WO2020241836A1 - 情報処理装置、スクリーニング装置、情報処理方法、スクリーニング方法、及びプログラム - Google Patents

情報処理装置、スクリーニング装置、情報処理方法、スクリーニング方法、及びプログラム Download PDF

Info

Publication number
WO2020241836A1
WO2020241836A1 PCT/JP2020/021384 JP2020021384W WO2020241836A1 WO 2020241836 A1 WO2020241836 A1 WO 2020241836A1 JP 2020021384 W JP2020021384 W JP 2020021384W WO 2020241836 A1 WO2020241836 A1 WO 2020241836A1
Authority
WO
WIPO (PCT)
Prior art keywords
neurological disease
cells
intractable neurological
intractable
image
Prior art date
Application number
PCT/JP2020/021384
Other languages
English (en)
French (fr)
Inventor
治久 井上
恵子 今村
祐一郎 矢田
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to EP20812823.1A priority Critical patent/EP3978594A4/en
Priority to US17/614,243 priority patent/US20220215544A1/en
Priority to SG11202113100TA priority patent/SG11202113100TA/en
Priority to JP2021522905A priority patent/JPWO2020241836A1/ja
Publication of WO2020241836A1 publication Critical patent/WO2020241836A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro

Definitions

  • the present invention relates to an information processing device, a screening device, an information processing method, a screening method, and a program.
  • Non-Patent Document 1 describes that the nucleus, cell life and death, and cell type (whether or not they are nerve cells) can be identified by a machine-learned model of a microscopic image of cultured cells.
  • Non-Patent Document 2 describes that it was possible to distinguish between lung adenocarcinoma, squamous cell carcinoma, and healthy lung tissue by machine learning a microscopic image of the pathological tissue of lung cancer. ..
  • ALS amyotrophic lateral sclerosis
  • the learning models described in Non-Patent Documents 1 and 2 determine the current state of cells and tissues, and do not predict whether or not the subject is pre-diseased with an intractable neurological disease. That is, the learning models described in Non-Patent Documents 1 and 2 do not predict that the subject will develop intractable neurological disease at some point in the future, although the subject has not developed intractable neurological disease at this time.
  • the present invention is an information processing device, a screening device, an information processing method, and a screening method capable of accurately predicting that a subject will develop an intractable neurological disease based on an image of cells differentiated from pluripotent stem cells derived from the subject. , And the purpose of providing the program.
  • One aspect of the present invention is an acquisition unit that acquires an image of cells differentiated from pluripotent stem cells derived from a subject, and an image of intractable neurological disease cells differentiated from pluripotent stem cells, at least in an intractable neurological disease.
  • the image acquired by the acquisition unit is input to the model learned based on the data associated with the information indicating that the image is present, and the subject receives the image based on the output result of the input model.
  • the present invention it is possible to accurately predict that a subject will develop an intractable neurological disease based on an image of cells differentiated from pluripotent stem cells derived from the subject.
  • FIG. 1 is a diagram showing an example of an information processing system 1 including the information processing device 100 according to the first embodiment.
  • the information processing system 1 according to the first embodiment includes, for example, one or more terminal devices 10 and an information processing device 100. These devices are connected via a network NW.
  • the network NW includes, for example, the Internet, a WAN (Wide Area Network), a LAN (Local Area Network), a provider terminal, a wireless communication network, a wireless base station, a dedicated line, and the like. Not all combinations of the devices shown in FIG. 1 need to be able to communicate with each other, and the network NW may include a local network in part.
  • the terminal device 10 is, for example, a terminal device including an input device, a display device, a communication device, a storage device, and an arithmetic unit.
  • the terminal device 10 is a personal computer, a mobile phone, a tablet terminal, or the like.
  • the communication device includes a network card such as a NIC (Network Interface Card), a wireless communication module, and the like.
  • the terminal device 10 may be installed in a facility (for example, a research institution, a university, or a company) that conducts research or drug discovery development using pluripotent stem cells.
  • the pluripotent stem cells described above include, for example, embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), embryonic stem (ntES) cells derived from cloned embryos obtained by nuclear transplantation, and sperm stem cells (sperm stem cells). Includes “GS cells”), embryonic stem cells (“EG cells”), induced pluripotent stem (iPS) cells and the like.
  • Preferred pluripotent stem cells are ES cells, iPS cells and ntES cells. More preferred pluripotent stem cells are human pluripotent stem cells, particularly preferably human ES cells and human iPS cells.
  • the cells that can be used in the present invention are not only pluripotent stem cells, but also cell groups induced by so-called “direct reprogramming” in which differentiation is directly induced into desired cells without passing through pluripotent stem cells. There may be.
  • an employee working in a facility takes an image of a desired cell induced to differentiate from pluripotent stem cells with a microscope or the like, and captures the captured digital image (hereinafter referred to as cell image IMG) via a terminal device 10. Is transmitted to the information processing apparatus 100.
  • cell image IMG captured digital image
  • the information processing apparatus 100 uses deep learning to extract the pluripotent stem cells from the cell image IMG before inducing differentiation. It is predicted that intractable neurological diseases such as ALS will develop at this time.
  • the cells induced to differentiate from pluripotent stem cells are, for example, cells related to intractable neurological diseases such as ALS, and specifically, nerve cells, glial cells, vascular endothelial cells, pericite, choroid plexus cells, immune system cells and the like. It may be there.
  • Neurodegenerative diseases include, for example, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), spinocerebellar degeneration, frontotemporal lobar degeneration, Lewy body dementias, multiple system atrophy, and Huntington's disease. , Progressive supranuclear palsy, corticobasal degeneration, etc.
  • the cells induced to differentiate from pluripotent stem cells may be imaged alive, or may be fixed and immunochemically stained before imaging.
  • Intractable neurological disease cells differentiated from pluripotent stem cells are cells differentiated from pluripotent stem cells and exhibit the phenotype of intractable neurological disease.
  • Examples of cells with intractable neurological disease differentiated from pluripotent stem cells include cells differentiated from pluripotent stem cells derived from patients with intractable neurological diseases such as ALS, and cells derived from healthy individuals who have introduced gene mutations that cause intractable neurological diseases such as ALS. Cells differentiated from pluripotent stem cells and the like can be used.
  • the information processing apparatus 100 uses the information processing apparatus 100 to determine that the subject from which the pluripotent stem cell is extracted has an intractable neurological disease at some point in the future. Predict to develop one ALS.
  • ALS is a disease in which the motor nervous system is damaged by the gradual death or loss of function of nerve cells.
  • the information processing apparatus 100 predicts that nerve cells induced to differentiate from pluripotent stem cells will exhibit a phenotype of intractable neurological disease such as ALS at a certain point in the future, so that the subject can exhibit ALS or the like at a certain point in the future. Determine if you develop intractable neurological disease.
  • the phenotype is a genotype expressed as a trait of an organism, and includes, for example, the morphology, structure, behavior, and physiological properties of the organism. Examples of the phenotype of intractable neurological diseases include cell morphology and the like.
  • nerve cells will be described as nerve cells.
  • FIG. 2 is a diagram showing an example of the configuration of the information processing apparatus 100 according to the first embodiment.
  • the information processing device 100 includes, for example, a communication unit 102, a control unit 110, and a storage unit 130.
  • the communication unit 102 includes, for example, a communication interface such as a NIC.
  • the communication unit 102 communicates with the terminal device 10 and the like via the network NW.
  • the control unit 110 includes, for example, an acquisition unit 112, a prediction unit 114, a communication control unit 116, and a learning unit 118.
  • the component of the control unit 110 is realized by, for example, a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit) executing a program stored in the storage unit 130.
  • a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit) executing a program stored in the storage unit 130.
  • Part or all of the components of the control unit 110 are realized by hardware (circuit unit; circuitry) such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), or FPGA (Field-Programmable Gate Array). It may be realized by the cooperation of software and hardware.
  • the storage unit 130 is realized by, for example, a storage device such as an HDD (Hard Disk Drive), a flash memory, an EEPROM (Electrically Erasable Programmable Read Only Memory), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • Model information 132 is stored in the storage unit 130 in addition to various programs such as firmware and application programs. Model information 132 will be described later.
  • FIG. 3 is a flowchart showing a series of run-time processing flows by the control unit 110 according to the first embodiment. The processing of this flowchart may be repeated, for example, at a predetermined cycle.
  • the acquisition unit 112 acquires the cell image IMG of the nerve cell from the terminal device 10 via the communication unit 102 (step S100).
  • the nerve cells to be imaged may be fixed and immunostained.
  • the nerve cell to be imaged may be, for example, a nerve cell that has been fixed with a reagent such as formaldehyde or paraformaldehyde and then immunostained with an anti-neurofilament H antibody or the like.
  • the prediction unit 114 inputs the cell image IMG acquired by the acquisition unit 112 into the prediction model MDL indicated by the model information 132 (step S102).
  • Model information 132 is information (program or data structure) that defines a predictive model MDL for predicting that a nerve cell exhibits a phenotype of intractable neurological disease such as ALS from a cell image IMG of the nerve cell.
  • the prediction model MDL is implemented, for example, by one or more neural networks.
  • the neural network may be, for example, a convolutional neural network (CNN).
  • the model information 132 includes, for example, connection information on how the units included in each of the input layer, one or more hidden layers (intermediate layers), and the output layer constituting each neural network are connected to each other. It contains various information such as the coupling coefficient given to the data input / output between the combined units.
  • the connection information includes, for example, the number of units included in each layer, information that specifies the type of unit to which each unit is connected, an activation function that realizes each unit, a gate provided between units in the hidden layer, and the like. Contains information.
  • the activation function that realizes the unit may be, for example, a rectified linear function (ReLU function), a sigmoid function, a step function, or other function.
  • the gate selectively passes or weights the data transmitted between the units, for example, depending on the value returned by the activation function (eg 1 or 0).
  • the coupling coefficient includes, for example, a weight given to the output data when data is output from a unit of a certain layer to a unit of a deeper layer in a hidden layer of a neural network.
  • the coupling coefficient may include a bias component peculiar to each layer.
  • FIG. 4 is a diagram showing an example of the prediction model MDL according to the first embodiment.
  • the predictive model MDL learns to output a score indicating the likelihood that a nerve cell exhibits an intractable neurological phenotype as a likelihood or a probability when a cell image IMG of the nerve cell is input.
  • I a single neural network.
  • the neural network includes CNN.
  • the prediction model MDL is a neural network including a plurality of layers (for example, 13 layers and 16 layers) of convolutional layers and a plurality of layers (for example, 3 layers) of fully connected layers.
  • the score indicates the phenotype of the intractable nerve disease, for example, the probability P1 indicating that the nerve cell dies and develops the intractable nerve disease, and does not indicate the phenotype of the intractable nerve disease, for example, the intractable nerve disease without the nerve cell dying. It may be represented by a two-dimensional vector having each of the probabilities P2 indicating that the onset does not occur.
  • the prediction unit 114 determines whether or not the probability P1 included as an element in the score output by the prediction model MDL is equal to or greater than the threshold value (step S104).
  • the prediction unit 114 predicts that the intractable nerve disease will develop because the nerve cells are likely to show the phenotype of the intractable nerve disease (step S106), and the probability P1 is less than the threshold value. Since it is unlikely that nerve cells show the phenotype of intractable nerve disease, it is predicted that intractable nerve disease will not develop (step S108).
  • the communication control unit 116 transmits the prediction result by the prediction unit 114 to the terminal device 10 via the communication unit 102 (step S110).
  • the communication control unit 116 may transmit information indicating whether or not the nerve cells exhibit the phenotype of intractable nerve disease, or may transmit information indicating whether or not the intractable nerve disease develops.
  • the user who operates the terminal device 10 will see the nerve cells in the cell image IMG transmitted to the information processing device 100 in the future. It is possible to know at a certain point whether it is destined to show the phenotype of intractable neurological diseases such as ALS or not to show the phenotype of intractable neurological diseases such as ALS. That is, the user can know whether or not the subject from which the pluripotent stem cells are extracted before inducing differentiation into nerve cells will develop intractable neurological diseases such as ALS in the future.
  • Training is a state in which the prediction model MDL used at runtime is trained.
  • FIG. 5 is a flowchart showing a flow of a series of training processes by the control unit 110 according to the first embodiment.
  • the learning unit 118 selects one cell image IMG from a plurality of cell image IMGs included in the teacher data in order to learn the prediction model MDL (step S200).
  • the teacher data information indicating the phenotype of intractable neurological diseases such as ALS at a certain point in the future is given to the cell image IMG, which is an image of a nerve cell differentiated from a pluripotent stem cell. It is data associated as a target).
  • the teacher data is the input data when the cell image IMG, which is an image of the nerve cells induced to differentiate from pluripotent stem cells, is used as the input data, and the information representing the phenotype of intractable neurological disease is used as the correct output data. It is a data set that is a combination of output data.
  • the phenotype of intractable neurological disease at some point in the future represents a more prominent phenotype of intractable neurological disease than when the cell image IMG was imaged.
  • pluripotent stem cells of patients with intractable neurological diseases are induced to differentiate to produce a plurality of nerve cells, and each of the produced plurality of nerve cells is imaged to generate a plurality of cell image IMGs.
  • pluripotent stem cells of healthy subjects are induced to differentiate to produce a plurality of nerve cells, and each of the produced plurality of nerve cells is imaged to generate a plurality of cell image IMGs.
  • the learning unit 118 inputs the selected cell image IMG into the prediction model MDL (step S202).
  • the learning unit 118 acquires the score which is the output result of the prediction model MDL in which the cell image IMG is input (step S204).
  • the learning unit 118 calculates an error (also referred to as loss) between the score output by the prediction model MDL and the score associated with the cell image IMG input to the prediction model MDL as a teacher label (step S206). ..
  • the learning unit 118 determines the parameters of the prediction model MDL so that the error becomes small based on the gradient method such as the error reverse transmission number (step S208).
  • the learning unit 118 determines whether or not the learning for the prediction model MDL has been repeated a predetermined number of times E (for example, about 30 times) (step S210), and if the predetermined number of times E has not been reached, the process is returned to S202.
  • a predetermined number of times E for example, about 30 times
  • the learning unit 118 selects all the cell image IMGs included in the teacher data, determines whether or not the prediction model MDL has been learned (step S212), and has not yet selected all the cell image IMGs. In this case, the process is returned to S200, the cell image IMG different from the previously selected cell image IMG is reselected, and the prediction model MDL is repeatedly learned over a predetermined number of times E. On the other hand, when all the cell image IMGs are selected, the learning unit 118 ends the process of this flowchart.
  • the information processing apparatus 100 captures images of cells of intractable neurological disease such as ALS differentiated from pluripotent stem cells, and there is information indicating that the information processing apparatus 100 has at least intractable neurological disease such as ALS.
  • the prediction model MDL is trained based on the teacher data associated as the teacher label. Then, the information processing apparatus 100 acquires a cell image IMG that images cells differentiated from pluripotent stem cells derived from the subject, inputs the acquired image into the learned prediction model MDL, and uses the prediction model MDL. Since it is predicted that the subject will develop an intractable neurological disease such as ALS based on the output result, it is possible to accurately predict that the subject will develop an intractable neurological disease such as ALS in the future.
  • the phenotype is derived from the cell image in the early stage when the intractable neurological disease does not develop. It is difficult to observe the change in.
  • the prediction model MDL implemented by CNN or the like since the prediction model MDL implemented by CNN or the like is used, minute changes in the cell structure and relative positional relationships between cells that are difficult to observe with the naked eye in the cell image are used. Such features can be expected to be calculated as the feature amount of convolution in the hidden layer.
  • intractable neurological diseases that cannot be grasped by humans even if they visually recognize the cell image can be detected at an early stage. In other words, it can be predicted that even a non-diseased patient who has not been diagnosed as having an intractable neurological disease by the conventional diagnostic method will develop an intractable neurological disease. As a result, treatment can be started early.
  • the prediction model MDL has been described as being a single neural network, but is not limited thereto.
  • the prediction model MDL may be a model in which a plurality of neural networks are combined.
  • FIG. 6 is a diagram showing another example of the prediction model MDL according to the first embodiment.
  • the prediction model MDL includes, for example, K models WL-1 to WL-K.
  • Each model WL is a weak learner pre-learned to output a score indicating the likelihood that a nerve cell exhibits an intractable nerve disease phenotype when a cell image IMG of the nerve cell is input.
  • model WL includes CNN.
  • the model WLs are in parallel with each other.
  • the method of generating one learning model by combining a plurality of weak learners in this way is called ensemble learning.
  • the prediction model MDL normalizes the score of each model WL which is a weak learner, and outputs the normalized score.
  • the normalization of the score is shown in the formula (1).
  • Formula (1) is implemented by, for example, a fully connected layer.
  • the prediction model MDL may normalize the scores by dividing the sum of the scores of all the model WLs by K, which is the sum of the model WLs.
  • the teacher data indicates to the cell image IMG whether the nerve cell shows the phenotype of intractable neurological disease at some point in the future or does not show the phenotype of intractable neurological disease.
  • the teacher data may be data in which the cell image IMG is associated with the above-mentioned score, the age at which the intractable neurological disease develops, the prevalence period of the intractable neurological disease, and the like. ..
  • the symptomatic period is, for example, the period from the onset of an intractable neurological disease to the time when the symptom becomes a predetermined state (for example, a state requiring a respirator).
  • the predictive model MDL is learned using the teacher data in which the age of onset of intractable neurological disease is associated with the cell image IMG
  • the predictive model MDL is added to the score when the cell image IMG is input. Output the age of onset of intractable neurological disease.
  • the prediction unit 114 predicts the time (period) until the subject develops an intractable neurological disease based on the age output by the prediction model MDL.
  • the predictive model MDL is learned using the teacher data in which the prevalence period of intractable neurological disease is associated with the cell image IMG
  • the predictive model MDL is added to the score when the cell image IMG is input.
  • the prediction unit 114 predicts the progression rate of the symptoms of the intractable neurological disease when the subject develops the intractable neurological disease.
  • the teacher data shows the probability P1 (H) indicating the plausibility of being hereditary ALS and the probability P1 (S) indicating the plausibility of being sporadic ALS with respect to the cell image IMG.
  • the three-dimensional score [P1 (H), P1 (S), P2]) that elements the probability P2 indicating the plausibility of not being any ALS is the data associated with the teacher label. May be good.
  • a score S [1.0, 0.0, 0.0]) is a teacher label on the cell image IMG of nerve cells prepared by inducing differentiation of pluripotent stem cells of patients with hereditary ALS.
  • the teacher data is data in which a teacher label is associated with personal information indicating the sex, gene polymorphism, or presence / absence of a specific gene (for example, SOD1 gene) of a patient with intractable neurological disease, in addition to the cell image IMG. There may be.
  • the personal information may further include various information such as age, weight, height, lifestyle, illness, and family medical history.
  • the acquisition unit 112 acquires the cell image IMG of the nerve cell and the gender of the subject. Acquire personal information indicating the presence or absence of a gene polymorphism or a specific gene. Then, the prediction unit 114 inputs the cell image IMG and personal information into the learned prediction model MDL, and based on the output result of the prediction model MDL, the subject develops an intractable neurological disease such as ALS. Predict.
  • intractable neurological diseases such as sporadic ALS mentioned above have been considered to develop without genetic influence.
  • sporadic ALS develops in one of the identical twins
  • sporadic ALS develops in the other, and even sporadic ALS has some genetic factors. It is suggested that. Therefore, by inputting the gene polymorphism into the predictive model MDL, it can be expected that the predictive model MDL learns some causal relationship between the onset of sporadic ALS and genetic factors.
  • the prediction model MDL may include, for example, a recurrent network (RNN) in which the intermediate layer is an LSTM (Long short-term memory).
  • RNN recurrent network
  • LSTM Long short-term memory
  • the second embodiment will be described.
  • the cell image IMG of the cells differentiated from pluripotent stem cells derived from patients with intractable neurological diseases such as ALS and brought into contact with the test substance is input to the prediction model MDL, and the output result of the prediction model MDL is used.
  • a screening device 100A for determining whether or not the test substance is a preventive agent or a therapeutic agent for intractable neurological disease will be described.
  • the differences from the first embodiment will be mainly described, and the points common to the first embodiment will be omitted.
  • the same parts as those of the first embodiment will be described with the same reference numerals.
  • FIG. 7 is a diagram showing an example of the configuration of the screening device 100A according to the second embodiment.
  • the screening device 100A includes the configuration of the information processing device 100 according to the first embodiment described above.
  • the screening device 100A includes a communication unit 102, a control unit 110A, and a storage unit 130.
  • the control unit 110A further includes a drug determination unit 120 in addition to the acquisition unit 112, the prediction unit 114, the communication control unit 116, and the learning unit 118 described above.
  • the acquisition unit 112 acquires an image of intractable neurological disease cells differentiated from pluripotent stem cells derived from patients with intractable neurological disease such as ALS, which are in contact with a test substance.
  • the test substance is not particularly limited, and examples thereof include a natural compound library, a synthetic compound library, an existing drug library, and a metabolite library.
  • the preventive agent for intractable neurological disease refers to an agent that can suppress the onset of intractable neurological disease or alleviate the symptoms by administering it to a subject before the onset of intractable neurological disease.
  • the therapeutic agent for intractable neurological disease is a drug that can alleviate the symptoms of intractable neurological disease by administering to the patient after the onset of intractable neurological disease.
  • the learning unit 118 learns the prediction model MDL based on the teacher data as in the first embodiment described above.
  • the prediction unit 114 inputs the image acquired by the acquisition unit 112 into the trained prediction model MDL. Then, the prediction unit 114 determines whether or not a phenotype of intractable neurological disease such as ALS (for example, cell death) appears in the cells to which the test substance is administered, based on the output result of the prediction model MDL in which the image is input. Predict.
  • a phenotype of intractable neurological disease such as ALS (for example, cell death) appears in the cells to which the test substance is administered.
  • the drug determination unit 120 determines whether or not the test substance is a preventive agent or a therapeutic agent for a neurodegenerative disease based on the prediction result of the prediction unit 114.
  • the drug determination unit 120 determines that the test substance is a preventive agent or a therapeutic agent for intractable neurological diseases such as ALS when the following condition (1) is satisfied, and when the condition (2) is satisfied, the test substance. May be determined to be neither a preventive agent nor a therapeutic agent for intractable neurological diseases such as ALS.
  • Condition (1) The score output by the prediction model MDL in which the image is input is below the threshold value, and it is predicted that the phenotype of intractable neurological disease such as ALS does not appear in the cells to which the test substance is administered.
  • Condition (2) The score output by the prediction model MDL in which the image is input is equal to or higher than the threshold value, and it is predicted that the phenotype of intractable neurological disease such as ALS will appear in the cells to which the test substance is administered.
  • the screening device 100A acquires an image of cells of intractable neurological disease such as ALS differentiated from pluripotent stem cells that have been contacted with a test substance, and has learned a prediction model.
  • the acquired image is input to MDL, and based on the output result of the predicted model MDL in which the image is input, the phenotype of intractable neurological disease such as ALS appears in the cells of intractable neurological disease such as ALS in contact with the test substance.
  • the test substance is a prophylactic or therapeutic agent for intractable neurological diseases such as ALS.
  • new drugs that can be prophylactic or therapeutic agents for intractable neurological diseases such as ALS can be efficiently discovered based on images of cells differentiated from pluripotent stem cells.
  • FIG. 8 is a diagram showing an example of the hardware configuration of the information processing device 100 and the screening device 100A of the embodiment.
  • the information processing device 100 includes NIC100-1, CPU100-2, RAM100-3, ROM100-4, secondary storage devices 100-5 such as flash memory and HDD, and drive device 100-6, which are internal buses or dedicated communication lines. It is configured to be interconnected by.
  • a portable storage medium such as an optical disk is mounted on the drive device 100-6.
  • a program stored in a portable storage medium mounted on the secondary storage device 100-5 or the drive device 100-6 is expanded into the RAM 100-3 by a DMA controller (not shown) or the like, and executed by the CPU 100-2.
  • the control units 110 and 110A are realized.
  • the program referenced by the control unit 110 or 110A may be downloaded from another device via the network NW.
  • [Expression example 1] The embodiment described above can be expressed as follows. With the processor Equipped with memory for storing programs When the processor executes the program, Obtained images of cells differentiated from pluripotent stem cells derived from the subject, The acquired image is input to an image obtained by imaging cells of intractable neurological disease differentiated from pluripotent stem cells into a model learned based on data associated with at least information indicating that the intractable neurological disease is present. , Predict that the subject will develop the intractable neurological disease based on the output result of the model in which the image is input. An information processing device that is configured as such.
  • Example 2 The embodiment described above can also be expressed as follows. With the processor Equipped with memory for storing programs When the processor executes the program, Images of intractable neurological disease cells differentiated from pluripotent stem cells that were contacted with the test substance were acquired. The acquired image is input to a model learned based on data in which at least information indicating the phenotype of intractable neurological disease is associated with an image obtained by imaging cells of intractable neurological disease differentiated from pluripotent stem cells. Based on the output result of the model in which the image is input, it is predicted whether or not the phenotype of the intractable neurological disease appears in the cells of the intractable neurological disease to which the test substance is contacted. Based on the predicted result, it is determined whether or not the test substance is a prophylactic or therapeutic agent for the intractable neurological disease. A screening device that is configured to.
  • FIG. 9 is a diagram showing an example of a cell image.
  • the 16 cell images included in the category "Control” shown in the figure are images of spinal cord motor neurons prepared from iPS cells derived from 16 healthy subjects.
  • the 16 cell images included in the category "SOD1 ALS” are images of spinal motor neurons prepared from iPS cells derived from 16 ALS patients having SOD1 mutations.
  • Each cell image is an image of spinal cord motoneurons stained with an antibody against neurofilament H, which is a skeletal protein of nerve cells, after being fixed with PFA.
  • FIG. 10 is a diagram showing an example of a prediction model MDL using Tensorflow / Keras.
  • the prediction model MDL is a neural network including 13 convolutional layers (CNN in the figure) and 3 fully connected layers (FC in the figure).
  • CNN convolutional layers
  • FC fully connected layers
  • FIG. 11 is a diagram for explaining Experimental Example 3.
  • Experimental Example 3 in Experimental Example 3, first, 16 strains of motor neurons were prepared by inducing differentiation of iPS cells of 16 healthy subjects, and 16 iPS of ALS patients having SOD1 mutations were prepared. By inducing differentiation of each cell, 16 strains of motor neurons were produced.
  • healthy control clones motor neurons prepared from iPS cells derived from healthy subjects
  • ALS clones motor neurons prepared from iPS cells derived from ALS patients
  • a predictive model MDL was trained so that healthy subjects and ALS patients could be distinguished from motor neuron images.
  • the number of images of each clone (motor neuron) was 225 per motor neuron strain.
  • images of two healthy control clones derived from healthy subjects and images of two ALS clones derived from ALS patients selected for testing were used.
  • the predictive model MDL was tested.
  • FIG. 12 is a diagram showing an example of a motor neuron image used as a healthy control clone strain
  • FIG. 13 is a diagram showing an example of a motor neuron image used as an ALS clone strain.
  • FIG. 14 is a diagram showing an example of the test result of the prediction model MDL.
  • the horizontal axis in the figure represents the false positive rate, and the vertical axis represents the true positive rate.
  • the AUC Absolute Under the Curve
  • ALS can be diagnosed with sufficient accuracy. It was.
  • FIG. 15 is a diagram showing an example of the image identification result by the prediction model MDL.
  • the predictive model MDL implemented by CNN identifies is visualized using Grad-CAM (gradient-weighted class activation mapping).
  • Grad-CAM gradient-weighted class activation mapping
  • FIG. 16 is a diagram showing the results of comparison of the cell body areas of the healthy control clone and the ALS clone.
  • FIG. 17 is a diagram showing the results of comparing the cell numbers of the healthy control clone and the ALS clone. When the area of the cell body and the number of cells were examined on the image using image analysis software, there was no difference between the healthy control clone and the ALS clone.
  • Example 4 In Experimental Example 4, as in Experimental Example 3, 16 strains of motor neurons were first produced by inducing differentiation of iPS cells of 16 healthy subjects, and iPS cells of 16 sporadic ALS patients. 16 strains of motor neurons were produced by inducing differentiation of each of the above.
  • a predictive model MDL was trained so that healthy subjects and sporadic ALS patients could be distinguished from motor neuron images.
  • the number of images of each clone (motor neuron) was 225 per motor neuron strain.
  • the predictive model MDL was tested using.
  • FIG. 18 is a diagram showing an example of a motor neuron image used as a sporadic ALS clone strain.
  • FIG. 19 is a diagram showing another example of the test result of the prediction model MDL. Similarly to FIG. 14, the horizontal axis of FIG. 19 represents the false positive rate, and the vertical axis represents the true positive rate. As shown in the figure, when the ROC curve was obtained, the AUC, which is the area under the ROC curve, was 0.965, and it was possible to diagnose sporadic ALS with sufficient accuracy.
  • FIG. 20 is a diagram showing another example of the image identification result by the prediction model MDL. Similarly to FIG. 15, in the example of FIG. 20, where in the image the predictive model MDL implemented by CNN identifies is visualized using Grad-CAM. According to Grad-CAM, it was suggested that the predictive model MDL focuses on characteristic parts such as cell bodies and neurites of motor neurons.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Hardware Design (AREA)
  • Image Analysis (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

情報処理装置は、被験者由来の多能性幹細胞から分化した細胞を撮像した画像を取得する取得部と、多能性幹細胞から分化した神経難病の細胞を撮像した画像に、少なくとも神経難病であることを示す情報が対応付けられたデータに基づいて学習されたモデルに対し、前記取得部により取得された前記画像を入力し、前記画像を入力したモデルの出力結果に基づいて、前記被験者が前記神経難病を発症することを予測する予測部と、を備える。

Description

情報処理装置、スクリーニング装置、情報処理方法、スクリーニング方法、及びプログラム
 本発明は、情報処理装置、スクリーニング装置、情報処理方法、スクリーニング方法、及びプログラムに関する。
 本願は、2019年5月31日に出願された日本国特許出願2019-103294号に基づき優先権を主張し、その内容をここに援用する。
 細胞や組織の顕微鏡画像を機械学習により判定する技術が検討されている。例えば、非特許文献1には、培養細胞の顕微鏡画像を機械学習させたモデルにより、核、細胞の生死、細胞種(神経細胞であるか否か)の識別ができたことが記載されている。非特許文献2には、肺癌の病理組織の顕微鏡画像を機械学習させたモデルにより、肺腺癌、扁平上皮癌、健常な肺組織のいずれであるかの識別ができたことが記載されている。
Christiansen E. M., et al., In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images., Cell, 173 (3), 792-803, 2018. Coudray N. et al., Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning., Nat Med., 24 (10), 1559-1567, 2018.
 筋萎縮性側索硬化症(ALS)などの神経難病は早期診断および早期治療が求められている。そのため、従来の診断手法を用いて被験者が神経難病を発症したと診断されるよりも前に、未病を診断することが求められる。未病とは、発症に至っていないものの、軽度の症状が現れている状態である。
 しかしながら、非特許文献1、2に記載された学習モデルは、細胞や組織の現在の状態を判定するものであり、被験者が神経難病の未病であるの否かを予測していない。すなわち、非特許文献1、2に記載された学習モデルは、現時点で被験者が神経難病を発症していないものの、将来のある時点で神経難病を発症するということについては予測していない。
 本発明は、被験者由来の多能性幹細胞から分化した細胞の画像に基づいて、被験者が神経難病を発症することを精度よく予測することができる情報処理装置、スクリーニング装置、情報処理方法、スクリーニング方法、及びプログラムを提供することを目的としている。
 本発明の一態様は、被験者由来の多能性幹細胞から分化した細胞を撮像した画像を取得する取得部と、多能性幹細胞から分化した神経難病の細胞を撮像した画像に、少なくとも神経難病であることを示す情報が対応付けられたデータに基づいて学習されたモデルに対し、前記取得部により取得された前記画像を入力し、前記画像を入力したモデルの出力結果に基づいて、前記被験者が前記神経難病を発症することを予測する予測部と、を備える情報処理装置である。
 本発明の一態様によれば、被験者由来の多能性幹細胞から分化した細胞の画像に基づいて、被験者が神経難病を発症することを精度よく予測することができる。
第1実施形態に係る情報処理装置を含む情報処理システムの一例を示す図である。 第1実施形態に係る情報処理装置の構成の一例を示す図である。 第1実施形態に係る制御部によるランタイムの一連の処理の流れを示すフローチャートである。 第1実施形態に係る予測モデルの一例を示す図である。 第1実施形態に係る制御部によるトレーニングの一連の処理の流れを示すフローチャートである。 第1実施形態に係る予測モデルの他の例を示す図である。 第2実施形態に係るスクリーニング装置の構成の一例を示す図である。 実施形態の情報処理装置およびスクリーニング装置のハードウェア構成の一例を示す図である。 細胞画像の一例を示す図である。 Tensorflow/Kerasを利用した予測モデルの一例を示す図である。 実験例3を説明するための図である。 ヘルシーコントロールクローン株として使用した運動ニューロン画像の一例を表す図である。 ALSクローン株として使用した運動ニューロン画像の一例を表す図である。 予測モデルのテスト結果の一例を表す図である。 予測モデルによる画像の識別結果の一例を表す図である。 ヘルシーコントロールクローンとALSクローンの細胞体の面積の対比結果を表す図である。 ヘルシーコントロールクローンとALSクローンの細胞数の対比結果を表す図である。 孤発性ALSクローン株として使用した運動ニューロン画像の一例を表す図である。 予測モデルのテスト結果の他の例を表す図である。 予測モデルによる画像の識別結果の他の例を表す図である。
 以下、本実施形態における情報処理装置、スクリーニング装置、情報処理方法、スクリーニング方法、及びプログラムを、図面を参照して説明する。
 <第1実施形態>
 [全体構成]
 図1は、第1実施形態に係る情報処理装置100を含む情報処理システム1の一例を示す図である。第1実施形態に係る情報処理システム1は、例えば、一以上の端末装置10と、情報処理装置100とを備える。これらの装置は、ネットワークNWを介して接続される。ネットワークNWは、例えば、インターネット、WAN(Wide Area Network)、LAN(Local Area Network)、プロバイダ端末、無線通信網、無線基地局、専用回線などを含む。図1に示す各装置の全ての組み合わせが相互に通信可能である必要はなく、ネットワークNWには、一部にローカルなネットワークが含まれてよい。
 端末装置10は、例えば、入力装置、表示装置、通信装置、記憶装置、および演算装置を備える端末装置である。具体的には、端末装置10は、パーソナルコンピュータや、携帯電話、タブレット端末などである。通信装置は、NIC(Network Interface Card)などのネットワークカード、無線通信モジュールなどを含む。例えば、端末装置10は、多能性幹細胞を用いて研究や創薬の開発などを行う施設(例えば研究機関や大学、企業)に設置されてよい。
 上述した多能性幹細胞には、例えば、胚性幹細胞(ES細胞)や、人工多能性幹細胞(iPS細胞)、核移植により得られるクローン胚由来の胚性幹(ntES)細胞、精子幹細胞(「GS細胞」)、胚性生殖細胞(「EG細胞」)、人工多能性幹(iPS)細胞などが含まれる。好ましい多能性幹細胞は、ES細胞、iPS細胞およびntES細胞である。より好ましい多能性幹細胞は、ヒト多能性幹細胞であり、特に好ましくはヒトES細胞、およびヒトiPS細胞である。さらに、本発明で使用可能な細胞は、多能性幹細胞だけでなく、多能性幹細胞を経ることなく直接所望の細胞に分化誘導させた、いわゆる「ダイレクトリプログラミング」により誘導された細胞群であってもよい。
 例えば、施設で働く従業員などは、多能性幹細胞から分化誘導させた所望の細胞を顕微鏡などで撮像し、その撮像したディジタル画像(以下、細胞画像IMGと称する)を、端末装置10を介して情報処理装置100に送信する。
 情報処理装置100は、端末装置10から細胞画像IMGを受信すると、ディープラーニングを利用して、細胞画像IMGから、分化誘導する前の多能性幹細胞の抽出元となった被験者が、将来のある時点でALSなどの神経難病を発症することを予測する。
 多能性幹細胞から分化誘導した細胞は、例えば、ALSなどの神経難病に関する細胞であり、具体的には、神経細胞、グリア細胞、血管内皮細胞、ペリサイト、脈絡叢細胞、免疫系細胞等であってよい。神経変性疾患としては、例えば、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(ALS)、脊髄小脳変性症、前頭側頭葉変性症、レビー小体型認知症、多系統萎縮症、ハンチントン病、進行性核上性麻痺、大脳皮質基底核変性症等が挙げられる。多能性幹細胞から分化誘導した細胞は生きたまま撮像してもよいし、固定して免疫化学染色を行った後に撮像してもよい。
 多能性幹細胞から分化した神経難病の細胞とは、多能性幹細胞から分化した細胞であって、神経難病の表現型を示す細胞をいう。多能性幹細胞から分化した神経難病の細胞としては、例えば、ALSなどの神経難病患者由来の多能性幹細胞から分化した細胞、ALSなどの神経難病を発症する遺伝子変異を導入した健常者由来の多能性幹細胞から分化した細胞等を用いることができる。
 例えば、多能性幹細胞から分化誘導した細胞が運動神経細胞などの神経細胞である場合、情報処理装置100は、多能性幹細胞の抽出元となった被験者が、将来のある時点で神経難病の一つであるALSを発症することを予測する。ALSは、神経細胞が徐々に死滅又は機能を喪失することで、運動神経系に障害が生じる病気である。
 従って、情報処理装置100は、多能性幹細胞から分化誘導した神経細胞が将来のある時点でALSなどの神経難病の表現型を示すことを予測することで、被験者が将来のある時点でALSなどの神経難病を発症するのか否かを判定する。表現型とは、ある生物のもつ遺伝子型が形質として表現されたものであり、例えば、その生物の形態、構造、行動、生理的性質などが含まれる。神経難病の表現型としては、例えば、細胞の形態等が挙げられる。以下、一例として、多能性幹細胞から分化誘導した細胞が神経細胞であるものとして説明する。
 [情報処理装置の構成]
 図2は、第1実施形態に係る情報処理装置100の構成の一例を示す図である。図示のように、情報処理装置100は、例えば、通信部102と、制御部110と、記憶部130とを備える。
 通信部102は、例えば、NIC等の通信インターフェースを含む。通信部102は、ネットワークNWを介して、端末装置10などと通信する。
 制御部110は、例えば、取得部112と、予測部114と、通信制御部116と、学習部118とを備える。
 制御部110の構成要素は、例えば、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)などのプロセッサが記憶部130に格納されたプログラムを実行することにより実現される。制御部110の構成要素の一部または全部は、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、またはFPGA(Field-Programmable Gate Array)などのハードウェア(回路部;circuitry)により実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。
 記憶部130は、例えば、HDD(Hard Disk Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、ROM(Read Only Memory)、RAM(Random Access Memory)などの記憶装置により実現される。記憶部130には、ファームウェアやアプリケーションプログラムなどの各種プログラムの他に、モデル情報132が格納される。モデル情報132については後述する。
 [ランタイムの処理フロー]
 以下、第1実施形態に係る制御部110によるランタイムの一連の処理の流れをフローチャートに即して説明する。ランタイムとは、既に学習された予測モデルMDLを利用する状態である。図3は、第1実施形態に係る制御部110によるランタイムの一連の処理の流れを示すフローチャートである。本フローチャートの処理は、例えば、所定の周期で繰り返し行われてよい。
 まず、取得部112は、通信部102を介して、端末装置10から、神経細胞の細胞画像IMGを取得する(ステップS100)。撮像対象の神経細胞は、固定されて免疫染色されていてもよい。具体的には、撮像対象の神経細胞は、例えば、ホルムアルデヒド、パラホルムアルデヒド等の試薬で固定した後、抗ニューロフィラメントH抗体等で免疫染色した神経細胞であってもよい。
 次に、予測部114は、取得部112によって取得された細胞画像IMGを、モデル情報132が示す予測モデルMDLに入力する(ステップS102)。
 モデル情報132は、神経細胞の細胞画像IMGから、その神経細胞がALSなどの神経難病の表現型を示すことを予測するための予測モデルMDLを定義した情報(プログラムまたはデータ構造)である。予測モデルMDLは、例えば、一つまたは複数のニューラルネットワークによって実装される。ニューラルネットワークは、例えば、コンボリューショナルニューラルネットワーク(CNN)であってよい。
 モデル情報132には、例えば、各ニューラルネットワークを構成する入力層、一以上の隠れ層(中間層)、出力層の其々に含まれるユニットが互いにどのように結合されるのかという結合情報や、結合されたユニット間で入出力されるデータに付与される結合係数などの各種情報が含まれる。結合情報とは、例えば、各層に含まれるユニット数や、各ユニットの結合先のユニットの種類を指定する情報、各ユニットを実現する活性化関数、隠れ層のユニット間に設けられたゲートなどの情報を含む。ユニットを実現する活性化関数は、例えば、正規化線形関数(ReLU関数)であってもよいし、シグモイド関数や、ステップ関数、その他の関数などであってもよい。ゲートは、例えば、活性化関数によって返される値(例えば1または0)に応じて、ユニット間で伝達されるデータを選択的に通過させたり、重み付けたりする。結合係数は、例えば、ニューラルネットワークの隠れ層において、ある層のユニットから、より深い層のユニットにデータが出力される際に、出力データに対して付与される重みを含む。結合係数は、各層の固有のバイアス成分などを含んでもよい。
 図4は、第1実施形態に係る予測モデルMDLの一例を示す図である。図示のように、予測モデルMDLは、神経細胞の細胞画像IMGが入力されると、神経細胞が神経難病の表現型を示すことの尤もらしさを示すスコアを尤度或いは確率として出力するように学習された単一のニューラルネットワークである。ニューラルネットワークにはCNNが含まれる。具体的には、予測モデルMDLには、複数層(例えば13層や16層)の畳み込み層と、複数層(例えば3層)の全結合層とが含まれるニューラルネットワークである。スコアは、神経難病の表現型を示すこと、例えば、神経細胞が死に神経難病を発症することを表す確率P1と、神経難病の表現型を示さないこと、例えば、神経細胞が死なずに神経難病を発症しないことを表す確率P2とのそれぞれを要素とする2次元のベクトルによって表されてよい。
 図3のフローチャートの説明に戻る。次に、予測部114は、予測モデルMDLによって出力されたスコアに要素として含まれる確率P1が閾値以上であるのか否かを判定する(ステップS104)。
 予測部114は、確率P1が閾値以上である場合、神経細胞が神経難病の表現型を示す蓋然性が高いことから、神経難病が発症すると予測し(ステップS106)、確率P1が閾値未満である場合、神経細胞が神経難病の表現型を示す蓋然性が低いことから、神経難病が発症しないと予測する(ステップS108)。
 次に、通信制御部116は、予測部114による予測結果を、通信部102を介して端末装置10に送信する(ステップS110)。例えば、通信制御部116は、神経細胞が神経難病の表現型を示すか否かの情報を送信してもよいし、神経難病の発症の有無を示す情報を送信してもよい。
 例えば、神経細胞が神経難病の表現型を示す情報が端末装置10に送信された場合、その端末装置10を操作するユーザは、情報処理装置100に送信した細胞画像IMGに写る神経細胞が将来のある時点でALSなどの神経難病の表現型を示す運命にあるのか、或いはALSなどの神経難病の表現型を示さない運命にあるのかを知ることができる。すなわち、ユーザは、神経細胞へと分化誘導する前の多能性幹細胞の抽出元の被験者が、将来ALSなどの神経難病を発症するのか否かを知ることができる。
 [トレーニングの処理フロー]
 以下、第1実施形態に係る制御部110のトレーニングの一連の処理の流れをフローチャートに即して説明する。トレーニングとは、ランタイムに利用される予測モデルMDLを学習させる状態である。図5は、第1実施形態に係る制御部110によるトレーニングの一連の処理の流れを示すフローチャートである。
 まず、学習部118は、予測モデルMDLを学習するために、教師データに含まれる複数の細胞画像IMGの中から、一つの細胞画像IMGを選択する(ステップS200)。例えば、教師データは、多能性幹細胞から分化誘導した神経細胞を撮像した細胞画像IMGに対して、その神経細胞が将来のある時点でALSなどの神経難病の表現型を示す情報が教師ラベル(ターゲットともいう)として対応付けられたデータである。言い換えれば、教師データは、多能性幹細胞から分化誘導した神経細胞を撮像した細胞画像IMGを入力データとし、神経難病の表現型を表す情報を正解の出力データとしたときに、それら入力データと出力データとを組みにしたデータセットである。将来のある時点における神経難病の表現型は、細胞画像IMGが撮像された時点よりも顕著な神経難病の表現型を表している。
 例えば、神経難病患者の多能性幹細胞を分化誘導して複数の神経細胞を作製し、作製した複数の神経細胞のそれぞれを撮像して、複数の細胞画像IMGを生成する。一方で、健常者の多能性幹細胞を分化誘導して複数の神経細胞を作製し、作製した複数の神経細胞のそれぞれを撮像して、複数の細胞画像IMGを生成する。
 神経難病患者由来の神経細胞を撮像した細胞画像IMGには、神経難病の表現型を示す情報(例えばスコアS=[1.0,0.0])が教師ラベルとして対応付けられ、健常者由来の神経細胞を撮像した細胞画像IMGには、神経難病の表現型を示さないことを示す情報(例えばスコアS=[0.0,1.0])が教師ラベルとして対応付けられる。このように、教師ラベルが対応付けられた複数の細胞画像IMGが教師データとして用意される。
 次に、学習部118は、選択した細胞画像IMGを、予測モデルMDLに入力する(ステップS202)。
 次に、学習部118は、細胞画像IMGを入力した予測モデルMDLの出力結果であるスコアを取得する(ステップS204)。
 次に、学習部118は、予測モデルMDLが出力したスコアと、予測モデルMDLに入力した細胞画像IMGに教師ラベルとして対応付けられたスコアとの誤差(損失ともいう)を算出する(ステップS206)。
 次に、学習部118は、誤差逆伝番等の勾配法に基づいて、誤差が小さくなるように予測モデルMDLのパラメータを決定する(ステップS208)。
 次に、学習部118は、予測モデルMDLに対する学習を所定回数E(例えば30回程度)繰り返したか否かを判定し(ステップS210)、所定回数Eに達していない場合、S202に処理を戻し、前回の処理で学習に用いた細胞画像IMGと同じ画像を、予測モデルMDLに入力することで、予測モデルMDLを学習することを繰り返す。
 次に、学習部118は、教師データに含まれる全ての細胞画像IMGを選択し、予測モデルMDLを学習したか否かを判定し(ステップS212)、未だ全ての細胞画像IMGを選択していない場合、S200に処理を戻し、前回選択した細胞画像IMGと異なる細胞画像IMGを選択し直して、予測モデルMDLを所定回数Eに亘って繰り返し学習する。一方、学習部118は、全ての細胞画像IMGを選択した場合、本フローチャートの処理を終了する。
 以上説明した第1実施形態によれば、情報処理装置100が、多能性幹細胞から分化したALSなどの神経難病の細胞を撮像した画像に、少なくともALSなどの神経難病であることを示す情報が教師ラベルとして対応付けられた教師データに基づいて予測モデルMDLを学習する。そして、情報処理装置100が、被験者由来の多能性幹細胞から分化した細胞を撮像した細胞画像IMGを取得し、学習済みの予測モデルMDLに対し、取得した画像を入力し、その予測モデルMDLの出力結果に基づいて、被験者がALSなどの神経難病を発症することを予測するため、被験者がALSなどの神経難病を将来発症することを精度よく予測することができる。
 一般的に、将来のある時点で、神経難病の表現型(例えば細胞死など)が出現する細胞の細胞画像であっても、神経難病を発症していない初期の頃は、細胞画像から表現型の変化を観察することが困難である。これに対して、本実施形態では、CNN等によって実装される予測モデルMDLを用いるため、細胞画像における肉眼では観察することが困難な細胞の構造の微小な変化や細胞間の相対的な位置関係といった特徴を、隠れ層において畳み込みの特徴量として計算することが期待できる。これにより、人間が細胞画像を視認しても把握できない神経難病を早期に発見することができる。言い換えれば、従来の診断手法では、神経難病を発症していると診断されなかった未病患者であっても、神経難病を発症すると予測することができる。この結果、早期に治療を開始することができる。
 <第1実施形態の変形例>
 以下、第1実施形態の変形例について説明する。上述した第1実施形態において、予測モデルMDLは、単一のニューラルネットワークであるものとして説明したがこれに限られない。例えば、予測モデルMDLは、複数のニューラルネットワークを組み合わせたモデルであってもよい。
 図6は、第1実施形態に係る予測モデルMDLの他の例を示す図である。図示のように、予測モデルMDLは、例えば、K個のモデルWL-1~WL-Kが含まれる。各モデルWLは、神経細胞の細胞画像IMGが入力されると、神経細胞が神経難病の表現型を示すことの尤もらしさを示すスコアを出力するように予め学習された弱学習器である。例えば、モデルWLはCNNを含む。各モデルWLは、互いに並列関係にある。このように複数の弱学習器を組み合わせて一つの学習モデルを生成する手法は、アンサンブル学習と呼ばれる。
 例えば、予測モデルMDLは、弱学習器である各モデルWLのスコアを正規化し、その正規化したスコアを出力する。スコアの正規化を、数式(1)に示す。数式(1)は、例えば、全結合層(Fully-Connected層)によって実装される。
Figure JPOXMLDOC01-appb-M000001
 式中Sは、正規化されたスコアを表し、sは、i番目のモデルWLのスコアを表している。スコアsおよびSは、神経難病の表現型を示すこと、例えば、細胞死することの確率P1と、神経難病の表現型を示さないこと、例えば細胞死しないことの確率P2とのそれぞれを要素とする2次元のベクトル(=[P1,P2])である。数式(1)に示すように、予測モデルMDLは、全モデルWLのスコアの和をモデルWLの総計であるKで除算することで、スコアを正規化してよい。このようにアンサンブル学習を利用することで、トレーニングにおいて利用しなかった未知(未学習)のデータに対する細胞死の予測精度を向上させることができる。
 上述した第1実施形態では、教師データが、細胞画像IMGに対して、神経細胞が将来のある時点で神経難病の表現型を示すのか、或いは神経難病の表現型を示さないのかを表したスコアが教師ラベルとして対応付けられたデータであるものとして説明したがこれに限られない。例えば、教師データは、細胞画像IMGに対して、上述したスコアに加えて、更に、神経難病が発症したときの年齢や、神経難病の有症期間等が対応付けられたデータであってもよい。有症期間とは、例えば、神経難病を発症してから症状が所定の状態(例えば人口呼吸器が必要となる状態)となるまでの期間である。
 例えば、細胞画像IMGに対して神経難病の発症年齢が対応付けられた教師データを用いて予測モデルMDLを学習した場合、予測モデルMDLは、細胞画像IMGが入力されると、スコアに加えて、神経難病の発症年齢を出力する。この場合、予測部114は、予測モデルMDLによって出力された年齢に基づいて、被験者が神経難病を発症するまでの時間(期間)を予測する。
 例えば、細胞画像IMGに対して神経難病の有症期間が対応付けられた教師データを用いて予測モデルMDLを学習した場合、予測モデルMDLは、細胞画像IMGが入力されると、スコアに加えて、神経難病の有症期間を出力する。予測部114は、予測モデルMDLによって出力された有症期間に基づいて、被験者が神経難病を発症する場合に、その神経難病の症状の進行速度を予測する。
 神経難病の一つであるALSには、遺伝性と孤発性の2種類が存在する。従って、教師データは、細胞画像IMGに対して、遺伝性のALSであることの尤もらしさを示す確率P1(H)と、孤発性のALSであることの尤もらしさを示す確率P1(S)と、いずれのALSでないことの尤もらしさを示す確率P2とを要素する3次元のスコア(=[P1(H),P1(S),P2])が教師ラベルとして対応付けられたデータであってもよい。
 例えば、遺伝性ALSを疾患した患者の多能性幹細胞を分化誘導して作製した神経細胞の細胞画像IMGには、スコアS=[1.0,0.0,0.0])が教師ラベルとして対応付けられ、孤発性ALSを疾患した患者の多能性幹細胞を分化誘導して作製した神経細胞の細胞画像IMGには、スコアS=[0.0,1.0,0.0])が教師ラベルとして対応付けられてよい。
 このような教師データを用いて予測モデルMDLを学習することで、単にALSなどの神経難病を発症するのか否かを予測できるだけでなく、どういった種類の神経難病を発症するのかを予測することができる。
 教師データは、細胞画像IMGに加えて、更に、神経難病の患者の性別、遺伝子多型又は特定の遺伝子(例えばSOD1遺伝子)の有無を示す個人情報に対して教師ラベルが対応付けられたデータであってもよい。個人情報には、更に、年齢、体重、身長、生活習慣、病気の有無、家族の病歴といった種々の情報が含まれていてもよい。
 このような教師ラベルが対応付けられた細胞画像IMGおよび個人情報を用いて学習された予測モデルMDLを利用する場合、取得部112は、神経細胞の細胞画像IMGを取得するとともに、被験者の性別、遺伝子多型又は特定の遺伝子の有無を示す個人情報を取得する。そして、予測部114は、細胞画像IMGと個人情報とを、学習済みの予測モデルMDLに対して入力し、その予測モデルMDLの出力結果に基づいて被験者がALSなどの神経難病を発症することを予測する。
 これまで、上述した孤発性ALSなどの神経難病は、遺伝的な影響がなく発症するものと考えられてきた。しかしながら、一卵性双生児の一方に孤発性ALSが発症した場合、他方にも孤発性ALSが発症することが知られており、孤発性ALSであっても、何らかの遺伝的要因があることが示唆されている。そのため、遺伝子多型を予測モデルMDLへの入力とすることで、予測モデルMDLに、孤発性ALSの発症と遺伝的要因との間の何らかの因果関係を学習させることが期待できる。
 予測モデルMDLは、CNNの他に、例えば、中間層がLSTM(Long short-term memory)であるリカレントネットワーク(Reccurent Neural Network:RNN)を含んでもよい。
 <第2実施形態>
 以下、第2実施形態について説明する。第2実施形態では、ALSなどの神経難病患者由来の多能性幹細胞から分化させて、被験物質と接触させた細胞の細胞画像IMGを予測モデルMDLに入力し、その予測モデルMDLの出力結果に基づいて、被験物質が神経難病の予防剤又は治療剤であるか否かを判定するスクリーニング装置100Aについて説明する。以下、第1実施形態との相違点を中心に説明し、第1実施形態と共通する点については説明を省略する。第2実施形態の説明において、第1実施形態と同じ部分については同一符号を付して説明する。
 図7は、第2実施形態に係るスクリーニング装置100Aの構成の一例を示す図である。図示のように、スクリーニング装置100Aは、上述した第1実施形態に係る情報処理装置100の構成を含む。具体的には、スクリーニング装置100Aは、通信部102と、制御部110Aと、記憶部130とを備える。
 第2実施形態に係る制御部110Aは、上述した取得部112、予測部114、通信制御部116、および学習部118に加えて、更に薬剤判定部120を備える。
 第2実施形態に係る取得部112は、被験物質を接触させた、ALSなどの神経難病患者由来の多能性幹細胞から分化した神経難病の細胞を撮像した画像を取得する。被験物質としては特に制限されず、例えば、天然化合物ライブラリ、合成化合物ライブラリ、既存薬ライブラリ、代謝物ライブラリ等が挙げられる。本実施形態において、神経難病の予防剤とは、神経難病の発症前に対象に投与することにより、神経難病の発症を抑制するか又は症状を軽減することができる薬剤をいう。神経難病の治療剤とは、神経難病の発症後に患者に投与することにより、神経難病の症状を軽減することができる薬剤をいう。
 第2実施形態に係る学習部118は、上述した第1実施形態と同様に、教師データに基づいて予測モデルMDLを学習する。
 第2実施形態に係る予測部114は、取得部112によって取得された画像を、学習済みの予測モデルMDLに入力する。そして、予測部114は、画像を入力した予測モデルMDLの出力結果に基づいて、被験物質が投与された細胞に、ALSなどの神経難病の表現型(例えば細胞死)が出現するのか否かを予測する。
 薬剤判定部120は、予測部114の予測結果に基づいて、被験物質が神経変性疾患の予防剤又は治療剤であるか否かを判定する。
 例えば、薬剤判定部120は、以下の条件(1)を満たす場合に、被験物質がALSなどの神経難病の予防剤又は治療剤であると判定し、条件(2)を満たす場合に、被験物質がALSなどの神経難病の予防剤でも治療剤でもないと判定してよい。
 条件(1):画像が入力された予測モデルMDLによって出力されたスコアが閾値以下であり、被験物質が投与された細胞にALSなどの神経難病の表現型が出現しないことが予測されること。
 条件(2):画像が入力された予測モデルMDLによって出力されたスコアが閾値以上であり、被験物質が投与された細胞にALSなどの神経難病の表現型が出現することが予測されること。
 以上説明した第2実施形態によれば、スクリーニング装置100Aが、被験物質を接触させた、多能性幹細胞から分化したALSなどの神経難病の細胞を撮像した画像を取得し、学習済みの予測モデルMDLに対し、取得した画像を入力し、画像を入力した予測モデルMDLの出力結果に基づいて、被験物質を接触させたALSなどの神経難病の細胞に、ALSなどの神経難病の表現型が出現するか否かを予測し、細胞に表現型が出現するか否かの予測結果に基づいて、被験物質がALSなどの神経難病の予防剤又は治療剤であるか否かを判定する。この結果、多能性幹細胞から分化した細胞の画像に基づいて、ALSなどの神経難病の予防剤または治療剤となり得る新薬を効率よく発見することができる。
 <ハードウェア構成>
 上述した実施形態の情報処理装置100およびスクリーニング装置100Aは、例えば、図8に示すようなハードウェア構成により実現される。図8は、実施形態の情報処理装置100およびスクリーニング装置100Aのハードウェア構成の一例を示す図である。
 情報処理装置100は、NIC100-1、CPU100-2、RAM100-3、ROM100-4、フラッシュメモリやHDDなどの二次記憶装置100-5、およびドライブ装置100-6が、内部バスあるいは専用通信線によって相互に接続された構成となっている。ドライブ装置100-6には、光ディスクなどの可搬型記憶媒体が装着される。二次記憶装置100-5、またはドライブ装置100-6に装着された可搬型記憶媒体に格納されたプログラムがDMAコントローラ(不図示)などによってRAM100-3に展開され、CPU100-2によって実行されることで、制御部110および110Aが実現される。制御部110または110Aが参照するプログラムは、ネットワークNWを介して他の装置からダウンロードされてもよい。
 [表現例1]
 上記説明した実施形態は、以下のように表現することができる。
 プロセッサと、
 プログラムを格納したメモリと、を備え、
 前記プロセッサが前記プログラムを実行することにより、
 被験者由来の多能性幹細胞から分化した細胞を撮像した画像を取得し、
 多能性幹細胞から分化した神経難病の細胞を撮像した画像に、少なくとも前記神経難病であることを示す情報が対応付けられたデータに基づいて学習されたモデルに対し、前記取得した画像を入力し、前記画像を入力したモデルの出力結果に基づいて、前記被験者が前記神経難病を発症することを予測する、
 ように構成されている、情報処理装置。
 [表現例2]
 上記説明した実施形態は、以下のように表現することもできる。
 プロセッサと、
 プログラムを格納したメモリと、を備え、
 前記プロセッサが前記プログラムを実行することにより、
 被験物質を接触させた、多能性幹細胞から分化した神経難病の細胞を撮像した画像を取得し、
 多能性幹細胞から分化した神経難病の細胞を撮像した画像に、少なくとも神経難病の表現型を示す情報が対応付けられたデータに基づいて学習されたモデルに対し、前記取得した画像を入力し、前記画像を入力したモデルの出力結果に基づいて、前記被験物質を接触させた神経難病の細胞に、前記神経難病の表現型が出現するか否かを予測し、
 前記予測した結果に基づいて、前記被験物質が前記神経難病の予防剤又は治療剤であるか否かを判定する、
 ように構成されている、スクリーニング装置。
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
[実験例1]
(教師データの準備)
 16人の健常者から作製したiPS細胞と、16人のSOD1変異を有するALS患者から作製したiPS細胞とを用いて、脊髄運動ニューロンを作製した。作製した運動ニューロンをInCell6000(GE healthcare)を用いて細胞画像を取得した。
 図9は、細胞画像の一例を示す図である。図中に示す「Control」というカテゴリに含まれる16枚の細胞画像は、16人の健常者由来のiPS細胞から作製した脊髄運動ニューロンを撮像した画像である。「SOD1 ALS」というカテゴリに含まれる16枚の細胞画像は、16人のSOD1変異を有するALS患者由来のiPS細胞から作製した脊髄運動ニューロンを撮像した画像である。各細胞画像は、PFAで固定した後、神経細胞の骨格タンパクであるneurofilament Hに対する抗体で染色した脊髄運動ニューロンを撮像したものである。
[実験例2]
(トレーニング、検証、試験)
 健常者16人、ALS患者16人のそれぞれのiPS細胞1株あたり、225枚の画像を教師データとして用いて予測モデルMDLを学習した。予測モデルMDLとして利用したプログラムは、Tensorflow/KerasのVGG16である。
 図10は、Tensorflow/Kerasを利用した予測モデルMDLの一例を示す図である。図示のように、予測モデルMDLは、13層の畳み込み層(図中CNN)と、3層の全結合層(図中FC)とが含まれるニューラルネットワークである。12人の健常者および12人のALS患者由来の運動ニューロンの合計5,400枚の画像を教師データとして利用することで、予測モデルMDLを学習し、別の3人の健常者および12人のALS患者由来の運動ニューロンの合計1,350枚の画像で予測精度の検証(validation)を実施した。これにより最適なパラメータを設定し、さらに別の健常者およびALS患者の識別を実施した。この結果、健常者の運動ニューロン画像とALS患者の運動ニューロン画像に対して高いaccuracy値を示す診断結果を得た。さらに、ALS患者iPS細胞由来運動ニューロンと、同一人物の遺伝子修復を行ったiPS細胞由来運動ニューロンの画像についても高いaccuracy値で判別が可能であった。
[実験例3]
 図11は、実験例3を説明するための図である。図11に示すように、実験例3では、まず、16人の健常者のiPS細胞のそれぞれを分化誘導することで16株の運動ニューロンを作製し、16人のSOD1変異を有するALS患者のiPS細胞のそれぞれを分化誘導することで16株の運動ニューロンを作製した。以下、健常者由来のiPS細胞から作製した運動ニューロンを「ヘルシーコントロールクローン」と称し、ALS患者由来のiPS細胞から作製した運動ニューロンを「ALSクローン」と称して説明する。
 次に、16株のヘルシーコントロールクローンの中から、11株をトレーニング用に選択し、3株を検証用に選択し、2株をテスト用に選択した。同様に、16株のALSクローンの中から、11株をトレーニング用に選択し、3株を検証用に選択し、2株をテスト用に選択した。
 トレーニング用の11株のヘルシーコントロールクローンの画像と、トレーニング用の11株のALSクローンの画像と、検証用の3株のヘルシーコントロールクローンの画像と、検証用の3株のALSクローンの画像とを用いて、運動ニューロン画像から健常者とALS患者とを識別できるように予測モデルMDLを学習した。各クローン(運動ニューロン)の画像の枚数は、運動ニューロン1株あたり、225枚とした。そして、十分に学習した予測モデルMDLを用いて、テスト用に選択しておいた健常者由来の2株のヘルシーコントロールクローンの画像と、ALS患者由来の2株のALSクローンの画像とを用いて予測モデルMDLをテストした。
 図12は、ヘルシーコントロールクローン株として使用した運動ニューロン画像の一例を表す図であり、図13は、ALSクローン株として使用した運動ニューロン画像の一例を表す図である。
 図14は、予測モデルMDLのテスト結果の一例を表す図である。図中横軸は偽陽性率を表し、縦軸は真陽性率を表している。図示のように、ROC(Receiver Operating Characteristic)曲線を求めた場合、ROC曲線下の面積であるAUC(Area Under the Curve)は、0.942であり、十分な精度でALSの診断が可能であった。
 図15は、予測モデルMDLによる画像の識別結果の一例を表す図である。図示の例では、CNNによって実装された予測モデルMDLが画像のどこを識別しているのかを、Grad-CAM(gradient-weighted class activation mapping)を用いて可視化した。Grad-CAMによれば、予測モデルMDLが運動ニューロンの細胞体や神経突起といった特徴部分に着目していることが示唆された。
 図16は、ヘルシーコントロールクローンとALSクローンの細胞体の面積の対比結果を表す図である。図17は、ヘルシーコントロールクローンとALSクローンの細胞数の対比結果を表す図である。画像解析ソフトを用いて、画像上において細胞体の面積と細胞数について調べたところ、ヘルシーコントロールクローンとALSクローンとの間に差はなかった。
[実験例4]
 実験例4では、実験例3と同様に、まず、16人の健常者のiPS細胞のそれぞれを分化誘導することで16株の運動ニューロンを作製し、16人の孤発性ALS患者のiPS細胞のそれぞれを分化誘導することで16株の運動ニューロンを作製した。
 次に、健常者由来のiPS細胞から作製した運動ニューロンである16株のヘルシーコントロールクローンの中から、11株をトレーニング用に選択し、3株を検証用に選択し、2株をテスト用に選択した。同様に、孤発性ALS患者由来のiPS細胞から作製した運動ニューロンである16株のALSクローンの中から、11株をトレーニング用に選択し、3株を検証用に選択し、2株をテスト用に選択した。
 トレーニング用の11株のヘルシーコントロールクローンの画像と、トレーニング用の11株のALSクローンの画像と、検証用の3株のヘルシーコントロールクローンの画像と、検証用の3株のALSクローンの画像とを用いて、運動ニューロン画像から健常者と孤発性ALS患者とを識別できるように予測モデルMDLを学習した。各クローン(運動ニューロン)の画像の枚数は、運動ニューロン1株あたり、225枚とした。そして、十分に学習した予測モデルMDLを用いて、テスト用に選択しておいた健常者由来の2株のヘルシーコントロールクローンの画像と、孤発性ALS患者由来の2株のALSクローンの画像とを用いて予測モデルMDLをテストした。
 図18は、孤発性ALSクローン株として使用した運動ニューロン画像の一例を表す図である。
 図19は、予測モデルMDLのテスト結果の他の例を表す図である。図14同様に、図19の横軸は偽陽性率を表し、縦軸は真陽性率を表している。図示のように、ROC曲線を求めた場合、ROC曲線下の面積であるAUCは、0.965であり、十分な精度で孤発性ALSの診断が可能であった。
 図20は、予測モデルMDLによる画像の識別結果の他の例を表す図である。図15同様に、図20の例では、CNNによって実装された予測モデルMDLが画像のどこを識別しているのかを、Grad-CAMを用いて可視化した。Grad-CAMによれば、予測モデルMDLが運動ニューロンの細胞体や神経突起といった特徴部分に着目していることが示唆された。

Claims (15)

  1.  被験者由来の多能性幹細胞から分化した細胞を撮像した画像を取得する取得部と、
     多能性幹細胞から分化した神経難病の細胞を撮像した画像に、少なくとも前記神経難病であることを示す情報が対応付けられたデータに基づいて学習されたモデルに対し、前記取得部により取得された前記画像を入力し、前記画像を入力したモデルの出力結果に基づいて、前記被験者が前記神経難病を発症することを予測する予測部と、
     を備える情報処理装置。
  2.  前記モデルの学習に利用されるデータは、前記神経難病の細胞を撮像した画像に対して、更に、前記神経難病が発症したときの年齢が対応付けられたデータであり、
     前記モデルは、前記細胞を撮像した画像が入力されると、前記年齢を出力し、
     前記予測部は、更に、前記モデルによって出力された前記年齢に基づいて、前記被験者が前記神経難病を発症するまでの時間を予測する、
     請求項1に記載の情報処理装置。
  3.  前記モデルの学習に利用されるデータは、前記神経難病の細胞を撮像した画像に対して、更に、前記神経難病の有症期間が対応付けられたデータであり、
     前記モデルは、前記細胞を撮像した画像が入力されると、前記有症期間を出力し、
     前記予測部は、更に、前記モデルによって出力された前記有症期間に基づいて、前記被験者が発症する前記神経難病の進行速度を予測する、
     請求項1または2に記載の情報処理装置。
  4.  前記モデルの学習に利用されるデータには、健常者由来の多能性幹細胞から分化した細胞を撮像した画像に、前記細胞が神経難病でないことを示す情報が対応付けられたデータが更に含まれる、
     請求項1から3のうちいずれか一項に記載の情報処理装置。
  5.  前記モデルの学習に利用されるデータには、前記神経難病の細胞を撮像した画像に加えて、更に、前記神経難病の患者の性別、遺伝子多型又は特定の遺伝子の有無を示す個人情報に対して、神経難病であることを示す情報が対応付けられたデータが含まれ、
     前記取得部は、更に、前記被験者の性別、遺伝子多型又は特定の遺伝子の有無を示す個人情報を取得し、
     前記予測部は、前記モデルに対して、前記取得部により取得された前記画像および前記個人情報を入力し、前記画像および前記個人情報を入力したモデルの出力結果に基づいて、前記被験者が前記神経難病を発症することを予測する、
     請求項1から4のうちいずれか一項に記載の情報処理装置。
  6.  前記データに基づいて前記モデルを学習する学習部を更に備える、
     請求項1から5のうちいずれか一項に記載の情報処理装置。
  7.  前記多能性幹細胞から分化した細胞は、神経細胞、グリア細胞、血管内皮細胞、ペリサイト、脈絡叢細胞又は免疫系細胞である、
     請求項1から6のうちいずれか一項に記載の情報処理装置。
  8.  前記神経難病は、筋萎縮性側索硬化症(ALS)、アルツハイマー病、パーキンソン病、脊髄小脳変性症、前頭側頭葉変性症、レビー小体型認知症、多系統萎縮症、ハンチントン病、進行性核上性麻痺、又は大脳皮質基底核変性症である、
     請求項1から7のうちいずれか一項に記載の情報処理装置。
  9.  被験物質を接触させた、多能性幹細胞から分化した神経難病の細胞を撮像した画像を取得する取得部と、
     多能性幹細胞から分化した神経難病の細胞を撮像した画像に、少なくとも神経難病の表現型を示す情報が対応付けられたデータに基づいて学習されたモデルに対し、前記取得部により取得された前記画像を入力し、前記画像を入力したモデルの出力結果に基づいて、前記被験物質を接触させた神経難病の細胞に、前記神経難病の表現型が出現するか否かを予測する予測部と、
     前記予測部の予測結果に基づいて、前記被験物質が前記神経難病の予防剤又は治療剤であるか否かを判定する判定部と、
     を備えるスクリーニング装置。
  10.  前記判定部は、前記被験物質を接触させた神経難病の細胞に前記表現型が出現しないことが前記予測部によって予測された場合、前記被験物質が前記神経難病の予防剤又は治療剤であると判定する、
     請求項9に記載のスクリーニング装置。
  11.  前記神経難病は、筋萎縮性側索硬化症(ALS)、アルツハイマー病、パーキンソン病、脊髄小脳変性症、前頭側頭葉変性症、レビー小体型認知症、多系統萎縮症、ハンチントン病、進行性核上性麻痺、又は大脳皮質基底核変性症である、
     請求項9または10に記載のスクリーニング装置。
  12.  コンピュータが、
     被験者由来の多能性幹細胞から分化した細胞を撮像した画像を取得し、
     多能性幹細胞から分化した神経難病の細胞を撮像した画像に、少なくとも神経難病であることを示す情報が対応付けられたデータに基づいて学習されたモデルに対し、前記取得した画像を入力し、前記画像を入力したモデルの出力結果に基づいて、前記被験者が前記神経難病を発症することを予測する、
     情報処理方法。
  13.  コンピュータが、
     被験物質を接触させた、多能性幹細胞から分化した神経難病の細胞を撮像した画像を取得し、
     多能性幹細胞から分化した神経難病の細胞を撮像した画像に、少なくとも神経難病の表現型を示す情報が対応付けられたデータに基づいて学習されたモデルに対し、前記取得した画像を入力し、前記画像を入力したモデルの出力結果に基づいて、前記被験物質を接触させた神経難病の細胞に、前記神経難病の表現型が出現するか否かを予測し、
     前記予測した結果に基づいて、前記被験物質が前記神経難病の予防剤又は治療剤であるか否かを判定する、
     スクリーニング方法。
  14.  コンピュータに、
     被験者由来の多能性幹細胞から分化した細胞を撮像した画像を取得することと、
     多能性幹細胞から分化した神経難病の細胞を撮像した画像に、少なくとも神経難病であることを示す情報が対応付けられたデータに基づいて学習されたモデルに対し、前記取得した画像を入力し、前記画像を入力したモデルの出力結果に基づいて、前記被験者が前記神経難病を発症することを予測することと、
     を実行させるためのプログラム。
  15.  コンピュータに、
     被験物質を接触させた、多能性幹細胞から分化した神経難病患者由来の細胞を撮像した画像を取得することと、
     多能性幹細胞から分化した神経難病の細胞を撮像した画像に、少なくとも神経難病の表現型を示す情報が対応付けられたデータに基づいて学習されたモデルに対し、前記取得した画像を入力し、前記画像を入力したモデルの出力結果に基づいて、前記被験物質を接触させた神経難病患者由来の細胞に、前記神経難病の表現型が出現するか否かを予測することと、
     前記予測した結果に基づいて、前記被験物質が前記神経難病の予防剤又は治療剤であるか否かを判定することと、
     を実行させるためのプログラム。
PCT/JP2020/021384 2019-05-31 2020-05-29 情報処理装置、スクリーニング装置、情報処理方法、スクリーニング方法、及びプログラム WO2020241836A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20812823.1A EP3978594A4 (en) 2019-05-31 2020-05-29 INFORMATION PROCESSING APPARATUS, SCREENING APPARATUS, INFORMATION PROCESSING METHOD, SCREENING METHOD AND PROGRAM
US17/614,243 US20220215544A1 (en) 2019-05-31 2020-05-29 Information Processing Device, Screening Device, Information Processing Method, Screening Method, and Program
SG11202113100TA SG11202113100TA (en) 2019-05-31 2020-05-29 Information processing device, screening device, information processing method, screening method, and program
JP2021522905A JPWO2020241836A1 (ja) 2019-05-31 2020-05-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-103294 2019-05-31
JP2019103294 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020241836A1 true WO2020241836A1 (ja) 2020-12-03

Family

ID=73553188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021384 WO2020241836A1 (ja) 2019-05-31 2020-05-29 情報処理装置、スクリーニング装置、情報処理方法、スクリーニング方法、及びプログラム

Country Status (5)

Country Link
US (1) US20220215544A1 (ja)
EP (1) EP3978594A4 (ja)
JP (1) JPWO2020241836A1 (ja)
SG (1) SG11202113100TA (ja)
WO (1) WO2020241836A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520960A (ja) * 2010-03-03 2013-06-10 国立大学法人京都大学 iPS細胞由来の神経細胞を用いた蛋白質ミスフォールディング病の診断方法
WO2017022854A1 (ja) * 2015-08-05 2017-02-09 国立大学法人京都大学 運動ニューロン疾患の検査方法及び治療剤のスクリーニング方法
JP2018045559A (ja) * 2016-09-16 2018-03-22 富士通株式会社 情報処理装置、情報処理方法およびプログラム
WO2018211687A1 (ja) * 2017-05-19 2018-11-22 株式会社オプティム コンピュータシステム、被験者診断方法及び支援プログラム
WO2018216705A1 (ja) * 2017-05-23 2018-11-29 国立大学法人京都大学 神経変性疾患の予防及び/又は治療剤
JP2019103294A (ja) 2017-12-05 2019-06-24 マブチモーター株式会社 単相モータ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2978740A1 (en) * 2015-03-06 2016-09-15 Blanchette Rockefeller Neurosciences Institute Methods for classifying populations including alzheimer's disease populations
WO2017136285A1 (en) * 2016-02-01 2017-08-10 The Board Of Trustees Of The Leland Stanford Junior University Method and systems for analyzing functional imaging data

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013520960A (ja) * 2010-03-03 2013-06-10 国立大学法人京都大学 iPS細胞由来の神経細胞を用いた蛋白質ミスフォールディング病の診断方法
WO2017022854A1 (ja) * 2015-08-05 2017-02-09 国立大学法人京都大学 運動ニューロン疾患の検査方法及び治療剤のスクリーニング方法
JP2018045559A (ja) * 2016-09-16 2018-03-22 富士通株式会社 情報処理装置、情報処理方法およびプログラム
WO2018211687A1 (ja) * 2017-05-19 2018-11-22 株式会社オプティム コンピュータシステム、被験者診断方法及び支援プログラム
WO2018216705A1 (ja) * 2017-05-23 2018-11-29 国立大学法人京都大学 神経変性疾患の予防及び/又は治療剤
JP2019103294A (ja) 2017-12-05 2019-06-24 マブチモーター株式会社 単相モータ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHRISTIANSEN E. M. ET AL.: "In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images", CELL, vol. 173, no. 3, 2018, pages 792 - 803, XP002788720, DOI: 10.1016/j.cell.2018.03.040
COUDRAY N ET AL.: "Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning", NAT MED., vol. 24, no. 10, 2018, pages 1559 - 1567, XP036608997, DOI: 10.1038/s41591-018-0177-5
KONDO, TAKAYUKI ET AL.: "15. Therapeutic application of iPS cells", 15. IPS, vol. 102, no. 8, 2013, pages 2015 - 2022, XP055766711 *

Also Published As

Publication number Publication date
EP3978594A1 (en) 2022-04-06
SG11202113100TA (en) 2021-12-30
JPWO2020241836A1 (ja) 2020-12-03
US20220215544A1 (en) 2022-07-07
EP3978594A4 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
CN110192252A (zh) 用于评估发育状况并提供覆盖度和可靠性控制的方法和装置
CN108780663A (zh) 数字个性化医学平台和系统
JP2020537798A (ja) 対象における神経行動学的表現型を検知、診断、予測、予知、または処置するための方法及びツール
EP3901963A1 (en) Method and device for estimating early progression of dementia from human head images
Yi et al. XGBoost-SHAP-based interpretable diagnostic framework for alzheimer’s disease
WO2020241772A1 (ja) 情報処理装置、スクリーニング装置、情報処理方法、スクリーニング方法、及びプログラム
Kapoor et al. The role of artificial intelligence in the diagnosis and management of glaucoma
Ahmad et al. Autism spectrum disorder detection using facial images: A performance comparison of pretrained convolutional neural networks
Rakhmetulayeva et al. IMPLEMENTATION OF CONVOLUTIONAL NEURAL NETWORK FOR PREDICTING GLAUCOMA FROM FUNDUS IMAGES.
Bai et al. Optimized combination of multiple graphs with application to the integration of brain imaging and (epi) genomics data
Manjur et al. Detecting Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder Using Multimodal Time-Frequency Analysis with Machine Learning Using the Electroretinogram from Two Flash Strengths
WO2020241836A1 (ja) 情報処理装置、スクリーニング装置、情報処理方法、スクリーニング方法、及びプログラム
Kumar et al. A hybrid deep model with concatenating framework of convolutional neural networks for identification of autism spectrum disorder
Pin et al. Retinal diseases classification based on hybrid ensemble deep learning and optical coherence tomography images
Paunksnis et al. The use of information technologies for diagnosis in ophthalmology
Le et al. Deep learning model for accurate automatic determination of phakic status in pediatric and adult ultrasound biomicroscopy images
Al Jbaar et al. DCNN-BASED EMBEDDED MODELS FOR PARALLEL DIAGNOSIS OF OCULAR DISEASES.
GU et al. Detecting Alzheimer’s Disease using Multi-Modal Data: An Approach Combining Transfer Learning and Ensemble Learning
Rashid et al. Autism spectrum disorder diagnosis using face features based on deep learning
Thakur et al. Predicting glaucoma prior to its onset using deep learning
Hasan et al. A modified CNN model for diagnosing schizophrenia disease using fMRI data
Panda et al. Deep Learning for Polycystic Kidney Disease (PKD): Utilizing Neural Networks for Accurate and Early Detection through Gene Expression Analysis
Ma et al. [Retracted] Self‐Attention‐Guided Recurrent Neural Network and Motion Perception for Intelligent Prediction of Chronic Diseases
Pandya A Bayesian Latent Scale Model for Multivariate Longitudinal Data
Mathkunti et al. Brain Disease Parkinson's Diagnosis using VGG-16 and VGG-19 with Spiral and Waves drawings as Input

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20812823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522905

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020812823

Country of ref document: EP

Effective date: 20220103