WO2020241697A1 - Composite substrate, composite substrate manufacturing method, circuit substrate manufacturing method, method for manufacturing assembly of plurality of circuit substrates, and method for manufacturing plurality of circuit substrates - Google Patents

Composite substrate, composite substrate manufacturing method, circuit substrate manufacturing method, method for manufacturing assembly of plurality of circuit substrates, and method for manufacturing plurality of circuit substrates Download PDF

Info

Publication number
WO2020241697A1
WO2020241697A1 PCT/JP2020/020944 JP2020020944W WO2020241697A1 WO 2020241697 A1 WO2020241697 A1 WO 2020241697A1 JP 2020020944 W JP2020020944 W JP 2020020944W WO 2020241697 A1 WO2020241697 A1 WO 2020241697A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
notch
manufacturing
ceramic substrate
composite substrate
Prior art date
Application number
PCT/JP2020/020944
Other languages
French (fr)
Japanese (ja)
Inventor
晃正 湯浅
貴裕 中村
西村 浩二
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2021522819A priority Critical patent/JPWO2020241697A1/ja
Publication of WO2020241697A1 publication Critical patent/WO2020241697A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Definitions

  • the present invention relates to a composite substrate, a method for manufacturing a composite substrate, a method for manufacturing a circuit board, a method for manufacturing an aggregate of a plurality of circuit boards, and a method for manufacturing a plurality of circuit boards.
  • a circuit board in which a ceramic substrate is used as a base substrate and a circuit pattern is formed on one surface thereof.
  • Such a circuit board is used for, for example, a power module because it is excellent in terms of high thermal conductivity and high insulation.
  • Patent Document 1 metal layers are joined to both sides of a ceramic substrate having a scribing line formed on the surface to form a composite substrate, and the metal layer on the surface is processed into a circuit pattern by etching, and then the scribing line is formed.
  • a technique for manufacturing a plurality of circuit boards by dividing a composite substrate along the above is disclosed.
  • the front and back surfaces of a composite substrate including a ceramic substrate, a first metal layer bonded to the front surface side of the ceramic substrate, and a second metal layer bonded to the back surface side can be easily identified.
  • An object of the present invention is to provide a composite substrate.
  • At least one notch or hole is formed in both the first metal layer and the second metal layer, but one formed in the first metal layer and the other formed in the second metal layer.
  • At least one notch or hole is formed in both the first metal layer and the second metal layer, and the one formed in the first metal layer and the second metal layer are formed.
  • a mode in which the shape, position, quantity, and size are the same or substantially the same, but differ depending on the color, material, or pattern in the notch or hole.
  • the composite substrate of the second aspect of the present invention is the composite substrate, the ceramic substrate is rectangular when viewed from the thickness direction thereof, and the at least one notch is among the four corners of the ceramic substrate. It is formed on one or both of the first metal layer and the second metal layer so as to expose at least one corner portion of the above.
  • At least one notch or a hole is formed in both the first metal layer and the second metal layer, respectively, and both of them.
  • the at least one notch or hole formed in the above is different from each other in any one or more of positions, sizes and shapes.
  • the at least one notch or hole has a function as an alignment mark in the composite substrate.
  • a circuit pattern in which electronic components are mounted is formed on one of the first metal layer and the second metal layer.
  • the other of the first metal layer and the second metal layer functions as a heat radiating layer.
  • At least one scribe line is formed on one of the front surface and the back surface of the ceramic substrate in the composite substrate.
  • the at least one notch or hole is such that a part of the at least one scribe line is located inside the notch or hole when viewed from the thickness direction. Is formed on one of the first metal layer and the second metal layer.
  • the composite substrate of the ninth aspect of the present invention is formed in the composite substrate in a plurality of regions of one of the first metal layer and the second metal layer, which are partitioned by at least one scribing line.
  • a circuit pattern is formed in which electronic components are mounted.
  • a plurality of regions on the other side of the first metal layer and the second metal layer, which are partitioned by at least one scribe line, are heat dissipation layers, respectively. Functions as.
  • the method for manufacturing a composite substrate according to the first aspect of the present invention is a method for manufacturing a composite substrate in which a first metal layer and a second metal layer are bonded to the front surface side and the back surface side of the ceramic substrate, respectively.
  • the two metal layers include a joining step of joining the front surface side and the back surface side of the ceramic substrate, respectively.
  • the method for manufacturing a composite substrate according to a second aspect of the present invention is a method for manufacturing a composite substrate in which a first metal layer and a second metal layer are bonded to the front surface side and the back surface side of the ceramic substrate, respectively.
  • the method for manufacturing a composite substrate according to a third aspect of the present invention is the method for manufacturing a composite substrate, wherein in the notch forming step, at least one of the above is different from each other in any one or more of positions, sizes, and shapes. Notches or holes are formed in both of the above.
  • the method for manufacturing a circuit board of the present invention is a step performed after the method for manufacturing a composite substrate and the joining step, and is a step performed on one or both of the first metal layer and the second metal layer.
  • the method for manufacturing a composite substrate according to a fourth aspect of the present invention is a step performed before the method for manufacturing the composite substrate and the joining step, and at least one scribe line is provided on the front surface or the back surface of the ceramic substrate.
  • the step of forming a scribing line to be formed is included.
  • the method for manufacturing a composite substrate in the method for manufacturing the composite substrate and in the notch forming step, at least one notch or a hole is formed in the thickness direction during the joining step.
  • the at least one notch or hole is formed in one of the first metal layer and the second metal layer so that a part of the at least one scribe line is located.
  • the method for manufacturing an aggregate of a plurality of circuit boards of the present invention is a step for manufacturing the composite substrate and a step performed after the joining step, and is applied to one or both of the first metal layer and the second metal layer.
  • the front surface and the back surface of the ceramic substrate are identified from the formed at least one notch or hole, and are partitioned by the at least one scribing line in one of the first metal layer and the second metal layer.
  • a pattern forming step of forming a circuit pattern in each of the plurality of regions is included.
  • the method for manufacturing a plurality of circuit boards of the present invention includes the method for manufacturing an aggregate of the plurality of circuit boards and the assembly of the plurality of circuit boards by cutting the ceramic substrate along at least one scribing line. Includes a division step of dividing the body.
  • the composite substrate of the present invention is a composite substrate including a ceramic substrate, a first metal layer bonded to the front surface side of the ceramic substrate, and a second metal layer bonded to the back surface side. Can be identified.
  • the method for manufacturing a composite substrate of the present invention it is possible to manufacture a composite substrate whose front and back surfaces can be easily identified.
  • each manufacturing defect does not occur or is unlikely to occur.
  • FIG. 2C is a schematic view of FIG.
  • 2C viewed from the front side. It is a schematic diagram of a plurality of ceramic substrates in a stacked state produced by the method for manufacturing a ceramic substrate of the present embodiment. It is a figure for demonstrating the scrib line forming process included in the manufacturing method of the plurality of mounting substrates of this embodiment. It is a flow chart of the metal layer formation process included in the manufacturing method of the plurality of mounting substrates of this embodiment. It is a figure for demonstrating the metal layer formation process included in the manufacturing method of the plurality of mounting substrates of this embodiment. 5C-5C is a sectional view taken along the line 5C-5C of FIG. 5B. It is a figure for demonstrating the resist printing process included in the manufacturing method of the plurality of mounting substrates of this embodiment.
  • the method S100 for manufacturing a plurality of mounting substrates of the present embodiment includes a green sheet forming step S10, a sintering step S20, and a scribing line forming.
  • the process includes a step S30 (hereinafter referred to as SL forming step S30), a metal layer forming step S40, a resist printing step S50, an etching step S60, a surface treatment step S70, a dividing step S80, and a mounting step S90.
  • SL forming step S30 a step S30
  • a metal layer forming step S40 a resist printing step S50
  • an etching step S60 a surface treatment step S70, a dividing step S80
  • a mounting step S90 a mounting step S90.
  • the motherboard 60 is an example of a composite substrate
  • the collective substrate 60B is an example of an aggregate.
  • the motherboard 60 (an example of a composite substrate) of the present embodiment has a ceramic substrate 40, a first metal layer 50A bonded to the front surface side of the ceramic substrate 40, and a second metal layer 50A bonded to the back surface side of the ceramic substrate 40.
  • a metal layer 50B is provided, and at least one notch NT1 or a hole HL2 is formed in one or both of the first metal layer 50A and the second metal layer 50B so that the front surface and the back surface of the ceramic substrate 40 can be identified. (See FIGS. 5B, 5C, 11 to 12, 13, etc.).
  • the "notch” in the present specification is a part while opening at the peripheral edge of the formed object (specifically, one or both of the first metal layer 50A and the second metal layer 50B). It means the part where.
  • the "notch” referred to here includes a form in which the entire portion in the thickness direction of the object is removed (see reference numeral NT1 in FIG. 5B, reference numeral NT2 in FIG. 10, reference numeral NT4 in FIG. 16 and the like).
  • a form in which a part of the portion in the thickness direction of the above is removed see reference numeral NT3 in FIG. 13) is included.
  • the "notch” can also be regarded as a depression.
  • the “hole” in the present specification does not open at the peripheral edge of the formed object (specifically, one or both of the first metal layer 50A and the second metal layer 50B). It means a portion that is removed from the front surface or the back surface in the thickness direction (see reference numerals HL1, HL1, HL2, etc. in FIGS. 14A and 15B).
  • the "hole” referred to here includes a through hole that penetrates the object to be formed (see reference numeral HL1 in FIG. 14 and reference numeral HL1 in FIGS. 15A and 15B) and a non-penetration that does not penetrate the object to be formed.
  • a hole (recess) is included.
  • the method for manufacturing the motherboard 60 (an example of a composite substrate) of the present embodiment is a method for manufacturing the motherboard 60 in which the first metal layer 50A and the second metal layer 50B are bonded to the front surface side and the back surface side of the ceramic substrate 40, respectively.
  • the first is a notch forming step of forming at least one notch or a hole in one of the first metal layer 50A and the second metal layer 50B so that the front surface and the back surface of the ceramic substrate 40 can be distinguished.
  • the method for manufacturing the circuit board 60C of the present embodiment is a step of manufacturing the motherboard 60 (an example of a composite substrate) of the present embodiment and a step performed after the joining step S42, and is a step performed after the first metal layer 50A and the second metal layer.
  • the front and back surfaces of the ceramic substrate 40 are identified from at least one notch NT1 or hole HL1 formed in one or both of the 50Bs, and an electronic component (illustrated) is provided in one of the first metal layer 50A and the second metal layer 50B. It includes an etching step S60 (an example of a circuit pattern forming step) for forming a circuit pattern CP on which (omitted) is mounted (see FIGS. 1, 7, etc.).
  • the method for manufacturing the aggregate substrate 60B (an example of an aggregate) of the plurality of circuit boards 60C of the present embodiment is a method for manufacturing the motherboard 60 (an example of a composite substrate) of the present embodiment and a step performed after the joining step S42.
  • the front and back surfaces of the ceramic substrate 40 are identified from at least one notch NT1 or hole HL1 formed in one or both of the first metal layer 50A and the second metal layer 50B, and the first metal layer 50A and the second metal layer 50B are identified.
  • An etching step S60 (an example of a circuit pattern forming step) for forming a circuit pattern CP in each of a plurality of regions partitioned by at least one scribing line SL on one of the second metal layers 50B is included (FIG. 1). , See Fig. 7 etc.).
  • the method for manufacturing the plurality of circuit boards 60C of the present embodiment corresponds to the steps from the green sheet forming step S10 to the dividing step S80 in the manufacturing method S100 of the present embodiment (see FIG. 1). (Invention relating to a method for manufacturing a plurality of circuit boards)
  • the method for manufacturing the plurality of circuit boards 60C of the present embodiment is as follows.
  • the step of combining the green sheet forming step S10 and the sintering step S20 in the present embodiment and performing in the order described corresponds to the method for manufacturing the ceramic substrate 40.
  • the method for manufacturing the ceramic substrate 40 of the present embodiment will be described with reference to FIGS. 2A, 2B, 2C and 2D, and FIG.
  • the ceramic substrate 40 is, for example, a ceramic substrate included in a circuit board for a power module mounted on an electric vehicle, a railroad vehicle, or other industrial equipment.
  • the ceramic substrate 40 is obtained by sintering a single-wafer green sheet 30 (see FIG. 2C) described later in a laminated state (see FIG. 3).
  • the single-wafer green sheet 30 is obtained by cutting the strip-shaped green sheet 20 (see FIGS. 2B and 2C). That is, the relationship between the ceramic substrate 40 and the single-wafer green sheet 30 is the relationship between the finished product and the intermediate product (the product manufactured in the process before becoming the finished product), or the first intermediate product and the second intermediate product.
  • the single-wafer green sheet 30 of the present embodiment is manufactured by the steps up to the intermediate stage of the manufacturing method of the ceramic substrate 40 of the present embodiment.
  • the ceramic substrate 40 of the present embodiment is, as an example, a rectangular plate (see FIG. 4).
  • the green sheet forming step S10 will be described with reference to FIGS. 2A, 2B, 2C and 2D.
  • the green sheet forming step S10 of the present embodiment includes a slurry manufacturing step S11, a molding step S12, a cutting step S13, a laminating step S14, a degreasing step S15, and a sintering step. It includes S20 and is performed in the order described above.
  • This step is a step of mixing the raw material powder described later and an organic solvent to prepare the slurry 10.
  • the slurry 10 produced in this step (see FIG. 2B) is molded into a band-shaped green sheet 20 in the next step (molding step).
  • the raw material powder of the slurry 10 is a powder containing a main component and a sintering aid, which will be described later.
  • Main component is 80 wt% to 98.3 wt% of silicon nitride as an example (Si 3 N 4), sintering aid of at least one 1 wt% to 10 wt% as an example (as oxide) Rare earth elements and 0.7% by mass to 10% by mass (oxide equivalent) of magnesium (Mg).
  • the pregelatinization rate of the silicon nitride powder is preferably 20% to 100% in consideration of the density, bending strength and thermal conductivity of the ceramic substrate 40.
  • the raw material powder of silicon nitride is Si 3 N 4 powder (also known as silicon nitride powder or an example of ceramic powder), the raw material powder of Mg is MgO powder, and the powder of rare earth element raw material is Y 2 O 3 powdered denoted.
  • the raw material powder of silicon nitride and the raw material powder of the sintering aid do not have to be Si 3 N 4 powder, Mg O powder and Y 2 O 3 powder, respectively.
  • the Si 3 N 4 powder, the Mg O powder and the Y 2 O 3 powder blended as described above are mixed with a plasticizer, an organic binder and an organic solvent to prepare a slurry 10. Therefore, the slurry 10 produced in this step contains ceramic powder.
  • this step is a step of manufacturing the band-shaped green sheet 20 from the slurry 10.
  • the doctor blade forming apparatus 100 includes a belt conveying mechanism 110, a forming unit 120, and a heating unit 130.
  • the belt transport mechanism 110 has a roller 112A on the upstream side, a roller 112B on the downstream side, and a belt 114, and drives the roller 112 on the downstream side to move the belt 114 from the roller 112 on the upstream side to the roller 112 on the downstream side. Move (along the X direction).
  • the molding unit 120 is arranged on the upper side of the belt 114 (on the Z direction side of the belt 114) and faces the belt 114.
  • the molding unit 120 has an accommodating portion 122 accommodating the slurry 10 and a doctor blade 124.
  • the molding unit 120 is a sheet having a film thickness determined by regulating the slurry 10 taken out from the accommodating portion 122 by its own weight and the adhesive force with the moving belt 114 by the doctor blade 124. Make it into a shape.
  • the heating unit 130 blows warm air WC onto the slurry 10 on the belt 114 having a predetermined film thickness to form the slurry 10 into a sheet (vaporizes the organic solvent).
  • a strip-shaped green sheet 20 having a width defined from the slurry 10 (the Y direction in the drawing corresponds to the width direction) is produced. That is, in the molding step, the slurry 10 is formed into a band shape by doctor blade molding to obtain a band-shaped green sheet 20 composed of Si 3 N 4 (ceramic) as an example.
  • this step is performed after defoaming the slurry 10 produced in the slurry production step S11 and thickening the slurry 10.
  • the film thickness of the band-shaped green sheet 20 produced in this step is set in consideration of the film thickness of the ceramic substrate 40 finally produced.
  • the regulation conditions (distance from the belt 114, etc.) of the doctor blade 124 for regulating the slurry 10 to a predetermined film thickness are also set in consideration of the film thickness of the finally manufactured ceramic substrate 40. Will be done.
  • this step is a step of cutting the strip-shaped green sheet 20 to produce the single-wafer green sheet 30.
  • the cutting device 200 includes a sheet transport mechanism 210 and a cutting portion 220.
  • the sheet transport mechanism 210 has a support portion 212, a first transport portion 214, and a second transport portion 216.
  • the support portion 212 rotatably supports the roller 112B (see FIGS. 2B and 2C) in which the strip-shaped green sheet 20 produced in the molding step S12 is wound around the outer peripheral surface.
  • the first transport portion 214 arranges the posture of the strip-shaped green sheet 20 transported from the support portion 212 and conveys the strip-shaped green sheet 20 to the cutting portion 220 along the X direction (along the longitudinal direction of the strip-shaped green sheet 20). To do.
  • the second transport section 216 transports the single-wafer green sheet 30 produced by cutting the strip-shaped green sheet 20 at the cutting section 220 further downstream (in the X direction).
  • the cutting portion 220 has a housing 222, an irradiation portion 224, and a moving mechanism 226.
  • the irradiation unit 224 irradiates the laser beam LB as an example.
  • the moving mechanism 226 scans the irradiation unit 224 from one end to the other end of the strip-shaped green sheet 20 in the lateral direction (Y direction in the drawing).
  • the irradiation unit 224 and the moving mechanism 226 are attached to the housing 222.
  • the strip-shaped green sheet 20 is conveyed by the sheet conveying mechanism 210 for the length of the single-wafer green sheet 30 to stop the strip-shaped green sheet 20, and the strip-shaped green sheet 20 is stopped by the cutting portion 220.
  • the cutting portion 220 moves the irradiation portion 224 along the Y direction from one end side to the other end side in the lateral direction of the band-shaped green sheet 20 by the moving mechanism 226, while the laser light LB is transferred to the irradiation portion 224. (See FIG. 2).
  • the irradiation unit 224 scanned by the moving mechanism 226 intermittently irradiates the laser beam LB.
  • the moving mechanism 226 scans the irradiation unit 224 by causing the irradiation unit 224 to repeatedly move and stop (see FIG. 2D).
  • the band-shaped green sheet 20 is irradiated with the laser beam LB to cut the band-shaped green sheet 20 to obtain the single-wafer green sheet 30.
  • the laser light LB may be carbon dioxide gas laser light, infrared laser light, ultraviolet laser light or other laser light as long as the band-shaped green sheet 20 can be cut.
  • the strip-shaped green sheet 20 is cut by using the cutting device 200 shown in FIG. 2C to manufacture the single-leaf green sheet 30, but the single-leaf green sheet 30 is formed from the strip-shaped green sheet 20.
  • Other methods may be used as long as they can be produced.
  • a strip-shaped green sheet 20 may be punched out by a press using a press working apparatus (not shown) to produce a single-wafer green sheet 30.
  • this step is a step of stacking a plurality of single-wafer green sheets 30 in the thickness direction thereof.
  • This step is a step performed for efficiently sintering the single-wafer green sheet 30 in a later step (sintering step S20).
  • a plurality of single-wafer green sheets 30 are laminated via a non-reactive powder layer (not shown) described later.
  • the number of sheets of the sheet-fed green sheets 30 that overlap each other is small, the number of sheets that can be processed at one time in the sintering furnace (not shown) in the subsequent sintering step S16 is small (the production efficiency is low).
  • the number of sheets of the sheet-fed green sheet 30 stacked is large, the binder contained in the sheet-fed green sheet 30 is less likely to be decomposed in the next step (defatting step S15).
  • the number of sheet-fed green sheets 30 to be stacked in this step is 8 to 100, preferably 30 to 70.
  • the non-reactive powder layer of the present embodiment is, for example, a boron nitride powder layer (BN powder layer) having a film thickness of about 1 ⁇ m to 20 ⁇ m.
  • the BN powder layer has a function of easily separating the ceramic substrate 40 after the next step (sintering step S16).
  • the BN powder layer is applied as a slurry of BN powder on one surface of each sheet-fed green sheet 30 by, for example, spraying, brush coating, roll coater, screen printing, or the like.
  • the BN powder has a purity of 85% or more, and preferably has an average particle size of 1 ⁇ m to 20 ⁇ m.
  • This step is a step for degreasing the binder and the plasticizer contained in the single-wafer green sheet 30 before the next step (sintering step S16).
  • a plurality of single-wafer green sheets 30 (see FIG. 3) stacked in the laminating step S14 are held in a temperature environment of 450 ° C. to 750 ° C. for 0.5 hours to 20 hours.
  • the binder and the plasticizer contained in the plurality of single-wafer green sheets 30 are degreased.
  • a plurality of single-wafer green sheets 30 (hereinafter referred to as a plurality of single-wafer green sheets 30 in FIG. 3), which are laminated in the laminating step S14 and degreased by the binder and the plasticizer in the degreasing step S15, are baked.
  • a plurality of ceramic substrates 40 are manufactured in a stacked state.
  • the type of the ceramic substrate 40 is not particularly limited, and examples thereof include carbides, oxides, and nitrides. Specific examples thereof include silicon carbide, alumina, silicon nitride, aluminum nitride and boron nitride, and more preferably silicon nitride and aluminum nitride.
  • the SL forming step S30 will be described with reference to FIG.
  • at least one scribe line SL (three as an example in this embodiment) is formed on one surface (front surface 40A1 as an example in this embodiment) of the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40. It is a process to do.
  • the ceramic substrate 40A with SL is manufactured (see FIG. 4).
  • the surface 40A1 of the ceramic substrate 40 is divided into three equal parts in the width direction and three equal parts in the length direction as an example by a laser beam irradiated from an irradiation unit (not shown).
  • each scribe line SL is composed of a plurality of dents arranged in a straight line (see FIG. 5C). Therefore, the irradiation unit (for example, a carbon dioxide laser light source, a YAG laser light source, etc.) used in this step can intermittently irradiate laser light, for example.
  • Each scribe line SL is used as a cutting line when the ceramic substrate 40 is divided into a plurality of sheets (six in the present embodiment) in the dividing step S80 (see FIG. 1), which is a later step.
  • this step includes a notch forming step S41 and a joining step S42, and is performed in the order described thereof.
  • the notch forming step S41 is a step of forming the notch NT1 on the first metal layer 50A joined to the surface 40A1 side of the ceramic substrate 40A with SL, which is rectangular when viewed from the thickness direction thereof (see FIG. 5B). ..
  • a strip-shaped metal layer (not shown) is cut using a device such as the cutting device 200 shown in FIG. 2C to produce a rectangular single-wafer metal layer, the metal layer is attached to the device.
  • the first metal layer 50A may be manufactured by forming a notch NT1 in the single-wafer metal layer by the press unit (not shown).
  • a notch is not formed in the second metal layer 50B which is rectangular when viewed from the thickness direction and is joined to the back surface 40A2 side of the ceramic substrate 40A with SL.
  • the ceramic with SL is formed in the joining step S42.
  • the plate-shaped first metal layer 50A and second metal layer 50B before being joined to the substrate 40A are referred to as they are.
  • the second metal layer 50B and the ceramic substrate 40A with SL as viewed from the respective thickness directions have the same outer peripheral shape and size.
  • the first metal layer 50A and the second metal layer 50B have the same thickness, shape, size, and material, respectively, except that the notch NT1 is formed in the first metal layer 50A.
  • the types of the first metal layer 50A and the second metal layer 50B are not particularly limited, and examples thereof include copper, copper alloys, aluminum, and aluminum alloys.
  • the joining step S42 is a step of joining the first metal layer 50A and the second metal layer 50B to the front surface 40A1 side and the back surface 40A2 side of the ceramic substrate 40A with SL, respectively.
  • the first metal layer 50A and the second metal layer 50B are joined to the front surface 40A1 side and the back surface 40A2 side, respectively, via a brazing material (not shown).
  • a paste-like active metal brazing material is uniformly applied to the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40 by a method such as a roll coater method, a screen printing method, or a transfer method, and further, a uniformly applied paste.
  • the first metal layer 50A and the second metal layer 50B are joined to the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40 by the active metal method, respectively, via the active metal brazing material.
  • the screen printing method is preferable in that the paste-like brazing material is uniformly applied. Further, in this case, it is preferable to control the viscosity of the paste-like active metal brazing material to 5 Pa ⁇ s to 20 Pa ⁇ s.
  • An excellent paste-like active metal brazing material can be obtained by blending the organic solvent amount in the paste-like active metal brazing material in the range of 5% by mass to 25% by mass and the binder amount in the range of 2% by mass to 15% by mass. Can be done.
  • the heating temperature of the joint may be, for example, 700 ° C. to 900 ° C.
  • the atmosphere in the heating furnace may be an inert gas such as nitrogen.
  • the joint may be heated under reduced pressure below atmospheric pressure or under vacuum.
  • the heating furnace may be a continuous type that heats a plurality of joints while continuously supplying them, or may be a type that heats one or a plurality of joints in a batch type.
  • the heating of the joint may be performed while pressing the joint in the stacking direction.
  • a part of the scribe line SL is located inside the notch NT1 (see FIG. 5B). ..
  • the notch is formed so that a part of the scribing line SL is located inside the notch NT1 when viewed from the thickness direction of the ceramic substrate 40A with SL during the joining step S42.
  • This is a step of forming NT1 on the first metal layer 50A, which is one of the first metal layer 50A and the second metal layer 50B.
  • this step is performed in the order of the notch forming step S41 and the joining step S42, and when this step is completed, the motherboard 60 is manufactured (see FIGS. 5B and 5C).
  • the shape of the notch NT1 formed in the notch forming step S41 is rectangular in FIG. 5B, but the shape of the notch NT1 is such that a part of the scribe line SL is inside the notch NT1 at the end of the joining step S42. It does not have to be rectangular as long as it is positioned. For example, it may have an arc shape, a triangular shape, or other shape.
  • the motherboard 60 of the present embodiment manufactured at the end of the metal layer forming step S40 will be described with reference to FIGS. 5B and 5C.
  • the motherboard 60 of the present embodiment has a ceramic substrate 40, a first metal layer 50A bonded to the front surface side of the ceramic substrate 40, and a second metal layer bonded to the back surface side of the ceramic substrate 40.
  • 50B is provided, and one or both of the first metal layer 50A and the second metal layer 50B (the first metal layer 50A in this embodiment) are cut so that the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40 can be distinguished.
  • the notch NT1 is formed.
  • a scribe line SL is formed on one of the front surface 40A1 and the back surface 40A2 (front surface 40A1 in this embodiment) of the ceramic substrate 40 included in the motherboard 60 of the present embodiment. That is, the ceramic substrate 40 included in the motherboard 60 of the present embodiment is a ceramic substrate 40A with SL in which a scribe line SL is formed on the surface 40A1.
  • the notch NT1 is one of the first metal layer 50A and the second metal layer 50B (the first in the present embodiment) so that a part of the scribe line SL is located inside the notch NT1 when viewed from the thickness direction of the motherboard 60. It is formed in one metal layer 50A) (see FIG. 5B).
  • the notch NT1 is formed in only one of the first metal layer 50A and the second metal layer 50B (an example of the above-mentioned first aspect). Therefore, based on the premise that the surface on the side where the notch NT is formed is the front surface, the notch NT1 of the present embodiment has a function of enabling the identification of the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40. .. Further, in the case of the present embodiment, the notch NT1 is formed in the first metal layer 50A so that a part of the scribe line SL is located inside the notch NT1.
  • the notch NT1 of the present embodiment has a function of enabling the identification of the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40. Has.
  • the resist printing step S50 will be described with reference to FIG.
  • the first metal layer 50A of the motherboard 60 is coated with a photosensitive resist film PRF, and each circuit described later is formed in six regions of the first metal layer 50A partitioned by three scribe lines SL.
  • an exposure apparatus (not shown) is used to print a resist pattern PRP on the resist film PRF (the resist pattern PRP is cured, and a portion of the resist film PRF other than the resist pattern PRP is printed. Leave uncured).
  • the motherboard 60A with PRP is manufactured.
  • the operator in this step can easily identify the first metal layer 50A of the notched motherboard 60A. Further, the resist pattern PRP (circuit pattern CP) is not formed in the portion of the first metal layer 50A where the notch NT1 is formed.
  • the etching step S60 (an example of the circuit pattern forming step) will be described with reference to FIG. 7.
  • the uncured resist film PRF in the resist film PRF of the motherboard 60A with PRP is removed, the exposed portion of the first metal layer 50A is etched, and then the remaining resist pattern PRP is removed to remove the circuit pattern CP. Is the process of forming.
  • the motherboard 60A with PRP before this step becomes a collective substrate 60B in which the circuit pattern CP is formed in each of the six regions partitioned by the three scribe lines SL.
  • the assembly substrate 60B when the assembly substrate 60B is formed, all the portions of the three scribe lines SL formed in the SL forming step S30 are exposed as the first metal layer 50A is etched. Along with this, the portion of the first metal layer 50A where the notch NT1 is formed disappears. That is, the notch NT1 that does not function in the assembly substrate 60B is eliminated in this step. Then, in each circuit pattern CP formed in this step, electronic components (not shown) such as an IC, a capacitor, and a resistor are mounted in the mounting step S90 described later.
  • Circuit pattern CPs on which electronic components (not shown) are mounted are formed in each of a plurality of regions (six in the present embodiment) partitioned by the scribing lines SL (three in the present embodiment). It will be.
  • the etching step S60 is taken as an example of the circuit pattern forming step, but the combination of the resist printing step S50 and the etching step S60 may be regarded as an example of the circuit pattern forming step.
  • the surface treatment step S70 will be described.
  • the resist remaining on the surface of the metal layer of the etched assembly substrate is removed, and Ni-P plating or Ag plating is performed by an rust preventive treatment or an electroless plating method to prevent the metal layer from rusting.
  • Solder resist is printed on the circuit pattern of the assembly board to prevent solder from squeezing out.
  • a protective layer such as a solder resist (not shown) is formed on the surface of the assembly board 60B on the side where a plurality of (six in this embodiment) circuit patterns CP are formed, except for the jointed portion to which the electronic components are bonded. This is a step of coating with and surface-treating a portion other than the joint portion.
  • the joint portion to which the electronic component is joined is plated by, for example, an electrolytic plating method, and the surface treatment of the joint portion is performed.
  • the product at the end of the etching step S60 is the assembly substrate 60B, but the product at the end of the surface treatment step S70, that is, the substrate in which the assembly substrate 60B is coated with the protective layer is assembled. You may think of it as a substrate.
  • a plurality of assembly substrates 60B (or ceramic substrates 40A with SL) are cut along a plurality of (three as an example in this embodiment) scribing line SL, and a plurality of assembly substrates 60B (in this embodiment) are cut.
  • it is a step of dividing into 6 circuit boards 60C. That is, this step is a step of cutting the ceramic substrate 40 along at least one scribe line SL (three as an example in this embodiment) to divide the collective substrate 60C of the plurality of circuit boards 60B.
  • the first metal layer 50A becomes the circuit pattern CP of each circuit board 60C by the steps so far.
  • the region partitioned by the three scribe lines SL is the metal on the side opposite to the side on which the circuit pattern CP is formed in each circuit board 60C by the steps so far.
  • the metal layer functions as a heat radiating layer for radiating heat generated by electronic components mounted on the circuit pattern CP when the mounting board (not shown) manufactured in the mounting step S90 described later is used. ..
  • At least one of the first metal layer 50A and the second metal layer 50B (second metal layer 50B in this embodiment) of the motherboard 60 of the present embodiment (see FIGS. 5B and 5C).
  • Each of the plurality of regions (six in the present embodiment) partitioned by the scribing line SL (three in the present embodiment) functions as a heat dissipation layer.
  • This step is a step of mounting an electronic component (not shown) on each circuit board 60C (see FIG. 8).
  • a mounting device (not shown) is used to attach solder (not shown) to a joint portion where electronic components are joined in the circuit pattern CP (see FIG. 8) of each circuit board 60C, and the joint portion is attached. Join the joining terminals of electronic components to.
  • this step is a step after the split step S80, but the split step S80 may be performed after the main step. That is, the manufacturing method S100 of the present embodiment may be performed in the order of the mounting step S90 and the dividing step S80 after the surface treatment step S70.
  • the above is the description of the mounting process S90. After manufacturing the plurality of mounting boards, for example, an inspection device (not shown) is used to inspect the circuit pattern CP, inspect the operation of electronic components, and the like. The above is the description of the manufacturing method S100 of the present embodiment.
  • the notch NT1 is formed in the first metal layer 50A of the motherboard 60. Therefore, the motherboard 60 of the present embodiment can easily identify the front and back sides of the motherboard 60 in the resist printing step S50.
  • the metal layer forming step S40 of the present embodiment manufacturing method of the motherboard 60 of the present embodiment
  • manufacturing method of the plurality of circuit boards 60C of the present embodiment S10 to S80 in FIG. 1
  • manufacturing method S100 of the present embodiment manufacturing defects do not occur or are unlikely to occur.
  • the means for identifying the front and back surfaces of the motherboard 60 is not, for example, a mark (for example, a printed pattern) attached to the first metal layer 50A.
  • the mark may be lost due to rubbing or the like during any step of the manufacturing method of the present embodiment.
  • the notch NT1 which is a means for identifying the front and back of the motherboard 60 is not lost by rubbing or the like. Therefore, in the present embodiment, the front and back surfaces of the motherboard 60 can be reliably identified as compared with the case where the means for identifying the front and back surfaces of the motherboard 60 is a mark attached to the first metal layer 50A.
  • the notch NT1 of the present embodiment can be formed at the time of manufacturing the first metal layer 50A.
  • a strip-shaped metal layer (not shown) is cut using a device such as the cutting device 200 shown in FIG. 2C to produce a rectangular single-wafer metal layer, the metal layer is attached to the device.
  • the first metal layer 50A may be manufactured by forming a notch NT1 in the single-wafer metal layer by the press unit (not shown). Therefore, according to the present embodiment, the cutout NT1 which is a means for distinguishing the front and back sides of the motherboard 60 can be formed easily or at low cost.
  • the notch NT1 of the present embodiment is formed in a portion of the first metal layer 50A other than the portion where the circuit pattern CP is formed (see FIG. 7). Therefore, the portion of the first metal layer 50A where the notch NT1 is formed disappears in the etching step S60. Therefore, according to the present embodiment, the influence of the notch NT1 does not remain on the plurality of circuit boards 60C and the plurality of mounting boards to be manufactured.
  • the first metal layer 50A is joined to the ceramic substrate 40A with SL so that a part of the scribe line SL is located inside the notch NT1 (see FIG. 5B). Therefore, in the case of the present embodiment, the front and back surfaces of the motherboard 60 can be identified by directly visually recognizing the scribe line SL in the resist printing step S50.
  • an example of ceramic powder has been described as silicon nitride.
  • an example of the ceramic powder may be another ceramic powder.
  • aluminum nitride may be used.
  • the molding step S12 (see FIG. 2A) included in the green sheet forming step S10 of the present embodiment, it is assumed that the doctor blade molding is used. However, if the slurry 10 can be molded into the band-shaped green sheet 20, the molding step S12 may be performed by another method. For example, the molding step S12 may be performed by extrusion molding.
  • the irradiation unit 224 is moved from one end side to the other end side of the band-shaped green sheet 20 in the lateral direction.
  • the strip-shaped green sheet 20 can be cut to obtain the single-wafer green sheet 30
  • the cut portion of the strip-shaped green sheet 20 is one end side of the strip-shaped green sheet 20 in the lateral direction as in the case of the present embodiment. It does not have to be a straight portion extending from the other end to the other end.
  • the strip-shaped green sheet 20 is cut so as to separate (or hollow out) the single-leaf green sheet 30 from the strip-shaped green sheet 20 by making a hole in the strip-shaped green sheet 20 in the shape of the single-leaf green sheet 30.
  • the single-wafer green sheet 30 obtained by cutting the strip-shaped green sheet 20 may have at least a part of all end faces thereof as a cut surface.
  • the scribe line SL has been described as having a plurality of dents arranged in a straight line (see FIG. 5C).
  • the scribe line SL may be, for example, a continuous groove, a plurality of dents having different lengths, widths, etc., as long as the function can be exhibited.
  • the plurality of scribe lines SL has been described as being three scribe lines SL (see FIG. 4). However, the plurality of scribe lines SL may be at least one or more scribe lines SL.
  • the first metal layer 50A and the second metal layer 50B have thickness, shape, size and material, respectively, except that the notch NT1 is formed in the first metal layer 50A.
  • the thickness of the first metal layer 50A and the thickness of the second metal layer 50B may be different from each other.
  • the circuit pattern CP is formed in the first metal layer 50A in which the notch NT1 is formed (see FIGS. 6 and 7).
  • the circuit pattern CP may be formed on the second metal layer 50B in which the notch NT1 is not formed. That is, the notch NT1 that enables identification of the front surface and the back surface of the ceramic substrate 40 (motherboard 60) may be formed on one of the first metal layer 50A and the second metal layer 50B.
  • At least one notch NT1 may be formed in each of the first metal layer 50A and the second metal layer 50B, and the number of notches NT1 formed in each layer may be different.
  • two notches NT1 are formed in the first metal layer 50A
  • one notch NT1 is formed in the second metal layer 50B (an example of the second aspect described above).
  • two notches NT1 formed in the first metal layer 50A and one notch formed in the second metal layer 50B are two notches NT1 formed in the first metal layer 50A and one notch formed in the second metal layer 50B.
  • the notch NT1 enables identification of the front surface and the back surface of the ceramic substrate 40 (motherboard 60).
  • the notch NT1 is formed in the first metal layer 50A in the metal layer forming step S40, the circuit pattern CP is formed in the first metal layer 50A in the etching step S60, and a plurality of circuits are formed in the dividing step S80. It has been explained that when the substrate 60C is manufactured, the second metal layer 50B becomes a plurality of heat dissipation layers. However, the notch NT1 may be formed in the second metal layer 50B, and the circuit pattern CP may be formed in the second metal layer 50B.
  • the first metal layer 50A in which the notch NT1 is formed is joined to the ceramic substrate 40 (see the flow chart of FIG. 5A).
  • a notch NT1 is formed in the first metal layer 50A. May be good. That is, a notch NT1 that enables identification of the front surface and the back surface of the motherboard 60 may be formed before the resist printing step S50.
  • the notch NT1 is formed at a position overlapping a part of the scribe line SL in the first metal layer 50A (see FIG. 5B).
  • the notch NT2 is formed at a position other than a position overlapping a part of the scribe line SL in the first metal layer 50A. May be good.
  • the notch NT2 may be formed in at least one of the four corners of the first metal layer 50A.
  • the four notches NT2 may be formed at at least one of the four corners.
  • the notch NT2 may be used as, for example, an alignment mark.
  • the notch NT2 is also formed at the four corners of the second metal layer 50B.
  • the notch NT2 of the first metal layer 50A and the notch NT2 of the second metal layer 50B may be different in size from each other (the second aspect described above). An example). According to this modification, it is possible to identify the front surface and the back surface of the motherboard 60 by recognizing the difference between the size of the notch NT2 of the first metal layer 50A and the size of the notch NT2 of the second metal layer 50B. ..
  • notches NT2 are formed at each of the four corners of both the first metal layer 50A and the second metal layer 50B. That is, in the case of the second modification, the notch NT2 is formed in the same portion of both the first metal layer 50A and the second metal layer 50B when viewed from the thickness direction.
  • the notch NT2 of the first metal layer 50A and the notch NT2 of the second metal layer 50B may be different in size from each other. did.
  • the shape of the notch NT2 of the first metal layer 50A (rectangular shape as an example) and the shape of the notch NT2 of the second metal layer 50B (triangular shape as an example). May have different shapes from each other (an example of the above-mentioned second aspect).
  • the third modification it is possible to identify the front surface and the back surface of the motherboard 60 by recognizing the difference between the shape of the notch NT2 of the first metal layer 50A and the shape of the notch NT2 of the second metal layer 50B. To do.
  • the notch NT2 of the first metal layer 50A and the notch NT2 of the second metal layer 50B are formed at the same positions when viewed from the thickness direction of the ceramic substrate 40, respectively.
  • the notch NT2 in the third modification is It has a function of enabling identification of the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40.
  • the SL forming step S30 is performed before the metal layer forming step S40 of the present embodiment (see FIGS. 1 and 4).
  • the second metal layer 50B may be joined.
  • at least one notch NT1 may be formed in one or both of the first metal layers 50A and 50B.
  • the mounting step S90 is performed without performing the dividing step S80 after the surface treatment step S70 (see FIG. 1), one mounting substrate is manufactured from one motherboard 60. ..
  • the notch NT1 of the present embodiment has a form in which the entire portion in the thickness direction of the first metal layer 50A is removed.
  • the notch NT1 of the present embodiment may be formed by removing a part of the portion in the thickness direction of the ceramic substrate 40 as in the notch NT3 of the fifth modification shown in FIG. 13 (the first described above). An example of an embodiment).
  • the notch NT1 of the present embodiment has a form in which the entire portion in the thickness direction of the first metal layer 50A is removed.
  • the notch NT1 of the present embodiment may be formed (through hole) in which the notch NT1 of the present embodiment is not opened at the peripheral edge of the ceramic substrate 40 and is penetrated in the thickness direction thereof, as in the hole HL1 of the sixth modification shown in FIG. An example of the first aspect described above).
  • the hole HL1 of the fifth modification enables the identification of the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40. It has the function of doing.
  • the shape of the hole HL1 is circular when viewed from the thickness direction of the first metal layer 50A, but the shape of the hole HL1 when viewed from the thickness direction does not have to be circular.
  • the hole HL1 or the hole HL2 is formed in the single-wafer metal layer by a press unit (not shown) in the same manner as the method for forming the notch NT1 in the present embodiment.
  • the layer 50A or the second metal layer 50B may be manufactured.
  • the first metal layer 50A and the second metal layer 50B form the motherboard 60, and they are located at the same positions when viewed from the thickness direction.
  • Holes HL1 and HL2 having the same size and shape may be formed (an example of the above-mentioned third aspect).
  • the hole HL1 formed in the first metal layer 50A is a through hole
  • the hole HL2 formed in the second metal layer 50B is a non-through hole.
  • the side on which the hole HL1 (through hole) is formed is the front surface of the ceramic substrate 40 and the side on which the hole HL2 (non-through hole) is formed is the back surface.
  • the holes HL1 and the holes HL2 of the seventh modification have a function of enabling the identification of the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40.
  • the first metal layer 50A and the second metal layer 50B form the motherboard 60 in a state where the first metal layer 50A and the second metal layer 50B form the motherboard 60, they have the same size and the same shape at the same position when viewed from the thickness direction.
  • a plurality of notches NL4 are formed (an example of the above-mentioned third aspect). Even in this case, if the features that enable the distinction between the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40 can be visually recognized from the plurality of notches NT4 in the ceramic substrate 40, the plurality of notches NT4 will be the surface 40A1 of the ceramic substrate 40. It can be said that it is a notch that enables the distinction between the back 40A2 and the back 40A2.
  • the scribe line SL (an example of the pattern) formed on the surface 40A1 of the ceramic substrate 40 can be visually recognized from a part of the plurality of notches NT4, the scribe line SL has the above-mentioned characteristics. Equivalent to. Based on the above, based on the premise that the side on which the scribing line SL is formed in the notch NT1 is the surface of the ceramic substrate 40, it is formed on each of the first metal layer 50A and the second metal layer 50B of the eighth modification.
  • the plurality of notches NT4 made have a function of enabling identification of the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40.
  • the eighth modification it is assumed that a plurality of notches NT4 are formed in each metal layer, but only one notch NT4 may be formed in each metal layer. Further, the notch NT4 of the eighth modification may be, for example, the hole HL1 (through hole) of the sixth modification.
  • the above-described embodiment (see FIGS. 1 to 8) and the plurality of modifications (see, for example, FIGS. 9 to 16) have been described separately, but as a mode belonging to the technical scope of the present invention. May be a combination of one of these with some technical elements of the other form.
  • the four notches NT2 of the first metal layer 50A of the motherboard 60 (see FIG. 10) of the second modification may be the notch NT1 (see FIG. 5B) of the above-described embodiment.

Abstract

This composite substrate is provided with a ceramic substrate, a first metal layer bonded to a front surface side of the ceramic substrate, and a second metal layer bonded to a back surface side of the ceramic substrate. The first metal layer and/or the second metal layer is formed with at least one cut-out or hole enabling identification of a front surface and a back surface of the ceramic substrate. The ceramic substrate is rectangular when viewed from a thickness direction thereof. In this case, the at least one cut-out is formed in the second metal layer and/or the first metal layer so that at least one of the four corners of the ceramic substrate is exposed.

Description

複合基板、複合基板の製造方法、回路基板の製造方法、複数の回路基板の集合体の製造方法及び複数の回路基板の製造方法Composite board, manufacturing method of composite board, manufacturing method of circuit board, manufacturing method of aggregate of multiple circuit boards, and manufacturing method of multiple circuit boards
 本発明は、複合基板、複合基板の製造方法、回路基板の製造方法、複数の回路基板の集合体の製造方法及び複数の回路基板の製造方法
に関する。
The present invention relates to a composite substrate, a method for manufacturing a composite substrate, a method for manufacturing a circuit board, a method for manufacturing an aggregate of a plurality of circuit boards, and a method for manufacturing a plurality of circuit boards.
 セラミック基板をベース基材とし、その一方の面に回路パターンが形成されている回路基板が知られている。このような回路基板は、高熱伝導率、高絶縁性の観点において優れていることから、例えばパワーモジュール用に利用されている。 A circuit board is known in which a ceramic substrate is used as a base substrate and a circuit pattern is formed on one surface thereof. Such a circuit board is used for, for example, a power module because it is excellent in terms of high thermal conductivity and high insulation.
 ここで、特許文献1には、表面にスクライブラインが形成されているセラミック基板の両面に金属層を接合して複合基板とし、表面の金属層をエッチングにより回路パターンに加工してから、スクライブラインに沿って複合基板を分割し複数の回路基板を製造する技術が開示されている。 Here, in Patent Document 1, metal layers are joined to both sides of a ceramic substrate having a scribing line formed on the surface to form a composite substrate, and the metal layer on the surface is processed into a circuit pattern by etching, and then the scribing line is formed. A technique for manufacturing a plurality of circuit boards by dividing a composite substrate along the above is disclosed.
特開2007-324301号公報JP-A-2007-324301
 本発明は、セラミック基板と、前記セラミック基板の表面側に接合されている第1金属層と、裏面側に接合されている第2金属層とを備える複合基板において、その表裏を容易に識別できる複合基板の提供を目的とする。 According to the present invention, the front and back surfaces of a composite substrate including a ceramic substrate, a first metal layer bonded to the front surface side of the ceramic substrate, and a second metal layer bonded to the back surface side can be easily identified. An object of the present invention is to provide a composite substrate.
 本発明の第1態様の複合基板は、セラミック基板と、前記セラミック基板の表面側に接合されている第1金属層と、前記セラミック基板における裏面側に接合されている第2金属層と、を備え、前記第1金属層及び前記第2金属層の一方又は両方には、前記セラミック基板の表面及び裏面の識別を可能にする少なくとも1つの切り欠き又は孔が形成されている。
 ここで、「表面及び裏面の識別を可能にする」とは、当該複合基板を取り扱う者等が、当該複合基板の表面と裏面とを目視で識別できることを意味する。
 そして、表面及び裏面の識別を可能にする態様としては、以下のものが挙げられる。
(第1態様)第1金属層及び第2金属層の一方に少なくとも1つの切り欠き又は孔が形成されている態様。
(第2態様)第1金属層及び第2金属層の両方に少なくとも1つの切り欠き又は孔が形成されているが、第1金属層に形成されているものと第2金属層に形成されているものとは形状、位置、数量又は大きさの点で相違する態様。
(第3態様)第1金属層及び第2金属層の両方に少なくとも1つの切り欠き又は孔が形成されており、かつ、第1金属層に形成されているものと第2金属層に形成されているものとは形状、位置、数量及び大きさの点で同一又は略同一であるが、切り欠き又は孔内の色彩、素材又は模様により相違する態様。
The composite substrate of the first aspect of the present invention comprises a ceramic substrate, a first metal layer bonded to the front surface side of the ceramic substrate, and a second metal layer bonded to the back surface side of the ceramic substrate. In addition, one or both of the first metal layer and the second metal layer are formed with at least one notch or hole that enables identification of the front surface and the back surface of the ceramic substrate.
Here, "enables identification of the front surface and the back surface" means that a person who handles the composite substrate or the like can visually distinguish between the front surface and the back surface of the composite substrate.
The following are examples of modes that enable identification of the front surface and the back surface.
(First aspect) An aspect in which at least one notch or hole is formed in one of the first metal layer and the second metal layer.
(Second aspect) At least one notch or hole is formed in both the first metal layer and the second metal layer, but one formed in the first metal layer and the other formed in the second metal layer. A mode that differs from the existing one in terms of shape, position, quantity or size.
(Third aspect) At least one notch or hole is formed in both the first metal layer and the second metal layer, and the one formed in the first metal layer and the second metal layer are formed. A mode in which the shape, position, quantity, and size are the same or substantially the same, but differ depending on the color, material, or pattern in the notch or hole.
 本発明の第2態様の複合基板は、前記複合基板において、前記セラミック基板は、その厚み方向から見て、矩形であり、前記少なくとも1つの切り欠きは、前記セラミック基板の4つの角部のうちの少なくとも1つの角部を露出させるように、前記第1金属層及び前記第2金属層の一方又は両方に形成されている。 The composite substrate of the second aspect of the present invention is the composite substrate, the ceramic substrate is rectangular when viewed from the thickness direction thereof, and the at least one notch is among the four corners of the ceramic substrate. It is formed on one or both of the first metal layer and the second metal layer so as to expose at least one corner portion of the above.
 本発明の第3態様の複合基板は、前記複合基板において、前記第1金属層及び前記第2金属層の両方には、それぞれ、前記少なくとも1つの切り欠き又は孔が形成されており、前記両方に形成されている前記少なくとも1つ切り欠き又は孔は、互いに位置、大きさ及び形状のいずれか1つ以上が異なっている。 In the composite substrate of the third aspect of the present invention, in the composite substrate, at least one notch or a hole is formed in both the first metal layer and the second metal layer, respectively, and both of them. The at least one notch or hole formed in the above is different from each other in any one or more of positions, sizes and shapes.
 本発明の第4態様の複合基板は、前記複合基板において、前記少なくとも1つの切り欠き又は孔は、アライメントマークとしての機能を有する。 In the composite substrate of the fourth aspect of the present invention, the at least one notch or hole has a function as an alignment mark in the composite substrate.
 本発明の第5態様の複合基板は、前記複合基板において、前記第1金属層及び前記第2金属層の一方には、電子部品が実装される回路パターンが形成される。 In the composite substrate of the fifth aspect of the present invention, in the composite substrate, a circuit pattern in which electronic components are mounted is formed on one of the first metal layer and the second metal layer.
 本発明の第6態様の複合基板は、前記複合基板において、前記第1金属層及び前記第2金属層の他方は、放熱層として機能する。 In the composite substrate of the sixth aspect of the present invention, in the composite substrate, the other of the first metal layer and the second metal layer functions as a heat radiating layer.
 本発明の第7態様の複合基板は、前記複合基板において、前記セラミック基板の表面及び裏面の一方には、少なくとも1本のスクライブラインが形成されている。 In the composite substrate of the seventh aspect of the present invention, at least one scribe line is formed on one of the front surface and the back surface of the ceramic substrate in the composite substrate.
 本発明の第8態様の複合基板は、前記複合基板において、前記少なくとも1つの切り欠き又は孔は、前記厚み方向から見て、その内側に前記少なくとも1本のスクライブラインの一部が位置するように、前記第1金属層及び前記第2金属層の一方に形成されている。 In the composite substrate of the eighth aspect of the present invention, in the composite substrate, the at least one notch or hole is such that a part of the at least one scribe line is located inside the notch or hole when viewed from the thickness direction. Is formed on one of the first metal layer and the second metal layer.
 本発明の第9態様の複合基板は、前記複合基板において、前記第1金属層及び前記第2金属層の一方における前記少なくとも1本のスクライブラインにより区画されている複数の領域には、それぞれ、電子部品が実装される回路パターンが形成される。 The composite substrate of the ninth aspect of the present invention is formed in the composite substrate in a plurality of regions of one of the first metal layer and the second metal layer, which are partitioned by at least one scribing line. A circuit pattern is formed in which electronic components are mounted.
 本発明の第10態様の複合基板は、前記複合基板において、前記第1金属層及び前記第2金属層の他方における前記少なくとも1本のスクライブラインにより区画されている複数の領域は、それぞれ放熱層として機能する。 In the composite substrate according to the tenth aspect of the present invention, in the composite substrate, a plurality of regions on the other side of the first metal layer and the second metal layer, which are partitioned by at least one scribe line, are heat dissipation layers, respectively. Functions as.
 本発明の第1態様の複合基板の製造方法は、セラミック基板の表面側及び裏面側に、それぞれ第1金属層及び第2金属層が接合されている複合基板の製造方法であって、前記第1金属層及び前記第2金属層の一方に、前記セラミック基板の表面及び裏面の識別を可能にする少なくとも1つの切り欠き又は孔を形成する切り欠き形成工程と、前記第1金属層及び前記第2金属層を、それぞれ前記セラミック基板の表面側及び裏面側に接合する接合工程と、を含む。 The method for manufacturing a composite substrate according to the first aspect of the present invention is a method for manufacturing a composite substrate in which a first metal layer and a second metal layer are bonded to the front surface side and the back surface side of the ceramic substrate, respectively. A notch forming step of forming at least one notch or a hole in one of the one metal layer and the second metal layer, which enables identification of the front surface and the back surface of the ceramic substrate, and the first metal layer and the first metal layer. The two metal layers include a joining step of joining the front surface side and the back surface side of the ceramic substrate, respectively.
 本発明の第2態様の複合基板の製造方法は、セラミック基板の表面側及び裏面側に、それぞれ第1金属層及び第2金属層が接合されている複合基板の製造方法であって、前記第1金属層及び前記第2金属層の両方に、それぞれ、前記セラミック基板の識別を可能にする少なくとも1つの切り欠き又は孔を形成する切り欠き形成工程と、前記第1金属層及び前記第2金属層を、それぞれ前記セラミック基板の表面側及び裏面側に接合する接合工程と、
を含む。
The method for manufacturing a composite substrate according to a second aspect of the present invention is a method for manufacturing a composite substrate in which a first metal layer and a second metal layer are bonded to the front surface side and the back surface side of the ceramic substrate, respectively. A notch forming step of forming at least one notch or a hole in both the 1 metal layer and the 2nd metal layer, which enables identification of the ceramic substrate, and the 1st metal layer and the 2nd metal, respectively. A joining step of joining the layers to the front side and the back side of the ceramic substrate, respectively.
including.
 本発明の第3態様の複合基板の製造方法は、前記複合基板の製造方法において、前記切り欠き形成工程では、互いに、位置、大きさ及び形状のいずれか1つ以上が異なる前記少なくとも1つ以上の切り欠き又は孔を前記両方に形成する。 The method for manufacturing a composite substrate according to a third aspect of the present invention is the method for manufacturing a composite substrate, wherein in the notch forming step, at least one of the above is different from each other in any one or more of positions, sizes, and shapes. Notches or holes are formed in both of the above.
 本発明の回路基板の製造方法は、前記複合基板の製造方法と、前記接合工程の後に行う工程であって、前記第1金属層及び前記第2金属層の一方又は両方に形成された前記少なくとも1つの切り欠き又は孔から前記セラミック基板の表面及び裏面の識別をして、前記第1金属層及び前記第2金属層の一方に電子部品が実装される回路パターンを形成するパターン形成工程と、を含む。 The method for manufacturing a circuit board of the present invention is a step performed after the method for manufacturing a composite substrate and the joining step, and is a step performed on one or both of the first metal layer and the second metal layer. A pattern forming step of identifying the front surface and the back surface of the ceramic substrate from one notch or hole to form a circuit pattern in which electronic components are mounted on one of the first metal layer and the second metal layer. including.
 本発明の第4態様の複合基板の製造方法は、前記複合基板の製造方法と、前記接合工程の前に行われる工程であって、前記セラミック基板の表面又は裏面に少なくとも1本のスクライブラインを形成するスクライブライン形成工程、を含む。 The method for manufacturing a composite substrate according to a fourth aspect of the present invention is a step performed before the method for manufacturing the composite substrate and the joining step, and at least one scribe line is provided on the front surface or the back surface of the ceramic substrate. The step of forming a scribing line to be formed is included.
 本発明の第5態様の複合基板の製造方法は、前記複合基板の製造方法と、前記切り欠き形成工程では、前記接合工程の際に前記厚み方向で前記少なくとも1つの切り欠き又は孔の内側に前記少なくとも1本のスクライブラインの一部が位置するように、前記少なくとも1つの切り欠き又は孔を前記第1金属層及び前記第2金属層の一方に形成する。 In the method for manufacturing a composite substrate according to the fifth aspect of the present invention, in the method for manufacturing the composite substrate and in the notch forming step, at least one notch or a hole is formed in the thickness direction during the joining step. The at least one notch or hole is formed in one of the first metal layer and the second metal layer so that a part of the at least one scribe line is located.
 本発明の複数の回路基板の集合体の製造方法は、前記複合基板の製造方法と、前記接合工程の後に行う工程であって、前記第1金属層及び前記第2金属層の一方又は両方に形成された前記少なくとも1つの切り欠き又は孔から前記セラミック基板の表面及び裏面の識別をして、前記第1金属層及び前記第2金属層の一方における前記少なくとも1本のスクライブラインにより区画されている複数の領域に、それぞれ回路パターンを形成するパターン形成工程と、を含む。 The method for manufacturing an aggregate of a plurality of circuit boards of the present invention is a step for manufacturing the composite substrate and a step performed after the joining step, and is applied to one or both of the first metal layer and the second metal layer. The front surface and the back surface of the ceramic substrate are identified from the formed at least one notch or hole, and are partitioned by the at least one scribing line in one of the first metal layer and the second metal layer. A pattern forming step of forming a circuit pattern in each of the plurality of regions is included.
 本発明の複数の回路基板の製造方法は、前記複数の回路基板の集合体の製造方法と、前記少なくとも1本のスクライブラインに沿って前記セラミック基板を切断して、前記複数の回路基板の集合体を分割する分割工程と、を含む。 The method for manufacturing a plurality of circuit boards of the present invention includes the method for manufacturing an aggregate of the plurality of circuit boards and the assembly of the plurality of circuit boards by cutting the ceramic substrate along at least one scribing line. Includes a division step of dividing the body.
 本発明の複合基板は、セラミック基板と、前記セラミック基板の表面側に接合されている第1金属層と、裏面側に接合されている第2金属層とを備える複合基板において、その表裏を容易に識別できる。 The composite substrate of the present invention is a composite substrate including a ceramic substrate, a first metal layer bonded to the front surface side of the ceramic substrate, and a second metal layer bonded to the back surface side. Can be identified.
 また、本発明の複合基板の製造方法によれば、表裏を容易に識別できる複合基板を製造することができる。これに伴い、本発明の回路基板の製造方法、複数の回路基板の集合体の製造方法及び複数の回路基板の製造方法によれば、それぞれの製造不良が発生しない又は発生し難い。 Further, according to the method for manufacturing a composite substrate of the present invention, it is possible to manufacture a composite substrate whose front and back surfaces can be easily identified. Along with this, according to the method for manufacturing a circuit board, the method for manufacturing an aggregate of a plurality of circuit boards, and the method for manufacturing a plurality of circuit boards of the present invention, each manufacturing defect does not occur or is unlikely to occur.
本実施形態の複数の実装基板の製造方法を示すフロー図である。It is a flow chart which shows the manufacturing method of the plurality of mounting boards of this embodiment. 本実施形態の複数の実装基板の製造方法に含まれる、グリーンシート形成工程のフロー図である。It is a flow chart of the green sheet forming process included in the manufacturing method of the plurality of mounting substrates of this embodiment. 本実施形態のグリーンシート形成工程に含まれる、成型工程を説明するための図であって、ドクターブレード成形装置を用いてスラリーから帯状グリーンシートを作製している状態を説明するための概略図である。It is a figure for demonstrating the molding process included in the green sheet forming process of this embodiment, and is the schematic figure for demonstrating the state which the band-shaped green sheet is produced from a slurry using a doctor blade molding apparatus. is there. 本実施形態のグリーンシート形成工程に含まれる、切断工程を説明するための図であって、切断装置を用いて帯状グリーンシートを切断して枚葉グリーンシートを作製している状態を説明するための概略図(側面図)である。It is a figure for demonstrating the cutting process included in the green sheet forming process of this embodiment, and is for demonstrating the state which cuts a strip-shaped green sheet using a cutting apparatus, and is producing a single leaf green sheet. It is a schematic view (side view) of. 図2Cを正面側から見た概略図である。FIG. 2C is a schematic view of FIG. 2C viewed from the front side. 本実施形態のセラミック基板の製造方法により製造された重ねられた状態の複数のセラミック基板の概略図である。It is a schematic diagram of a plurality of ceramic substrates in a stacked state produced by the method for manufacturing a ceramic substrate of the present embodiment. 本実施形態の複数の実装基板の製造方法に含まれる、スクライブライン形成工程を説明するための図である。It is a figure for demonstrating the scrib line forming process included in the manufacturing method of the plurality of mounting substrates of this embodiment. 本実施形態の複数の実装基板の製造方法に含まれる、金属層形成工程のフロー図である。It is a flow chart of the metal layer formation process included in the manufacturing method of the plurality of mounting substrates of this embodiment. 本実施形態の複数の実装基板の製造方法に含まれる、金属層形成工程を説明するための図である。It is a figure for demonstrating the metal layer formation process included in the manufacturing method of the plurality of mounting substrates of this embodiment. 図5Bの5C-5C断面図である。5C-5C is a sectional view taken along the line 5C-5C of FIG. 5B. 本実施形態の複数の実装基板の製造方法に含まれる、レジスト印刷工程を説明するための図である。It is a figure for demonstrating the resist printing process included in the manufacturing method of the plurality of mounting substrates of this embodiment. 本実施形態の複数の実装基板の製造方法に含まれる、エッチング工程を説明するための図である。It is a figure for demonstrating the etching process included in the manufacturing method of the plurality of mounting substrates of this embodiment. 本実施形態の複数の実装基板の製造方法に含まれる、分割工程を説明するための図である。It is a figure for demonstrating the division process included in the manufacturing method of the plurality of mounting substrates of this embodiment. 第1変形例の金属層形成工程を説明するための図である。It is a figure for demonstrating the metal layer formation process of the 1st modification. 第2変形例の金属層形成工程を説明するための図である。It is a figure for demonstrating the metal layer formation process of the 2nd modification. 第3変形例の金属層形成工程を説明するための図である。It is a figure for demonstrating the metal layer formation process of the 3rd modification. 第4変形例の金属層形成工程を説明するための図である。It is a figure for demonstrating the metal layer formation process of the 4th modification. 第5変形例のマザーボードの図であって、本実施形態の図5Cの断面図と同じ部分で切断した断面図である。It is the figure of the motherboard of the 5th modification, and is the sectional view cut at the same part as the sectional view of FIG. 5C of this Embodiment. 第6変形例の金属層形成工程を説明するための図である。It is a figure for demonstrating the metal layer formation process of the 6th modification. 第7変形例の金属層形成工程を説明するための図である。It is a figure for demonstrating the metal layer formation process of the 7th modification. 図15Aの15B-15B断面図である。15B-15B sectional view of FIG. 15A. 第8変形例の金属層形成工程を説明するための図である。It is a figure for demonstrating the metal layer formation process of the 8th modification.
≪概要≫
 以下、本実施形態について図面を参照しながら説明する。具体的には、本実施形態の複数の実装基板(図示省略)の製造方法について、図1等を参照しながら、図1に示す各工程順に説明する。各工程後に製造される、セラミック基板40(図3参照)、マザーボード60(複合基板の一例、図5B及び図5C参照)、集合基板60B(複合基板の他の一例、図7及び図8参照)及び回路基板60C(図8参照)については、それぞれの製造時に相当する各工程の説明の中で説明する。
 次いで、本実施形態の効果について説明する。
 次いで、本実施形態の変形例について例えば図9~図12を参照しながら説明する。
 なお、以下の説明で参照するすべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
≪Overview≫
Hereinafter, this embodiment will be described with reference to the drawings. Specifically, a method for manufacturing a plurality of mounting substrates (not shown) of the present embodiment will be described in the order of each process shown in FIG. 1 with reference to FIG. 1 and the like. Ceramic substrate 40 (see FIG. 3), motherboard 60 (example of composite substrate, see FIGS. 5B and 5C), assembly substrate 60B (another example of composite substrate, see FIGS. 7 and 8) manufactured after each step. And the circuit board 60C (see FIG. 8) will be described in the description of each step corresponding to each manufacturing process.
Next, the effect of this embodiment will be described.
Next, a modified example of the present embodiment will be described with reference to, for example, FIGS. 9 to 12.
In all the drawings referred to in the following description, similar components are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
≪本実施形態の複数の実装基板の製造方法≫
 本実施形態の複数の実装基板の製造方法S100(以下、本実施形態の製造方法S100という。)は、図1に示すように、グリーンシート形成工程S10と、焼結工程S20と、スクライブライン形成工程S30(以下、SL形成工程S30という。)と、金属層形成工程S40と、レジスト印刷工程S50と、エッチング工程S60と、表面処理工程S70と、分割工程S80と、実装工程S90とを含み、これらの各工程の記載順で行なわれる。
<< Manufacturing method of a plurality of mounting boards of the present embodiment >>
As shown in FIG. 1, the method S100 for manufacturing a plurality of mounting substrates of the present embodiment (hereinafter, referred to as the manufacturing method S100 of the present embodiment) includes a green sheet forming step S10, a sintering step S20, and a scribing line forming. The process includes a step S30 (hereinafter referred to as SL forming step S30), a metal layer forming step S40, a resist printing step S50, an etching step S60, a surface treatment step S70, a dividing step S80, and a mounting step S90. Each of these steps is performed in the order described.
 また、本実施形態の製造方法S100における各工程の終了時と、その時点での製造物との関係は、以下のとおりである。

========================================
  終了時の各工程 その時点での製造物
========================================
  焼結工程S20 セラミック基板40(図3参照)
  SL形成工程S30 SL付きセラミック基板40A(図4参照)
  金属層形成工程S40 マザーボード60(図5B及び図5C参照)
  エッチング工程S60 集合基板60B(図7参照)
  分割工程S80 複数の回路基板60C(図8参照)
  実装工程S90 複数の実装基板
========================================

 本明細書では、マザーボード60は複合基板の一例であり、集合基板60Bは集合体の一例である。
Further, the relationship between the end of each step in the manufacturing method S100 of the present embodiment and the product at that time is as follows.

========================================
Each process at the end Product at that time ======================================= = =
Sintering step S20 Ceramic substrate 40 (see FIG. 3)
SL forming step S30 Ceramic substrate with SL 40A (see FIG. 4)
Metal layer forming step S40 Motherboard 60 (see FIGS. 5B and 5C)
Etching step S60 Assembly substrate 60B (see FIG. 7)
Division step S80 Multiple circuit boards 60C (see FIG. 8)
Mounting process S90 Multiple mounting boards ========================================

In the present specification, the motherboard 60 is an example of a composite substrate, and the collective substrate 60B is an example of an aggregate.
 また、本実施形態の説明には、以下の発明についての実施形態が含まれる。具体的は、以下のとおりである。

(複合基板に関する発明)
 本実施形態のマザーボード60(複合基板の一例)は、セラミック基板40と、セラミック基板40の表面側に接合されている第1金属層50Aと、セラミック基板40における裏面側に接合されている第2金属層50Bと、を備え、第1金属層50A及び第2金属層50Bの一方又は両方には、セラミック基板40の表面及び裏面の識別を可能にする少なくとも1つの切り欠きNT1又は孔HL2が形成されている(図5B、図5C、図11~図12、図13等参照)。
 ここで、本明細書における「切り欠き」とは、形成されている対象物(具体的には、第1金属層50A及び第2金属層50Bの一方又は両方)の周縁で開口しつつ一部を除去したような部分を意味する。そして、ここでいう「切り欠き」には、対象物の厚み方向の部分の全部を除去した形態(図5Bの符号NT1、図10の符号NT2、図16の符号NT4等参照)と、対象物の厚み方向の部分の一部を除去した形態(図13の符号NT3参照)とが含まれる。この場合、「切り欠き」は窪みとみなすこともできる。これに対して、本明細書における「孔」とは、形成されている対象物(具体的には、第1金属層50A及び第2金属層50Bの一方又は両方)の周縁で開口せずにその表面又は裏面からその厚み方向に除去したような部分を意味する(図14の符号HL1、図15A及び図15Bの符号HL1、HL2等参照)。そして、ここでいう「孔」には、形成される対象物を貫通する貫通孔(図14の符号HL1並びに図15A及び図15Bの符号HL1参照)と、形成される対象物を貫通しない非貫通孔(凹み)(図15A及び図15Bの符号HL2参照)とが含まれる。この非貫通孔は、窪みや溝とみなすこともできる。

(複合基板の製造方法に関する発明)
 本実施形態のマザーボード60(複合基板の一例)の製造方法は、セラミック基板40の表面側及び裏面側に、それぞれ第1金属層50A及び第2金属層50Bが接合されているマザーボード60の製造方法であって、第1金属層50A及び第2金属層50Bの一方に、セラミック基板40の表面及び裏面の識別を可能にする少なくとも1つの切り欠き又は孔を形成する切り欠き形成工程と、第1金属層50A及び第2金属層50Bを、それぞれセラミック基板40の表面側及び裏面側に接合する接合工程と、を含む(図5A、図5B等参照)。

(回路基板の製造方法に関する発明)
 本実施形態の回路基板60Cの製造方法は、本実施形態のマザーボード60(複合基板の一例)の製造方法と、接合工程S42の後に行う工程であって、第1金属層50A及び第2金属層50Bの一方又は両方に形成された少なくとも1つの切り欠きNT1又は孔HL1からセラミック基板40の表面及び裏面の識別をして、第1金属層50A及び第2金属層50Bの一方に電子部品(図示省略)が実装される回路パターンCPを形成するエッチング工程S60(回路パターン形成工程の一例)と、を含む(図1、図7等参照)。

(複数の回路基板の集合体の製造方法に関する発明)
 本実施形態の複数の回路基板60Cの集合基板60B(集合体の一例)の製造方法は、本実施形態のマザーボード60(複合基板の一例)の製造方法と、接合工程S42の後に行う工程であって、第1金属層50A及び第2金属層50Bの一方又は両方に形成された少なくとも1つの切り欠きNT1又は孔HL1からセラミック基板40の表面及び裏面の識別をして、第1金属層50A及び第2金属層50Bの一方における少なくとも1本のスクライブラインSLにより区画されている複数の領域に、それぞれ回路パターンCPを形成するエッチング工程S60(回路パターン形成工程の一例)と、を含む(図1、図7等参照)。そして、本実施形態の複数の回路基板60Cの製造方法は、本実施形態の製造方法S100のうちグリーンシート形成工程S10から分割工程S80までの工程に相当する(図1参照)。

(複数の回路基板の製造方法に関する発明)
 本実施形態の複数の回路基板60Cの製造方法は、
本実施形態の複数の回路基板60Cの集合基板60B(集合体の一例)の製造方法と、少なくとも1本のスクライブラインSLに沿ってセラミック基板40(又はSL付きセラミック基板40A)を切断して、集合基板60Bを分割する分割工程とを含む。

 以下、各工程について説明する。
In addition, the description of this embodiment includes embodiments of the following inventions. Specifically, it is as follows.

(Invention relating to composite substrate)
The motherboard 60 (an example of a composite substrate) of the present embodiment has a ceramic substrate 40, a first metal layer 50A bonded to the front surface side of the ceramic substrate 40, and a second metal layer 50A bonded to the back surface side of the ceramic substrate 40. A metal layer 50B is provided, and at least one notch NT1 or a hole HL2 is formed in one or both of the first metal layer 50A and the second metal layer 50B so that the front surface and the back surface of the ceramic substrate 40 can be identified. (See FIGS. 5B, 5C, 11 to 12, 13, etc.).
Here, the "notch" in the present specification is a part while opening at the peripheral edge of the formed object (specifically, one or both of the first metal layer 50A and the second metal layer 50B). It means the part where. The "notch" referred to here includes a form in which the entire portion in the thickness direction of the object is removed (see reference numeral NT1 in FIG. 5B, reference numeral NT2 in FIG. 10, reference numeral NT4 in FIG. 16 and the like). A form in which a part of the portion in the thickness direction of the above is removed (see reference numeral NT3 in FIG. 13) is included. In this case, the "notch" can also be regarded as a depression. On the other hand, the “hole” in the present specification does not open at the peripheral edge of the formed object (specifically, one or both of the first metal layer 50A and the second metal layer 50B). It means a portion that is removed from the front surface or the back surface in the thickness direction (see reference numerals HL1, HL1, HL2, etc. in FIGS. 14A and 15B). The "hole" referred to here includes a through hole that penetrates the object to be formed (see reference numeral HL1 in FIG. 14 and reference numeral HL1 in FIGS. 15A and 15B) and a non-penetration that does not penetrate the object to be formed. A hole (recess) (see reference numeral HL2 in FIGS. 15A and 15B) is included. This non-through hole can also be regarded as a depression or groove.

(Invention relating to a method for manufacturing a composite substrate)
The method for manufacturing the motherboard 60 (an example of a composite substrate) of the present embodiment is a method for manufacturing the motherboard 60 in which the first metal layer 50A and the second metal layer 50B are bonded to the front surface side and the back surface side of the ceramic substrate 40, respectively. The first is a notch forming step of forming at least one notch or a hole in one of the first metal layer 50A and the second metal layer 50B so that the front surface and the back surface of the ceramic substrate 40 can be distinguished. It includes a joining step of joining the metal layer 50A and the second metal layer 50B to the front surface side and the back surface side of the ceramic substrate 40, respectively (see FIGS. 5A, 5B, etc.).

(Invention relating to a method for manufacturing a circuit board)
The method for manufacturing the circuit board 60C of the present embodiment is a step of manufacturing the motherboard 60 (an example of a composite substrate) of the present embodiment and a step performed after the joining step S42, and is a step performed after the first metal layer 50A and the second metal layer. The front and back surfaces of the ceramic substrate 40 are identified from at least one notch NT1 or hole HL1 formed in one or both of the 50Bs, and an electronic component (illustrated) is provided in one of the first metal layer 50A and the second metal layer 50B. It includes an etching step S60 (an example of a circuit pattern forming step) for forming a circuit pattern CP on which (omitted) is mounted (see FIGS. 1, 7, etc.).

(Invention relating to a method for manufacturing an aggregate of a plurality of circuit boards)
The method for manufacturing the aggregate substrate 60B (an example of an aggregate) of the plurality of circuit boards 60C of the present embodiment is a method for manufacturing the motherboard 60 (an example of a composite substrate) of the present embodiment and a step performed after the joining step S42. The front and back surfaces of the ceramic substrate 40 are identified from at least one notch NT1 or hole HL1 formed in one or both of the first metal layer 50A and the second metal layer 50B, and the first metal layer 50A and the second metal layer 50B are identified. An etching step S60 (an example of a circuit pattern forming step) for forming a circuit pattern CP in each of a plurality of regions partitioned by at least one scribing line SL on one of the second metal layers 50B is included (FIG. 1). , See Fig. 7 etc.). The method for manufacturing the plurality of circuit boards 60C of the present embodiment corresponds to the steps from the green sheet forming step S10 to the dividing step S80 in the manufacturing method S100 of the present embodiment (see FIG. 1).

(Invention relating to a method for manufacturing a plurality of circuit boards)
The method for manufacturing the plurality of circuit boards 60C of the present embodiment is as follows.
The method for manufacturing the aggregate substrate 60B (an example of the aggregate) of the plurality of circuit boards 60C of the present embodiment and the ceramic substrate 40 (or the ceramic substrate 40A with SL) are cut along at least one scribing line SL. It includes a division step of dividing the assembly substrate 60B.

Hereinafter, each step will be described.
<グリーンシート形成工程及び焼結工程>
 本実施形態における、グリーンシート形成工程S10及び焼結工程S20を組み合せて、これらの記載順で行う工程は、セラミック基板40の製造方法に相当する。
 以下、本実施形態のセラミック基板40の製造方法について、図2A、図2B、図2C及び図2D並びに図3を参照しながら説明する。
<Green sheet forming process and sintering process>
The step of combining the green sheet forming step S10 and the sintering step S20 in the present embodiment and performing in the order described corresponds to the method for manufacturing the ceramic substrate 40.
Hereinafter, the method for manufacturing the ceramic substrate 40 of the present embodiment will be described with reference to FIGS. 2A, 2B, 2C and 2D, and FIG.
 ここで、セラミック基板40は、一例として、電気自動車、鉄道車両その他産業機器に搭載されるパワーモジュール用の回路基板が備えるセラミック基板である。セラミック基板40は、一例として、後述する枚葉グリーンシート30(図2C参照)を積層した状態で焼結して得られる(図3参照)。また、枚葉グリーンシート30は、帯状グリーンシート20(図2B及び図2C参照)を切断して得られる。すなわち、セラミック基板40と枚葉グリーンシート30との関係は、完成品と中間品(完成品になる前の工程で製造された物)との関係、又は、第1中間品と第2中間品(第1中間品になる前の工程で製造された物)との関係を有する。そのため、本実施形態の枚葉グリーンシート30は、本実施形態のセラミック基板40の製造方法の中間段階までの工程で製造される。
 なお、本実施形態のセラミック基板40は、一例として、矩形の板である(図4参照)。
Here, the ceramic substrate 40 is, for example, a ceramic substrate included in a circuit board for a power module mounted on an electric vehicle, a railroad vehicle, or other industrial equipment. As an example, the ceramic substrate 40 is obtained by sintering a single-wafer green sheet 30 (see FIG. 2C) described later in a laminated state (see FIG. 3). The single-wafer green sheet 30 is obtained by cutting the strip-shaped green sheet 20 (see FIGS. 2B and 2C). That is, the relationship between the ceramic substrate 40 and the single-wafer green sheet 30 is the relationship between the finished product and the intermediate product (the product manufactured in the process before becoming the finished product), or the first intermediate product and the second intermediate product. It has a relationship with (the product manufactured in the process before becoming the first intermediate product). Therefore, the single-wafer green sheet 30 of the present embodiment is manufactured by the steps up to the intermediate stage of the manufacturing method of the ceramic substrate 40 of the present embodiment.
The ceramic substrate 40 of the present embodiment is, as an example, a rectangular plate (see FIG. 4).
<グリーンシート形成工程>
 以下、グリーンシート形成工程S10について、図2A、図2B、図2C及び図2Dを参照しながら説明する。本実施形態のグリーンシート形成工程S10は、図2Aのフロー図に示すように、スラリー作製工程S11と、成形工程S12と、切断工程S13と、積層工程S14と、脱脂工程S15と、焼結工程S20とを含み、これらの記載順で行われる。
<Green sheet forming process>
Hereinafter, the green sheet forming step S10 will be described with reference to FIGS. 2A, 2B, 2C and 2D. As shown in the flow chart of FIG. 2A, the green sheet forming step S10 of the present embodiment includes a slurry manufacturing step S11, a molding step S12, a cutting step S13, a laminating step S14, a degreasing step S15, and a sintering step. It includes S20 and is performed in the order described above.
〔スラリー作製工程〕
 本工程は、後述する原料粉末と有機溶剤とを混合して、スラリー10を作成する工程である。本工程で作製されたスラリー10(図2B参照)は、次の工程(成型工程)で帯状グリーンシート20に成形される。
[Slurry preparation process]
This step is a step of mixing the raw material powder described later and an organic solvent to prepare the slurry 10. The slurry 10 produced in this step (see FIG. 2B) is molded into a band-shaped green sheet 20 in the next step (molding step).
 スラリー10の原料粉末は、後述する主成分と焼結助剤とを含有する粉末である。主成分は一例として80重量%~98.3質量%の窒化珪素(Si)であり、焼結助剤は一例として1重量%~10質量%(酸化物換算)の少なくとも1種の希土類元素及び0.7重量%~10質量%(酸化物換算)のマグネシウム(Mg)である。窒化珪素の粉末のα化率は、セラミック基板40の密度、曲げ強度及び熱伝導率を考慮すると、好ましくは20%~100%である。
 ここで、本明細書で使用する「~」の意味について補足すると、例えば「20%~100%」は「20%以上100%以下」を意味する。そして、本明細書で使用する「~」は、「『~』の前の記載部分以上『~』の後の記載部分以下」を意味する。
The raw material powder of the slurry 10 is a powder containing a main component and a sintering aid, which will be described later. Main component is 80 wt% to 98.3 wt% of silicon nitride as an example (Si 3 N 4), sintering aid of at least one 1 wt% to 10 wt% as an example (as oxide) Rare earth elements and 0.7% by mass to 10% by mass (oxide equivalent) of magnesium (Mg). The pregelatinization rate of the silicon nitride powder is preferably 20% to 100% in consideration of the density, bending strength and thermal conductivity of the ceramic substrate 40.
Here, supplementing the meaning of "-" used in the present specification, for example, "20% to 100%" means "20% or more and 100% or less". And, "-" used in this specification means "more than the description part before"- "and less than the description part after"- "".
 窒化珪素(Si)の原料粉末における割合を一例として80重量%~98.3質量%とする理由は、得られるセラミック基板40の曲げ強度及び熱伝導率が低すぎないこと、焼結助剤の不足によるセラミック基板40の緻密性を担保すること等による。 The reason for the 80 wt% to 98.3 wt% as an example ratio in the raw material powder of silicon nitride (Si 3 N 4), it flexural strength and thermal conductivity of the ceramic substrate 40 obtained is not too low, sintering This is due to ensuring the denseness of the ceramic substrate 40 due to the lack of auxiliary agent.
 以下、説明の簡略化のために、窒化珪素の原料粉末をSi粉末(別名は窒化珪素粉末、セラミック粉末の一例)、Mgの原料粉末をMgO粉末、希土類元素原料の粉末をY粉末と表記する。ただし、窒化珪素の原料粉末及び焼結助剤の原料粉末は、それぞれ、Si粉末並びにMgO粉末及びY粉末でなくてもよい。 Hereinafter, for simplification of the description, the raw material powder of silicon nitride is Si 3 N 4 powder (also known as silicon nitride powder or an example of ceramic powder), the raw material powder of Mg is MgO powder, and the powder of rare earth element raw material is Y 2 O 3 powdered denoted. However, the raw material powder of silicon nitride and the raw material powder of the sintering aid do not have to be Si 3 N 4 powder, Mg O powder and Y 2 O 3 powder, respectively.
 そして、前述のように配合されたSi粉末、MgO粉末及びY粉末と、可塑剤、有機バインダー及び有機溶剤とを混合して、スラリー10が作製される。そのため、本工程で作製されるスラリー10は、セラミック粉末を含む。 Then, the Si 3 N 4 powder, the Mg O powder and the Y 2 O 3 powder blended as described above are mixed with a plasticizer, an organic binder and an organic solvent to prepare a slurry 10. Therefore, the slurry 10 produced in this step contains ceramic powder.
 以上が、スラリー作製工程S11についての説明である。 The above is the description of the slurry preparation step S11.
〔成形工程〕
 次に、成形工程S12について説明する。本工程は、図2Bに示すように、スラリー10から帯状グリーンシート20を製造する工程である。
[Molding process]
Next, the molding step S12 will be described. As shown in FIG. 2B, this step is a step of manufacturing the band-shaped green sheet 20 from the slurry 10.
 本工程は、一例として、図2Bに示すドクターブレード成形装置100を用いて行われる。ここで、ドクターブレード成形装置100は、ベルト搬送機構110と、成形ユニット120と、加熱ユニット130とを備えている。ベルト搬送機構110は、上流側のローラ112A、下流側のローラ112B及びベルト114を有し、下流側のローラ112を駆動させて、ベルト114を上流側のローラ112から下流側のローラ112に(X方向に沿って)移動させる。成形ユニット120は、ベルト114の上側(ベルト114よりもZ方向側)に配置され、ベルト114に対向している。成形ユニット120は、スラリー10を収容する収容部122とドクターブレード124とを有する。 This step is performed using the doctor blade forming apparatus 100 shown in FIG. 2B as an example. Here, the doctor blade forming apparatus 100 includes a belt conveying mechanism 110, a forming unit 120, and a heating unit 130. The belt transport mechanism 110 has a roller 112A on the upstream side, a roller 112B on the downstream side, and a belt 114, and drives the roller 112 on the downstream side to move the belt 114 from the roller 112 on the upstream side to the roller 112 on the downstream side. Move (along the X direction). The molding unit 120 is arranged on the upper side of the belt 114 (on the Z direction side of the belt 114) and faces the belt 114. The molding unit 120 has an accommodating portion 122 accommodating the slurry 10 and a doctor blade 124.
 そして、成形ユニット120は、図2Bに示すように、自重及び移動するベルト114との付着力により収容部122から持ち出されるスラリー10を、ドクターブレード124により規制して定められた膜厚を有するシート状にする。加熱ユニット130は、定められた膜厚にされたベルト114上のスラリー10に温風WCを吹き付けてスラリー10をシートにする(有機溶剤を気化させる)。その結果、成形工程では、スラリー10から定められた幅(図中Y方向が幅方向に相当)の帯状グリーンシート20が作製される。すなわち、成型工程では、スラリー10をドクターブレード成形により帯状にして、一例としてSi(セラミック)を含んで構成される帯状グリーンシート20を得る。 Then, as shown in FIG. 2B, the molding unit 120 is a sheet having a film thickness determined by regulating the slurry 10 taken out from the accommodating portion 122 by its own weight and the adhesive force with the moving belt 114 by the doctor blade 124. Make it into a shape. The heating unit 130 blows warm air WC onto the slurry 10 on the belt 114 having a predetermined film thickness to form the slurry 10 into a sheet (vaporizes the organic solvent). As a result, in the molding step, a strip-shaped green sheet 20 having a width defined from the slurry 10 (the Y direction in the drawing corresponds to the width direction) is produced. That is, in the molding step, the slurry 10 is formed into a band shape by doctor blade molding to obtain a band-shaped green sheet 20 composed of Si 3 N 4 (ceramic) as an example.
 なお、本工程は、一例として、スラリー作製工程S11で作製されたスラリー10の脱泡をし、かつ、スラリー10を増粘させた後に行われる。また、本工程で作製される帯状グリーンシート20の膜厚は、最終的に製造されるセラミック基板40の膜厚を考慮して設定される。これに伴い、スラリー10を定められた膜厚に規制するためのドクターブレード124の規制条件(ベルト114との離間距離等)も最終的に製造されるセラミック基板40の膜厚を考慮して設定される。 As an example, this step is performed after defoaming the slurry 10 produced in the slurry production step S11 and thickening the slurry 10. Further, the film thickness of the band-shaped green sheet 20 produced in this step is set in consideration of the film thickness of the ceramic substrate 40 finally produced. Along with this, the regulation conditions (distance from the belt 114, etc.) of the doctor blade 124 for regulating the slurry 10 to a predetermined film thickness are also set in consideration of the film thickness of the finally manufactured ceramic substrate 40. Will be done.
 以上が、成形工程S12についての説明である。 The above is the explanation of the molding process S12.
〔切断工程〕
 次に、切断工程S13について説明する。本工程は、図2Cに示すように、帯状グリーンシート20を切断して枚葉グリーンシート30を製造する工程である。
[Cutting process]
Next, the cutting step S13 will be described. As shown in FIG. 2C, this step is a step of cutting the strip-shaped green sheet 20 to produce the single-wafer green sheet 30.
 本工程は、一例として、図2Cに示す切断装置200を用いて行われる。ここで、切断装置200は、シート搬送機構210と、切断部220とを備えている。
 シート搬送機構210は、支持部212と、第1搬送部214と、第2搬送部216とを有する。支持部212は、成形工程S12で作製された帯状グリーンシート20が外周面に巻き付けられているローラ112B(図2B及び図2C参照)を回転可能に支持する。第1搬送部214は、支持部212から搬送された帯状グリーンシート20の姿勢を整えて帯状グリーンシート20をX方向に沿って(帯状グリーンシート20の長手方向に沿って)切断部220に搬送する。第2搬送部216は、切断部220で帯状グリーンシート20が切断されて作製された枚葉グリーンシート30を更に下流に(X方向に)搬送する。
 また、切断部220は、筐体222と、照射部224と、移動機構226とを有している。照射部224は、一例として、レーザー光LBを照射する。移動機構226は、照射部224を帯状グリーンシート20の短手方向(図中Y方向)の一端から他端に亘って走査させる。照射部224及び移動機構226は、筐体222に取り付けられている。
This step is performed using the cutting device 200 shown in FIG. 2C as an example. Here, the cutting device 200 includes a sheet transport mechanism 210 and a cutting portion 220.
The sheet transport mechanism 210 has a support portion 212, a first transport portion 214, and a second transport portion 216. The support portion 212 rotatably supports the roller 112B (see FIGS. 2B and 2C) in which the strip-shaped green sheet 20 produced in the molding step S12 is wound around the outer peripheral surface. The first transport portion 214 arranges the posture of the strip-shaped green sheet 20 transported from the support portion 212 and conveys the strip-shaped green sheet 20 to the cutting portion 220 along the X direction (along the longitudinal direction of the strip-shaped green sheet 20). To do. The second transport section 216 transports the single-wafer green sheet 30 produced by cutting the strip-shaped green sheet 20 at the cutting section 220 further downstream (in the X direction).
Further, the cutting portion 220 has a housing 222, an irradiation portion 224, and a moving mechanism 226. The irradiation unit 224 irradiates the laser beam LB as an example. The moving mechanism 226 scans the irradiation unit 224 from one end to the other end of the strip-shaped green sheet 20 in the lateral direction (Y direction in the drawing). The irradiation unit 224 and the moving mechanism 226 are attached to the housing 222.
 そして、本実施形態の切断装置200は、シート搬送機構210により帯状グリーンシート20を枚葉グリーンシート30の長さ分搬送して帯状グリーンシート20を停止させ、切断部220により帯状グリーンシート20を切断する。この場合、切断部220は、移動機構226により照射部224をY方向に沿って帯状グリーンシート20の短手方向の一端側から他端側に亘って移動させながら、照射部224にレーザー光LBを照射させる(図2参照)。また、移動機構226により走査される照射部224は、レーザー光LBを間欠的に照射する。ここで、「間欠的に」とは、一定期間照射することと一定期間照射しないこととを繰り返すことを意味する。そのため、移動機構226は、照射部224が移動と停止とを繰り返すようにして、照射部224を走査させる(図2D参照)。
 以上のようにして、本工程では、帯状グリーンシート20にレーザー光LBを照射することで帯状グリーンシート20を切断して枚葉グリーンシート30を得る。なお、レーザー光LBは、帯状グリーンシート20を切断することができれば、炭酸ガスレーザー光、赤外線レーザー光、紫外線レーザー光その他のレーザー光でもよい。また、本工程の説明では、一例として図2Cに示す切断装置200を用いて帯状グリーンシート20を切断して枚葉グリーンシート30を製造するとしたが、帯状グリーンシート20から枚葉グリーンシート30を製造することができれば、他の方法を用いてもよい。例えば、プレス加工装置(図示省略)を用いて、プレスにより帯状グリーンシート20を打ち抜いて枚葉グリーンシート30を製造してもよい。
Then, in the cutting device 200 of the present embodiment, the strip-shaped green sheet 20 is conveyed by the sheet conveying mechanism 210 for the length of the single-wafer green sheet 30 to stop the strip-shaped green sheet 20, and the strip-shaped green sheet 20 is stopped by the cutting portion 220. Disconnect. In this case, the cutting portion 220 moves the irradiation portion 224 along the Y direction from one end side to the other end side in the lateral direction of the band-shaped green sheet 20 by the moving mechanism 226, while the laser light LB is transferred to the irradiation portion 224. (See FIG. 2). Further, the irradiation unit 224 scanned by the moving mechanism 226 intermittently irradiates the laser beam LB. Here, "intermittently" means repeating irradiation for a certain period of time and non-irradiation for a certain period of time. Therefore, the moving mechanism 226 scans the irradiation unit 224 by causing the irradiation unit 224 to repeatedly move and stop (see FIG. 2D).
As described above, in this step, the band-shaped green sheet 20 is irradiated with the laser beam LB to cut the band-shaped green sheet 20 to obtain the single-wafer green sheet 30. The laser light LB may be carbon dioxide gas laser light, infrared laser light, ultraviolet laser light or other laser light as long as the band-shaped green sheet 20 can be cut. Further, in the description of this step, as an example, it is assumed that the strip-shaped green sheet 20 is cut by using the cutting device 200 shown in FIG. 2C to manufacture the single-leaf green sheet 30, but the single-leaf green sheet 30 is formed from the strip-shaped green sheet 20. Other methods may be used as long as they can be produced. For example, a strip-shaped green sheet 20 may be punched out by a press using a press working apparatus (not shown) to produce a single-wafer green sheet 30.
 以上が、切断工程S13についての説明である。 The above is the explanation of the cutting step S13.
〔積層工程〕
 次に、積層工程S14について説明する。本工程は、図3に示すように、複数の枚葉グリーンシート30をその厚み方向に重ねる工程である。本工程は、後の工程(焼結工程S20)で効率的に枚葉グリーンシート30を焼結させるために行われる工程である。
[Laminating process]
Next, the laminating step S14 will be described. As shown in FIG. 3, this step is a step of stacking a plurality of single-wafer green sheets 30 in the thickness direction thereof. This step is a step performed for efficiently sintering the single-wafer green sheet 30 in a later step (sintering step S20).
 本工程では、図3に示すように、複数の枚葉グリーンシート30を、後述する非反応性粉末層(図示省略)を介して積層する。ここで、枚葉グリーンシート30を重なる枚数が少ないと、後の焼結工程S16において焼結炉(図示省略)で一度に処理できる枚数が少なくなる(生産効率が低くなる)。これに対して、枚葉グリーンシート30を重ねる枚数が多いと、次の工程(脱脂工程S15)において枚葉グリーンシート30に含まれるバインダーが分解し難くなる。以上の理由により、本工程において枚葉グリーンシート30を重ねる枚数は8枚~100枚、好ましくは30枚~70枚である。 In this step, as shown in FIG. 3, a plurality of single-wafer green sheets 30 are laminated via a non-reactive powder layer (not shown) described later. Here, if the number of sheets of the sheet-fed green sheets 30 that overlap each other is small, the number of sheets that can be processed at one time in the sintering furnace (not shown) in the subsequent sintering step S16 is small (the production efficiency is low). On the other hand, if the number of sheets of the sheet-fed green sheet 30 stacked is large, the binder contained in the sheet-fed green sheet 30 is less likely to be decomposed in the next step (defatting step S15). For the above reasons, the number of sheet-fed green sheets 30 to be stacked in this step is 8 to 100, preferably 30 to 70.
 また、本実施形態の非反応性粉末層は、一例として、膜厚が約1μm~20μmの窒化硼素粉末層(BN粉末層)である。BN粉末層は、次の工程(焼結工程S16)後にセラミック基板40を容易に分離させる機能を有する。BN粉末層は、BN粉末のスラリーとして、各枚葉グリーンシート30の一面に、例えばスプレー、ブラシ塗布、ロールコーター、スクリーン印刷等によって塗布される。なお、BN粉末は85%以上の純度で、好ましくは平均粒径が1μm~20μmである。 Further, the non-reactive powder layer of the present embodiment is, for example, a boron nitride powder layer (BN powder layer) having a film thickness of about 1 μm to 20 μm. The BN powder layer has a function of easily separating the ceramic substrate 40 after the next step (sintering step S16). The BN powder layer is applied as a slurry of BN powder on one surface of each sheet-fed green sheet 30 by, for example, spraying, brush coating, roll coater, screen printing, or the like. The BN powder has a purity of 85% or more, and preferably has an average particle size of 1 μm to 20 μm.
 以上が、積層工程S14についての説明である。 The above is the explanation of the laminating process S14.
〔脱脂工程〕
 次に、脱脂工程S15について説明する。本工程は、枚葉グリーンシート30に含まれるバインダー及び可塑剤を、次の工程(焼結工程S16)の前に脱脂するための工程である。
 本工程では、一例として、積層工程S14で重ねた複数の枚葉グリーンシート30(図3参照)を450℃~750℃の温度環境下で、0.5時間~20時間保持する。その結果、複数の枚葉グリーンシート30に含まれるバインダー及び可塑剤が脱脂される。
[Degreasing process]
Next, the degreasing step S15 will be described. This step is a step for degreasing the binder and the plasticizer contained in the single-wafer green sheet 30 before the next step (sintering step S16).
In this step, as an example, a plurality of single-wafer green sheets 30 (see FIG. 3) stacked in the laminating step S14 are held in a temperature environment of 450 ° C. to 750 ° C. for 0.5 hours to 20 hours. As a result, the binder and the plasticizer contained in the plurality of single-wafer green sheets 30 are degreased.
 以上が、脱脂工程S15についての説明である。また、以上が、本実施形態のグリーンシート形成工程S10についての説明である。 The above is the explanation of the degreasing step S15. Further, the above is the description of the green sheet forming step S10 of the present embodiment.
<焼結工程>
 次に、焼結工程S16について、図3を参照しながら説明する。本工程は、積層工程S14で重ねられて、脱脂工程S15でバインダー及び可塑剤が脱脂された複数の枚葉グリーンシート30(以下、図3の複数の枚葉グリーンシート30という。)を、焼結装置(図示省略)を用いて焼結させる工程である。本工程が終了すると、複数のセラミック基板40が重ねられた状態で製造される。
<Sintering process>
Next, the sintering step S16 will be described with reference to FIG. In this step, a plurality of single-wafer green sheets 30 (hereinafter referred to as a plurality of single-wafer green sheets 30 in FIG. 3), which are laminated in the laminating step S14 and degreased by the binder and the plasticizer in the degreasing step S15, are baked. This is a step of sintering using a binder (not shown). When this step is completed, a plurality of ceramic substrates 40 are manufactured in a stacked state.
 以上が、焼結工程S20についての説明である。また、以上が、本実施形態のセラミック基板40の製造方法についての説明である。 The above is the explanation of the sintering process S20. Moreover, the above is the description of the manufacturing method of the ceramic substrate 40 of this embodiment.
 セラミック基板40の種類に特に制限はなく、例えば、炭化物、酸化物及び窒化物等が挙げられる。具体的には、炭化ケイ素、アルミナ、窒化ケイ素、窒化アルミニウム、窒化ホウ素等が挙げられ、より好ましくは、窒化ケイ素、窒化アルミニウムである。 The type of the ceramic substrate 40 is not particularly limited, and examples thereof include carbides, oxides, and nitrides. Specific examples thereof include silicon carbide, alumina, silicon nitride, aluminum nitride and boron nitride, and more preferably silicon nitride and aluminum nitride.
<スクライブライン形成工程>
 次に、SL形成工程S30について、図4を参照しながら説明する。本工程は、セラミック基板40の表面40A1及び裏面40A2のうちの一方の面(本実施形態では一例として表面40A1)に、少なくとも1本(本実施形態では一例として3本)のスクライブラインSLを形成する工程である。本工程が終了すると、SL付きセラミック基板40Aが製造される(図4参照)。
 本工程では、図4に示すように、セラミック基板40の表面40A1に、照射部(図示省略)から照射したレーザー光により一例として幅方向中央に1本、長さ方向を三等分する2本の合計3本の直線部分を形成し、表面40A1の全領域を6等分された領域に区画する。ここで、各スクライブラインSLは、一例として、直線状に並ぶ複数の凹みにより構成されている(図5C参照)。そのため、本工程で使用される照射部(一例として、炭酸ガスレーザー光源、YAGレーザー光源等)は、例えば、レーザー光を間欠的に照射可能となっている。
 なお、各スクライブラインSLは、後の工程である分割工程S80(図1参照)において、セラミック基板40を複数枚(本実施形態では6枚)に分割する際の切断線として用いられる。
<Scribe line formation process>
Next, the SL forming step S30 will be described with reference to FIG. In this step, at least one scribe line SL (three as an example in this embodiment) is formed on one surface (front surface 40A1 as an example in this embodiment) of the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40. It is a process to do. When this step is completed, the ceramic substrate 40A with SL is manufactured (see FIG. 4).
In this step, as shown in FIG. 4, the surface 40A1 of the ceramic substrate 40 is divided into three equal parts in the width direction and three equal parts in the length direction as an example by a laser beam irradiated from an irradiation unit (not shown). A total of three straight lines are formed, and the entire area of the surface 40A1 is divided into six equal parts. Here, as an example, each scribe line SL is composed of a plurality of dents arranged in a straight line (see FIG. 5C). Therefore, the irradiation unit (for example, a carbon dioxide laser light source, a YAG laser light source, etc.) used in this step can intermittently irradiate laser light, for example.
Each scribe line SL is used as a cutting line when the ceramic substrate 40 is divided into a plurality of sheets (six in the present embodiment) in the dividing step S80 (see FIG. 1), which is a later step.
 以上が、SL形成工程S30についての説明である。 The above is the explanation of the SL forming step S30.
<金属層形成工程>
 次に、金属層形成工程S40について、図5A、図5B及び図5Cを参照しながら説明する。本工程は、図5Aのフロー図に示すように、切り欠き形成工程S41と、接合工程S42とを含み、これらの記載順で行われる。
<Metal layer forming process>
Next, the metal layer forming step S40 will be described with reference to FIGS. 5A, 5B and 5C. As shown in the flow chart of FIG. 5A, this step includes a notch forming step S41 and a joining step S42, and is performed in the order described thereof.
〔切り欠き形成工程〕
 切り欠き形成工程S41は、その厚み方向から見て矩形で、SL付きセラミック基板40Aの表面40A1側に接合される第1金属層50Aに、切り欠きNT1を形成する工程である(図5B参照)。例えば、本工程は、図2Cに示す切断装置200のような装置を用いて帯状の金属層(図示省略)を裁断して矩形である枚葉の金属層を製造する際に、当該装置に取り付けられているプレスユニット(図示省略)により当該枚葉の金属層に切り欠きNT1を形成して第1金属層50Aを製造すればよい。これに対して、本工程では、その厚み方向から見て矩形で、SL付きセラミック基板40Aの裏面40A2側に接合される第2金属層50Bには、切り欠きを形成しない。
[Cut formation process]
The notch forming step S41 is a step of forming the notch NT1 on the first metal layer 50A joined to the surface 40A1 side of the ceramic substrate 40A with SL, which is rectangular when viewed from the thickness direction thereof (see FIG. 5B). .. For example, in this step, when a strip-shaped metal layer (not shown) is cut using a device such as the cutting device 200 shown in FIG. 2C to produce a rectangular single-wafer metal layer, the metal layer is attached to the device. The first metal layer 50A may be manufactured by forming a notch NT1 in the single-wafer metal layer by the press unit (not shown). On the other hand, in this step, a notch is not formed in the second metal layer 50B which is rectangular when viewed from the thickness direction and is joined to the back surface 40A2 side of the ceramic substrate 40A with SL.
 なお、前述の第1金属層50A及び第2金属層50Bは後述する接合工程S42でSL付きセラミック基板40Aに接合されて層を構成することから、本明細書では、接合工程S42でSL付きセラミック基板40Aに接合される前に板状である第1金属層50A及び第2金属層50Bをこのままの名称とする。また、それぞれの厚み方向から見た、第2金属層50Bと、SL付きセラミック基板40Aとは、外周の形状及び大きさが同等である。そして、第1金属層50Aと、第2金属層50Bとは、第1金属層50Aに切り欠きNT1が形成されている点以外は、それぞれ、厚み、形状、大きさ及び材質が同等である。 Since the first metal layer 50A and the second metal layer 50B are joined to the ceramic substrate 40A with SL in the joining step S42 described later to form a layer, in the present specification, the ceramic with SL is formed in the joining step S42. The plate-shaped first metal layer 50A and second metal layer 50B before being joined to the substrate 40A are referred to as they are. Further, the second metal layer 50B and the ceramic substrate 40A with SL as viewed from the respective thickness directions have the same outer peripheral shape and size. The first metal layer 50A and the second metal layer 50B have the same thickness, shape, size, and material, respectively, except that the notch NT1 is formed in the first metal layer 50A.
 第一金属層50A及び第二金属層50Bの種類に特に制限はなく、例えば、銅、銅合金、アルミニウム、アルミニウム合金等が挙げられる。 The types of the first metal layer 50A and the second metal layer 50B are not particularly limited, and examples thereof include copper, copper alloys, aluminum, and aluminum alloys.
〔接合工程〕
 接合工程S42は、第1金属層50A及び第2金属層50Bを、それぞれ、SL付きセラミック基板40Aの表面40A1側及び裏面40A2側に接合する工程である。この場合、第1金属層50A及び第2金属層50Bは、それぞれ、ろう材(図示省略)を介して、表面40A1側及び裏面40A2側に接合される。具体的には、セラミック基板40の表面40A1及び裏面40A2に、ロールコーター法、スクリーン印刷法、転写法等の方法によりペースト状の活性金属ろう材を均一に塗布し、さらに、均一に塗布したペースト状の活性金属ろう材を介してセラミック基板40の表面40A1及び裏面40A2にそれぞれ第1金属層50A及び第2金属層50Bを活性金属法にて接合する。ここで、本工程では、ペースト状のろう材を均一に塗布する点で、スクリーン印刷法が好ましい。また、この場合、ペースト状の活性金属ろう材の粘度を5Pa・s~20Pa・sに制御することが好ましい。ペースト状の活性金属ろう材中の有機溶剤量は5質量%~25質量%、バインダー量は2質量%~15質量%の範囲で配合することにより優れたペースト状の活性金属ろう材を得ることができる。接合の加熱温度は、例えば700℃~900℃であってよい。加熱炉内の雰囲気は、窒素等の不活性ガスであってよい。接合体の加熱は、大気圧未満の減圧下で行ってもよいし、真空下で行ってもよい。加熱炉は、複数の接合体を連続的に供給しながら加熱する連続式のものであってもよいし、一つ又は複数の接合体をバッチ式で加熱するものであってもよい。接合体の加熱は、接合体を積層方向に押圧しながら行ってもよい。
 なお、本実施形態の場合、第1金属層50AがSL付きセラミック基板40Aにろう材を介して接合されると、切り欠きNT1の内側にスクライブラインSLの一部が位置する(図5B参照)。すなわち、本実施形態の切り欠き形成工程S41は、接合工程S42の際にSL付きセラミック基板40Aの厚み方向から見て切り欠きNT1の内側にスクライブラインSLの一部が位置するように、切り欠きNT1を第1金属層50A及び第2金属層50Bの一方である第1金属層50Aに形成する工程である。
[Joining process]
The joining step S42 is a step of joining the first metal layer 50A and the second metal layer 50B to the front surface 40A1 side and the back surface 40A2 side of the ceramic substrate 40A with SL, respectively. In this case, the first metal layer 50A and the second metal layer 50B are joined to the front surface 40A1 side and the back surface 40A2 side, respectively, via a brazing material (not shown). Specifically, a paste-like active metal brazing material is uniformly applied to the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40 by a method such as a roll coater method, a screen printing method, or a transfer method, and further, a uniformly applied paste. The first metal layer 50A and the second metal layer 50B are joined to the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40 by the active metal method, respectively, via the active metal brazing material. Here, in this step, the screen printing method is preferable in that the paste-like brazing material is uniformly applied. Further, in this case, it is preferable to control the viscosity of the paste-like active metal brazing material to 5 Pa · s to 20 Pa · s. An excellent paste-like active metal brazing material can be obtained by blending the organic solvent amount in the paste-like active metal brazing material in the range of 5% by mass to 25% by mass and the binder amount in the range of 2% by mass to 15% by mass. Can be done. The heating temperature of the joint may be, for example, 700 ° C. to 900 ° C. The atmosphere in the heating furnace may be an inert gas such as nitrogen. The joint may be heated under reduced pressure below atmospheric pressure or under vacuum. The heating furnace may be a continuous type that heats a plurality of joints while continuously supplying them, or may be a type that heats one or a plurality of joints in a batch type. The heating of the joint may be performed while pressing the joint in the stacking direction.
In the case of the present embodiment, when the first metal layer 50A is joined to the ceramic substrate 40A with SL via a brazing material, a part of the scribe line SL is located inside the notch NT1 (see FIG. 5B). .. That is, in the notch forming step S41 of the present embodiment, the notch is formed so that a part of the scribing line SL is located inside the notch NT1 when viewed from the thickness direction of the ceramic substrate 40A with SL during the joining step S42. This is a step of forming NT1 on the first metal layer 50A, which is one of the first metal layer 50A and the second metal layer 50B.
 以上のとおり、切り欠き形成工程S41、接合工程S42の順で本工程が行われ、本工程が終了すると、マザーボード60が製造される(図5B及び図5C参照)。
 なお、切り欠き形成工程S41で形成される切り欠きNT1の形状は図5Bでは矩形であるが、切り欠きNT1の形状は接合工程S42の終了時にスクライブラインSLの一部が切り欠きNT1の内側に位置すれば矩形でなくてもよい。例えば、円弧状、三角状その他の形状であってもよい。
As described above, this step is performed in the order of the notch forming step S41 and the joining step S42, and when this step is completed, the motherboard 60 is manufactured (see FIGS. 5B and 5C).
The shape of the notch NT1 formed in the notch forming step S41 is rectangular in FIG. 5B, but the shape of the notch NT1 is such that a part of the scribe line SL is inside the notch NT1 at the end of the joining step S42. It does not have to be rectangular as long as it is positioned. For example, it may have an arc shape, a triangular shape, or other shape.
 以上が、金属層形成工程S40についての説明である。 The above is the explanation of the metal layer forming step S40.
(マザーボードに関する説明)
 次に、金属層形成工程S40の終了時に製造された本実施形態のマザーボード60について図5B及び図5Cを参照しながら説明する。
 前述のとおり、本実施形態のマザーボード60は、セラミック基板40と、セラミック基板40の表面側に接合されている第1金属層50Aと、セラミック基板40における裏面側に接合されている第2金属層50Bとを備え、第1金属層50A及び第2金属層50Bの一方又は両方(本実施形態では第1金属層50A)には、セラミック基板40の表面40A1及び裏面40A2の識別を可能にする切り欠きNT1が形成されている。
 また、本実施形態のマザーボード60が備えるセラミック基板40の表面40A1及び裏面40A2の一方(本実施形態では表面40A1)には、スクライブラインSLが形成されている。すなわち、本実施形態のマザーボード60が備えるセラミック基板40は、表面40A1にスクライブラインSLが形成されている、SL付きセラミック基板40Aである。そして、切り欠きNT1は、マザーボード60の厚み方向から見て、その内側にスクライブラインSLの一部が位置するように、第1金属層50A及び第2金属層50Bの一方(本実施形態では第1金属層50A)に形成されている(図5B参照)。
(Explanation about motherboard)
Next, the motherboard 60 of the present embodiment manufactured at the end of the metal layer forming step S40 will be described with reference to FIGS. 5B and 5C.
As described above, the motherboard 60 of the present embodiment has a ceramic substrate 40, a first metal layer 50A bonded to the front surface side of the ceramic substrate 40, and a second metal layer bonded to the back surface side of the ceramic substrate 40. 50B is provided, and one or both of the first metal layer 50A and the second metal layer 50B (the first metal layer 50A in this embodiment) are cut so that the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40 can be distinguished. The notch NT1 is formed.
Further, a scribe line SL is formed on one of the front surface 40A1 and the back surface 40A2 (front surface 40A1 in this embodiment) of the ceramic substrate 40 included in the motherboard 60 of the present embodiment. That is, the ceramic substrate 40 included in the motherboard 60 of the present embodiment is a ceramic substrate 40A with SL in which a scribe line SL is formed on the surface 40A1. The notch NT1 is one of the first metal layer 50A and the second metal layer 50B (the first in the present embodiment) so that a part of the scribe line SL is located inside the notch NT1 when viewed from the thickness direction of the motherboard 60. It is formed in one metal layer 50A) (see FIG. 5B).
 そして、本実施形態の場合、切り欠きNT1は第1金属層50A及び第2金属層50Bのうちの一方にしか形成されていない(前述の第1態様の一例)。そのため、切り欠きNTが形成されている側の面が表面であるという前提に基づけば、本実施形態の切り欠きNT1はセラミック基板40の表面40A1及び裏面40A2の識別を可能にするという機能を有する。
 また、本実施形態の場合、切り欠きNT1は、その内側にスクライブラインSLの一部が位置するように、第1金属層50Aに形成されている。そのため、セラミック基板40におけるスクライブラインSLが形成されている面が表面であるという前提に基づけば、本実施形態の切り欠きNT1はセラミック基板40の表面40A1及び裏面40A2の識別を可能にするという機能を有する。
In the case of the present embodiment, the notch NT1 is formed in only one of the first metal layer 50A and the second metal layer 50B (an example of the above-mentioned first aspect). Therefore, based on the premise that the surface on the side where the notch NT is formed is the front surface, the notch NT1 of the present embodiment has a function of enabling the identification of the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40. ..
Further, in the case of the present embodiment, the notch NT1 is formed in the first metal layer 50A so that a part of the scribe line SL is located inside the notch NT1. Therefore, based on the premise that the surface of the ceramic substrate 40 on which the scribe line SL is formed is the front surface, the notch NT1 of the present embodiment has a function of enabling the identification of the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40. Has.
<レジスト印刷工程>
 次に、レジスト印刷工程S50について、図6を参照しながら説明する。本工程は、マザーボード60の第1金属層50Aに感光性を有するレジスト膜PRFを被覆し、第1金属層50Aにおける3本のスクライブラインSLにより区画されている6つの領域に、後述する各回路パターンCPに相当するレジストパターンPRPを形成する工程である。具体的には、本工程では、一例として露光装置(図示省略)を用いて、レジスト膜PRFにレジストパターンPRPを印刷する(レジストパターンPRPを硬化させ、レジスト膜PRFにおけるレジストパターンPRP以外の部分を未硬化のままとする)。その結果、PRP付きマザーボード60Aが製造される。
 なお、第1金属層50Aに切り欠きNT1が形成されているため、本工程の作業者は、切り欠き付きマザーボード60Aの第1金属層50Aを容易に識別することができる。また、第1金属層50Aにおける切り欠きNT1が形成されている部分には、レジストパターンPRP(回路パターンCP)を形成しない。
<Resist printing process>
Next, the resist printing step S50 will be described with reference to FIG. In this step, the first metal layer 50A of the motherboard 60 is coated with a photosensitive resist film PRF, and each circuit described later is formed in six regions of the first metal layer 50A partitioned by three scribe lines SL. This is a step of forming a resist pattern PRP corresponding to the pattern CP. Specifically, in this step, as an example, an exposure apparatus (not shown) is used to print a resist pattern PRP on the resist film PRF (the resist pattern PRP is cured, and a portion of the resist film PRF other than the resist pattern PRP is printed. Leave uncured). As a result, the motherboard 60A with PRP is manufactured.
Since the notch NT1 is formed in the first metal layer 50A, the operator in this step can easily identify the first metal layer 50A of the notched motherboard 60A. Further, the resist pattern PRP (circuit pattern CP) is not formed in the portion of the first metal layer 50A where the notch NT1 is formed.
 以上が、レジスト印刷工程S50についての説明である。 The above is the explanation of the resist printing process S50.
<エッチング工程>
 次に、エッチング工程S60(回路パターン形成工程の一例)について、図7を参照しながら説明する。本工程は、PRP付きマザーボード60Aのレジスト膜PRFにおける未硬化のレジスト膜PRFを除去し、第1金属層50Aが露出した部分をエッチングし、次いで残ったレジストパターンPRPを除去して、回路パターンCPを形成する工程である。その結果、本工程前のPRP付きマザーボード60Aは、3本のスクライブラインSLに区画されている6つの領域にそれぞれ回路パターンCPが形成された集合基板60Bとなる。また、集合基板60Bが形成されると、SL形成工程S30で形成された3本のスクライブラインSLのすべての部分は、第1金属層50Aのエッチングに伴って露出された状態となる。これに伴い、第1金属層50Aにおける切り欠きNT1が形成されている部分は消滅する。すなわち、集合基板60Bにおいて機能することがない切り欠きNT1は、本工程で消滅される。
 そして、本工程で形成される各回路パターンCPには、後述する実装工程S90で、それぞれ、IC、コンデンサ、抵抗等の電子部品(図示省略)が実装される。すなわち、本工程は、接合工程S42の後に行う工程であって、第1金属層50A及び第2金属層50Bの一方又は両方(本実施形態の場合は、第1金属層50A)に形成された切り欠きNT1からセラミック基板40の表面40A1及び裏面40A2の識別をして、第1金属層50A及び第2金属層50Bの一方(本実施形態の場合は第1金属層50A)に電子部品(図示)が実装される回路パターンCPを形成する工程である。
 また、本工程後に、本実施形態のマザーボード60(図5B及び図5C参照)の第1金属層50A及び第2金属層50Bの一方(本実施形態では第1金属層50A)における、少なくとも1本のスクライブラインSL(本実施形態では3本)により区画されている複数(本実施形態では6つ)の領域には、それぞれ、電子部品(図示省略)が実装される回路パターンCPが形成されることになる。
 なお、前述の説明では、エッチング工程S60を回路パターン形成工程の一例としているが、レジスト印刷工程S50とエッチング工程S60との組み合せを回路パターン形成工程の一例と捉えてもよい。
<Etching process>
Next, the etching step S60 (an example of the circuit pattern forming step) will be described with reference to FIG. 7. In this step, the uncured resist film PRF in the resist film PRF of the motherboard 60A with PRP is removed, the exposed portion of the first metal layer 50A is etched, and then the remaining resist pattern PRP is removed to remove the circuit pattern CP. Is the process of forming. As a result, the motherboard 60A with PRP before this step becomes a collective substrate 60B in which the circuit pattern CP is formed in each of the six regions partitioned by the three scribe lines SL. Further, when the assembly substrate 60B is formed, all the portions of the three scribe lines SL formed in the SL forming step S30 are exposed as the first metal layer 50A is etched. Along with this, the portion of the first metal layer 50A where the notch NT1 is formed disappears. That is, the notch NT1 that does not function in the assembly substrate 60B is eliminated in this step.
Then, in each circuit pattern CP formed in this step, electronic components (not shown) such as an IC, a capacitor, and a resistor are mounted in the mounting step S90 described later. That is, this step is a step performed after the joining step S42, and is formed on one or both of the first metal layer 50A and the second metal layer 50B (in the case of this embodiment, the first metal layer 50A). The front surface 40A1 and the back surface 40A2 of the ceramic substrate 40 are identified from the notch NT1, and an electronic component (illustrated) is placed on one of the first metal layer 50A and the second metal layer 50B (first metal layer 50A in the case of this embodiment). ) Is a step of forming a circuit pattern CP to which it is mounted.
Further, after this step, at least one of the first metal layer 50A and the second metal layer 50B (first metal layer 50A in this embodiment) of the motherboard 60 of the present embodiment (see FIGS. 5B and 5C). Circuit pattern CPs on which electronic components (not shown) are mounted are formed in each of a plurality of regions (six in the present embodiment) partitioned by the scribing lines SL (three in the present embodiment). It will be.
In the above description, the etching step S60 is taken as an example of the circuit pattern forming step, but the combination of the resist printing step S50 and the etching step S60 may be regarded as an example of the circuit pattern forming step.
 以上が、エッチング工程S60についての説明である。 The above is the explanation of the etching process S60.
<表面処理工程>
 次に、表面処理工程S70について説明する。本工程は、エッチングされた集合基板の金属層の表面に残っているレジストを除去し、金属層の錆を防止する防錆処理や無電解めっき法によりNi-PめっきやAgめっき処理をする。集合基板の回路パターンに半田のはみだしを防止する目的でソルダーレジストを印刷する。集合基板60Bの複数の(本実施形態では6個の)回路パターンCPが形成されている側の面における、電子部品が接合される接合部分以外の部分をソルダーレジスト等の保護層(図示省略)で被覆して、当該接合部分以外の部分の表面処理を行う工程である。また、本工程は、電子部品が接合される接合部分に例えば電解めっき法によりめっき処理をして、当該接合部分の表面処理を行う。ここで、前述の説明では、エッチング工程S60の終了時の製造物を集合基板60Bとしたが、表面処理工程S70の終了時の製造物、すなわち、集合基板60Bを保護層で被覆した基板を集合基板と捉えてもよい。
<Surface treatment process>
Next, the surface treatment step S70 will be described. In this step, the resist remaining on the surface of the metal layer of the etched assembly substrate is removed, and Ni-P plating or Ag plating is performed by an rust preventive treatment or an electroless plating method to prevent the metal layer from rusting. Solder resist is printed on the circuit pattern of the assembly board to prevent solder from squeezing out. A protective layer such as a solder resist (not shown) is formed on the surface of the assembly board 60B on the side where a plurality of (six in this embodiment) circuit patterns CP are formed, except for the jointed portion to which the electronic components are bonded. This is a step of coating with and surface-treating a portion other than the joint portion. Further, in this step, the joint portion to which the electronic component is joined is plated by, for example, an electrolytic plating method, and the surface treatment of the joint portion is performed. Here, in the above description, the product at the end of the etching step S60 is the assembly substrate 60B, but the product at the end of the surface treatment step S70, that is, the substrate in which the assembly substrate 60B is coated with the protective layer is assembled. You may think of it as a substrate.
 以上が、表面処理工程S70についての説明である。 The above is the explanation of the surface treatment step S70.
<分割工程>
 次に、分割工程S80について、図8を参照しながら説明する。本工程は、集合基板60B(又はSL付きセラミック基板40A)を複数本(本実施形態では一例として3本)のスクライブラインSLに沿って切断して、集合基板60Bを複数枚(本実施形態では一例として6枚)の回路基板60Cに分割する工程である。すなわち、本工程は、少なくとも1本のスクライブラインSL(本実施形態では一例として3本)に沿ってセラミック基板40を切断して、複数の回路基板60Bの集合基板60Cを分割する工程である。
<Division process>
Next, the division step S80 will be described with reference to FIG. In this step, a plurality of assembly substrates 60B (or ceramic substrates 40A with SL) are cut along a plurality of (three as an example in this embodiment) scribing line SL, and a plurality of assembly substrates 60B (in this embodiment) are cut. As an example, it is a step of dividing into 6 circuit boards 60C. That is, this step is a step of cutting the ceramic substrate 40 along at least one scribe line SL (three as an example in this embodiment) to divide the collective substrate 60C of the plurality of circuit boards 60B.
 本工程が終了すると、複数枚の回路基板60Cが製造される。なお、本実施形態の場合、第1金属層50Aは、これまでの工程により、各回路基板60Cの回路パターンCPとなる。これに対して、第2金属層50Bにおける、3本のスクライブラインSLにより区画された領域は、これまでの工程により、各回路基板60Cにおける回路パターンCPが形成されている側と反対側の金属層となる。そして、当該金属層は、後述する実装工程S90により製造される実装基板(図示省略)の使用時において、回路パターンCPに実装される電子部品が発生させる熱を放熱するための放熱層として機能する。そして、本工程後に、本実施形態のマザーボード60(図5B及び図5C参照)の第1金属層50A及び第2金属層50Bの他方(本実施形態では第2金属層50B)における、少なくとも1本のスクライブラインSL(本実施形態では3本)により区画されている複数(本実施形態では6つ)の領域には、それぞれ放熱層として機能することになる。 When this process is completed, a plurality of circuit boards 60C are manufactured. In the case of this embodiment, the first metal layer 50A becomes the circuit pattern CP of each circuit board 60C by the steps so far. On the other hand, in the second metal layer 50B, the region partitioned by the three scribe lines SL is the metal on the side opposite to the side on which the circuit pattern CP is formed in each circuit board 60C by the steps so far. Become a layer. Then, the metal layer functions as a heat radiating layer for radiating heat generated by electronic components mounted on the circuit pattern CP when the mounting board (not shown) manufactured in the mounting step S90 described later is used. .. Then, after this step, at least one of the first metal layer 50A and the second metal layer 50B (second metal layer 50B in this embodiment) of the motherboard 60 of the present embodiment (see FIGS. 5B and 5C). Each of the plurality of regions (six in the present embodiment) partitioned by the scribing line SL (three in the present embodiment) functions as a heat dissipation layer.
 以上が、分割工程S80についての説明である。 The above is the explanation of the division step S80.
<実装工程>
 次に、実装工程について説明する。本工程は、各回路基板60C(図8参照)に電子部品(図示省略)を実装する工程である。本工程は、実装装置(図示省略)を用いて、各回路基板60Cの回路パターンCP(図8参照)における電子部品が接合される接合部分にはんだ(図示省略)を付着させて、当該接合部分に電子部品の接合端子を接合させる。
<Mounting process>
Next, the mounting process will be described. This step is a step of mounting an electronic component (not shown) on each circuit board 60C (see FIG. 8). In this step, a mounting device (not shown) is used to attach solder (not shown) to a joint portion where electronic components are joined in the circuit pattern CP (see FIG. 8) of each circuit board 60C, and the joint portion is attached. Join the joining terminals of electronic components to.
 本工程が終了すると、複数の実装基板が製造される。なお、前述の説明では、本工程は分割工程S80の後の工程としたが、本工程の後に分割工程S80を行うようにしてもよい。すなわち、本実施形態の製造方法S100は、表面処理工程S70の後、実装工程S90、分割工程S80の順で行ってもよい。 When this process is completed, multiple mounting boards will be manufactured. In the above description, this step is a step after the split step S80, but the split step S80 may be performed after the main step. That is, the manufacturing method S100 of the present embodiment may be performed in the order of the mounting step S90 and the dividing step S80 after the surface treatment step S70.
 以上が、実装工程S90についての説明である。なお、複数の実装基板の製造後には、例えば、検査装置(図示省略)を用いて、回路パターンCPの検査、電子部品の動作の検査等が行われる。
 以上が、本実施形態の製造方法S100についての説明である。
The above is the description of the mounting process S90. After manufacturing the plurality of mounting boards, for example, an inspection device (not shown) is used to inspect the circuit pattern CP, inspect the operation of electronic components, and the like.
The above is the description of the manufacturing method S100 of the present embodiment.
≪本実施形態の効果≫
 次に、本実施形態の効果について説明する。
<< Effect of this embodiment >>
Next, the effect of this embodiment will be described.
 本実施形態では、マザーボード60における第1金属層50Aに切り欠きNT1が形成されている。
 したがって、本実施形態のマザーボード60は、レジスト印刷工程S50において、マザーボード60の表裏を容易に識別できる。これに伴い、本実施形態の金属層形成工程S40(本実施形態のマザーボード60の製造方法)によれば、表裏を容易に識別できるマザーボード60を製造することができる。また、本実施形態の複数の回路基板60Cの製造方法(図1のS10~S80)及び本実施形態の製造方法S100によれば、製造不良が発生しない又は発生し難い。
In the present embodiment, the notch NT1 is formed in the first metal layer 50A of the motherboard 60.
Therefore, the motherboard 60 of the present embodiment can easily identify the front and back sides of the motherboard 60 in the resist printing step S50. Along with this, according to the metal layer forming step S40 of the present embodiment (manufacturing method of the motherboard 60 of the present embodiment), it is possible to manufacture the motherboard 60 whose front and back can be easily identified. Further, according to the manufacturing method of the plurality of circuit boards 60C of the present embodiment (S10 to S80 in FIG. 1) and the manufacturing method S100 of the present embodiment, manufacturing defects do not occur or are unlikely to occur.
 また、本実施形態の場合、マザーボード60の表裏を識別するための手段は、例えば、第1金属層50Aに付されたマーク(例えば印刷された模様等)ではない。識別するための手段が前述のマークである場合、本実施形態の製造方法のいずれかの工程時にマークが擦れる等により無くなる虞がある。
 これに対して、本実施形態の場合、マザーボード60の表裏を識別するための手段である切り欠きNT1は、擦れる等により無くなることがない。
 したがって、本実施形態は、マザーボード60の表裏を識別するための手段が第1金属層50Aに付されたマークである場合に比べて、マザーボード60の表裏を確実に識別できる。
Further, in the case of the present embodiment, the means for identifying the front and back surfaces of the motherboard 60 is not, for example, a mark (for example, a printed pattern) attached to the first metal layer 50A. When the means for identifying the mark is the above-mentioned mark, the mark may be lost due to rubbing or the like during any step of the manufacturing method of the present embodiment.
On the other hand, in the case of the present embodiment, the notch NT1 which is a means for identifying the front and back of the motherboard 60 is not lost by rubbing or the like.
Therefore, in the present embodiment, the front and back surfaces of the motherboard 60 can be reliably identified as compared with the case where the means for identifying the front and back surfaces of the motherboard 60 is a mark attached to the first metal layer 50A.
 また、前述のとおり、本実施形態の切り欠きNT1は、第1金属層50Aの製造時に形成することが可能である。具体的には、図2Cに示す切断装置200のような装置を用いて帯状の金属層(図示省略)を裁断して矩形である枚葉の金属層を製造する際に、当該装置に取り付けられているプレスユニット(図示省略)により当該枚葉の金属層に切り欠きNT1を形成して第1金属層50Aを製造すればよい。
 したがって、本実施形態によれば、簡単に又は低コストで、マザーボード60の表裏を識別するための手段である切り欠きNT1を形成することができる。
Further, as described above, the notch NT1 of the present embodiment can be formed at the time of manufacturing the first metal layer 50A. Specifically, when a strip-shaped metal layer (not shown) is cut using a device such as the cutting device 200 shown in FIG. 2C to produce a rectangular single-wafer metal layer, the metal layer is attached to the device. The first metal layer 50A may be manufactured by forming a notch NT1 in the single-wafer metal layer by the press unit (not shown).
Therefore, according to the present embodiment, the cutout NT1 which is a means for distinguishing the front and back sides of the motherboard 60 can be formed easily or at low cost.
 また、本実施形態の切り欠きNT1は、第1金属層50Aにおける回路パターンCPが形成される部分以外の部分に形成される(図7参照)。そのため、第1金属層50Aにおける切り欠きNT1が形成されている部分は、エッチング工程S60で消滅される。
 したがって、本実施形態によれば、製造される複数の回路基板60C及び複数の実装基板に切り欠きNT1の影響が残らない。
Further, the notch NT1 of the present embodiment is formed in a portion of the first metal layer 50A other than the portion where the circuit pattern CP is formed (see FIG. 7). Therefore, the portion of the first metal layer 50A where the notch NT1 is formed disappears in the etching step S60.
Therefore, according to the present embodiment, the influence of the notch NT1 does not remain on the plurality of circuit boards 60C and the plurality of mounting boards to be manufactured.
 また、本実施形態では、第1金属層50Aは、切り欠きNT1の内側にスクライブラインSLの一部が位置するように、SL付きセラミック基板40Aに接合される(図5B参照)。
 したがって、本実施形態の場合、レジスト印刷工程S50において直接スクライブラインSLを視認してマザーボード60の表裏の識別することができる。
Further, in the present embodiment, the first metal layer 50A is joined to the ceramic substrate 40A with SL so that a part of the scribe line SL is located inside the notch NT1 (see FIG. 5B).
Therefore, in the case of the present embodiment, the front and back surfaces of the motherboard 60 can be identified by directly visually recognizing the scribe line SL in the resist printing step S50.
 以上が、本実施形態の効果についての説明である。また、以上が、本実施形態についての説明である。 The above is the explanation of the effect of this embodiment. Moreover, the above is the description about this embodiment.
≪変形例≫
 以上のとおり、本発明の一例について前述の実施形態(図1~図8参照)を参照しながら説明したが、本発明は前述の実施形態に限定されるものではない。本発明の技術的範囲には、例えば、下記のような形態(変形例)も含まれる。
≪Modification example≫
As described above, an example of the present invention has been described with reference to the above-described embodiments (see FIGS. 1 to 8), but the present invention is not limited to the above-described embodiments. The technical scope of the present invention also includes, for example, the following forms (modifications).
 例えば、本実施形態の説明では、セラミック粉末の一例を窒化珪素として説明した。しかしながら、セラミック粉末の一例は他のセラミック粉末でもよい。例えば、窒化アルミニウムでもよい。 For example, in the description of this embodiment, an example of ceramic powder has been described as silicon nitride. However, an example of the ceramic powder may be another ceramic powder. For example, aluminum nitride may be used.
 また、本実施形態のグリーンシート形成工程S10に含まれる成形工程S12(図2A参照)の説明では、ドクターブレード成形を用いて行うとした。しかしながら、スラリー10を帯状グリーンシート20に成形することができれば、成形工程S12は他の方法により行われてもよい。例えば、成形工程S12は、押出成形によって行われてもよい。 Further, in the explanation of the molding step S12 (see FIG. 2A) included in the green sheet forming step S10 of the present embodiment, it is assumed that the doctor blade molding is used. However, if the slurry 10 can be molded into the band-shaped green sheet 20, the molding step S12 may be performed by another method. For example, the molding step S12 may be performed by extrusion molding.
 また、本実施形態のグリーンシート形成工程S10に含まれる切断工程S13(図2A参照)の説明では、照射部224を帯状グリーンシート20の短手方向の一端側から他端側に亘って移動させながら、帯状グリーンシート20を切断するとした。しかしながら、結果として帯状グリーンシート20を切断して枚葉グリーンシート30を得ることができれば、帯状グリーンシート20の切断箇所が本実施形態の場合のように帯状グリーンシート20の短手方向の一端側から他端側に亘る直線部分でなくてもよい。例えば、帯状グリーンシート20に枚葉グリーンシート30の形をした穴を開けることで帯状グリーンシート20から枚葉グリーンシート30を分離する(又はくり抜く)ように、帯状グリーンシート20を切断してもよい。すなわち、帯状グリーンシート20を切断して得られる枚葉グリーンシート30は、その全端面の少なくとも一部が切断面であればよい。 Further, in the description of the cutting step S13 (see FIG. 2A) included in the green sheet forming step S10 of the present embodiment, the irradiation unit 224 is moved from one end side to the other end side of the band-shaped green sheet 20 in the lateral direction. However, it was decided to cut the strip-shaped green sheet 20. However, if the strip-shaped green sheet 20 can be cut to obtain the single-wafer green sheet 30, the cut portion of the strip-shaped green sheet 20 is one end side of the strip-shaped green sheet 20 in the lateral direction as in the case of the present embodiment. It does not have to be a straight portion extending from the other end to the other end. For example, even if the strip-shaped green sheet 20 is cut so as to separate (or hollow out) the single-leaf green sheet 30 from the strip-shaped green sheet 20 by making a hole in the strip-shaped green sheet 20 in the shape of the single-leaf green sheet 30. Good. That is, the single-wafer green sheet 30 obtained by cutting the strip-shaped green sheet 20 may have at least a part of all end faces thereof as a cut surface.
 また、本実施形態では、スクライブラインSLは、直線状に並ぶ複数の凹みであるとして説明した(図5C参照)。しかしながら、その機能を発揮することができれば、スクライブラインSLは、例えば、連続的な溝、長さ、幅等が異なる複数の凹み等であってもよい。 Further, in the present embodiment, the scribe line SL has been described as having a plurality of dents arranged in a straight line (see FIG. 5C). However, the scribe line SL may be, for example, a continuous groove, a plurality of dents having different lengths, widths, etc., as long as the function can be exhibited.
 また、本実施形態では、複数本のスクライブラインSLは、3本のスクライブラインSLであるとして説明した(図4参照)。しかしながら、複数本のスクライブラインSLは、少なくとも1本以上のスクライブラインSLであればよい。 Further, in the present embodiment, the plurality of scribe lines SL has been described as being three scribe lines SL (see FIG. 4). However, the plurality of scribe lines SL may be at least one or more scribe lines SL.
 また、本実施形態では、複数本のスクライブラインSLはマザーボード60を6等分するとして説明した(図4参照)。しかしながら、複数本のスクライブラインSLはマザーボード60を等分しなくてもよい。 Further, in the present embodiment, it has been described that the plurality of scribe lines SL divide the motherboard 60 into six equal parts (see FIG. 4). However, the plurality of scribe lines SL do not have to divide the motherboard 60 into equal parts.
 また、本実施形態では、第1金属層50Aと、第2金属層50Bとは、第1金属層50Aに切り欠きNT1が形成されている点以外は、それぞれ、厚み、形状、大きさ及び材質が同等であるとして説明した。しかしながら、第1金属層50Aと、第2金属層50Bとは、それぞれの厚みが異なっていてもよい。 Further, in the present embodiment, the first metal layer 50A and the second metal layer 50B have thickness, shape, size and material, respectively, except that the notch NT1 is formed in the first metal layer 50A. Was explained as equivalent. However, the thickness of the first metal layer 50A and the thickness of the second metal layer 50B may be different from each other.
 また、本実施形態では、切り欠きNT1が形成されている第1金属層50Aに回路パターンCPが形成されると説明した(図6及び図7参照)。しかしながら、回路パターンCPは、切り欠きNT1が形成されていない第2金属層50Bに形成してもよい。すなわち、セラミック基板40(マザーボード60)の表面及び裏面の識別を可能にする切り欠きNT1は、第1金属層50A及び第2金属層50Bの一方に形成されていればよい。 Further, in the present embodiment, it has been explained that the circuit pattern CP is formed in the first metal layer 50A in which the notch NT1 is formed (see FIGS. 6 and 7). However, the circuit pattern CP may be formed on the second metal layer 50B in which the notch NT1 is not formed. That is, the notch NT1 that enables identification of the front surface and the back surface of the ceramic substrate 40 (motherboard 60) may be formed on one of the first metal layer 50A and the second metal layer 50B.
 また、本実施形態では、切り欠きNT1が第1金属層50Aの一箇所に形成されているとして説明した(図5B参照)。しかしながら、第1金属層50Aには複数の切り欠きNT1が形成されていてもよい。すなわち、セラミック基板40(マザーボード60)の表面及び裏面の識別を可能する、少なくとも1つの切り欠きNT1が形成されていればよい。 Further, in the present embodiment, it has been described that the notch NT1 is formed at one location of the first metal layer 50A (see FIG. 5B). However, a plurality of notches NT1 may be formed in the first metal layer 50A. That is, at least one notch NT1 capable of distinguishing the front surface and the back surface of the ceramic substrate 40 (motherboard 60) may be formed.
 また、第1金属層50A及び第2金属層50Bにそれぞれ少なくとも1つ以上の切り欠きNT1を形成し、かつ、それぞれの層に形成されている切り欠きNT1の数量を異なる数量にしてもよい。例えば、第1金属層50Aには2つの切り欠きNT1を形成し、第2金属層50Bには1つの切り欠きNT1を形成する(前述の第2態様の一例)。この場合、マザーボード60の表面側に2つの切り欠きが形成されている前提に基づけば、第1金属層50Aに形成される2つの切り欠きNT1及び第2金属層50Bに形成される1つの切り欠きNT1はセラミック基板40(マザーボード60)の表面及び裏面の識別を可能する。 Further, at least one notch NT1 may be formed in each of the first metal layer 50A and the second metal layer 50B, and the number of notches NT1 formed in each layer may be different. For example, two notches NT1 are formed in the first metal layer 50A, and one notch NT1 is formed in the second metal layer 50B (an example of the second aspect described above). In this case, based on the premise that two notches are formed on the surface side of the motherboard 60, two notches NT1 formed in the first metal layer 50A and one notch formed in the second metal layer 50B. The notch NT1 enables identification of the front surface and the back surface of the ceramic substrate 40 (motherboard 60).
 また、本実施形態では、金属層形成工程S40で第1金属層50Aに切り欠きNT1を形成し、エッチング工程S60で第1金属層50Aに回路パターンCPを形成し、分割工程S80で複数の回路基板60Cが製造されると第2金属層50Bは複数の放熱層になることを説明した。しかしながら、第2金属層50Bに切り欠きNT1を形成し、第2金属層50Bに回路パターンCPを形成してもよい。 Further, in the present embodiment, the notch NT1 is formed in the first metal layer 50A in the metal layer forming step S40, the circuit pattern CP is formed in the first metal layer 50A in the etching step S60, and a plurality of circuits are formed in the dividing step S80. It has been explained that when the substrate 60C is manufactured, the second metal layer 50B becomes a plurality of heat dissipation layers. However, the notch NT1 may be formed in the second metal layer 50B, and the circuit pattern CP may be formed in the second metal layer 50B.
 また、本実施形態では、切り欠きNT1が形成された第1金属層50Aをセラミック基板40に接合するとして説明した(図5Aのフロー図参照)。しかしながら、図9に示す金属層形成工程の変形例(第1変形例)のように、第1金属層50Aをセラミック基板40に接合した後に、第1金属層50Aに切り欠きNT1を形成してもよい。すなわち、レジスト印刷工程S50の前に、マザーボード60の表面及び裏面の識別を可能とする切り欠きNT1が形成されていればよい。 Further, in the present embodiment, it has been described that the first metal layer 50A in which the notch NT1 is formed is joined to the ceramic substrate 40 (see the flow chart of FIG. 5A). However, as in the modified example (first modified example) of the metal layer forming step shown in FIG. 9, after the first metal layer 50A is bonded to the ceramic substrate 40, a notch NT1 is formed in the first metal layer 50A. May be good. That is, a notch NT1 that enables identification of the front surface and the back surface of the motherboard 60 may be formed before the resist printing step S50.
 また、本実施形態では、切り欠きNT1は、第1金属層50AにおけるスクライブラインSLの一部に重なる位置に形成されているとして説明した(図5B参照)。しかしながら、図10に示す金属層形成工程の変形例(第2変形例)のように、切り欠きNT2は第1金属層50AにおけるスクライブラインSLの一部に重なる位置以外の位置に形成されていてもよい。例えば、本変形例のように、切り欠きNT2は第1金属層50Aの4つの角部のうちの少なくとも1つにそれぞれ形成されていてもよい。なお、本変形例の場合と異なり、4つの切り欠きNT2は、4つの角部のうちの少なくとも1つの角部に形成されていてもよい。また、本変形例の場合、切り欠きNT2を例えばアライメントマークとして利用してもよい。 Further, in the present embodiment, it has been described that the notch NT1 is formed at a position overlapping a part of the scribe line SL in the first metal layer 50A (see FIG. 5B). However, as in the modified example (second modified example) of the metal layer forming step shown in FIG. 10, the notch NT2 is formed at a position other than a position overlapping a part of the scribe line SL in the first metal layer 50A. May be good. For example, as in this modification, the notch NT2 may be formed in at least one of the four corners of the first metal layer 50A. Note that, unlike the case of this modification, the four notches NT2 may be formed at at least one of the four corners. Further, in the case of this modification, the notch NT2 may be used as, for example, an alignment mark.
 また、図10に示す第2変形例の場合、一例として、切り欠きNT2は第2金属層50Bの4つの角部にも形成されている。本変形例の場合、例えば、第1金属層50Aの切り欠きNT2と、第2金属層50Bの切り欠きNT2とは、互いに、大きさが異なるようになっていればよい(前述の第2態様の一例)。本変形例によれば、第1金属層50Aの切り欠きNT2の大きさと、第2金属層50Bの切り欠きNT2の大きさとの違いを認識してマザーボード60の表面及び裏面の識別を可能にする。 Further, in the case of the second modification shown in FIG. 10, as an example, the notch NT2 is also formed at the four corners of the second metal layer 50B. In the case of this modification, for example, the notch NT2 of the first metal layer 50A and the notch NT2 of the second metal layer 50B may be different in size from each other (the second aspect described above). An example). According to this modification, it is possible to identify the front surface and the back surface of the motherboard 60 by recognizing the difference between the size of the notch NT2 of the first metal layer 50A and the size of the notch NT2 of the second metal layer 50B. ..
 また、図10に示す第2変形例の場合、第1金属層50A及び第2金属層50Bの両方の各4つの角部にそれぞれ切り欠きNT2が形成される。すなわち、第2変形例の場合、第1金属層50A及び第2金属層50Bの両方における厚み方向から見て同じ部分に切り欠きNT2が形成されている。ここで、第2変形例の説明では、例えば、第1金属層50Aの切り欠きNT2と、第2金属層50Bの切り欠きNT2とは、互いに、大きさが異なるようになっていればよいとした。
 しかしながら、図11に示す第3変形例のように、第1金属層50Aの切り欠きNT2の形状(一例として矩形状)と、第2金属層50Bの切り欠きNT2の形状(一例として三角形状)とが、互いに異なる形状としてもよい(前述の第2態様の一例)。第3変形例によれば、第1金属層50Aの切り欠きNT2の形状と、第2金属層50Bの切り欠きNT2の形状との違いを認識してマザーボード60の表面及び裏面の識別を可能にする。
 第3変形例の場合、第1金属層50Aの切り欠きNT2と、第2金属層50Bの切り欠きNT2とは、それぞれ、セラミック基板40の厚み方向から見て同じ位置に形成されている。しかしながら、矩形状の切り欠きNT2が形成されている側がセラミック基板40の表面である又は三角形状の切り欠きNT2が形成されている側が裏面という前提に基づけば、第3変形例の切り欠きNT2はセラミック基板40の表面40A1及び裏面40A2の識別を可能にするという機能を有する。
Further, in the case of the second modification shown in FIG. 10, notches NT2 are formed at each of the four corners of both the first metal layer 50A and the second metal layer 50B. That is, in the case of the second modification, the notch NT2 is formed in the same portion of both the first metal layer 50A and the second metal layer 50B when viewed from the thickness direction. Here, in the explanation of the second modification, for example, the notch NT2 of the first metal layer 50A and the notch NT2 of the second metal layer 50B may be different in size from each other. did.
However, as in the third modification shown in FIG. 11, the shape of the notch NT2 of the first metal layer 50A (rectangular shape as an example) and the shape of the notch NT2 of the second metal layer 50B (triangular shape as an example). May have different shapes from each other (an example of the above-mentioned second aspect). According to the third modification, it is possible to identify the front surface and the back surface of the motherboard 60 by recognizing the difference between the shape of the notch NT2 of the first metal layer 50A and the shape of the notch NT2 of the second metal layer 50B. To do.
In the case of the third modification, the notch NT2 of the first metal layer 50A and the notch NT2 of the second metal layer 50B are formed at the same positions when viewed from the thickness direction of the ceramic substrate 40, respectively. However, based on the premise that the side on which the rectangular notch NT2 is formed is the front surface of the ceramic substrate 40 or the side on which the triangular notch NT2 is formed is the back surface, the notch NT2 in the third modification is It has a function of enabling identification of the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40.
 また、本実施形態の金属層形成工程S40の前にSL形成工程S30が行われるとして説明した(図1及び図4参照)。しかしながら、図12に示す金属層形成工程の変形例(第4変形例)の場合のように、SL形成工程S30を行うことなくスクライブラインSLが形成されていないマザーボード60に第1金属層50A及び第2金属層50Bを接合するようにしてもよい。この場合、第1金属層50A及び50Bの一方又は両方に少なくとも1つの切り欠きNT1が形成されていればよい。第4変形例の場合、表面処理工程S70の後に分割工程S80を行うことなく実装工程S90を行うようにすれば(図1参照)、1枚のマザーボード60から1枚の実装基板が製造される。 Further, it has been described that the SL forming step S30 is performed before the metal layer forming step S40 of the present embodiment (see FIGS. 1 and 4). However, as in the case of the modification of the metal layer forming step (fourth modification) shown in FIG. 12, the first metal layer 50A and the first metal layer 50A and the motherboard 60 on which the scribing line SL is not formed without performing the SL forming step S30. The second metal layer 50B may be joined. In this case, at least one notch NT1 may be formed in one or both of the first metal layers 50A and 50B. In the case of the fourth modification, if the mounting step S90 is performed without performing the dividing step S80 after the surface treatment step S70 (see FIG. 1), one mounting substrate is manufactured from one motherboard 60. ..
 また、本実施形態の切り欠きNT1は、図5B、図5C等に示すように、第1金属層50Aの厚み方向の部分の全部を除去した形態とした。しかしながら、本実施形態の切り欠きNT1を、図13に示す第5変形例の切り欠きNT3のように、セラミック基板40の厚み方向の部分の一部を除去した形態としてもよい(前述の第1態様の一例)。 Further, as shown in FIGS. 5B, 5C, etc., the notch NT1 of the present embodiment has a form in which the entire portion in the thickness direction of the first metal layer 50A is removed. However, the notch NT1 of the present embodiment may be formed by removing a part of the portion in the thickness direction of the ceramic substrate 40 as in the notch NT3 of the fifth modification shown in FIG. 13 (the first described above). An example of an embodiment).
 また、本実施形態の切り欠きNT1は、図5B、図5C等に示すように、第1金属層50Aの厚み方向の部分の全部を除去した形態とした。しかしながら、本実施形態の切り欠きNT1を、図14に示す第6変形例の孔HL1のように、セラミック基板40の周縁で開口せずその厚み方向に貫通した形態(貫通孔)としてもよい(前述の第1態様の一例)。第6変形例の場合、孔HL1が形成されている側がセラミック基板40の表面であるという前提に基づけば、第5変形例の孔HL1はセラミック基板40の表面40A1及び裏面40A2の識別を可能にするという機能を有する。
 なお、第6変形例における、孔HL1の形状は第1金属層50Aの厚み方向から見て円形であるが、孔HL1の厚み方向から見た形状は円形でなくてもよい。
 また、孔HL1及び後述する孔HL2は、本実施形態の切り欠きNT1の形成方法と同様に、プレスユニット(図示省略)により枚葉の金属層に孔HL1又は孔HL2を形成して第1金属層50A又は第2金属層50Bを製造すればよい。
Further, as shown in FIGS. 5B, 5C and the like, the notch NT1 of the present embodiment has a form in which the entire portion in the thickness direction of the first metal layer 50A is removed. However, the notch NT1 of the present embodiment may be formed (through hole) in which the notch NT1 of the present embodiment is not opened at the peripheral edge of the ceramic substrate 40 and is penetrated in the thickness direction thereof, as in the hole HL1 of the sixth modification shown in FIG. An example of the first aspect described above). In the case of the sixth modification, based on the premise that the side on which the hole HL1 is formed is the surface of the ceramic substrate 40, the hole HL1 of the fifth modification enables the identification of the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40. It has the function of doing.
In the sixth modification, the shape of the hole HL1 is circular when viewed from the thickness direction of the first metal layer 50A, but the shape of the hole HL1 when viewed from the thickness direction does not have to be circular.
Further, in the hole HL1 and the hole HL2 described later, the hole HL1 or the hole HL2 is formed in the single-wafer metal layer by a press unit (not shown) in the same manner as the method for forming the notch NT1 in the present embodiment. The layer 50A or the second metal layer 50B may be manufactured.
 また、図15A及び図15Bに示す第7変形例のように、第1金属層50Aと第2金属層50Bとがマザーボード60を構成している状態で、それぞれに厚み方向から見て同じ位置に、同じ大きさ、同じ形状の孔HL1、HL2が形成されていてもよい(前述の第3態様の一例)。ただし、第7変形例の場合、第1金属層50Aに形成されている孔HL1を貫通孔とし、第2金属層50Bに形成されている孔HL2を非貫通孔とする。そして、第7変形例の場合、孔HL1(貫通孔)が形成されている側がセラミック基板40の表面であり、かつ、孔HL2(非貫通孔)が形成されている側が裏面であるという前提に基づけば、第7変形例の孔HL1及び孔HL2の一方又は両方はセラミック基板40の表面40A1及び裏面40A2の識別を可能にするという機能を有する。また、この場合、孔HL1(貫通孔)が形成されている側である孔HL1、HL2内の色彩、素材又は模様と、孔HL2(非貫通孔)が形成されている側であるHL2内の色彩、素材又は模様とは、孔HL1内がセラミック基板40の色彩、素材であり、孔HL2内が金属の色彩、金属素材であることにより相違する。
 なお、第7変形例における、孔HL1、HL2は、それぞれ厚み方向から見て円形であるが、互いに厚み方向から見て同じ大きさ、同じ形状であれば、円形でなくてもよい。
Further, as in the seventh modification shown in FIGS. 15A and 15B, the first metal layer 50A and the second metal layer 50B form the motherboard 60, and they are located at the same positions when viewed from the thickness direction. , Holes HL1 and HL2 having the same size and shape may be formed (an example of the above-mentioned third aspect). However, in the case of the seventh modification, the hole HL1 formed in the first metal layer 50A is a through hole, and the hole HL2 formed in the second metal layer 50B is a non-through hole. Then, in the case of the seventh modification, it is assumed that the side on which the hole HL1 (through hole) is formed is the front surface of the ceramic substrate 40 and the side on which the hole HL2 (non-through hole) is formed is the back surface. Based on this, one or both of the holes HL1 and the holes HL2 of the seventh modification have a function of enabling the identification of the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40. Further, in this case, the color, material or pattern in the holes HL1 and HL2 on the side where the hole HL1 (through hole) is formed and the color, material or pattern in the hole HL2 (non-through hole) and in the HL2 on the side where the hole HL2 (non-through hole) is formed. The color, material or pattern is different depending on that the inside of the hole HL1 is the color and material of the ceramic substrate 40, and the inside of the hole HL2 is the metal color and material.
The holes HL1 and HL2 in the seventh modification are circular when viewed from the thickness direction, but may not be circular as long as they have the same size and shape when viewed from the thickness direction.
 図16に示す第8変形例では、第1金属層50Aと第2金属層50Bとがマザーボード60を構成している状態で、それぞれに厚み方向から見て同じ位置に、同じ大きさ、同じ形状の複数の切り欠きNL4が形成されている(前述の第3態様の一例)。この場合であっても、セラミック基板40における複数の切り欠きNT4からセラミック基板40の表面40A1と裏40A2との識別を可能とする特徴が視認できれば、複数の切り欠きNT4はセラミック基板40の表面40A1と裏40A2との識別を可能とする切り欠きといえる。
 そして、第8変形例の場合、複数の切り欠きNT4の一部からセラミック基板40の表面40A1に形成されているスクライブラインSL(模様の一例)が視認可能なため、スクライブラインSLが上記特徴に相当する。
 以上より、切り欠きNT1内にスクライブラインSLが形成されている側がセラミック基板40の表面であるという前提に基づけば、第8変形例の第1金属層50A及び第2金属層50Bのそれぞれに形成されている複数の切り欠きNT4はセラミック基板40の表面40A1及び裏面40A2の識別を可能にするという機能を有する。
 なお、第8変形例では、各金属層にそれぞれ複数の切り欠きNT4が形成されているとしたが、各金属層にはそれぞれ1つの切り欠きNT4のみが形成されていてもよい。また第8変形例の切り欠きNT4を例えば第6変形例の孔HL1(貫通孔)としてもよい。
In the eighth modification shown in FIG. 16, in a state where the first metal layer 50A and the second metal layer 50B form the motherboard 60, they have the same size and the same shape at the same position when viewed from the thickness direction. A plurality of notches NL4 are formed (an example of the above-mentioned third aspect). Even in this case, if the features that enable the distinction between the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40 can be visually recognized from the plurality of notches NT4 in the ceramic substrate 40, the plurality of notches NT4 will be the surface 40A1 of the ceramic substrate 40. It can be said that it is a notch that enables the distinction between the back 40A2 and the back 40A2.
Then, in the case of the eighth modification, since the scribe line SL (an example of the pattern) formed on the surface 40A1 of the ceramic substrate 40 can be visually recognized from a part of the plurality of notches NT4, the scribe line SL has the above-mentioned characteristics. Equivalent to.
Based on the above, based on the premise that the side on which the scribing line SL is formed in the notch NT1 is the surface of the ceramic substrate 40, it is formed on each of the first metal layer 50A and the second metal layer 50B of the eighth modification. The plurality of notches NT4 made have a function of enabling identification of the front surface 40A1 and the back surface 40A2 of the ceramic substrate 40.
In the eighth modification, it is assumed that a plurality of notches NT4 are formed in each metal layer, but only one notch NT4 may be formed in each metal layer. Further, the notch NT4 of the eighth modification may be, for example, the hole HL1 (through hole) of the sixth modification.
 以上のとおり、前述の実施形態(図1~図8参照)と、複数の変形例(例えば図9~図16参照)とについてそれぞれ別々に説明したが、本発明の技術的範囲に属する形態としては、これらの1つに対して他の形態の一部の技術的要素を組み合せた形態としてもよい。例えば、第2変形例のマザーボード60(図10参照)の第1金属層50Aの4つの切り欠きNT2を前述の実施形態の切り欠きNT1(図5B参照)としてもよい。 As described above, the above-described embodiment (see FIGS. 1 to 8) and the plurality of modifications (see, for example, FIGS. 9 to 16) have been described separately, but as a mode belonging to the technical scope of the present invention. May be a combination of one of these with some technical elements of the other form. For example, the four notches NT2 of the first metal layer 50A of the motherboard 60 (see FIG. 10) of the second modification may be the notch NT1 (see FIG. 5B) of the above-described embodiment.
 この出願は、2019年5月31日に出願された日本出願特願2019-102590号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Application Japanese Patent Application No. 2019-102590 filed on May 31, 2019, and incorporates all of its disclosures herein.
10 スラリー
20 帯状グリーンシート
30 枚葉グリーンシート
40 セラミック基板
40A SL付きセラミック基板
40A1 表面
40A2 裏面
50A 第1金属層
50B 第2金属層
60 マザーボード(複合基板の一例)
60A PRP付きマザーボード
60B 集合基板(集合体の一例)
60C 回路基板
100 ドクターブレード成形装置
110 ベルト搬送機構
112 ローラ
112A ローラ
112B ローラ
114 ベルト
120 成形ユニット
122 収容部
124 ドクターブレード
130 加熱ユニット
200 切断装置
210 シート搬送機構
212 支持部
214 第1搬送部
216 第2搬送部
220 切断部
222 筐体
224 照射部
226 移動機構
CP 回路パターン
HL1 孔(貫通孔)
HL2 孔(非貫通孔)
LB レーザー光
NT1 切り欠き
NT2 切り欠き
NT3 切り欠き
NT4 切り欠き
PRF レジスト膜
PRP レジストパターン
S10 グリーンシート形成工程
S11 スラリー作製工程
S12 成形工程
S13 切断工程
S14 積層工程
S15 脱脂工程
S16 焼結工程
S20 焼結工程
S30 SL形成工程(スクライブライン形成工程)
S40 金属層形成工程
S41 切り欠き形成工程
S42 接合工程
S50 レジスト印刷工程
S60 エッチング工程
S70 表面処理工程
S80 分割工程
S90 実装工程
S100 実装基板の製造方法
SL スクライブライン
WC 温風
10 Slurry 20 Band-shaped green sheet 30 Single-wafer green sheet 40 Ceramic substrate 40A Ceramic substrate with SL 40A1 Front surface 40A2 Back surface 50A First metal layer 50B Second metal layer 60 Motherboard (example of composite substrate)
Motherboard with 60A PRP 60B Assembly board (example of assembly)
60C Circuit Board 100 Doctor Blade Molding Device 110 Belt Conveying Mechanism 112 Roller 112A Roller 112B Roller 114 Belt 120 Molding Unit 122 Accommodating Unit 124 Doctor Blade 130 Heating Unit 200 Cutting Device 210 Sheet Conveying Mechanism 212 Support Part 214 First Conveying Part 216 Second Transport unit 220 Cutting unit 222 Housing 224 Irradiation unit 226 Movement mechanism CP circuit pattern HL1 hole (through hole)
HL2 hole (non-through hole)
LB Laser light NT1 Notch NT2 Notch NT3 Notch NT4 Notch PRF Resist film PRP Resist pattern S10 Green sheet forming process S11 Slurry manufacturing process S12 Molding process S13 Cutting process S14 Laminating process S15 Degreasing process S16 Slicing process S20 Sintering process S30 SL forming process (scribing line forming process)
S40 Metal layer forming process S41 Notch forming process S42 Joining process S50 Resist printing process S60 Etching process S70 Surface treatment process S80 Dividing process S90 Mounting process S100 Mounting substrate manufacturing method SL Scribline WC Warm air

Claims (18)

  1.  セラミック基板と、
     前記セラミック基板の表面側に接合されている第1金属層と、
     前記セラミック基板における裏面側に接合されている第2金属層と、
     を備え、
     前記第1金属層及び前記第2金属層の一方又は両方には、前記セラミック基板の表面及び裏面の識別を可能にする少なくとも1つの切り欠き又は孔が形成されている、
     複合基板。
    With a ceramic substrate
    The first metal layer bonded to the surface side of the ceramic substrate and
    The second metal layer bonded to the back surface side of the ceramic substrate and
    With
    One or both of the first metal layer and the second metal layer are formed with at least one notch or hole that enables identification of the front surface and the back surface of the ceramic substrate.
    Composite board.
  2.  前記セラミック基板は、その厚み方向から見て、矩形であり、
     前記少なくとも1つの切り欠きは、前記セラミック基板の4つの角部のうちの少なくとも1つの角部を露出させるように、前記第1金属層及び前記第2金属層の一方又は両方に形成されている、
     請求項1に記載の複合基板。
    The ceramic substrate is rectangular when viewed from the thickness direction thereof.
    The at least one notch is formed in one or both of the first metal layer and the second metal layer so as to expose at least one corner of the four corners of the ceramic substrate. ,
    The composite substrate according to claim 1.
  3.  前記第1金属層及び前記第2金属層の両方には、それぞれ、前記少なくとも1つの切り欠き又は孔が形成されており、
     前記両方に形成されている前記少なくとも1つの切り欠き又は孔は、互いに位置、大きさ及び形状のいずれか1つ以上が異なっている、
     請求項1又は2に記載の複合基板。
    At least one notch or a hole is formed in both the first metal layer and the second metal layer, respectively.
    The at least one notch or hole formed in both of them differs from each other in any one or more of positions, sizes and shapes.
    The composite substrate according to claim 1 or 2.
  4.  前記少なくとも1つの切り欠き又は孔は、アライメントマークとしての機能を有する、
     請求項1~3のいずれか1項に記載の複合基板。
    The at least one notch or hole has a function as an alignment mark.
    The composite substrate according to any one of claims 1 to 3.
  5.  前記第1金属層及び前記第2金属層の一方には、電子部品が実装される回路パターンが形成される、
     請求項1~4のいずれか1項に記載の複合基板。
    A circuit pattern on which electronic components are mounted is formed on one of the first metal layer and the second metal layer.
    The composite substrate according to any one of claims 1 to 4.
  6.  前記第1金属層及び前記第2金属層の他方は、放熱層として機能する、
     請求項5に記載の複合基板。
    The other of the first metal layer and the second metal layer functions as a heat radiating layer.
    The composite substrate according to claim 5.
  7.  前記セラミック基板の表面及び裏面の一方には、少なくとも1本のスクライブラインが形成されている、
     請求項1~4のいずれか1項に記載の複合基板。
    At least one scribe line is formed on one of the front surface and the back surface of the ceramic substrate.
    The composite substrate according to any one of claims 1 to 4.
  8.  前記少なくとも1つの切り欠き又は孔は、前記セラミック基板の厚み方向から見て、その内側に前記少なくとも1本のスクライブラインの一部が位置するように、前記第1金属層及び前記第2金属層の一方に形成されている、
     請求項7に記載の複合基板。
    The first metal layer and the second metal layer are such that the at least one notch or hole is such that a part of the at least one scribe line is located inside the notch or hole when viewed from the thickness direction of the ceramic substrate. Formed on one side,
    The composite substrate according to claim 7.
  9.  前記第1金属層及び前記第2金属層の一方における前記少なくとも1本のスクライブラインにより区画されている複数の領域には、それぞれ、電子部品が実装される回路パターンが形成される、
     請求項7又は8に記載の複合基板。
    A circuit pattern in which electronic components are mounted is formed in each of a plurality of regions in one of the first metal layer and the second metal layer, which are partitioned by the at least one scribe line.
    The composite substrate according to claim 7 or 8.
  10.  前記第1金属層及び前記第2金属層の他方における前記少なくとも1本のスクライブラインにより区画されている複数の領域は、それぞれ放熱層として機能する、
     請求項9に記載の複合基板。
    The plurality of regions of the first metal layer and the other of the second metal layer partitioned by the at least one scribe line each function as a heat dissipation layer.
    The composite substrate according to claim 9.
  11.  セラミック基板の表面側及び裏面側に、それぞれ第1金属層及び第2金属層が接合されている複合基板の製造方法であって、
     前記第1金属層及び前記第2金属層の一方に、前記セラミック基板の表面及び裏面の識別を可能にする少なくとも1つの切り欠き又は孔を形成する切り欠き形成工程と、
     前記第1金属層及び前記第2金属層を、それぞれ前記セラミック基板の表面側及び裏面側に接合する接合工程と、
     を含む、
     複合基板の製造方法。
    A method for manufacturing a composite substrate in which a first metal layer and a second metal layer are bonded to the front surface side and the back surface side of the ceramic substrate, respectively.
    A notch forming step of forming at least one notch or a hole in one of the first metal layer and the second metal layer, which enables identification of the front surface and the back surface of the ceramic substrate.
    A joining step of joining the first metal layer and the second metal layer to the front surface side and the back surface side of the ceramic substrate, respectively.
    including,
    Manufacturing method of composite substrate.
  12.  セラミック基板の表面側及び裏面側に、それぞれ第1金属層及び第2金属層が接合されている複合基板の製造方法であって、
     前記第1金属層及び前記第2金属層の両方に、それぞれ、前記セラミック基板の表面及び裏面の識別を可能にする少なくとも1つの切り欠き又は孔を形成する切り欠き形成工程と、
     前記第1金属層及び前記第2金属層を、それぞれ前記セラミック基板の表面側及び裏面側に接合する接合工程と、
     を含む、
     複合基板の製造方法。
    A method for manufacturing a composite substrate in which a first metal layer and a second metal layer are bonded to the front surface side and the back surface side of the ceramic substrate, respectively.
    A notch forming step of forming at least one notch or a hole in both the first metal layer and the second metal layer, which enables identification of the front surface and the back surface of the ceramic substrate, respectively.
    A joining step of joining the first metal layer and the second metal layer to the front surface side and the back surface side of the ceramic substrate, respectively.
    including,
    Manufacturing method of composite substrate.
  13.  前記切り欠き形成工程では、互いに、位置、大きさ及び形状のいずれか1つ以上が異なる前記少なくとも1つ以上の切り欠き又は孔を前記両方に形成する、
     請求項12に記載の複合基板の製造方法。
    In the notch forming step, at least one or more notches or holes different from each other in any one or more of positions, sizes and shapes are formed in both of them.
    The method for manufacturing a composite substrate according to claim 12.
  14.  請求項10~13のいずれか1項に記載の複合基板の製造方法と、
     前記接合工程の後に行う工程であって、前記第1金属層及び前記第2金属層の一方又は両方に形成された前記少なくとも1つの切り欠き又は孔から前記セラミック基板の表面及び裏面の識別をして、前記第1金属層及び前記第2金属層の一方に電子部品が実装される回路パターンを形成するパターン形成工程と、
     を含む、
     回路基板の製造方法。
    The method for manufacturing a composite substrate according to any one of claims 10 to 13, and the method for manufacturing the composite substrate.
    In a step performed after the joining step, the front surface and the back surface of the ceramic substrate are identified from the at least one notch or hole formed in one or both of the first metal layer and the second metal layer. A pattern forming step of forming a circuit pattern in which electronic components are mounted on one of the first metal layer and the second metal layer.
    including,
    How to manufacture a circuit board.
  15.  前記接合工程の前に行われる工程であって、前記セラミック基板の表面又は裏面に少なくとも1本のスクライブラインを形成するスクライブライン形成工程、
     を含む、
     請求項10~13のいずれか1項に記載の複合基板の製造方法。
    A scribe line forming step, which is a step performed before the joining step and in which at least one scribe line is formed on the front surface or the back surface of the ceramic substrate.
    including,
    The method for manufacturing a composite substrate according to any one of claims 10 to 13.
  16.  前記切り欠き形成工程では、前記接合工程の際に前記厚み方向で前記少なくとも1つの切り欠き又は孔の内側に前記少なくとも1本のスクライブラインの一部が位置するように、前記少なくとも1つの切り欠き又は孔を前記第1金属層及び前記第2金属層の一方に形成する、
     請求項15に記載の複合基板の製造方法。
    In the notch forming step, the at least one notch is formed so that a part of the at least one scribe line is located inside the at least one notch or the hole in the thickness direction during the joining step. Alternatively, holes are formed in one of the first metal layer and the second metal layer.
    The method for manufacturing a composite substrate according to claim 15.
  17.  請求項15又は16に記載の複合基板の製造方法と、
     前記接合工程の後に行う工程であって、前記第1金属層及び前記第2金属層の一方又は両方に形成された前記少なくとも1つの切り欠き又は孔から前記セラミック基板の表面及び裏面の識別をして、前記第1金属層及び前記第2金属層の一方における前記少なくとも1本のスクライブラインにより区画されている複数の領域に、それぞれ回路パターンを形成するパターン形成工程と、
     を含む、
     複数の回路基板の集合体の製造方法。
    The method for manufacturing a composite substrate according to claim 15 or 16.
    In the step performed after the joining step, the front surface and the back surface of the ceramic substrate are identified from the at least one notch or hole formed in one or both of the first metal layer and the second metal layer. A pattern forming step of forming a circuit pattern in each of a plurality of regions defined by the at least one scribing line in one of the first metal layer and the second metal layer.
    including,
    A method for manufacturing an aggregate of a plurality of circuit boards.
  18.  請求項17に記載の複数の回路基板の集合体の製造方法と、
     前記少なくとも1本のスクライブラインに沿って前記セラミック基板を切断して、前記複数の回路基板の集合体を分割する分割工程と
     を含む、
     複数の回路基板の製造方法。
    The method for manufacturing an aggregate of a plurality of circuit boards according to claim 17,
    A division step of cutting the ceramic substrate along at least one scribe line to divide an aggregate of the plurality of circuit boards is included.
    Manufacturing method for multiple circuit boards.
PCT/JP2020/020944 2019-05-31 2020-05-27 Composite substrate, composite substrate manufacturing method, circuit substrate manufacturing method, method for manufacturing assembly of plurality of circuit substrates, and method for manufacturing plurality of circuit substrates WO2020241697A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021522819A JPWO2020241697A1 (en) 2019-05-31 2020-05-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-102590 2019-05-31
JP2019102590 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020241697A1 true WO2020241697A1 (en) 2020-12-03

Family

ID=73552224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020944 WO2020241697A1 (en) 2019-05-31 2020-05-27 Composite substrate, composite substrate manufacturing method, circuit substrate manufacturing method, method for manufacturing assembly of plurality of circuit substrates, and method for manufacturing plurality of circuit substrates

Country Status (2)

Country Link
JP (1) JPWO2020241697A1 (en)
WO (1) WO2020241697A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168482A (en) * 1999-09-28 2001-06-22 Toshiba Corp Ceramics circuit substrate
JP2004096035A (en) * 2002-09-04 2004-03-25 Denki Kagaku Kogyo Kk Method of manufacturing module structure, circuit board and method of fixing the same
JP2008211159A (en) * 2007-01-30 2008-09-11 Kyocera Corp Wiring board and electronic apparatus using the same
JP2011166040A (en) * 2010-02-15 2011-08-25 Kemitsukusu:Kk Method of manufacturing copper-clad resin composite ceramic board
US20180005956A1 (en) * 2016-06-29 2018-01-04 C-Mac Electromag Bvba Electronic Circuit and Substrate with Identification Pattern for Separate Electronic Circuits and Method for Producing Thereof
JP2018137396A (en) * 2017-02-23 2018-08-30 三菱マテリアル株式会社 Manufacturing method of substrate for power module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168482A (en) * 1999-09-28 2001-06-22 Toshiba Corp Ceramics circuit substrate
JP2004096035A (en) * 2002-09-04 2004-03-25 Denki Kagaku Kogyo Kk Method of manufacturing module structure, circuit board and method of fixing the same
JP2008211159A (en) * 2007-01-30 2008-09-11 Kyocera Corp Wiring board and electronic apparatus using the same
JP2011166040A (en) * 2010-02-15 2011-08-25 Kemitsukusu:Kk Method of manufacturing copper-clad resin composite ceramic board
US20180005956A1 (en) * 2016-06-29 2018-01-04 C-Mac Electromag Bvba Electronic Circuit and Substrate with Identification Pattern for Separate Electronic Circuits and Method for Producing Thereof
JP2018137396A (en) * 2017-02-23 2018-08-30 三菱マテリアル株式会社 Manufacturing method of substrate for power module

Also Published As

Publication number Publication date
JPWO2020241697A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
TWI608577B (en) Manufacturing apparatus and manufacturing method of metal-ceramic plate laminate, manufacturing apparatus and manufacturing method of power module substrate
EP4006966A1 (en) Ceramic substrate and method for manufacturing same, composite substrate and method for manufacturing same, and circuit substrate and method for manufacturing same
WO2020241697A1 (en) Composite substrate, composite substrate manufacturing method, circuit substrate manufacturing method, method for manufacturing assembly of plurality of circuit substrates, and method for manufacturing plurality of circuit substrates
JP2010052419A (en) Methods for manufacturing ceramic green sheet and multilayer ceramic circuit board using the same
WO2021085490A1 (en) Ceramic substrate and method for producing same, composite substrate and method for producing same, and circuit board and method for producing same
JP4838636B2 (en) Splitting apparatus and method for manufacturing ceramic wiring board
WO2021095843A1 (en) Ceramic substrate, composite substrate, circuit board, method for producing ceramic substrate, method for producing composite substrate, method for producing circuit board, and method for producing plurality of circuit boards
EP1392093B1 (en) Method for manufacturing ceramic multilayered board
JP4554161B2 (en) Circuit board manufacturing method and circuit board
WO2021200878A1 (en) Aluminum nitride plate and method for producing same, composite substrate and method for producing same, and circuit board and method for producing same
WO2021200867A1 (en) Silicon nitride plate and method for producing same, composite substrate and method for producing same, and circuit board and method for producing same
WO2021095845A1 (en) Ceramic substrate, composite substrate, circuit board, ceramic substrate production method, composite substrate production method, circuit board production method, and method for producing multiple circuit boards
WO2022131337A1 (en) Ceramic plate and method for manufacturing same, composite board and method for manufacturing same, and circuit board and method for manufacturing same
JP2005213107A (en) Method for producing ceramic-metal jointed substrate
KR20160126923A (en) Ceramic Board Manufacturing Method and Ceramic Board manufactured by thereof
WO2021054316A1 (en) Circuit board and module comprising same
WO2021095844A1 (en) Ceramic substrate, composite substrate, circuit board, method for producing ceramic substrate, method for producing composite substrate, method for producing circuit board, and method for producing plurality of circuit boards
JP3823457B2 (en) Manufacturing method of ceramic wiring board
CN109119400A (en) High current carrying capacity multilayer ceramic substrate and preparation method thereof
JP4571436B2 (en) Wiring board manufacturing method
JP4517549B2 (en) Low temperature fired ceramic substrate manufacturing method
JP2023103581A (en) Wiring board and method for manufacturing wiring board
WO2022176716A1 (en) Ceramic plate and method for manufacturing ceramic plate
WO2022045140A1 (en) Ceramic plate and method for manufacturing same, bonding substrate and method for manufacturing same, and circuit board and method for manufacturing same
WO2021200813A1 (en) Ceramic circuit board, electronic device, and metal member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813922

Country of ref document: EP

Kind code of ref document: A1