WO2020241686A1 - Electrochemical device including three-layer system electrolytic solution - Google Patents

Electrochemical device including three-layer system electrolytic solution Download PDF

Info

Publication number
WO2020241686A1
WO2020241686A1 PCT/JP2020/020918 JP2020020918W WO2020241686A1 WO 2020241686 A1 WO2020241686 A1 WO 2020241686A1 JP 2020020918 W JP2020020918 W JP 2020020918W WO 2020241686 A1 WO2020241686 A1 WO 2020241686A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolytic solution
bromide
positive electrode
negative electrode
chloride
Prior art date
Application number
PCT/JP2020/020918
Other languages
French (fr)
Japanese (ja)
Inventor
大平 昭博
縁 佐藤
晃次 野田
雅司 國武
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019190284A external-priority patent/JP7321440B2/en
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2020241686A1 publication Critical patent/WO2020241686A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a technical field related to an electrochemical device. More specifically, the electrolytic solution can be charged and discharged by a three-layer system consisting of an aqueous layer, a non-aqueous layer (oil layer) and an emulsion layer without using a solid electrolyte membrane. Regarding secondary batteries and redox flow batteries.
  • a large-capacity power storage system using a storage battery (secondary battery) that can freely put in and take out the generated electricity is also required.
  • a lithium ion battery, a lithium ion capacitor, a NAS battery (sodium-sulfur battery), a lead storage battery, and a redox flow battery have been put into practical use.
  • organic molecules are non-toxic, environmentally friendly and durable. Electrochemical and physicochemical properties such as oxidation-reduction potential and solubility of these molecules can be modified by chemical modification. Some organic molecules are capable of multiple electron transfers, which allows them to have a high charge storage capacity.
  • the redox flow battery has a high degree of freedom in design because the capacity and output can be designed independently, and it is easy to increase the size.
  • the volume portion is determined by the concentration and amount of electrolyte.
  • the output portion is controlled by the electrode area of the cell, the current collector plate, the electrode area, and the number of stacked single cells when the electrolyte membrane is a single cell, depending on the purpose.
  • the capacitance part not only inorganic type but also organic type electrolytic solution has been developed, and the energy density has been improved.
  • the output density can be improved by improving the materials that make up the single cell and designing the cell.
  • the positive and negative electrodes constituting the single cell are made of carbon material, and the electrolyte membrane responsible for ion transport is generally a polymer electrolyte membrane or a glass electrolyte.
  • the electrolyte membrane responsible for ion transport is generally a polymer electrolyte membrane or a glass electrolyte.
  • the electrolyte membrane is required to have selective permeability that moves only ions without moving the active material in the positive and negative electrode electrolytes to the electrolytes on the opposite sides. With the diversification of electrolytes in this way, the role of the electrolyte membrane is becoming even more important.
  • solid electrolyte membranes such as polymer electrolyte membranes and glass electrolyte membranes are limited, and their applicability is limited.
  • solid electrolyte membrane for realizing a redox flow battery in which an aqueous electrolyte solution and a non-aqueous electrolyte solution are used for the positive electrode or the negative electrode, respectively, which can be expected to improve the energy density.
  • a redox flow battery that does not use a solid electrolyte membrane has been proposed.
  • it is a battery system consisting of three layers in which a non-aqueous electrolyte solution is used as a positive electrode and a negative electrode electrolyte (oil layer) and an aqueous layer is arranged between the positive and negative electrode oil layers (see Patent Document 1 and Non-Patent Document 1).
  • the aqueous layer plays the role of the solid electrolyte membrane. Ions are transported between the oil layer and the water layer, and the redox reaction of the active material in each of the positive and negative oil layers proceeds.
  • a redox flow battery composed of only an aqueous electrolyte and a non-aqueous electrolyte has been proposed (see Patent Document 2, Non-Patent Documents 2 and 3). It is composed of two layers, the aqueous electrolyte is an aqueous layer and the non-aqueous electrolyte is an oil layer. The aqueous layer is the positive electrode and the oil layer is the negative electrode. In this case, the ion transport for charge compensation is performed at the interface between the aqueous layer and the oil layer, and the redox reaction of the active material in the electrolytic solution proceeds in each layer to operate as a rechargeable secondary battery.
  • the three-layer system in which the oil layer is the positive electrode and the negative electrode described in Patent Document 1 has an advantage that an electromotive force higher than the voltage of electrolysis of water can be obtained, but a water-soluble active material is used. It cannot be done, and the types of active materials are limited. Further, there is a problem that the resistance of the positive and negative electrode oil layers becomes large, and as a result, the voltage efficiency decreases. The same applies to the case of a two-layer system, in which ion transport is performed only at the interface between the aqueous layer and the oil layer, so that the relatively high output characteristics inherent in the redox flow battery are sacrificed, and the redox activity is reduced. There are problems such as electron exchange of substances easily occurring and low charge / discharge stability, and it is not possible to show superiority over other secondary batteries such as lithium ion batteries.
  • the present invention has been made to solve such a problem, and the object thereof is that both water-soluble and water-insoluble active materials can be used, and a solid electrolyte membrane is not used. It is also to provide an electrochemical device that enables ion transport between an aqueous layer and an oil layer.
  • the electrochemical device includes (a) an aqueous layer containing at least a pair of positive electrode and negative electrode, and (b) an aqueous layer containing one of a positive electrode electrolyte and a negative electrode electrolyte. (C) A non-aqueous layer containing the other of the positive electrode electrolytic solution and the negative electrode electrolytic solution, and (d) containing both the positive electrode electrolytic solution and the negative electrode electrolytic solution, and being mixed with both the aqueous layer and the non-aqueous layer. It is characterized by including an emulsion layer interposed between them without any need.
  • the positive electrode electrolyte contains a positive electrode active material composed of metal ions, an organic metal compound and / or an organic compound
  • the negative electrode electrolytic solution is a negative electrode composed of a metal ion, an organic metal compound and / or an organic compound which is the same as or different from the positive electrode active material. It preferably contains an active material.
  • the aqueous layer contains an aqueous solvent consisting mainly of water, and the non-aqueous layer contains dichloromethane, benzotrifluoride, 2-butanone, propylene carbonate and 1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide (PYR).
  • the aqueous layer and the non-aqueous layer can contain supporting salts that are soluble in their respective solvents.
  • the emulsion layer is preferably a bicontinuous microemulsion layer containing an aqueous solvent, a non-aqueous solvent, a surfactant and a co-surfactant, and may be in the form of a liquid or semi-solid.
  • the emulsion layer can contain the respective supporting electrolytes contained in the aqueous layer and the non-aqueous layer.
  • a preferred embodiment of the electrochemical device is a secondary battery that can be charged and discharged by a redox reaction between a positive electrode active material and a negative electrode active material.
  • a redox flow battery as another embodiment of the present invention comprises (a) an aqueous layer containing at least a pair of positive and negative electrodes and (b) one of a positive electrode and a negative electrode, and a positive electrode and a negative electrode.
  • a battery cell containing a non-aqueous layer containing the other, and an emulsion layer containing both a positive electrode electrolytic solution and a negative electrode electrolytic solution and interposing between the aqueous layer and the non-aqueous layer without being mixed with each other, and (c).
  • An electrolytic solution tank for storing each of the positive electrode electrolytic solution and the negative electrode electrolytic solution, and (d) an electrolytic solution circulation device for connecting each electrolytic solution tank and the battery cell to circulate the positive electrode electrolytic solution and the negative electrode electrolytic solution. It is characterized by being prepared.
  • an electrochemical device capable of using both water-soluble and water-insoluble active materials and enabling ion transport between an aqueous layer and an oil layer without using a solid electrolyte membrane is provided. Can be provided.
  • FIG. 1 is a schematic view of a small test cell containing the three-layer electrolytic solution of one embodiment.
  • FIG. 2 is a schematic view of a redox flow battery according to another embodiment.
  • FIG. 3 is a flow chart showing a step of preparing the three-layer electrolytic solution according to the embodiment.
  • FIG. 4 shows an example of the concentration range of the surfactant and the auxiliary surfactant forming a three-layer system in the electrolytic solution containing 1 M sodium chloride aqueous solution and dichloromethane.
  • FIG. 1 is a schematic view of a small test cell containing the three-layer electrolytic solution of one embodiment.
  • FIG. 2 is a schematic view of a redox flow battery according to another embodiment.
  • FIG. 3 is a flow chart showing a step of preparing the three-layer electrolytic solution according to the embodiment.
  • FIG. 4 shows an example of the concentration range of the surfactant and the auxiliary surfactant forming a three-layer system in the electrolytic solution
  • FIG. 5 shows an example of the concentration range of the surfactant and the auxiliary surfactant forming a three-layer system in the electrolytic solution containing 1 M aqueous sodium chloride solution and dichloromethane containing 0.1 M tetrabutylammonium perchlorate.
  • FIG. 6 shows the results of cyclic voltammetry measured with the oil layer side as the working electrode in Example 1.
  • FIG. 7 shows the results of cyclic voltammetry measured with the aqueous layer side as the working electrode in Example 1.
  • FIG. 8 shows the results of cyclic voltammetry measured with the oil layer side as the working electrode in Comparative Example 1.
  • FIG. 9 shows the results of cyclic voltammetry measured with the aqueous layer side as the working electrode in Comparative Example 1.
  • FIG. 10 shows the results of a charge / discharge experiment using a three-layer electrolytic solution containing a low-concentration positive electrode active material in Example 2.
  • FIG. 11 shows the results of the cycle stability of the charge / discharge experiment using the three-layer electrolytic solution containing the positive electrode active material having a low concentration in Example 2.
  • FIG. 12 shows the results of a charge / discharge experiment using a three-layer electrolytic solution containing a high-concentration positive electrode active material in Example 2.
  • FIG. 13 shows the results of a charge / discharge experiment using a two-layer electrolyte in Comparative Example 2.
  • FIG. 14 shows the results of cycle stability in a charge / discharge experiment using a two-layer electrolyte in Comparative Example 2.
  • FIG. 15 shows the change in capacity at the time of discharge for each cycle in the charge / discharge cycle test of the three-layer system and the two-layer system.
  • FIG. 1 is a schematic view of a small test cell containing a three-layer electrolyte.
  • the small test cell 1 includes a positive electrode electrolytic solution (aqueous layer) 13 in contact with a positive electrode (cathode) 10, a negative electrode electrolytic solution (non-aqueous layer) 14 in contact with a negative electrode (anode) 11, and these. It has an emulsion layer 15 interposed between the two.
  • the emulsion layer 15 is immiscible with neither the aqueous layer 13 nor the non-aqueous layer 14, but contains a surfactant and an auxiliary surfactant together with the aqueous solvent and the non-aqueous solvent.
  • the supporting electrolyte that is soluble in both an aqueous solvent and a non-aqueous solvent can transfer substances to the aqueous layer and the non-aqueous layer via the emulsion layer.
  • Charging and discharging can be performed by connecting the power supply device 16 or the load (resistance circuit) 17 between the positive electrode 10 and the negative electrode 11.
  • a silver-silver chloride reference electrode 12 is arranged on the emulsion layer 15, and by connecting to a potentiometer, the redox state of each active material contained in the positive electrode electrolytic solution and the negative electrode electrolytic solution during charging / discharging can be confirmed. be able to.
  • a redox reaction for example, a positive electrode electrolyte solution containing an aqueous solvent containing hydroquinone as a positive electrode active material and a non-aqueous solution containing 2,3-dimethylanthraquinone (2,3-DMAQ) as a negative electrode active material.
  • a negative electrode electrolytic solution containing a solvent is used, the following charge / discharge reactions are considered to occur.
  • the positive electrode electrolytic solution is an aqueous layer and the negative electrode electrolytic solution is a non-aqueous layer.
  • the positive electrode electrolytic solution is used.
  • the negative electrode electrolytic solution can be used as an aqueous layer.
  • a non-aqueous solvent containing ferrocene as the positive electrode active material is used as the positive electrode electrolytic solution and an aqueous solvent containing 2,7-anthraquinone disulfonate sodium as the negative electrode active material is used as the negative electrode electrolytic solution, the following It is considered that a charge / discharge reaction occurs.
  • FIG. 2 is a schematic view of a redox flow battery according to another embodiment.
  • the redox flow battery 2 typically has a power source 26 such as a power plant (for example, a photovoltaic generator, a wind power generator, or other general power plant) and an electric power system via an AC / DC converter. It is connected to a load 27 such as a consumer or a consumer, charges the power plant as a power supply source, and discharges the load as a power supply target.
  • a power source 26 such as a power plant (for example, a photovoltaic generator, a wind power generator, or other general power plant) and an electric power system via an AC / DC converter.
  • a load 27 such as a consumer or a consumer, charges the power plant as a power supply source, and discharges the load as a power supply target.
  • a circulation mechanism for circulating an electrolytic solution in the battery 2 is constructed.
  • the redox flow battery 2 includes a positive electrode electrolyte 23 (aqueous layer or non-aqueous layer) in contact with the positive electrode 20 and a negative electrode electrolyte 24 (non-aqueous layer or aqueous layer) in contact with the negative electrode 21.
  • a battery cell is provided which separates the liquids 23 and 24 and also contains an emulsion layer 25 sandwiched between two immiscible liquid layers, which contain both positive electrode and negative electrode electrolytic solutions that appropriately allow ions to pass through.
  • a tank 41 for the positive electrode electrolytic solution is connected to the positive electrode electrolytic solution 23 via a pipe.
  • a tank 42 for the negative electrode electrolytic solution is connected to the negative electrode electrolytic solution 24 via a pipe.
  • the piping is provided with pumps 31 and 32 for circulating the electrolytic solution.
  • the redox flow battery 2 circulates and supplies the positive electrode electrolyte of the tank 41 and the negative electrode electrolyte of the tank 42 to the battery cells by using pipes and pumps, respectively, to supply the metal and the organic metal compound in the electrolyte of each electrode. Charging and discharging are performed along with the redox reaction of active materials such as organic molecules.
  • both continuous microemulsion layers 25 carry the function of the conventional solid electrolyte membrane, it is not necessary to use a cation exchange membrane or an anion exchange membrane, but the porous layer for stabilizing the emulsion layer is not necessary.
  • Membranes and support materials can be used. Examples of the porous film and the support material include, but are not limited to, a ceramic film and a glass filter.
  • the positive electrode electrolyte is either water-based or non-aqueous, but it is a solvent different from the negative electrode electrolyte.
  • the positive electrode electrolyte is water-based (water layer)
  • the negative electrode electrolyte is selected to be non-aqueous (oil layer). ..
  • Metal ions such as iron, manganese, vanadium, and cerium as active materials, or organometallic compounds containing the metal and whose ligand is an organic molecule (ferrocene, manganocene, vanadocene, (ferrocenemethyl) trimethylammonium chloride, 1, Organic molecules such as 1'-bis [3- (trimethylammonio) propyl] ferrocene dichloride) or hydroquinone, acid blue, biolic acid, indigo, TEMPO, 4OH-TEMPO or 9-aminoaclysine, with particular preference being Hydroquinone, ferrocene, (ferroceneylmethyl) trimethylammonium chloride, 1,1'-bis [3- (trimethylammonio) propyl] ferrocene dichloride.
  • the negative electrode electrolyte is either aqueous or non-aqueous, but it is a solvent different from that of the positive electrolyte, and contains metal ions such as titanium, copper, zinc, cobalt, or the metal as an active material, or the ligand.
  • Organic metal compounds consisting of organic molecules (titanocene, nickerosen, cobaltene), phthalimide, fluorenone, camphorquinone, anthraquinone, naphthoquinone, benzoquinone, anthraquinone monosulfonic acid, anthraquinone disulfonic acid, naphthoquinone monosulfonic acid, naphthoquinone disulfonic acid, methylbiologene , Acid blue and the like, and particularly preferred are phthalimide, fluorenone, camphorquinone, anthraquinone, anthraquinone disulfonic acid and acid blue.
  • the aqueous layer contains an aqueous solvent mainly composed of water.
  • the content of water in the solvent containing water is preferably 60 to 100% by mass, more preferably 80 to 100% by mass.
  • the water is preferably ion-exchanged water in order to strictly adjust the concentration of coexisting supporting salts.
  • the organic solvent that can be contained in the aqueous solvent may be any one of methanol, ethanol, and ethylene glycol, or a combination thereof.
  • the aqueous layer can contain a supporting salt as an electrolyte.
  • a supporting salt as an electrolyte.
  • Supporting salts that can be added to the aqueous solvent (aqueous layer) include, for example, methanesulfonic acid, trifluoromethanesulfonic acid, sulfuric acid, hydrochloric acid, hydrobromic acid, nitric acid, perchloric acid, sodium methanesulfonate, potassium methanesulfonate, and the like.
  • the non-aqueous layer contains a non-aqueous solvent that is immiscible with water.
  • the non-aqueous solvent is not particularly limited as long as it can dissociate the electrolyte contained as the supporting salt and functions as a field for an electrochemical reaction, but is preferably at least one of dichloromethane, benzotrifluoride, 2-butanone and propylene carbonate. Including one. It may also be an ionic liquid such as 1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide (PYR 14 TFSI).
  • the supporting salts contained in the non-aqueous layer include p-toluenesulfonic acid, sodium methanesulfonate, potassium methanesulfonate, lithium trifluoromethanesulfonate, sodium trifluoromethanesulfonate, potassium trifluoromethanesulfonate, and the like.
  • the emulsion layer contains the above-mentioned aqueous solvent and non-aqueous solvent, and contains a surfactant and an auxiliary surfactant in order to form both continuous microemulsion layers between the aqueous layer and the non-aqueous layer.
  • microemulsion which is a micromixed solution of water and oil in a thermodynamically equilibrium state, by using a surfactant and / or an auxiliary surfactant having an appropriate hydrophilic lipophilic balance (HLB) value
  • HLB hydrophilic lipophilic balance
  • the surfactant is not particularly limited to cationic, anionic, nonionic and amphoteric surfactants, but the cationic surfactants include, for example, amines, quaternary ammonium salts (for example, tetramethylammonium chloride), and Examples thereof include polymers containing a quaternary ammonium salt.
  • the anionic surfactant include sulfonic acids (for example, sodium dodecyl sulfate), carboxylic acids, and polymers having phosphoric acid.
  • the nonionic surfactant include ether-containing compounds such as jigglime and polymers containing ether (for example, polyethylene glycol octadecyl ether).
  • examples of the zwitterionic surfactant include a carboxylate, an amino acid salt, and a surfactant having a betaine structure.
  • the auxiliary surfactant has the effect of adjusting the hydrophilic lipophilic balance of the surfactant, and aliphatic primary or secondary alcohols are used. Preferably, it is a linear or molecular C2-C6 monoalcohol.
  • alcohols are ethanol, 1-butanol, 2-butanol, 3-methyl-1-butanol, 2-methyl-1-propanol, 1-pentanol, 1-propanol, 2-propanol and any mixture thereof. is there. One of these may be used alone, or two or more thereof may be used in any ratio and combination. Particularly preferred are 2-butanol and sodium dodecyl sulfate.
  • FIG. 3 is a flow chart showing a step of preparing the three-layer electrolytic solution according to the embodiment.
  • step S1 sodium chloride is dissolved in ion-exchanged water, and a predetermined concentration of hydrophilic active material is added to prepare an aqueous layer.
  • step S2 a second electrolytic solution for forming an oil layer is added to the electrolytic solution by adding a lipophilic active substance having a predetermined concentration to a dichloromethane solution containing tetrabutylammonium perchlorate.
  • step S3 a predetermined amount of sodium dodecyl sulfate, which is a surfactant, and 2-butanol, which is an auxiliary surfactant, are added.
  • step S4 these are stirred and allowed to stand for 30 minutes to 1 hour to form a three-layer electrolytic solution containing both continuous emulsion layers.
  • a three-layer system is formed in a system in which water and dichloromethane are used as an aqueous solvent and a non-aqueous solvent, respectively, regardless of the presence or absence of the supporting electrolytes sodium chloride and tetrabutylammonium perchlorate.
  • the concentration range of each component forming this three-layer system can be controlled by the concentration of the surfactant and the auxiliary surfactant.
  • FIG. 4 shows an example of the concentration range of the surfactant and the auxiliary surfactant that form a three-layer system.
  • FIG. 4 shows changes in the emulsion layer due to changes in the concentrations of sodium dodecyl sulfate, which is a surfactant, and 2-butanol, which is an auxiliary surfactant, when 4 mL of a 1 M sodium chloride aqueous solution is used as an aqueous layer and 4 mL of dichloromethane is used as an oil layer.
  • a three-layer system is formed in a concentration range of sodium dodecyl sulfate of 0.35 M to 0.5 M and a concentration range of 2-butanol of 1.4 M to 2 M.
  • is the precipitate formation
  • is the emulsion in which water is incorporated into the oil layer
  • is the double continuous microemulsion (BME)
  • is the emulsion in which oil is incorporated into the aqueous layer
  • OW Oil
  • in Water The concentration of sodium dodecyl sulfate is calculated based on the volume of the aqueous layer
  • concentration of 2-butanol is calculated based on the sum of the volume of the aqueous layer and the volume of 2-butanol added.
  • FIG. 5 shows the experimental results when tetrabutylammonium perchlorate was added as a supporting electrolyte to the above-mentioned dichloromethane.
  • concentrations of sodium dodecyl sulfate as a surfactant and 2-butanol as an auxiliary surfactant when a 1 M aqueous sodium chloride solution is used as an aqueous layer and a dichloromethane containing 0.1 M tetrabutylammonium perchlorate as an oil layer are used. It is a figure which showed the change of the emulsion layer by the change.
  • a three-layer system is formed in a concentration range of sodium dodecyl sulfate of 0.22M to 0.52M and a concentration range of 2-butanol of 1.3M to 1.6M.
  • indicates precipitation formation
  • indicates an emulsion (WO) in which water is incorporated into an oil layer
  • indicates a bicontinuous microemulsion (BME)
  • BME bicontinuous microemulsion
  • indicates an emulsion in which oil is incorporated into an aqueous layer (OW).
  • the concentration of sodium dodecyl sulfate is calculated based on the volume of the aqueous layer
  • concentration of 2-butanol is calculated based on the sum of the volume of the aqueous layer and the volume of 2-butanol added.
  • a three-layer system is formed in the system having the aqueous layer and the dichloromethane as the oil layer regardless of the presence or absence of the supporting electrolyte, and the range in which the three-layer system is formed is the surfactant and the auxiliary surfactant. It shows that it can be controlled by the concentration of the agent. Further, the volumes of the aqueous solvent and the non-aqueous solvent to be mixed are not limited to 1: 1 and can be freely changed to some extent. The thickness of the emulsion layer formed between the aqueous layer and the oil layer can be freely adjusted by appropriately selecting the capacity of the aqueous layer, the oil layer and the emulsion layer, and the capacity and shape of the battery cell to be used.
  • Example 1 Preparation of positive electrode and negative electrode electrolytes containing both continuous microemulsion layers and electrochemical measurement in a three-layer battery cell (cyclic voltamogram measurement) A 0.3 M tetrabutylammonium perchlorate-dichloromethane solution containing 10 mM ferrocene was prepared as a positive electrode electrolyte. As a negative electrode electrolyte, a 0.3 M aqueous sodium chloride solution containing 10 mM sodium 2,7-anthraquinone disulfonate was prepared.
  • FIG. 6 shows the results of the current-potential curve obtained by filling the small test cell shown in FIG. 1 and performing cyclic voltammetry measurement at a sweep rate of 1 mV / s with the oil layer side as the working electrode.
  • FIG. 7 shows the results of the current-potential curve obtained by cyclic voltammetry measurement at a sweep rate of 1 mV / s with the aqueous layer side as the working electrode using a small test cell filled with the same three-layer electrolytic solution as described above. Shown.
  • the redox peak was clearly observed. The peak on the oxidation side is confirmed to be around 0.55V, and the peak on the reduction side is confirmed to be 0.23V.
  • an oxidation peak is observed at ⁇ 0.46 V and a reduction peak is observed at ⁇ 0.58 V. Further, these redox peaks appear at the same potential even after repeating the cycle, indicating that the active material stably undergoes a redox reaction.
  • FIG. 9 shows the results of the current-potential curve obtained by cyclic voltammetry measurement at a sweep rate of 1 mV / s with the aqueous layer side as the working electrode using a small test cell containing the same two-layer electrolytic solution as above. Shown. Comparing the voltamograms of the oil reservoirs of FIGS. 6 and 8, the peak on the oxidation side of FIG. 8 is unclear as compared with the three-layer system of FIG. This suggests that the reaction resistance in the two-layer oil layer is larger than that in the three-layer oil layer, which can cause a loss of voltage efficiency such as an increase in overvoltage during charging and discharging.
  • Example 2 Preparation of positive electrode and negative electrode electrolytes containing both continuous microemulsion layers, charge / discharge and cycle test in a three-layer battery cell (three-layer cycle test using a low-concentration active material)
  • a 0.3 M tetrabutylammonium perchlorate-dichloromethane solution containing 1 mM ferrocene was prepared as the positive electrode electrolyte.
  • As the negative electrode electrolyte a 0.3 M aqueous sodium chloride solution containing 1 mM sodium 2,7-anthraquinone disulfonate was prepared.
  • FIG. 10 shows the results of a charge / discharge experiment under a constant current of 1 mA / cm 2 performed using a small test cell filled with this.
  • the vertical axis shows the cell voltage and the horizontal axis shows the charge / discharge time.
  • A indicates the time required for charging
  • B indicates the pause time when no current is applied (no current is flowing)
  • C indicates the time required for discharging.
  • FIG. 11 shows the results of cycle stability of a charge / discharge experiment conducted using a small test cell containing the same three-layer electrolyte. From FIG. 10, it can be seen that charging / discharging is proceeding with a pause time in between. It decreased from 2.1V to 1.6V during the rest period of 30 seconds. Immediately after the start of discharge, the voltage drops from 1.6V to 1.4V, and the voltage gradually drops due to the discharge. The decrease of 0.2V immediately after discharge is due to overvoltage.
  • FIG. 11 is a diagram showing charge / discharge cycle stability under the same conditions as in FIG.
  • the solid line shows the change in cell voltage
  • the dotted line shows the change in potential of the negative electrode electrolyte (based on Ag / AgCl arranged in the emulsion layer). Since there is no difference between the cell voltage change during 30 cycles, the time required for charging / discharging within one cycle, and the potential change of the negative electrode electrolyte, side reactions such as decomposition of the electrolyte occur. It does not occur, indicating that charging and discharging are proceeding stably.
  • FIG. 12 shows the results of a charge / discharge experiment conducted using a small test cell filled with this.
  • FIG. 12 shows the results of performing charge / discharge cycles 5 times with the active material concentration of the positive electrode electrolytic solution increased 20 times and the active material concentration of the negative electrode electrolytic solution increased 10 times.
  • the solid line shows the change in cell voltage
  • the dotted line shows the change in potential of the negative electrode electrolyte (based on Ag / AgCl arranged in the emulsion layer).
  • the electrolytic solution was used. It shows that side reactions such as decomposition do not occur and charging and discharging proceed stably even at high concentrations. This indicates that a battery that can be charged and discharged stably can be manufactured even if the active material concentration is increased, that is, the energy density is increased.
  • FIG. 13 shows the results of a charge / discharge experiment conducted using a small test cell containing a two-layer electrolytic solution obtained by mixing 4 mL of a positive electrode electrolyte solution and 5.5 mL of a negative electrode electrolyte solution.
  • FIG. 14 shows the results of cycle stability of a charge / discharge experiment conducted using a small test cell containing the same two-layer electrolyte.
  • the vertical axis represents the cell voltage and the horizontal axis represents the charge / discharge time.
  • A indicates the time required for charging
  • B indicates the pause time when no current is applied (no current is flowing)
  • C indicates the time required for discharging. From FIG. 13, it can be seen that charging / discharging is proceeding with a pause time in between. It dropped from 2.1V to 1.36V during the 60 second rest period. Immediately after the start of discharge, the voltage drops from 1.36 V to 1.28 V, and the voltage gradually drops due to the discharge. Compared with the result of FIG. 10, there is no significant difference in the voltage at which the discharge is gradually started.
  • FIG. 14 shows the result of performing the charge / discharge cycle 5 times.
  • the solid line shows the change in cell voltage
  • the dotted line shows the change in potential of the negative electrode electrolyte (based on Ag / AgCl arranged in the aqueous layer).
  • the time required for charging / discharging within one cycle tends to gradually decrease as the cycle is repeated. This indicates that the reactivity of the active material gradually decreases. Since it is composed of only an aqueous layer and an oil layer, it is considered that the battery capacity is reduced due to a decrease in the active material concentration due to mutual movement of the active material and electron exchange during repeated charging and discharging.
  • Example 3 Comparison of cycle characteristics between three-layer and two-layer battery cells (preparation of three-layer electrolyte and charge / discharge cycle test) A 1.0 M tetrabutylammonium perchlorate-dichloromethane solution containing 20 mM ferrocene was prepared as the positive electrode electrolyte. As the negative electrode electrolyte, a 0.6 M aqueous sodium chloride solution containing 10 mM sodium 2,7-anthraquinone disulfonate was prepared.
  • FIG. 15 shows the change in capacity at the time of discharge for each cycle in the charge / discharge cycle test of the three-layer system and the two-layer system. Comparing the results of the three-layer system and the two-layer system, it is observed that the discharge capacity of the two-layer system gradually decreases as the number of cycles increases. On the other hand, the three-layer system has a larger discharge capacity than the two-layer system, and no decrease in capacity with the cycle is observed. This indicates that in the three-layer system, the active materials in the positive electrode and negative electrode electrolytes are stably present in each layer, and the capacity as a battery is large and stable by repeating the redox reaction. ing.
  • the electrochemical device of the present invention does not use a solid electrolyte membrane, and can easily and easily produce a secondary battery. Further, both an aqueous electrolytic solution and a non-aqueous electrolytic solution can be used, and a redox flow battery using an electrolytic solution having excellent energy efficiency and energy density can be provided.

Abstract

[Problem] To provide an electrochemical device that can be used for both water-soluble and water-insoluble active materials, and that enables ion transport effectively even without using a solid electrolyte membrane. [Solution] This electrochemical device includes: (a) at least one pair of a positive electrode and a negative electrode; (b) an aqueous layer including one of a positive electrode electrolytic solution and a negative electrode electrolytic solution; (c) a non-aqueous layer including the other of the positive electrode electrolytic solution and the negative electrode electrolytic solution; and (d) an emulsion layer including both the positive electrode electrolytic solution and the negative electrode electrolytic solution, and being interposed between the aqueous layer and the non-aqueous layer without any intermixing therewith.

Description

三層系電解液を含む電気化学デバイスElectrochemical device containing three-layer electrolyte クロスリファレンスCross reference
 本出願は、日本国において、2019年5月29日に出願された特願2019-100337号、2019年10月17日に出願された特願2019-190284号、に基づく優先権を主張するものであり、当該出願に記載された内容は全て、参照によりそのまま本明細書に援用される。また、本願において引用した全ての特許、特許出願及び文献に記載された内容は全て、参照によりそのまま本明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2019-100337 filed on May 29, 2019 and Japanese Patent Application No. 2019-190284 filed on October 17, 2019 in Japan. All the contents of the application are incorporated herein by reference. In addition, all the patents, patent applications and contents described in the documents cited in the present application are incorporated herein by reference as they are.
 本発明は、電気化学デバイスにかかる技術分野に関し、より詳細には、固体電解質膜を用いることなく、電解液が水性層、非水性層(油層)およびエマルション層の三層系からなる充放電可能な二次電池およびレドックスフロー電池に関する。 The present invention relates to a technical field related to an electrochemical device. More specifically, the electrolytic solution can be charged and discharged by a three-layer system consisting of an aqueous layer, a non-aqueous layer (oil layer) and an emulsion layer without using a solid electrolyte membrane. Regarding secondary batteries and redox flow batteries.
 二酸化炭素等の温暖化ガスを発生しない、太陽光や風力などの自然エネルギーを利用した発電システムが、欧米を中心に我国でも積極的に導入されるようになってきている。このような再生可能エネルギーを有効かつ柔軟に使うためには、発電した電気を自由に出し入れできる蓄電池(二次電池)を用いた大容量の電力貯蔵システムが合わせて必要になる。大容量蓄電池としては、リチウムイオン電池、リチウムイオンキャパシタ、NAS電池(ナトリウム硫黄電池)、鉛蓄電池およびレドックスフロー電池が実用化されている。 Power generation systems that use natural energy such as solar power and wind power that do not generate warming gas such as carbon dioxide are being actively introduced in Japan, mainly in Europe and the United States. In order to use such renewable energy effectively and flexibly, a large-capacity power storage system using a storage battery (secondary battery) that can freely put in and take out the generated electricity is also required. As the large-capacity storage battery, a lithium ion battery, a lithium ion capacitor, a NAS battery (sodium-sulfur battery), a lead storage battery, and a redox flow battery have been put into practical use.
 従来のレドックスフロー電池は、バナジウムや臭素のような無機系の酸化還元活物質を、硫酸などの強酸性下で使用している。このため、電解液自体の危険性や毒性が高く、さらにバナジウム化合物の地球上での存在量が限られているためコストの変動が激しいという問題がある。そこで最近の動きとして、無機系の電解液の代わりに、腐食性がなく安全で低コストの有機系の酸化還元分子を用いた報告が数多くなされている。例えば、キノン、フェノチアジン、ビオローゲン、ニトロオキシド、ピリジン、メトキシベンゼン、キノキサリンおよびフタルイミド誘導体などの有機化合物が、金属化合物の代わりに用いられる。ほとんどの有機分子は毒性がなく、環境にやさしく持続性がある。これら分子の酸化還元電位や溶解性などの電気化学的および物理化学的性質は、化学修飾によって改変することができる。いくつかの有機分子は複数の電子移動が可能で、これにより高い電荷貯蔵能力を有する。 Conventional redox flow batteries use inorganic redox active substances such as vanadium and bromine under strong acidity such as sulfuric acid. Therefore, there is a problem that the risk and toxicity of the electrolytic solution itself is high, and the abundance of the vanadium compound on the earth is limited, so that the cost fluctuates sharply. Therefore, as a recent movement, there have been many reports using organic redox molecules that are non-corrosive, safe, and low-cost instead of inorganic electrolytes. For example, organic compounds such as quinones, phenothiazines, viologens, nitrooxides, pyridines, methoxybenzenes, quinoxalines and phthalimide derivatives are used in place of metal compounds. Most organic molecules are non-toxic, environmentally friendly and durable. Electrochemical and physicochemical properties such as oxidation-reduction potential and solubility of these molecules can be modified by chemical modification. Some organic molecules are capable of multiple electron transfers, which allows them to have a high charge storage capacity.
 また、レドックスフロー電池は他の二次電池と異なり、容量と出力をそれぞれ独立に設計できるために設計の自由度が高く、大型化が容易である。容量部分は電解液の濃度と量で決まる。出力部分は目的に応じて、セルの電極面積と、集電板、電極面積、電解質膜を単セルとした場合の、単セルの積層数によって制御される。容量部分については、無機系だけでなく、有機系電解液も開発されており、エネルギー密度の向上が図られてきている。出力部分については、単セルを構成する材料の改良や、セル設計などによって出力密度の向上が図られる。単セルを構成する正・負極の電極は炭素材料であり、イオン輸送を担う電解質膜は一般的に高分子電解質膜やガラス電解質などが用いられる。カチオンまたはアニオン輸送能を有する固体電解質膜を用いることで、正・負極電解液の電荷が補償され、充放電が可能になる。また電解質膜は正・負極電解液中の活物質を、それぞれ反対側の電解液に移動させることなくイオンのみを移動させる選択透過性が要求される。このように電解液が多様化する中で、電解質膜の役割はより一層重要となっている。 Also, unlike other secondary batteries, the redox flow battery has a high degree of freedom in design because the capacity and output can be designed independently, and it is easy to increase the size. The volume portion is determined by the concentration and amount of electrolyte. The output portion is controlled by the electrode area of the cell, the current collector plate, the electrode area, and the number of stacked single cells when the electrolyte membrane is a single cell, depending on the purpose. As for the capacitance part, not only inorganic type but also organic type electrolytic solution has been developed, and the energy density has been improved. For the output part, the output density can be improved by improving the materials that make up the single cell and designing the cell. The positive and negative electrodes constituting the single cell are made of carbon material, and the electrolyte membrane responsible for ion transport is generally a polymer electrolyte membrane or a glass electrolyte. By using a solid electrolyte membrane having a cation or anion transporting ability, the charges of the positive and negative electrode electrolytes are compensated and charging / discharging becomes possible. Further, the electrolyte membrane is required to have selective permeability that moves only ions without moving the active material in the positive and negative electrode electrolytes to the electrolytes on the opposite sides. With the diversification of electrolytes in this way, the role of the electrolyte membrane is becoming even more important.
 しかしながら、電解液の多様化に対して、高分子電解質膜やガラス電解質膜などの固体電解質膜の種類は限られており、適用性に限界がある。例えば、エネルギー密度の向上が期待できる、水系電解液と非水系電解液をそれぞれ正極あるいは負極に用いたレドックスフロー電池を実現するための実用的な固体電解質膜は現状見当たらない。 However, with respect to the diversification of electrolytes, the types of solid electrolyte membranes such as polymer electrolyte membranes and glass electrolyte membranes are limited, and their applicability is limited. For example, there is currently no practical solid electrolyte membrane for realizing a redox flow battery in which an aqueous electrolyte solution and a non-aqueous electrolyte solution are used for the positive electrode or the negative electrode, respectively, which can be expected to improve the energy density.
 このような状況の中、固体電解質膜を用いないレドックスフロー電池が提案されている。例えば、非水系電解液を正極および負極電解液とし(油層)、正・負極の油層の間に水層を配置した三層からなる電池システムである(特許文献1、非特許文献1参照)。この場合、固体電解質膜の役割を担うのは水層となる。油層と水層間でイオン輸送が行われ、正・負極それぞれの油層内の活物質の酸化還元反応が進行する。 Under such circumstances, a redox flow battery that does not use a solid electrolyte membrane has been proposed. For example, it is a battery system consisting of three layers in which a non-aqueous electrolyte solution is used as a positive electrode and a negative electrode electrolyte (oil layer) and an aqueous layer is arranged between the positive and negative electrode oil layers (see Patent Document 1 and Non-Patent Document 1). In this case, the aqueous layer plays the role of the solid electrolyte membrane. Ions are transported between the oil layer and the water layer, and the redox reaction of the active material in each of the positive and negative oil layers proceeds.
 また水系電解液と非水系電解液のみから構成されるレドックスフロー電池が提案されている(特許文献2、非特許文献2および3参照)。水系電解液を水層、非水系電解液を油層とする二層から構成され、水層が正極、油層が負極となっている。この場合、電荷補償を行うイオン輸送は水層と油層の界面で行われ、それぞれの層で電解液中の活物質の酸化還元反応が進行し、充放電可能な二次電池として動作する。 Further, a redox flow battery composed of only an aqueous electrolyte and a non-aqueous electrolyte has been proposed (see Patent Document 2, Non-Patent Documents 2 and 3). It is composed of two layers, the aqueous electrolyte is an aqueous layer and the non-aqueous electrolyte is an oil layer. The aqueous layer is the positive electrode and the oil layer is the negative electrode. In this case, the ion transport for charge compensation is performed at the interface between the aqueous layer and the oil layer, and the redox reaction of the active material in the electrolytic solution proceeds in each layer to operate as a rechargeable secondary battery.
 これら三層および二層の液体からなるレドックスフロー電池は、水層と油層を導入するだけで簡便かつ容易に充放電可能な電池セルを作製することができるために、固体電解質膜にかかる材料コストの低減、電池セルの製造コスト、さらにはメンテナンスコストなどの削減につながる。 In these three-layer and two-layer liquid redox flow batteries, a battery cell that can be charged and discharged easily and easily can be produced simply by introducing an aqueous layer and an oil layer. Therefore, the material cost for the solid electrolyte membrane is high. It leads to reduction of battery cell manufacturing cost and maintenance cost.
WO2017/186836A1WO2017 / 186836A1 ES2633601A1ES2633601A1
 しかしながら、特許文献1に記載された、油層を正・負極とする三層系では、水の電気分解の電圧以上の起電力を得ることができるという利点はあるものの、水溶性の活物質が使用できず、活物質の種類が限定される。また正・負極の油層の抵抗が大きくなってしまい、結果として電圧効率が低下するといった課題がある。二層系の場合も同様で、水層と油層の界面のみでイオン輸送を行うために、レドックスフロー電池が本来有している比較的高い出力特性が犠牲になってしまうこと、酸化還元した活物質の電子交換が容易に生じてしまい、充放電の安定性が低くなってしまうこと、などの問題があり、他の二次電池、例えばリチウムイオン電池に対する優位性を示すことができない。 However, the three-layer system in which the oil layer is the positive electrode and the negative electrode described in Patent Document 1 has an advantage that an electromotive force higher than the voltage of electrolysis of water can be obtained, but a water-soluble active material is used. It cannot be done, and the types of active materials are limited. Further, there is a problem that the resistance of the positive and negative electrode oil layers becomes large, and as a result, the voltage efficiency decreases. The same applies to the case of a two-layer system, in which ion transport is performed only at the interface between the aqueous layer and the oil layer, so that the relatively high output characteristics inherent in the redox flow battery are sacrificed, and the redox activity is reduced. There are problems such as electron exchange of substances easily occurring and low charge / discharge stability, and it is not possible to show superiority over other secondary batteries such as lithium ion batteries.
 本発明は、かかる問題を解決するためになされたものであって、その目的とするところは、水溶性および非水溶性の何れの活物質も使用することができ、且つ固体電解質膜を用いなくても、水層および油層間のイオン輸送を可能にする電気化学デバイスを提供することである。 The present invention has been made to solve such a problem, and the object thereof is that both water-soluble and water-insoluble active materials can be used, and a solid electrolyte membrane is not used. It is also to provide an electrochemical device that enables ion transport between an aqueous layer and an oil layer.
 上記課題を解決するために、本発明の一実施形態に係る電気化学デバイスは、(a)少なくとも一対の正極および負極と、(b)正極電解液および負極電解液の一方を含む水性層と、(c)前記正極電解液および負極電解液の他方を含む非水性層と、(d)前記正極電解液および負極電解液の両方を含み、且つ前記水性層および前記非水性層の何れとも混和することなくそれらの間に介在するエマルション層と、を含むことを特徴とする。
 正極電解液が、金属イオン、有機金属化合物および/または有機化合物からなる正極活物質を含み、負極電解液が、正極活物質と同一または異なる金属イオン、有機金属化合物および/または有機化合物からなる負極活物質を含むことが好ましい。
 水性層は、主として水からなる水性溶媒を含み、非水性層は、ジクロロメタン、ベンゾトリフルオリド、2-ブタノン、炭酸プロピレンおよび1-ブチル-1-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド(PYR14TFSI)からなる群より選択される少なくとも1つの非水性溶媒を含むことが好ましい。水性層および非水性層は、それぞれの溶媒に可溶な支持塩を含むことができる。
 エマルション層が、水性溶媒、非水性溶媒、界面活性剤および補助界面活性剤を含む両連続マイクロエマルション層であることが好ましく、液体または半固体の形態でありうる。また、エマルション層は、水性層および非水性層に含まれるそれぞれの支持電解質を含むことができる。
 電気化学デバイスの好ましい実施形態としては、正極活物質および負極活物質の酸化還元反応により、充放電を可能とした二次電池である。
In order to solve the above problems, the electrochemical device according to the embodiment of the present invention includes (a) an aqueous layer containing at least a pair of positive electrode and negative electrode, and (b) an aqueous layer containing one of a positive electrode electrolyte and a negative electrode electrolyte. (C) A non-aqueous layer containing the other of the positive electrode electrolytic solution and the negative electrode electrolytic solution, and (d) containing both the positive electrode electrolytic solution and the negative electrode electrolytic solution, and being mixed with both the aqueous layer and the non-aqueous layer. It is characterized by including an emulsion layer interposed between them without any need.
The positive electrode electrolyte contains a positive electrode active material composed of metal ions, an organic metal compound and / or an organic compound, and the negative electrode electrolytic solution is a negative electrode composed of a metal ion, an organic metal compound and / or an organic compound which is the same as or different from the positive electrode active material. It preferably contains an active material.
The aqueous layer contains an aqueous solvent consisting mainly of water, and the non-aqueous layer contains dichloromethane, benzotrifluoride, 2-butanone, propylene carbonate and 1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide (PYR). It preferably contains at least one non-aqueous solvent selected from the group consisting of 14 TFSI). The aqueous layer and the non-aqueous layer can contain supporting salts that are soluble in their respective solvents.
The emulsion layer is preferably a bicontinuous microemulsion layer containing an aqueous solvent, a non-aqueous solvent, a surfactant and a co-surfactant, and may be in the form of a liquid or semi-solid. In addition, the emulsion layer can contain the respective supporting electrolytes contained in the aqueous layer and the non-aqueous layer.
A preferred embodiment of the electrochemical device is a secondary battery that can be charged and discharged by a redox reaction between a positive electrode active material and a negative electrode active material.
 本発明の他の実施形態としてのレドックスフロー電池は、(a)少なくとも一対の正極および負極と、(b)正極電解液および負極電解液の一方を含む水性層、正極電解液および負極電解液の他方を含む非水性層、並びに正極電解液および負極電解液の両方を含み、且つ水性層および非水性層の何れとも混和することなくそれらの間に介在するエマルション層を含む電池セルと、(c)正極電解液および負極電解液のそれぞれを貯蔵する電解液タンクと、(d)各電解液タンクと電池セルとを連結して正極電解液および負極電解液を循環させる電解液循環装置と、を備えることを特徴とする。 A redox flow battery as another embodiment of the present invention comprises (a) an aqueous layer containing at least a pair of positive and negative electrodes and (b) one of a positive electrode and a negative electrode, and a positive electrode and a negative electrode. A battery cell containing a non-aqueous layer containing the other, and an emulsion layer containing both a positive electrode electrolytic solution and a negative electrode electrolytic solution and interposing between the aqueous layer and the non-aqueous layer without being mixed with each other, and (c). ) An electrolytic solution tank for storing each of the positive electrode electrolytic solution and the negative electrode electrolytic solution, and (d) an electrolytic solution circulation device for connecting each electrolytic solution tank and the battery cell to circulate the positive electrode electrolytic solution and the negative electrode electrolytic solution. It is characterized by being prepared.
 本発明によれば、水溶性および非水溶性の何れの活物質も使用することができ、且つ固体電解質膜を用いなくても、水層および油層間のイオン輸送を可能にする電気化学デバイスを提供することができる。 According to the present invention, an electrochemical device capable of using both water-soluble and water-insoluble active materials and enabling ion transport between an aqueous layer and an oil layer without using a solid electrolyte membrane is provided. Can be provided.
図1は、一実施形態の三層系電解液を含む小型試験セルの模式図である。FIG. 1 is a schematic view of a small test cell containing the three-layer electrolytic solution of one embodiment. 図2は、他の実施形態にかかるレドックスフロー電池の模式図である。FIG. 2 is a schematic view of a redox flow battery according to another embodiment. 図3は、一実施形態に係る三層系電解液の調製工程を示すフロー図である。FIG. 3 is a flow chart showing a step of preparing the three-layer electrolytic solution according to the embodiment. 図4は、1M塩化ナトリウム水溶液とジクロロメタンとを含む電解液において、三層系が形成される界面活性剤と補助界面活性剤の濃度範囲の一例を示す。FIG. 4 shows an example of the concentration range of the surfactant and the auxiliary surfactant forming a three-layer system in the electrolytic solution containing 1 M sodium chloride aqueous solution and dichloromethane. 図5は、1M塩化ナトリウム水溶液と、0.1M過塩素酸テトラブチルアンモニウムを含むジクロロメタンとを含む電解液において、三層系が形成される界面活性剤と補助界面活性剤の濃度範囲の一例を示す。FIG. 5 shows an example of the concentration range of the surfactant and the auxiliary surfactant forming a three-layer system in the electrolytic solution containing 1 M aqueous sodium chloride solution and dichloromethane containing 0.1 M tetrabutylammonium perchlorate. Shown. 図6は、実施例1において油層側を作用極として測定したサイクリックボルタンメトリーの結果である。FIG. 6 shows the results of cyclic voltammetry measured with the oil layer side as the working electrode in Example 1. 図7は、実施例1において水層側を作用極として測定したサイクリックボルタンメトリーの結果である。FIG. 7 shows the results of cyclic voltammetry measured with the aqueous layer side as the working electrode in Example 1. 図8は、比較例1において油層側を作用極として測定したサイクリックボルタンメトリーの結果である。FIG. 8 shows the results of cyclic voltammetry measured with the oil layer side as the working electrode in Comparative Example 1. 図9は、比較例1において水層側を作用極として測定したサイクリックボルタンメトリーの結果である。FIG. 9 shows the results of cyclic voltammetry measured with the aqueous layer side as the working electrode in Comparative Example 1. 図10は、実施例2において低濃度の正極活物質を含む三層系電解液による充放電実験の結果を示す。FIG. 10 shows the results of a charge / discharge experiment using a three-layer electrolytic solution containing a low-concentration positive electrode active material in Example 2. 図11は、実施例2において低濃度の正極活物質を含む三層系電解液による充放電実験のサイクル安定性の結果を示す。FIG. 11 shows the results of the cycle stability of the charge / discharge experiment using the three-layer electrolytic solution containing the positive electrode active material having a low concentration in Example 2. 図12は、実施例2において高濃度の正極活物質を含む三層系電解液による充放電実験の結果を示す。FIG. 12 shows the results of a charge / discharge experiment using a three-layer electrolytic solution containing a high-concentration positive electrode active material in Example 2. 図13は、比較例2において二層系電解液による充放電実験の結果を示す。FIG. 13 shows the results of a charge / discharge experiment using a two-layer electrolyte in Comparative Example 2. 図14は、比較例2において二層系電解液による充放電実験のサイクル安定性の結果を示す。FIG. 14 shows the results of cycle stability in a charge / discharge experiment using a two-layer electrolyte in Comparative Example 2. 図15は、三層系と二層系の充放電サイクル試験における、それぞれのサイクル毎の放電時の容量の変化を示す。FIG. 15 shows the change in capacity at the time of discharge for each cycle in the charge / discharge cycle test of the three-layer system and the two-layer system.
1     小型試験セル
2     レドックスフロー電池
10、20 正極
11、21 負極
12    銀-塩化銀参照電極
13、23 正極電解液
14、24 負極電解液
15、25 エマルション層
16、26 電源
17、27 負荷
31、32 ポンプ
41    正極用電解液タンク
42    負極用電解液タンク
1 Small test cell 2 Redox flow battery 10, 20 Positive electrode 11, 21 Negative electrode 12 Silver-silver chloride Reference electrode 13, 23 Positive electrode electrolyte 14, 24 Negative electrode electrolyte 15, 25 Emulsion layer 16, 26 Power supply 17, 27 Load 31, 32 Pump 41 Positive electrode electrolyte tank 42 Negative electrode electrolyte tank
 次に、本発明の好適な実施形態について、図面を参照して説明する。なお、以下に説明する実施形態は、特許請求の範囲に係る発明を限定するものではなく、また、実施形態の中で説明されている諸要素およびその組み合わせのすべてが本発明の解決手段に必須であるとは限らない。また、本明細書において引用されるすべての特許文献および非特許文献の開示は、全体として本明細書に参照として組み込まれる。 Next, a preferred embodiment of the present invention will be described with reference to the drawings. It should be noted that the embodiments described below do not limit the invention according to the claims, and all of the elements and combinations thereof described in the embodiments are essential for the means for solving the present invention. Is not always the case. Also, disclosures of all patent and non-patent documents cited herein are incorporated herein by reference in their entirety.
<電気化学デバイス>
 図1は、三層系電解液を含む小型試験セルの模式図である。図1において、小型試験セル1は、正極(カソード)10と接している正極電解液(水性層)13と、負極(アノード)11と接している負極電解液(非水性層)14と、これらの間に介在するエマルション層15とを有する。エマルション層15は、水性層13および非水性層14のいずれとも混和しないが、水性溶媒および非水性溶媒と共に界面活性剤および補助界面活性剤を含む。このため、水性溶媒および非水性溶媒の両方に可溶な支持電解質は、エマルション層を介して水性層および非水性層への物質移動が可能となる。正極10と負極11との間に電源装置16または負荷(抵抗回路)17を接続することにより充放電を行うことができる。
<Electrochemical device>
FIG. 1 is a schematic view of a small test cell containing a three-layer electrolyte. In FIG. 1, the small test cell 1 includes a positive electrode electrolytic solution (aqueous layer) 13 in contact with a positive electrode (cathode) 10, a negative electrode electrolytic solution (non-aqueous layer) 14 in contact with a negative electrode (anode) 11, and these. It has an emulsion layer 15 interposed between the two. The emulsion layer 15 is immiscible with neither the aqueous layer 13 nor the non-aqueous layer 14, but contains a surfactant and an auxiliary surfactant together with the aqueous solvent and the non-aqueous solvent. Therefore, the supporting electrolyte that is soluble in both an aqueous solvent and a non-aqueous solvent can transfer substances to the aqueous layer and the non-aqueous layer via the emulsion layer. Charging and discharging can be performed by connecting the power supply device 16 or the load (resistance circuit) 17 between the positive electrode 10 and the negative electrode 11.
 エマルション層15には、銀-塩化銀参照電極12が配置され、電位差計に接続することで、充放電中の正極電解液および負極電解液に含まれるそれぞれの活物質の酸化還元状態を確認することができる。酸化還元反応の一例を挙げると、例えば、正極活物質としてヒドロキノンを含んだ水性溶媒を含む正極電解液と、負極活物質として2,3-ジメチルアントラキノン(2,3-DMAQ)を含んだ非水性溶媒を含む負極電解液を用いた場合、以下の充放電反応が起こると考えられる。 A silver-silver chloride reference electrode 12 is arranged on the emulsion layer 15, and by connecting to a potentiometer, the redox state of each active material contained in the positive electrode electrolytic solution and the negative electrode electrolytic solution during charging / discharging can be confirmed. be able to. To give an example of a redox reaction, for example, a positive electrode electrolyte solution containing an aqueous solvent containing hydroquinone as a positive electrode active material and a non-aqueous solution containing 2,3-dimethylanthraquinone (2,3-DMAQ) as a negative electrode active material. When a negative electrode electrolytic solution containing a solvent is used, the following charge / discharge reactions are considered to occur.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 なお、本実施形態では、正極電解液を水性層とし、負極電解液を非水性層としたが、それぞれの電解液に含まれる溶媒や活物質の種類を変えることで、逆に、正極電解液を非水性層とし、負極電解液を水性層とすることもできる。例えば、正極活物質としてフェロセンを含んだ、非水性溶媒を正極電解液として用い、負極活物質として2,7-アントラキノンジスルホン酸ナトリウムを含んだ水性溶媒を負極電解液として用いた場合は、以下の充放電反応が起こると考えられる。 In the present embodiment, the positive electrode electrolytic solution is an aqueous layer and the negative electrode electrolytic solution is a non-aqueous layer. However, by changing the type of solvent and active material contained in each electrolytic solution, on the contrary, the positive electrode electrolytic solution is used. Can be used as a non-aqueous layer, and the negative electrode electrolytic solution can be used as an aqueous layer. For example, when a non-aqueous solvent containing ferrocene as the positive electrode active material is used as the positive electrode electrolytic solution and an aqueous solvent containing 2,7-anthraquinone disulfonate sodium as the negative electrode active material is used as the negative electrode electrolytic solution, the following It is considered that a charge / discharge reaction occurs.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 次に、他の実施形態を用いて本発明のさらに具体的な構成と作用について説明する。図2は、他の実施形態にかかるレドックスフロー電池の模式図である。 Next, a more specific configuration and operation of the present invention will be described using other embodiments. FIG. 2 is a schematic view of a redox flow battery according to another embodiment.
<レドックスフロー電池>
 レドックスフロー電池2は、典型的には、交流/直流変換器を介して、発電所(例えば、太陽光発電機、風力発電機、その他、一般の発電所など)などの電源26と、電力系統や需要家などの負荷27とに接続され、発電所を電力供給源として充電を行い、負荷を電力提供対象として放電を行う。上記充放電を行うにあたり、レドックスフロー電池2と、この電池2に電解液を循環させる循環機構(タンク、配管、ポンプ)とを備える以下の電池システムが構築される。
<Redox flow battery>
The redox flow battery 2 typically has a power source 26 such as a power plant (for example, a photovoltaic generator, a wind power generator, or other general power plant) and an electric power system via an AC / DC converter. It is connected to a load 27 such as a consumer or a consumer, charges the power plant as a power supply source, and discharges the load as a power supply target. In performing the above charging and discharging, the following battery system including a redox flow battery 2 and a circulation mechanism (tank, piping, pump) for circulating an electrolytic solution in the battery 2 is constructed.
 レドックスフロー電池2は、正極20と接触している正極電解液23(水性層または非水性層)と、負極21と接触している負極電解液24(非水性層または水性層)と、両電解液23、24を分離すると共に、適宜イオンを透過する正極と負極電解液の双方の溶媒を含み、かつ混和しない二つの液層に挟まれたエマルション層25とを含む電池セルを備える。正極電解液23には、正極電解液用のタンク41が配管を介して接続される。負極電解液24には、負極電解液用のタンク42が配管を介して接続される。配管には、電解液を循環させるためのポンプ31、32を備える。レドックスフロー電池2は、配管、ポンプを利用して、電池セルにそれぞれタンク41の正極電解液、タンク42の負極電解液を循環供給して、各極の電解液中の金属、有機金属化合物、有機分子等の活物質の酸化還元反応に伴って充放電を行う。 The redox flow battery 2 includes a positive electrode electrolyte 23 (aqueous layer or non-aqueous layer) in contact with the positive electrode 20 and a negative electrode electrolyte 24 (non-aqueous layer or aqueous layer) in contact with the negative electrode 21. A battery cell is provided which separates the liquids 23 and 24 and also contains an emulsion layer 25 sandwiched between two immiscible liquid layers, which contain both positive electrode and negative electrode electrolytic solutions that appropriately allow ions to pass through. A tank 41 for the positive electrode electrolytic solution is connected to the positive electrode electrolytic solution 23 via a pipe. A tank 42 for the negative electrode electrolytic solution is connected to the negative electrode electrolytic solution 24 via a pipe. The piping is provided with pumps 31 and 32 for circulating the electrolytic solution. The redox flow battery 2 circulates and supplies the positive electrode electrolyte of the tank 41 and the negative electrode electrolyte of the tank 42 to the battery cells by using pipes and pumps, respectively, to supply the metal and the organic metal compound in the electrolyte of each electrode. Charging and discharging are performed along with the redox reaction of active materials such as organic molecules.
 本実施形態においては、両連続マイクロエマルション層25が従来の固体電解質膜の機能を担うために、カチオン交換膜またはアニオン交換膜を使用する必要がないが、エマルション層を安定化させるための多孔質膜やサポート材を使用することができる。多孔質膜やサポート材としては、セラミックス膜やガラスフィルター等が挙げられるがこれらに限定されない。 In the present embodiment, since both continuous microemulsion layers 25 carry the function of the conventional solid electrolyte membrane, it is not necessary to use a cation exchange membrane or an anion exchange membrane, but the porous layer for stabilizing the emulsion layer is not necessary. Membranes and support materials can be used. Examples of the porous film and the support material include, but are not limited to, a ceramic film and a glass filter.
(正極電解液)
 正極電解液は水系、非水系のいずれかであるが、負極電解液と異なる溶媒であり、例えば、正極電解液が水系(水層)であれば負極電解液は非水系(油層)を選択する。活物質として鉄、マンガン、バナジウム、セリウムなどの金属イオン、または前記金属を含み配位子が有機分子からなる有機金属化合物(フェロセン、マンガノセン、バナドセン、(フェロセニルメチル)トリメチルアンモニウムクロリド、1,1’-ビス[3-(トリメチルアンモニオ)プロピル]フェロセンジクロリド)またはヒドロキノン、アシッドブルー、ビオルル酸、インディゴ、TEMPO、4OH-TEMPOまたは9-アミノアクリジン等の有機分子であり、特に好ましいのは、ヒドロキノン、フェロセン、(フェロセニルメチル)トリメチルアンモニウムクロリド、1,1’-ビス[3-(トリメチルアンモニオ)プロピル]フェロセンジクロリドである。
(Positive electrode electrolyte)
The positive electrode electrolyte is either water-based or non-aqueous, but it is a solvent different from the negative electrode electrolyte. For example, if the positive electrode electrolyte is water-based (water layer), the negative electrode electrolyte is selected to be non-aqueous (oil layer). .. Metal ions such as iron, manganese, vanadium, and cerium as active materials, or organometallic compounds containing the metal and whose ligand is an organic molecule (ferrocene, manganocene, vanadocene, (ferrocenemethyl) trimethylammonium chloride, 1, Organic molecules such as 1'-bis [3- (trimethylammonio) propyl] ferrocene dichloride) or hydroquinone, acid blue, biolic acid, indigo, TEMPO, 4OH-TEMPO or 9-aminoaclysine, with particular preference being Hydroquinone, ferrocene, (ferroceneylmethyl) trimethylammonium chloride, 1,1'-bis [3- (trimethylammonio) propyl] ferrocene dichloride.
(負極電解液)
 負極電解液は水系、非水系のいずれかであるが、正極電解液と異なる溶媒であり、活物質としてチタン、銅、亜鉛、コバルト、などの金属イオン、または前記金属を含み、配位子が有機分子からなる有機金属化合物(チタノセン、ニッケロセン、コバルトセン)、フタルイミド、フルオレノン、カンファ-キノン、アントラキノン、ナフトキノン、ベンゾキノン、アントラキノンモノスルホン酸、アントラキノンジスルホン酸、ナフトキノンモノスルホン酸、ナフトキノンジスルホン酸、メチルビオローゲン、アシッドブルー等の有機分子であり、特に好ましいのは、フタルイミド、フルオレノン、カンファ-キノン、アントラキノン、アントラキノンジスルホン酸、アシッドブルーである。
(Negative electrode electrolyte)
The negative electrode electrolyte is either aqueous or non-aqueous, but it is a solvent different from that of the positive electrolyte, and contains metal ions such as titanium, copper, zinc, cobalt, or the metal as an active material, or the ligand. Organic metal compounds consisting of organic molecules (titanocene, nickerosen, cobaltene), phthalimide, fluorenone, camphorquinone, anthraquinone, naphthoquinone, benzoquinone, anthraquinone monosulfonic acid, anthraquinone disulfonic acid, naphthoquinone monosulfonic acid, naphthoquinone disulfonic acid, methylbiologene , Acid blue and the like, and particularly preferred are phthalimide, fluorenone, camphorquinone, anthraquinone, anthraquinone disulfonic acid and acid blue.
(水性層)
 本実施形態において、水性層は、主として水からなる水性溶媒を含む。水を含む溶媒中の好ましい水の含有量は、60~100質量%であり、より好ましくは80~100質量%である。水は共存する支持塩の濃度を厳密に調製するためイオン交換水であることが好ましい。水性溶媒に含みうる有機溶媒としては、メタノール、エタノール、およびエチレングリコールのいずれかまたはこれらの組み合わせであってもよい。
(Aqueous layer)
In the present embodiment, the aqueous layer contains an aqueous solvent mainly composed of water. The content of water in the solvent containing water is preferably 60 to 100% by mass, more preferably 80 to 100% by mass. The water is preferably ion-exchanged water in order to strictly adjust the concentration of coexisting supporting salts. The organic solvent that can be contained in the aqueous solvent may be any one of methanol, ethanol, and ethylene glycol, or a combination thereof.
 また、水性層には、電解質として支持塩を含ませることができる。支持塩が含まれることで、電解液の電気伝導性が向上し、電池のエネルギー効率、エネルギー密度を向上させることができる。水性溶媒(水層)に添加しうる支持塩としては、例えばメタンスルホン酸、トリフルオロメタンスルホン酸、硫酸、塩酸、臭化水素酸、硝酸、過塩素酸、メタンスルホン酸ナトリウム、メタンスルホン酸カリウム、トリフルオロメタンスルホン酸リチウム、トリフルオロメタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸カリウム、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、塩化テトラブチルアンモニウム、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化テトラメチルアンモニウム、臭化テトラエチルアンモニウム、臭化テトラプロピルアンモニウム、臭化テトラブチルアンモニウム、硝酸リチウム、硝酸ナトリウム、硝酸カリウム、硝酸テトラメチルアンモニウム、硝酸テトラブチルアンモニウム、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸テトラメチルアンモニウム、過塩素酸テトラエチルアンモニウム、過塩素酸テトラブチルアンモニウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。水性層は、正極および負極のいずれの電解液としても用いることができる。 Further, the aqueous layer can contain a supporting salt as an electrolyte. By containing the supporting salt, the electrical conductivity of the electrolytic solution can be improved, and the energy efficiency and energy density of the battery can be improved. Supporting salts that can be added to the aqueous solvent (aqueous layer) include, for example, methanesulfonic acid, trifluoromethanesulfonic acid, sulfuric acid, hydrochloric acid, hydrobromic acid, nitric acid, perchloric acid, sodium methanesulfonate, potassium methanesulfonate, and the like. Lithium trifluoromethanesulfonate, sodium trifluoromethanesulfonate, potassium trifluoromethanesulfonate, lithium chloride, sodium chloride, potassium chloride, tetramethylammonium chloride, tetraethylammonium chloride, tetrabutylammonium chloride, lithium bromide, sodium bromide, odor Potassium bromide, tetramethylammonium bromide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium bromide, lithium nitrate, sodium nitrate, potassium nitrate, tetramethylammonium nitrate, tetrabutylammonium nitrate, lithium perchlorate, excess Examples thereof include sodium chlorate, tetramethylammonium perchlorate, tetraethylammonium perchlorate, tetrabutylammonium perchlorate, lithium hydroxide, sodium hydroxide, potassium hydroxide and the like. The aqueous layer can be used as either a positive electrode or a negative electrode electrolytic solution.
(非水性層)
 本実施形態において、非水性層は水と混和しない非水性溶媒を含む。非水性溶媒は、支持塩として含まれる電解質の解離が可能で電気化学反応の場として機能するものであれば特に限定されないが、好ましくはジクロロメタン、ベンゾトリフルオリド、2-ブタノンおよび炭酸プロピレンの少なくとも1つを含む。また、1-ブチル-1-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド(PYR14TFSI)のようなイオン液体であってもよい。
(Non-aqueous layer)
In this embodiment, the non-aqueous layer contains a non-aqueous solvent that is immiscible with water. The non-aqueous solvent is not particularly limited as long as it can dissociate the electrolyte contained as the supporting salt and functions as a field for an electrochemical reaction, but is preferably at least one of dichloromethane, benzotrifluoride, 2-butanone and propylene carbonate. Including one. It may also be an ionic liquid such as 1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide (PYR 14 TFSI).
 また、非水性層(油層)に含まれる支持塩としては、p-トルエンスルホン酸、メタンスルホン酸ナトリウム、メタンスルホン酸カリウム、トリフルオロメタンスルホン酸リチウム、トリフルオロメタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸カリウム、塩化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラメチルアンモニウム、臭化テトラエチルアンモニウム、臭化テトラプロピルアンモニウム、臭化テトラブチルアンモニウム、硝酸テトラメチルアンモニウム、硝酸テトラブチルアンモニウム、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸テトラメチルアンモニウム、過塩素酸テトラエチルアンモニウム、過塩素酸テトラブチルアンモニウム、ヘキサフルオロリン酸リチウム、ホウフッ化リチウム、1-ブチル-1-メチルピロリジニウムクロリド、1-ブチル-1-メチルピロリジニウムブロミド、1-エチル-1-メチルピロリジニウムブロミド、1-ブチルピリジニウムクロリド、1-ブチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムブロミド、1-ブチル-3-メチルピリジニウムクロリド、1-ブチル-3-メチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムクロリド、1-エチルピリジニウムクロリド、1-エチルピリジニウムブロミド、1-エチル-2-メチルピリジニウムブロミド、1-エチル-4-メチルピリジニウムブロミド、1-プロピルピリジニウムクロリド、トリブチル-n-オクチルホスホニウムブロミド、テトラブチルホスホニウムブロミド、トリブチルヘキサデシルホスホニウムブロミド、トリヘキシル(テトラデシル)ホスホニウムクロリド等が挙げられる。非水性層は、正極および負極のいずれの電解液としても用いることができる。 The supporting salts contained in the non-aqueous layer (oil layer) include p-toluenesulfonic acid, sodium methanesulfonate, potassium methanesulfonate, lithium trifluoromethanesulfonate, sodium trifluoromethanesulfonate, potassium trifluoromethanesulfonate, and the like. Tetramethylammonium chloride, tetraethylammonium chloride, tetrabutylammonium chloride, tetramethylammonium bromide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium bromide, tetramethylammonium nitrate, tetrabutylammonium nitrate, perchlorate Lithium, sodium perchlorate, tetramethylammonium perchlorate, tetraethylammonium perchlorate, tetrabutylammonium perchlorate, lithium hexafluorophosphate, lithium borofluoride, 1-butyl-1-methylpyrrolidinium chloride, 1 -Butyl-1-methylpyrrolidinium bromide, 1-ethyl-1-methylpyrrolidinium bromide, 1-butylpyridinium chloride, 1-butylpyridinium bromide, 1-butyl-4-methylpyridinium bromide, 1-butyl-3 -Methylpyridinium chloride, 1-butyl-3-methylpyridinium bromide, 1-butyl-4-methylpyridinium chloride, 1-ethylpyridinium chloride, 1-ethylpyridinium bromide, 1-ethyl-2-methylpyridinium bromide, 1-ethyl Examples thereof include -4-methylpyridinium bromide, 1-propylpyridinium chloride, tributyl-n-octylphosphonium bromide, tetrabutylphosphonium bromide, tributylhexadecylphosphonium bromide, trihexyl (tetradecyl) phosphonium chloride and the like. The non-aqueous layer can be used as either a positive electrode or a negative electrode electrolytic solution.
(エマルション層)
 エマルション層は上記水性溶媒および非水性溶媒を含んでおり、水性層と非水性層の中間に両連続マイクロエマルション層を形成させるために、界面活性剤および補助界面活性剤を含む。熱力学的平衡状態で水と油とがミクロに混在した溶液であるマイクロエマルションでは、適度な親水性親油性バランス(HLB)値を有する界面活性剤および/または補助界面活性剤を用いることによって、O/W相状態とW/O相状との中間に位置づけられる相状態であり、水相および油相が共に閉じていない状態(両連続相の状態)を形成させることができることが知られている(例えば、Kawano et al.“Construction of Continuous Porous Organogels, Hydrogels, and Bicontinuous Organo/Hydro Hybrid Gels from Bicontinuous Microemulsions.” Macromolecules 43,No.1(2010):473-479.参照)。
(Emulsion layer)
The emulsion layer contains the above-mentioned aqueous solvent and non-aqueous solvent, and contains a surfactant and an auxiliary surfactant in order to form both continuous microemulsion layers between the aqueous layer and the non-aqueous layer. In microemulsion, which is a micromixed solution of water and oil in a thermodynamically equilibrium state, by using a surfactant and / or an auxiliary surfactant having an appropriate hydrophilic lipophilic balance (HLB) value, It is known that it is a phase state positioned between the O / W phase state and the W / O phase state, and can form a state in which both the aqueous phase and the oil phase are not closed (the state of both continuous phases). (For example, see Kawano et al. "Surfactant of Surfactant Pourous Organogels, Hydrogels, and Bicontinous Organo / HydroHybrid Gelsmulus43.
 界面活性剤としては、カチオン系、アニオン系、ノニオン系および両性界面活性剤など特に限定されないが、カチオン系界面活性剤としては、例えば、アミンや4級アンモニウム塩(例えばテトラメチルアンモニウムクロリド)、および4級アンモニウム塩を含む高分子等が挙げられる。また、アニオン系界面活性剤としては、スルホン酸(例えばドデシル硫酸ナトリウム)やカルボン酸、リン酸を有する高分子等が挙げられる。ノニオン系界面活性剤としては、ジグライムなどのエーテル含有化合物やエーテル(例えばポリエチレングリコールオクタデシルエーテル)を含む高分子等が挙げられる。さらに、双性(両性)イオン型界面活性剤としては、カルボン酸塩、アミノ酸塩、ベタイン構造を有する界面活性剤が挙げられる。 The surfactant is not particularly limited to cationic, anionic, nonionic and amphoteric surfactants, but the cationic surfactants include, for example, amines, quaternary ammonium salts (for example, tetramethylammonium chloride), and Examples thereof include polymers containing a quaternary ammonium salt. Examples of the anionic surfactant include sulfonic acids (for example, sodium dodecyl sulfate), carboxylic acids, and polymers having phosphoric acid. Examples of the nonionic surfactant include ether-containing compounds such as jigglime and polymers containing ether (for example, polyethylene glycol octadecyl ether). Further, examples of the zwitterionic surfactant include a carboxylate, an amino acid salt, and a surfactant having a betaine structure.
 補助界面活性剤は、界面活性剤の親水性親油性バランスを調整する作用を有し、脂肪族の一級あるいは二級アルコール等が用いられる。好ましくは、直鎖状または分子状の、C2~C6のモノアルコールである。アルコールの例は、エタノール、1-ブタノール、2-ブタノール、3-メチル-1-ブタノール、2-メチル-1-プロパノール、1-ペンタノール、1-プロパノール、2-プロパノールおよびそれらの任意の混合物である。これらは1種が単独で用いられてもよく、2種以上が任意の比率および組み合わせで用いられてもよい。特に好ましいのは、2-ブタノールおよびドデシル硫酸ナトリウムである。 The auxiliary surfactant has the effect of adjusting the hydrophilic lipophilic balance of the surfactant, and aliphatic primary or secondary alcohols are used. Preferably, it is a linear or molecular C2-C6 monoalcohol. Examples of alcohols are ethanol, 1-butanol, 2-butanol, 3-methyl-1-butanol, 2-methyl-1-propanol, 1-pentanol, 1-propanol, 2-propanol and any mixture thereof. is there. One of these may be used alone, or two or more thereof may be used in any ratio and combination. Particularly preferred are 2-butanol and sodium dodecyl sulfate.
(三層系電解液の調製方法)
 本実施形態における電解液の調製方法を図3に基づき説明する。図3は、一実施形態に係る三層系電解液の調製工程を示すフロー図である。ステップS1では、塩化ナトリウムをイオン交換水に溶かし、所定濃度の親水性活物質を加えて水性層を作製する。次にステップS2では、その電解液に過塩素酸テトラブチルアンモニウムを含むジクロロメタン溶液に所定濃度の親油性活物質を加えた油層を形成する第二の電解液を添加する。ステップS3では、所定量の界面活性剤であるドデシル硫酸ナトリウムと補助界面活性剤である2-ブタノールを加える。ステップS4にて、これらを撹拌し、30分から1時間静置することで両連続エマルション層を含む三層系電解液が生成する。このとき、支持電解質である塩化ナトリウムや過塩素酸テトラブチルアンモニウムの有無にかかわらず、水とジクロロメタンをそれぞれ水性溶媒および非水性溶媒とする系において三層系が形成される。この三層系が形成される各構成成分の濃度範囲は、界面活性剤と補助界面活性剤の濃度によって制御することが可能である。
(Preparation method of three-layer electrolyte)
The method for preparing the electrolytic solution in the present embodiment will be described with reference to FIG. FIG. 3 is a flow chart showing a step of preparing the three-layer electrolytic solution according to the embodiment. In step S1, sodium chloride is dissolved in ion-exchanged water, and a predetermined concentration of hydrophilic active material is added to prepare an aqueous layer. Next, in step S2, a second electrolytic solution for forming an oil layer is added to the electrolytic solution by adding a lipophilic active substance having a predetermined concentration to a dichloromethane solution containing tetrabutylammonium perchlorate. In step S3, a predetermined amount of sodium dodecyl sulfate, which is a surfactant, and 2-butanol, which is an auxiliary surfactant, are added. In step S4, these are stirred and allowed to stand for 30 minutes to 1 hour to form a three-layer electrolytic solution containing both continuous emulsion layers. At this time, a three-layer system is formed in a system in which water and dichloromethane are used as an aqueous solvent and a non-aqueous solvent, respectively, regardless of the presence or absence of the supporting electrolytes sodium chloride and tetrabutylammonium perchlorate. The concentration range of each component forming this three-layer system can be controlled by the concentration of the surfactant and the auxiliary surfactant.
 三層系が形成される界面活性剤と補助界面活性剤の濃度範囲の一例を図4に示す。図4では、1M塩化ナトリウム水溶液4mLを水層とし、ジクロロメタン4mLを油層とした際の、界面活性剤であるドデシル硫酸ナトリウムと補助界面活性である2-ブタノールの濃度変化によるエマルション層の変化を示している。ドデシル硫酸ナトリウムの濃度範囲が0.35Mから0.5M、2-ブタノールの濃度範囲が1.4Mから2Mの範囲で三層系が形成される。図中〇は沈殿生成、□は水が油層に取り込まれたエマルション(WO:Water in Oil)、▲は両連続マイクロエマルション(BME)、◇は油が水層に取り込まれたエマルション(OW:Oil in Water)を示している。なお、ドデシル硫酸ナトリウムの濃度算出には水層の体積を、2-ブタノールの濃度算出には水層と添加した2-ブタノールの体積の和を基準としている。 FIG. 4 shows an example of the concentration range of the surfactant and the auxiliary surfactant that form a three-layer system. FIG. 4 shows changes in the emulsion layer due to changes in the concentrations of sodium dodecyl sulfate, which is a surfactant, and 2-butanol, which is an auxiliary surfactant, when 4 mL of a 1 M sodium chloride aqueous solution is used as an aqueous layer and 4 mL of dichloromethane is used as an oil layer. ing. A three-layer system is formed in a concentration range of sodium dodecyl sulfate of 0.35 M to 0.5 M and a concentration range of 2-butanol of 1.4 M to 2 M. In the figure, ◯ is the precipitate formation, □ is the emulsion in which water is incorporated into the oil layer (WO: Water in Oil), ▲ is the double continuous microemulsion (BME), and ◇ is the emulsion in which oil is incorporated into the aqueous layer (OW: Oil). in Water) is shown. The concentration of sodium dodecyl sulfate is calculated based on the volume of the aqueous layer, and the concentration of 2-butanol is calculated based on the sum of the volume of the aqueous layer and the volume of 2-butanol added.
 図5は、上記のジクロロメタンに、支持電解質として過塩素酸テトラブチルアンモニウムを添加した場合の実験結果である。図5では、1M塩化ナトリウム水溶液を水層、0.1M過塩素酸テトラブチルアンモニウムを含むジクロロメタンを油層とした際の、界面活性剤であるドデシル硫酸ナトリウムと補助界面活性である2-ブタノールの濃度変化によるエマルション層の変化を示した図である。ドデシル硫酸ナトリウムの濃度範囲が0.22Mから0.52M、2-ブタノールの濃度範囲が1.3Mから1.6Mの範囲で三層系が形成される。図中〇は沈殿生成、□は水が油層に取り込まれたエマルション(WO)、▲は両連続マイクロエマルション(BME)、◇は油が水層に取り込まれたエマルション(OW)を示している。なお、ドデシル硫酸ナトリウムの濃度算出には水層の体積を、2-ブタノールの濃度算出には水層と添加した2-ブタノールの体積の和を基準としている。 FIG. 5 shows the experimental results when tetrabutylammonium perchlorate was added as a supporting electrolyte to the above-mentioned dichloromethane. In FIG. 5, the concentrations of sodium dodecyl sulfate as a surfactant and 2-butanol as an auxiliary surfactant when a 1 M aqueous sodium chloride solution is used as an aqueous layer and a dichloromethane containing 0.1 M tetrabutylammonium perchlorate as an oil layer are used. It is a figure which showed the change of the emulsion layer by the change. A three-layer system is formed in a concentration range of sodium dodecyl sulfate of 0.22M to 0.52M and a concentration range of 2-butanol of 1.3M to 1.6M. In the figure, ◯ indicates precipitation formation, □ indicates an emulsion (WO) in which water is incorporated into an oil layer, ▲ indicates a bicontinuous microemulsion (BME), and ◇ indicates an emulsion in which oil is incorporated into an aqueous layer (OW). The concentration of sodium dodecyl sulfate is calculated based on the volume of the aqueous layer, and the concentration of 2-butanol is calculated based on the sum of the volume of the aqueous layer and the volume of 2-butanol added.
 図4および図5の結果より、支持電解質の有無にかかわらず、水層とジクロロメタンを油層とする系において三層系が形成され、三層系が形成される範囲は界面活性剤と補助界面活性剤の濃度によって制御することが可能であることを示している。また、混合する水性溶媒と非水性溶媒の容量も1:1に限らず、ある程度自由に変化させることもできる。水層、油層およびエマルション層の容量と、用いる電池セルの容量および形状を適宜選択することで、水層と油層の間に形成されるエマルション層の厚みも自由に調整可能である。 From the results of FIGS. 4 and 5, a three-layer system is formed in the system having the aqueous layer and the dichloromethane as the oil layer regardless of the presence or absence of the supporting electrolyte, and the range in which the three-layer system is formed is the surfactant and the auxiliary surfactant. It shows that it can be controlled by the concentration of the agent. Further, the volumes of the aqueous solvent and the non-aqueous solvent to be mixed are not limited to 1: 1 and can be freely changed to some extent. The thickness of the emulsion layer formed between the aqueous layer and the oil layer can be freely adjusted by appropriately selecting the capacity of the aqueous layer, the oil layer and the emulsion layer, and the capacity and shape of the battery cell to be used.
 次に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれら実施例に制約されるものではない。 Next, examples will be given and the present invention will be described in more detail, but the present invention is not limited to these examples.
(実施例1)両連続マイクロエマルション層を含む正極および負極電解液の調製と三層系電池セルにおける電気化学測定(サイクリックボルタモグラム測定)
 正極電解液として、10mMフェロセンを含んだ、0.3M過塩素酸テトラブチルアンモニウム-ジクロロメタン溶液を調製した。負極電解液として、10mMの2,7-アントラキノンジスルホン酸ナトリウムを含んだ0.3M塩化ナトリウム水溶液を調製した。4mLの正極電解液と、5.5mLの負極電解液と、0.6gドデシル硫酸ナトリウム、および2.25mLの2-ブタノールを混合し、続いて攪拌、静置したところ、水層および油層の間に両連続マイクロエマルション層を含んだ三層系の電解液が形成された。これを図1に示す小型試験セルに充填し、油層側を作用極として掃引速度1mV/sにてサイクリックボルタンメトリー測定を行った電流―電位曲線の結果を図6に示す。
(Example 1) Preparation of positive electrode and negative electrode electrolytes containing both continuous microemulsion layers and electrochemical measurement in a three-layer battery cell (cyclic voltamogram measurement)
A 0.3 M tetrabutylammonium perchlorate-dichloromethane solution containing 10 mM ferrocene was prepared as a positive electrode electrolyte. As a negative electrode electrolyte, a 0.3 M aqueous sodium chloride solution containing 10 mM sodium 2,7-anthraquinone disulfonate was prepared. When 4 mL of the positive electrode electrolyte, 5.5 mL of the negative electrode electrolyte, 0.6 g of sodium dodecyl sulfate, and 2.25 mL of 2-butanol were mixed, and then stirred and allowed to stand, between the aqueous layer and the oil layer. A three-layer electrolytic solution containing both continuous microemulsion layers was formed in. FIG. 6 shows the results of the current-potential curve obtained by filling the small test cell shown in FIG. 1 and performing cyclic voltammetry measurement at a sweep rate of 1 mV / s with the oil layer side as the working electrode.
 一方、上記と同じ三層系の電解液を充填した小型試験セルを用い、水層側を作用極として掃引速度1mV/sでサイクリックボルタンメトリー測定を行った電流―電位曲線の結果を図7に示す。
 図6において、酸化還元ピークが明瞭に観察された。酸化側のピークは0.55V付近に確認され、還元側のピークは0.23Vに確認される。図7においては、-0.46Vに酸化ピークが、-0.58Vに還元ピークが見られている。またこれらの酸化還元ピークはサイクルを繰り返しても同一の電位に現れており、活物質が安定に酸化還元反応を起こしていることを示している。
On the other hand, FIG. 7 shows the results of the current-potential curve obtained by cyclic voltammetry measurement at a sweep rate of 1 mV / s with the aqueous layer side as the working electrode using a small test cell filled with the same three-layer electrolytic solution as described above. Shown.
In FIG. 6, the redox peak was clearly observed. The peak on the oxidation side is confirmed to be around 0.55V, and the peak on the reduction side is confirmed to be 0.23V. In FIG. 7, an oxidation peak is observed at −0.46 V and a reduction peak is observed at −0.58 V. Further, these redox peaks appear at the same potential even after repeating the cycle, indicating that the active material stably undergoes a redox reaction.
(比較例1)正極および負極電解液の調製と二層系電池セルにおける電気化学測定(サイクリックボルタモグラム測定)
 正極電解液として、10mMフェロセンを含んだ、0.3M過塩素酸テトラブチルアンモニウム-ジクロロメタン溶液を調製した。負極電解液として、10mMの2,7-アントラキノンジスルホン酸ナトリウムを含んだ0.3M塩化ナトリウム水溶液を調製した。4mLの正極電解液と、5.5mLの負極電解液とを混合して得られた二層系の電解液を図1に示す小型試験セル中に入れ、油層側を作用極として掃引速度1mV/sでサイクリックボルタンメトリー測定を行った電流―電位曲線を図8に示す。
(Comparative Example 1) Preparation of positive electrode and negative electrode electrolytes and electrochemical measurement in a two-layer battery cell (cyclic voltamogram measurement)
A 0.3 M tetrabutylammonium perchlorate-dichloromethane solution containing 10 mM ferrocene was prepared as a positive electrode electrolyte. As a negative electrode electrolyte, a 0.3 M aqueous sodium chloride solution containing 10 mM sodium 2,7-anthraquinone disulfonate was prepared. A two-layer electrolyte obtained by mixing 4 mL of a positive electrode electrolyte and 5.5 mL of a negative electrode electrolyte is placed in a small test cell shown in FIG. 1, and a sweep rate of 1 mV / with the oil layer side as the working electrode. The current-potential curve obtained by cyclic voltammetry measurement in s is shown in FIG.
 一方、上記と同じ二層系の電解液を入れた小型試験セルを用い、水層側を作用極として掃引速度1mV/sでサイクリックボルタンメトリー測定を行った電流―電位曲線の結果を図9に示す。
 図6と図8の油層のボルタモグラムを比較すると、図8の酸化側のピークが図6の三層系に比べると不明瞭となっている。このことは二層系の油層における反応抵抗が三層系の油層に比べて大きいことを示唆しており、充放電における過電圧の増大などの電圧効率の損失を引き起こす要因となりうる。
On the other hand, FIG. 9 shows the results of the current-potential curve obtained by cyclic voltammetry measurement at a sweep rate of 1 mV / s with the aqueous layer side as the working electrode using a small test cell containing the same two-layer electrolytic solution as above. Shown.
Comparing the voltamograms of the oil reservoirs of FIGS. 6 and 8, the peak on the oxidation side of FIG. 8 is unclear as compared with the three-layer system of FIG. This suggests that the reaction resistance in the two-layer oil layer is larger than that in the three-layer oil layer, which can cause a loss of voltage efficiency such as an increase in overvoltage during charging and discharging.
(実施例2)両連続マイクロエマルション層を含む正極および負極電解液の調製と三層系電池セルにおける充放電およびサイクル試験
(低濃度活物質を用いた三層系サイクル試験)
 正極電解液として、1mMフェロセンを含んだ、0.3M過塩素酸テトラブチルアンモニウム-ジクロロメタン溶液を調製した。負極電解液としては、1mMの2,7-アントラキノンジスルホン酸ナトリウムを含んだ0.3M塩化ナトリウム水溶液を調製した。4mLの正極電解液と、5.5mLの負極電解液と、1.2gドデシル硫酸ナトリウム、および2.25mLの2-ブタノールを混合し、続いて攪拌、静置したところ、水層および油層の間に両連続マイクロエマルション層を含んだ三層系の電解液が形成された。これを充填した小型試験セルを用いて行った、1mA/cmの定電流下における充放電実験の結果を図10に示す。図中縦軸はセル電圧、横軸は充放電時間を示している。Aは充電に要した時間、Bは通電していない(電流を流していない)休止時間、Cは放電に要した時間を示している。
(Example 2) Preparation of positive electrode and negative electrode electrolytes containing both continuous microemulsion layers, charge / discharge and cycle test in a three-layer battery cell (three-layer cycle test using a low-concentration active material)
A 0.3 M tetrabutylammonium perchlorate-dichloromethane solution containing 1 mM ferrocene was prepared as the positive electrode electrolyte. As the negative electrode electrolyte, a 0.3 M aqueous sodium chloride solution containing 1 mM sodium 2,7-anthraquinone disulfonate was prepared. When 4 mL of the positive electrode electrolyte, 5.5 mL of the negative electrode electrolyte, 1.2 g of sodium dodecyl sulfate, and 2.25 mL of 2-butanol were mixed, and then stirred and allowed to stand, between the aqueous layer and the oil layer. A three-layer electrolytic solution containing both continuous microemulsion layers was formed in. FIG. 10 shows the results of a charge / discharge experiment under a constant current of 1 mA / cm 2 performed using a small test cell filled with this. In the figure, the vertical axis shows the cell voltage and the horizontal axis shows the charge / discharge time. A indicates the time required for charging, B indicates the pause time when no current is applied (no current is flowing), and C indicates the time required for discharging.
 また、同一の三層系電解液を含む小型試験セルを用いて行った充放電実験のサイクル安定性の結果を図11に示す。図10より、休止時間を挟んで充放電が進行していることが認められる。休止時間30秒の間に2.1Vから1.6Vに低下している。放電開始直後に1.6Vから1.4Vに電圧が降下し、徐々に放電によって電圧降下が始まる。放電直後の0.2Vの低下は過電圧によるものである。図11は、図10と同様の条件で充放電サイクル安定性を示した図である。実線がセル電圧の変化、点線が負極電解液の電位変化(エマルション層に配置されたAg/AgCl基準)を示している。30サイクルの間のセル電圧変化、1サイクル内における充放電に要した時間、および負極電解液の電位変化が、サイクル間で違いが見られていないことから、電解液の分解などの副反応が生じず、充放電が安定に進行していることを示している。 In addition, FIG. 11 shows the results of cycle stability of a charge / discharge experiment conducted using a small test cell containing the same three-layer electrolyte. From FIG. 10, it can be seen that charging / discharging is proceeding with a pause time in between. It decreased from 2.1V to 1.6V during the rest period of 30 seconds. Immediately after the start of discharge, the voltage drops from 1.6V to 1.4V, and the voltage gradually drops due to the discharge. The decrease of 0.2V immediately after discharge is due to overvoltage. FIG. 11 is a diagram showing charge / discharge cycle stability under the same conditions as in FIG. The solid line shows the change in cell voltage, and the dotted line shows the change in potential of the negative electrode electrolyte (based on Ag / AgCl arranged in the emulsion layer). Since there is no difference between the cell voltage change during 30 cycles, the time required for charging / discharging within one cycle, and the potential change of the negative electrode electrolyte, side reactions such as decomposition of the electrolyte occur. It does not occur, indicating that charging and discharging are proceeding stably.
(高濃度活物質を用いた三層系サイクル試験)
 正極電解液として、20mMフェロセンを含んだ、1.0M過塩素酸テトラブチルアンモニウム-ジクロロメタン溶液を調製した。負極電解液としては、10mMの2,7-アントラキノンジスルホン酸ナトリウムを含んだ0.3M塩化ナトリウム水溶液を調製した。4mLの正極電解液と、5.5mLの負極電解液と、0.65gドデシル硫酸ナトリウム、および1.25mLの2-ブタノールを混合し、続いて攪拌、静置したところ、水層および油層の間に両連続マイクロエマルション層を含んだ三層系の電解液が形成された。これを充填した小型試験セルを用いて行った充放電実験の結果を図12に示す。
(Three-layer cycle test using high-concentration active material)
A 1.0 M tetrabutylammonium perchlorate-dichloromethane solution containing 20 mM ferrocene was prepared as the positive electrode electrolyte. As the negative electrode electrolyte, a 0.3 M aqueous sodium chloride solution containing 10 mM sodium 2,7-anthraquinone disulfonate was prepared. When 4 mL of the positive electrode electrolyte, 5.5 mL of the negative electrode electrolyte, 0.65 g of sodium dodecyl sulfate, and 1.25 mL of 2-butanol were mixed, and then stirred and allowed to stand, between the aqueous layer and the oil layer. A three-layer electrolytic solution containing both continuous microemulsion layers was formed in. FIG. 12 shows the results of a charge / discharge experiment conducted using a small test cell filled with this.
 図12は、正極電解液の活物質濃度を20倍に、かつ負極電解液の活物質濃度を10倍にし、充放電サイクルを5回行った結果を示している。実線がセル電圧の変化、点線が負極電解液の電位変化(エマルション層に配置されたAg/AgCl基準)を示している。図11と同様に、5サイクルの間のセル電圧変化と1サイクル内の充放電に要した時間、および負極電解液の電位変化が、サイクル間で違いか見られていないことから、電解液の分解などの副反応が生じず、高濃度にしても充放電が安定に進行していることを示している。このことは活物質濃度を高めて、すなわちエネルギー密度を高くしても安定に充放電可能な電池が作製できることを示している。 FIG. 12 shows the results of performing charge / discharge cycles 5 times with the active material concentration of the positive electrode electrolytic solution increased 20 times and the active material concentration of the negative electrode electrolytic solution increased 10 times. The solid line shows the change in cell voltage, and the dotted line shows the change in potential of the negative electrode electrolyte (based on Ag / AgCl arranged in the emulsion layer). Similar to FIG. 11, since the cell voltage change during 5 cycles, the time required for charging / discharging within 1 cycle, and the potential change of the negative electrode electrolytic solution were not observed to be different between cycles, the electrolytic solution was used. It shows that side reactions such as decomposition do not occur and charging and discharging proceed stably even at high concentrations. This indicates that a battery that can be charged and discharged stably can be manufactured even if the active material concentration is increased, that is, the energy density is increased.
(比較例2)二層系電池セルにおける充放電およびサイクル試験
 正極電解液として、20mMフェロセンを含んだ、1.0M過塩素酸テトラブチルアンモニウム-ジクロロメタン溶液を調製した。負極電解液としては、10mMの2,7-アントラキノンジスルホン酸ナトリウムを含んだ0.3M塩化ナトリウム水溶液を調製した。4mLの正極電解液と、5.5mLの負極電解液とを混合して得られた二層系の電解液を入れた小型試験セルを用いて行った充放電実験の結果を図13に示す。
(Comparative Example 2) Charge / Discharge and Cycle Test in a Two-Layer Battery Cell A 1.0 M tetrabutylammonium perchlorate-dichloromethane solution containing 20 mM ferrocene was prepared as a positive electrode electrolyte. As the negative electrode electrolyte, a 0.3 M aqueous sodium chloride solution containing 10 mM sodium 2,7-anthraquinone disulfonate was prepared. FIG. 13 shows the results of a charge / discharge experiment conducted using a small test cell containing a two-layer electrolytic solution obtained by mixing 4 mL of a positive electrode electrolyte solution and 5.5 mL of a negative electrode electrolyte solution.
 また、同一の二層系電解液を含む小型試験セルを用いて行った充放電実験のサイクル安定性の結果を図14に示す。
 図13において、縦軸はセル電圧、横軸は充放電時間を示している。Aは充電に要した時間、Bは通電していない(電流を流していない)休止時間、Cは放電に要した時間を示している。図13より、休止時間を挟んで充放電が進行していることが分かる。休止時間60秒の間に2.1Vから1.36Vに低下している。放電開始直後に1.36Vから1.28Vに電圧が降下し、徐々に放電によって電圧降下が始まる。図10の結果と比べて放電が徐々に開始される電圧に大きな違いは見られていない。
In addition, FIG. 14 shows the results of cycle stability of a charge / discharge experiment conducted using a small test cell containing the same two-layer electrolyte.
In FIG. 13, the vertical axis represents the cell voltage and the horizontal axis represents the charge / discharge time. A indicates the time required for charging, B indicates the pause time when no current is applied (no current is flowing), and C indicates the time required for discharging. From FIG. 13, it can be seen that charging / discharging is proceeding with a pause time in between. It dropped from 2.1V to 1.36V during the 60 second rest period. Immediately after the start of discharge, the voltage drops from 1.36 V to 1.28 V, and the voltage gradually drops due to the discharge. Compared with the result of FIG. 10, there is no significant difference in the voltage at which the discharge is gradually started.
 図14は充放電サイクルを5回行った結果を示している。実線がセル電圧の変化、点線が負極電解液の電位変化(水層に配置されたAg/AgCl基準)を示している。図11の三層系の場合と異なり、1サイクル内の充放電に要した時間が、サイクルを繰り返すことで徐々に減少していく傾向が見られている。このことは活物質の反応性が次第に低下していくことを示している。水層と油層のみから構成されるために、充放電を繰り返す間に活物質の相互移動による活物質濃度の低下や電子交換などによって、電池容量の低下を引き起こすことが考えられる。 FIG. 14 shows the result of performing the charge / discharge cycle 5 times. The solid line shows the change in cell voltage, and the dotted line shows the change in potential of the negative electrode electrolyte (based on Ag / AgCl arranged in the aqueous layer). Unlike the case of the three-layer system shown in FIG. 11, the time required for charging / discharging within one cycle tends to gradually decrease as the cycle is repeated. This indicates that the reactivity of the active material gradually decreases. Since it is composed of only an aqueous layer and an oil layer, it is considered that the battery capacity is reduced due to a decrease in the active material concentration due to mutual movement of the active material and electron exchange during repeated charging and discharging.
(実施例3)三層系と二層系電池セルにおけるサイクル特性の比較
(三層系電解液の調製と充放電サイクル試験)
 正極電解液として、20mMフェロセンを含んだ、1.0M過塩素酸テトラブチルアンモニウム-ジクロロメタン溶液を調製した。負極電解液としては、10mMの2,7-アントラキノンジスルホン酸ナトリウムを含んだ0.6M塩化ナトリウム水溶液を調製した。4mLの正極電解液と、5.5mLの負極電解液と、0.65gドデシル硫酸ナトリウム、および1.25mLの2-ブタノールを混合し、続いて攪拌、静置したところ、水層および油層の間に両連続マイクロエマルション層を含んだ三層系の電解液が形成された。これを充填した小型試験セルを用いて、電流密度0.32mA/cm、充電時の上限電圧1.6V、放電時の下限電圧0Vで充放電サイクルを10回繰り返した。
(Example 3) Comparison of cycle characteristics between three-layer and two-layer battery cells (preparation of three-layer electrolyte and charge / discharge cycle test)
A 1.0 M tetrabutylammonium perchlorate-dichloromethane solution containing 20 mM ferrocene was prepared as the positive electrode electrolyte. As the negative electrode electrolyte, a 0.6 M aqueous sodium chloride solution containing 10 mM sodium 2,7-anthraquinone disulfonate was prepared. When 4 mL of the positive electrode electrolyte, 5.5 mL of the negative electrode electrolyte, 0.65 g of sodium dodecyl sulfate, and 1.25 mL of 2-butanol were mixed, and then stirred and allowed to stand, between the aqueous layer and the oil layer. A three-layer electrolytic solution containing both continuous microemulsion layers was formed in. Using a small test cell filled with this, the charge / discharge cycle was repeated 10 times with a current density of 0.32 mA / cm 2 , an upper limit voltage of 1.6 V during charging, and a lower limit voltage of 0 V during discharge.
(二層系電解液の調製と充放電サイクル試験)
 正極電解液として、20mMフェロセンを含んだ、1.0M過塩素酸テトラブチルアンモニウム-ジクロロメタン溶液を調製した。負極電解液としては、10mMの2,7-アントラキノンジスルホン酸ナトリウムを含んだ0.6M塩化ナトリウム水溶液を調製した。4mLの正極電解液と、5.5mLの負極電解液とを混合して得られた二層系の電解液を入れた小型試験セルを用いて、電流密度0.32mA/cm、充電時の上限電圧2.1V、放電時の下限電圧0.2Vで充放電サイクルを10回繰り返した。
(Preparation of two-layer electrolyte and charge / discharge cycle test)
A 1.0 M tetrabutylammonium perchlorate-dichloromethane solution containing 20 mM ferrocene was prepared as the positive electrode electrolyte. As the negative electrode electrolyte, a 0.6 M aqueous sodium chloride solution containing 10 mM sodium 2,7-anthraquinone disulfonate was prepared. Using a small test cell containing a two-layer electrolyte obtained by mixing 4 mL of positive electrode electrolyte and 5.5 mL of negative electrode electrolyte, a current density of 0.32 mA / cm 2 was used during charging. The charge / discharge cycle was repeated 10 times with an upper limit voltage of 2.1 V and a lower limit voltage of 0.2 V at the time of discharge.
 図15は、三層系と二層系の充放電サイクル試験における、それぞれのサイクル毎の放電時の容量の変化を示している。三層系と二層系の結果を比較すると、二層系はサイクル数が増えるにつれて、徐々に放電容量の低下が見られている。一方、三層系の方は、二層系に比べると放電容量が大きく、かつサイクルに伴う容量の低下が見られていない。このことは三層系の方が、正極および負極電解液中のそれぞれの活物質が各層に安定に存在し、酸化還元反応を繰り返すことで、電池としての容量が大きく、安定であることを示している。 FIG. 15 shows the change in capacity at the time of discharge for each cycle in the charge / discharge cycle test of the three-layer system and the two-layer system. Comparing the results of the three-layer system and the two-layer system, it is observed that the discharge capacity of the two-layer system gradually decreases as the number of cycles increases. On the other hand, the three-layer system has a larger discharge capacity than the two-layer system, and no decrease in capacity with the cycle is observed. This indicates that in the three-layer system, the active materials in the positive electrode and negative electrode electrolytes are stably present in each layer, and the capacity as a battery is large and stable by repeating the redox reaction. ing.
 本発明の電気化学デバイスは、固体電解質膜を使用せず、簡便かつ容易に二次電池を作製することができる。また水系電解液と非水系電解液の両方が使用でき、エネルギー効率、エネルギー密度に優れた電解液を用いたレドックスフロー電池を提供することができる。

 
The electrochemical device of the present invention does not use a solid electrolyte membrane, and can easily and easily produce a secondary battery. Further, both an aqueous electrolytic solution and a non-aqueous electrolytic solution can be used, and a redox flow battery using an electrolytic solution having excellent energy efficiency and energy density can be provided.

Claims (10)

  1. (a)少なくとも一対の正極および負極と、
    (b)正極電解液および負極電解液の一方を含む水性層と、
    (c)前記正極電解液および負極電解液の他方を含む非水性層と、
    (d)前記正極電解液および負極電解液の両方を含み、且つ前記水性層および前記非水性層の何れとも混和することなくそれらの間に介在するエマルション層と、
     を含む電気化学デバイス。
    (A) At least a pair of positive and negative electrodes
    (B) An aqueous layer containing one of a positive electrode electrolyte and a negative electrode electrolyte,
    (C) A non-aqueous layer containing the other of the positive electrode electrolytic solution and the negative electrode electrolytic solution, and
    (D) An emulsion layer containing both the positive electrode electrolytic solution and the negative electrode electrolytic solution and intervening between the aqueous layer and the non-aqueous layer without being miscible.
    Electrochemical devices including.
  2.  前記正極電解液が、金属イオン、有機金属化合物および/または有機化合物からなる正極活物質を含む、請求項1に記載の電気化学デバイス。 The electrochemical device according to claim 1, wherein the positive electrode electrolytic solution contains a positive electrode active material composed of a metal ion, an organometallic compound and / or an organic compound.
  3.  前記負極電解液が、前記正極活物質と同一または異なる金属イオン、有機金属化合物および/または有機化合物からなる負極活物質を含む、請求項2に記載の電気化学デバイス。 The electrochemical device according to claim 2, wherein the negative electrode electrolytic solution contains a negative electrode active material composed of a metal ion, an organometallic compound and / or an organic compound that are the same as or different from the positive electrode active material.
  4.  前記水性層が、主として水からなる水性溶媒と、メタンスルホン酸、トリフルオロメタンスルホン酸、硫酸、塩酸、臭化水素酸、硝酸、過塩素酸、メタンスルホン酸ナトリウム、メタンスルホン酸カリウム、トリフルオロメタンスルホン酸リチウム、トリフルオロメタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸カリウム、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、塩化テトラブチルアンモニウム、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化テトラメチルアンモニウム、臭化テトラエチルアンモニウム、臭化テトラプロピルアンモニウム、臭化テトラブチルアンモニウム、硝酸リチウム、硝酸ナトリウム、硝酸カリウム、硝酸テトラメチルアンモニウム、硝酸テトラブチルアンモニウム、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸テトラメチルアンモニウム、過塩素酸テトラエチルアンモニウム、過塩素酸テトラブチルアンモニウム、水酸化リチウム、水酸化ナトリウム、および水酸化カリウムからなる群より選択される少なくとも1つの支持電解質を含む、請求項1~3の何れか1項に記載の電気化学デバイス。 The aqueous layer consists of an aqueous solvent mainly composed of water, methanesulfonic acid, trifluoromethanesulfonic acid, sulfuric acid, hydrochloric acid, hydrobromic acid, nitrate, perchloric acid, sodium methanesulfonate, potassium methanesulfonate, trifluoromethanesulfon. Lithium acid, sodium trifluoromethanesulfonate, potassium trifluoromethanesulfonate, lithium chloride, sodium chloride, potassium chloride, tetramethylammonium chloride, tetraethylammonium chloride, tetrabutylammonium chloride, lithium bromide, sodium bromide, potassium bromide, Tetramethylammonium bromide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium bromide, lithium nitrate, sodium nitrate, potassium nitrate, tetramethylammonium nitrate, tetrabutylammonium nitrate, lithium perchlorate, sodium perchlorate Includes at least one supporting electrolyte selected from the group consisting of tetramethylammonium perchlorate, tetraethylammonium perchlorate, tetrabutylammonium perchlorate, lithium hydroxide, sodium hydroxide, and potassium hydroxide. The electrochemical device according to any one of 1 to 3.
  5.  前記非水性層が、ジクロロメタン、ベンゾトリフルオリド、2-ブタノン、炭酸プロピレンおよび1-ブチル-1-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド(PYR14TFSI)からなる群より選択される少なくとも1つの非水性溶媒と、p-トルエンスルホン酸、メタンスルホン酸ナトリウム、メタンスルホン酸カリウム、トリフルオロメタンスルホン酸リチウム、トリフルオロメタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸カリウム、塩化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラメチルアンモニウム、臭化テトラエチルアンモニウム、臭化テトラプロピルアンモニウム、臭化テトラブチルアンモニウム、硝酸テトラメチルアンモニウム、硝酸テトラブチルアンモニウム、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸テトラメチルアンモニウム、過塩素酸テトラエチルアンモニウム、過塩素酸テトラブチルアンモニウム、ヘキサフルオロリン酸リチウム、ホウフッ化リチウム、1-ブチル-1-メチルピロリジニウムクロリド、1-ブチル-1-メチルピロリジニウムブロミド、1-エチル-1-メチルピロリジニウムブロミド、1-ブチルピリジニウムクロリド、1-ブチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムブロミド、1-ブチル-3-メチルピリジニウムクロリド、1-ブチル-3-メチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムクロリド、1-エチルピリジニウムクロリド、1-エチルピリジニウムブロミド、1-エチル-2-メチルピリジニウムブロミド、1-エチル-4-メチルピリジニウムブロミド、1-プロピルピリジニウムクロリド、トリブチル-n-オクチルホスホニウムブロミド、テトラブチルホスホニウムブロミド、トリブチルヘキサデシルホスホニウムブロミド、およびトリヘキシル(テトラデシル)ホスホニウムクロリドからなる群より選択される少なくとも1つの支持電解質を含む、請求項1~4の何れか1項に記載の電気化学デバイス。 The non-aqueous layer is at least one selected from the group consisting of dichloromethane, benzotrifluoride, 2-butanone, propylene carbonate and 1-butyl-1-methylpyrrolidinium bis (trifluoromethanesulfonyl) imide (PYR 14 TFSI). Two non-aqueous solvents: p-toluenesulfonic acid, sodium methanesulfonate, potassium methanesulfonate, lithium trifluoromethanesulfonate, sodium trifluoromethanesulfonate, potassium trifluoromethanesulfonate, tetramethylammonium chloride, tetraethylammonium chloride, chloride Tetrabutylammonium, tetramethylammonium bromide, tetraethylammonium bromide, tetrapropylammonium bromide, tetrabutylammonium bromide, tetramethylammonium nitrate, tetrabutylammonium nitrate, lithium perchlorate, sodium perchlorate, perchloric acid Tetramethylammonium, tetraethylammonium perchlorate, tetrabutylammonium perchlorate, lithium hexafluorophosphate, lithium borofluoride, 1-butyl-1-methylpyrrolidinium chloride, 1-butyl-1-methylpyrrolidinium bromide , 1-Ethyl-1-methylpyrrolidinium bromide, 1-butylpyridinium chloride, 1-butylpyridinium bromide, 1-butyl-4-methylpyridinium bromide, 1-butyl-3-methylpyridinium chloride, 1-butyl-3 -Methylpyridinium bromide, 1-butyl-4-methylpyridinium chloride, 1-ethylpyridinium chloride, 1-ethylpyridinium bromide, 1-ethyl-2-methylpyridinium bromide, 1-ethyl-4-methylpyridinium bromide, 1-propyl Claims 1-4, comprising at least one supporting electrolyte selected from the group consisting of pyridinium chloride, tributyl-n-octylphosphonium bromide, tetrabutylphosphonium bromide, tributylhexadecylphosphonium bromide, and trihexyl (tetradecyl) phosphonium chloride. The electrochemical device according to any one item.
  6.  前記エマルション層が、前記水性溶媒、前記非水性溶媒、界面活性剤および補助界面活性剤を含む両連続マイクロエマルション層である請求項1~5の何れか1項に記載の電気化学デバイス。 The electrochemical device according to any one of claims 1 to 5, wherein the emulsion layer is a bicontinuous microemulsion layer containing the aqueous solvent, the non-aqueous solvent, a surfactant and an auxiliary surfactant.
  7.  前記エマルション層が、液体または半固体である請求項1~6の何れか1項に記載の電気化学デバイス。 The electrochemical device according to any one of claims 1 to 6, wherein the emulsion layer is a liquid or a semi-solid.
  8.  前記エマルション層が、前記水性層および前記非水性層に含まれるそれぞれの支持電解質を含む請求項1~7の何れか1項に記載の電気化学デバイス。 The electrochemical device according to any one of claims 1 to 7, wherein the emulsion layer contains the supporting electrolytes contained in the aqueous layer and the non-aqueous layer.
  9.  前記正極活物質および前記負極活物質の酸化還元反応により、充放電を可能とした二次電池である請求項1~8の何れか1項に記載の電気化学デバイス。 The electrochemical device according to any one of claims 1 to 8, which is a secondary battery capable of charging and discharging by a redox reaction between the positive electrode active material and the negative electrode active material.
  10. (a)少なくとも一対の正極および負極と、
    (b)正極電解液および負極電解液の一方を含む水性層、前記正極電解液および負極電解液の他方を含む非水性層、並びに前記正極電解液および負極電解液の両方を含み、且つ前記水性層および前記非水性層の何れとも混和することなくそれらの間に介在するエマルション層を含む電池セルと、
    (c)前記正極電解液および負極電解液のそれぞれを貯蔵する電解液タンクと、
    (d)前記各電解液タンクと前記電池セルとを連結して前記正極電解液および負極電解液を循環させる電解液循環装置と、
     を備えるレドックスフロー電池。

     
    (A) At least a pair of positive and negative electrodes
    (B) An aqueous layer containing one of a positive electrode electrolyte and a negative electrode electrolyte, a non-aqueous layer containing the other of the positive electrode electrolyte and the negative electrode electrolyte, and the aqueous layer containing both the positive electrode electrolyte and the negative electrode electrolyte. A battery cell containing an emulsion layer interposed between the layers and the non-aqueous layer without being mixed with each other.
    (C) An electrolytic solution tank for storing each of the positive electrode electrolytic solution and the negative electrode electrolytic solution, and
    (D) An electrolytic solution circulation device that connects each of the electrolytic solution tanks and the battery cell to circulate the positive electrode electrolytic solution and the negative electrode electrolytic solution.
    Redox flow battery with.

PCT/JP2020/020918 2019-05-29 2020-05-27 Electrochemical device including three-layer system electrolytic solution WO2020241686A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-100337 2019-05-29
JP2019100337 2019-05-29
JP2019-190284 2019-10-17
JP2019190284A JP7321440B2 (en) 2019-05-29 2019-10-17 Electrochemical device containing triple-layer electrolyte

Publications (1)

Publication Number Publication Date
WO2020241686A1 true WO2020241686A1 (en) 2020-12-03

Family

ID=73553810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020918 WO2020241686A1 (en) 2019-05-29 2020-05-27 Electrochemical device including three-layer system electrolytic solution

Country Status (1)

Country Link
WO (1) WO2020241686A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024027499A1 (en) * 2022-08-05 2024-02-08 浙江大学 Wide-voltage window aqueous electrolyte for forming sei film on the basis of physical process, and preparation method therefor and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103386A (en) * 2014-11-28 2016-06-02 株式会社日立製作所 Electrolytic solution for redox flow battery and redox flow battery arranged by use thereof
WO2017186836A1 (en) * 2016-04-29 2017-11-02 École Polytechnique Fédérale de Lausanne Battery
US20190058205A1 (en) * 2017-08-15 2019-02-21 Uchicago Argonne, Llc Two-electron redox molecules for flow batteries

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016103386A (en) * 2014-11-28 2016-06-02 株式会社日立製作所 Electrolytic solution for redox flow battery and redox flow battery arranged by use thereof
WO2017186836A1 (en) * 2016-04-29 2017-11-02 École Polytechnique Fédérale de Lausanne Battery
US20190058205A1 (en) * 2017-08-15 2019-02-21 Uchicago Argonne, Llc Two-electron redox molecules for flow batteries

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NAVALPOTRO PAULA: "A Membrane-Free Redox Flow Battery with Two Immiscible Redox Electrolytes", ANGEW. CHEM. INT. ED., vol. 56, 2017, pages 12460 - 12465, XP055767420 *
NAVALPOTRO PAULA: "Critical aspects of membrane-free aqueous battery based on two immiscible neutral electrolytes", ENERGY STORAGE MATERIALS, vol. 26, April 2020 (2020-04-01), pages 400 - 407, XP055767426 *
NAVALPOTRO PAULA: "Exploring the Versatility of Membrane-Free Battery Concept Using Different Combinations of Immiscible Redox Electrolytes", ACS APPL. MATER. INTERFACES, vol. 10, 2018, pages 41246 - 41256, XP055767423 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024027499A1 (en) * 2022-08-05 2024-02-08 浙江大学 Wide-voltage window aqueous electrolyte for forming sei film on the basis of physical process, and preparation method therefor and use thereof

Similar Documents

Publication Publication Date Title
Wei et al. Materials and systems for organic redox flow batteries: status and challenges
US9799907B2 (en) Redox membrane-based flow fuel cell and method
Chakrabarti et al. Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries
JP6742337B2 (en) Balancing cell for flow battery with bipolar membrane for simultaneously improving negative and positive electrolytes
JP6742338B2 (en) Balancing cell for flow battery with bipolar membrane and its use
Ortiz-Martínez et al. The roles of ionic liquids as new electrolytes in redox flow batteries
JP7321440B2 (en) Electrochemical device containing triple-layer electrolyte
WO2017164894A1 (en) Mitigation of crossover within flow batteries
JP2016103386A (en) Electrolytic solution for redox flow battery and redox flow battery arranged by use thereof
JP6682852B2 (en) Redox flow battery
US11799117B2 (en) Flow batteries incorporating a nitroxide compound within an aqueous electrolyte solution
US20210135246A1 (en) Flow Batteries Incorporating Active Materials Containing Doubly Bridged Aromatic Groups
Tang et al. Unleashing energy storage ability of aqueous battery electrolytes
EP3482441B1 (en) Non-aqueous redox flow batteries
WO2020241686A1 (en) Electrochemical device including three-layer system electrolytic solution
JP7258350B2 (en) Electrochemical devices using highly water-soluble, high-energy-density organic active materials with ordered structures
WO2020209274A1 (en) Negative electrode electrolyte solution for redox flow batteries, and redox flow battery
KR20130106530A (en) Flow battery using the metallocene
Huang et al. Pairing nitroxyl radical and phenazine with electron-withdrawing/-donating substituents in “water-in-ionic liquid” for high-voltage aqueous redox flow batteries
JP6923236B2 (en) Electrochemical device using dye
WO2021209585A1 (en) Redox flow battery with immiscible electrolyte and flow through electrode
US11223061B2 (en) Process for producing electrical power from a multiphasic battery system
WO2018016595A1 (en) Aqueous electrolytic solution, storage battery, storage battery system, and power generation system
KR102210657B1 (en) Aqueous redox flow battery comprising nickel as an electrode active material
JP2019067702A (en) Secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814277

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814277

Country of ref document: EP

Kind code of ref document: A1