WO2020241888A1 - 保温材下腐食発生予測モデルおよびプラント保全支援装置 - Google Patents

保温材下腐食発生予測モデルおよびプラント保全支援装置 Download PDF

Info

Publication number
WO2020241888A1
WO2020241888A1 PCT/JP2020/021487 JP2020021487W WO2020241888A1 WO 2020241888 A1 WO2020241888 A1 WO 2020241888A1 JP 2020021487 W JP2020021487 W JP 2020021487W WO 2020241888 A1 WO2020241888 A1 WO 2020241888A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
equipment
plant
heat insulating
insulating material
Prior art date
Application number
PCT/JP2020/021487
Other languages
English (en)
French (fr)
Inventor
中原 正大
秀季 滝沢
裕 伴野
村上 健二
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2021521918A priority Critical patent/JP7085067B2/ja
Publication of WO2020241888A1 publication Critical patent/WO2020241888A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a corrosion occurrence prediction model under a heat insulating material and a plant maintenance support device.
  • CLI Corrosion Under Insulation
  • CUI is corrosion that occurs from the outer surface of carbon steel equipment and piping that is covered with the heat insulating material that covers the equipment of the plant and the exterior material that covers the outside of the heat insulating material.
  • the heat insulating material and exterior material deteriorate during use of the plant, and rainwater and dew condensation water infiltrate or impregnate into the heat insulating material and exterior material, creating a moist atmosphere on the outer surface of carbon steel equipment and piping, and CUI is generated. To do.
  • CUI varies greatly depending on the type of plant equipment, etc., and the location of its occurrence and the degree of progress. Further, since the CUI is usually hidden behind the heat insulating material and the exterior material and cannot be seen, there is a problem that its occurrence cannot be easily detected, which makes it difficult to maintain and manage the equipment of the plant.
  • CUI inspection as part of the maintenance of plant equipment is carried out by installing scaffolding and peeling off the heat insulating material and exterior material. Therefore, the CUI inspection requires a large amount of cost including the installation of scaffolding, and has a problem that the CUI detection probability is low even if the heat insulating material and the exterior material are peeled off.
  • JP-A-2018-025497 Japanese Unexamined Patent Publication No. 2018-017704 Japanese Unexamined Patent Publication No. 2012-052933 Japanese Unexamined Patent Publication No. 2011-080937 JP-A-2010-107362 JP-A-2007-120126 Japanese Unexamined Patent Publication No. 2006-284416
  • a step of acquiring a condition including the operating temperature of the target equipment and a condition for determining whether the target equipment is suitable for non-destructive inspection using a predetermined measuring device Includes a first inspection to measure the surface temperature of the exterior material covering the surface of the heat insulating material of the target equipment and a second inspection to measure the amount of water contained in the heat insulating material of the target equipment based on the conditions.
  • the second aspect of the present invention there is a step of calculating the probability density f (x; ⁇ ) of the wall thinning depth x based on the population parameter ⁇ determined according to the installation status of the equipment of the plant.
  • a method comprising a step of evaluating the inspection necessity of the equipment of the plant based on the allowable wall thinning depth of the equipment of the plant and the probability density.
  • a plant maintenance support device including an evaluation unit for evaluating the inspection necessity of the equipment of the plant based on the allowable wall thinning depth of the equipment of the plant and the probability density.
  • it is a computer program including instructions, and when the instructions are executed by a processor or a programmable circuit, the plant equipment is installed in the processor or the programmable circuit. Based on the calculation unit that calculates the probability density f (x; ⁇ ) of the wall thinning depth x based on the population ⁇ determined according to the situation, the allowable wall thinning depth of the equipment of the plant, and the probability density.
  • a computer program that executes an operation including an evaluation unit that evaluates the inspection necessity of the equipment of the plant.
  • the installation status and allowable wall thinning depth of one or more target facilities and whether the wall thinning depth of the target equipment is equal to or greater than the allowable wall thinning depth is determined.
  • the result of the evaluation of the inspection necessity in the first evaluation stage and the first evaluation stage which evaluates the inspection necessity of the target equipment based on the prediction model predicted based on the installation situation of For high target equipment, the evaluation of the necessity of inspection in the stage of performing peeling inspection or renewal of target equipment with peeling of heat insulating material and in the first evaluation stage is less than the first degree and smaller than the first degree.
  • a method including a step of performing a non-destructive inspection without peeling of a heat insulating material for a target facility having a predetermined range higher than the second degree.
  • the sixth aspect of the present invention there are a plurality of prediction models that predict the wall thinning depth of the equipment based on the installation status of the equipment, and the installation status and the allowable wall thinning depth of the plurality of target equipment.
  • the first evaluation stage to evaluate the inspection necessity of the target equipment, the stage to perform non-destructive inspection without peeling of the heat insulating material for at least one of the plurality of target equipment, and the inspection result of the non-destructive inspection.
  • At least one of the second evaluation stage for evaluating the inspection necessity of the target equipment based on the above, the result of the evaluation of the inspection necessity in the first evaluation stage, and the result of the evaluation of the inspection necessity in the second evaluation stage.
  • Provide a method for each of the plurality of target equipments including a step of selectively performing at least one of the target equipment renewal, peeling inspection, partial peeling inspection, condition monitoring, and post-maintenance. ..
  • the stage of acquiring the installation status and the allowable wall thickness reduction of the target equipment, the acquired installation status, the allowable wall thickness reduction depth, and the wall thickness reduction of the equipment based on the installation status.
  • the peeling inspection with the peeling of the heat insulating material and the peeling of the heat insulating material are performed.
  • a method including a determination step of determining the necessity of inspection of equipment of the plant based on at least one of the difference between the temperature and the outside air temperature.
  • a temperature measuring device for measuring the surface temperature of the exterior material of the heat insulating material of the plant equipment, and the measured temperature unevenness and surface temperature of the surface temperature of the exterior material of the heat insulating material.
  • an apparatus including a determination unit for determining the necessity of inspection of equipment of the plant based on at least one of the difference between the temperature and the outside air temperature.
  • a computer program including instructions, when the instructions are executed by a processor or a programmable circuit, the processor or the programmable circuit keeps the plant equipment warm.
  • a computer program that performs an operation including measuring the surface temperature of the exterior material of the material and determining the inspection necessity of the equipment of the plant based on the measured surface temperature.
  • the moisture measurement step of measuring the moisture content inside the exterior material of the heat insulating material covering the equipment of the plant by the moisture measuring device, and the measured moisture content are based on the measured moisture content.
  • the present invention provides a method including a determination stage for determining the necessity of inspection of the equipment of the plant.
  • the equipment of the plant to be inspected is subjected to the prediction model generated based on the plurality of detected values of the wall thinning depth acquired in advance for the equipment of the plurality of plants. Based on the results of the preliminary judgment stage for preliminarily determining the inspection necessity and the measurement results performed on the equipment of the plant in which the inspection necessity is recognized to be more than a predetermined degree in the preliminary judgment stage. Provided is a method including a determination stage for determining the necessity of inspection of plant equipment.
  • the water content measuring device for measuring the water content inside the exterior material of the heat insulating material covering the equipment of the plant, and the water content of the plant based on the measured water content.
  • an apparatus including a determination unit for determining the necessity of inspection of equipment.
  • the processor or the programmable circuit in a computer program including instructions, when the instructions are executed by a processor or a programmable circuit, the processor or the programmable circuit is covered with plant equipment.
  • a computer that performs operations including measuring the amount of water inside the exterior material of the heat insulating material and determining the necessity of inspecting the equipment of the plant based on the measured amount of water. Provide a program.
  • the stage of acquiring the installation status and the allowable wall thickness reduction, the acquired installation status and the allowable wall thickness reduction, and the installation status are set. Based on the prediction model that predicts the wall thinning depth of the equipment based on the stage of evaluating the inspection necessity for each of the plurality of target equipment, and the inspection necessity is relatively high among the plurality of target equipment. It provides a computer-implemented method, a device that performs this method, and a program that causes the computer to perform this method, including a step of outputting to emphasize the equipment.
  • the stage of acquiring the installation status of the target equipment determining the type of non-destructive inspection suitable for the target equipment based on the installation status, and based on the installation status.
  • the necessity of equipment inspection is evaluated by determining the type of non-destructive inspection suitable for the equipment and using a prediction model that predicts the wall thinning depth of the equipment based on the installation situation. What to do is done in this order, and the assessment of the need for equipment inspection may be done for equipment without suitable non-destructive inspection.
  • the method of performing maintenance and inspection in the present embodiment is to use a prediction model generated based on a plurality of detected values of the wall thinning depth acquired in advance for a plurality of facilities where corrosion under the heat insulating material occurs, and to perform the maintenance and inspection of the target facility.
  • determine the type of multiple non-destructive inspections perform non-destructive inspections suitable for the target equipment, evaluate the need for inspection of the target equipment using a predictive model, and / or use a predetermined measuring device.
  • It includes at least one of the methods of determining the maintenance method for the target equipment based on the evaluation of the necessity of the peel inspection of the target equipment based on the measurement result of the non-destructive inspection.
  • the method may be performed by one or more computers and predetermined software implemented on the one or more computers.
  • maintenance refers to activities to take prescribed countermeasures (equipment renewal including inspection and repair, condition monitoring, etc.) for the target equipment in order to operate the target equipment economically and safely.
  • the inspection includes a destructive inspection and a non-destructive inspection.
  • One of the destructive inspections for plant equipment where CUI can occur is a peeling inspection in which the heat insulating material is peeled off to check the state of corrosion of the equipment, and if necessary, the corrosion depth of the equipment is measured.
  • non-destructive inspection of plant equipment where CUI can occur is performed by measuring factors that cause corrosion of the equipment (for example, the amount of water contained in the heat insulating material) without peeling off the heat insulating material.
  • the evaluation of the necessity of inspection may be to evaluate the necessity of inspection of the target equipment including peeling inspection and non-destructive inspection, and the non-destructive inspection has already been carried out at the time of evaluation. If so, it may be possible to evaluate the necessity of the peeling inspection for the target equipment and the degree of the peeling inspection.
  • the degree of the peeling inspection may be, for example, the area of the target equipment from which the heat insulating material is peeled off.
  • the evaluation of the necessity of inspection may include evaluating the possibility of damage to the target equipment due to corrosion under the heat insulating material.
  • the assessment of the need for inspection may include possible countermeasures for the target equipment.
  • the peeling inspection includes a full peeling inspection in which the heat insulating material of the target equipment is peeled over the entire surface and a partial peeling inspection in which a part thereof is peeled off. Further, the peeling inspection may include a first peeling inspection for peeling the first ratio or more of the heat insulating material of the target equipment and a second peeling inspection for peeling less than the first ratio. When the full peeling inspection corresponds to the peeling inspection, the partial peeling inspection corresponds to the second peeling inspection.
  • FIG. 1 is a flow chart showing the flow of maintenance in this embodiment.
  • the maintenance flow shown in FIG. 1 can be carried out, for example, by a plant equipment maintenance manager or an inspector using a plant maintenance support system described later.
  • S100 data on the installation status of equipment of one or more plants to be inspected for maintenance, which is covered with a heat insulating material and whose corrosion state cannot be confirmed from the outside. (S100).
  • the acquired data may include information on the type of equipment, the installation period of the equipment, and the operating temperature.
  • the necessity of inspection of the target equipment is evaluated using the data on the installation status of the target equipment and the prediction model that predicts the risk level of CUI based on the installation status of the equipment (S101).
  • the evaluation of the inspection necessity of the target equipment may be executed by the plant maintenance support system described later performing arithmetic processing using the prediction model in the arithmetic unit.
  • the prediction model may be a model generated by using a data group including the wall thinning depth measured in advance for a plurality of facilities having different installation conditions, and predicts the wall thinning depth of the target facility as a probability.
  • the details of the prediction model will be described later.
  • the evaluation of the inspection necessity of the target equipment is performed based on the possibility of damage output by the prediction model and the degree of influence of the result when the target equipment is damaged. That is, it is preferable that the higher the possibility of damage to the target equipment and the greater the degree of influence of the result when the target equipment is damaged, the higher the evaluation necessity of inspection.
  • the details of the prediction model and the evaluation of the inspection necessity of the target equipment using the prediction model will be described later.
  • At least one countermeasure to be taken for the target equipment is extracted from a plurality of types of countermeasures based on the evaluation result (degree of inspection necessity) of the target equipment using the prediction model. ..
  • the degree of evaluation of the necessity of inspection is classified into four types: small (A rank), medium (B rank), large (C rank), and extra large (D rank).
  • first degree where the degree of evaluation of inspection necessity is the highest, that is, the equipment with extra large inspection necessity, peeling inspection or equipment is provided as a countermeasure. It is decided to update the equipment to be replaced, and the process proceeds to S110.
  • the evaluation of inspection necessity is in a predetermined range (less than the first degree and above the second degree) lower than the oversized
  • equipment having a large to small degree of evaluation of inspection necessity In order to examine in more detail whether or not a peeling inspection should be performed, and in order to perform a non-destructive inspection to narrow down the target part when performing a peeling inspection, the subject is subject to the non-destructive inspection in advance. Proceed to S103 for determining whether the equipment is suitable for non-destructive inspection using a predetermined measuring device.
  • the first degree and the second degree may be appropriately set, and for example, the case where the inspection necessity is 0 may be set as the second degree.
  • the target equipment is suitable for non-destructive inspection using a predetermined measuring device for all of the target equipment.
  • the applicability of the non-destructive inspection in S103 is determined based on the conditions when the measurement is performed on the target equipment. This condition includes at least the operating temperature condition among the equipment installation conditions acquired in S100. Other conditions described later may be used as the conditions.
  • the determination of the applicability of the non-destructive inspection may be executed by the plant maintenance support system described later performing arithmetic processing using a predetermined determination model in the arithmetic unit.
  • a determination flow for determining the applicability of nondestructive inspection may be executed by a predetermined determination model.
  • the non-destructive inspection includes a first inspection that uses a temperature measuring device to measure the surface temperature of the exterior material that covers the surface of the heat insulating material, and a moisture measuring device that measures the amount of water contained in the heat insulating material of the target equipment. It is preferable that a suitable non-destructive inspection method is extracted from a plurality of non-destructive inspection methods including the first inspection and the second inspection.
  • S104 when there is no non-destructive inspection method suitable for the target equipment (NO in S104), for example, a visual inspection is performed on the target equipment as an inspection without using a predetermined measuring device. A part to be subjected to the peeling inspection is narrowed down (S108), and a partial peeling inspection is carried out targeting a specific part of the target equipment (S112). For the target equipment for which there is no suitable non-destructive inspection method (NO in S104), the inspection site for peeling inspection is not narrowed down according to the evaluation result of inspection necessity by the prediction model. A peeling test may be performed.
  • S104 when a non-destructive inspection method suitable for the target equipment exists (YES in S104), a non-destructive inspection is performed on the target equipment (S105), and based on the result of the non-destructive inspection. , The need for further inspection is evaluated (S106).
  • the evaluation of the inspection necessity in S106 may be performed by correcting the evaluation of the inspection necessity using the prediction model performed in S101.
  • the degree of evaluation of the necessity of inspection is classified into four types: small (A), medium (B), large (C), and extra large (D).
  • the target equipment in the predetermined range (third degree) where the evaluation of inspection necessity is the highest that is, the equipment with extra large inspection necessity, peel inspection or equipment renewal to replace the equipment is performed. To do so, proceed to S110.
  • equipment having an evaluation of inspection necessity in a predetermined range (less than a third degree and a fourth degree or more smaller than a third degree) lower than the oversized for example, an evaluation of inspection necessity.
  • the part to be peeled is narrowed down (S109), and the part of the target equipment that targets a specific part. It is decided to carry out a peeling inspection, and the process proceeds to S112.
  • the third degree and the fourth degree may be appropriately set.
  • the third degree may be the same as the first degree
  • the fourth degree may be the same as the second degree.
  • the evaluation of the inspection necessity of the target equipment may include the evaluation of the possibility of damage to the target equipment based on the inspection result of the non-destructive inspection, and further, the possibility of damage to the target equipment may occur. And, it may be performed based on the evaluation of the degree of influence of the result when the target equipment is damaged. That is, it is preferable to evaluate the necessity of inspection as low as the possibility of damage to the target equipment is low and the degree of influence as a result when the target equipment is damaged is small.
  • evaluation of inspection necessity based on the prediction model (first evaluation stage) and evaluation of inspection necessity based on the inspection result of nondestructive inspection (second evaluation). Perform at least one of the steps). Furthermore, based on the result of the evaluation by the first evaluation stage and the result of the evaluation by the second evaluation stage, the target equipment is renewed or peeled (total peeled inspection or peeling inspection) for each of the one or more target equipments. Perform at least one of (partial peeling inspection), condition monitoring, and post-maintenance.
  • FIG. 2 shows an example of the configuration of the plant maintenance support system 100 of the present embodiment.
  • the plant maintenance support system 100 includes a plant maintenance support device 110, client terminals 151 to 153, a moisture measuring device 161 and a temperature measuring device 162.
  • the client terminals 151 to 153 may be installed in the facility of the plant for each plant.
  • the client terminals 151 to 153 transmit data on the plant equipment to the plant maintenance support device 110 via a communication network such as the Internet 140, and data on the necessity of inspection of the plant equipment from the plant maintenance support device 110.
  • the client terminals 151 to 153 may communicate with at least one of the moisture measuring device 161 and the temperature measuring device 162.
  • the client terminals 151 to 153 may receive the measurement result of at least one of the measurements by the moisture measuring device 161 or the temperature measuring device 162.
  • the number of client terminals 151 to 153 may be one or two or more. At least one of the client terminals 151 to 153 may be at least one of the group consisting of laptop terminals, desktop terminals, servers, client terminals, smartphones, tablets, and wearable terminals.
  • any of the plant maintenance support device 110 and the client terminals 151 to 153 may be integrally configured. That is, a series of processes from acquisition of data related to plant equipment, generation of data related to inspection necessity of plant equipment, and notification of the data may be performed by a single terminal. Further, the plant maintenance support device 110 may be composed of a plurality of terminals. That is, a plurality of terminals may cooperate with each other to perform a series of processes from acquisition of data related to plant equipment, generation of data related to inspection necessity of plant equipment, and output of the data.
  • the plant maintenance support device 110 includes a storage unit 120 and a calculation unit 130.
  • the arithmetic unit 130 includes at least one hardware processor.
  • the arithmetic unit 130 may be composed of, for example, a CPU, a ROM, and a RAM as hardware processors.
  • the storage unit 120 may be, for example, an auxiliary storage device configured by a hard disk drive. The hardware configuration of the arithmetic unit 130 and the storage unit 120 in the present disclosure will be described later with reference to FIG.
  • the storage unit 120 includes a program storage unit 121, a measurement data storage unit 122, a probability information storage unit 123, and a determination information storage unit 124.
  • the program storage unit 121 stores the program to be executed in the calculation unit 130.
  • the measurement data storage unit 122 is among the data of the equipment of the plant which is the learning data for generating the prediction model received from the client terminals 151 to 153 by the plant maintenance support device 110, or the data of the equipment of the plant to be inspected.
  • the probability information storage unit 123 stores a model generated by the model generation unit 132 that predicts the risk level of the CUI as a probability.
  • the risk level of CUI is an index for evaluating the necessity of inspection for whether or not CUI is generated.
  • the probability information storage unit 123 may store data regarding the need for inspection of plant equipment.
  • the determination information storage unit 124 stores a determination model for extracting a non-destructive inspection method suitable for the target equipment based on a predetermined condition.
  • the calculation unit 130 executes the program stored in the program storage unit 121 in the storage unit 120, the calculation unit 130 includes the acquisition unit 131, the model generation unit 132, the first evaluation unit 133, the determination unit 134, and the output unit. Functions as 135.
  • the acquisition unit 131 acquires the data of the equipment of the plant to be the learning data and the data of the equipment of the plant to be inspected.
  • the equipment of the plant to be the training data or the equipment of the plant to be inspected may be covered with the heat insulating material and the exterior material covering the outside of the heat insulating material, and the corrosion state may not be confirmed from the appearance.
  • the exterior material may be sheet metal or the like.
  • the acquisition unit 131 sends the plant equipment data, which is the acquired learning data, to the model generation unit 132 and the measurement data storage unit 122. Further, the acquisition unit 131 sends the data of the equipment of the plant to be inspected to the first evaluation unit 133.
  • the model generation unit 132 generates a model that predicts the risk level of the CUI as a probability from the data of the plant equipment, which is the data sent from the acquisition unit 131.
  • the model generation unit 132 may generate a model by a machine learning method using the data of the plant equipment sent from the acquisition unit 131 as training data (training data).
  • the model generation unit 132 may generate a model for predicting the CUI occurrence probability for each wall thinning depth, and calculate the probability density for each wall thinning depth based on the generated model.
  • the model may be generated to output the probability density as a distribution based on the parameter ⁇ .
  • the model may also be generated to output the probability density as a probability density function based on the parameter ⁇ .
  • the model generation unit 132 sends the generated model to the first evaluation unit 133 via the probability information storage unit 123 or directly.
  • the first evaluation unit 133 evaluates the necessity of inspection of the equipment of the plant to be inspected obtained by the acquisition unit 131 by using the model acquired from the probability information storage unit 123 or the model generation unit 132. Hereinafter, the evaluation by the first evaluation unit 133 may be expressed as a preliminary judgment.
  • the first evaluation unit 133 sends the first evaluation result (result of preliminary determination) to the determination unit 134.
  • the first evaluation result may be the rank of the degree of risk of CUI represented by rank A to rank D.
  • the risk level of the CUI may be an index indicating the possibility that the equipment of the plant may be damaged by the CUI.
  • the first evaluation unit 133 may transmit the first evaluation result to any of the client terminals 151 to 153.
  • the client terminals 151 to 153 may notify the user by displaying the first evaluation result on the display unit or the like.
  • the determination unit 134 is suitable for the target equipment from among the non-destructive inspections performed by the equipment of the plant to be inspected using a predetermined measuring device without peeling of the heat insulating material based on the predetermined conditions. Extract the type of non-destructive inspection.
  • the determination unit 134 is qualified to determine whether the equipment of the plant to be inspected is suitable for measurement using at least one of the moisture measuring device 161 or the temperature measuring device 162. Make a judgment. As a result of the first evaluation result and the eligibility determination sent from the first evaluation unit 133, the determination unit 134 has a certain level of CUI risk in the equipment of the plant to be inspected, and the inspection target. If the equipment of the plant is suitable for measurement using a measuring device, the type of non-destructive inspection using a predetermined measuring device suitable for the target equipment is selected by the client via a communication network such as the Internet 140. Instruct at least one of terminals 151 to 153.
  • the determination unit 134 communicates with the Internet 140 or the like so as to perform measurement on the equipment of the plant to be inspected by using at least one measuring device of the moisture measuring device 161 or the temperature measuring device 162. Instruct at least one of the client terminals 151 to 153 via the network.
  • the determination unit 133 may transmit the eligibility determination result to the client terminal when none of the measuring devices is suitable for measurement or when all of the measuring devices are suitable for measurement.
  • the determination unit 134 acquires the measurement result using at least one of the moisture measuring device 161 or the temperature measuring device 162 from the client terminals 151 to 153 via a communication network such as the Internet 140.
  • the determination unit 134 is suitable for measuring the target equipment from the type of non-destructive inspection that does not involve peeling of the heat insulating material, based on the data of the equipment of the plant to be inspected acquired by the acquisition unit 131.
  • the type may be extracted.
  • the types of non-destructive inspection include an inspection for measuring the surface temperature of the exterior material covering the surface of the heat insulating material of the target equipment (first inspection) and a measurement of the amount of water contained in the heat insulating material of the target equipment.
  • An inspection (second inspection) may be included.
  • the data of the equipment of the plant to be inspected includes the condition of the operating temperature as a condition for determining whether the target equipment is suitable for non-destructive inspection using a predetermined measuring device.
  • the conditions are the outside air temperature, the difference between the operating temperature and the outside air temperature, the type of the exterior material of the heat insulating material, the surface shape of the exterior material of the heat insulating material, and the object covered with the heat insulating material and the heat insulating material. It is more preferable that at least one of the conditions of the presence or absence of the heating equipment provided between the equipment and the equipment is included.
  • the type of exterior material may include the type of surface processing of the exterior material.
  • the determination unit 134 sends the determination result to the output unit 135.
  • the output unit 135 may output the inspection necessity of the equipment of the plant to be inspected to at least one of the client terminals 151 to 153 via a communication network such as the Internet 140.
  • the output unit 135 is qualified for the plant equipment data acquired by the acquisition unit 131, the equipment data of the plant to be inspected, the evaluation result by the first evaluation unit 133, and the non-destructive inspection by the determination unit 134. It may be configured to output the result of the sex determination, the result of the evaluation by the second evaluation unit 136, which will be described later, and the result of the evaluation by the third evaluation unit 137.
  • the plant maintenance support device 110 generates a model that predicts the CUI risk level as a probability based on the acquired learning data of the plant equipment data, and uses the generated model to be inspected. Preliminarily determine the need for inspection of plant equipment.
  • the equipment of the plant to be inspected has a certain level of CUI risk
  • the equipment of the plant to be inspected is a non-destructive inspection without peeling of the heat insulating material, and is a predetermined measuring device.
  • the plant maintenance support device 110 performs a non-destructive inspection suitable for the target equipment on the equipment of the plant to be inspected, among the client terminals 151 to 153. Instruct at least one of.
  • the type of non-destructive inspection may include an inspection in which measurement is performed using at least one measuring device of the moisture measuring device 161 or the temperature measuring device 162. Therefore, when the plant maintenance support device 110 is suitable for inspection by at least one measuring device of the moisture measuring device 161 or the temperature measuring device 162 for the target equipment, the plant maintenance support device 110 of the moisture measuring device 161 or the temperature measuring device 162. You may instruct at least one of the client terminals 151 to 153 to perform the measurement using at least one of the measuring devices.
  • the determination unit 134 needs to inspect the equipment of the plant to be inspected based on the determination result of the eligibility of the non-destructive inspection of the moisture measuring device 161 and the like and the measurement result of the non-destructive inspection of the moisture measuring device 161 and the like. May be determined. It should be noted that the determination unit 134 may determine the necessity of inspecting the equipment of the plant to be inspected based only on the first evaluation result or only the measurement result by the measuring device without performing the preliminary determination. Good.
  • the non-destructive inspection method may include a non-destructive inspection method in which the following measuring device is used. That is, the measuring device includes a thermo-hygrometer, an ACM sensor that detects a corrosion current flowing between two types of insulated metals (for example, iron and silver), and at least one of ultrasonic waves and leakage magnetic flux arranged in a pipe. An intelligent pig, which measures the wall thinning depth on the inner and outer surfaces of the pipe, can be used. In addition, an acoustic emission measuring instrument that detects the degree of corrosion of a structure (for example, the progress of corrosion) by detecting elastic waves emitted from the rust layer due to peeling or breaking of rust caused by corrosion can be used. ..
  • the degree of corrosion of the structure (piping, etc.) (for example, the maximum wall thinning depth within the imaging range)
  • An image processing device that detects the above can be used.
  • thermo-hygrometer and ACM sensor require a partial peeling of the heat insulating material for their installation, which increases the installation cost, and also calculates calibration data for evaluating the degree of corrosion of the actual machine from the measurement results.
  • Acquisition of calibration data is complicated.
  • the acoustic emission meter is complicated to calculate the obtained signal and the calibration data for evaluating the degree of corrosion occurrence, and to acquire the calibration data.
  • Intelligent pigs are difficult to apply to in-plant piping with many curved pipes and branched parts, and applicable plant equipment is limited.
  • the X-ray imaging device and the image processing device need to measure these devices in close proximity to the target pipe or the like.
  • the X-ray imaging apparatus and the image processing apparatus cannot be applied to large-diameter pipes and equipment, and the applicable objects are limited. Therefore, as the non-destructive inspection method, it is preferable to use at least one of the moisture measuring device 161 and the temperature measuring device 162, which are methods in which the restriction of proximity measurement is relaxed to some extent. Further, as will be described later, the inventors have realized the calculation of the calibration data regarding the correlation between the accumulated measurement results and the degree of corrosion occurrence by performing the non-destructive inspection using these measuring devices under predetermined conditions.
  • the determination unit 134 extracts a plurality of types of non-destructive inspection suitable for the target equipment, and at least one of the moisture measuring device 161 and the temperature measuring device 162 is included in the plurality of types. If it is included, it may be output together with the fact that at least one of the moisture measuring device 161 and the temperature measuring device 162 is recommended.
  • FIG. 3 is an example of the processing flow of the plant maintenance support device 110.
  • the plant maintenance support device 110 evaluates the necessity of inspection of the equipment of the plant to be inspected by performing the processes of S210 to S290, and supports the determination of the countermeasures to be taken for the equipment of the plant to be inspected.
  • countermeasures such as inspection, equipment update, and condition monitoring suitable for the target equipment.
  • the processes of S210 to S290 will be described in order, but these processes may be executed in parallel like a pipeline.
  • the term "plant” means a factory facility including a reactor, a pipeline, a purification device, etc., in which raw materials are input and reacted, mixed, or separated to produce a target compound or composition. It may be.
  • the equipment of the plant may include at least one of the metal pipes and the metal equipment used in the plant. At least one of the metal pipe and the metal equipment may be covered with a heat insulating material and an exterior material that covers the outside of the heat insulating material. The equipment of the plant may be covered with a heat insulating material and an exterior material that covers the outside of the heat insulating material, and the corrosion state may not be confirmed from the appearance.
  • the model generation unit 132 generates a prediction model that predicts the risk level of the CUI of the equipment based on the installation status of the equipment of the plant to be inspected.
  • the prediction model may be a model that predicts the wall thinning depth of the target equipment as a probability. That is, the prediction model may be a model that predicts the possibility of damage caused by the CUI of the target equipment.
  • the model generation unit 132 generates a model that predicts the risk level of CUI as a probability based on the data of the plant equipment that is the learning data acquired from the acquisition unit 131.
  • the model generation unit 132 sends the generated model to the first evaluation unit 133 via the probability information storage unit 123 or directly. Details of S210 will be described later. In the processing flow, S210, S220, S230 and S240 may be skipped and the process may proceed directly to S250 from the start.
  • the acquisition unit 131 acquires the data of the equipment of the plant to be inspected and sends it to the first evaluation unit 133.
  • the acquisition unit 131 may acquire data including the allowable wall thickness reduction depth, which is information on the wall thickness allowed for the equipment, as the data of the equipment of the plant to be inspected.
  • the user of the plant maintenance support system 100 may input the allowable wall thinning depth to any of the terminals.
  • the threshold value for calculating the inspection necessity by the first evaluation unit 133 can be arbitrarily set according to, for example, the degree of influence of the result described later, so that highly accurate and economical inspection can be realized. it can. It should be noted that a plurality of data on the equipment of the plant to be inspected may be acquired.
  • the first evaluation unit 133 uses the acquired data of the equipment of the plant to be inspected as the probability of the CUI risk acquired from the probability information storage unit 123 or the model generation unit 132. Preliminarily determine the need for inspection of the equipment of the plant to be inspected using the predicted model.
  • the first evaluation unit 133 may use the result of ranking the inspection necessity of the equipment of the plant as the first evaluation result. As an example, the first evaluation result may be classified into four ranks from A rank to D rank, in which A rank has the lowest possibility of CUI generation and D rank has the highest possibility of CUI generation. Details of S230 will be described later.
  • the determination unit 134 performs a non-destructive inspection using a predetermined measuring device for the equipment of the plant to be inspected, which is preliminarily determined to have a certain level of CUI risk in the equipment of the plant to be inspected. Eligibility is determined as to whether or not it is suitable for.
  • the determination unit 134 determines the eligibility of whether or not it is suitable for measurement using at least one of the moisture measuring device 161 and the temperature measuring device 162. The determination unit 134 may proceed to S260 if the result of the eligibility determination is suitable for the measurement using the equipment of the plant to be inspected.
  • the determination unit 134 may proceed to S280 if the equipment of the plant to be inspected is not suitable for the measurement using the measuring device.
  • the determination unit 134 may send the result of the eligibility determination to the probability information storage unit 123. Further, the determination unit 134 may send the result of the eligibility determination to the client terminals 151 to 153 via a communication network such as the output unit 135 and the Internet 140. Details of S250 will be described later. If it is determined in S240 that the equipment of the plant to be inspected has a certain degree of CUI risk in the processing flow, S250, S260 and S270 may be skipped and the process may proceed directly from S240 to S280.
  • the determination unit 134 selects a measurement device suitable for measurement on the equipment of the plant to be inspected from the non-destructive inspection method using a predetermined measurement device based on the result of the eligibility determination. To do. In the example of this processing flow, the determination unit 134 selects at least one of the moisture measuring device 161 and the temperature measuring device 162 as a measuring device suitable for measuring the equipment of the plant to be inspected. It should be noted that the options of the determination unit 134 (in the result of the rating determination, one of the measuring devices is suitable for measurement, none of the measuring devices is suitable for measurement, and / or any of the measuring devices is suitable for measurement. Appropriateness may be included.
  • the determination unit 134 instructs the users of the client terminals 151 to 153 to perform the measurement by using the measuring device suitable for the measurement of the equipment of the plant to be inspected.
  • the determination unit 134 uses the measuring device of the moisture measuring device 161 or the temperature measuring device 162, which is suitable for measuring the equipment of the plant to be inspected, to the users of the client terminals 151 to 153. Instruct the user to make a measurement.
  • This instruction may be to recommend the user to measure using one of the measuring devices.
  • the measurement of the plant equipment by the measuring device is referred to as the first inspection. May be expressed.
  • the measurement of plant equipment (first inspection) by the measuring device is preferably a non-peeling inspection performed without peeling the exterior material or heat insulating material. According to this, for example, the inspection can be performed without forming a scaffold for peeling off the exterior material or the heat insulating material. Further, the measurement of the plant equipment (first inspection) by the measuring device is preferably a non-contact inspection performed without contacting the exterior material or the heat insulating material. According to this, if it is within the measurement range of the measuring device, the measurement can be easily performed at a position away from the inspection object. As a result, highly accurate and economical inspection can be realized.
  • the determination unit 134 acquires a measurement result (first inspection result) from a predetermined measuring device.
  • the determination unit 134 transmits the measurement result (first inspection result) from the moisture measuring device 161 and / or the temperature measuring device 162 via the communication network such as the client terminals 151 to 153 and the Internet 140. get.
  • the determination unit 134 sends the measurement result to the second evaluation unit and / or the third evaluation unit.
  • the second evaluation unit 136 and / or the third evaluation unit 137 evaluates the necessity of inspection of the equipment of the plant from the measurement results. Details of S260 will be described later.
  • the evaluation of the necessity of inspection of the plant equipment based on the measurement result may be simply expressed as evaluation.
  • the evaluation result of the second evaluation unit 136 may be expressed as the second evaluation result
  • the evaluation result by the third evaluation unit 137 may be expressed as the third evaluation result.
  • the evaluation of the necessity of inspection of the equipment of the plant based on the measurement result may be the evaluation of the necessity of the peeling inspection (second inspection) performed by peeling the exterior material or the heat insulating material.
  • the output unit 135 outputs to instruct at least one of the client terminals 151 to 153 to perform a peeling inspection of the equipment of the plant to be inspected via a communication network such as the Internet 140. ..
  • the peeling inspection of the equipment of the plant to be inspected may be performed by peeling the heat insulating material or the exterior material of the equipment of the plant.
  • the output may be displayed on at least one display of the client terminals 151 to 153.
  • the output unit 135 performs a peeling inspection on at least one of the client terminals 151 to 153 via a communication network such as the Internet 140 because the need for inspection of the equipment of the plant to be inspected is low. You may output that it is not necessary. The output may be displayed on at least one display of the client terminals 151 to 153.
  • Non-destructive inspection methods that do not use the moisture measuring device 161 or the temperature measuring device 162 include, for example, an ACM sensor, an acoustic emission measuring device, an ultrasonic meter, and an X-ray imaging device.
  • the process proceeds to S280. If there is no non-destructive inspection method suitable for the equipment of the plant to be inspected, perform the peel inspection of the plant in advance, for example, by visual inspection other than the non-destructive inspection, narrow down the parts to be peeled. You may.
  • FIG. 4 is a diagram showing S210 in the processing flow of the plant maintenance support device 110 of the present embodiment.
  • the plant maintenance support device 110 executes S211 and S212.
  • the acquisition unit 131 acquires plant equipment data, which is data for generating a model, from client terminals 151 to 153 via a communication network such as the Internet 140.
  • the plant equipment data which is the data for generating the model, includes the installation status data.
  • the installation status data may include at least one of the plant equipment type, installation location, installation period, operating temperature data, and wall thickness information.
  • the installation status data preferably includes the type of equipment, the installation period, and the operating temperature. Further, the installation status data preferably includes the parts of the equipment in which the types of equipment are subdivided. For example, when the type of equipment is "piping", the equipment portion may include any one of "straight pipe portion", "curved pipe portion", and "near nozzle".
  • any one of “body”, “strengthening wheel vicinity”, and “nozzle vicinity” may be included.
  • any one of “body”, “near accessories such as rudder”, and “near nozzle” may be included.
  • the type of equipment and the part of the equipment may include other than the above examples. In this way, the type of equipment and the part of the equipment are defined as a group defined by adding the part of the equipment to the type of equipment, which is a higher concept, and subdividing it into two stages (collectively referred to as "type of equipment”). ).
  • the data of the plant equipment acquired by the acquired product 131 in S211 may include information on the attributes of the plant equipment and the wall thickness of the plant equipment.
  • the attribute of the equipment of the plant is some information indicating the characteristics of the equipment of the plant including the above-mentioned installation status, and is the degree of danger of CUI (for example, probability of occurrence of CUI, progress speed, corrosion depth, etc.). ) Is preferably information that is a factor that fluctuates.
  • the information on the wall thickness of the equipment of the plant preferably includes the initial wall thickness of the equipment of the plant, the measured value of the wall thinning depth and / or the numerical value that correlates with the measured value of the wall thinning depth.
  • Information on the attributes of plant equipment may include the type of plant equipment, the installation period of plant equipment, and the operating temperature of plant equipment.
  • Information on the type of equipment in a plant may include information that specifies either piping, towers, tanks, nozzles, heat exchangers, or reactors.
  • Information on the type of equipment in the plant may include information that specifies either piping with continuous operating temperatures or piping with discontinuous operating temperatures.
  • the location of the plant equipment may include information that specifies either the location of the straight pipe, the location of the curved pipe, the location of the nozzle, the perimeter of the support, the perimeter of the nozzle, or the perimeter of the flange.
  • the installation period of the plant equipment may include information that specifies either the period after the installation of the plant equipment or the actual number of periods of use (years, months, days, etc.).
  • the operating temperature of the equipment of the plant may include information that specifies either the actual temperature of the material handled in the equipment or the set temperature set for the material handled in the equipment.
  • the wall thickness information may be information on the wall thinning depth.
  • the wall thickness information may be information on the initial wall thickness and the current wall thickness.
  • the wall thickness information may include information on the thinning rate, the required wall thickness, the controlled wall thickness, or the margin wall thickness, which is the ratio of the initial wall thickness to the current wall thickness.
  • the required wall thickness is the wall thickness of equipment required for safety and / or quality control, and is a wall thickness calculated by calculation or a wall thickness stipulated by law.
  • the controlled wall thickness may be a wall thickness or the like specified in the in-house safety regulations.
  • the control wall thickness may be a wall thickness arbitrarily set by the maintenance entity that manages the structure of the plant.
  • the required wall thickness may be used as the control wall thickness, or may be set to a value larger than the required wall thickness by adding a certain value to the required wall thickness, multiplying by a safety factor, or the like.
  • the controlled wall thickness is, for example, the required wall thickness that causes ductile fracture, or the wall thickness specified by the plant manager on the safe side (thick) than the required wall thickness in order to determine whether or not to repair the structure. Thickness can be adopted.
  • plant equipment data includes annual average temperature, annual average precipitation, upper and lower temperature when there are fluctuations in operating temperature, distance from the coast, and from the cooling tower. It may include information such as distance, presence / absence of coating, material of heat insulating material, presence / absence of heat medium trace such as steam.
  • the information listed above is an example, and the data of plant equipment is not limited to these.
  • the acquisition unit 131 may acquire a plurality of data sets as learning data as shown in [Piping, 100 months, 60 ° C., wall thinning depth 50 mm] for each plant facility.
  • the acquisition unit 131 sends the plant equipment data, which is the acquired learning data, to the model generation unit 132 and the measurement data storage unit 122. As a result, a data group including the wall thinning depth measured in advance is formed for a plurality of facilities having different installation conditions.
  • the model generation unit 132 generates a model based on the data of the plant equipment, which is the data for generating the model sent from the acquisition unit 131, and uses the CUI risk level as the probability. Generate a model to predict.
  • the model can be generated by each method such as a statistical method, a machine learning method, or a combination of a plurality of methods selected from each of these methods.
  • a model that predicts the risk of CUI as a probability may be generated by using the Gamlss package of the statistical processing language R.
  • the model generation unit 132 may execute the step of generating the model by using the generalized additive model.
  • the model generated by the model generation unit 132 may output the probability density with respect to the wall thinning depth.
  • the model may output the probability density as a distribution based on the parameter ⁇ , or may output the probability density as a probability density function based on the parameter ⁇ .
  • the model generation unit 132 may generate the model so as to minimize the error between the probability predicted by the model and the probability calculated from the training data, for example.
  • the model generated by the model generation unit 132 is represented by the following mathematical formula 1 as an example.
  • [Formula 1] f (x; ⁇ ) 1 / ⁇ ⁇ exp ( ⁇ x / ⁇ )
  • is a parameter of the distribution determined according to the installation status of the equipment of the plant
  • x is the wall thinning depth.
  • the model outputs the probability f (x; ⁇ ) corresponding to the parameter ⁇ given the wall thinning depth x.
  • f (x; ⁇ ) it is possible to obtain a distribution of the probability density of the wall thinning depth of the plant equipment, which changes corresponding to the continuous wall thinning depth x.
  • the parameter ⁇ may be expressed by the following mathematical formula 2.
  • [Formula 2] ⁇ exp (a0 + a1 ⁇ position + a2 ⁇ temperature + a3 ⁇ time + spline (temperature))
  • position is the part of the equipment in which the type of equipment is subdivided
  • temperature is the operating temperature of the equipment of the plant
  • time is the installation period of the equipment of the plant.
  • spline is a predetermined cubic spline function.
  • a0, a1, a2 and a3 may be coefficients optimized by learning. That is, machine learning techniques may be used to optimize the coefficients.
  • A1 is a variable corresponding to each part of the equipment type, which is a subdivision of the equipment type of the plant.
  • a plurality of models at least depending on the type of equipment. For example, by providing a plurality of parameters ⁇ according to the type of equipment, a plurality of models can exist. That is, by using a different model for each type of equipment as a factor that greatly changes the risk of CUI, highly accurate and economical inspection can be realized.
  • the parameter ⁇ may be determined based on at least one or more of the type of equipment of the plant, the part of the equipment subdivided thereof, the installation period, and the operating temperature. Further, the parameter ⁇ may be determined by an exponential function including a coefficient calculated based on the type of equipment, the installation period, and the operating temperature.
  • the model generation unit 132 sends the generated model to the first evaluation unit 133 and the program storage unit 121.
  • FIG. 5 is a diagram for explaining the validity of the model that predicts the risk level of the learned CUI as a probability in S212.
  • a specific plant with a constant parameter ⁇ plotting the relationship between the detected value of the wall thinning depth of the plant equipment and the frequency of the plant equipment where the wall thinning depth actually occurred is plotted on a semi-logarithmic graph. , was shown to be straight.
  • the straight line 400 in FIG. 5 is a regression line between the wall thinning depth and the frequency. That is, it is shown that the distribution of the wall thinning depth is an exponential distribution. Therefore, the exponential distribution showed the validity of modeling the distribution of wall thinning depth.
  • the model is constructed as a model that does not consider the progress (time dependence) of the CUI. That is, the measurement data for generating the model does not include information on the time for which the wall thinning progresses, such as when the CUI occurred, how long the wall thinning depth by the CUI progressed, and the like.
  • the risk level of CUI is evaluated by a model that does not consider the progress degree (time dependence) of CUI. Therefore, the accuracy of the model can be continuously improved by collecting the measurement data that can be collected relatively easily.
  • the first evaluation using the model is performed without calculating the absolute value of the wall thinning depth and / or the value correlated with the wall thinning depth.
  • the location of CUI generation and the degree of progression vary greatly depending on the attributes of the plant equipment, such as the type of plant equipment.
  • the model generation unit 132 is configured to generate a plurality of models according to the type of equipment of the plant.
  • the wall thinning depth depending on attributes other than the type of plant equipment. Therefore, by calculating the risk of CUI, that is, the probability that the equipment can be damaged by CUI, instead of the absolute value of the wall thinning depth, appropriate maintenance support for the user is realized.
  • FIG. 6 is a diagram showing S230 in the processing flow of the plant maintenance support device 110 of the present embodiment.
  • the plant maintenance support device 110 executes S231 to S233.
  • the first evaluation unit 133 uses the data of the equipment of the plant to be inspected acquired by the acquisition unit 131 in S220 to predict the risk level of the CUI generated by the model generation unit 132 as a probability. Calculate a few ⁇ .
  • the equipment data of the plant to be inspected may include data of the plant equipment type, installation period, and operating temperature that must be entered into the model.
  • the first evaluation unit 133 generates a probability density distribution f (x; ⁇ ) from the predicted model parameter ⁇ .
  • the first evaluation unit 133 uses the probability density distribution f (x; ⁇ ) and the wall thickness information of the equipment of the plant to be inspected to determine the wall thinning depth of the equipment of the plant to be inspected. Calculate the probability of exceeding the allowable wall thinning depth.
  • the value of the allowable wall thickness reduction depth may be a value obtained by subtracting the required wall thickness from the initial wall thickness.
  • the required wall thickness is the wall thickness of equipment required for safety and / or quality control, and is based on the wall thickness calculated by calculation, the wall thickness stipulated by law, or the internal safety regulations. It may be a defined wall thickness or the like, and one or more values of the allowable wall thinning depth may be set for the target equipment.
  • Allowable reduction by setting multiple values of the allowable wall thickness for the target equipment in multiple stages, for example, and evaluating the possibility of damage caused by CUI for each allowable wall reduction depth. It is possible to grasp the degree of increase or decrease in the probability that damage may occur according to the set value of the wall depth, which contributes to the decision-making of countermeasures for equipment maintenance of the plant. Further, the possibility that the wall thinning depth exceeds the allowable wall thinning depth may be expressed by a probability.
  • the wall thickness information of the equipment of the plant to be inspected may include information on the initial wall thickness and the required wall thickness.
  • the first evaluation unit 133 starts with "equipment type (No. 1)” to “equipment type (No. n)” based on the equipment data of the plant to be inspected. , "Temperature”, and “time” are substituted into equations 2 and 3, and the parameter ⁇ is calculated.
  • the probability density distribution f (x; ⁇ ) is obtained from the calculated parameter ⁇ .
  • the probability that the wall thinning depth of the equipment of the plant to be inspected exceeds the permissible wall thinning depth is the interval in which the wall thinning depth x is xp ⁇ x ⁇ when the permissible wall thinning depth is expressed by xp. It is represented by the sum of the probability density distribution f (x; ⁇ ).
  • the first evaluation unit 133 outputs the evaluation result of the inspection necessity of the plant equipment to the determination unit 134.
  • the first evaluation unit 133 may output the inspection necessity of the equipment of the plant to the determination unit 134 as a result of ranking.
  • the first evaluation unit 133 may output the inspection necessity of the equipment of the plant to the determination unit 134 as a cumulative probability.
  • the first evaluation unit 133 may provide the client terminals 151 to 153 with the necessity of inspecting the equipment of the plant as the first evaluation result, and cause the client terminals 151 to 153 to display the first evaluation result.
  • the first evaluation unit 133 ranks A rank (low probability of CUI occurrence) if the cumulative probability is less than 0.001, and the cumulative probability is 0.001. If it is more than 0.01 and less than 0.01, it is ranked as B rank (CUI occurrence possibility), and if the cumulative probability is 0.01 or more and less than 0.1, it is C rank (CUI possibility is high), and the cumulative probability is 0.1. If it is the above, it may be classified into D rank (maximum possibility of CUI occurrence), but it is not limited to this.
  • FIG. 7 is a diagram illustrating a mechanism for calculating the first evaluation result of the inspection necessity of the equipment of the plant to be inspected in S230.
  • the curve 600 represents the probability density distribution f (x; ⁇ ) generated based on the population parameter ⁇ of the model predicted by the first evaluation unit 133.
  • Curve 600 may be a probability density function.
  • the horizontal axis is the wall thinning depth
  • the vertical axis is the probability density.
  • the possibility that the wall thinning depth of the equipment of the plant to be inspected exceeds the allowable wall thinning depth is represented by the area of the shaded area as a cumulative probability.
  • the first evaluation unit 133 may calculate the cumulative probability 610 that the wall thinning depth of the plant equipment exceeds the allowable wall thinning depth.
  • the first evaluation unit 133 classifies the cumulative probability into a plurality according to a predetermined standard, and it is necessary to inspect the equipment of the plant to determine the possibility that the wall thinning depth of the plant equipment exceeds the allowable wall thinning depth.
  • the sex may be expressed by a rank corresponding to each of the plurality of classifications, and this rank may be used as the first evaluation result.
  • the first evaluation unit 133 may evaluate the necessity of inspection of the plant equipment based on the degree of influence of the result when the plant equipment is damaged by the CUI in addition to the possibility of damage caused by the CUI. Good.
  • FIG. 8 shows the plant equipment based on the possibility of damage caused by the CUI, the amount of damage that can occur if the plant equipment is damaged, the estimated magnitude of human damage, and the degree of impact of the result. This is an example of evaluation criteria when evaluating the necessity of inspection.
  • the rank of the possibility of damage caused by CUI is divided into a plurality of stages, and the degree of impact of the result indicated by the amount of damage is divided into a plurality of stages.
  • the evaluation of the necessity of inspection may include the contents of the countermeasures that can be taken for the target equipment. As shown in FIG. 8, it is evaluated that the inspection necessity is higher when the occurrence possibility is higher than when the occurrence possibility is low, and the inspection necessity is evaluated when the result influence degree is higher than when it is low. .. Further, as a countermeasure according to the evaluation of the evaluation of the necessity of inspection, post-maintenance (no inspection) or condition monitoring, partial peeling inspection, and full peeling inspection may be set in ascending order of evaluation of inspection necessity.
  • FIG. 9 shows an example of a display mode of the first evaluation result obtained in S231 in the processing flow of the plant maintenance support device 110 of the present embodiment.
  • the first evaluation unit 133 may display the result of classifying the calculated cumulative probability into four ranks from A rank to D rank according to a predetermined standard on the client terminals 151 to 153.
  • the client terminals 151 to 153 may display the classification results in a table format as shown in FIG.
  • the classification result may include, but is not limited to, the address, the annual average temperature, the annual average precipitation, the factory name, the machine number, or the type of equipment, depending on the data used for the preliminary determination.
  • the possibility of damage is evaluated and the possibility of damage is evaluated.
  • an integrated index based on the likelihood of damage and the impact of consequences may be presented.
  • the integrated indicator may be shown, for example, as the magnitude of risk as shown in FIG.
  • FIG. 10 shows an example of a display mode of the first evaluation result obtained in S231 in the processing flow of the plant maintenance support device 110 of the present embodiment.
  • the display mode shown in FIG. 10 is an example of performing a peeling inspection of the equipment to be inspected based on the first evaluation result and displaying the result of measuring the wall thinning depth.
  • the first evaluation unit 133 outputs the result of classifying the calculated cumulative probability into four ranks from A rank to D rank according to a predetermined standard in a graph format to the client terminals 151 to 153, and outputs this to the client terminals 151 to 153. It may be displayed on the client terminals 151 to 153.
  • any one or two or more of the measured values of the wall thinning depth measured in the past and the measured values of the equipment of the plant to be inspected may be color-coded. ..
  • the first evaluation unit 133 has a list of plant equipment (for example, A rank and B rank) in which the possibility of CUI occurrence is small and the possibility of CUI occurrence.
  • a list of equipment for large plants eg, rank C and rank D may be provided to client terminals 151-153.
  • FIG. 11 is a diagram showing S250 in the processing flow of the plant maintenance support device 110 of the present embodiment.
  • the plant maintenance support device 110 executes S2501 to S254.
  • the determination unit 134 determines whether or not the equipment of the plant to be inspected is suitable for measurement using a predetermined measuring device and evaluation of inspection necessity based on the measurement result. Judgment using a model.
  • the determination model may determine eligibility based on the measurement conditions of the measuring device.
  • the measurement conditions of the measuring device are the operating temperature of the equipment of the plant to be inspected, the outside air temperature, the difference between the operating temperature and the outside air temperature, the type of surface processing of the exterior material of the heat insulating material, and the surface of the exterior material of the heat insulating material. And at least one of the conditions of the presence or absence of the heating equipment provided between the heat insulating material and the equipment of the plant covered with the heat insulating material may be further included.
  • the determination model is a plurality of non-destructive inspections based on the threshold value determined for the above conditions and the conditions when the target equipment is inspected by the acquisition unit 131 via the client terminals 151 to 153.
  • the determination unit 134 measures the amount of water inside the exterior material of the heat insulating material by the moisture measuring device 161 according to the measurement conditions such as the operating temperature of the equipment of the plant to be inspected. And, it is configured to selectively recommend either measuring the surface temperature of the exterior material of the heat insulating material by the temperature measuring device 162.
  • the information on the measurement conditions may be acquired by the acquisition unit 131 when acquiring the data of the equipment of the plant to be inspected, or may be appropriately acquired by the determination unit 134 from the client terminals 151 to 153.
  • the determination unit 134 transmits a question about the operating temperature information to the client terminals 151 to 153 via a communication network such as the Internet 140, and the user of the client terminals 151 to 153 asks the client terminals 151 to 153 the question. An answer may be input and sent to the determination unit 134 via a communication network such as the Internet 140.
  • the determination unit 134 may acquire information such as an operating temperature from a sensor and / or a camera or the like installed in the equipment of the plant to be inspected. Further, the determination unit 134 may acquire information on measurement conditions from a terminal that constitutes a management system that manages the operation of the plant.
  • the determination unit 134 determines whether or not the operating temperature of the plant to be inspected is higher than the outside air temperature by a predetermined temperature (for example, 10 ° C.) or more.
  • the determination unit 134 advances the process to S252 in the case of Yes, and proceeds to S251 in the case of No. It should be noted that it may be determined whether or not the temperature difference between the operating temperature of the plant and the outside air temperature is a predetermined temperature difference (for example, 10 ° C.) or more.
  • the moisture transmits the temperature of the plant equipment to the outer surface of the heat insulating material, and the heat insulating material and / or the exterior It causes temperature unevenness on the outer surface of the material.
  • the heat insulating material contains a wide range of moisture
  • the temperature of the plant equipment is transmitted to the outer surface of the heat insulating material by the moisture, and this is transmitted to the surface temperature of the heat insulating material and / or the exterior material and the outside air. It can be observed as a difference from the temperature.
  • the inclusion of water in the heat insulating material increases the risk of CUI, so the above condition is one of the conditions suitable for determining the suitability of the temperature measuring device.
  • the determination unit 134 determines whether the operating temperature of the plant to be inspected is within a predetermined temperature range (for example, higher than 15 ° C. and less than 80 ° C.) or outside the range. When the operating temperature is out of the predetermined temperature range, the determination unit 134 may determine that the equipment of the plant to be inspected is not suitable for the measurement using the measuring device, and proceed to the process to S280. .. If the operating temperature of the plant to be inspected is within a predetermined temperature range, the determination unit 134 determines that the equipment of the plant to be inspected is suitable for measurement by the moisture measuring device 161 and proceeds to the process to S260. You can. Under the condition that the operating temperature is, for example, 15 ° C.
  • the above condition is one of the conditions suitable for determining the eligibility of the moisture measuring device. Since the occurrence of dew condensation and the evaporation of water both affect the temperature measurement, the above condition may be used as one of the conditions for determining the suitability of the temperature measuring device.
  • the determination unit 134 determines whether the exterior material of the heat insulating material of the plant to be inspected is an infrared low-reflection material (for example, carbon steel or hot-dip galvanized) or another material. To do. If the exterior material is other than an infrared low-reflection material (for example, stainless steel or aluminum), the determination unit 134 determines that the equipment of the plant to be inspected is not suitable for measurement using a temperature measuring device, and performs processing. You may proceed to S251. If the exterior material of the heat insulating material of the plant to be inspected is an infrared low-reflection material, the determination unit 134 may proceed with the process to S253.
  • an infrared low-reflection material for example, carbon steel or hot-dip galvanized
  • the determination unit 134 determines whether or not the exterior material of the heat insulating material of the plant to be inspected has a smooth surface.
  • the surface of the exterior material is abnormal, such as uneven coating of the exterior material (for example, a part of the coating is peeled off) or the surface of the exterior material is uneven. It is determined that the surface of the exterior material is not smooth when is found or when unevenness is formed by surface processing, and when there is no such abnormality, it is determined that the surface of the exterior material is smooth. You can do it.
  • the determination unit 134 determines that the exterior material of the heat insulating material of the plant to be inspected does not have a smooth surface, it determines that the equipment of the plant to be inspected is not suitable for the measurement using the temperature measuring device, and processes it. May proceed to S251. When the surface condition of the exterior material of the heat insulating material of the plant to be inspected has a smooth surface, the determination unit 134 may proceed with the process to S254.
  • the determination unit 134 has cloudy weather on the date and time when the measurement using the measuring device is performed on the equipment of the plant to be inspected (currently if the measurement can be performed immediately) and the date and time when the measurement is performed. Is determined. When the date and time of measurement is nighttime or the weather is cloudy, the determination unit 134 determines that the equipment of the plant to be inspected is suitable for the measurement by the temperature measuring device 162, and proceeds to the process to S260. You can.
  • the determination unit 134 may wait until nighttime if the date and time of measurement using the measuring device for the equipment of the plant to be inspected, and if the weather is other than cloudy (for example, sunny or rainy), the measurement You may wait until the weather becomes cloudy at the date and time of the event.
  • the date and time of the measurement and the weather at that time fluctuate the temperature of the outer surface of the heat insulating material and / or the exterior material. For example, the surface temperature of the exterior material rises remarkably due to sunlight, and the surface temperature of the exterior material fluctuates remarkably due to rain. Therefore, the above condition is one of the conditions suitable for determining the eligibility of the temperature measuring device.
  • the determination unit 134 conducts a non-destructive inspection based on a predetermined condition on the equipment of the plant to be inspected by using a predetermined measuring device without peeling of the heat insulating material. From this, the type of non-destructive inspection suitable for the target equipment is extracted. In an example of this processing flow, the determination unit 134 determines whether or not the temperature measuring device 162 is suitable for measuring the equipment of the plant to be inspected from among a plurality of nondestructive inspections based on predetermined conditions. Even if it is not suitable, it is determined whether or not the moisture measuring device 161 is suitable for measuring the equipment of the plant to be inspected. In this way, the determination unit 134 may determine that the measurement by the temperature measuring device 162 is preferentially performed.
  • FIG. 12 is a diagram showing S260 in the processing flow of the plant maintenance support device 110 of the present embodiment.
  • the plant maintenance support device 110 executes S261 to S265.
  • the determination unit 134 selects a measuring device suitable for measurement on the equipment of the plant to be inspected based on the result of the determination of eligibility. As an example of this processing flow, the determination unit 134 selects at least one of the moisture measuring device 161 and the temperature measuring device 162. For example, in the flow of FIG. 11, when the moisture measuring device is selected, the determination unit 134 selects the moisture measuring device 161 and proceeds with the process to S262, and when the temperature measuring device is selected, the determination unit 134 The temperature measuring device 162 is selected and the process proceeds to S263.
  • the moisture measuring device 161 may include a neutron moisture meter.
  • the temperature measuring device 162 may include a thermo camera.
  • the temperature measuring device 162 may include a temperature indicator paint or a contact thermometer. Since both the neutron moisture meter and the thermo camera can measure at a position away from the equipment of the plant, they are suitable as measuring devices for realizing non-peeling inspection and non-contact inspection. Also, when comparing the neutron moisture meter and the thermo camera, the thermo camera is generally smaller and cheaper to use, so when both the neutron moisture meter and the thermo camera are suitable for measurement. Can preferentially use a thermo camera.
  • the determination unit 134 uses the moisture measuring device 161 to measure at least one of the client terminals 151 to 153 via a communication network such as the Internet 140 so as to measure the equipment of the plant to be inspected. Instruct one.
  • the instruction may be displayed on at least one display of the client terminals 151 to 153.
  • the users of the client terminals 151 to 153 measure the amount of water contained in the exterior material of the heat insulating material of the equipment of the plant to be inspected by the moisture measuring device 161.
  • the moisture measuring device 161 is an exterior material of the heat insulating material. The amount of water contained in the inside of is measured. Under such temperature conditions, the moisture measuring device 161 may measure the amount of moisture contained inside the exterior material of the heat insulating material under the condition that dew condensation does not occur on at least one of the heat insulating material and the exterior material. it can.
  • the user can see that the surface of the exterior material of the plant equipment is uneven, or that the exterior material of the plant equipment is infrared rays such as stainless steel or aluminum.
  • the moisture measuring device 161 is used to measure the amount of moisture contained inside the exterior material of the heat insulating material.
  • the water that should be measured evaporates and cannot be measured. Therefore, it is desirable that no heating equipment is installed in the equipment of the plant to be inspected, which is the measurement target of the moisture measuring device 161.
  • the generated moisture that fluctuates the temperature of the outer surface of the heat insulating material or the exterior material evaporates, resulting in uneven temperature or the heat insulating material and / or the exterior material. The difference between the surface temperature and the outside air temperature will not be measured. Therefore, it is desirable that no heating equipment is installed in the equipment of the plant to be inspected to be measured by the temperature measuring device 162.
  • the determination unit 134 acquires the measurement result of the water content measured by the water content measuring device 161 from the measurement result performed by the predetermined measuring device via the communication network such as the client terminals 151 to 153 and the Internet 140, and processes it. May proceed to S264.
  • the determination unit 134 uses the temperature measuring device 162 to measure at least one of the client terminals 151 to 153 via a communication network such as the Internet 140 so as to measure the equipment of the plant to be inspected. Instruct one.
  • the instruction may be displayed on at least one display of the client terminals 151 to 153.
  • the users of the client terminals 151 to 153 measure the surface temperature of the exterior material of the heat insulating material of the equipment of the plant to be inspected by the temperature measuring device 162.
  • the measurement of the surface temperature of the exterior material of the heat insulating material of the equipment of the plant to be inspected by the temperature measuring device 162 may include photographing the exterior material with a thermo camera.
  • the operating temperature of the plant to be inspected is higher than the outside air temperature by a predetermined temperature (for example, 10 ° C.) or more, and the exterior material of the heat insulating material of the plant equipment is
  • a predetermined temperature for example, 10 ° C.
  • the exterior material of the heat insulating material of the plant equipment is composed of the infrared low-reflection material and has a smooth surface, the measurement is performed by the temperature measuring device 162.
  • the users of the client terminals 151 to 153 may perform a step of discharging water to the exterior material of the heat insulating material of the plant equipment before measuring the surface temperature of the exterior material of the heat insulating material of the plant equipment to be inspected. Good. As a result, temperature unevenness, which will be described later, can be caused around the heat insulating material of the plant equipment.
  • the determination unit 134 may acquire the measurement result of the surface temperature measured by the temperature measuring device 162 via the communication network such as the client terminals 151 to 153 and the Internet 140, and proceed to the process to S265.
  • the second evaluation unit 136 evaluates the necessity of inspecting the equipment of the plant to be inspected based on the measurement result of the water content from the moisture measuring device 161.
  • the second evaluation unit 136 may determine that the larger the measured water content, the higher the need for inspection of the plant equipment.
  • the water content may be absolutely large.
  • a large amount of water may mean a relatively large amount of water.
  • the high need for inspection of the equipment of the plant to be inspected may mean that the wall thinning depth of the equipment of the plant to be inspected is likely to be equal to or greater than the allowable wall thinning depth. ..
  • the second evaluation unit 136 uses a pre-learned determination device based on the data in which the actually measured water content of the plant equipment and the generated wall thinning depth of the CUI are associated with each other.
  • the need for equipment inspection may be determined.
  • Such a determiner may be learned by a known machine learning technique. As will be described later, a correlation has been found between the necessity of inspecting the equipment of the plant and the large amount of water in the equipment of the plant.
  • the second evaluation unit 136 ranks the data indicating the necessity of inspection of the plant equipment (for example, the probability that the CUI becomes the allowable wall thickness or more, or the probability) with respect to the client terminals 151 to 153. ) Is sent. When the inspection necessity of the equipment of the plant exceeds a predetermined threshold value, the second evaluation unit 136 sends a message recommending the inspection of the equipment of such a plant to the client terminals 151 to 153. You can.
  • the inspection of the equipment of the plant may be a peeling inspection (second inspection) performed by peeling the exterior material or the heat insulating material.
  • the third evaluation unit 137 determines the necessity of inspection of the equipment of the plant to be inspected based on the measurement result of the surface temperature from the acquired temperature measuring device 162.
  • the determination unit 134 determines that the greater the temperature unevenness of the surface temperature of the exterior material of the heat insulating material and the larger the difference between the surface temperature and the outside air temperature, the higher the need for inspection of the plant equipment. Good.
  • the temperature unevenness of the surface temperature is the temperature difference between the average surface temperature of the exterior material of the heat insulating material of the equipment of the plant to be inspected and the maximum temperature and / or the minimum temperature, the temperature difference between the maximum temperature and the minimum temperature, or the surface. It may be the standard deviation of the temperature distribution or the like.
  • the difference between the surface temperature and the outside air temperature may be the difference between the average surface temperature of the exterior material of the heat insulating material of the equipment of the plant to be inspected and the outside air temperature.
  • the third evaluation unit 137 is based on data in which at least one of the actually measured temperature unevenness and the difference between the surface temperature and the outside air temperature and the generated wall thinning depth of the CUI are associated with each other in advance.
  • the trained determiner may be used to determine the need for inspection of plant equipment. Such a determiner may be learned by a known machine learning technique. As will be described later, a correlation has been found between the necessity of inspecting the equipment of the plant and the large temperature unevenness of the surface temperature of the exterior material of the heat insulating material.
  • the third evaluation unit 137 ranks the data indicating the necessity of inspection of the plant equipment (for example, the probability that the CUI becomes the allowable wall thickness or more, or the probability) for the client terminals 151 to 153. ) Is sent.
  • the determination unit 134 informs the client terminals 151 to 153 of the countermeasures for equipment maintenance for the target equipment including the inspection of the equipment of such a plant. You may send a message recommending.
  • the inspection of the equipment of the plant may be a peeling inspection (second inspection) performed by peeling the exterior material or the heat insulating material, and as a countermeasure, in addition to the peeling inspection, post-maintenance and condition monitoring , Equipment updates, including repairs, may be included.
  • second inspection second inspection
  • Equipment updates, including repairs may be included.
  • the evaluation of the inspection necessity based on the measurement result of the non-destructive inspection performed using the predetermined measuring device may be performed by correcting the result of the evaluation of the inspection necessity using the prediction model. That is, it may be performed by making a predetermined correction for the possibility of damage to the target equipment calculated by using the prediction model according to the measurement result.
  • the necessity of inspection can be evaluated by multiplying the cumulative probability of occurrence of damage to the target equipment calculated by the prediction model by a predetermined correction coefficient. That is, the greater the amount of water contained in the heat insulating material, the higher the possibility that corrosion under the heat insulating material has occurred and is progressing.
  • the value regarding the amount of water contained in the heat insulating material is The larger the value, the greater the possibility of damage being set. Further, the correction coefficient is set so that the possibility of damage increases as the degree of temperature unevenness is large in the measurement result by the temperature measuring device 162 and / or the temperature difference between the surface temperature and the outside air temperature is large. can do.
  • FIG. 13 is a diagram for verifying the prediction accuracy of the preliminary determination obtained in S232 in the processing flow of the plant maintenance support device 110 of the present embodiment.
  • FIG. 13 is a model for predicting the risk level of the CUI of the present application as a probability for 987 points of data in which the plant equipment is inspected and data on the type of the plant equipment and the wall thickness information are obtained. The results of ranking the inspection necessity of the plant equipment using the above, and the result of actually inspecting the plant equipment and totaling the number that was less than the required wall thickness of each rank are shown.
  • the ratio of the number of data of the required wall thickness or less to the number of data in which the inspection necessity of the plant equipment is classified into C rank is 0.046. Further, among the number of data classified into D rank, the ratio of the number of data less than the required wall thickness is 0.15. Therefore, it was shown that the data classified into C rank and D rank are within the range of the set probability P, respectively. Further, regarding the data classified into A rank and B rank, the number of classified data is 207 points and 113 points, respectively. Therefore, it is a reasonable result that the number of data less than the required wall thickness is 0. I can say. Therefore, it was shown that the ranking of the inspection necessity of the plant equipment is appropriately performed by the model that predicts the risk level of the CUI of the present application as a probability.
  • FIG. 14 is a diagram comparing the prediction accuracy of the preliminary determination obtained in S232 in the processing flow of the plant maintenance support device 110 of the present embodiment with the prediction accuracy of the preliminary determination obtained by using the conventional model.
  • FIG. 14 shows the results of ranking the inspection necessity of plant equipment using a model that predicts the risk level of the CUI of the present application as a probability for the data of 987 points used in FIG. The results of ranking the inspection necessity of the plant equipment using the model are shown in (B), and the two are compared.
  • the A to D ranks are stairs with respect to the actual margin wall thickness. It is clear that they are lined up in a shape.
  • the data classified into A rank the data is distributed above the average value of the actual margin wall thickness of all the data.
  • the data is concentrated below the average value of the actual margin wall thickness of all the data, and about half of the data has a negative actual margin wall thickness value, which is the value of the plant equipment. Indicates that repair or renewal is required.
  • FIG. 14 (B) in the case where the inspection necessity of the plant equipment is ranked using the conventional model, the A rank to the D rank are not arranged in a staircase pattern with respect to the actual margin wall thickness. Is clear. In addition, even if it is classified into A rank, there are many data that are less than the average value of the actual margin wall thickness of all data, and even if it is classified into D rank, data that is equal to or more than the average value of the actual margin wall thickness of all data is collected. It was shown to contain a lot. Furthermore, in the case where the inspection necessity of plant equipment is ranked using the conventional model, all the data (43 points) with the value of the wall thickness less than the required wall thickness are classified into D rank.
  • the number of data points classified into D rank is 594 points, and the ratio of the number of data points less than or equal to the required wall thickness is 0.072. This is less than the D rank setting probability of 0.1. In other words, it became clear that the conventional model did not properly rank the inspection necessity of the plant equipment.
  • FIG. 15 is a diagram comparing the prediction accuracy of the preliminary determination obtained in S232 in the processing flow of the plant maintenance support device 110 of the present embodiment with the prediction accuracy of the preliminary determination obtained by using the conventional model.
  • a model that predicts the risk level of the CUI of the present application as a probability and a conventional model for 1020 points of data in which data on the type of plant equipment and wall thickness information are obtained by inspecting the equipment of the plant. was used to evaluate the need for inspection of plant equipment and represented in a matrix. From this matrix, each data can be classified into the following three groups. (Group 1) The classified ranks of the application model and the conventional model are the same. (Group 2) The rank of the conventional model evaluates the necessity of inspection of the equipment of the plant higher than the rank of the model of the present application. (Group 3) The rank of the conventional model evaluates the necessity of inspection of the equipment of the plant lower than the rank of the model of the present application.
  • the number of data classified in (Group 1) is 320 points, and the ratio to the total data is 31%. It is considered that the equipment of the plant classified in (Group 1) does not need to change the inspection range when the conventional model is changed to the model of the present application.
  • the number of data classified in (Group 2) is 494 points, which accounts for 48% of all data. It is considered that the equipment of the plant classified in (Group 2) may be able to reduce the inspection range when the conventional model is changed to the model of the present application.
  • the number of data classified in (Group 3) is 206 points, which accounts for 20% of all data.
  • the inspection range should be added when the conventional model is changed to the model of the present application.
  • Group 2 that is, the number of data in which the rank of the conventional model evaluates the need for inspection of plant equipment higher than the rank of the model of the present application is 48% of the total. Since the application model evaluates the inspection necessity of the plant equipment more accurately than the conventional model, it is possible to reduce the inspection range for the plant equipment of 48% of the examples. It is considered to have sex.
  • Group 3 the number of data in which the rank of the conventional model evaluates the need for inspection of plant equipment lower than the rank of the model of the present application is 20% of the total.
  • the equipment of these plants was classified as a rank with a high need for inspection in the model of the present application, although it had not been inspected so far because it was a rank with a low need for inspection in the conventional model. Therefore, it is considered that it is better to add the inspection range for the equipment of the plant of 20% of the total examples.
  • FIG. 16 is a diagram verifying the result of the determination obtained in S264 in the processing flow of the plant maintenance support device 110 of the present embodiment.
  • the applicants measured the water content inside the exterior material of the heat insulating material that covers the equipment of the plant to be inspected using a neutron moisture meter. The higher the measured water content, the more the CUI of the equipment of the plant. We found that the detection rate of was high.
  • a CUI having a wall thinning depth of a certain depth or more is detected for each amount of water measured by two neutron moisture meters.
  • the probabilities are shown in FIG. (A) shows the result of measurement using the neutron moisture meter A, and (B) shows the result of the measurement using the neutron moisture meter B. In both (A) and (B), it was shown that the CUI detection probability increased as the measured value of the water content measured by the neutron moisture meter increased.
  • FIG. 17A is a diagram for verifying the result of the determination obtained in S265 in the processing flow of the plant maintenance support device 110 of the present embodiment.
  • the applicants measured the surface temperature of the exterior material of the heat insulating material that covers the equipment of the plant to be inspected using a thermo camera, the surface temperature of the place where the temperature abnormality was detected and the exterior material of the heat insulating material It was found that the larger the temperature difference (temperature unevenness) from the average surface temperature, the greater the data with a large wall thinning depth, and the more the CUI detection rate tends to increase.
  • FIG. 17B is a diagram for verifying the result of the determination obtained in S265 in the processing flow of the plant maintenance support device 110 of the present embodiment.
  • FIGS. 17A and 17B show the results of ranking the probabilities of detecting a CUI having a wall thinning depth of a certain depth or more at a location where a temperature abnormality is detected by the temperature difference from the average temperature part.
  • the temperature rank of the measurement result using the thermo camera the larger the temperature difference (temperature unevenness) between the surface temperature of the place where the temperature abnormality is detected and the average surface temperature of the exterior material of the heat insulating material, the more the surface It was clarified that the larger the difference between the temperature and the outside air temperature, the higher the CUI detection probability of the data with deep wall thinning depth. Therefore, as a screening inspection for the CUI inspection, it is considered possible to adopt a method of measuring the surface temperature of the exterior material of the heat insulating material that covers the equipment of the plant to be inspected, using a thermo camera.
  • the present invention provides a program for executing the above S210 to S290.
  • the program may be stored in the program storage unit 121 of the plant maintenance support device 110.
  • the plant maintenance support device 110 may be a computer that stores a program that executes the above S210 to S290.
  • FIG. 18 shows an example of the hardware configuration of the computer 1900 that functions as the plant maintenance support device 110.
  • the computer 1900 according to the present embodiment is connected to the host controller 2082 by the input / output controller 2084 and the CPU peripheral portion having the CPU 2000, the RAM 2020, the graphic controller 2075, and the display device 2080 that are interconnected by the host controller 2082.
  • An input / output unit having a communication interface 2030, a hard disk drive 2040, and a CD-ROM drive 2060, and a legacy input / output unit having a ROM 2010, a flexible disk drive 2050, and an input / output chip 2070 connected to the input / output controller 2084.
  • the host controller 2082 connects the RAM 2020 to the CPU 2000 and the graphic controller 2075 that access the RAM 2020 at a high transfer rate.
  • the CPU 2000 operates based on the programs stored in the ROM 2010 and the RAM 2020, and controls each part.
  • the graphic controller 2075 acquires image data generated on a frame buffer provided in the RAM 2020 by the CPU 2000 or the like, and displays the image data on the display device 2080.
  • the graphic controller 2075 may internally include a frame buffer for storing image data generated by the CPU 2000 or the like.
  • Various information (for example, measurement data, first, second, third evaluation results, etc.) generated inside the plant maintenance support device 110 can be displayed on the display device 2080.
  • the input / output controller 2084 connects the host controller 2082 to the communication interface 2030, the hard disk drive 2040, and the CDROM drive 2060, which are relatively high-speed input / output devices.
  • the communication interface 2030 communicates with other devices via a network by wire or wirelessly. In addition, the communication interface functions as hardware for communication.
  • the hard disk drive 2040 stores programs and data used by the CPU 2000 in the computer 1900.
  • the CD-ROM drive 2060 reads a program or data from the CD-ROM 2095 and provides it to the hard disk drive 2040 via the RAM 2020.
  • the ROM 2010, the flexible disk drive 2050, and the relatively low-speed input / output device of the input / output chip 2070 are connected to the input / output controller 2084.
  • the ROM 2010 stores a boot program that the computer 1900 executes at startup, and / or a program that depends on the hardware of the computer 1900.
  • the flexible disk drive 2050 reads a program or data from the flexible disk 2090 and provides it to the hard disk drive 2040 via RAM 2020.
  • the input / output chip 2070 connects the flexible disk drive 2050 to the input / output controller 2084, and inputs / outputs various input / output devices via, for example, a parallel port, a serial port, a keyboard port, a mouse port, and the like. Connect to controller 2084.
  • the program provided to the hard disk drive 2040 via the RAM 2020 is stored in a recording medium such as a flexible disk 2090, a CD-ROM 2095, or an IC card and provided by the user.
  • the program is read from the recording medium, installed on the hard disk drive 2040 in the computer 1900 via the RAM 2020, and executed in the CPU 2000.
  • the program installed on the computer 1900 and causing the computer 1900 to function as the plant maintenance support device 110 includes an acquisition module, a machine learning module, a preliminary judgment module, a judgment module, and an output module. These programs or modules may act on the CPU 2000 or the like to cause the computer 1900 to function as an acquisition unit 131, a model generation unit 132, a first evaluation unit 133, a determination unit 134, and an output unit 135, respectively.
  • the information processing described in these programs is read into the computer 1900, and the acquisition unit 131, the model generation unit 132, and the first unit, which are specific means in which the software and the various hardware resources described above cooperate with each other. It functions as an evaluation unit 133, a determination unit 134, and an output unit 135. Then, by realizing the calculation or processing of information according to the purpose of use of the computer 1900 in the present embodiment by these specific means, a unique plant maintenance support device 110 according to the purpose of use is constructed.
  • the CPU 2000 executes a communication program loaded on the RAM 2020, and based on the processing content described in the communication program, a communication interface. Instruct 2030 to perform communication processing.
  • the communication interface 2030 reads the transmission data stored in the transmission buffer area or the like provided on the storage device such as the RAM 2020, the hard disk drive 2040, the flexible disk 2090, or the CD-ROM 2095, and transfers the transmission data to the network.
  • the received data transmitted or received from the network is written to the reception buffer area or the like provided on the storage device.
  • the communication interface 2030 may transfer the transmitted / received data to / from the storage device by the DMA (direct memory access) method, and instead, the CPU 2000 may transfer the transfer source storage device or the communication interface 2030.
  • the transmitted / received data may be transferred by reading the data from the data and writing the data to the communication interface 2030 or the storage device of the transfer destination.
  • the CPU 2000 is all or necessary from files or databases stored in an external storage device such as a hard disk drive 2040, a CD-ROM drive 2060 (CD-ROM 2095), and a flexible disk drive 2050 (flexible disk 2090). Is read into the RAM 2020 by DMA transfer or the like, and various processes are performed on the data on the RAM 2020. Then, the CPU 2000 writes the processed data back to the external storage device by DMA transfer or the like. In such processing, the RAM 2020 can be regarded as temporarily holding the contents of the external storage device. Therefore, in the present embodiment, the RAM 2020 and the external storage device are collectively referred to as a memory, a storage unit, a storage device, or the like.
  • the storage device or the like stores information necessary for information processing of the plant maintenance support device 110, for example, measurement data and probability information as necessary, and stores the measurement data and probability information as necessary in each component of the plant maintenance support device 110 as necessary. Supply.
  • the CPU 2000 can also hold a part of the RAM 2020 in the cache memory and read / write on the cache memory. Even in such a form, the cache memory plays a part of the function of the RAM 2020. Therefore, in the present embodiment, the cache memory is also included in the RAM 2020, the memory, and / or the storage device, unless otherwise indicated. To do.
  • the CPU 2000 includes various operations, information processing, condition determination, information retrieval / replacement, and the like specified in the instruction sequence of the program for the data read from the RAM 2020. Is processed and written back to RAM 2020. For example, when the CPU 2000 determines a condition, whether or not various variables shown in the present embodiment satisfy conditions such as large, small, above, below, and equal to other variables or constants. If the condition is met (or not met), it branches to a different instruction sequence or calls a subroutine.
  • the CPU 2000 can search for information stored in a file or database in the storage device. For example, when a plurality of entries in which the attribute value of the second attribute is associated with the attribute value of the first attribute are stored in the storage device, the CPU 2000 describes the plurality of entries stored in the storage device. By searching for an entry in which the attribute value of the first attribute matches the specified condition and reading the attribute value of the second attribute stored in that entry, it is associated with the first attribute that satisfies the predetermined condition. The attribute value of the second attribute obtained can be obtained.
  • the program or module shown above may be stored in an external recording medium.
  • an optical recording medium such as a DVD or CD
  • a magneto-optical recording medium such as MO
  • a tape medium such as an IC card, or the like
  • a storage device such as a hard disk or RAM provided in a dedicated communication network or a server system connected to the Internet may be used as a recording medium, and a program may be provided to the computer 1900 via the network.
  • the plant support device 110 has been shown to have a CPU 2000 as a processor, but the type of processor is not particularly limited. For example, GPU2000, ASIA, FPGA and the like can be appropriately used as the processor. Further, in the present disclosure, the plant support device 110 has a configuration in which the hard disk drive 2040 is provided as the auxiliary storage device, but the type of the auxiliary storage device is not particularly limited. For example, another storage device such as a slit state drive may be used instead of the hard disk drive 2040 or together with the hard disk drive 2030.
  • the first evaluation method for evaluating (estimating) the risk level of the CUI of the equipment to be inspected by using the model generated based on the measurement data of the equipment of the plant measured in advance A method of extracting a method suitable for the equipment of the plant to be inspected from a plurality of non-destructive inspection methods performed using a predetermined measuring device, and a result of measuring the equipment of the plant to be inspected by the predetermined measuring device ( The second evaluation and the third evaluation method for evaluating the risk level of CUI of the equipment to be inspected based on the measurement result) are disclosed.
  • a non-peeling inspection performed without peeling the heat insulating material and / or the exterior material covering the equipment and a peeling of the heat insulating material and / or the exterior material are performed.
  • the peeling inspection to be performed.
  • an inspection by a moisture measuring device and an inspection by a temperature measuring device were disclosed.
  • a countermeasure for the equipment to be inspected a method of selectively implementing at least one of equipment renewal, full peeling inspection, partial peeling inspection, post-maintenance, and condition monitoring is disclosed.
  • the need for peeling inspection by performing at least two or more of the first evaluation, extraction of non-destructive inspection method, second evaluation, and third evaluation, and integrating the obtained multiple evaluation results. can be evaluated.
  • the plant maintenance support device 110 estimates the CUI risk by a model based on the attribute information of the equipment of the plant to be inspected, a non-peeling inspection by a moisture measuring device, and a non-peeling inspection by a temperature measuring device. However, it may have a second determination unit that determines whether it is appropriate for evaluating the necessity of peeling inspection of the equipment to be inspected. The second determination unit may transmit the eligibility determination result to any of the client terminals 151 to 153.
  • a method for evaluating the necessity of inspection of plant equipment using the risk level of CUI as an index is disclosed.
  • an index for evaluating the necessity of inspection of the equipment of the plant an index other than the risk level of CUI may be used in combination.
  • the need for inspection of plant equipment can be assessed based on the impact of the consequences of damage to the plant equipment by the CUI.
  • the degree of impact of the result can be defined by, for example, the amount of damage that can occur when the equipment of the plant is damaged, the magnitude of the assumed human damage, and the like.
  • the inspection necessity when the inspection necessity is evaluated for a plurality of target equipments and / or for a plurality of allowable wall thinning depths for a predetermined equipment, the inspection necessity is relatively high.
  • the output may emphasize the evaluation results for the equipment and / or the allowable wall thinning depth. For example, a relatively high evaluation result can be displayed higher than other evaluation results, or a relatively high evaluation result can be displayed with a different color from other evaluation results.
  • the method may comprise the step of preparing a predictive model.
  • the prediction model may be generated using a data group including a wall thickness reduction depth measured in advance for a plurality of facilities having different installation conditions.
  • the prediction model may calculate the probability density f (x; ⁇ ) of the wall thinning depth x based on the parameter ⁇ of the statistical distribution determined according to the installation situation.
  • the method may include a step of acquiring the installation status of one or more target facilities.
  • the method may comprise obtaining one or more permissible wall thinning depths for the subject equipment.
  • the method may include a step of evaluating the inspection necessity of the target equipment based on the allowable wall thinning depth and the probability density of the target equipment and the prediction model.
  • the parameter ⁇ may be determined at least based on the type of equipment, the installation period, and the operating temperature.
  • the acquisition step may include at least acquiring the installation status of the target equipment including the type of equipment, the installation period, and the operating temperature of the target equipment.
  • the parameter ⁇ may be determined by a function including a coefficient calculated based on the type of equipment, the installation period, and the operating temperature.
  • the influence of the installation period and the operating temperature of the parameter ⁇ on the coefficient may vary depending on the type of the equipment.
  • the wall thinning depth of the target equipment is determined by the allowable wall thinning depth based on the probability density f (x; ⁇ ) and the allowable wall thinning depth.
  • the above or the step of calculating the cumulative probability of exceeding the above may be included.
  • the type of equipment may include at least one of piping, tank, and tower.
  • the data of the wall thinning depth acquired in advance for the same type of equipment as the target equipment is referred to, and the probability density f ( It may include a step of accepting an input of an arbitrary allowable wall thickness in a state where at least one of x; ⁇ ) can be presented.
  • a plurality of allowable wall thinning depths having different values may be acquired.
  • the step of evaluating the inspection necessity is set to each of the plurality of allowable wall thinning depths when a plurality of the allowable wall thinning depths are acquired at the stage of acquiring the allowable wall thinning depth. It may include assessing the need for testing.
  • the probability density may be an exponential distribution.
  • the parameter ⁇ may be determined by an exponential function in which the measured value includes a coefficient calculated based on the type of equipment, the installation period, and the operating temperature.
  • a method is provided that constitutes at least a portion of a plant and is mounted on one or more computers to assist in the maintenance of equipment that is covered with a heat insulating material and whose corrosion status cannot be visually confirmed.
  • the method may include a step of acquiring the installation status including the type of equipment, the installation period, and the operating temperature for one or more target equipments.
  • the method may comprise obtaining one or more permissible wall thinning depths for the target equipment.
  • the method is a prediction model in which at least the type of equipment, the installation period, and the operating temperature are variables, and whether the wall thinning depth of the equipment due to corrosion under the heat insulating material is equal to or greater than a predetermined depth. It may be prepared to prepare a prediction model for predicting.
  • the method may include the prediction model and a step of evaluating the inspection necessity of the target equipment based on the installation status of the target equipment and the allowable wall thinning depth.
  • the prediction model may be a model that outputs the probability that the wall thinning depth of the equipment due to corrosion under the heat insulating material becomes equal to or greater than a predetermined depth.
  • the step of evaluating the inspection necessity is the step of acquiring the installation status of a plurality of the target equipments at the stage of acquiring the installation status, and / or the step of acquiring the allowable wall thinning depth.
  • the stage of evaluating the necessity of inspection is the possibility of damage to the target equipment calculated based on the allowable wall thickness and the prediction model, and the degree of impact of the result when the equipment is damaged. It may include assessing the need for testing based on.
  • the above method may be executed by a predetermined arithmetic unit having a processor and a memory. Further, the above method may be executed by a plurality of arithmetic units having a processor and a memory. Here, the plurality of arithmetic units may be realized by a predetermined system configured to enable wireless or wired communication. Furthermore, the above method may be realized by using a program executed by one or more arithmetic units.
  • a method of preserving equipment that constitutes at least a part of a plant and is covered with a heat insulating material and whose corrosion state cannot be visually confirmed is provided.
  • the method is based on the installation status of one or more target equipments and the allowable wall thickness reduction depth, and whether the wall thickness reduction depth of the target equipment is equal to or greater than the allowable wall thickness reduction depth based on the installation status of the target equipment.
  • a pre-evaluation step for evaluating the inspection necessity of the target equipment may be provided.
  • the method is a step of performing a peeling inspection accompanied by peeling of the heat insulating material or updating the target equipment for the target equipment whose inspection necessity evaluation result in the preliminary evaluation stage is of the first degree or higher.
  • the method is for the target equipment in which the evaluation of the inspection necessity in the pre-evaluation stage is less than the first degree and is higher than the second degree less than the first degree. It may be provided with a step of performing a non-destructive inspection without peeling of the heat insulating material. The method may further include a step of selecting a non-destructive inspection method suitable for the target equipment by using a determination model for determining based on the installation status of the target equipment before performing the non-destructive inspection. ..
  • the determination model is based on the operating temperature of the target equipment, the outside air temperature, the difference between the operating temperature and the outside air temperature, the type of surface processing of the exterior material of the heat insulating material, and the surface of the exterior material of the heat insulating material.
  • Non-destructive suitable for the target equipment based on at least one condition of the shape of the above and the presence or absence of a heating equipment provided between the heat insulating material and the target equipment covered with the heat insulating material. It may be a model that selects and outputs the inspection method.
  • the above method applies to an evaluation stage in which the inspection necessity of the target equipment is evaluated based on the inspection result of the non-destructive inspection, and the target equipment in which the evaluation of the inspection necessity in the evaluation stage is of a third degree or higher.
  • the peeling inspection or the step of updating the target equipment may be further included.
  • the peeling is performed on the target equipment in which the evaluation of inspection necessity in the evaluation stage is in a predetermined range of less than the third degree and less than the third degree and more than the fourth degree. It may further include a step of performing a partial peeling inspection with a smaller peeling rate than when performing the inspection.
  • condition monitoring is performed on the target equipment whose inspection necessity evaluation result in the evaluation stage is in a predetermined range less than the fourth degree, and an abnormality occurs in the target equipment due to corrosion under a heat insulating material. It may further include the step of performing at least one of the post-maintenance measures to deal with such cases.
  • the evaluation of the necessity of inspection in the pre-evaluation stage includes the possibility of damage to the target equipment calculated based on the prediction model, the installation status of the target equipment, and the allowable wall thinning depth, and the above. This may be done based on the degree of impact as a result of damage to the target equipment.
  • the evaluation of the necessity of inspection in the pre-evaluation stage includes the possibility of damage to the target equipment calculated based on the prediction model, the installation status of the target equipment, and the allowable wall thinning depth, and the above. This may be done based on the degree of impact as a result of damage to the target equipment. Further, in the above method, the evaluation of the inspection necessity in the evaluation stage is the result of the possibility of damage to the target equipment calculated based on the inspection result of the nondestructive inspection and the result when the target equipment is damaged. It may be done based on the degree of influence.
  • the evaluation of the inspection necessity in the evaluation stage may include correcting the evaluation of the possibility of damage calculated in the pre-evaluation stage based on the inspection result of the non-destructive inspection.
  • the evaluation stage is the evaluation of the inspection necessity based on the inspection result of the non-destructive inspection, and the inspection necessity based on the measurement result of the second evaluation unit 136 and / or the third evaluation unit 137. May include an evaluation of.
  • a method of preserving equipment that constitutes at least a part of a plant and is covered with a heat insulating material and whose corrosion state cannot be visually confirmed is provided.
  • the method is based on a prediction model that predicts the wall thinning depth of the equipment based on the equipment installation status, and the installation status and allowable wall thinning depth of a plurality of target equipment, and it is necessary to inspect a plurality of the target equipment. May include a pre-evaluation step to evaluate.
  • the method may include performing a non-destructive inspection of at least one of the plurality of target facilities without peeling of the heat insulating material.
  • the method may include an evaluation step of evaluating the inspection necessity of the target equipment based on the inspection result of the non-destructive inspection.
  • the method updates the target equipment for each of the plurality of target equipments based on the result of the evaluation of the inspection necessity in the preliminary evaluation stage and the result of the evaluation of the inspection necessity in the evaluation stage. , Peeling inspection, partial peeling inspection, condition monitoring, and at least one of the post-maintenance measures to be taken when an abnormality occurs due to corrosion under the heat insulating material may be selectively performed.
  • the method may further include a step of selecting a non-destructive inspection method suitable for the target equipment by using a determination model for determining based on the installation status of the target equipment before performing the non-destructive inspection. ..
  • the determination model is based on the operating temperature of the target equipment, the outside air temperature, the difference between the operating temperature and the outside air temperature, the type of surface processing of the exterior material of the heat insulating material, and the surface of the exterior material of the heat insulating material.
  • Non-destructive suitable for the target equipment based on at least one condition of the shape of the above and the presence or absence of a heating equipment provided between the heat insulating material and the target equipment covered with the heat insulating material. It may be a model that extracts the inspection method.
  • a peeling inspection accompanied by peeling of the heat insulating material or updating of the target equipment is performed.
  • the heat insulating material A non-destructive inspection without peeling may be performed.
  • the peeling inspection or the renewal of the target equipment may be performed on the target equipment whose inspection necessity is evaluated to the third degree or higher in the evaluation stage.
  • the peeling is performed on the target equipment in which the evaluation of the inspection necessity in the evaluation stage is in a predetermined range of less than the third degree and less than the third degree and more than the fourth degree.
  • a partial peeling inspection with a smaller peeling rate than when the inspection is carried out may be performed.
  • at least one of condition monitoring and post-maintenance may be performed on the target equipment whose inspection necessity evaluation result in the evaluation stage is in a predetermined range less than the fourth degree.
  • the evaluation of the necessity of inspection in the pre-evaluation stage includes the possibility of damage to the target equipment calculated based on the prediction model, the installation status of the target equipment, and the allowable wall thinning depth, and the above.
  • the evaluation of the necessity of inspection in the first evaluation stage includes the possibility of damage to the target equipment calculated based on the inspection result of the nondestructive inspection and the case where the target equipment is damaged. It may be done based on the degree of influence of the result of.
  • the evaluation of the inspection necessity in the first evaluation stage may include correcting the evaluation of the possibility of damage calculated in the pre-evaluation stage based on the inspection result of the nondestructive inspection. ..
  • the prediction model may be a model that predicts the probability that the wall thinning depth of the target equipment is equal to or greater than the allowable wall thinning depth.
  • the method may include the step of obtaining the installation status of the target equipment and the allowable wall thinning depth.
  • the method is a step of evaluating the inspection necessity of the target equipment based on the acquired installation status, the allowable wall thickness reduction depth, and a prediction model for predicting the wall thickness reduction depth of the equipment based on the installation condition. May include.
  • the method is suitable for the target equipment from the types of countermeasures including a peeling inspection with peeling of the heat insulating material and a non-destructive inspection without peeling of the heat insulating material based on the evaluation result of inspection necessity. It may include the step of extracting one or more countermeasures.
  • the method may include the step of outputting at least one of the above types when one or more types are extracted.
  • the types of countermeasures further include renewal of the target equipment, condition monitoring, and post-maintenance to deal with an abnormality due to corrosion under the heat insulating material (CUI) in the target equipment.
  • the step of evaluating the inspection necessity is that the allowable wall thinning depth, the installation status, the possibility of damage to the target equipment calculated based on the prediction model, and the target equipment It may include assessing the need for inspection based on the degree of impact of the consequences in the event of breakage.
  • the degree of inspection necessity is higher when the possibility of damage is higher than when the possibility of occurrence is low, and the degree of influence of the result is lower than when the degree of influence is low.
  • the peeling inspection when the degree of necessity of inspection is evaluated to be higher than the first degree in the evaluation result, the peeling inspection may be extracted as a type of countermeasure.
  • the peeling inspection included in the type of the countermeasure is the first peeling inspection for peeling the first ratio or more of the heat insulating material of the target equipment and the second peeling inspection for peeling less than the first ratio. And may be included.
  • the non-destructive inspection when the non-destructive inspection is extracted at the stage of extracting the type of the countermeasure, the first inspection for measuring the surface temperature of the exterior material covering the surface of the heat insulating material of the target equipment and the target equipment.
  • the second inspection for measuring the amount of water contained in the heat insulating material and the type of non-destructive inspection method including the above may be extracted together.
  • the installation status of the target equipment may include information regarding the operating temperature of the equipment.
  • the type of the non-destructive inspection method to be extracted may be changed according to the operating temperature.
  • the prediction model is at least a prediction model in which the type of equipment, the installation period, and the operating temperature are variables, and the wall thinning depth of the equipment due to corrosion under the heat insulating material is at least a predetermined depth. Alternatively, it may be a prediction model that outputs the probability of becoming super.
  • the above method may be executed by a predetermined arithmetic unit having a processor and a memory.
  • the method may also be performed by a plurality of arithmetic units having a processor and memory.
  • the plurality of arithmetic units may be realized by a predetermined system configured to enable wireless or wired communication.
  • the above method may be realized by using a program executed by one or more arithmetic units.
  • the method may include the step of obtaining the installation status of the target equipment and the allowable wall thinning depth.
  • the method is a step of evaluating the inspection necessity of the target equipment by using the acquired installation condition, the allowable wall thinning depth, and a prediction model for predicting the wall thinning depth of the equipment based on the installation condition. May include.
  • the method is suitable for the target equipment from the types of countermeasures including a peeling inspection with peeling of the heat insulating material and a non-destructive inspection without peeling of the heat insulating material based on the evaluation result of the necessity of inspection. It may include the step of setting one or more countermeasures.
  • the types of countermeasures further include renewal of the target equipment, condition monitoring, and post-maintenance to deal with an abnormality due to corrosion under the heat insulating material (CUI) in the target equipment. Good.
  • the step of evaluating the inspection necessity is that the allowable wall thinning depth, the installation status, the possibility of damage to the target equipment calculated based on the prediction model, and the target equipment It may include assessing the need for inspection based on the degree of impact of the consequences in the event of breakage.
  • the degree of inspection necessity is higher when the possibility of damage is higher than when the possibility of occurrence is low, and the degree of influence of the result is lower than when the degree of influence is low. It may be included that the higher the degree, the higher the degree of need for inspection.
  • the peeling inspection when the degree of inspection necessity is evaluated to be higher than the first degree in the evaluation result, the peeling inspection may be executed as a type of countermeasure.
  • the peeling inspection included in the type of the countermeasure is the first peeling inspection for peeling the first ratio or more of the heat insulating material of the target equipment and the second peeling inspection for peeling less than the first ratio. And may be included.
  • the first inspection when a non-destructive inspection is output at the stage of setting the type of the countermeasure, the first inspection for measuring the surface temperature of the exterior material covering the surface of the heat insulating material of the target equipment and the target equipment.
  • the type of non-destructive inspection method including the second inspection for measuring the amount of water contained in the heat insulating material may be set together.
  • the installation status of the target equipment may include information regarding the operating temperature of the equipment.
  • the type of the non-destructive inspection method to be output may be changed according to the operating temperature.
  • a computer-implemented method is provided to maintain equipment that constitutes at least a portion of a plant and is capable of under-warming corrosion (CUI).
  • the method includes obtaining the installation status and the allowable wall thinning depth for each of the plurality of target facilities.
  • the method determines the need for inspection of each of the plurality of target equipments based on the acquired installation status and allowable wall thickness reduction, and a prediction model that predicts the wall thickness reduction depth of the equipment based on the installation status.
  • the method includes a step of outputting so as to emphasize the equipment having a relatively high inspection need among the plurality of target equipments.
  • a method is provided that constitutes at least a portion of the plant and is implemented in a computer to assist in the maintenance of equipment that is covered with a heat insulating material and whose corrosion status cannot be visually confirmed.
  • the method includes the stage of acquiring the installation status of the target equipment.
  • the method is to determine the type of non-destructive inspection suitable for the target equipment based on the installation status, and to use a prediction model that predicts the wall thinning depth of the equipment based on the installation status. Includes the step of performing at least one of the assessment of the need for testing.
  • the method includes outputting at least one of a suitable non-destructive inspection type and the evaluation result of the inspection necessity.
  • the necessity of inspection of the target equipment is evaluated by determining the type of non-destructive inspection suitable for the target equipment and using a prediction model that predicts the wall thinning depth of the equipment based on the installation status. That may be done in this order.
  • the evaluation of the inspection necessity of the target equipment may be performed on the target equipment without a suitable non-destructive inspection.
  • Plant maintenance support system 110 Plant maintenance support device 120 Storage unit 121 Program storage unit 122 Measurement data storage unit 123 Probability information storage unit 130 Calculation unit 131 Acquisition unit 132 Model generation unit 133 First evaluation unit 134 Judgment unit 135 Output unit 136 Second Judgment Unit 137 Third Judgment Unit 140 Internet 151 Client Terminal 152 Client Terminal 153 Client Terminal 161 Moisture Measuring Device 162 Temperature Measuring Device 400 Regression Straight Line between Thinning Depth and Frequency 600 Probability Density Function 610 Cumulative Probability 1900 Computer 2000 CPU 2010 ROM 2020 RAM 2030 Communication Interface 2040 Hard Disk Drive 2050 Flexible Disk Drive 2060 CD-ROM Drive 2070 I / O Chip 2075 Graphic Controller 2080 Display 2082 Host Controller 2084 I / O Controller 2090 Flexible Disk 2095 CD-ROM

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

本発明の第一の態様においては、プラントの少なくとも一部を構成し、保温材により被覆されて外観から腐食状態を確認できない設備の保全を行うためにコンピュータに実装される方法であって、対象設備の運転温度を含む条件であって、対象設備が所定の測定装置を用いた非破壊検査に適しているかを判定するための条件を取得する段階と、条件に基づいて、対象設備の保温材の表面を覆う外装材の表面温度を測定する第1の検査と、対象設備の保温材に含まれる水分量を測定する第2の検査と、を含む保温材の剥離を伴わない複数の非破壊検査の手法から対象設備の測定に適した手法を抽出する段階と、と、一又は複数の非破壊検査の種別が抽出されたとき、種別を出力する段階と、を含む方法を提供する。

Description

保温材下腐食発生予測モデルおよびプラント保全支援装置
 本発明は、保温材下腐食発生予測モデルおよびプラント保全支援装置に関する。
 化学プラントなどの重工業プラントにおいて、高経年化対策が必要となっている。各プントに共通にみられる現象で、保安上重大な脅威となっている損傷現象の1つが、炭素鋼・低合金鋼製設備の保温材下腐食(Corrosion Under Insulation;CUI)である。
 CUIとは、プラントの設備を被覆する保温材および保温材の外側を覆う外装材に覆われている炭素鋼製機器および配管の外面から発生する腐食である。保温材および外装材がプラントの使用中に劣化し、雨水や結露水が保温材および外装材の中に浸入または含浸することで、炭素鋼製機器および配管の外面が湿潤雰囲気となり、CUIが発生する。
 CUIは、プラントの設備の種類等により、その発生部位や進行程度が大きくばらつく。また、CUIは通常保温材および外装材に隠れて見えないため、簡便にその発生を検知できず、プラントの設備の保全管理を困難にしている問題がある。現状、プラント設備の保全の一環としてのCUIの検査は、足場を設置し保温材および外装材を剥離して行われている。このため、CUIの検査は、足場設置等を含め多大な費用を要し、かつ保温材および外装材を剥離させてもCUI検出確率が低いという課題がある。
 CUIが発生し得るプラント設備の保全、検査を行う方法及び装置については、特許文献1から7に記載の方法等に挙げられるように、現在までにいくつか知られている。
特開2018-025497号公報 特開2018-017704号公報 特開2012-052933号公報 特開2011-080937号公報 特開2010-107362号公報 特開2007-121026号公報 特開2006-284416号公報
解決しようとする課題
 しかし、現状、CUIの検査を行うべき部位を適切に推定できる方法が明確でなく、剥離検査を実施する対象設備が増え、設備の保全コストが増大する。このことから、CUIが発生し得るプラント設備に対する安全性と経済性とを両立する保全支援方法が求められる。安全性と経済性とを両立する保全支援の実現には、保温材を剥がさなくても適用できるCUIの高精度かつ経済的な非破壊検査方法がないことが問題である。したがって、CUIに対して高精度かつ経済的であり、非破壊的に検査できる方法およびプラント保全支援装置が、さらに求められている。上記に鑑みて、高精度でCUIを検出でき、保温材を取り除くことなく非破壊的に検査できる、プラントの検査支援の方法およびこれを実現するプラント保全支援装置を提供することを課題とする。
 本発明の第1の態様においては、対象設備の運転温度を含む条件であって、対象設備が所定の測定装置を用いた非破壊検査に適しているかを判定するための条件を取得する段階と、条件に基づいて、対象設備の保温材の表面を覆う外装材の表面温度を測定する第1の検査と、対象設備の保温材に含まれる水分量を測定する第2の検査と、を含む保温材の剥離を伴わない複数の非破壊検査の種別のうちの少なくともいずれか一つを抽出する段階と、を含む方法、方法を実行する装置、この方法をコンピュータに実行させるためのプログラムを提供する。
 また、本発明の第2の態様においては、プラントの設備の設置状況に応じて決定される母数μに基づく減肉深さxの確率密度f(x;μ)を、算出する段階と、前記プラントの設備の許容減肉深さ及び前記確率密度に基づいて前記プラントの設備の検査必要性を評価する段階とを備える方法を提供する。
 また、本発明の第3の態様においては、プラントの設備の設置状況に応じて決定される母数μに基づく減肉深さxの確率密度f(x;μ)を算出する算出部と、前記プラントの設備の許容減肉深さ及び前記確率密度に基づいて前記プラントの設備の検査必要性を評価する評価部とを備えるプラント保全支援装置を提供する。
 また、本発明の第4の態様においては、命令を含むコンピュータプログラムであって、前記命令は、プロセッサ又はプログラム可能回路に実行されると、前記プロセッサ又は前記プログラム可能回路に、プラントの設備の設置状況に応じて決定される母数μに基づく減肉深さxの確率密度f(x;μ)を算出する算出部と、前記プラントの設備の許容減肉深さ及び前記確率密度に基づいて前記プラントの設備の検査必要性を評価する評価部とを含む動作を実行させる、コンピュータプログラムを提供する。
 また、本発明の第5の態様においては、一又は複数の対象設備の設置状況及び許容減肉深さと、対象設備の減肉深さが許容減肉深さ以上又は超となるかを対象設備の設置状況に基づき予測する予測モデルと、に基づいて、対象設備の検査必要性を評価する第1の評価段階と、第1の評価段階における検査必要性の評価の結果が第1の程度より高い対象設備に対して、保温材の剥離を伴う剥離検査又は対象設備の更新を行う段階と、第1の評価段階における検査必要性の評価が、第1の程度以下かつ第1の程度より小さい第2の程度よりも高い所定範囲である対象設備に対して、保温材の剥離を伴わない非破壊検査を行う段階と、を含む方法を提供する。
 また、本発明の第6の態様においては、設備の設置状況に基づき設備の減肉深さを予測する予測モデルと、複数の対象設備の設置状況及び許容減肉深さと、に基づいて、複数の対象設備の検査必要性を評価する第1の評価段階と、複数の対象設備の少なくともいずれかに対して、保温材の剥離を伴わない非破壊検査を行う段階と、非破壊検査の検査結果に基づいて対象設備の検査必要性を評価する第2の評価段階と、第1の評価段階における検査必要性の評価の結果及び第2の評価段階における検査必要性の評価の結果の少なくともいずれかに基づいて、複数の対象設備のそれぞれに対し、対象設備の更新、剥離検査、部分剥離検査、状態監視、及び事後保全の少なくともいずれかを選択的に実行する段階と、を含む方法を提供する。
 また、本発明の第7の態様においては、対象設備の設置状況及び許容減肉深さを取得する段階と、取得された設置状況及び前記許容減肉深さと、設置状況に基づき設備の減肉深さを推定する推定モデルと、に基づいて、対象設備の検査必要性を評価する段階と、検査必要性の評価結果に基づいて、保温材の剥離を伴う剥離検査と、保温材の剥離を伴わない非破壊検査と、を含む対応策の種別の少なくともいずれかを設定する段階と、を含む、方法を提供する。
 また、本発明の第8の態様においては、プラントの設備の保温材の外装材の表面温度を測定する温度測定段階と、測定された前記保温材の外装材の表面温度の温度むら及び表面温度と外気温度との差の少なくともいずれか一方に基づいて、前記プラントの設備の検査必要性を判定する判定段階と、を備える方法を提供する。
 また、本発明の第9の態様においては、プラントの設備の保温材の外装材の表面温度を測定する温度測定装置と、測定された前記保温材の外装材の表面温度の温度むら及び表面温度と外気温度との差の少なくともいずれか一方に基づいて、前記プラントの設備の検査必要性を判定する判定部と、を備える装置を提供する。
 また、本発明の第10の態様においては、命令を含むコンピュータプログラムであって、前記命令は、プロセッサ又はプログラム可能回路に実行されると、前記プロセッサ又は前記プログラム可能回路に、プラントの設備の保温材の外装材の表面温度を測定することと、測定された前記表面温度に基づいて、前記プラントの設備の検査必要性を判定することと、を含む動作を実行させる、コンピュータプログラムを提供する。
 また、本発明の第11の態様においては、水分測定装置により、プラントの設備を被覆する保温材の外装材の内方の水分量を測定する水分測定段階と、測定された前記水分量に基づいて、前記プラントの設備の検査必要性を判定する判定段階と、を備える方法を提供する。
 また、本発明の第12の態様においては、複数のプラントの設備について予め取得された、減肉深さの複数の検出値に基づいて生成される予測モデルにより、検査対象であるプラントの設備の検査必要性を予備的に判定する予備判定段階と、前記予備判定段階において、予め定められた程度以上の検査必要性が認められたプラントの設備に対して行われる測定の結果に基づいて、前記プラントの設備の検査必要性の判定を行う判定段階と、を備える方法を提供する。
 また、本発明の第13の態様においては、プラントの設備を被覆する保温材の外装材の内方の水分量を測定する水分測定装置と、測定された前記水分量に基づいて、前記プラントの設備の検査必要性を判定する判定部と、を備える装置を提供する。
 また、本発明の第14の態様においては、命令を含むコンピュータプログラムであって、前記命令は、プロセッサ又はプログラム可能回路に実行されると、前記プロセッサ又は前記プログラム可能回路に、プラントの設備を被覆する保温材の外装材の内方の水分量を測定することと、測定された前記水分量に基づいて、前記プラントの設備の検査必要性を判定することと、を含む動作を実行させる、コンピュータプログラムを提供する。
 また、本発明の第15の態様においては、複数の対象設備のそれぞれについて、設置状況及び許容減肉深さを取得する段階と、取得された前記設置状況及び許容減肉深さと、設置状況に基づき設備の減肉深さを予測する予測モデルとに基づいて、複数の対象設備のそれぞれについて、検査必要性を評価する段階と、複数の前記対象設備のうち、検査必要性が相対的に高い設備を強調するように出力する段階と、を含む、コンピュータに実装される方法、この方法を実行する装置、この方法をコンピュータに実行させるためのプログラムを提供する。
 また、本発明の第16の態様においては、対象設備の設置状況を取得する段階と、設置状況に基づいて、対象設備に適した非破壊検査の種別を判定すること、及び、設置状況に基づいて設備の減肉深さを予測する予測モデルを用いて対象設備の検査必要性を評価すること、の少なくともいずれか一方を実行する段階と、適した非破壊検査の種別、及び、前記検査必要性の評価結果、の少なくともいずれか一方を出力する段階と、を含む、コンピュータに実装される方法、この方法を実行する装置、この方法をコンピュータに実行させるためのプログラムを提供する。
 なお、上記第16の態様において、設備に適した非破壊検査の種別を判定することと、設置状況に基づいて設備の減肉深さを予測する予測モデルを用いて設備の検査必要性を評価すること、とはこの順に行われ、設備の検査必要性の評価は、適した非破壊検査の無い設備に対して行われるようにしてよい。
 なお、上記の発明の概要は、本発明の必要な特徴のすべてを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本実施形態におけるプラントの保全を行うためのフローを示す図である。 本実施形態のプラント保全支援システム100の構成を示す図である。 本実施形態のプラント保全支援装置110の処理フローを示す図である。 本実施形態のプラント保全支援装置110の処理フローにおけるS210を示す図である。 本実施形態のプラント保全支援装置110の処理フローにおけるS212で、生成したCUIの危険度を予測するモデルの妥当性について説明する図である。 本実施形態のプラント保全支援装置110の処理フローにおけるS230を示す図である。 本実施形態のプラント保全支援装置110の処理フローにおけるS230で、検査必要性の第1の評価結果を算出する仕組みについて説明する図である。 本実施形態のプラント保全支援装置110の処理フローにおけるS230を示す図である。 本実施形態のプラント保全支援装置110の処理フローにおけるS232で得られた第1の評価結果を表示する一例を示す図である。 本実施形態のプラント保全支援装置110の処理フローにおけるS232で得られた第1の評価結果を表示する一例を示す図である。 本実施形態のプラント保全支援装置110の処理フローにおけるS250を示す図である。 本実施形態のプラント保全支援装置110の処理フローにおけるS260を示す図である。 本実施形態のプラント保全支援装置110の処理フローにおけるS232で得られた予備判定の予測精度を検証した図である。 本実施形態のプラント保全支援装置110の処理フローにおけるS232で得られた予備判定の予測精度と、従来モデルを用いて得られた予備判定の予測精度とを比較した図である。 本実施形態のプラント保全支援装置110の処理フローにおけるS232で得られた予備判定の予測精度と、従来モデルを用いて得られた予備判定の予測精度とを比較した図である。 本実施形態のプラント保全支援装置110の処理フローにおけるS264で得られた判定の結果を検証した図である。 本実施形態のプラント保全支援装置110の処理フローにおけるS265で得られた判定の結果を検証した図である。 本実施形態のプラント保全支援装置110の処理フローにおけるS265で得られた判定の結果を検証した図である。 コンピュータ1900のハードウェア構成の一例を示す。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲に係る発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせのすべてが発明の解決手段に必須であるとは限らない。
 <プラントの保全および検査のフロー> 本実施形態は、プラントの少なくとも一部を構成し、保温材により被覆されて外観から腐食状態を確認できない設備についての、安全性と経済性を両立させる保全、および設備の保全の一環としての検査を行う方法、さらにこの方法を支援する装置を提供する。安全性と経済性を両立した保全および検査を行うためには、保温材下腐食が発生している箇所を精度良く特定することで、保温材の剥離を伴い費用の大きな剥離検査を行う対象設備、およびその部位を絞り込むことが重要である。本実施形態における保全、および検査を行う方法は、保温材下腐食が生じる複数の設備について予め取得された減肉深さの複数の検出値に基づき生成された予測モデルを用いて、対象設備の検査の必要性としての対象設備の破損発生可能性を評価すること、保温材の剥離を伴なわずに所定の測定装置を用いて行われる非破壊検査の種別のうち、対象設備に適した一又は複数の非破壊検査の種別を決定すること、対象設備に適した非破壊検査を実行すること、予測モデルを用いた対象設備の検査の必要性の評価および/または所定の測定装置を用いた非破壊検査の測定結果に基づく対象設備の剥離検査の必要性の評価に基づいて、対象設備に対する保全方法を決定すること、の少なくともいずれかの方法を含む。上記方法は、一又は複数のコンピュータ、及び、一又は複数のコンピュータに実装された所定のソフトウェアにより実行されてよい。
 本開示において、保全とは、対象設備を経済的かつ安全に稼働させるために、対象設備に対して所定の対応策(検査、修理を含む設備の更新、状態監視等)をとる活動をいう。また、本開示において、検査とは、破壊検査と非破壊検査とを含む。CUIが発生し得るプラントの設備に対する破壊検査の1つが、保温材を剥離して設備の腐食の状態を確認し、また、必要に応じて設備の腐食深さの測定を行う剥離検査である。また、CUIが発生し得るプラントの設備に対する非破壊検査は、保温材の剥離を伴わず、設備に腐食を生じさせる要因(例えば、保温材に含まれる水分量)に関する測定を行うことで設備の腐食の状況(例えば、腐食深さや腐食分布)を推定する検査を含む。また、本開示において、検査必要性の評価は、剥離検査、非破壊検査を含む対象設備に対する検査の必要性を評価することであってよく、評価の時点ですでに非破壊検査が実施されている場合には、対象設備に対する剥離検査の必要性の評価、および、剥離検査の実施の程度を評価することであってよい。剥離検査の実施の程度は、例えば、対象設備のうち、保温材を剥離する面積であってよい。また、検査必要性の評価は、保温材下腐食によって対象設備が破損する可能性を評価することを含んでよい。さらに、検査必要性の評価は、対象設備に対して取りうる対応策を含んでいてよい。例えば、検査必要性の程度が所定の程度よりも大きい場合には、剥離検査または設備の更新を推奨する旨を含んでいてよい。また、剥離検査は、対象設備の保温材を全面に渡って剥離する全面剥離検査と、その一部を剥離する部分剥離検査とを含む。また、剥離検査には、対象設備の保温材の第一割合以上を剥離する第1の剥離検査と、前記第一割合未満を剥離する第2の剥離検査と、を含んでよく、第1の剥離検査に全面剥離検査が該当する場合には、第2の剥離検査に部分剥離検査が該当する。
 図1は、本実施形態における保全の流れを示すフロー図である。図1に示す保全のフローは、例えば、プラントの設備保全管理者や検査員が、後述するプラント保全支援システムを用いて実施することができる。図1に示すように、S100において、保全のための検査を行う対象となる一又は複数のプラントの設備であって、保温材により被覆されて外観から腐食状態を確認できない設備の設置状況に関するデータを取得する(S100)。取得されるデータは、設備の種類、設備の設置期間、運転温度の情報を含んでいてよい。
 続いて、対象設備の設置状況に関するデータと、設備の設置状況に基づきCUIの危険度を予測する予測モデルを用いて、対象設備の検査必要性の評価を行う(S101)。なお、S101を行わずS100の後に後述するS103の処理に進んでもよい。対象設備の検査必要性の評価は、後述するプラント保全支援システムが、演算部において予測モデルを用いた演算処理を行うことにより実行されてよい。予測モデルは、設置状況が異なる複数の設備を対象に予め測定された減肉深さを含むデータ群を用いて生成されたモデルであってよく、対象設備の減肉深さを確率として予測するモデル、すなわち、対象設備にCUIによる破損が発生する可能性を予測するモデルであってよい。予測モデルの詳細は後述する。また、対象設備の検査必要性の評価は、予測モデルが出力する破損の発生可能性と、対象設備に破損が生じた場合における結果影響度とに基づいて行われることが好ましい。すなわち、対象設備の破損の発生可能性が高いほど、かつ、対象設備が破損した場合の結果影響度が大きいほど、検査必要性を高く評価することが好ましい。予測モデルおよびこれを用いた対象設備の検査必要性の評価の詳細は後述する。
 S102において、予測モデルを用いた対象設備の検査必要性の評価結果(検査必要性の程度)に基づいて、複数の対応策の種別から、対象設備に対して行う少なくとも1つの対応策を抽出する。本実施形態では、検査必要性の評価の程度を、小(Aランク)、中(Bランク)、大(Cランク)、特大(Dランク)の4種類に分類している。S102において、検査必要性の評価の程度が最も高い所定の範囲(第1の程度)の対象設備、すなわち、検査必要性が特大の設備に対しては、対応策として、剥離検査、または設備を入れ替える設備更新を行うこととし、S110に進む。
 一方、検査必要性の評価が特大よりも低い所定の範囲(第1の程度未満かつ第2の程度以上)である設備、例えば、検査必要性の評価の程度が大~小の設備に対しては、剥離検査を行うべきか否かをより詳細に検討するため、また、剥離検査を行う場合にはその対象部位を絞り込むための非破壊検査を行うべく、非破壊検査を行う事前に、対象設備が所定の測定装置を用いた非破壊検査に適しているかを判定するS103に進む。なお、第1の程度、および、第2の程度は適宜設定されてよく、例えば、検査必要性が0の場合を第2の程度としてもよい。また、対象設備が所定の測定装置を用いた非破壊検査に適しているかの判定は、対象設備の全てに対して行われてもよい。また、S103における非破壊検査の適用可能性の判定は、対象設備に対して測定が行われるときの条件に基づいて行われる。この条件には、S100において取得された設備の設置条件のうち少なくとも運転温度の条件が含まれる。条件には、後述するその他の条件が用いられてもよい。非破壊検査の適用可能性の判定は、後述するプラント保全支援システムが、演算部において、所定の判定モデルを用いた演算処理を行うことにより実行されてもよい。所定の判定モデルにより、非破壊検査の適用性の判定を行うための判定フローが実行されてよい。非破壊検査には、温度測定装置を用いて保温材の表面を覆う外装材の表面温度を測定する第1の検査と、水分測定装置を用いて対象設備の保温材に含まれる水分量を測定する第2の検査とが含まれ、第1の検査および第2の検査を含む複数の非破壊検査の手法から適した非破壊検査の手法が抽出されることが好ましい。
 S104において、対象設備に適した非破壊検査の手法が存在しない場合(S104でNO)には、対象設備に対して、例えば、所定の測定装置を用いない検査として、例えば、目視検査を行って剥離検査を実施する部位の絞込を行い(S108)、対象設備のうちの特定部位を対象とした部分剥離検査を実施する(S112)。なお、適した非破壊検査の手法が存在しない(S104でNO)対象設備に対しては、予測モデルによる検査必要性の評価結果に応じて、剥離検査の検査部位の絞込を行うことなく、剥離検査を実施するようにしてもよい。
 一方、S104において、対象設備に適した非破壊検査の手法が存在した場合(S104でYES)には、対象設備に対して非破壊検査を実施し(S105)、非破壊検査の結果に基づいて、さらなる検査必要性の評価を行う(S106)。なお、S106における検査必要性の評価は、S101で行われた予測モデルを用いた検査必要性の評価を補正することにより行われてもよい。
 S107において、非破壊検査の検査結果を用いた対象設備の検査必要性の評価結果(検査必要性の程度)に基づいて、複数の対応策の種別から、対象設備に対して行う少なくとも1つの対応策を抽出する。本実施形態では、前述のように、検査必要性の評価の程度を、小(A)、中(B)、大(C)、特大(D)の4種類に分類している。S107において、検査必要性の評価の程度が最も高い所定の範囲(第3の程度)の対象設備、すなわち、検査必要性が特大の設備に対しては、剥離検査、または設備を入れ替える設備更新を行うこととし、S110に進む。また、S107において、検査必要性の評価が特大よりも低い所定の範囲(第3の程度未満、かつ、第3の程度より小さい第4の程度以上)である設備、例えば、検査必要性の評価の程度が大、中の設備に対しては、非破壊検査の検査結果に基づいて、剥離検査を実施する部位の絞込を行い(S109)、対象設備のうちの特定部位を対象とした部分剥離検査を実施することとし、S112に進む。また、S107において、検査必要性の評価が、中よりも低い所定(第4の程度未満)である設備)、例えば、検査必要性の評価が小の設備に対しては、状態監視、及び対象設備に保温材下腐食による異常が生じた場合に対処する事後保全の少なくともいずれか一方を行うこととし、S111に進む。
 なお、第3の程度および第4の程度は適宜設定されてよく、例えば、第3の程度は、第1の程度と同じでもよく、また、第4の程度は、第2の程度と同じであってもよい。また、前述のように、対象設備の検査必要性の評価は、非破壊検査の検査結果に基づく対象設備の破損の発生可能性の評価を含んでよく、さらに、対象設備の破損の発生可能性と、対象設備に破損が生じた場合における結果影響度との評価に基づいて行われてよい。すなわち、対象設備の破損の発生可能性が低く、かつ、対象設備が破損した場合の結果影響度が小さいほど、検査必要性を低く評価することが好ましい。
 このように、一又は複数の対象設備に対して、予測モデルに基づく検査必要性の評価(第1の評価段階)、及び非破壊検査の検査結果に基づく検査必要性の評価(第2の評価段階)の少なくともいずれか一方を実施する。さらに、第1の評価段階による評価の結果と、第2の評価段階による評価の結果とに基づいて、一又は複数の対象設備のそれぞれに対し、対象設備の更新、剥離検査(全面剥離検査または部分剥離検査)、状態監視、及び事後保全の少なくともいずれかを実施する。これによれば、予測モデルを用いた検査必要性の評価と、非破壊検査による検査必要性の評価とにより、対処設備について保温材を剥離して行う剥離検査の実施範囲を絞り込むことができる。その結果、これにより、保温材下腐食が発生し得るプラントの設備に対して、予測精度が向上し、安全性と経済性とが両立した保全及び検査を実現することが可能となる。
 <プラントの保全および検査の支援に用いられるプラント保全支援システム>
 続いて、上述したプラント設備の保全および検査を支援するために用いられるプラント保全支援システムについて説明する。
 図2では、本実施形態のプラント保全支援システム100の構成の一例を示す。プラント保全支援システム100は、プラント保全支援装置110、クライアント端末151~153、水分測定装置161、および温度測定装置162を備える。
 クライアント端末151~153は、プラントごとにプラントの施設内に設置されるものであってよい。クライアント端末151~153は、インターネット140等の通信網を介して、プラント保全支援装置110にプラントの設備に関するデータを送信し、またプラント保全支援装置110より、プラントの設備の検査必要性に関するデータを受信する。クライアント端末151~153は、水分測定装置161または温度測定装置162の少なくとも一方と通信するものであってよい。クライアント端末151~153は、水分測定装置161または温度測定装置162による測定の少なくとも一方の測定結果を受信するものであってよい。
 クライアント端末151~153は、1台であっても、2台以上であってもよい。クライアント端末151~153のうちの少なくとも1つは、ラップトップ端末、デスクトップ端末、サーバ、クライアント端末、スマートフォン、タブレット、ウエアラブル端末からなる群のうちの少なくとも1つであってよい。
 なお、プラント保全支援装置110とクライアント端末151~153とのいずれかとが、一体に構成されていてもよい。すなわち、プラントの設備に関するデータの取得から、プラントの設備の検査必要性に関するデータの生成、およびそのデータの報知に至る一連の処理を、単一の端末により行ってもよい。また、プラント保全支援装置110が複数の端末により構成されていてもよい。すなわち、プラントの設備に関するデータの取得から、プラントの設備の検査必要性に関するデータの生成、およびそのデータの出力に至る一連の処理を、複数の端末が連携して行ってもよい。
 プラント保全支援装置110は、記憶部120および演算部130を備える。演算部130は少なくとも1つのハードウェアプロセッサを備える。演算部130は、例えば、ハードウェアプロセッサとしてのCPU、ROM、RAMにより構成されていてよい。記憶部120は、例えば、ハードディスクドライブにより構成される補助記憶装置であってよい。本開示における演算部130および記憶部120のハードウェア構成は、図18を用いて後述する。
 記憶部120は、プログラム記憶部121、測定データ記憶部122、確率情報記憶部123、および判定情報記憶部124を備える。プログラム記憶部121は、演算部130に実行されるプログラムを記憶する。測定データ記憶部122は、プラント保全支援装置110がクライアント端末151~153から受信した予測モデルを生成するための学習データとなるプラントの設備のデータ、または検査対象のプラントの設備のデータのうちの少なくとも一つを記憶する。確率情報記憶部123は、モデル生成部132が生成した、CUIの危険度を確率として予測するモデルを記憶する。ここでCUIの危険度とは、CUIが発生しているか否かの検査の必要性を評価するための指標である。確率情報記憶部123は、プラントの設備の検査必要性に関するデータを記憶してもよい。判定情報記憶部124は、所定の条件に基づいて、対象設備に適した非破壊検査の手法を抽出するための判定モデルを記憶する。
 演算部130は、記憶部120にあるプログラム記憶部121が記憶しているプログラムを実行すると、演算部130は取得部131、モデル生成部132、第1の評価部133、判定部134および出力部135として機能する。
 取得部131は、学習データとなるプラントの設備のデータ、および検査対象のプラントの設備のデータを取得する。学習データとなるプラントの設備、または検査対象のプラントの設備は、保温材および保温材の外側を覆う外装材により被覆され、外観から腐食状態を確認できないものであってもよい。外装材は、板金等であってよい。取得部131は、取得した学習データとなるプラントの設備のデータを、モデル生成部132および測定データ記憶部122に送る。また、取得部131は、検査対象のプラントの設備のデータを、第1の評価部133に送る。
 モデル生成部132は、取得部131から送られたデータであるプラントの設備のデータから、CUIの危険度を確率として予測するモデルを生成する。モデル生成部132は、取得部131から送られたプラントの設備のデータを学習データ(訓練データ)として用い、機械学習手法によってモデルを生成してもよい。本開示において、モデル生成部132は、減肉深さごとのCUI発生確率を予測するモデルを生成し、生成したモデルに基づいて、減肉深さごとの確率密度を算出してよい。モデルは、確率密度を、母数μに基づく分布として出力するように生成されてよい。また、モデルは、確率密度を、母数μに基づく確率密度関数として出力するように生成されてよい。モデル生成部132は、生成したモデルを、確率情報記憶部123を介して、または直接、第1の評価部133に送る。
 第1の評価部133は、確率情報記憶部123、またはモデル生成部132から取得したモデルを使用して、取得部131で得た検査対象のプラントの設備の検査必要性を評価する。以降、第1の評価部133による評価を、予備判定と表現することがある。第1の評価部133は、第1の評価結果(予備判定の結果)を判定部134に送る。ここで、一例として、第1の評価結果は、AランクからDランクで表されるCUIの危険度のランクであってよい。ここで、CUIの危険度は、CUIによりプラントの設備が破損に至る可能性を示す指標であってよい。第1の評価部133は、クライアント端末151~153のいずれかに第1の評価結果を送信してもよい。クライアント端末151~153は、第1の評価結果を、表示部に表示するなどして、使用者に報知してよい。
 判定部134は、所定の条件に基づいて、検査対象のプラントの設備が、所定の測定装置を用いて保温材の剥離を伴わずに実施される非破壊検査のうちから、対象の設備に適した非破壊検査の種別を抽出する。保温材下腐食の程度を検査する非破壊検査の手法はいくつか知られているが、適切な条件で実施されなければ、精度の良い検査結果が得られない。そこで、複数ある非破壊検査の手法から、対象の設備に適した非破壊検査の手法を選択して実施することが重要となる。
 本開示において、判定部134は、検査対象のプラントの設備が、水分測定装置161または温度測定装置162のうちの少なくとも1つの測定装置を用いた測定に適したものであるかどうかの適格性の判定を行う。判定部134は、第1の評価部133から送られた第1の評価結果および適格性の判定の結果、検査対象のプラントの設備に一定以上のCUIの危険度が存在し、かつ、検査対象のプラントの設備が測定装置を用いた測定に適している場合には、対象設備に適した、所定の測定装置を用いた非破壊検査の種別を、インターネット140等の通信網を介して、クライアント端末151~153のうちの少なくとも1つに指示する。本開示において、判定部134は、水分測定装置161または温度測定装置162のうちの少なくとも1つの測定装置を用いて、検査対象のプラントの設備に対して測定を行うように、インターネット140等の通信網を介して、クライアント端末151~153のうちの少なくとも1つに指示する。なお、判定部133は、いずれの測定装置も測定に適さない場合や、測定装置のいずれも測定に適する場合にも、当該適格性の判定結果をクライアント端末に送信してもよい。
 判定部134は、クライアント端末151~153から、水分測定装置161または温度測定装置162のうちの少なくとも1つの測定装置を用いた測定の結果を、インターネット140等の通信網を介して取得する。
 また、判定部134は、後述するように、取得部131が取得した検査対象のプラントの設備のデータに基づいて、保温材の剥離を伴わない非破壊検査の種別から対象設備の測定に適した種別を抽出するようにしてもよい。ここで、非破壊検査の種別には、対象設備の保温材の表面を覆う外装材の表面温度を測定する検査(第1の検査)と、対象設備の保温材に含まれる水分量を測定する検査(第2の検査)とが含まれていてよい。検査対象のプラントの設備のデータには、対象設備が所定の測定装置を用いた非破壊検査に適しているかを判定するための条件として運転温度の条件が含まれていることが好ましい。また、条件は、さらに、外気温度、運転温度と前記外気温度との差、保温材の外装材の種類、保温材の外装材の表面の形状、及び、保温材と保温材で被覆された対象設備との間に設けられる加温設備の有無、の少なくともいずれか1つの条件が含まれていることがさらに好ましい。外装材の種類には、外装材の表面加工の種類が含まれていてよい。
 判定部134は、判定の結果を、出力部135に送る。
 出力部135は、検査対象のプラントの設備の検査必要性を、インターネット140等の通信網を介して、クライアント端末151~153のうちの少なくとも1つに出力するものであってよい。なお、出力部135は、取得部131が取得したプラントの設備のデータおよび検査対象のプラントの設備のデータと、第1の評価部133による評価の結果と、判定部134による非破壊検査の適格性の判定の結果と、後述する第2の評価部136による評価の結果と、第3の評価部137による評価の結果と、を出力するように構成されていてよい。
 以上に説明したとおり、プラント保全支援装置110は、取得した学習データとなるプラントの設備のデータに基づいてCUIの危険度を確率として予測するモデルを生成し、生成したモデルを用いて検査対象のプラント設備の検査必要性を予備判定する。第1の評価結果、検査対象のプラントの設備に一定以上のCUIの危険度が存在し、かつ、検査対象のプラントの設備が保温材の剥離を伴わない非破壊検査であって所定の測定装置を用いた測定に適している場合には、プラント保全支援装置110は、検査対象のプラントの設備に対して、対象の設備に適した非破壊検査を行うように、クライアント端末151~153のうちの少なくとも1つに指示する。非破壊検査の種別には、水分測定装置161または温度測定装置162のうちの少なくとも1つの測定装置を用いた測定を行う検査が含まれていていよい。したがって、プラント保全支援装置110は、対象の設備について水分測定装置161または温度測定装置162のうちの少なくとも1つの測定装置による検査が適している場合には、水分測定装置161または温度測定装置162のうちの少なくとも1つの測定装置を用いた測定を行うように、クライアント端末151~153のうちの少なくとも1つに指示してよい。判定部134は、水分測定装置161等の非破壊検査の適格性の判定結果、及び、水分測定装置161等の非破壊検査の測定の結果に基づいて、検査対象のプラントの設備の検査必要性を判定してもよい。なお、判定部134は、第1の評価結果のみに基づいて、または、予備判定を行わずに測定装置による測定結果のみに基づいて、検査対象のプラントの設備の検査必要性を判定してもよい。
 なお、非破壊検査の手法には、下記のような測定装置が用いられる非破壊検査の手法が含まれていてよい。すなわち、測定装置としては、温湿度計、絶縁された二種類の金属(例えば、鉄と銀)間を流れる腐食電流を検出するACMセンサ、配管内に配されて超音波及び洩磁束の少なくとも一方によって配管内外面の減肉深さを測定するインテリジェントピグ、を用いることができる。また、腐食によって生じた錆の剥離または破壊によって錆層から放出される弾性波を検出して構造物の腐食度合い(例えば、腐食の進行状態)を検出するアコースティック・エミッション計測器を用いることができる。保温材で被覆された構造物をX線撮影するデジタルX線撮影装置とそのデジタルX線撮影装置の撮影結果に基づき構造物(配管等)の腐食度合い(例えば撮影範囲内で最大の減肉深さ)を検出する画像処理装置を用いることができる。
 しかしながら、温湿度計、ACMセンサは、その設置のために保温材を部分的に剥離する必要があるため設置コストがかかり、また、測定結果から実機の腐食発生程度を評価する較正データの算出や、較正データの取得が煩雑である。また、アコースティック・エミッション計は得られた信号と腐食発生程度を評価する較正データの算出や、較正データの取得が煩雑である。インテリジェントピグは、曲管や枝分かれした部分の多いプラント内配管には適用が困難で、適用可能なプラント設備が限定される。また、X線撮影装置および画像処理装置は、これらの装置を対象配管等に近接して測定を行う必要がある。また、X線撮影装置および画像処理装置は、大口径の配管や機器には適用できず、その適用対象が限定される。よって、非破壊検査の手法としては、近接して測定する制約が一定程度緩和される手法である水分測定装置161、および温度測定装置162の少なくともいずれか一方を用いることが好ましい。また、後述するように、発明者らは、所定の条件でこれら測定装置を用いた非破壊検査を実施することにより、蓄積した測定結果と腐食発生程度の相関に関する較正データの算出を実現した。
 以上のような理由から、判定部134は、対象の設備に適した複数の非破壊検査の種別が抽出され、複数の種別に、水分測定装置161、および温度測定装置162の少なくともいずれか一方が含まれる場合には、水分測定装置161、および温度測定装置162の少なくともいずれか一方を推奨する旨を合わせて出力するようにしてよい。
 <プラント保全支援装置110の処理フロー>
 図3は、プラント保全支援装置110の処理フローの一例である。プラント保全支援装置110は、S210~S290の処理を行うことによって、検査対象のプラントの設備の検査必要性を評価し、検査対象のプラントの設備に対してとるべき対応策の決定を支援する。プラント保全支援装置110による演算処理の結果を利用して、対象設備に適した検査、設備の更新、状態監視等の対応策を実施することができる。なお、説明の便宜上、S210~S290の処理を順番に説明するが、これらの処理はパイプラインのように並列に実行されるものであってもよい。
 ここで、プラントとは、原料を投入して、反応、混合、または分離して、目的とする化合物または組成物等を生産する反応器、パイプライン、精製装置等を含む工場施設を意味するものであってよい。また、プラントの設備は、プラントに使用される金属配管及び金属機器の少なくとも一方を含むものであってよい。金属配管及び金属機器の少なくとも一方は、保温材および保温材の外側を覆う外装材により被覆されたものであってよい。プラントの設備は、保温材および保温材の外側を覆う外装材により被覆され、外観から腐食状態を確認できないものであってもよい。
 まず、S210において、モデル生成部132は、検査対象のプラントの設備の設置状況に基づき設備のCUIの危険度を予測する予測モデルを生成する。予測モデルは、対象の設備の減肉深さを確率として予測するモデルであってよい。すなわち、予測モデルは、対象の設備のCUIによる破損の発生可能性を予測するモデルであってよい。本開示においてモデル生成部132は、取得部131から取得した学習データとなるプラントの設備のデータに基づいて、CUIの危険度を確率として予測するモデルを生成する。モデル生成部132は、生成したモデルを、確率情報記憶部123を介して、または直接、第1の評価部133に送る。S210の詳細は後述する。なお、処理フローにおいて、S210、S220、S230およびS240をスキップして、開始から直接S250に進んでもよい。
 次に、S220において、取得部131は、検査対象のプラントの設備のデータを取得して、これを第1の評価部133に送る。取得部131は、検査対象のプラントの設備のデータとして、設備に許容される肉厚の情報である、許容減肉深さを含むデータを取得してよい。プラント保全支援システム100の使用者は、いずれかの端末に許容減肉深さを入力してよい。これによれば、第1の評価部133が検査必要性の算出をする閾値を、例えば、後述する結果影響度に応じて任意に設定できるので、高精度かつ経済的な検査を実現することができる。なお、検査対象のプラントの設備のデータは複数取得されてよい。
 次に、S230において、第1の評価部133は、取得した検査対象のプラントの設備のデータを用いて、確率情報記憶部123、またはモデル生成部132から取得した、CUIの危険度を確率として予測するモデルを利用し、検査対象のプラントの設備の検査必要性を予備判定する。第1の評価部133は、プラントの設備の検査必要性をランク分けした結果を第1の評価結果としてもよい。一例として、第1の評価結果は、AランクからDランクの4ランクに分類し、Aランクが最もCUIの発生可能性が小さく、Dランクが最もCUIの発生可能性が大きいものとしてもよい。S230の詳細は後述する。
 次に、S240において、S230の第1の評価の結果、検査対象のプラントの設備に一定以上のCUIの危険度が存在しないと評価された場合(例えば、AランクまたはBランク)は、プラント保全支援装置110は処理をS290に進める。S230の第1の評価の結果、検査対象のプラントの設備に一定以上のCUIの危険度が存在すると評価された場合(例えば、CランクまたはDランク)は、判定部134はS250の処理を行う。
 次に、S250において、判定部134は、検査対象のプラントの設備に一定以上のCUIの危険度が存在すると予備判定された検査対象のプラントの設備が、所定の測定装置を用いた非破壊検査に適したものであるかどうかの適格性の判定を行う。本処理フローの例において、判定部134は、水分測定装置161または温度測定装置162のうちの少なくとも一方の測定装置を用いた測定に適したものであるかどうかの適格性の判定を行う。判定部134は、適格性の判定の結果が、検査対象のプラントの設備が所定の測定装置を用いた測定に適している場合には、S260に進んでよい。判定部134は、適格性の判定を行った結果、検査対象のプラントの設備が、測定装置を用いた測定に適していなければ、S280へ進んでよい。判定部134は、適格性の判定の結果を確率情報記憶部123に送ってもよい。また、判定部134は、適格性の判定の結果を、出力部135およびインターネット140等の通信網を介して、クライアント端末151~153に送ってもよい。S250の詳細は後述する。なお、処理フローにおいて、S240において検査対象のプラントの設備に一定以上のCUIの危険度が存在すると判定された場合、S250、S260およびS270をスキップして、S240から直接S280に進んでもよい。
 次に、S260において、判定部134は、適格性の判定の結果に基づいて、所定の測定装置を用いた非破壊検査の手法から検査対象のプラントの設備に対する測定に適している測定装置を選択する。本処理フローの例において、判定部134は、検査対象のプラントの設備に対する測定に適している測定装置として、水分測定装置161または温度測定装置162の少なくとも一方を選択する。なお、判定部134の選択肢(定格性の判定の結果には、いずれかの測定装置が測定に適すること、いずれの測定装置も測定に適さないこと、および/または、測定装置のいずれも測定に適すること、が含まれていてよい。判定部134は、検査対象のプラントの設備に対する測定に適している測定装置を用いて、クライアント端末151~153の使用者に測定を行うよう指示する。本処理フローの例において、判定部134は、水分測定装置161または温度測定装置162のうち、検査対象のプラントの設備に対する測定に適している測定装置を用いて、クライアント端末151~153の使用者に測定を行うよう指示する。この指示は、使用者に対していずれかの測定装置を用いた測定を推奨することであってよい。以下、測定装置によるプラント設備の測定を、第1の検査と表現することがある。
 測定装置によるプラント設備の測定(第1の検査)は、外装材または保温材を剥離することなく行う非剥離検査であることが好ましい。これによれば、例えば、外装材または保温材を剥離するための足場を組むことなく検査をすることができる。さらに、測定装置によるプラント設備の測定(第1の検査)は、外装材または保温材に接触することなく行う非接触検査であることが好ましい。これによれば、測定装置の測定範囲内であれば、検査対象物から離間した位置で、簡易に測定を行うことができる。その結果、高精度かつ経済的な検査を実現することができる。
 判定部134は、所定の測定装置から測定結果(第1の検査結果)を取得する。本処理フローの一例において、判定部134は水分測定装置161および/または温度測定装置162から、測定結果(第1の検査結果)を、クライアント端末151~153およびインターネット140等の通信網を介して取得する。判定部134は、測定結果を、第2の評価部および/または第3の評価部に送る。第2の評価部136および/または第3の評価部137は、測定結果から、プラントの設備の検査必要性を評価する。S260の詳細は後述する。以降、測定結果に基づくプラントの設備の検査必要性の評価を、単に評価と表現することがある。また、第2の評価部136の評価結果を第2の評価結果と表現し、第3の評価部137による評価結果を第3の評価結果と表現することがある。ここで、測定結果に基づくプラントの設備の検査必要性の評価は、外装材または保温材を剥離して行う剥離検査(第2の検査)の必要性の評価であってよい。
 次に、S270において、S260の評価の結果、検査対象のプラントの設備の剥離検査が必要であると評価された場合は、プラント保全支援装置110は処理をS280に進める。検査対象のプラントの設備の剥離検査が不要であると判定された場合は、プラント保全支援装置110は処理をS290に進める。
 次に、S280において、出力部135は、インターネット140等の通信網を介して、クライアント端末151~153の少なくとも1つに、検査対象のプラントの設備の剥離検査を行うよう指示する旨を出力する。ここで、検査対象のプラントの設備の剥離検査は、プラントの設備の保温材または外装材を剥離して行うものであってもよい。出力は、クライアント端末151~153の少なくとも1つのディスプレイに表示させるものであってよい。
 次に、S290において、出力部135は、インターネット140等の通信網を介して、クライアント端末151~153の少なくとも1つに、検査対象のプラントの設備の検査必要性は低いため、剥離検査を行わなくてもよい旨を出力してよい。出力は、クライアント端末151~153の少なくとも1つのディスプレイに表示させるものであってよい。
 なお、S250において、検査対象のプラントの設備が、水分測定装置161または温度測定装置162のうちの少なくとも一方の測定装置を用いた測定に適していなければ、S280に進むとしたが、S250において、検査対象のプラントの設備が、水分測定装置161または温度測定装置162のうちの少なくとも一方の測定装置を用いた測定に適していなければ、これらとは異なる測定装置を用いた非破壊検査の実施を推奨する旨を、適格性の判定の結果として、出力するようにしてもよい。水分測定装置161または温度測定装置162を用いない非破壊検査の手法としては、例えば、ACMセンサ、アコースティック・エミッション計測器、超音波計、X線撮影装置、が挙げられる。これらの測定装置を用いた非破壊検査の手法のいずれか1つを実施した場合には、その非破壊検査の検査結果に基づいて、プラントの設備の剥離検査の必要性を評価し(第4の評価)、その評価結果に基づいて、プラントの設備の剥離検査を実施するようにしてもよい。
 また、S250において、検査対象のプラントの設備が、水分測定装置161または温度測定装置162のうちの少なくとも一方の測定装置を用いた測定に適していなければ、S280に進むとしたが、S250において、検査対象のプラントの設備に適した非破壊検査の手法が無かった場合には、プラントの剥離検査を行う事前に非破壊検査以外の例えば目視検査等により、剥離検査を実施する部位を絞り込むようにしてもよい。
 図4は、本実施形態のプラント保全支援装置110の処理フローにおけるS210を示す図である。S210において、プラント保全支援装置110は、S211およびS212を実行する。
 S211において、取得部131はクライアント端末151~153から、インターネット140等の通信網を介してモデルを生成するためのデータとなるプラントの設備のデータを取得する。モデルを生成するためのデータとなるプラントの設備のデータは、設置状況のデータを含む。設置状況のデータは、プラントの設備の種類、設置位置、設置期間、運転温度に関するデータの少なくとも1つ、および肉厚の情報を含むものであってよい。設置状況のデータは、設備の種類、設置期間、及び、運転温度を含むことが好ましい。さらに、設置状況のデータは、設備の種類を細分化した設備の部位を含むことが好ましい。設備の部位とは、例えば、設備の種類が「配管」の場合には、「直管部」、「曲管部」、「ノズル近傍」のいずれか一つが含まれてよい。また、設備の種類が「塔」の場合には「胴部」、「強め輪近傍」、「ノズル近傍」のいずれか一つが含まれてよい。また、設備の種類が「槽」の場合は「胴部」、「ラダー等の付属物近傍」、「ノズル近傍」のいずれか一つが含まれてよい。設備の種類、および、設備の部位は、上記の例示以外を含んでいてよい。このように、設備の種類および設備の部位は、上位の概念である設備の種類に設備の部位を加えて2段階に細分化して定義したグループ定義(これを合わせて「設備の種別」ともいう)といえる。これにより、後述するように、対象設備の種別に対応して、その予測結果に与える影響が細分化された対象設備の種別に応じて変動する予測モデルを提供することができ、その予測精度を向上させることができる。なお、S211において取得物131が取得するプラントの設備のデータには、プラントの設備の属性、プラントの設備の肉厚の情報が含まれていてよい。ここで、プラントの設備の属性とは、上述した設置状況を含むプラントの設備の特徴を示す何らかの情報であって、CUIの危険度(例えば、CUIの発生確率、進行速さ、腐食深さ等)を変動させる因子となる情報であることが好ましい。プラントの設備の肉厚の情報は、プラントの設備の初期肉厚、減肉深さの測定値および/または減肉深さの測定値と相関のある数値、が含まれていることが好ましい。
 プラントの設備の属性の情報は、プラントの設備の種類、プラントの設備の設置期間、プラントの設備の運転温度、を含んでいてよい。プラントの設備の種類の情報は、配管、塔、槽、ノズル、熱交換器、または反応器のいずれかを指定する情報を含んでよい。プラントの設備の種類の情報として、運転温度が連続である配管または運転温度が不連続である配管のいずれかを指定する情報を含んでよい。プラントの設備の設置位置は、直管のある位置、曲管のある位置、ノズルのある位置、サポート周囲、ノズル周囲、またはフランジ周囲のいずれかを指定する情報を含んでよい。プラントの設備の設置期間は、プラントの設備の設置後の期間または使用期間の実数(年数、月数、日数等)のいずれかを指定する情報を含んでよい。プラントの設備の運転温度は、設備において扱われる材料の実際の温度、または設備において扱われる材料に対して設定される設定温度のいずれかを指定する情報を含んでよい。
 肉厚情報は、減肉深さの情報であってよい。肉厚情報は、初期肉厚および現在の肉厚の情報であってもよい。肉厚情報は、初期肉厚と現在の肉厚との比である減肉率、必要肉厚、管理肉厚、または余裕肉厚の情報を含んでよい。必要肉厚は、安全上及び/又は品質管理上必要となる設備の肉厚であって、計算により算出される肉厚、法令上定められる肉厚である。また、管理肉厚は、社内安全規定で定められる肉厚等であってよい。例えば、管理肉厚は、プラントの構造物を管理する保全主体が任意に設定する肉厚であってよい。管理肉厚は、必要肉厚を用いてもよく、必要肉厚にある一定の値を加えたり、安全率を乗算したり等して、必要肉厚よりも大きい値に設定されてもよい。管理肉厚は、例えば、延性破壊の生ずる肉厚である必要肉厚や、構造物の補修の是非を判断するためにプラントの管理者が必要肉厚よりも安全側に(厚く)規定した肉厚を採用できる。
 なお、以上に列挙した情報以外にも、プラントの設備のデータは、年平均気温、年平均降水量、運転温度に変動のある場合の上限温度および下限温度、海岸からの距離、冷水塔からの距離、塗装の有無、保温材の材質、スチーム等の熱媒トレースの有無等の情報を含んでよい。なお、以上に列挙した情報は一例であって、プラントの設備のデータはこれらに限らない。
 一例として、取得部131は、学習データとして、[配管、100箇月、60℃、減肉深さ50mm]に示されるようなデータセットを、プラントの設備ごとに複数取得してよい。
 取得部131は、取得した学習データとなるプラントの設備のデータを、モデル生成部132および測定データ記憶部122に送る。これにより、設置状況が異なる複数の設備を対象に予め測定された減肉深さを含むデータ群が形成される。
 次に、S212において、モデル生成部132は、取得部131から送られたモデルを生成するためのデータとなるプラントの設備のデータに基づいて、モデルの生成を行い、CUIの危険度を確率として予測するモデルを生成する。モデルは、統計学的手法、機械学習手法、等の各手法や、これら各手法から選択される複数の手法の組み合わせにより生成することができる。CUIの危険度を確率として予測するモデルは、統計処理言語RのGamlssパッケージを用いて生成してよい。モデル生成部132は、モデルを生成する段階を、一般化加法モデルを用いて実行してよい。モデル生成部132が生成するモデルは、減肉深さに対する確率密度を出力するものであってよい。モデルは、確率密度を、母数μに基づく分布として出力するようにしてもよく、確率密度を、母数μに基づく確率密度関数として出力するようにしてもよい。モデルを機械学習手法により生成する場合、モデル生成部132は、例えば、モデルが予測する確率と、学習データから算出される確率との誤差が最小化するようにモデルを生成してよい。
 モデル生成部132が生成するモデルは、一例として、以下の数式1で表される。
 [数式1]
 f(x;μ)=1/μ × exp(-x/μ)
 ここで、μは、プラントの設備の設置状況に応じて決定される分布の母数であり、xは減肉深さである。数式1に示すように、モデルは、減肉深さxが与えられると、母数μに対応した確率f(x;μ)を出力する。f(x;μ)により、連続する減肉深さxに対応して変化する、プラントの設備の減肉深さの確率密度の分布を得ることができる。
 また、母数μは、以下の数式2で表されるものであってよい。
 [数式2]
 μ=exp(a0+a1×position+a2×temperature+a3×time+spline(temperature))
 ここで、「position」は、設備の種類を細分化した設備の部位、「temperature」はプラントの設備の運転温度、「time」はプラントの設備の設置期間である。また、「spline」は、あらかじめ定められたキュービックスプライン関数である。a0、a1、a2およびa3は、学習により最適化される係数であってよい。すなわち、係数の最適化に機械学習手法を使用してよい。
 a1は、プラントの設備の種類を細分化した設備の種類ごとの部位に対応する変数である。
 また、モデルは、少なくとも設備の種類に応じて複数存在してよい。例えば、母数μを設備の種類に応じて複数設けることで、モデルを複数存在させてことができる。すなわち、CUIの危険度を大きく変動させる因子としての設備の種類ごとに異なるモデルを用いることで、高精度かつ経済的な検査を実現することができる。
 また、母数μは、プラントの設備の種類とこれを細分化した設備の部位、設置期間、及び、運転温度の少なくとも1つ以上に基づいて決定されるものであってよい。また、母数μは、設備の種類、設置期間、及び、運転温度に基づいて算出される係数を含む指数関数により決定されるものであってよい。
 S212において、モデル生成部132は、生成したモデルを、第1の評価部133およびプログラム記憶部121に送る。
 図5は、S212で、学習したCUIの危険度を確率として予測するモデルの妥当性について説明する図である。母数μが一定である特定のプラントにおいて、プラントの設備の減肉深さの検出値と、その減肉深さが現実に生じたプラントの設備の度数との関係を片対数グラフにプロットすると、直線になることが示された。ここで、図5の直線400は、減肉深さと度数との回帰直線である。つまり、減肉深さの分布は指数分布であることが示される。したがって、指数分布により、減肉深さの分布をモデル化することの妥当性が示された。
 本開示において、モデルは、CUIの進行度合い(時間依存性)を考慮しないモデルとして構築されている。すなわち、モデルを生成するための測定データは、例えば、CUIがいつ発生したか、CUIによる減肉深さがどの期間で進行したか、等、減肉が進む時間に関する情報を含まない。CUIの進行度合いを含む測定データを取得することは、剥離検査を定期的に行うことや、剥離検査によってCUIが発生した箇所に、減肉深さを測定するセンサを測定する等の処置を必要とするから、測定データの収集が困難になる。一方、本開示のモデルによれば、CUIの進行度合い(時間依存性)を考慮しないモデルによって、CUIの危険度を評価するようにした。したがって、相対的に簡易に収集可能な測定データを収集することで、モデルの精度を継続的に向上させることができる。
 また、本開示において、モデルを用いた第1の評価は、減肉深さ、および/または、減肉深さと相関のある値の絶対値を算出することなく行われている。CUIの発生部位や進行の程度は、プラントの設備の種類等、プラントの設備の属性により大きくばらつく。本開示では、モデル生成部132は、プラントの設備の種類に応じて複数のモデルを生成するように構成されている。しかしながら、プラントの設備の種類以外の属性によっても、減肉深さのばらつきが存在する。したがって、減肉深さの絶対値ではなく、CUIの危険度、すなわち、CUIにより設備が損傷し得る確率を算出することで、使用者に対する適切な保全支援を実現する。
 図6は、本実施形態のプラント保全支援装置110の処理フローにおけるS230を示す図である。S230において、プラント保全支援装置110は、S231~S233を実行する。
 S231において、第1の評価部133は、S220で取得部131が取得した検査対象のプラントの設備のデータを用いて、モデル生成部132で生成したCUIの危険度を確率として予測するモデルの母数μを算出する。検査対象のプラントの設備のデータは、プラントの設備の種類、設置期間、および運転温度のうち、モデルに入力する必要のあるデータを含むものであってよい。次に、第1の評価部133は、予測したモデルの母数μから確率密度分布f(x;μ)を生成する。
 次に、S232において、第1の評価部133は、確率密度分布f(x;μ)および検査対象のプラントの設備の肉厚情報を用いて、検査対象のプラントの設備の減肉深さが許容減肉深さ超となる可能性を計算する。ここで、許容減肉深さの値は、初期肉厚から必要肉厚を減じた値であってよい。前述のように、必要肉厚は、安全上及び/又は品質管理上必要となる設備の肉厚であって、計算により算出される肉厚、法令上定められる肉厚、又は、社内安全規定で定められる肉厚等であってよく、許容減肉深さの値は、対象設備に対して一又は複数設定されてよい。対象設備に対して許容される減肉深さの値を、例えば、多段階に複数設定し、それぞれの許容減肉深さに対してCUIによる破損発生の可能性を評価することで、許容減肉深さの設定値に対応して破損が発生し得る確率の増減の程度を把握することができ、プラントの設備保全の対応策の意思決定に寄与する。また、減肉深さが許容減肉深さ超となる可能性は、確率で表されるものであってよい。検査対象のプラントの設備の肉厚情報として、初期肉厚および必要肉厚の情報を含むものであってよい。
 具体的には、S231で生成したモデルにおいて、第1の評価部133は、検査対象のプラントの設備のデータから、「設備の種類(No.1)」~「設備の種類(No.n)」、「temperature」、および「time」を数式2および3に代入し、母数μを算出する。算出した母数μから確率密度分布f(x;μ)を取得する。検査対象のプラントの設備の減肉深さが許容減肉深さ超となる確率は、許容減肉深さをxpで表したときに、減肉深さxが、xp<x<∞の区間において確率密度分布f(x;μ)を積算したもので表される。
 次に、S233において、第1の評価部133は、プラントの設備の検査必要性の評価結果を判定部134に出力する。第1の評価部133は、プラントの設備の検査必要性を、ランク分けした結果として判定部134に出力してよい。一例として、第1の評価部133は、プラントの設備の検査必要性を、累積確率として判定部134に出力してもよい。第1の評価部133は、クライアント端末151~153にプラントの設備の検査必要性を第1の評価結果として提供し、クライアント端末151~153に第1の評価結果を表示させてよい。
 一例として、第1の評価部133は、検査対象のプラントの設備の検査必要性について、累積確率が0.001未満であればAランク(CUI発生可能性小)に、累積確率が0.001以上0.01未満であればBランク(CUI発生可能性中)に、累積確率が0.01以上0.1未満であればCランク(CUI発生可能性大)に、累積確率が0.1以上であればDランク(CUI発生可能性最大)に分類してよいが、これに限らない。
 図7は、S230で、検査対象のプラントの設備の検査必要性の第1の評価結果を算出する仕組みについて説明する図である。ここで、曲線600は、第1の評価部133が予測したモデルの母数μに基づいて生成した確率密度分布f(x;μ)を表している。曲線600は、確率密度関数であってよい。図7において、横軸は減肉深さ、縦軸は確率密度である。検査対象のプラントの設備の減肉深さが許容減肉深さ超となる可能性は、累積確率として、斜線部の面積で表される。第1の評価部133は、プラントの設備の減肉深さが、許容減肉深さ超となる累積確率610を算出してよい。第1の評価部133は、累積確率をあらかじめ定めた基準にしたがって複数に分類し、プラントの設備の減肉深さが、許容減肉深さ超となる可能性を、プラントの設備の検査必要性として複数の分類のそれぞれに対応したランクによって表現し、このランクを第1の評価結果としてもよい。
 また、第1の評価部133は、CUIによる破損の発生可能性に加え、CUIによりプラントの設備が損傷した場合の結果影響度に基づいて、プラントの設備の検査の必要性を評価してもよい。
 図8は、CUIによる破損の発生可能性と、プラントの設備が損傷した場合に生じ得る損害額、想定される人的被害の大きさ、等によって定義される結果影響度とに基づくプラント設備の検査必要性の評価を行う際の評価基準の一例である。
 図8に示すように、CUIによる破損の発生可能性のランクを複数段階に分け、かつ、損害額で示される結果影響度を複数段階に分けた基準を用い、発生可能性と結果影響度との組み合わせにより、対象設備の検査必要性の評価を行うことができる。このとき、検査必要性の評価には、対象設備に対して取りうる対応策の内容が含まれていてよい。図8に示すように、発生可能性が低いときよりも高いほうが検査必要性は高いと評価され、かつ、結果影響度が低いときよりも高いときの方が検査必要性は高いと評価される。また、検査必要性の評価の評価に応じた対応策としては、検査必要性の評価が低い順に、事後保全(検査無)または状態監視、部分剥離検査、全面剥離検査が設定されてよい。
 図9は、本実施形態のプラント保全支援装置110の処理フローにおけるS231で得られた第1の評価結果の表示態様の一例を示す。一例として、第1の評価部133は、算出した累積確率を、あらかじめ定めた基準にしたがってAランクからDランクの4ランクに分類した結果をクライアント端末151~153に表示させてよい。クライアント端末151~153は、図9のように、分類結果を表形式で表示してもよい。また、分類結果は、予備判定に用いられたデータに応じて、住所、年平均気温、年平均降水量、工場名、機番、または設備の種類を含んでもよいが、これに限らない。また、前述のように、検査必要性の評価を、破損の発生可能性と結果影響度とに基づいて行った場合には、破損の発生可能性の評価とともに、または、破損の発生可能性の評価に代えて、破損の発生可能性と結果影響度とに基づく統合された指標を提示してもよい。統合された指標としては、例えば、図8に示すようなリスクの大きさとして示されてよい。
 図10は、本実施形態のプラント保全支援装置110の処理フローにおけるS231で得られた第1の評価結果の表示態様の一例を示す。図10に示す表示態様は、第1の評価結果に基づいて検査対象の設備の剥離検査を実施し、減肉深さを測定した結果について表示する例である。一例として、第1の評価部133は、算出した累積確率を、あらかじめ定めた基準にしたがってAランクからDランクの4ランクに分類した結果をグラフ形式でクライアント端末151~153に出力し、これをクライアント端末151~153に表示させてよい。また、グラフ形式の分類結果において、過去に測定した減肉深さの測定値と、検査対象のプラントの設備についての測定値のうち任意の1つまたは2つ以上とは、色分けされてもよい。
 ここで、第1の評価部133は、クライアント端末151~153にランク分けの結果、CUIの発生可能性が小さいプラントの設備(例えば、AランクおよびBランク)のリストおよびCUIの発生可能性が大きいプラントの設備(例えば、CランクおよびDランク)のリストを、クライアント端末151~153に対して提供してよい。
 図11は、本実施形態のプラント保全支援装置110の処理フローにおけるS250を示す図である。S250において、プラント保全支援装置110は、S2501~S254を実行する。判定部134は、S2501~S254において、検査対象のプラントの設備が所定の測定装置を用いた測定、およびその測定結果に基づく検査必要性の評価に適したものであるかどうかを、所定の判定モデルを用いて判定する。判定モデルは、測定装置の測定条件に基づいて適格性を判定してよい。ここで、測定装置の測定条件は、検査対象のプラントの設備の運転温度、外気温度、運転温度と外気温度との差、保温材の外装材の表面加工の種別、保温材の外装材の表面の形状、および、保温材と保温材で被覆されたプラントの設備との間に設けられる加温設備の有無、の少なくともいずれか1つの条件を更に含んでもよい。判定モデルは、上記の条件に対して定められた閾値と、取得部131がクライアント端末151から153を介して取得した、対象設備が検査される際の条件とに基づいて、複数の非破壊検査の手法から対象設備に適した対象設備に適した非破壊検査の手法を抽出するように構成されている。本処理フローの一例において、判定部134は、検査対象のプラントの設備の運転温度等の測定条件に応じて、水分測定装置161による保温材の外装材の内方の水分量を測定すること、および温度測定装置162による保温材の外装材の表面温度を測定することのいずれかを、選択的に推奨するように構成されている。
 測定条件の情報は、検査対象のプラントの設備のデータを取得する際に取得部131が取得してもよく、判定部134が、クライアント端末151~153から適宜取得してもよい。例えば、判定部134からインターネット140等の通信網を介してクライアント端末151~153に、運転温度の情報に関する質問を送信し、クライアント端末151~153の使用者が、クライアント端末151~153に質問の回答を入力し、インターネット140等の通信網を介して判定部134に送ってよい。判定部134は、検査対象のプラントの設備に設置されたセンサ及び/又はカメラ等から運転温度等の情報を取得してよい。また、判定部134は、プラントの運転を管理する管理システムを構成する端末から、測定条件の情報を取得してよい。
 まず、S2501において、判定部134は、検査対象のプラントの運転温度が外気温よりも所定の温度(例えば、10℃)以上高いか否かを判定する。判定部134は、Yesの場合、処理をS252に進め、Noの場合は処理をS251に進める。なお、プラントの運転温度と外気温との温度差が所定の温度差(例えば、10℃)以上であるか否かを判定するようにしてもよい。上記条件を満たす状況で運転されているプラントの設備を被覆する保温材に水分が含まれている場合、当該水分によって、プラント設備の温度が保温材の外表面まで伝わり、保温材および/または外装材の外表面の温度むらを生じさせる。また、保温材に広範囲にわたって水分が含まれている場合には、当該水分によってプラント設備の温度が保温材の外表面まで伝わることで、これを、保温材および/または外装材の表面温度と外気温度との差として観測することができる。保温材が水分を含有することは、後述のように、CUIの危険度を高めるから、上記条件は、温度測定装置の適格性を判定するのに適した条件の1つである。
 S251において、判定部134は、検査対象のプラントの運転温度が所定の温度(例えば、15℃より高く80℃未満)の範囲となるか、または、当該範囲外となるかを判定する。判定部134は、運転温度が所定の温度の範囲外となる場合、判定部134は検査対象のプラントの設備が測定装置を用いた測定に適していないと判定し、処理をS280へ進めてよい。検査対象のプラントの運転温度は、所定の温度の範囲であれば、判定部134は検査対象のプラントの設備が水分測定装置161による測定に適したものであると判定し、処理をS260へ進めてよい。運転温度が、例えば15℃以下である条件では、プラントの設備に結露が発生しやすく、当該結露が水分測定装置161の測定結果に悪影響を及ぼす場合がある。また、運転温度が例えば80℃以上である条件では、保温材に水分が含まれていても当該水分が蒸発することが多く、水分測定装置161によっても水分の存在を検出できない場合がある。したがって、上記条件は、水分測定装置の適格性を判定するのに適した条件の1つである。なお、結露の発生、および、水分の蒸発は、いずれも、温度の測定にも影響を与えるから、上記条件は、温度測定装置の適格性を判定する条件の1つとして用いてもよい。
 一例として、S252において、判定部134は、検査対象のプラントの保温材の外装材が赤外線低反射材料(例えば、炭素鋼または溶融亜鉛めっき)であるか、又はそれ以外の材質であるかを判定する。外装材が赤外線低反射材料以外(例えば、ステンレス鋼またはアルミニウム等)であれば、判定部134は、検査対象のプラントの設備が温度測定装置を用いた測定に適していないと判定し、処理をS251へ進めてよい。検査対象のプラントの保温材の外装材が赤外線低反射材料であれば、判定部134は、処理をS253へ進めてよい。
 S253において、判定部134は、検査対象のプラントの保温材の外装材が平滑な表面を有するか否かを判定する。判定部は、外装材の塗装が不均一であったり(一例として、塗装の一部が剥がれている等)、又は、外装材の表面が凹凸になっていたりする等、外装材の表面に異常が認められた場合または表面加工により凹凸が形成されている場合等に、外装材の表面が平滑でないと判定し、そのような異常がない場合に、外装材の表面が平滑であると判定してよい。
 判定部134は、検査対象のプラントの保温材の外装材が平滑な表面を有しないと判定する場合、検査対象のプラントの設備が温度測定装置を用いた測定に適していないと判定し、処理をS251へ進めてよい。検査対象のプラントの保温材の外装材の表面状態が平滑な表面を有している場合、判定部134は、処理をS254へ進めてよい。
 S254において、判定部134は、検査対象のプラントの設備に対して測定装置を用いた測定を行う日時(すぐに測定が行えるのであれば現時点)、および、測定を行う日時の天候が曇りであるかを判定する。判定部134は、測定を行う日時が夜間であるか、天候が曇りである場合、検査対象のプラントの設備は温度測定装置162による測定に適したものであると判定し、処理をS260へ進めてよい。判定部134は、検査対象のプラントの設備に対して測定装置を用いた測定を行う日時昼まであれば夜間まで待機してよく、天候が曇り以外(例えば、晴れまたは雨)であれば、測定を行う日時において天候が曇りになるまで待機してよい。測定を行う日時およびその時の天候は、保温材および/または外装材の外表面の温度を変動させる。例えば、太陽光により外装材の表面温度は顕著に上昇し、また、雨により、外装材の表面温度は顕著に変動する。したがって、上記条件は、温度測定装置の適格性を判定するのに適した条件の1つである。
 図11において説明したように、判定部134は、所定の条件に基づいて、検査対象のプラントの設備が、所定の測定装置を用いて保温材の剥離を伴わずに実施される非破壊検査のうちから、対象の設備に適した非破壊検査の種別を抽出する。本処理フローの一例において、判定部134は、所定の条件に基づいて、複数の非破壊検査のうちから、温度測定装置162が検査対象のプラントの設備に対する測定に適しているか否かを判断し、仮に適していない場合であっても、水分測定装置161が検査対象のプラントの設備に対する測定に適しているか否かを判断する。このように、判定部134は、温度測定装置162による測定が優先的に行われるように判定してもよい。
 図12は、本実施形態のプラント保全支援装置110の処理フローにおけるS260を示す図である。S260において、プラント保全支援装置110は、S261~S265を実行する。
 S261において、判定部134は、適格性の判定の結果に基づいて、検査対象のプラントの設備に対する測定に適している測定装置を選択する。本処理フローの一例として、判定部134は、水分測定装置161または温度測定装置162の少なくとも一方を選択する。例えば、図11のフローにおいて、水分測定装置が選択された場合には判定部134は水分測定装置161を選択して処理をS262に進め、温度測定装置が選択された場合には判定部134は温度測定装置162を選択して処理をS263に進める。
 ここで、水分測定装置161は、中性子水分計を含んでもよい。温度測定装置162は、サーモカメラを含んでもよい。温度測定装置162は、示温塗料または接触温度計を含んでもよい。なお、中性子水分計およびサーモカメラはいずれも、プラントの設備から離間した位置で測定が可能であるから、非剥離検査、かつ、非接触検査を実現する測定装置として好適である。また、中性子水分計とサーモカメラとを比較すると、一般的に、サーモカメラの方が相対的に小型かつ安価に利用できるから、中性子水分計とサーモカメラとの双方が測定に適している場合には、サーモカメラを優先して用いることができる。
 S262において、判定部134は、水分測定装置161を用いて、検査対象のプラントの設備に対して測定を行うように、インターネット140等の通信網を介して、クライアント端末151~153のうちの少なくとも1つに指示する。指示は、クライアント端末151~153の少なくとも1つのディスプレイに表示させるものであってよい。
 クライアント端末151~153の使用者は、水分測定装置161により、検査対象のプラントの設備の保温材の外装材の内方に含まれる水分量を測定する。図11のS251における判断の結果、検査対象のプラントの運転温度が所定の温度範囲(例えば、15℃より高く80℃未満)の範囲である場合に、水分測定装置161は、保温材の外装材の内方に含まれる水分量を測定することとなる。このような温度条件においては、水分測定装置161は、保温材および外装材の少なくともいずれか一方に結露が生じていない条件で保温材の外装材の内方に含まれる水分量を測定することができる。また、図11のS252、S253における判断の結果、使用者は、プラントの設備の外装材の表面に凹凸が形成されている場合や、プラントの設備の外装材がステンレス鋼またはアルミニウムのような赤外線反射材料により構成されている場合、水分測定装置161を用いて、保温材の外装材の内方に含まれる水分量を測定する。
 なお、トレース等の加温設備が設置されていると本来測定されるべき水分が蒸発して測定されなくなってしまう。したがって、水分測定装置161の測定対象となる、検査対象のプラントの設備には、加温設備が設置されていないことが望ましい。なお、同様に、トレース等の加温設備が設置されていると、保温材または外装材の外表面の温度を変動させる発生させる水分が蒸発し、温度むら、または、保温材および/または外装材の表面温度と外気温度との差が測定されなくなってしまう。したがって、温度測定装置162の測定対象となる査対象のプラントの設備には、加温設備が設置されていないことが望ましい。判定部134は、所定の測定装置により行われた測定の結果を水分測定装置161が測定した水分量の測定結果を、クライアント端末151~153およびインターネット140等の通信網を介して取得し、処理をS264へ進めてよい。
 S263で、判定部134は、温度測定装置162を用いて、検査対象のプラントの設備に対して測定を行うように、インターネット140等の通信網を介して、クライアント端末151~153のうちの少なくとも1つに指示する。指示は、クライアント端末151~153の少なくとも1つのディスプレイに表示させるものであってよい。
 クライアント端末151~153の使用者は、温度測定装置162により、検査対象のプラントの設備の保温材の外装材の表面温度を測定する。温度測定装置162による検査対象のプラントの設備の保温材の外装材の表面温度の測定は、サーモカメラにより外装材を撮影することを含んでよい。図11のS2501、S252、及びS253の判断の結果、検査対象のプラントの運転温度が外気温に対して、所定の温度(例えば、10℃)以上高く、プラントの設備の保温材の外装材が赤外線低反射材料により構成され、プラントの設備の保温材の外装材が、平滑な表面を有する場合に、温度測定装置162による測定が行われる。
 なお、クライアント端末151~153の使用者は、検査対象のプラントの設備の保温材の外装材の表面温度を測定する前に、プラントの設備の保温材の外装材に放水する段階を行ってもよい。これにより、プラントの設備の保温材周辺において後述する温度むらを惹起することができる。判定部134は、温度測定装置162が測定した表面温度の測定結果を、クライアント端末151~153およびインターネット140等の通信網を介して取得し、処理をS265へ進めてよい。
 S264において、第2の評価部136は、水分測定装置161からの水分量の測定結果に基づいて、検査対象のプラントの設備の検査必要性を評価する。第2の評価部136は、測定された水分量が大きいほど、プラントの設備の検査必要性が高いと判定してよい。ここで、水分量が大きいとは、水分量が絶対的に大きいものであってよい。水分量が大きいとは、水分量が相対的に大きいものであってよい。検査対象のプラントの設備の検査必要性が高いとは、検査対象のプラントの設備の減肉深さが許容減肉深さ以上、又は、超となる可能性が高いということを意味してよい。
 ここで、第2の評価部136は、実際に測定されたプラントの設備の水分量と発生したCUIの減肉深さとを対応付けたデータに基づいて、予め学習された判定器により、プラントの設備の検査必要性を判定してよい。そのような判定器は公知の機械学習手法により学習されてよい。なお、後述するように、プラントの設備の検査必要性と、プラントの設備の水分量が大きいこととの間には、相関性が見出だされている。
 第2の評価部136は、クライアント端末151~153に対して、プラントの設備の検査必要性を示すデータ(例えば、CUIが許容減肉深さ以上になる確率、または、確率をランク分けした結果)を送信する。第2の評価部136は、プラントの設備の検査必要性が予め定められた閾値以上になる場合、クライアント端末151~153に対して、そのようなプラントの設備の検査を推奨するメッセージを送信してよい。ここで、プラントの設備の検査は、外装材または保温材を剥離して行う剥離検査(第2の検査)であってよい。
 S265において、第3の評価部137は、取得した温度測定装置162からの表面温度の測定結果に基づいて、検査対象のプラントの設備の検査必要性を判定する。判定部134は、測定された保温材の外装材の表面温度の温度むら及び表面温度と外気温度との差の少なくともいずれか一方が大きいほど、プラントの設備の検査必要性が高いと判定してよい。表面温度の温度むらは、検査対象のプラントの設備の保温材の外装材の表面温度の平均と最高温度及び/又は最低温度との温度差、最高温度と最低温度との温度差、又は、表面温度の分布の標準偏差等であってよい。また、表面温度と外気温度との差は、検査対象のプラントの設備の保温材の外装材の表面温度の平均と外気温度との差であってよい。
 第3の評価部137は、実際に測定された温度むら及び表面温度と外気温度との差の少なくともいずれか一方と、発生したCUIの減肉深さと、を対応付けたデータに基づいて、予め学習された判定器により、プラントの設備の検査必要性を判定してよい。そのような判定器は公知の機械学習手法により学習されてよい。なお、後述するように、プラントの設備の検査必要性と、保温材の外装材の表面温度の温度むらが大きいこととの間には、相関性が見出だされている。
 第3の評価部137は、クライアント端末151~153に対して、プラントの設備の検査必要性を示すデータ(例えば、CUIが許容減肉深さ以上になる確率、または、確率をランク分けした結果)を送信する。判定部134は、プラントの設備の検査必要性が予め定められた閾値以上になる場合、クライアント端末151~153に対して、そのようなプラントの設備の検査を含む対象設備に対する設備保全の対応策を推奨するメッセージを送信してよい。ここで、プラントの設備の検査は、外装材または保温材を剥離して行う剥離検査(第2の検査)であってよく、また、対応策としては、剥離検査に加え、事後保全、状態監視、修理を含む設備の更新、が含まれていてよい。
 所定の測定装置を用いて行われた非破壊検査の測定結果に基づく検査必要性の評価は、予測モデルを用いた検査必要性の評価の結果を補正することにより行われてもよい。すなわち、測定結果に応じて、予測モデルを用いて算出された対象設備の破損の発生可能性に対して所定の補正を行うことにより行われてよい。例えば、予測モデルが算出した対象設備の破損の発生可能性を示す累積確率に対し、所定の補正係数を乗じることで検査必要性の評価を行うことができる。すなわち、保温材に含まれる水分量が多いほど、保温材下腐食が生じ、かつ進行している可能性が高いことから、水分測定装置161による測定結果において保温材に含まれる水分量に関する値が大きいほど、破損の発生可能性が大きくなるように補正係数を設定することができる。また、温度測定装置162による測定結果において温度むらの程度が大きい場合、および/または、表面温度と外気温度との温度差が大きい場合ほど、破損の発生可能性が大きくなるように補正係数を設定することができる。
 図13は、本実施形態のプラント保全支援装置110の処理フローにおけるS232で得られた予備判定の予測精度を検証した図である。図13は、プラントの設備に対して検査が行われ、プラントの設備の種類等および肉厚情報に関するデータが得られている987点のデータについて、本願のCUIの危険度を確率として予測するモデルを用いてプラントの設備の検査必要性をランク分けした結果、および、プラントの設備を実際に検査して各ランクの必要肉厚以下だった数を集計した結果を示す。
 図13から、プラントの設備の検査必要性がCランクに分類されたデータ数のうち、必要肉厚以下のデータ数の割合が0.046である。また、Dランクに分類されたデータ数のうち、必要肉厚以下のデータ数の割合が0.15である。したがって、CランクおよびDランクに分類されたデータは、それぞれ設定確率Pの範囲に入っていることが示された。また、AランクおよびBランクに分類されたデータについて、分類されたデータ数はそれぞれ207点および113点であるため、必要肉厚以下のデータ数が0であることは、妥当な結果であるといえる。よって、本願のCUIの危険度を確率として予測するモデルによる、プラントの設備の検査必要性のランク分けは適切に行なわれていることが示された。
 図14は、本実施形態のプラント保全支援装置110の処理フローにおけるS232で得られた予備判定の予測精度と、従来モデルを用いて得られた予備判定の予測精度とを比較した図である。図14は、図13で用いた987点のデータについて、本願のCUIの危険度を確率として予測するモデルを用いてプラントの設備の検査必要性をランク分けした結果を(A)に、および従来モデルを用いてプラントの設備の検査必要性をランク分けした結果を(B)に示し、両者を比較した。
 ここで、評価の指標として、以下の数式4で表される実余裕肉厚を用いた。
 [数式4]
 実余裕肉厚=初期肉厚-必要肉厚-減肉深さ
 つまり、実余裕肉厚が負の値をとった場合は、腐食が必要肉厚を割り込んでおり、プラントの設備の補修または更新が必要となることを示す。
 図14の(A)で、本願のCUIの危険度を確率として予測するモデルを用いてプラントの設備の検査必要性をランク分けしたものでは、A~Dランクは実余裕肉厚に対して階段状に並んでいることが明らかである。また、Aランクに分類されたものでは、データが全データの実余裕肉厚の平均値以上に分布している。さらに、Dランクに分類されたものでは、データが全データの実余裕肉厚の平均値以下にデータが集中し、約半分のデータが負の実余裕肉厚の値をとり、プラントの設備の補修または更新が必要であることを示している。
 一方、図14の(B)で、従来モデルを用いてプラントの設備の検査必要性をランク分けしたものでは、AランクからDランクが、実余裕肉厚に対して階段状に並んでいないことが明らかである。また、Aランクに分類されたものでも、全データの実余裕肉厚の平均値以下のデータが多く、Dランクに分類されたものでも、全データの実余裕肉厚の平均値以上のデータを多く含んでいることが示された。さらに、従来モデルを用いてプラントの設備の検査必要性をランク分けしたものでは、必要肉厚以下の肉厚の値をとった全てのデータ(43点)はDランクに分類されているが、Dランクに分類されたデータ点数が594点であり、必要肉厚以下のデータ数の割合が0.072となる。これは、Dランクの設定確率0.1を下回っている。つまり、従来モデルでは、プラントの設備の検査必要性のランク分けが適切に行われていないことが明らかとなった。
 以上の結果より、本願のCUIの危険度を確率として予測するモデルが、従来モデルに比較して、プラントの設備の検査必要性をより適切に評価していることが明らかになった。
 図15は、本実施形態のプラント保全支援装置110の処理フローにおけるS232で得られた予備判定の予測精度と、従来モデルを用いて得られた予備判定の予測精度とを比較した図である。プラントの設備に対して検査が行われ、プラントの設備の種類等および肉厚情報に関するデータが得られている1020点のデータについて、本願のCUIの危険度を確率として予測するモデル、および従来モデルを用いてプラントの設備の検査必要性を評価し、マトリクスに表した。このマトリクスから、それぞれのデータは、以下の3つのグループに分類できる。
 (グループ1)本願モデルと従来モデルとで、分類されたランクが一致しているもの。
 (グループ2)従来モデルのランクが本願モデルのランクよりもプラントの設備の検査必要性を高く評価しているもの。
 (グループ3)従来モデルのランクが本願モデルのランクよりもプラントの設備の検査必要性を低く評価しているもの。
 (グループ1)に分類されるデータ数は320点であり、全データに占める割合は31%である。(グループ1)に分類されるプラントの設備は、従来モデルを本願モデルに変更した場合に、検査範囲を変更する必要はないと考えられる。
 次に、(グループ2)に分類されるデータ数は494点であり、全データに占める割合は48%である。(グループ2)に分類されるプラントの設備は、従来モデルを本願モデルに変更した場合に、検査範囲を削減できる可能性があると考えられる。
 次に、(グループ3)に分類されるデータ数は206点であり、全データに占める割合は20%である。(グループ3)に分類されるプラントの設備は、従来モデルを本願モデルに変更した場合に、検査範囲を追加すべきであると考えられる。
 3つのグループのうち、(グループ2)、つまり、従来モデルのランクが本願モデルのランクよりもプラントの設備の検査必要性を高く評価しているデータ数が、全体の48%である。従来モデルに比較して本願モデルの方が、プラントの設備の検査必要性をより精度よく評価していることから、全体の48%の実施例のプラントの設備については、検査範囲を削減できる可能性があると考えられる。
 また、3つのグループのうち、(グループ3)、つまり、従来モデルのランクが本願モデルのランクよりもプラントの設備の検査必要性を低く評価しているデータ数が、全体の20%である。これらのプラントの設備については、従来モデルで検査必要性が低いランクであったため、これまで検査を実施していなかったが、本願モデルで検査必要性が高いランクに分類された。そのため、全体の20%の実施例のプラントの設備については、検査範囲を追加した方がよいと考えられる。
 したがって、両者の差である28%の実施例のプラントの設備については、検査の信頼性を向上させ、かつ検査の範囲を削減でき、検査の費用を削減できる可能性があると考えられる。
 図16は、本実施形態のプラント保全支援装置110の処理フローにおけるS264で得られた判定の結果を検証した図である。出願人らは、中性子水分計を用いて、検査対象のプラントの設備を被覆する保温材の外装材の内方の水分量を測定したところ、測定した水分量が高いほど、プラントの設備のCUIの検出率が高いことを見出した。
 そこで、検査対象のプラントの設備の運転温度が15℃~80℃の設備において、2機の中性子水分計で測定した水分量ごとの、ある深さ以上の減肉深さをもつCUIを検出する確率を図16に示す。(A)は、中性子水分計のA機を用いて測定した結果、(B)は、中性子水分計のB機を用いて測定した結果を示す。(A)および(B)のいずれにおいても、中性子水分計で測定した水分量の測定値が増加するに従ってCUIの検出確率が上昇していることが示された。つまり、水分量とCUIの検出率との間、および中性子水分計で測定している保温材の外装材の内方の水分量とCUIに関与している配管表面の水分量との間に相関がみられることが示された。したがって、運転温度が15℃~80℃のプラントの設備では、CUI検査のスクリーニング検査として、中性子水分計を用いた、検査対象のプラントの設備を被覆する保温材の外装材の内方の水分量の測定方法を採用することができると考えられる。
 図17Aは、本実施形態のプラント保全支援装置110の処理フローにおけるS265で得られた判定の結果を検証した図である。出願人らは、サーモカメラを用いて検査対象のプラントの設備を被覆する保温材の外装材の表面温度を測定したところ、温度異常が検出された箇所の表面温度と、保温材の外装材の表面温度の平均との温度差(温度むら)が大きいほど、減肉深さの大きいデータが増加し、かつ、CUIの検出率も増加する傾向を見出した。
 図17Bは、本実施形態のプラント保全支援装置110の処理フローにおけるS265で得られた判定の結果を検証した図である。出願人らは、サーモカメラを用いて検査対象のプラントの設備を被覆する保温材の外装材の表面温度を測定したところ、表面温度と外気温度との差が大きいほど、減肉深さの大きいデータが増加し、かつ、CUIの検出率も増加する傾向を見出した。特に、CUIの進行初期における0.1mmから0.5mm程度の腐食深さにおいて、その傾向が顕著であった。
 温度異常が検出された箇所の、ある深さ以上の減肉深さをもつCUIを検出する確率を、平均温度部との温度差でランク分けした結果を図17A、図17Bに示す。サーモカメラを用いた測定結果の、温度ランクが、温度異常が検出された箇所の表面温度と、保温材の外装材の表面温度の平均との温度差(温度むら)が大きいほど、また、表面温度と外気温度との差が大きいほど、減肉深さの深いデータのCUIの検出確率が上昇していることが明らかとなった。したがって、CUI検査のスクリーニング検査として、サーモカメラを用いた、検査対象のプラントの設備を被覆する保温材の外装材の表面温度の測定方法を採用することができると考えられる。
 また、本発明では、上記のS210~S290を実行させるプログラムを提供する。プログラムは、プラント保全支援装置110のプログラム記憶部121に格納されるものであってよい。プラント保全支援装置110は、上記のS210~S290を実行するプログラムを格納したコンピュータであってよい。
 保全支援
 図18は、プラント保全支援装置110として機能するコンピュータ1900のハードウェア構成の一例を示す。本実施形態に係るコンピュータ1900は、ホスト・コントローラ2082により相互に接続されるCPU2000、RAM2020、グラフィック・コントローラ2075、および表示装置2080を有するCPU周辺部と、入出力コントローラ2084によりホスト・コントローラ2082に接続される通信インターフェイス2030、ハードディスクドライブ2040、およびCD-ROMドライブ2060を有する入出力部と、入出力コントローラ2084に接続されるROM2010、フレキシブルディスク・ドライブ2050、および入出力チップ2070を有するレガシー入出力部を備える。
 ホスト・コントローラ2082は、RAM2020と、高い転送レートでRAM2020をアクセスするCPU2000およびグラフィック・コントローラ2075とを接続する。CPU2000は、ROM2010およびRAM2020に格納されたプログラムに基づいて動作し、各部の制御を行う。グラフィック・コントローラ2075は、CPU2000等がRAM2020内に設けたフレーム・バッファ上に生成する画像データを取得し、表示装置2080上に表示させる。これに代えて、グラフィック・コントローラ2075は、CPU2000等が生成する画像データを格納するフレーム・バッファを、内部に含んでもよい。表示装置2080には、プラント保全支援装置110の内部で生成される様々な情報(例えば、測定データ、第1、第2、第3の評価結果等)を、表示することができる。
 入出力コントローラ2084は、ホスト・コントローラ2082と、比較的高速な入出力装置である通信インターフェイス2030、ハードディスクドライブ2040、CDROMドライブ2060を接続する。通信インターフェイス2030は、有線または無線によりネットワークを介して他の装置と通信する。また、通信インターフェイスは、通信を行うハードウェアとして機能する。ハードディスクドライブ2040は、コンピュータ1900内のCPU2000が使用するプログラムおよびデータを格納する。CD-ROMドライブ2060は、CD-ROM2095からプログラムまたはデータを読み取り、RAM2020を介してハードディスクドライブ2040に提供する。
 また、入出力コントローラ2084には、ROM2010と、フレキシブルディスク・ドライブ2050、および入出力チップ2070の比較的低速な入出力装置とが接続される。ROM2010は、コンピュータ1900が起動時に実行するブート・プログラム、および/または、コンピュータ1900のハードウェアに依存するプログラム等を格納する。フレキシブルディスク・ドライブ2050は、フレキシブルディスク2090からプログラムまたはデータを読み取り、RAM2020を介してハードディスクドライブ2040に提供する。入出力チップ2070は、フレキシブルディスク・ドライブ2050を入出力コントローラ2084へと接続するとともに、例えばパラレル・ポート、シリアル・ポート、キーボード・ポート、マウス・ポート等を介して各種の入出力装置を入出力コントローラ2084へと接続する。
 RAM2020を介してハードディスクドライブ2040に提供されるプログラムは、フレキシブルディスク2090、CD-ROM2095、またはICカード等の記録媒体に格納されて利用者によって提供される。プログラムは、記録媒体から読み出され、RAM2020を介してコンピュータ1900内のハードディスクドライブ2040にインストールされ、CPU2000において実行される。
 コンピュータ1900にインストールされ、コンピュータ1900をプラント保全支援装置110として機能させるプログラムは、取得モジュールと、機械学習モジュールと、予備判定モジュールと、判定モジュールと、出力モジュールとを備える。これらのプログラムまたはモジュールは、CPU2000等に働きかけて、コンピュータ1900を、取得部131、モデル生成部132、第1の評価部133、判定部134および出力部135としてそれぞれ機能させてよい。
 これらのプログラムに記述された情報処理は、コンピュータ1900に読込まれることにより、ソフトウェアと上述した各種のハードウェア資源とが協働した具体的手段である取得部131、モデル生成部132、第1の評価部133、判定部134および出力部135として機能する。そして、これらの具体的手段によって、本実施形態におけるコンピュータ1900の使用目的に応じた情報の演算または加工を実現することにより、使用目的に応じた特有のプラント保全支援装置110が構築される。
 一例として、コンピュータ1900と外部の装置等との間で通信を行う場合には、CPU2000は、RAM2020上にロードされた通信プログラムを実行し、通信プログラムに記述された処理内容に基づいて、通信インターフェイス2030に対して通信処理を指示する。通信インターフェイス2030は、CPU2000の制御を受けて、RAM2020、ハードディスクドライブ2040、フレキシブルディスク2090、またはCD-ROM2095等の記憶装置上に設けた送信バッファ領域等に記憶された送信データを読み出してネットワークへと送信し、もしくは、ネットワークから受信した受信データを記憶装置上に設けた受信バッファ領域等へと書き込む。このように、通信インターフェイス2030は、DMA(ダイレクト・メモリ・アクセス)方式により記憶装置との間で送受信データを転送してもよく、これに代えて、CPU2000が転送元の記憶装置または通信インターフェイス2030からデータを読み出し、転送先の通信インターフェイス2030または記憶装置へとデータを書き込むことにより送受信データを転送してもよい。
 また、CPU2000は、ハードディスクドライブ2040、CD-ROMドライブ2060(CD-ROM2095)、フレキシブルディスク・ドライブ2050(フレキシブルディスク2090)等の外部記憶装置に格納されたファイルまたはデータベース等の中から、全部または必要な部分をDMA転送等によりRAM2020へと読み込ませ、RAM2020上のデータに対して各種の処理を行う。そして、CPU2000は、処理を終えたデータを、DMA転送等により外部記憶装置へと書き戻す。このような処理において、RAM2020は、外部記憶装置の内容を一時的に保持するものとみなせるから、本実施形態においてはRAM2020および外部記憶装置等をメモリ、記憶部、または記憶装置等と総称する。
 ここで、記憶装置等は、プラント保全支援装置110の情報処理に必要な情報、例えば、測定データおよび確率情報等を必要に応じて記憶し、プラント保全支援装置110の各コンポーネントに必要に応じて供給する。
 本実施形態における各種のプログラム、データ、テーブル、データベース等の各種の情報は、このような記憶装置上に格納されて、情報処理の対象となる。なお、CPU2000は、RAM2020の一部をキャッシュメモリに保持し、キャッシュメモリ上で読み書きを行うこともできる。このような形態においても、キャッシュメモリはRAM2020の機能の一部を担うから、本実施形態においては、区別して示す場合を除き、キャッシュメモリもRAM2020、メモリ、および/または記憶装置に含まれるものとする。
 また、CPU2000は、RAM2020から読み出したデータに対して、プログラムの命令列により指定された、本実施形態中に記載した各種の演算、情報の加工、条件判断、情報の検索・置換等を含む各種の処理を行い、RAM2020へと書き戻す。例えば、CPU2000は、条件判断を行う場合においては、本実施形態において示した各種の変数が、他の変数または定数と比較して、大きい、小さい、以上、以下、等しい等の条件を満たすか否かを判断し、条件が成立した場合(または不成立であった場合)に、異なる命令列へと分岐し、またはサブルーチンを呼び出す。
 また、CPU2000は、記憶装置内のファイルまたはデータベース等に格納された情報を検索することができる。例えば、第1属性の属性値に対し第2属性の属性値がそれぞれ対応付けられた複数のエントリが記憶装置に格納されている場合において、CPU2000は、記憶装置に格納されている複数のエントリの中から第1属性の属性値が指定された条件と一致するエントリを検索し、そのエントリに格納されている第2属性の属性値を読み出すことにより、所定の条件を満たす第1属性に対応付けられた第2属性の属性値を得ることができる。
 以上に示したプログラムまたはモジュールは、外部の記録媒体に格納されてもよい。記録媒体としては、フレキシブルディスク2090、CD-ROM2095の他に、DVDまたはCD等の光学記録媒体、MO等の光磁気記録媒体、テープ媒体、ICカード等の半導体メモリ等を用いることができる。また、専用通信ネットワークまたはインターネットに接続されたサーバシステムに設けたハードディスクまたはRAM等の記憶装置を記録媒体として使用し、ネットワークを介してプログラムをコンピュータ1900に提供してもよい。
 本開示において、プラント支援装置110が、プロセッサとしてCPU2000を有する構成を示したがプロセッサの種類は特に限定されない。例えば、プロセッサとして、GPU2000、ASIA,FPGA等を適宜使用することができる。また、本開示において、プラント支援装置110が、補助記憶装置としてハードディスクドライブ2040を有する構成を示したが、補助記憶装置の種類は特に限定されない。例えば、ハードディスクドライブ2040に代えて、または、ハードディスクドライブ2030とともに、スリットステートドライブ等の他の記憶装置を用いてもよい。
 以上、本開示においては、予め測定されたプラントの設備の測定データに基づいて生成されるモデルを用いて、検査対象の設備のCUIの危険度を評価(推定)する第1の評価の方法と、所定の測定装置を用いて行う複数の非破壊検査の手法から、検査対象のプラントの設備に適した手法を抽出する方法と、検査対象のプラントの設備を所定の測定装置により測定した結果(測定結果)に基づいて検査対象の設備のCUIの危険度を評価する第2の評価および第3の評価の方法を、開示した。また、本開示においては、検査対象の設備のCUIの検査として、設備を被覆する保温材および/または外装材を剥離せずに行う非剥離検査と、保温材および/または外装材を剥離して行う剥離検査と、を開示した。さらに、非剥離検査として、水分測定装置による検査と、温度測定装置による検査と、を開示した。さらに、本開示においては、検査対象の設備に対する対応策として、設備の更新、全面剥離検査、部分剥離検査、事後保全、状態監視、の少なくともいずれかひとつを選択的に実施する方法を開示した。
 上記、モデルによるCUI危険度の推定および第1の評価、所定の測定装置を用いて行う複数の非破壊検査の手法から、検査対象のプラントの設備に適した手法の抽出、水分測定装置による非剥離検査および第2の評価、温度測定装置による非剥離検査および第3の評価、は、それぞれ単独で、または、適宜組み合わせて、剥離検査の必要性の評価に用いることができる。
 例えば、第1の評価、非破壊検査の手法の抽出、第2の評価、第3の評価の少なくとも2つ以上を実施し、得られた複数の評価結果を統合して、剥離検査の必要性の評価を行うことができる。
 また、プラント保全支援装置110が、検査対象のプラントの設備の属性情報に基づいて、モデルによるCUI危険度の推定、水分測定装置による非剥離検査、温度測定装置による非剥離検査、のいずれの方法が、検査対象の設備の剥離検査の必要性を評価するのに適切かを判定する第2の判定部を有していてもよい。第2の判定部は、適格性の判定結果をクライアント端末151~153のいずれかに送信するようにしてもよい。
 なお、本開示においては、プラントの設備の検査の必要性を、CUIの危険度を指標として評価する方法を開示した。しかしながら、プラントの設備の検査の必要性を評価する指標として、CUIの危険度以外の指標を組み合わせて用いてもよい。例えば、CUIによりプラントの設備が損傷した場合の結果影響度に基づいて、プラントの設備の検査の必要性を評価することができる。結果影響度とは、例えば、プラントの設備が損傷した場合に生じ得る損害額、想定される人的被害の大きさ、等によって定義することができる。
 また、本開示において、複数の対象設備について、および/または、所定の設備に対する複数の許容減肉深さについて、検査必要性の評価を行った場合には、検査必要性が相対的に高い対象設備および/または許容減肉深さに対する評価結果を強調するように出力してよい。例えば、相対的に高い評価結果を他の評価結果よりも上段に表示したり、相対的に高い評価結果に対し他の評価結果とは異なる色付けを行って表示したりすることができる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先だって」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
 以上によれば、上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
 (付記1)
 プラントの少なくとも一部を構成し、保温材により被覆されて外観から腐食状態を確認できない設備の保全を支援するために一又は複数のコンピュータに実装される方法を提供する。
 方法は、予測モデルを準備する段階を備えてよい。予測モデルは、設置状況が異なる複数の設備を対象に予め測定された減肉深さを含むデータ群を用いて生成されてよい。予測モデルは、設置状況に応じて決定される統計分布の母数μに基づく減肉深さxの確率密度f(x;μ)を、算出するものであってよい。
 方法は、一又は複数の対象設備の設置状況を取得する段階を備えてよい。
 方法は、前記対象設備についての一又は複数の許容減肉深さを取得する段階を備えてよい。
 方法は、前記対象設備の前記許容減肉深さ及び前記確率密度と、前記予測モデルとに基づいて、前記対象設備の検査必要性を評価する段階を備えてよい。
 上記方法において、前記母数μは、少なくとも、設備の種類、設置期間、及び、運転温度に基づいて決定されてよい。
 上記方法において、前記取得する段階は、少なくとも、前記対象設備についての設備の種類、設置期間、及び、運転温度を含む前記対象設備の設置状況を取得することを含んでよい。
 上記方法において、前記母数μは、設備の種類、設置期間、及び、運転温度に基づいて算出される係数を含む関数により決定されてよい。
 上記方法において、前記母数μの、前記設置期間、及び、前記運転温度が前記係数に対して与える影響は、前記設備の種類により依存して変わるものであってよい。
 上記方法は、前記検査必要性を評価する段階は、前記確率密度f(x;μ)と前記許容減肉深さとに基づいて、前記対象設備の減肉深さが、前記許容減肉深さ以上、又は、超となる累積確率を算出する段階を含んでよい。
 上記方法において、前記設備の種類は、配管、槽、塔の少なくともいずれか1つを含んでよい。
 上記方法において、前記検査必要性を評価する段階は、前記確率密度に基づき、前記対象設備の減肉深さが、前記許容減肉深さ以上、又は、超となる可能性を、検査必要性をランク分けした結果として出力する段階を更に含んでよい。
 上記方法において、前記許容減肉深さを取得する段階は、前記対象設備と同一の種類の設備を対象に予め取得された減肉深さのデータを参照用データ、及び、前記確率密度f(x;μ)の少なくともいずれか一方を提示可能な状態で、任意の許容減肉深さの入力を受け付ける段階を含んでよい。
 上記方法において、前記許容減肉深さを取得する段階は、値の異なる許容減肉深さを複数取得してよい。
 上記方法において、前記検査必要性を評価する段階は、前記許容減肉深さを取得する段階において前記許容減肉深さが複数取得された場合に、複数の前記許容減肉深さのそれぞれに対して検査必要性の評価を行うことを含んでよい。
 上記方法において、前記確率密度は指数分布であってよい。また、上記方法において、前記母数μは、前記測定値が設備の種類、設置期間、及び、運転温度に基づいて算出される係数を含む指数関数により決定されてよい。
 (付記2)
 プラントの少なくとも一部を構成し、保温材により被覆されて外観から腐食状態を確認できない設備の保全を支援するために一又は複数のコンピュータに実装される方法が提供される。
 方法は、一又は複数の対象設備について、設備の種類、設置期間、及び、運転温度を含む設置状況を取得する段階とを備えてよい。
 方法は、前記対象設備に関する一又は複数の許容減肉深さ取得する段階を備えてよい。
 方法は、少なくとも、設備の種類、設置期間、及び、運転温度を変数とする予測モデルであって、保温材下腐食による設備の減肉深さが所定の深さ以上、又は、超となるかを予測する予測モデルを準備する段階を備えてよい。
 方法は、前記予測モデルと、前記対象設備の設置状況及び前記許容減肉深さに基づいて、前記対象設備の検査必要性を評価する段階と、を備えてよい。
 上記方法において、前記予測モデルは、保温材下腐食による設備の減肉深さが所定の深さ以上、又は、超となる確率を出力するモデルであってよい。
 上記方法において、前記検査必要性を評価する段階は、前記設置状況を取得する段階において複数の前記対象設備について前記設置状況を取得した場合、および/または、前記許容減肉深さを取得する段階において複数の許容減肉深さを取得した場合に、検査必要性が相対的に高い前記対象設備および/または前記許容減肉深さに対する評価結果を強調するように出力することを含んでよい。
 上記方法において、検査必要性を評価する段階は、前記許容減肉深さ及び前記予測モデルに基づいて算出される前記対象設備の破損発生可能性と前記設備が破損したときに生じる結果影響度とに基づいて検査必要性を評価することを含んでよい。
 なお、上記方法は、プロセッサおよびメモリを有する所定の演算装置により実行されてよい。また、上記方法は、プロセッサおよびメモリを有する複数の演算装置により実行されてよい。ここで、前記複数の演算装置は、無線または有線通信可能に構成されている所定のシステムにより実現されてよい。さらに、また、上記方法は、一又は複数の演算装置により実行されるプログラムを用いて実現されてよい。
 (付記3)
 プラントの少なくとも一部を構成し、保温材により被覆されて外観から腐食状態を確認できない設備を保全する方法が提供される。
 方法は、一又は複数の対象設備の設置状況及び許容減肉深さと、前記対象設備の減肉深さが許容減肉深さ以上、又は、超となるかを前記対象設備の設置状況に基づき予測する予測モデルと、に基づいて、前記対象設備の検査必要性を評価する事前評価段階を備えてよい。
 方法は、前記事前評価段階における検査必要性の評価の結果が第1の程度以上の前記対象設備に対して、保温材の剥離を伴う剥離検査、又は、前記対象設備の更新を行う段階を備えてよい。
 方法は、前記事前評価段階における検査必要性の評価が、前記第1の程度未満、かつ、前記第1の程度より小さい第2の程度以上の高い所定範囲である前記対象設備に対して、保温材の剥離を伴わない非破壊検査を行う段階を備えてよい。
 上記方法は、前記非破壊検査を行う前に、前記対象設備に適した非破壊検査の方法を、前記対象設備の設置状況に基づいて判定する判定モデルを用いて選択する段階をさらに含んでよい。
 上記方法において、前記判定モデルは、前記対象設備の運転温度、外気温度、前記運転温度と前記外気温度との差、前記保温材の外装材の表面加工の種別、前記保温材の外装材の表面の形状、及び、前記保温材と前記保温材で被覆された前記対象設備との間に設けられる加温設備の有無、の少なくともいずれか1つの条件に基づいて、前記対象設備に適した非破壊検査の方法を選択して出力するモデルであってよい。
 上記方法は、前記非破壊検査の検査結果に基づいて前記対象設備の検査必要性を評価する評価段階と、前記評価段階における検査必要性の評価が第3の程度以上の前記対象設備に対して、前記剥離検査、又は、前記対象設備の更新を行う段階をさらに含んでよい。
 上記方法は、前記評価段階における検査必要性の評価が、前記第3の程度未満、かつ、前記第3の程度より小さい第4の程度以上の所定範囲である前記対象設備に対して、前記剥離検査を実施する場合よりも剥離割合の小さい部分剥離検査を行う段階をさらに含んでよい。
 上記方法は、前記評価段階における検査必要性の評価の結果が前記第4の程度未満の所定範囲である前記対象設備に対して、状態監視、及び前記対象設備に保温材下腐食による異常が生じた場合に対処する事後保全の少なくともいずれか一方を行う段階をさらに含んでよい。
 上記方法において、前記事前評価段階における検査必要性の評価は、前記予測モデル、前記対象設備の設置状況及び許容減肉深さ、に基づき算出される前記対象設備の破損発生可能性と、前記対象設備に破損が発生した場合の結果影響度と、に基づいて行われてよい。
 上記方法において、前記事前評価段階における検査必要性の評価は、前記予測モデル、前記対象設備の設置状況及び許容減肉深さ、に基づき算出される前記対象設備の破損発生可能性と、前記対象設備に破損が発生した場合の結果影響度と、に基づいて行われてよい。更に上記方法において、前記評価段階における検査必要性の評価は、前記非破壊検査の検査結果に基づいて算出される前記対象設備の破損発生可能性と、前記対象設備に破損が発生した場合の結果影響度と、に基づいて行われてよい。
 上記方法において、前記評価段階における検査必要性の評価は、前記非破壊検査の検査結果に基づいて、前記事前評価段階において算出された破損発生可能性の評価を補正することを含んでよい。
 なお、上記方法において、評価段階は、非破壊検査の検査結果に基づく検査必要性の評価であって、第2の評価部136および/または第3の評価部137の測定結果に基づく検査必要性の評価を含んでよい。
 (付記4)
 プラントの少なくとも一部を構成し、保温材により被覆されて外観から腐食状態を確認できない設備を保全する方法が提供される。
 方法は、設備の設置状況に基づき前記設備の減肉深さを予測する予測モデルと、複数の対象設備の設置状況及び許容減肉深さと、に基づいて、複数の前記対象設備の検査必要性を評価する事前評価段階を含んでよい。
 方法は、複数の前記対象設備の少なくともいずれかに対して、保温材の剥離を伴わない非破壊検査を行う段階を含んでよい。
 方法は、前記非破壊検査の検査結果に基づいて前記対象設備の検査必要性を評価する評価段階を含んでよい。
 方法は、前記事前評価段階における検査必要性の評価の結果と、前記評価段階における検査必要性の評価の結果と、に基づいて、複数の前記対象設備のそれぞれに対し、前記対象設備の更新、剥離検査、部分剥離検査、状態監視、及び前記対象設備に保温材下腐食による異常が生じた場合に対処する事後保全の少なくともいずれかを選択的に実行する段階を含んでよい。
 上記方法は、前記非破壊検査を行う前に、前記対象設備に適した非破壊検査の方法を、前記対象設備の設置状況に基づいて判定する判定モデルを用いて選択する段階をさらに含んでもよい。
 上記方法において、前記判定モデルは、前記対象設備の運転温度、外気温度、前記運転温度と前記外気温度との差、前記保温材の外装材の表面加工の種別、前記保温材の外装材の表面の形状、及び、前記保温材と前記保温材で被覆された前記対象設備との間に設けられる加温設備の有無、の少なくともいずれか1つの条件に基づいて、前記対象設備に適した非破壊検査の方法を抽出するモデルであってよい。
 上記方法において、前記事前評価段階における検査必要性の評価の結果が第1の程度以上の前記対象設備に対して、保温材の剥離を伴う剥離検査、又は、前記対象設備の更新を行い、前記事前評価段階における検査必要性の評価が、前記第1の程度未満、かつ、前記第1の程度より小さい第2の程度以上の高い所定範囲である前記対象設備に対して、保温材の剥離を伴わない非破壊検査を行ってよい。
 上記方法において、前記評価段階における検査必要性の評価が第3の程度以上の前記対象設備に対して、前記剥離検査、又は、前記対象設備の更新を行ってよい。
 上記方法において、前記評価段階における検査必要性の評価が、前記第3の程度未満、かつ、前記第3の程度より小さい第4の程度以上の所定範囲である前記対象設備に対して、前記剥離検査を実施する場合よりも剥離割合の小さい部分剥離検査を行ってよい。
 上記方法において、前記評価段階における検査必要性の評価の結果が前記第4の程度未満の所定範囲である前記対象設備に対して、状態監視、及び事後保全の少なくともいずれか一方を行ってよい。
 上記方法において、前記事前評価段階における検査必要性の評価は、前記予測モデル、前記対象設備の設置状況及び許容減肉深さ、に基づき算出される前記対象設備の破損発生可能性と、前記対象設備に破損が発生した場合の結果影響度と、に基づいて行われてよい。また、上記方法において、前記第評価段階における検査必要性の評価は、前記非破壊検査の検査結果に基づいて算出される前記対象設備の破損発生可能性と、前記対象設備に破損が発生した場合の結果影響度と、に基づいて行われてよい。
 上記方法において、前記第評価段階における検査必要性の評価は、前記非破壊検査の検査結果に基づいて、前記事前評価段階において算出された破損発生可能性の評価を補正することを含んでよい。
 上記方法において、前記予測モデルは、前記対象設備の減肉深さが前記許容減肉深さ以上、又は、超となるかの確率を予測するモデルであってよいが提供される。
 方法は、対象設備の設置状況及び許容減肉深さを取得する段階を含んでよい。
 方法は、取得された前記設置状況及び前記許容減肉深さと、前記設置状況に基づき設備の減肉深さを予測する予測モデルと、に基づいて、前記対象設備の検査必要性を評価する段階を含んでよい。
 方法は、検査必要性の評価結果に基づいて、前記保温材の剥離を伴う剥離検査と、前記保温材の剥離を伴わない非破壊検査と、を含む対応策の種別から前記対象設備に適した一又は複数の対応策を抽出する段階を含んでよい。
 方法は、一又は複数の種別が抽出されたとき、前記種別の少なくともいずれかを出力する段階を含んでよい。
 上記方法において、前記対応策の種別は、前記対象設備の更新と、状態監視と、前記対象設備に保温材下腐食(CUI)による異常が生じた場合に対処する事後保全と、をさらに含んでよい。
 上記方法において、前記検査必要性を評価する段階は、前記許容減肉深さ、前記設置状況、及び、前記予測モデルに基づいて算出される前記対象設備の破損発生可能性と、前記対象設備が破損した場合に生じる結果影響度と、に基づいて検査必要性を評価することを含んでよい。
 上記方法において、前記検査必要性を評価する段階は、前記破損発生可能性が低い場合よりも高い場合の方が検査必要性の程度が高いと評価され、かつ、前記結果影響度が低い場合よりも高い場合の方が、検査必要性の程度が高いと評価される段階であってよい。
 上記方法において、前記評価結果において検査必要性の程度が第1の程度よりも高いと評価された場合に、前記剥離検査を対応策の種別として抽出してよい。
 上記方法において、前記対応策の種別に含まれる剥離検査は、前記対象設備の保温材の第一割合以上を剥離する第1の剥離検査と、前記第一割合未満を剥離する第2の剥離検査と、を含んでよい。
 上記方法において、前記対応策の種別を抽出する段階において非破壊検査を抽出する場合に、前記対象設備の保温材の表面を覆う外装材の表面温度を測定する第1の検査と、前記対象設備の保温材に含まれる水分量を測定する第2の検査と、を含む非破壊検査の方法の種別を合わせて抽出してよい。
 上記方法において、前記対象設備の設置状況は、前記設備の運転温度に関する情報を含んでよい。上記方法において、前記対応策の種別を抽出する段階において非破壊検査を出力する場合に、抽出する非破壊検査の方法の種別を前記運転温度に応じて変動させてよい。
 上記方法において、前記予測モデルは、少なくとも、設備の種類、設置期間、及び、運転温度を変数とする予測モデルであって、保温材下腐食による設備の減肉深さが所定の深さ以上、又は、超となる確率を出力する予測モデルであってよい。
 なお、上記方法は、プロセッサおよびメモリを有する所定の演算装置により実行されてよい。上記方法は、また、プロセッサおよびメモリを有する複数の演算装置により実行されてよい。前記複数の演算装置は、無線または有線通信可能に構成されている所定のシステムにより実現されてよい。さらに、また、上記方法は、一又は複数の演算装置により実行されるプログラムを用いて実現されてよい。
 (付記6)
 プラントの少なくとも一部を構成し、保温材により被覆されて外観から腐食状態を確認できない設備を保全するための方法を提供する。
 方法は、対象設備の設置状況及び許容減肉深さを取得する段階を含んでよい。
 方法は、取得された前記設置状況及び前記許容減肉深さと、前記設置状況に基づいて設備の減肉深さを予測する予測モデルを用いて、前記対象設備の検査必要性を評価する段階を含んでよい。
 方法は、検査必要性の評価結果に基づいて、前記保温材の剥離を伴う剥離検査と、前記保温材の剥離を伴わない非破壊検査と、を含む対応策の種別から前記対象設備に適した一又は複数の対応策を設定する段階を含んでよい。
 上記方法において、前記対応策の種別は、前記対象設備の更新と、状態監視と、前記対象設備に保温材下腐食(CUI)による異常が生じた場合に対処する事後保全と、をさらに含んでよい。
 上記方法において、前記検査必要性を評価する段階は、前記許容減肉深さ、前記設置状況、及び、前記予測モデルに基づいて算出される前記対象設備の破損発生可能性と、前記対象設備が破損した場合に生じる結果影響度と、に基づいて検査必要性を評価することを含んでよい。
 上記方法において、前記検査必要性を評価する段階は、前記破損発生可能性が低い場合よりも高い場合の方が検査必要性の程度が高いと評価され、かつ、前記結果影響度が低い場合よりも高い場合の方が、検査必要性の程度が高いと評価することを含んでよい。
 上記方法は、前記評価結果において検査必要性の程度が第1の程度よりも高いと評価された場合に、前記剥離検査を対応策の種別として実行してよい。
 上記方法において、前記対応策の種別に含まれる剥離検査は、前記対象設備の保温材の第一割合以上を剥離する第1の剥離検査と、前記第一割合未満を剥離する第2の剥離検査とを含んでよい。
 上記方法において、前記対応策の種別を設定する段階において非破壊検査を出力する場合に、前記対象設備の保温材の表面を覆う外装材の表面温度を測定する第1の検査と、前記対象設備の保温材に含まれる水分量を測定する第2の検査と、を含む非破壊検査の方法の種別を合わせて設定してよい。
 上記方法において、前記対象設備の設置状況は、前記設備の運転温度に関する情報を含んでよい。上記方法において、前記対応策の種別を出力する段階において非破壊検査を出力する場合に、前記運転温度に応じて出力する非破壊検査の方法の種別を変動させてよい。
 (付記7)
 プラントの少なくとも一部を構成する設備であって、保温材下腐食(CUI)が生じ得る設備を保全するためにコンピュータに実装される方法が提供される。
 方法は、複数の対象設備のそれぞれについて、設置状況及び許容減肉深さを取得する段階を含む。
 方法は、取得された前記設置状況及び前記許容減肉深さと、設置状況に基づき設備の減肉深さを予測する予測モデルとに基づいて、複数の前記対象設備のそれぞれについて、検査必要性を評価する段階を含む。
 方法は、複数の前記対象設備のうち、検査必要性が相対的に高い設備を強調するように出力する段階を含む。
 (付記8)
 プラントの少なくとも一部を構成し、保温材により被覆されて外観から腐食状態を確認できない設備の保全を支援するためにコンピュータに実装される方法が提供される。
 方法は、対象設備の設置状況を取得する段階を含む。
 方法は、前記設置状況に基づいて、前記対象設備に適した非破壊検査の種別を判定すること、及び、設置状況に基づいて設備の減肉深さを予測する予測モデルを用いて前記対象設備の検査必要性を評価すること、の少なくともいずれか一方を実行する段階を含む。
 方法は、適した非破壊検査の種別、及び、前記検査必要性の評価結果、の少なくともいずれか一方を出力する段階を含む。
 上記方法において、前記対象設備に適した非破壊検査の種別を判定することと、設置状況に基づいて設備の減肉深さを予測する予測モデルを用いて前記対象設備の検査必要性を評価すること、とはこの順に行われてよい。上記方法において、前記対象設備の検査必要性の評価は、適した非破壊検査の無い前記対象設備に対して行われてよい。
100 プラント保全支援システム
110 プラント保全支援装置
120 記憶部
121 プログラム記憶部
122 測定データ記憶部
123 確率情報記憶部
130 演算部
131 取得部
132 モデル生成部
133 第一の評価部
134 判定部
135 出力部
136 第2の判定部
137 第3の判定部
140 インターネット
151 クライアント端末
152 クライアント端末
153 クライアント端末
161 水分測定装置
162 温度測定装置
400 減肉深さと度数との回帰直線
600 確率密度関数
610 累積確率
1900 コンピュータ
2000 CPU
2010 ROM
2020 RAM
2030 通信インターフェイス
2040 ハードディスクドライブ
2050 フレキシブルディスク・ドライブ
2060 CD-ROMドライブ
2070 入出力チップ
2075 グラフィック・コントローラ
2080 表示装置
2082 ホスト・コントローラ
2084 入出力コントローラ
2090 フレキシブルディスク
2095 CD-ROM

Claims (20)

  1.  プラントの少なくとも一部を構成し、保温材により被覆されて外観から腐食状態を確認できない設備の保全を行うためにコンピュータに実装される方法であって、
     対象設備の運転温度を含む条件であって、前記対象設備が所定の測定装置を用いた非破壊検査に適しているかを判定するための条件を取得する段階と、
     前記条件に基づいて、前記対象設備の保温材の表面を覆う外装材の表面温度を測定する第1の検査と、前記対象設備の保温材に含まれる水分量を測定する第2の検査と、を含む保温材の剥離を伴わない複数の非破壊検査の手法から前記対象設備の測定に適した手法を抽出する段階と、
     と、
     一又は複数の非破壊検査の種別が抽出されたとき、前記種別を出力する段階と、
     を含む方法。
  2.  前記条件は、さらに、外気温度、前記運転温度と前記外気温度との差、前記保温材の外装材の種類、前記保温材の外装材の表面の形状、及び、前記保温材と前記保温材で被覆された前記対象設備との間に設けられる加温設備の有無、の少なくともいずれか1つの条件をさらに含む、請求項1に記載の方法。
  3.  前記抽出する段階は、前記対象設備の運転温度が外気温度に対して10度以上高い条件を満たす場合に、前記第1の検査を選択する請求項2に記載の方法。
  4.  前記抽出する段階は、前記保温材の外装材が、赤外線低反射材料により構成される条件を満たす場合に、前記第1の検査を選択する請求項2または3に記載の方法。
  5.  前記抽出する段階は、前記保温材の外装材が、平滑な表面を有する条件を満たす場合に、前記第1の検査を選択する請求項2から4のいずれか一項に記載の方法。
  6.  前記抽出する段階は、前記保温材及び前記外装材の少なくともいずれか一方に結露が生じる条件を満たす場合に、前記第2の検査とは異なる非破壊検査の種別を選択する、請求項1から4のいずれか一項に記載の方法。
  7.  前記出力する段階は、前記条件に基づいて前記第1の検査と第2の検査との双方が抽出された場合に、前記第1の検査を推奨する旨を合わせて出力する、請求項1から6のいずれか一項に記載の方法。
  8.  複数の前記設備について予め取得された、減肉深さの複数の検出値に基づいて生成される予測モデルにより、前記対象設備の検査必要性を予備的に予測する予測段階をさらに備え、前記予測段階において、予め定められた程度以上の検査必要性が認められた前記対象設備に対して、前記抽出する段階を実行する、請求項1から7のいずれか一項に記載の方法。
  9.  プロセッサおよびメモリを有し、前記請求項1から8のいずれか一項に記載の方法を実行する演算装置と、
     を備える、装置。
  10.  プロセッサおよびメモリを有する複数の演算装置を備え、
     前記複数の演算装置は、無線または有線通信可能に構成されており、前記請求項1から8のいずれか一項に記載の方法を実行するように構成されている、
     システム。
  11.  プロセッサおよびメモリを有する一又は複数の演算装置に、前記請求項1から8のいずれか一項に記載の方法を実行させるためのプログラム。
  12.  プラントの少なくとも一部を構成し、保温材により被覆されて外観から腐食状態を確認できない設備を保全するための方法であって、
     対象設備の運転温度を含む条件であって、前記対象設備が所定の測定装置を用いた非破壊検査に適しているかを判定するための条件を取得する段階と、
     前記条件に基づいて、前記対象設備の保温材の表面を覆う外装材の表面温度を測定する第1の検査と、前記対象設備の保温材に含まれる水分量を測定する第2の検査と、を含む保温材の剥離を伴わない複数の非破壊検査の手法から前記対象設備の測定に適した手法のうちの少なくともいずれか一つを選択する段階と、
     前記対象設備に対して、選択された非破壊検査を行う段階と、
     を含む方法。
  13.  前記条件は、さらに、外気温度、前記運転温度と前記外気温度との差、前記保温材の外装材の表面加工の種別、前記保温材の外装材の表面の形状、及び、前記保温材と前記保温材で被覆された前記対象設備との間に設けられる加温設備の有無、の少なくともいずれか1つの条件をさらに含む、請求項12に記載の方法。
  14.  前記第1の検査は、前記対象設備の運転温度が外気温度に対して10度以上高い条件を満たす場合に行われる、請求項12または13に記載の方法。
  15.  前記第1の検査は、前記保温材の外装材が、赤外線低反射材料により構成される条件を満たす場合に行われる、請求項12から14のいずれか一項に記載の方法。
  16.  前記第1の検査は、前記保温材の外装材が、平滑な表面を有する条件を満たす場合に行われる請求項12から15のいずれか一項に記載の方法。
  17.  前記第2の検査は、前記保温材及び前記外装材の少なくともいずれか一方に結露が生じていない条件を満たす場合に行われる請求項12から16のいずれか一項に記載の方法。
  18.  前記条件に基づいて前記第1の検査と第2の検査との双方が選択可能な場合に、前記第1の検査を優先して行う請求項12から17のいずれか一項に記載の方法。
  19.  前記第1の検査はサーモカメラを用いて行われ、前記第2の検査は中性子水分計を用いて行われる、請求項12から18のいずれか一項に記載の方法。
  20.  複数の前記設備について予め取得された、減肉深さの複数の検出値に基づいて生成される予測モデルを用いて、前記対象設備の検査必要性を予備的に予測する予測段階をさらに備え、前記予測段階において、予め定められた程度以上の検査必要性が認められた前記対象設備に対して、前記選択する段階を実行する、請求項12から19のいずれか一項に記載の方法。
PCT/JP2020/021487 2019-05-30 2020-05-29 保温材下腐食発生予測モデルおよびプラント保全支援装置 WO2020241888A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021521918A JP7085067B2 (ja) 2019-05-30 2020-05-29 保温材下腐食発生予測モデルおよびプラント保全支援装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019-101846 2019-05-30
JP2019-101847 2019-05-30
JP2019101849 2019-05-30
JP2019101847 2019-05-30
JP2019-101849 2019-05-30
JP2019101846 2019-05-30

Publications (1)

Publication Number Publication Date
WO2020241888A1 true WO2020241888A1 (ja) 2020-12-03

Family

ID=73553803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021487 WO2020241888A1 (ja) 2019-05-30 2020-05-29 保温材下腐食発生予測モデルおよびプラント保全支援装置

Country Status (2)

Country Link
JP (1) JP7085067B2 (ja)
WO (1) WO2020241888A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023006529A (ja) * 2021-06-30 2023-01-18 本田技研工業株式会社 データ異常判定装置及び内部状態予測システム
WO2024069217A1 (en) * 2022-09-30 2024-04-04 Matrix Jvco Ltd Trading As Aiq Method for determining instruction for a corrosion monitoring location
WO2024069216A1 (en) * 2022-09-30 2024-04-04 Matrix Jvco Ltd Trading As Aiq Method for pipeline corrosion prediction and maintenance
WO2024150346A1 (ja) * 2023-01-11 2024-07-18 日本電信電話株式会社 モデル生成装置、推定装置、及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004287609A (ja) * 2003-03-19 2004-10-14 Ricoh Co Ltd 製品検査内容設定方法、製品検査内容変更方法、製品検査内容設定システム及び製品検査内容変更システム
US20100319435A1 (en) * 2006-10-19 2010-12-23 Schlumberger Technology Corporation System and method for detecting moisture
JP2011117863A (ja) * 2009-12-04 2011-06-16 Idemitsu Eng Co Ltd 腐食検査方法
JP2018025497A (ja) * 2016-08-10 2018-02-15 旭化成株式会社 保全支援装置、保全支援用プログラム、及び保全支援方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004287609A (ja) * 2003-03-19 2004-10-14 Ricoh Co Ltd 製品検査内容設定方法、製品検査内容変更方法、製品検査内容設定システム及び製品検査内容変更システム
US20100319435A1 (en) * 2006-10-19 2010-12-23 Schlumberger Technology Corporation System and method for detecting moisture
JP2011117863A (ja) * 2009-12-04 2011-06-16 Idemitsu Eng Co Ltd 腐食検査方法
JP2018025497A (ja) * 2016-08-10 2018-02-15 旭化成株式会社 保全支援装置、保全支援用プログラム、及び保全支援方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HARADA, MASASHI ET AL.: "Design of a computer-aided system to select appropriate inspection points for CUI in petrochemistry plants", IEICE TECHNICAL REPORT, vol. 107, no. 270, October 2007 (2007-10-01), pages 25 - 30 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023006529A (ja) * 2021-06-30 2023-01-18 本田技研工業株式会社 データ異常判定装置及び内部状態予測システム
JP7357659B2 (ja) 2021-06-30 2023-10-06 本田技研工業株式会社 データ異常判定装置及び内部状態予測システム
WO2024069217A1 (en) * 2022-09-30 2024-04-04 Matrix Jvco Ltd Trading As Aiq Method for determining instruction for a corrosion monitoring location
WO2024069216A1 (en) * 2022-09-30 2024-04-04 Matrix Jvco Ltd Trading As Aiq Method for pipeline corrosion prediction and maintenance
WO2024150346A1 (ja) * 2023-01-11 2024-07-18 日本電信電話株式会社 モデル生成装置、推定装置、及びプログラム

Also Published As

Publication number Publication date
JP7085067B2 (ja) 2022-06-15
JPWO2020241888A1 (ja) 2021-12-09

Similar Documents

Publication Publication Date Title
WO2020241888A1 (ja) 保温材下腐食発生予測モデルおよびプラント保全支援装置
US10809153B2 (en) Detecting apparatus, detection method, and program
JP6825846B2 (ja) 保全支援装置、保全支援用プログラム、及び保全支援方法
Lackner et al. Uncertainty analysis in MCP-based wind resource assessment and energy production estimation
US20150331023A1 (en) Building energy consumption forecasting procedure using ambient temperature, enthalpy, bias corrected weather forecast and outlier corrected sensor data
US20170193460A1 (en) Systems and methods for predicting asset specific service life in components
EP3418722B1 (en) Equipment condition-based corrosion life monitoring system and method
CN113847216B (zh) 风机叶片的状态预测方法、装置、设备及存储介质
Gomes et al. Optimal inspection planning and repair under random crack propagation
JP2009205554A (ja) 機器の劣化度算出方法およびリスク評価方法
CN117490948A (zh) 一种基于动态阈值的斜拉桥健康监测方法及系统
JP2020148541A (ja) 腐食速度推定装置、腐食速度推定方法及びプログラム
CN116090322A (zh) 管道完整性智能决策可视化系统
CN117218113A (zh) 一种炉管的氧化程度分析方法、装置、计算机设备及介质
Khalili et al. Different Bayesian methods for updating the fatigue crack size distribution in a tubular joint
JP6875602B2 (ja) 保全支援装置、保全支援用プログラム及び保全支援方法
Zhou et al. Quantification of value of information associated with optimal observation actions within partially observable Markov decision processes
US20210056406A1 (en) Localized metal loss estimation across piping structure
KR101402306B1 (ko) 선박 부식 관리 장치 및 방법
JP6844969B2 (ja) 保全支援装置、及び保全支援用プログラム
CN112649354A (zh) 一种多传感器测量金属管道腐蚀的综合评价方法
CN112782526A (zh) 基于皱纹护套内表面积的缓冲层烧蚀隐患电缆段筛查方法
CN117782558B (zh) 一种架空管道的检测方法、装置及电子设备
CN112749858A (zh) 存储器、储罐失效风险评估方法、装置和设备
US20230065532A1 (en) Machine learning based techniques for predicting component corrosion likelihood

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20812608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021521918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20812608

Country of ref document: EP

Kind code of ref document: A1