다양한 실시 예가 첨부된 도면과 연관되어 기재된다. 본 발명의 다양한 실시 예는 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들이 도면에 예시되고 관련된 상세한 설명이 기재되어 있다. 그러나 이는 본 발명의 다양한 실시 예를 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 다양한 실시 예의 사상 및 기술 범위에 포함되는 모든 변경 및/또는 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Hereinafter, various embodiments of the present invention will be described in connection with the accompanying drawings. Various embodiments of the present invention may be modified in various ways and may have various embodiments. Specific embodiments are illustrated in the drawings and detailed descriptions thereof are provided. However, this is not intended to limit the various embodiments of the present invention to specific embodiments, and it should be understood that all changes and/or equivalents or substitutes included in the spirit and scope of the various embodiments of the present invention are included.
본 발명은 척추 동작 분석 시스템 및 척추 동작 분석 방법에 관한 것으로, 척추 자세 측정 센서, 근전도 센서, 복부 압력 센서를 통해 측정된 데이터 중 어느 하나 이상의 데이터를 통해 파라미터를 도출하여 척추 상태를 판별할 수 있는 척추 동작 분석 시스템 및 척추 동작 분석 방법에 관한 것이다. 이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 상세하게 설명하기로 한다. The present invention relates to a spine motion analysis system and a spine motion analysis method, wherein the spine condition can be determined by deriving a parameter through one or more of data measured through a spine posture measurement sensor, an EMG sensor, and an abdominal pressure sensor. It relates to a spinal motion analysis system and a spinal motion analysis method. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 실시 예에 따른 척추 동작 분석 시스템은 척추 자세 측정 센서(110), 파라미터 도출부(120), 제어부(130)를 포함한다. 도 1을 참조하면, 상기 척추 자세 측정 센서(110)는 흉추, 요추, 천추 중 어느 한 지점 이상에 부착되는 것으로, 부착된 지점의 롤(roll), 피치(pitch), 요(yaw) 방향의 자세 및 움직임을 측정할 수 있는 것이다. The spine motion analysis system according to an embodiment of the present invention includes a spine posture measurement sensor 110, a parameter derivation unit 120, and a control unit 130. Referring to FIG. 1, the spinal posture measurement sensor 110 is attached to at least one of the thoracic, lumbar, and sacral vertebrae, and is attached to the roll, pitch, and yaw direction. You can measure your posture and movement.
도 1을 참조하면, 본 발명의 실시 예에 따른 상기 척추 자세 측정 센서(110)는 3개가 도 1의 T6 지점, T12 지점, S2 지점에 부착될 수 있으나, 이에 한정되는 것은 아니며, 상기 척추 자세 측정 센서(110)의 부착 위치 및 부착 개수는 척추 상태의 측정 목적에 따라 변경될 수 있다. 다만, 상기 척추 자세 측정 센서(110)는 척추의 전만 각도(lordotic angle) 등을 측정하기 위해 2개 이상이 부착되는 것이 바람직하다. Referring to FIG. 1, three spinal posture measurement sensors 110 according to an embodiment of the present invention may be attached to points T6, T12, and S2 of FIG. 1, but are not limited thereto, and the spine posture The attachment position and the number of attachments of the measurement sensor 110 may be changed according to the purpose of measuring the state of the spine. However, it is preferable that two or more spinal posture measurement sensors 110 are attached to measure a lordotic angle of the spine.
상기 척추 자세 측정 센서(110)는 부착된 지점의 롤(roll), 피치(pitch), 요(yaw) 방향의 자세 및 움직임을 측정할 수 있는 것이다. 구체적으로, 상기 척추 자세 측정 센서(110)는 상기 척추 자세 측정 센서(110)가 부착된 지점의 롤(roll), 피치(pitch), 요(yaw)에 대한 각도, 각속도, 각가속도 등을 측정할 수 있다. (여기서, 상기 척추 자세 측정 센서(110)는 가속도 센서, 각속도 센서(gyroscope)와 각가속도 센서(accelerometer)를 포함하는 것으로, 상기 척추 자세 측정 센서(110)는 각가속도 센서를 통해 각가속도를 측정할 수 있으며 각속도 센서를 통해 각속도를 측청할 수 있다. 각가속도 센서의 각가속도를 적분하여 각속도를 구할 수 있고, 이 각속도를 적분하여 각도를 구할 수 있고, 각속도 센서의 각속도를 적분하여 각도를 구할 수 있다. 각가속도 센서에서 두 번 적분하여 계산되는 각도와 각속도 센서에서 한번 적분하여 계산되는 각도에 weighted average를 이용하여 더 정확한 최종 각도를 구할 수 있다.)The spine posture measurement sensor 110 is capable of measuring posture and movement in a roll, pitch, and yaw direction of an attached point. Specifically, the spine posture measurement sensor 110 may measure the roll, pitch, angle to yaw, angular velocity, angular acceleration, etc. at the point where the spine posture measurement sensor 110 is attached. I can. (Here, the spine posture measurement sensor 110 includes an acceleration sensor, an angular velocity sensor (gyroscope) and an angular acceleration sensor, and the spine posture measurement sensor 110 may measure an angular acceleration through an angular acceleration sensor, The angular velocity can be measured through the angular velocity sensor, the angular velocity can be obtained by integrating the angular acceleration of the angular acceleration sensor, the angle can be obtained by integrating this angular velocity, and the angle can be obtained by integrating the angular velocity of the angular velocity sensor. A more accurate final angle can be obtained by using the weighted average of the angle calculated by integrating twice at and the angle calculated by integrating once by the angular velocity sensor.)
상기 척추 자세 측정 센서(110)는 상기 척추 자세 측정 센서(110)가 부착된 지점의 롤(roll), 피치(pitch), 요(yaw)에 대한 각도, 각속도, 각가속도를 측정하기 위해, 3축 가속도(tri-axial accelerometer) 센서를 포함할 수 있다. 또한, 상기 척추 자세 측정 센서(110)는 측정 데이터 값의 정밀성을 높이기 위해, 자이로스코프(gyroscope) 센서, 자력계(magnetometer) 센서를 더 포함할 수 있다. The spine posture measurement sensor 110 is a 3-axis sensor to measure the roll, pitch, and angle of the yaw, angular velocity, and angular acceleration at the point where the spine posture measurement sensor 110 is attached. It may include a tri-axial accelerometer sensor. In addition, the spine posture measurement sensor 110 may further include a gyroscope sensor and a magnetometer sensor in order to increase the precision of the measurement data value.
본 발명의 실시 예에 따른 척추 동작 분석 시스템은 근전도 센서(111)(EMG, Electromyography 센서), 복부 압력 센서(112)(ABT,Abdominal Bracing Trainer 센서)를 더 포함할 수 있다. 도 2 및 도 3을 참조하면, 상기 근전도 센서(111)는 체간근에 부착되는 것으로, 체간근의 활성도를 측정할 수 있는 것이다. The spine motion analysis system according to an embodiment of the present invention may further include an EMG sensor 111 (EMG, Electromyography sensor), and an abdominal pressure sensor 112 (ABT, Abdominal Bracing Trainer sensor). 2 and 3, the EMG sensor 111 is attached to the trunk muscle and can measure the activity of the trunk muscle.
상기 근전도 센서(111)는 복부에 부착되는 4개의 센서를 포함하여 6개로 이루어질 수 있으며, 복직근(rectus abdominis muscles), 복사근(obliquus abdominis muscles), 척추기립근(erector spinae muscles)에 각각 2개씩 대칭적으로 부착되어 각 근육근의 활성도를 측정할 수 있다. 다만, 상기 근전도 센서(111)의 부착 개수 및 부착 위치는 이에 한정되지 않으며, 측정하고자 하는 체간근의 종류 및 체간근의 수에 따라 변경될 수 있다. 가령, 체간근 중 내복사근(internal oblique muscle), 외복사근(external oblique muscle), 복횡근(erector spinae muscles)에 상기 근전도 센서(111)가 부착될 수도 있다. The EMG sensors 111 may be composed of six including four sensors attached to the abdomen, and each two are symmetrical to the rectus abdominis muscles, obliquus abdominis muscles, and erector spinae muscles. It can be attached to measure the activity of each muscle muscle. However, the number and location of the EMG sensors 111 are not limited thereto, and may be changed according to the type of trunk muscle to be measured and the number of trunk muscles. For example, the EMG sensor 111 may be attached to an internal oblique muscle, an external oblique muscle, and an erector spinae muscle among trunk muscles.
상기 복부 압력 센서(112)는 복부에 착용되는 벨트 형태의 센서로 이루어질 수 있으며, 상기 복부 압력 센서(112)를 통해 복압을 측정할 수 있는 것이다. 상기 복부 압력 센서(112)에서 측정된 복압은 체간근의 평균적인 활성도에 반영될 수 있다. The abdominal pressure sensor 112 may be formed of a belt-shaped sensor worn on the abdomen, and may measure abdominal pressure through the abdominal pressure sensor 112. The abdominal pressure measured by the abdominal pressure sensor 112 may be reflected in the average activity of the trunk muscles.
이와 같이 본 발명의 실시 예에 따른 척추 동작 분석 시스템은 상기 척추 자세 측정 센서(110), 상기 근전도 센서(111), 상기 복부 압력 센서(112)를 통해 척추의 상태를 평가하여 척추의 전만과 안정성을 높일 수 있는 피드백을 제공할 수 있다. 여기서, 상기 근전도 센서(111), 상기 복부 압력 센서(112)는 필요에 따라 생략되어 사용될 수 있다. As described above, the spine motion analysis system according to an embodiment of the present invention evaluates the state of the spine through the spine posture measurement sensor 110, the EMG sensor 111, and the abdominal pressure sensor 112 to evaluate the vertebral lordosis and stability. You can provide feedback that can increase your performance. Here, the EMG sensor 111 and the abdominal pressure sensor 112 may be omitted and used as necessary.
도 3을 참조하면, 상기 파라미터 도출부(120)는 상기 척추 자세 측정 센서(110)에서 측정된 데이터를 통해 제1파라미터를 도출할 수 있는 것이며, 상기 제어부(130)는 상기 파라미터 도출부(120)를 통해 도출된 제1파라미터를 분석하여 척추 상태를 판별할 수 있는 것이다. Referring to FIG. 3, the parameter derivation unit 120 is capable of deriving a first parameter through data measured by the spine posture measurement sensor 110, and the control unit 130 is the parameter derivation unit 120 ), the state of the spine can be determined by analyzing the first parameter.
상기 파라미터 도출부(120)는 상기 척추 자세 측정 센서(110)를 통해 측정된 데이터를 연산 및 조합하여 제1파라미터를 도출할 수 있다. 본 발명의 실시 예에 따른 척추 동작 분석 시스템이 상기 근전도 센서(111), 상기 복부 압력 센서(112)를 포함하는 경우, 상기 파라미터 도출부(120)는 상기 척추 자세 측정 센서(110), 상기 근전도 센서(111), 상기 복부 압력 센서(112)에서 측정된 데이터 중 어느 하나 이상의 데이터를 통해 제1파라미터를 도출할 수 있으며, 상기 척추 자세 측정 센서(110), 상기 근전도 센서(111), 상기 복부 압력 센서(112)에서 측정된 데이터를 연산 및 조합하여 제1파라미터를 도출할 수도 있다. The parameter derivation unit 120 may calculate and combine data measured through the spine posture measurement sensor 110 to derive a first parameter. When the spine motion analysis system according to an embodiment of the present invention includes the EMG sensor 111 and the abdominal pressure sensor 112, the parameter derivation unit 120 includes the spine posture measurement sensor 110 and the EMG A first parameter may be derived from one or more of data measured by the sensor 111 and the abdominal pressure sensor 112, and the spine posture measurement sensor 110, the EMG sensor 111, and the abdomen The first parameter may be derived by calculating and combining data measured by the pressure sensor 112.
구체적으로, 상기 파라미터 도출부(120)를 통해 도출되는 제1파라미터는 척추 전만 각도, 평균 척추 전만 각도, 척추 전만 각속도, 제곱 평균 척추 전만 각속도일 수 있다. 도 4(a)는 상기 척추 전만 각도를 나타내는 식으로, 상기 척추 전만 각도는 상기 척추 자세 측정 센서(110)를 통해 측정되는 두 지점의 각도 차이일 수 있다. (여기서, 상기 척추 자세 측정 센서(110)는 흉추, 요추, 천추 중 두 지점 이상에 부착될 수 있다.)Specifically, the first parameter derived through the parameter derivation unit 120 may be a spinal lordosis angle, an average spinal lordosis angle, a spinal lordosis angular velocity, and a square average vertebral lordosis angular velocity. 4(a) shows the spine lordosis angle, and the spine lordosis angle may be an angle difference between two points measured through the spine posture measurement sensor 110. (Here, the spinal posture measurement sensor 110 may be attached to two or more of the thoracic, lumbar, and sacral spines.)
도 4(b)는 상기 평균 척추 전만 각도를 나타내는 식으로, 상기 평균 척추 전만 각도는, 상기 척추 전만 각도를 지정된 시간 간격에 대하여 적분하고, 이를 지정된 시간 간격으로 나눈 값일 수 있다. 도 4(c)는 상기 척추 전만 각속도를 나타내는 식으로, 상기 척추 전만 각속도는 상기 척추 전만 각도를 미분하여 구해질 수 있다. 4B is an equation representing the average spinal lordosis angle, and the average spinal lordosis angle may be a value obtained by integrating the spinal lordosis angle for a specified time interval and dividing it by a specified time interval. 4(c) is an equation representing the lordosis angular velocity of the spine, and the lordosis angular velocity of the vertebrae can be obtained by differentiating the lordosis angle of the spine.
*도 4(d)는 상기 제곱 평균 척추 전만 각속도를 나타내는 식으로, 상기 제곱 평균 척추 전만 각속도는, 상기 척추 전만 각도를 미분한 척추 전만 각속도를 제곱하여 지정된 시간 간격에 대하여 적분하고, 이를 지정된 시간 간격으로 나눈 이후 제곱근을 취한 값일 수 있다. * Fig.4(d) is an equation representing the square mean vertebral lordosis angular velocity, and the square mean vertebral lordosis angular velocity is the vertebral lordosis angular velocity obtained by differentiating the vertebral lordosis angle by squaring and integrating for a specified time interval, and It may be a value obtained by taking a square root after dividing by an interval.
다만, 제1파라미터는 이에 한정되는 것은 아니며, 다양한 파라미터일 수 있다. 제1파라미터는 특정시간 동안 측정되는 척추 전만 각도의 최소값 및 최대값인인 최소 척추 전만 각도 및 최대 척추 전만 각도일 수 있으며, 특정 동작을 수행하기 직전의 척추 전만 각도인 초기 척추 전만 각도일 수도 있다. However, the first parameter is not limited thereto, and may be various parameters. The first parameter may be a minimum vertebral lordosis angle and a maximum vertebral lordosis angle, which are minimum and maximum values of the vertebral lordosis angle measured during a specific time, and may be an initial vertebral lordosis angle, which is the vertebral lordosis angle immediately before performing a specific motion. .
또한, 제1파라미터는 척추 전만 각속도가 음수인 시간 구간 동안 평균 척추 전만 각속도의 절대값으로 정의되는 평균 굽힘 각속도 일 수 있으며, 특정 시간 또는 특정 동작을 수행하는 동안 척추 전만 각속도가 음수인 최소값으로 정의되는 최대 굽힘 각속도일 수도 있다. (여기서, 상기 평균 굽힘 각속도와 상기 최대 굽힘 각속도는 해당 시간 또는 동작 내에 척추 전만 각속도가 발생하지 않는 경우 존재하지 않을 수 있다.) In addition, the first parameter may be the average bending angular velocity defined as the absolute value of the average vertebral lordosis angular velocity during a time period in which the vertebral lordosis angular velocity is negative, and is defined as the minimum value in which the vertebral lordosis angular velocity is negative during a specific time or specific motion. It may also be the maximum bending angular velocity to be obtained. (Here, the average bending angular velocity and the maximum bending angular velocity may not exist when the angular velocity of the lordosis does not occur within a corresponding time or motion.)
또한, 제1파라미터는 순간 척추 전만 각도와 순간 척추 전만 각속도일 수 있으며, 상기 순간 척추 전만 각도는, 지정 시점의 척추 전만 각도를 나타내며, 상기 순간 척추 전만 각속도는 지정 시점의 척추 전만 각속도를 나타내는 것일 수 있다.In addition, the first parameter may be an instantaneous vertebral lordosis angle and an instantaneous vertebral lordosis angular velocity, and the instantaneous vertebral lordosis angle represents the vertebral lordosis angle at a specified time point, and the instantaneous vertebral lordosis angular velocity represents the vertebral lordosis angular velocity at a specified time point. I can.
구체적으로, 도 4(b) 및 도 4(c)를 참조하면, 상기 순간 척추 전만 각도와 순간 척추 전만 각속도는 지정된 시간 간격 사이에서 평균으로 구해지는 것이 아닌, 지정된 시점(해당 시점)에서 구해지는 것일 수 있다. (순간 척추 전만 각속도는 지정된 시간 간격 사이를 매우 짧게 설정 함으로써 구해질 수 있다. 가령, 지정된 시간 간격은 0.025초 정도의 시간일 수 있다.)Specifically, referring to Figures 4(b) and 4(c), the instantaneous vertebral lordosis angle and the instantaneous vertebral lordosis angular velocity are not calculated as an average between specified time intervals, but are obtained at a specified time point (corresponding time point). Can be. (The instantaneous vertebral lordosis angular velocity can be obtained by setting a very short interval between specified time intervals. For example, the specified time interval may be about 0.025 seconds.)
또한, 제1파라미터는 특정 시간 간격 또는 특정 운동 진행 시간 동안의 최대 척추 전만 각도와 최소 척추 전만 각도의 차로 정의되는 롤(roll) 방향 척추 range of motion 일 수 있다.In addition, the first parameter may be a range of motion of a spine in a roll direction defined as a difference between a maximum vertebral lordosis angle and a minimum vertebral lordosis angle during a specific time interval or a specific exercise duration.
구체적으로, 도 4(f)를 참조하면, 상기 롤 방향 척추 range of motion은 특정 운동 또는 시간 간격 사이에서 최대 척추 전만 각도(max{lumbar lordosis(ti≤t≤tf)})와 최소 척추 전만 각도(min{lumbar lordosis(ti≤t≤tf)})의 차로 구할 수 있으며, 보행과 같은 사이클 모션(cyclic motion)의 경우 한 사이클 내에서 최대 척추 전만 각도와 최소 척추 전만 각도의 차로 구해지는 것일 수 있다. (여기서, ti: initial time of motion, tf:final time of motion 이다.)Specifically, referring to FIG. 4(f), the roll direction spine range of motion is the maximum spinal lordosis angle (max{lumbar lordosis(t i ≤ t ≤ t f )}) and the minimum spine between specific motions or time intervals. It can be obtained by the difference of the lordosis angle (min{lumbar lordosis(t i ≤ t ≤ t f )}), and in the case of cyclic motion such as walking, the difference between the maximum vertebral lordosis angle and the minimum vertebral lordosis angle within one cycle It may be what is saved. (Here, t i : initial time of motion, t f : final time of motion.)
이외에도, 제1파라미터는 평균 척추 lateral bending, 최소 척추 lateral bending, 최대 척추 lateral bending, 초기 척추 lateral bending, 평균 척추 axial twist, 최소 척추 axial twist, 최대 척추 axial twist, 초기 척추 axial twist, 평균 폄 각속도, 최대 폄 각속도, 제곱 평균 척추 lateral bending 각속도, 평균 척추 lateral bending 각속도, 최대 lateral bending 각속도, 제곱 평균 척추 axial twist 각속도, 평균 척추 axial twist 각속도, 최대 axial twist 각속도, 제곱 평균 척추 전만 각가속도, 평균 굽힘 각가속도, 최대 굽힘 각가속도, 평균 폄 각가속도, 최대 폄 각가속도, 제곱 평균 척추 lateral bending 각가속도, 평균 척추 lateral bending 각가속도, 최대 척추 lateral bending 각가속도, pitch 방향 range of motion, 제곱 평균 척추 axial twist 각가속도, 평균 척추 axial twist 각가속도, 최대 척추 axial twist 각가속도, yaw 방향 range of motion, 각 체간근의 활성도, 복부 압력일 수 있다. In addition, the first parameter is average spine lateral bending, minimum spine lateral bending, maximum spine lateral bending, initial spine lateral bending, average spine axial twist, minimum spine axial twist, maximum spine axial twist, initial spine axial twist, average extension angular velocity, Maximum extension angular velocity, square mean spine lateral bending angular velocity, mean spine lateral bending angular velocity, maximum lateral bending angular velocity, square mean spine axial twist angular velocity, mean spine axial twist angular velocity, maximum axial twist angular velocity, square mean vertebral lordosis angular acceleration, mean bending angular acceleration, Maximum bending angular acceleration, average extension angular acceleration, maximum extension angular acceleration, square mean spine lateral bending angular acceleration, mean spine lateral bending angular acceleration, maximum spine lateral bending angular acceleration, pitch direction range of motion, square mean spine axial twist angular acceleration, mean spine axial twist angular acceleration, It can be the maximum spinal axial twist angular acceleration, the range of motion in the yaw direction, the activity of each trunk muscle, and the abdominal pressure.
본 발명의 실시 예에 따른 상기 파라미터 도출부(120)는 복수 개의 제1파라미터를 도출하고, 복수 개의 제1파라미터를 조합하여 제2파라미터를 도출할 수 있으며, 상기 제어부(130)는 제2파라미터를 분석하여 척추 상태를 판별할 수도 있다. The parameter derivation unit 120 according to an exemplary embodiment of the present invention may derive a plurality of first parameters, combine a plurality of first parameters to derive a second parameter, and the control unit 130 is a second parameter. Analysis of the spine can also be determined.
제2파라미터는 복수 개의 제1파라미터가 조합되어 도출될 수 있는 것으로, 제2파라미터는 척추 전만 강건성 지표일 수 있다. 도 4(e)는 상기 척추 전만 강건성 지표를 나타내는 것으로, 상기 척추 전만 강건성 지표는 제1파라미터인 상기 평균 척추 전만 각도와 상기 제곱 평균 척추 전만 각속도를 통해 도출될 수 있다. The second parameter may be derived by combining a plurality of first parameters, and the second parameter may be a spinal lordosis robustness index. 4(e) shows the spinal lordosis robustness index, and the spinal lordosis robustness index may be derived through the average vertebral lordosis angle and the square average vertebral lordosis angular velocity, which are first parameters.
구체적으로, 상기 척추 전만 강건성 지표는 상기 평균 척추 전만 각도를 상기 제곱 평균 척추 전만 각속도로 나눈 값일 수 있다. 상기 척추 전만 강건성 지표는 지정된 시간 또는 척추가 운동하는 동안 얼마나 전만이 잘 유지되는지를 의미하는 지표이다. 상기 척추 전만 강건성 지표의 단위는 '초(second)'가 되며 해당 시간 또는 운동 동안 척추의 전만이 크고 안정될수록 높은 값을 가진다. 즉, 척추의 전만을 안정적으로 잘 유지할수록 척추 전만 강건성 지표는 높은 값을 나타낸다.Specifically, the spinal lordosis robustness index may be a value obtained by dividing the average vertebral lordosis angle by the square average vertebral lordosis angular velocity. The spinal lordosis robustness index is an index indicating how well lordosis is maintained during a specified time or during exercise of the spine. The unit of the vertebral lordosis robustness index is'second', and the higher the lordosis of the spine becomes larger and stable during the time or exercise, the higher the value. In other words, the better the lordosis of the spine is stably maintained, the higher the index of lordosis robustness is.
또한, 상기 제2파라미터는, 순간 척추 전만 강건성 지표일 수도 있다. 상기 순간 척추 전만 강건성 지표는, 상술한 상기 순간 척추 전만 각도를 상기 순간 척추 전만 각속도로 나눈 값을 통해 도출될 수 있다. In addition, the second parameter may be an instantaneous spinal lordosis robustness index. The instantaneous vertebral lordosis robustness index may be derived through a value obtained by dividing the instantaneous vertebral lordosis angle by the instantaneous vertebral lordosis angular velocity.
도 3을 참조하면, 본 발명의 실시 예에 따른 척추 동작 분석 시스템은 피드백부(140)를 더 포함할 수 있다. 상술한 바와 같이 상기 제어부(130)는 제1파라미터, 제2파라미터 등을 통해 척추의 상태를 판별할 수 있는 것으로, 상기 피드백부(140)는 상기 제어부(130)에서 판별된 정보를 수신하며, 수신된 정보를 통해 피측정자에게 신호를 전달할 수 있는 것이다. Referring to FIG. 3, the spine motion analysis system according to an embodiment of the present invention may further include a feedback unit 140. As described above, the control unit 130 can determine the state of the spine through a first parameter, a second parameter, etc., and the feedback unit 140 receives the information determined by the control unit 130, Through the received information, a signal can be transmitted to the subject.
상기 피드백부(140)는 무선 송신부(141), 무선 수신부(142), 작동부(143)를 포함할 수 있다. 상기 무선 송신부(141)는 상기 제어부(130)에서 판별된 정보를 상기 무선 수신부(142)에 전달할 수 있는 것이다. The feedback unit 140 may include a wireless transmitter 141, a wireless receiver 142, and an operation unit 143. The wireless transmission unit 141 is capable of transmitting the information determined by the control unit 130 to the wireless reception unit 142.
여기서, 상기 척추 자세 측정 센서(110), 상기 근전도 센서(111), 상기 복부 압력 센서(112)도 무선으로 상기 파라미터 도출부(120)에 데이터를 전달할 수 있으며, 상기 파라미터 도출부(120)도 상기 제어부(130)에 무선으로 파라미터 정보를 전달할 수 있다. 또한, 상기 피드백부(140)도 무선으로 상기 제어부(130)에서부터 신호를 받을 수 있으며, 무선으로 신호를 전달할 수도 있다. Here, the spine posture measurement sensor 110, the EMG sensor 111, and the abdominal pressure sensor 112 may also wirelessly transmit data to the parameter derivation unit 120, and the parameter derivation unit 120 Parameter information may be wirelessly transmitted to the controller 130. In addition, the feedback unit 140 may also receive a signal from the control unit 130 wirelessly, and may transmit a signal wirelessly.
상기 무선 수신부(142)는 상기 무선 송신부(141)로부터 정보를 전달받고, 상기 작동부(143)로 정보를 전달할 수 있는 것으로, 상기 무선 수신부(142)는 웨어러블 기기, 모바일 기기 등이 될 수 있다. 상기 작동부(143)는 상기 무선 수신부(142)에서부터 정보를 전달받고, 이를 바탕으로 피측정자에게 신호를 전달할 수 있다. 상기 작동부(143)는 소리를 발생시키는 장치일 수 있으며, 피측정자에게 진동을 전달하는 장치일 수도 있다. The wireless receiver 142 may receive information from the wireless transmitter 141 and transmit information to the operation unit 143, and the wireless receiver 142 may be a wearable device, a mobile device, or the like. . The operation unit 143 may receive information from the wireless reception unit 142 and transmit a signal to the subject based on this. The operation unit 143 may be a device that generates sound or may be a device that transmits vibration to a subject.
다만, 상기 작동부(143)는 이에 한정되는 것은 아니며, 피측정자가 신호를 인식할 수 있다면 다양한 장치일 수 있다. 또한, 상기 작동부(143)는 체간근을 활성화하는 장치일 수 있으며, 복압을 조절하는 장치일 수도 있다. 이 경우 상기 작동부(143)는 상기 근전도 센서(111)나 상기 복부 압력 센서(112)에 구비될 수 있으며, 상기 작동부(143)는 상기 제어부(130)에서 판별된 정보를 통해 체간근을 활성화 시키거나 복압을 조절하는 피드백을 제공할 수도 있다. However, the operation unit 143 is not limited thereto, and may be a variety of devices as long as the subject can recognize a signal. In addition, the operation unit 143 may be a device for activating the trunk muscle or a device for adjusting abdominal pressure. In this case, the operation unit 143 may be provided in the EMG sensor 111 or the abdominal pressure sensor 112, and the operation unit 143 may detect the trunk muscle through information determined by the control unit 130. It can also provide feedback to activate or regulate abdominal pressure.
도 5는 본 발명의 실시 예에 따른 동작 분석 시스템을 통해 다양한 동작에 따른 상기 척추 전만 강건성 지표를 나타낸 것이다. 도 5는 의자에 앉았다 일어서기(CS), 허리 굽혀 물건 줍기(BO), 무릎 굽혀 물건 줍기(SD), 걷기(W), 계단 오르내리기(WUS), Squat(S), Wall Plank and Roll(WPR), Tripod stability(TS) 8가지 dynamic motion에 대해 상기 척추 전만 강건성 지표를 측정한 것을 나타낸다. 5 illustrates the spinal lordosis robustness index according to various motions through a motion analysis system according to an embodiment of the present invention. Figure 5 is a sitting and standing on a chair (CS), bending the back (BO), knee bending to pick up (SD), walking (W), stairs up and down (WUS), Squat (S), Wall Plank and Roll ( WPR), Tripod stability (TS) It represents the measurement of the spinal lordosis robustness index for eight dynamic motions.
도 5를 참조하면, 8가지 동작 중 가장 높은 척추 전만 강건성 지표를 보인 동작은 WPR이며, TS를 제외한 7가지 동작 중 가장 낮은 척추 전만 강건성 지표를 보인 동작은 허리 굽혀 물건 줍기로 측정되었다. WPR의 경우 남성의 척추 전만 강건성 지표는 2.51±1.53s, 여성은 2.94±1.27s의 값을 보였다. 허리 굽혀 물건 줍기의 경우 남성의 척추 전만 강건성 지표는 0.12±0.35s, 여성의 경우는 0.22±0.19s로 나타났다. Referring to FIG. 5, the motion showing the highest spinal lordosis robustness index among the eight motions is WPR, and the motion showing the lowest spinal lordosis robustness index among seven motions excluding TS was measured by bending the waist and picking up. In the case of WPR, the male spinal lordosis robustness index was 2.51±1.53s and the female was 2.94±1.27s. In the case of picking up by bending the back, the index of vertebral lordosis robustness in men was 0.12±0.35s, and 0.22±0.19s in women.
본 발명의 실시 예에 따른 척추 동작 분석 시스템은 상기와 같은 척추 전만 강건성 지표를 통해 피측정자의 척추 상태를 판별할 수 있으며, 이를 통해 피측정자에게 피드백을 제공할 수 있다. 가령, 특정 동작 또는 특정 시간 구간 동안 척추 전만 강건성 지표가 0.4s 이하로 나타나는 경우 척추 전만을 높이고 체간근을 활성화하여 요추 안정화를 실시하도록 알람 등의 피드백을 사용자에게 줄 수 있다. (여기서, 피드백을 진행하는 기준이 되는 척추 전만 강건성 지표는 특정 동작 및 특정 시간에 따라 다르게 정의될 수 있다.)The spine motion analysis system according to an embodiment of the present invention may determine the state of the spine of the testee through the spine lordosis robustness index as described above, and may provide feedback to the testee through this. For example, if the spinal lordosis robustness index is 0.4s or less during a specific motion or a specific time period, feedback such as an alarm may be provided to the user to increase the vertebral lordosis and activate the trunk muscles to perform lumbar stabilization. (Here, the spinal lordosis robustness index, which is a criterion for performing feedback, may be differently defined according to a specific motion and a specific time.)
구체적으로, 척추 전만 강건성 지표가 낮을 때의 원인이 평균 척추 전만 각도가 작기 때문이라면, 허리를 펴라는 신호를 보낼 수 있으며, 척추 전만 강건성 지표가 낮은 이유가 척추 불안정성이 커서 제곱 평균 척추 전만 각속도가 크기 때문이라면, 체간근에 힘을 주어 척추를 안정화 시키도록 피드백할 수도 있다.Specifically, if the cause of the low vertebral lordosis robustness index is that the average vertebral lordosis angle is small, a signal to straighten the back can be sent, and the reason that the vertebral lordosis robustness index is low is because the vertebral instability is large and the square mean vertebral lordosis angular velocity is high. If it is because of its size, you can also give feedback to stabilize the spine by applying force to the trunk muscles.
이와 같이 본 발명의 실시 예에 따른 척추 동작 분석 시스템은 상기 제어부(130)로 제1파라미터, 제2파라미터를 분석하여 척추 상태를 판별할 수 있고, 이에 따라 피측정자에게 피드백을 보낼 수 있다. 여기서, 상기 제어부(130)에서 제1파라미터 및 제2파라미터를 통해 척추 상태를 판별하는 기준은, 제1파라미터 및 제2파라미터의 종류에 따라 변경될 수 있다. As described above, the spine motion analysis system according to an embodiment of the present invention may determine the state of the spine by analyzing the first parameter and the second parameter by the control unit 130, and accordingly, may send a feedback to the subject. Here, the criterion for determining the state of the spine through the first parameter and the second parameter by the control unit 130 may be changed according to the type of the first parameter and the second parameter.
가령, 평균 척추 전만 각도의 경우, 허리 굽혀 물건 줍기에서 남성의 지표값은 5.00±11.56°, 여성의 지표값은 12.01±10.38°로 측정될 수 있다. 이로부터 평균 척추 전만 각도가 남성의 경우 8°, 여성의 경우 15° 미만일 때 허리를 펴라는 피드백을 제공할 수 있다. For example, in the case of the average vertebral lordosis angle, the index value for men may be measured as 5.00±11.56° and the index value for women may be measured as 12.01±10.38°. From this, feedback to straighten the back can be provided when the average vertebral lordosis angle is less than 8° for men and 15° for women.
제곱 평균 척추 전만 각속도의 경우 허리 굽혀 물건 줍기에서 남성의 지표값은 44.36±13.46°/s, 여성의 지표값은 56.12±11.64°로 측정되었다. 이로부터 제곱 평균 척추 전만 각속도가 남성의 경우 40°/s, 여성의 경우 50°/s 이상일 때 체간근에 힘을 주어 척추를 안정화시키라는 피드백을 제공할 수 있다.In the case of the square mean vertebral lordosis angular velocity, the male index value was 44.36±13.46°/s, and the female index value was 56.12±11.64°. From this, when the mean square lordosis angular velocity is 40°/s for men and 50°/s for women, it is possible to provide feedback to stabilize the spine by applying force to the trunk muscles.
상술한 본 발명의 실시 예에 따른 척추 동작 분석 시스템을 통해 척추 동작 분석 방법은 다음과 같다. 본 발명의 실시 예에 따른 척추 동작 분석 방법은 상술한 본 발명의 실시 예에 따른 척추 동작 분석 시스템을 통해 척추 상태를 판별하는 것으로, 척추 동작 분석 방법에 사용되는 구성은 척추 동작 분석 시스템과 동일하므로 상세한 설명은 생략한다. 또한, 상술한 본 발명의 실시 예에 따른 척추 동작 분석 시스템의 특징은 후술할 본 발명의 실시 예에 따른 척추 동작 분석 방법에 모두 적용될 수 있다. A method of analyzing spine motion through the spine motion analysis system according to the embodiment of the present invention is as follows. The spine motion analysis method according to the embodiment of the present invention determines the spine condition through the spine motion analysis system according to the above-described embodiment of the present invention, and the configuration used in the spine motion analysis method is the same as the spine motion analysis system. Detailed description is omitted. In addition, the features of the spine motion analysis system according to the embodiment of the present invention described above can be applied to all of the spine motion analysis method according to the embodiment of the present invention to be described later.
도 6을 참조하면, 본 발명의 실시 예에 따른 척추 동작 분석 방법은 데이터 수집 단계(S110), 제1파라미터 도출 단계(S120), 판별 단계(S140)를 포함한다. 상기 데이터 수집 단계(S110)는 흉추, 요추, 천추 중 어느 한 지점 이상에 부착되며, 부착된 지점의 롤(roll), 피치(pitch), 요(yaw) 방향의 자세 및 움직임을 측정할 수 있는 척추 자세 측정 센서(110)를 통해 데이터를 수집하는 단계이다. Referring to FIG. 6, a method for analyzing spine motion according to an embodiment of the present invention includes a data collection step (S110), a first parameter derivation step (S120), and a determination step (S140). The data collection step (S110) is attached to one or more of the thoracic, lumbar, and sacral vertebrae, and can measure the posture and movement of the attached point in the roll, pitch, and yaw direction. This is a step of collecting data through the spine posture measurement sensor 110.
상기 척추 자세 측정 센서(110)는 3축 가속도(tri-axial accelerometer) 센서, 자이로스코프(gyroscope) 센서, 자력계(magnetometer) 센서를 포함할 수 있는 것이다. The spine posture measurement sensor 110 may include a tri-axial accelerometer sensor, a gyroscope sensor, and a magnetometer sensor.
상기 데이터 수집 단계(S110)는, 체간근에 부착되며, 체간근의 활성도를 측정할 수 있는 근전도 센서(111)와, 복부에 부착되며, 복부의 복압을 측정할 수 있는 복부 압력 센서(112)를 통해 데이터를 수집하는 단계를 포함할 수 있다. 상기 데이터 수집 단계(S110)에서는 상기 척추 자세 측정 센서(110), 상기 근전도 센서(111), 상기 복부 압력 센서(112) 중 어느 하나 이상에서 데이터를 수집할 수 있는 것으로, 필요에 따라서는 상기 근전도 센서(111), 상기 복부 압력 센서(112) 사용되지 않을 수도 있다. In the data collection step (S110), an EMG sensor 111 attached to the trunk muscle and capable of measuring the activity of the trunk muscle, and an abdominal pressure sensor 112 attached to the abdomen and capable of measuring abdominal pressure. It may include the step of collecting data through. In the data collection step (S110), data may be collected from one or more of the spine posture measurement sensor 110, the EMG sensor 111, and the abdominal pressure sensor 112, and if necessary, the EMG The sensor 111 and the abdominal pressure sensor 112 may not be used.
상기 척추 자세 측정 센서(110), 상기 근전도 센서(111), 상기 복부 압력 센서(112)는 본 발명의 실시 예에 따른 척추 동작 분석 시스템에서 상술하였으므로, 상세한 설명은 생략한다. Since the spine posture measurement sensor 110, the EMG sensor 111, and the abdominal pressure sensor 112 have been described above in the spine motion analysis system according to an embodiment of the present invention, detailed descriptions are omitted.
상기 제1파라미터 도출 단계(S120)는 파라미터 도출부(120)를 통해 상기 데이터 수집 단계(S110)에서 측정된 데이터에서 제1파라미터를 도출하는 단계이며, 상기 판별 단계(S130)는 상기 제1파라미터를 통해 척추 상태를 판별할 수 있는 제어부(130)를 통해 피측정자의 척추 상태를 판별하는 단계이다. The first parameter derivation step (S120) is a step of deriving a first parameter from the data measured in the data collection step (S110) through the parameter derivation unit 120, and the determination step (S130) is the first parameter This is a step of determining the state of the spine of the subject through the control unit 130 that can determine the state of the spine.
상기 제1파라미터 도출 단계(S120)는, 상기 파라미터 도출부(120)를 통해 상기 척추 자세 측정 센서(110), 상기 근전도 센서(111), 상기 복부 압력 센서(112)에서 측정된 데이터 중 어느 하나 이상의 데이터를 통해 제1파라미터를 도출할 수 있다. In the step of deriving the first parameter (S120), any one of data measured by the spine posture measurement sensor 110, the EMG sensor 111, and the abdominal pressure sensor 112 through the parameter derivation unit 120 The first parameter can be derived from the above data.
도 6을 참조하면, 본 발명의 실시 예에 따른 척추 동작 분석 방법은 제2파라미터 도출 단계(S130), 피드백 단계(S140)를 더 포함할 수 있다. 상기 제1파라미터 도출 단계(S120)에서는 상기 파라미터 도출부(120)를 통해 복수 개의 제1파라미터를 도출할 수 있으며, 상기 제2파라미터 도출 단계(S130)는 상기 파라미터 도출부(120)를 통해 복수 개의 상기 제1파라미터를 조합하여 제2파라미터를 조합하는 단계이다. Referring to FIG. 6, the method for analyzing spine motion according to an embodiment of the present invention may further include a second parameter derivation step (S130) and a feedback step (S140 ). In the first parameter derivation step (S120), a plurality of first parameters may be derived through the parameter derivation unit 120, and the second parameter derivation step (S130) is performed by the parameter derivation unit 120. This is a step of combining the second parameters by combining the first parameters.
상기 제2파라미터 도출 단계(S130)가 포함된 경우, 상기 판별 단계(S140)는 상기 제어부(130)를 통해 상기 제2파라미터를 분석하여 척추 상태를 판별할 수 있다. When the step of deriving the second parameter (S130) is included, the step of determining (S140) may determine the state of the spine by analyzing the second parameter through the control unit 130.
상기 피드백 단계(S150)는 상기 판별 단계(S140)를 통해 판별된 정보를 수신하여, 수신된 정보를 통해 피측정자에게 신호를 전달하는 단계이다. 상기 피드백 단계(S150)는 상술한 척추 동작 분석 시스템의 피드백부(140)를 통해 이루어질 수 있는 것으로, 상기 피드백부(140)는 무선 송신부(141), 무선 수신부(142), 작동부(143)를 포함할 수 있다. 상기 피드백부(140)는 본 발명의 실시 예에 따른 척추 동작 분석 시스템에서 상술하였으므로, 상세한 설명은 생략한다. The feedback step (S150) is a step of receiving the information determined through the determination step (S140) and transmitting a signal to the subject through the received information. The feedback step (S150) may be performed through the feedback unit 140 of the above-described spinal motion analysis system, and the feedback unit 140 includes a wireless transmission unit 141, a wireless reception unit 142, and an operation unit 143. It may include. Since the feedback unit 140 has been described above in the spine motion analysis system according to an embodiment of the present invention, a detailed description will be omitted.
본 발명의 실시 예에 따른 척추 동작 분석 방법의 제1파라미터 및 제2파라미터는 본 발명의 실시 예에 따른 척추 동작 분석 시스템의 제1파라미터 및 제2파라미터와 동일한 것이다. The first parameter and the second parameter of the spine motion analysis method according to the embodiment of the present invention are the same as the first parameter and the second parameter of the spine motion analysis system according to the embodiment of the present invention.
본 발명의 실시 예에 따른 척추 동작 분석 방법에서 제1파라미터는 척추 전만 각도, 평균 척추 전만 각도, 척추 전만 각속도, 제곱 평균 척추 전만 각속도일 수 있다. 도 4(a)는 상기 척추 전만 각도를 나타내는 식으로, 상기 척추 전만 각도는 상기 척추 자세 측정 센서(110)를 통해 측정되는 두 지점의 각도 차이일 수 있다. (여기서, 상기 척추 자세 측정 센서(110)는 흉추, 요추, 천추 중 두 지점 이상에 부착될 수 있다.)In the spinal motion analysis method according to an embodiment of the present invention, the first parameter may be a spinal lordosis angle, an average spinal lordosis angle, a spinal lordosis angular velocity, and a square average vertebral lordosis angular velocity. 4(a) is an equation representing the spine lordosis angle, and the spine lordosis angle may be an angle difference between two points measured through the spine posture measurement sensor 110. (Here, the spinal posture measurement sensor 110 may be attached to two or more of the thoracic, lumbar, and sacral spines.)
도 4(b)는 상기 평균 척추 전만 각도를 나타내는 식으로, 상기 평균 척추 전만 각도는, 상기 척추 전만 각도를 지정된 시간 간격에 대하여 적분하고, 이를 지정된 시간 간격으로 나눈 값일 수 있다. 도 4(c)는 상기 척추 전만 각속도를 나타내는 식으로, 상기 척추 전만 각속도는 상기 척추 전만 각도를 미분하여 구해질 수 있다. 4B is an equation representing the average spinal lordosis angle, and the average spinal lordosis angle may be a value obtained by integrating the spinal lordosis angle for a specified time interval and dividing it by a specified time interval. 4(c) is an equation representing the lordosis angular velocity of the spine, and the lordosis angular velocity of the vertebrae can be obtained by differentiating the lordosis angle of the spine.
도 4(d)는 상기 제곱 평균 척추 전만 각속도를 나타내는 식으로, 상기 제곱 평균 척추 전만 각속도는, 상기 척추 전만 각도를 미분한 척추 전만 각속도를 제곱하여 지정된 시간 간격에 대하여 적분하고, 이를 지정된 시간 간격으로 나눈 이후 제곱근을 취한 값일 수 있다. Fig. 4(d) is an equation representing the mean square lordosis angular velocity, wherein the square mean vertebral lordosis angular velocity is the vertebral lordosis angular velocity obtained by differentiating the vertebral lordosis angle by squaring and integrating it for a specified time interval. It may be a value obtained by dividing by and taking the square root.
다만, 제1파라미터는 이에 한정되는 것은 아니며, 다양한 파라미터일 수 있다. 제1파라미터는 특정시간 동안 측정되는 척추 전만 각도의 최소값 및 최대값인인 최소 척추 전만 각도 및 최대 척추 전만 각도일 수 있으며, 특정 동작을 수행하기 직전의 척추 전만 각도인 초기 척추 전만 각도일 수도 있다. However, the first parameter is not limited thereto, and may be various parameters. The first parameter may be a minimum and maximum vertebral lordosis angle and a maximum vertebral lordosis angle, which are the minimum and maximum values of the vertebral lordosis angle measured during a specific time, and may be an initial vertebral lordosis angle, which is the vertebral lordosis angle just before performing a specific motion. .
또한, 제1파라미터는 척추 전만 각속도가 음수인 시간 구간 동안 평균 척추 전만 각속도의 절대값으로 정의되는 평균 굽힘 각속도 일 수 있으며, 특정 시간 또는 특정 동작을 수행하는 동안 척추 전만 각속도가 음수인 최소값으로 정의되는 최대 굽힘 각속도일 수도 있다. (여기서, 상기 평균 굽힘 각속도와 상기 최대 굽힘 각속도는 해당 시간 또는 동작 내에 척추 전만 각속도가 발생하지 않는 경우 존재하지 않을 수 있다.) In addition, the first parameter may be the average bending angular velocity defined as the absolute value of the average vertebral lordosis angular velocity during a time period in which the vertebral lordosis angular velocity is negative, and is defined as the minimum value in which the vertebral lordosis angular velocity is negative during a specific time or during a specific motion. It may also be the maximum bending angular velocity to be obtained. (Here, the average bending angular velocity and the maximum bending angular velocity may not exist when the angular velocity of the spine does not occur within a corresponding time or motion.)
또한, 제1파라미터는 순간 척추 전만 각도와 순간 척추 전만 각속도일 수 있으며, 상기 순간 척추 전만 각도는, 지정 시점의 척추 전만 각도를 나타내며, 상기 순간 척추 전만 각속도는 지정 시점의 척추 전만 각속도를 나타내는 것일 수 있다.In addition, the first parameter may be an instantaneous vertebral lordosis angle and an instantaneous vertebral lordosis angular velocity, and the instantaneous vertebral lordosis angle represents the vertebral lordosis angle at a specified time point, and the instantaneous vertebral lordosis angular velocity represents the vertebral lordosis angular velocity at a specified time point. I can.
구체적으로, 도 4(b) 및 도 4(c)를 참조하면, 상기 순간 척추 전만 각도와 순간 척추 전만 각속도는 지정된 시간 간격 사이에서 평균으로 구해지는 것이 아닌, 지정된 시점(해당 시점)에서 구해지는 것일 수 있다. (순간 척추 전만 각속도는 지정된 시간 간격 사이를 매우 짧게 설정 함으로써 구해질 수 있다. 가령, 지정된 시간 간격은 0.025초 정도의 시간일 수 있다.)Specifically, referring to Figs. 4(b) and 4(c), the instantaneous vertebral lordosis angle and the instantaneous vertebral lordosis angular velocity are not obtained as an average between specified time intervals, but obtained at a specified time point (corresponding time point). Can be. (The instantaneous vertebral lordosis angular velocity can be obtained by setting a very short interval between specified time intervals. For example, the specified time interval can be about 0.025 seconds.)
또한, 제1파라미터는 특정 시간 간격 또는 특정 운동 진행 시간 동안의 최대 척추 전만 각도와 최소 척추 전만 각도의 차로 정의되는 롤(roll) 방향 척추 range of motion 일 수 있다.In addition, the first parameter may be a range of motion of a spine in a roll direction defined as a difference between a maximum vertebral lordosis angle and a minimum vertebral lordosis angle during a specific time interval or a specific exercise duration.
구체적으로, 도 4(f)를 참조하면, 상기 롤 방향 척추 range of motion은 특정 운동 또는 시간 간격 사이에서 최대 척추 전만 각도(max{lumbar lordosis(ti≤t≤tf)})와 최소 척추 전만 각도(min{lumbar lordosis(ti≤t≤tf)})의 차로 구할 수 있으며, 보행과 같은 사이클 모션(cyclic motion)의 경우 한 사이클 내에서 최대 척추 전만 각도와 최소 척추 전만 각도의 차로 구해지는 것일 수 있다. (여기서, ti: initial time of motion, tf:final time of motion 이다.)Specifically, referring to FIG. 4(f), the roll direction spine range of motion is the maximum spinal lordosis angle (max{lumbar lordosis(t i ≤ t ≤ t f )}) and the minimum spine between specific motions or time intervals. It can be obtained by the difference of the lordosis angle (min{lumbar lordosis(t i ≤ t ≤ t f )}), and in the case of cyclic motion such as walking, the difference between the maximum vertebral lordosis angle and the minimum vertebral lordosis angle within one cycle It may be what is saved. (Here, t i : initial time of motion, t f : final time of motion.)
이외에도, 제1파라미터는 평균 척추 lateral bending, 최소 척추 lateral bending, 최대 척추 lateral bending, 초기 척추 lateral bending, 평균 척추 axial twist, 최소 척추 axial twist, 최대 척추 axial twist, 초기 척추 axial twist, 평균 폄 각속도, 최대 폄 각속도, 제곱 평균 척추 lateral bending 각속도, 평균 척추 lateral bending 각속도, 최대 lateral bending 각속도, 제곱 평균 척추 axial twist 각속도, 평균 척추 axial twist 각속도, 최대 axial twist 각속도, 제곱 평균 척추 전만 각가속도, 평균 굽힘 각가속도, 최대 굽힘 각가속도, 평균 폄 각가속도, 최대 폄 각가속도, 제곱 평균 척추 lateral bending 각가속도, 평균 척추 lateral bending 각가속도, 최대 척추 lateral bending 각가속도, pitch 방향 range of motion, 제곱 평균 척추 axial twist 각가속도, 평균 척추 axial twist 각가속도, 최대 척추 axial twist 각가속도, yaw 방향 range of motion, 각 체간근의 활성도, 복부 압력일 수 있다. In addition, the first parameter is average spine lateral bending, minimum spine lateral bending, maximum spine lateral bending, initial spine lateral bending, average spine axial twist, minimum spine axial twist, maximum spine axial twist, initial spine axial twist, average extension angular velocity, Maximum extension angular velocity, square mean spine lateral bending angular velocity, mean spine lateral bending angular velocity, maximum lateral bending angular velocity, square mean spine axial twist angular velocity, mean spine axial twist angular velocity, maximum axial twist angular velocity, square mean vertebral lordosis angular acceleration, mean bending angular acceleration, Maximum bending angular acceleration, average extension angular acceleration, maximum extension angular acceleration, square mean spine lateral bending angular acceleration, mean spine lateral bending angular acceleration, maximum spine lateral bending angular acceleration, pitch direction range of motion, square mean spine axial twist angular acceleration, mean spine axial twist angular acceleration, It may be the maximum spinal axial twist angular acceleration, the range of motion in the yaw direction, the activity of each trunk muscle, and the abdominal pressure.
제2파라미터는 복수 개의 제1파라미터가 조합되어 도출될 수 있는 것으로, 제2파라미터는 척추 전만 강건성 지표일 수 있다. 도 4(e)는 상기 척추 전만 강건성 지표를 나타내는 것으로, 상기 척추 전만 강건성 지표는 제1파라미터인 상기 평균 척추 전만 각도와 상기 제곱 평균 척추 전만 각속도를 통해 도출될 수 있다. The second parameter may be derived by combining a plurality of first parameters, and the second parameter may be a spinal lordosis robustness index. 4(e) shows the spinal lordosis robustness index, and the spinal lordosis robustness index may be derived through the average vertebral lordosis angle and the square average vertebral lordosis angular velocity, which are first parameters.
구체적으로, 상기 척추 전만 강건성 지표는 상기 평균 척추 전만 각도를 상기 제곱 평균 척추 전만 각속도로 나눈 값일 수 있다. 상기 척추 전만 강건성 지표는 지정된 시간 또는 척추가 운동하는 동안 얼마나 전만이 잘 유지되는지를 의미하는 지표이다. 상기 척추 전만 강건성 지표의 단위는 '초(second)'가 되며 해당 시간 또는 운동 동안 척추의 전만이 크고 안정될수록 높은 값을 가진다. 즉, 척추의 전만을 안정적으로 잘 유지할수록 척추 전만 강건성 지표는 높은 값을 나타낸다.Specifically, the spinal lordosis robustness index may be a value obtained by dividing the average vertebral lordosis angle by the square average vertebral lordosis angular velocity. The spinal lordosis robustness index is an index indicating how well lordosis is maintained during a specified time or during exercise of the spine. The unit of the vertebral lordosis robustness index is'second', and the higher the lordosis of the spine becomes larger and stable during the time or exercise, the higher the value. In other words, the better the lordosis of the spine is stably maintained, the higher the index of lordosis robustness is.
또한, 상기 제2파라미터는, 순간 척추 전만 강건성 지표일 수도 있다. 상기 순간 척추 전만 강건성 지표는, 상술한 상기 순간 척추 전만 각도를 상기 순간 척추 전만 각속도로 나눈 값을 통해 도출될 수 있다. In addition, the second parameter may be an instantaneous vertebral lordosis robustness index. The instantaneous vertebral lordosis robustness index may be derived through a value obtained by dividing the instantaneous vertebral lordosis angle by the instantaneous vertebral lordosis angular velocity.
다만, 제1파라미터 및 제2파라미터는 이에 한정되는 것은 아니며, 다른 파라미터가 사용될 수 있다. 제1파라미터 및 제2파라미터에 대해서는, 본 발명의 실시 예에 따른 척추 동작 분석 시스템에서 상술하였으므로, 상세한 설명은 생략한다. However, the first parameter and the second parameter are not limited thereto, and other parameters may be used. Since the first parameter and the second parameter have been described above in the spine motion analysis system according to an exemplary embodiment of the present invention, detailed descriptions will be omitted.
상술한 본 발명의 실시 예에 따른 척추 동작 분석 시스템 및 척추 동작 분석 방법은 다음과 같은 효과가 있다. The spine motion analysis system and spine motion analysis method according to an embodiment of the present invention have the following effects.
종래의 척추 동작 분석 시스템은 척추의 동적인 분석 없이 단순히 척추 각도와 같이 척추의 자세가 특정 범위를 넘어가는 경우 피측정자에게 피드백을 주는 방법을 사용하였다. 그러나 이와 같은 방법은 정량적인 지표를 제공하지 못하며, 척추의 동적 분석을 반영하지 못하는 문제점이 있었다. The conventional spine motion analysis system used a method of giving feedback to a subject when the posture of the spine, such as a spine angle, exceeds a specific range without dynamic analysis of the spine. However, such a method does not provide a quantitative index, and there is a problem in that it does not reflect the dynamic analysis of the spine.
이를 해결하기 위해 종래에는 생체역학적(biomechanical) 측정 방법을 사용하지만, 생체역학적 측정 방법은 시간과 노동력, 공간을 많이 차지한다는 단점이 있으며, 특정 시간과 환경에서 측정된 자세와 움직임이 개인의 일상적인 자세와 움직임을 반영하지 못하는 문제점이 있었다. 또한, 생체역학적 측정 방법은 복잡한 모델과 많은 개인별 입력 상수가 필요하였기 때문에, 개인별 척추 상태 판별에 활용하기 어려운 문제점이 있었다. To solve this problem, conventionally, biomechanical measurement method is used, but biomechanical measurement method has the disadvantage that it takes up a lot of time, labor, and space, and the posture and movement measured in a specific time and environment are There was a problem in not reflecting posture and movement. In addition, since the biomechanical measurement method requires a complex model and a large number of input constants for each individual, there is a problem that it is difficult to use it for individual spine status determination.
그러나 본 발명의 실시 예에 따른 척추 동작 분석 시스템 및 척추 동작 분석 방법은 척추 자세 측정 센서, 근전도 센서, 복부 압력 센서를 통해 측정된 데이터 중 어느 하나 이상의 데이터를 통해 척추 전만과 척추 안정성 지표, 척추 불안정성 지표 등의 제1파라미터를 도출하며, 제1파라미터를 조합하여 제2파라미터를 도출함에 따라 척추 상태를 판별할 수 있는 장점이 있다. However, the spine motion analysis system and spine motion analysis method according to an embodiment of the present invention include spinal lordosis, spinal stability index, and spinal instability through any one or more of data measured through a spine posture measurement sensor, an electromyogram sensor, and an abdominal pressure sensor. There is an advantage in that the state of the spine can be determined by deriving a first parameter such as an index, and deriving a second parameter by combining the first parameter.
또한, 본 발명의 실시 예에 따른 척추 동작 분석 시스템 및 척추 동작 분석 방법은 제1파라미터 및 제2파라미터를 통해 척추 상태를 판별함에 따라 개인별 입력 상수가 없이 대중에게 적용 가능하며, 제1파라미터 및 제2파라미터를 통해 정량적인 척추 상태 분석이 가능한 장점이 있다. In addition, the spine motion analysis system and spine motion analysis method according to the embodiment of the present invention can be applied to the public without individual input constants as the spine condition is determined through the first parameter and the second parameter. It has the advantage of enabling quantitative analysis of spine status through 2 parameters.
이와 함께, 본 발명의 실시 예에 따른 척추 동작 분석 시스템 및 척추 동작 분석 방법은 근전도 센서나 복압 센서가 추가하여 운동학적(kinematic) 파라미터( 척추 자세, 각속도, 각가속도 등)와 운동역학적(kinetic) 파라미터(체간근 활성도, 복압)를 종합적으로 분석함에 따라, 척추의 정적 분석(static motion)과 함께 동적 분석(dynamic motion)을 반영하여 피측정자에게 피드백을 제공할 수 있는 장점이 있다. In addition, the spine motion analysis system and spine motion analysis method according to an embodiment of the present invention include kinematic parameters (vertebral posture, angular velocity, angular acceleration, etc.) and kinematic parameters by adding an EMG sensor or an abdominal pressure sensor. According to the comprehensive analysis of (trunk muscle activity, abdominal pressure), there is an advantage of providing feedback to the subject by reflecting dynamic motion as well as static motion of the spine.
이상, 본 발명을 바람직한 실시 예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시 예에 한정되지 않으며, 본 발명의 범주를 벗어나지 않는 범위 내에서 여러 가지 많은 변형이 제공될 수 있다. 따라서, 본 발명의 진정한 기술적 보호 범위를 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.In the above, the present invention has been described in detail with reference to a preferred embodiment, but the present invention is not limited to the above embodiment, and various modifications may be provided within the scope not departing from the scope of the present invention. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.

Claims (20)

  1. 피측정자의 척추 동작을 분석하기 위한 분석 시스템에 있어서, In the analysis system for analyzing the motion of the spine of the subject,
    흉추, 요추, 천추 중 어느 한 지점 이상에 부착되며, 부착된 지점의 롤(roll), 피치(pitch), 요(yaw) 방향의 자세 및 움직임을 측정할 수 있는 척추 자세 측정 센서; A spinal posture measurement sensor that is attached to one or more of the thoracic, lumbar, and sacral spines, and is capable of measuring a posture and movement in a roll, pitch, and yaw direction of the attached point;
    상기 척추 자세 측정 센서에서 측정된 데이터를 통해 제1파라미터를 도출할 수 있는 파라미터 도출부; A parameter derivation unit capable of deriving a first parameter through data measured by the spine posture measurement sensor;
    상기 파라미터 도출부를 통해 도출된 제1파라미터를 분석하여 척추 상태를 판별하는 제어부;를 포함하는 것을 특징으로 하는 척추 동작 분석 시스템.And a control unit for determining a state of the spine by analyzing the first parameter derived through the parameter derivation unit.
  2. 제1항에 있어서, The method of claim 1,
    상기 척추 자세 측정 센서는, The spine posture measurement sensor,
    3축 가속도(tri-axial accelerometer) 센서, 자이로스코프(gyroscope) 센서, 자력계(magnetometer) 센서를 포함하는 것을 특징으로 하는 척추 동작 분석 시스템.A spinal motion analysis system comprising a tri-axial accelerometer sensor, a gyroscope sensor, and a magnetometer sensor.
  3. 제1항에 있어서, The method of claim 1,
    체간근에 부착되며, 체간근의 활성도를 측정할 수 있는 근전도 센서와,An EMG sensor attached to the trunk muscle and capable of measuring the activity of the trunk muscle,
    복부에 부착되며, 복부의 복압을 측정할 수 있는 복부 압력 센서를 더 포함하며, Attached to the abdomen, further comprising an abdominal pressure sensor capable of measuring abdominal pressure,
    상기 파라미터 도출부는, 상기 척추 자세 측정 센서, 상기 근전도 센서, 상기 복부 압력 센서에서 측정된 데이터 중 어느 하나 이상의 데이터를 통해 제1파라미터를 도출하는 것을 특징으로 하는 척추 동작 분석 시스템.The parameter derivation unit derives a first parameter through at least one of data measured by the spine posture measurement sensor, the EMG sensor, and the abdominal pressure sensor.
  4. 제2항에 있어서, The method of claim 2,
    상기 파라미터 도출부는, 복수 개의 제1파라미터를 도출하고, 복수 개의 상기 제1파라미터를 조합하여 제2파라미터를 도출하며, The parameter derivation unit derives a plurality of first parameters, combines the plurality of first parameters to derive a second parameter,
    상기 제어부는, 상기 제2파라미터를 분석하여 척추 상태를 판별하는 것을 특징으로 하는 척추 동작 분석 시스템.The control unit analyzes the second parameter to determine a state of the spine.
  5. 제4항에 있어서, The method of claim 4,
    상기 척추 자세 측정 센서는 두 지점 이상에 부착되며, The spine posture measurement sensor is attached to at least two points,
    상기 제1파라미터는, 평균 척추 전만 각도와 제곱 평균 척추 전만 각속도이며, The first parameter is an average vertebral lordosis angle and a square average vertebral lordosis angular velocity,
    상기 평균 척추 전만 각도는, 상기 척추 자세 측정 센서를 통해 두 지점에서 측정된 각도의 차이 값인 척추 전만 각도를 지정된 시간 간격에 대하여 적분하고, 지정된 시간 간격으로 나눈 값이며, The average vertebral lordosis angle is a value obtained by integrating the vertebral lordosis angle, which is a difference value between angles measured at two points through the spine posture measurement sensor, for a specified time interval and dividing it by a specified time interval,
    상기 제곱 평균 척추 전만 각속도는, 상기 척추 전만 각도를 미분한 척추 전만 각속도를 제곱하여 지정된 시간 간격에 대하여 적분하고, 지정된 시간 간격으로 나눈 이후 제곱근을 취한 값인 것을 특징으로 하는 척추 동작 분석 시스템.The square mean spinal lordosis angular velocity is a value obtained by taking a square root after dividing the vertebral lordosis angle into a specified time interval by squaring the vertebral lordosis angular velocity derived from the vertebral lordosis angle, and dividing it by a specified time interval.
  6. 제5항에 있어서, The method of claim 5,
    상기 제2파라미터는, 척추 전만 강건성 지표이며, The second parameter is a spinal lordosis robustness index,
    상기 척추 전만 강건성 지표는, 상기 평균 척추 전만 각도를 상기 제곱 평균 척추 전만 각속도로 나눈 값인 것을 특징으로 하는 척추 동작 분석 시스템.The spinal lordosis robustness index is a value obtained by dividing the average vertebral lordosis angle by the square average vertebral lordosis angular velocity.
  7. 제4항에 있어서, The method of claim 4,
    상기 제1파라미터는, 순간 척추 전만 각도와 순간 척추 전만 각속도이며, The first parameter is an instantaneous vertebral lordosis angle and an instantaneous vertebral lordosis angular velocity,
    상기 순간 척추 전만 각도는, 지정 시점의 척추 전만 각도를 나타내며, The instantaneous vertebral lordosis angle represents the vertebral lordosis angle at a designated time point,
    상기 순간 척추 전만 각속도는 지정 시점의 척추 전만 각속도를 나타내는 것을 특징으로 하는 척추 동작 분석 시스템.The instantaneous vertebral lordosis angular velocity is a spinal motion analysis system, characterized in that representing the vertebral lordosis angular velocity at a designated time point.
  8. 제7항에 있어서, The method of claim 7,
    상기 제2파라미터는, The second parameter,
    순간 척추 전만 강건성 지표이며, Instant spinal lordosis is an indicator of robustness,
    상기 순간 척추 전만 강건성 지표는, 상기 순간 척추 전만 각도를 상기 순간 척추 전만 각속도로 나눈 값인 것을 특징으로 하는 척추 동작 분석 시스템.The instantaneous vertebral lordosis robustness index is a value obtained by dividing the instantaneous vertebral lordosis angle by the instantaneous vertebral lordosis angular velocity.
  9. 제1항에 있어서, The method of claim 1,
    상기 제1파라미터는, 롤 방향 척추 range of motion 이며, The first parameter is the range of motion of the spine in the roll direction,
    상기 롤 방향 척추 range of motion은, The roll direction spine range of motion,
    특정 시간 간격 또는 특정 운동 진행 시간 동의 최대 척추 전만 각도와 최소 척추 전만 각도의 차인 것을 특징으로 하는 척추 동작 분석 시스템.Spinal motion analysis system, characterized in that the difference between the maximum vertebral lordosis angle and the minimum vertebral lordosis angle at a specific time interval or a specific movement time motion.
  10. 제1항에 있어서, The method of claim 1,
    상기 제어부에서 판별된 정보를 수신하며, 수신된 정보를 통해 피측정자에게 신호를 전달할 수 있는 피드백부를 더 포함하는 것을 특징으로 하는 척추 동작 분석 시스템.And a feedback unit that receives the information determined by the control unit and transmits a signal to a subject through the received information.
  11. 피측정자의 척추 동작을 분석할 수 있는 척추 동작 분석 시스템을 이용하는 척추 동작 분석 방법에 있어서, In the spine motion analysis method using a spine motion analysis system capable of analyzing the spine motion of a subject,
    흉추, 요추, 천추 중 어느 한 지점 이상에 부착되며, 부착된 지점의 롤(roll), 피치(pitch), 요(yaw) 방향의 자세 및 움직임을 측정할 수 있는 척추 자세 측정 센서를 통해 데이터를 수집하는 데이터 수집 단계; It is attached to one or more of the thoracic, lumbar, and sacral spines, and the data is transmitted through a spinal posture measurement sensor that can measure the posture and movement in the roll, pitch, and yaw directions of the attached point. Collecting data to be collected;
    파라미터 도출부를 통해 상기 데이터 수집 단계에서 측정된 데이터에서 제1파라미터를 도출하는 제1파라미터 도출 단계; A first parameter derivation step of deriving a first parameter from the data measured in the data collection step through a parameter derivation unit;
    상기 제1파라미터를 통해 척추 상태를 판별할 수 있는 제어부를 통해 피측정자의 척추 상태를 판별하는 판별 단계;를 포함하는 것을 특징으로 하는 척추 동작 분석 방법.And a determination step of determining the state of the spine of the subject through a control unit capable of determining the state of the spine through the first parameter.
  12. 제11항에 있어서, The method of claim 11,
    상기 척추 자세 측정 센서는, The spine posture measurement sensor,
    3축 가속도(tri-axial accelerometer) 센서, 자이로스코프(gyroscope) 센서, 자력계(magnetometer) 센서를 포함하는 것을 특징으로 하는 척추 동작 분석 방법.Spinal motion analysis method comprising a tri-axial acceleration (tri-axial accelerometer) sensor, a gyroscope (gyroscope) sensor, a magnetometer (magnetometer) sensor.
  13. 제11항에 있어서, The method of claim 11,
    상기 데이터 수집 단계는, The data collection step,
    체간근에 부착되며, 체간근의 활성도를 측정할 수 있는 근전도 센서와, 복부에 부착되며, 복부의 복압을 측정할 수 있는 복부 압력 센서를 통해 데이터를 수집하는 단계를 포함하며, It includes the step of collecting data through an EMG sensor attached to the trunk muscle and capable of measuring the activity of the trunk muscle, and an abdominal pressure sensor attached to the abdomen and capable of measuring the abdominal pressure,
    상기 제1파라미터 도출 단계는, 상기 파라미터 도출부를 통해 상기 척추 자세 측정 센서, 상기 근전도 센서, 상기 복부 압력 센서에서 측정된 데이터 중 어느 하나 이상의 데이터를 통해 제1파라미터를 도출하는 것을 특징으로 하는 척추 동작 분석 방법.The step of deriving the first parameter comprises deriving a first parameter from one or more of data measured by the spine posture measurement sensor, the EMG sensor, and the abdominal pressure sensor through the parameter derivation unit. Analysis method.
  14. 제13항에 있어서, The method of claim 13,
    상기 제1파라미터 도출 단계는, 상기 파라미터 도출부를 통해 복수 개의 제1파라미터를 도출하며, In the step of deriving the first parameter, a plurality of first parameters are derived through the parameter derivation unit,
    상기 파라미터 도출부를 통해 복수 개의 상기 제1파라미터를 조합하여 제2파라미터를 조합하는 제2파라미터 도출 단계;를 더 포함하며, Further comprising a second parameter derivation step of combining a second parameter by combining a plurality of the first parameters through the parameter derivation unit,
    상기 판별 단계는, 상기 제어부를 통해 상기 제2파라미터를 분석하여 척추 상태를 판별하는 것을 특징으로 하는 척추 동작 분석 방법.The determining step comprises determining a state of the spine by analyzing the second parameter through the control unit.
  15. 제14항에 있어서, The method of claim 14,
    상기 척추 자세 측정 센서는 두 지점 이상에 부착되며, The spine posture measurement sensor is attached to at least two points,
    상기 제1파라미터는, 평균 척추 전만 각도와 제곱 평균 척추 전만 각속도이며, The first parameter is an average vertebral lordosis angle and a square average vertebral lordosis angular velocity,
    상기 평균 척추 전만 각도는, 상기 척추 자세 측정 센서를 통해 두 지점에서 측정된 각도의 차이 값인 척추 전만 각도를 지정된 시간 간격에 대하여 적분하고, 지정된 시간 간격으로 나눈 값이며, The average vertebral lordosis angle is a value obtained by integrating the vertebral lordosis angle, which is a difference between the angles measured at two points through the spine posture measurement sensor, for a specified time interval and dividing it by a specified time interval
    상기 제곱 평균 척추 전만 각속도는, 상기 척추 전만 각도를 미분한 척추 전만 각속도를 제곱하여 지정된 시간 간격에 대하여 적분하고, 지정된 시간 간격으로 나눈 이후 제곱근을 취한 값인 것을 특징으로 하는 척추 동작 분석 방법.The square mean spinal lordosis angular velocity is a value obtained by taking a square root after dividing the vertebral lordosis angular velocity by squaring the vertebral lordosis angular velocity obtained by dividing the vertebral lordosis angle into a specified time interval and dividing it by a specified time interval.
  16. 제15항에 있어서, The method of claim 15,
    상기 제2파라미터는, 척추 전만 강건성 지표이며, The second parameter is a spinal lordosis robustness index,
    상기 척추 전만 강건성 지표는, 상기 평균 척추 전만 각도를 상기 제곱 평균 척추 전만 각속도로 나눈 값인 것을 특징으로 하는 척추 동작 분석 방법.The spinal lordosis robustness index is a value obtained by dividing the average vertebral lordosis angle by the square average vertebral lordosis angular velocity.
  17. 제14항에 있어서, The method of claim 14,
    상기 제1파라미터는, 순간 척추 전만 각도와 순간 척추 전만 각속도이며, The first parameter is an instantaneous vertebral lordosis angle and an instantaneous vertebral lordosis angular velocity,
    상기 순간 척추 전만 각도는, 지정 시점의 척추 전만 각도를 나타내며, The instantaneous vertebral lordosis angle represents the vertebral lordosis angle at a designated time point,
    상기 순간 척추 전만 각속도는 지정 시점의 척추 전만 각속도를 나타내는 것을 특징으로 하는 척추 동작 분석 방법.The instantaneous vertebral lordosis angular velocity is a spinal motion analysis method, characterized in that representing the vertebral lordosis angular velocity at a designated time point.
  18. 제17항에 있어서, The method of claim 17,
    상기 제2파라미터는, The second parameter,
    순간 척추 전만 강건성 지표이며, Instant spinal lordosis is an indicator of robustness,
    상기 순간 척추 전만 강건성 지표는, 상기 순간 척추 전만 각도를 상기 순간 척추 전만 각속도로 나눈 값인 것을 특징으로 하는 척추 동작 분석 방법.The instantaneous vertebral lordosis robustness index is a value obtained by dividing the instantaneous vertebral lordosis angle by the instantaneous vertebral lordosis angular velocity.
  19. 제10항에 있어서, The method of claim 10,
    상기 제1파라미터는, 롤 방향 척추 range of motion 이며, The first parameter is the range of motion of the spine in the roll direction,
    상기 롤 방향 척추 range of motion은, The roll direction spine range of motion,
    특정 시간 간격 또는 특정 운동 진행 시간 동의 최대 척추 전만 각도와 최소 척추 전만 각도의 차인 것을 특징으로 하는 척추 동작 분석 방법.Spinal motion analysis method, characterized in that the difference between the maximum vertebral lordosis angle and the minimum vertebral lordosis angle at a specific time interval or a specific exercise progress time agreement.
  20. 제10항에 있어서, The method of claim 10,
    상기 판별 단계를 통해 판별된 정보를 수신하여, 수신된 정보를 통해 피측정자에게 신호를 전달할 수 있는 피드백 단계를 더 포함하는 것을 특징으로 하는 척추 동작 분석 방법.And a feedback step of receiving the information determined through the determination step and transmitting a signal to a subject through the received information.
PCT/KR2020/001688 2019-05-29 2020-02-06 Spinal motion analysis system and spinal motion analysis method WO2020242009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190063304A KR102245204B1 (en) 2019-05-29 2019-05-29 Spinal motion analysis system and Spinal motion analysis method
KR10-2019-0063304 2019-05-29

Publications (1)

Publication Number Publication Date
WO2020242009A1 true WO2020242009A1 (en) 2020-12-03

Family

ID=73553228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001688 WO2020242009A1 (en) 2019-05-29 2020-02-06 Spinal motion analysis system and spinal motion analysis method

Country Status (2)

Country Link
KR (1) KR102245204B1 (en)
WO (1) WO2020242009A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102512646B1 (en) * 2020-12-16 2023-03-24 동국대학교 산학협력단 Chiropractic device and method of assisting chiropractic exercise using the same
KR102542013B1 (en) * 2021-07-12 2023-06-12 인천대학교 산학협력단 Smart Device System for Noticing Detecting Turtle Neck Syndrome
KR102489896B1 (en) * 2021-07-13 2023-01-17 건양대학교산학협력단 Device Which Can Analysis Spinal Segment Status

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013153975A (en) * 2012-01-30 2013-08-15 Fujitsu Ltd Information processing device, information processing program and information processing method
KR20150072957A (en) * 2013-12-20 2015-06-30 삼성전자주식회사 Method for measuring posture, terminal thereof, and system thereof
JP2017000199A (en) * 2015-06-04 2017-01-05 マイクロストーン株式会社 Walking evaluation method and walking evaluation system
KR20190015851A (en) * 2017-08-07 2019-02-15 주식회사 비플렉스 Motion sensing method and apparatus
KR20190047648A (en) * 2017-10-27 2019-05-08 주식회사 뉴클리어스 Method and wearable device for providing feedback on action

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101173047B1 (en) * 2009-12-31 2012-08-10 연세대학교 원주산학협력단 Stabilization apparatus and evaluation method of trunk and pelvis
KR101927113B1 (en) * 2017-05-12 2019-03-12 주식회사 본브레테크놀로지 Scoliosis correction system using wearable IOT device
KR101843809B1 (en) * 2017-08-24 2018-04-02 하성민 Apparauts and method for analyzing a curvature of the thoracic vertebrae

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013153975A (en) * 2012-01-30 2013-08-15 Fujitsu Ltd Information processing device, information processing program and information processing method
KR20150072957A (en) * 2013-12-20 2015-06-30 삼성전자주식회사 Method for measuring posture, terminal thereof, and system thereof
JP2017000199A (en) * 2015-06-04 2017-01-05 マイクロストーン株式会社 Walking evaluation method and walking evaluation system
KR20190015851A (en) * 2017-08-07 2019-02-15 주식회사 비플렉스 Motion sensing method and apparatus
KR20190047648A (en) * 2017-10-27 2019-05-08 주식회사 뉴클리어스 Method and wearable device for providing feedback on action

Also Published As

Publication number Publication date
KR102245204B1 (en) 2021-04-27
KR20200137255A (en) 2020-12-09

Similar Documents

Publication Publication Date Title
WO2020242009A1 (en) Spinal motion analysis system and spinal motion analysis method
Cola et al. An on-node processing approach for anomaly detection in gait
WO2020222626A1 (en) Method of analyzing muscle fatigue by electromyogram measurement
AU2019271907B2 (en) System, apparatus and method for measurement of muscle stiffness
WO2019182273A1 (en) Sleep apnea severity testing device
CN109480857A (en) A kind of device and method for the detection of Parkinsonian's freezing of gait
CN108338790B (en) Gait analysis and fall assessment system
TWI417083B (en) Gait analysis system
WO2015051620A1 (en) Monitor for monitoring movement of diaphragm
Wang et al. An intelligent wearable device for human’s cervical vertebra posture monitoring
CN113288121A (en) Gait analysis system
WO2016122241A1 (en) Core stability exercise management system
Su et al. Low power spinal motion and muscle activity monitor
WO2021201353A1 (en) Pain analysis device
WO2021010645A1 (en) Eating monitoring method, device and system
WO2018044059A1 (en) Fitness monitoring system.
Allen et al. Evaluation of fall risk for post-stroke patients using bluetooth low-energy wireless sensor
WO2017217567A1 (en) Fitness monitoring system
Paladugu et al. A sensor cluster to monitor body kinematics
CN208822781U (en) A kind of device of joint angles measurement
WO2022255834A1 (en) Correct posture inducing system using avatar
WO2024063227A1 (en) Wearable gait disturbance analysis apparatus
WO2022145742A1 (en) System and method for providing personalized sarcopenia diagnosis and prevention service
Purwar et al. A wireless sensor network compatible triaxial accelerometer: Application for detection of falls in the elderly
WO2021107727A1 (en) Smart band for performing cardiac arrest determination via motion noise and cardiac arrest management system using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813628

Country of ref document: EP

Kind code of ref document: A1