WO2020241676A1 - Three-dimensional model recovery system, three-dimensional model recovery method, inspection device, and program - Google Patents

Three-dimensional model recovery system, three-dimensional model recovery method, inspection device, and program Download PDF

Info

Publication number
WO2020241676A1
WO2020241676A1 PCT/JP2020/020892 JP2020020892W WO2020241676A1 WO 2020241676 A1 WO2020241676 A1 WO 2020241676A1 JP 2020020892 W JP2020020892 W JP 2020020892W WO 2020241676 A1 WO2020241676 A1 WO 2020241676A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
bending
punching
information
unit
Prior art date
Application number
PCT/JP2020/020892
Other languages
French (fr)
Japanese (ja)
Inventor
龍 岡田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021522805A priority Critical patent/JP7337154B2/en
Publication of WO2020241676A1 publication Critical patent/WO2020241676A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/12Geometric CAD characterised by design entry means specially adapted for CAD, e.g. graphical user interfaces [GUI] specially adapted for CAD

Definitions

  • This disclosure relates to a 3D model restoration system, a 3D model restoration method, an inspection device, and a program.
  • CAD Computer Aided Design
  • Patent Document 1 discloses a three-dimensional object inspection device. This three-dimensional object inspection device identifies the inspection object by comparing the design data created by CAD with the measurement data of the inspection object, and uses the inspection method assigned to the identified inspection object to inspect the inspection object. Inspect.
  • a molded product is obtained in the next process.
  • a development drawing is created from the three-dimensional completed shape model represented by the design data created by CAD.
  • NC Numerical Control
  • the sheet metal is actually machined with an NC machine tool to obtain a molded product.
  • the appearance of the molded product is inspected.
  • NC data is created in consideration of processing conditions. For example, when the NC data creator cannot process the workpiece according to the shape specified in the design drawing, the NC data creator inquires to the designer, changes the mold specified in the design data to another mold, and NC data. May be created. Therefore, there may be a difference between the shape of the molded product and the finished shape at the design stage until the designer issues the revised design drawing.
  • the three-dimensional object inspection device described in Patent Document 1 automatically inspects a molded product based on design data. Therefore, if there is a difference between the shape of the molded product and the finished shape based on the design data, the inspection by the three-dimensional object inspection device cannot be performed. In this case, the designer has to wait for the inspection until the finished shape model is redesigned, or manually confirm whether or not the molded product is actually processed according to the developed view.
  • the CAD data at the design stage may not be effectively used for rationalization of work.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to make it possible to generate a three-dimensional model closer to an actual molded product.
  • the three-dimensional model restoration system is based on an expansion data restoration unit that creates expansion data based on punching NC data, and bending NC data and expansion data. It includes a three-dimensional model restoration unit that creates a three-dimensional model.
  • the unfolding data restoration unit creates punching processing information from the punching NC data, creates a mold layout drawing in which the punching die is arranged at the coordinate position based on the punching machining information, and develops based on the die layout drawing. Create data.
  • the 3D model restoration unit creates bending information from the bending NC data, combines the bending information and the bending line with the expansion data, and based on the expansion data to which the bending information and the bending line are given. Create a 3D model.
  • development data of a molded product is created from punching NC data, and a three-dimensional completed shape model is created based on bending NC data and restored development data. Since a three-dimensional model is generated from NC data for controlling an NC machine tool, it is possible to generate a three-dimensional model closer to an actual molded product. Therefore, for example, if the obtained 3D model is used in the inspection process of the molded product, the 3D measuring machine data of the molded product and the 3D model can be automatically compared, and the NC data creator intentionally changed it. It is possible to reduce the number of steps to manually reconfirm the difference in shape.
  • Functional configuration diagram of the 3D model restoration system according to the embodiment of the present disclosure The figure explaining the process of sheet metal processing including the 3D model restoration processing which concerns on embodiment of this disclosure.
  • the figure explaining the process performed by the punching NC data analysis unit shown in FIG. The figure explaining the process performed by the bending NC data analysis part shown in FIG.
  • the figure which shows an example of the bending elongation value master in embodiment Explanatory drawing of the mold arrangement diagram created by the mold arrangement part shown in FIG.
  • the figure explaining the expansion data restoration processing performed by the expansion data restoration part shown in FIG. Explanatory drawing of the direction of the bending line with respect to the machining origin performed by the flow direction reference correction unit shown in FIG.
  • the three-dimensional model restoration system 1 is a molded product that is actually molded in consideration of the influence of punching and bending from NC (Numerical Control) data of punching and bending. It is a system that restores a 3D model.
  • restoration means generating development data and a three-dimensional model corresponding to a molded product that is actually molded.
  • the NC data is numerical data that specifies a tool to be used, a coordinate position where the tool moves, a speed, and the like in order to control the operation of the machine tool.
  • the NC data is created by adding the machining conditions to the three-dimensional model created by CAD based on the development drawing data created in consideration of the bending elongation value generated by the bending process.
  • Punching NC data is input to machine tools that perform punching such as outer shape punching to create the contour shape of the molded product, hole punching to form a hole, and molding to plastically deform the area around the hole to create a burring shape. It is NC data.
  • the bending NC data is NC data input to the machine tool that performs the bending.
  • the 3D model restoration system 1 is used in a manufacturing environment as illustrated in FIG. 11, for example.
  • the manufacturing system 400 includes a punching machine tool 410 and a bending machine tool 420, and processes a workpiece to manufacture a molded product.
  • NC data is supplied to the manufacturing system 400.
  • the NC data is originally generated according to the specifications specified by the design information. However, if it is set in advance, such as when it cannot be manufactured with the specifications as specified in the design information, it is generated with specifications different from the specifications specified in the design information.
  • the punching machine tool 410 is subjected to outer shape punching to create the contour shape of the molded product, hole punching to form a hole, and plastic deformation to form a burring shape around the hole according to the punching NC data included in the NC data. Perform punching such as machining on the work.
  • the bending machine tool 420 is a machine tool that bends a workpiece at a specified position in a specified direction and at a specified angle according to the bending NC data included in the NC data.
  • the measuring device 430 is a device that measures the dimensions, shape, etc. of the molded product manufactured by the manufacturing device.
  • the inspection device 440 compares the three-dimensional model of the molded product with the measurement data output by the measuring device 430, and determines the quality of the molded product manufactured by the manufacturing system 400.
  • the inspection device 440 uses the three-dimensional model of the molded product generated based on the specifications specified in the setting data as the criterion for quality judgment.
  • the three-dimensional model restoration system 1 uses the three-dimensional model generated based on the NC data as a criterion for quality determination.
  • the three-dimensional model restoration system 1 is a general-purpose computer, and includes a CPU (Central Processing Unit) 11, a storage unit 12, a communication unit 13, and an input / output unit 14.
  • the CPU 11, the storage unit 12, the communication unit 13, and the input / output unit 14 are connected to each other via the internal bus 99.
  • the CPU 11 executes various processes described later by executing the program stored in the non-volatile memory of the storage unit 12 using the volatile memory as a work area.
  • the storage unit 12 includes a volatile memory and a non-volatile memory.
  • the volatile memory is used as a work area of the CPU 11, and the non-volatile memory stores a program executed by the CPU 11.
  • the communication unit 13 connects the 3D model restoration system 1 to the CAD system 60 and the database 40 via the network 110.
  • the CAD system 60 is a system that generates design data of a molded product.
  • the database 40 will be described later.
  • the input / output unit 14 is connected to the display device 50, the input device 51, the output device 52, and the external storage device 53.
  • the display device 50 is a user interface that displays the information generated by the three-dimensional model restoration system 1.
  • the input device 51 is a user interface including an information input device such as a keyboard and a mouse.
  • the output device 52 includes a printing device and prints the information generated by the three-dimensional model restoration system 1 on a paper medium.
  • the external storage device 53 includes a hard disk drive device, a solid state drive device, and the like, and stores information and the like generated by the three-dimensional model restoration system 1.
  • the database 40 may be arranged in the external storage device 53.
  • the 3D model restoration system 1 restores or restores the 3D data of the 3D model of the actually molded molded product from the NC data for sheet metal processing, considering the effects of punching and bending. It is a system to generate.
  • the punching NC data 120 and the bending NC data 130 are supplied to the three-dimensional model restoration system 1 as NC data for sheet metal processing.
  • Punching NC data 120 is numerical data that specifies a machining order, a die ID, a machining position coordinate position, a punching speed, etc. in order to control the operation of a machine tool in relation to punching for removing a part of a work.
  • the punching NC data 120 is created from the developed view data 28 by CAM (Computer Aided Manufacturing) software, NC data creation software, etc., in consideration of the machining conditions of the punching process.
  • the development drawing data 28 is generated from the design information 10 generated by the CAD system 60, that is, the three-dimensional design data in consideration of the elongation value indicating the magnitude of the elongation due to the bending process, and represents the development drawing of the molded product. It is data.
  • the punching NC data 120 includes machining order, identification information of dies used for punching (hereinafter, simply ID), coordinate information of machining position, punching speed, ID of machining type, and the like. Includes information about.
  • the bending NC data 130 regarding the bending process of bending the work, in order to control the operation of the machine tool, the machining order, the NC code of the die to be used, the position coordinates of the die, and the bending based on the machining origin are used as reference. It is numerical data that specifies the direction, bending angle, etc.
  • the position coordinates of the mold include the position coordinates of the machining start point (Xs, Ys) and the position coordinates of the machining end point (Xe, Ye).
  • the bending NC data 130 is created based on the development drawing data 28 by the CAM software, the NC data creation software, etc., taking into account the processing conditions of the bending. As illustrated in FIG. 5, the bending NC data 130 includes information such as an ID of a bending die used for bending, coordinate information of a processing position, a bending angle, and a bending direction with respect to a processing origin.
  • the three-dimensional model restoration system 1 is a sheet metal product based on the expansion data restoration unit 2 that restores the development data 28a of the sheet metal product based on the punching NC data 120, and the restored expansion data 28a and the bending NC data 130.
  • the three-dimensional model restoration unit 3 for restoring the three-dimensional model of the above is provided.
  • the database 40 connected to the three-dimensional model restoration system 1 includes a punching die master 140, a bending die master 150, a bending elongation value master 160, a punching tolerance table 170, a bending tolerance table 180, and a molding processing shape. It has a master 190.
  • the punching die master 140 stores specification information of the punching die used for punching.
  • the specification information includes, for example, information such as the model number of the punching die, the die ID, the shape and dimensions of the punching die, and the processing type of the processing performed using the punching die.
  • the bending die master 150 stores specification information of the bending die used for bending.
  • the specification information includes, for example, a mold ID, an NC code, a die V width, a bending radius R, and a processing type.
  • the bending elongation master 160 stores the elongation value according to the material and plate thickness of the work, the model number of the mold to be used, and the bending angle.
  • the punching tolerance table 170 stores the tolerance for each punching process.
  • the bending tolerance table 180 stores the tolerance for each bending process.
  • the molding processing shape master 190 stores the type of molding processing and the three-dimensional shape obtained by the molding processing in association with each other.
  • the development data restoration unit 2 shown in FIG. 2 includes a punching NC data analysis unit 21 that analyzes the punching NC data 120 to create punching processing information 200, and a die arrangement diagram 29 in which the punching die is arranged on the work.
  • a mold arranging unit 22 for drawing the above and a development data creating unit 23 for creating the development data 28a of the molded product are provided.
  • the punching NC data analysis unit 21 searches the punching die master 140 using the die ID included in the punching NC data 120 shown in FIG. 4 as a key, and specifies the specifications of the punching die used for the punching. Is extracted. Further, the punching NC data analysis unit 21 extracts information necessary for creating the development data 28a from the punching NC data 120 shown in FIG. 4, for example, information such as the coordinates of the machining position and the type of machining. .. The punching NC data analysis unit 21 integrates information such as mold specification information, machining position coordinates, and machining type to generate punching information 200 illustrated in FIG. As an example, the punching processing information 200 includes information such as a processing order, a mold model number, a processing type, a mold shape and dimensions, and processing position coordinates.
  • the die arranging unit 22 shown in FIG. 2 is placed on the work based on the processing position coordinates, the shape of the die, the dimensions of the die, etc. included in the punching processing information 200 created by the punching NC data analysis unit 21.
  • a process of creating a die arrangement diagram 29 in which the punching die is arranged is performed.
  • An example of the mold arrangement FIG. 29 is shown in FIG.
  • This die arrangement diagram shows a state in which the outer shape punching die 25a and the three hole punching dies 25b are arranged on the rectangular work 24 in a plan view.
  • the development data creation unit 23 shown in FIG. 2 performs a process of creating development data 28a of the molded product based on the mold arrangement drawing 29 created by the mold arrangement unit 22.
  • the development data creation unit 23 draws an outline drawing unit 231 that draws an outline drawing showing the outer shape of the molded product formed by the outer shape punching process, and a hole shape drawing showing the shape of the hole formed by the hole processing. It includes a hole shape drawing unit 232 and a molding processing information coupling unit 233 that binds molding processing information including a molding processing type, molding shape, etc. to the development data 28a.
  • the outline drawing unit 231 performs the outline drawing process S301 for drawing the outline 26 on the mold arrangement drawing 29 created by the mold arrangement unit 22.
  • the outer line 26 is a line representing the outer shape of the molded product formed by the outer shape punching process.
  • the outline drawing unit 231 draws the inner contour line of the closed area formed by the outer shape punching die 25a used for the outer shape punching process as the outer line 26 in the die layout drawing 29. Perform processing.
  • the hole shape drawing unit 232 performs the hole shape drawing process S302 for drawing the hole shape line 27 on the mold layout drawing 29 in which the outline line 26 is drawn by the outline drawing unit 231. Specifically, the hole shape drawing unit 232 draws the outer circumference of the hole punching mold 25b used for hole drilling arranged in the mold arrangement drawing 29 as the hole shape line 27 in the mold arrangement drawing 29. If there are a plurality of hole shape lines 27, all the hole shape lines 27 are drawn.
  • the molding processing information coupling unit 233 creates development data 28a representing a two-dimensional development drawing of the molded product by punching based on the drawn outline 26 and hole shape line 27. Further, the molding processing information coupling unit 233 adds the molding processing information coupling process S303 that adds the molding processing information 30 such as the identification number of the molding die, the processing position coordinates, the type of molding processing, and the dimensions to the created development data 28a. Do.
  • the molding process includes burring process, tap process, and the like, but the two-dimensional development data 28a cannot show the three-dimensional molding shape formed by the molding process. Therefore, a form in which the molding processing information 30 is added to the development data 28a is adopted.
  • the molding processing information 30 is used by the three-dimensional model restoration unit 3 described later to restore the three-dimensional molding shape.
  • the three-dimensional model restoration unit 3 is defined by a bending NC data analysis unit 31 that analyzes bending NC data 130 and creates bending information 300, and a punching NC data 120 and a bending NC data 130, respectively.
  • a flow direction reference correction unit 32 that matches the machining origins, a bending information coupling section 33 that adds bending information 300 and bending lines to the development data 28a, and a 3D model creation section 34 that creates a 3D model. , Equipped with.
  • the bending NC data analysis unit 31 refers to the bending die master 150 using the mold ID included in the bending NC data 130 shown in FIG. 5 as a key, and the specifications of the bending die used for the bending. Get information. Further, the bending NC data analysis unit 31 extracts processing information necessary for restoring a three-dimensional model from the bending NC data 130, for example, processing information such as bending order, processing position coordinates, and bending angle of bending. .. The bending NC data analysis unit 31 integrates these data to create the bending information 300 illustrated in FIG.
  • the bending processing information 300 includes information necessary for restoring the three-dimensional model, for example, bending die information, bending order of bending processing, start point coordinates and end point coordinates of the processing position, bending angle, and the like.
  • the flow direction reference correction unit 32 shown in FIG. 2 compares the coordinate values of the respective machining origins defined in the punching NC data 120 and the bending NC data 130, and if the coordinate values of the machining origins are different, the bending machining is performed. A process of extracting the processing position coordinate value of the information 300 and making a correction to match the processing origin of the processing NC data 120 is performed.
  • the respective machining origins are defined by setting the distance from the machine origin of the machine tool in advance.
  • the flow direction reference correction unit 32 sets the value of the distance from the machine origin defined as the machining origin in the punching NC data 120 and the value of the distance from the machine origin defined as the machining origin in the bending NC data 130. Extract.
  • the flow direction reference correction unit 32 compares the values of the two extracted distances, and if the values are different, corrects the processing position coordinates of the bending processing information 300 to match the processing origin defined in the extraction processing NC. Match.
  • the bending information coupling unit 33 adds a bending line to the development drawing shown by the development data 28a based on the bending information 300, and performs a process of generating development drawing data 28b showing the development drawing including the bending line.
  • a developed view with a bending line added is illustrated in FIG. Further, the bending information coupling unit 33 adds bending information 300 to the development data 28b.
  • the 3D model creation unit 34 refers to the bending / elongation value master 160 and the molding processing shape master 190 stored in the database 40, and performs a process of creating a 3D model based on the development data 28b.
  • the elongation value of the workpiece corresponding to the bending conditions such as the material and plate thickness of the workpiece, the model number of the bending die, and the bending angle is registered in advance in the bending elongation master 160.
  • the molding processing shape master 190 a three-dimensional shape corresponding to a type of molding processing such as burring processing and tap processing is registered in advance.
  • the three-dimensional model creation unit 34 shown in FIG. 2 refers to the molding processing shape master 190, creates a three-dimensional molding processing shape based on the molding processing information 30, and bends based on the bending processing information 300 and the bending line. Create a shape, and finally create a hole shape to create a 3D model.
  • the above is the functional configuration of the 3D model restoration system 1. Subsequently, the operation of the three-dimensional model restoration system 1 will be described.
  • the three-dimensional model restoration system 1 operates after the NC data is created. Therefore, regarding sheet metal processing, first, with respect to sheet metal processing, development drawing data 28 is created from design information 10, and further, with reference to FIG. 3, regarding the process of creating punching NC data 120 and bending NC data 130 from the development drawing data 28. I will explain.
  • the development drawing data creation process for creating the development drawing data 28 is executed based on the generated design information 10 (step S101).
  • the development drawing data creation process is executed as follows according to the form of the design information 10.
  • the development drawing data 28 is created from the 3D CAD data by the development drawing automatic creation function of the CAD system.
  • the design information 10 is CAD data of a two-dimensional three-view drawing
  • each surface of the three-view drawing is combined by the development drawing creation software to create the development drawing data 28.
  • the design information 10 is a two-dimensional three-view drawing of a paper medium
  • the development drawing data 28 is manually operated by CAD.
  • the development view data creation process is performed in consideration of the elongation value stored in the bending elongation value master 160 illustrated in FIG.
  • NC data creation processing for creating punching NC data 120 and bending NC data 130 is performed.
  • the punching NC data creation process first, referring to the processing conditions such as the information of the punching die registered in the punching die master 140 and the information of the sheet metal material held, the punching die Is placed on a suitable work.
  • the punching die can be appropriately arranged on the sheet metal material with the information registered in the punching die master 140 (step S102; Yes)
  • the punching process NC data 120 is created by the NC program creation function (step S102; Yes). Step S103).
  • step S102 With the information registered in the punching die master 140, if the punching die cannot be placed on the sheet metal material (step S102; No), the molded product cannot be processed according to the design shape of the design information 10. Therefore, another punching die within the range of the dimensional tolerance and the geometrical tolerance included in the design information 10 is selected, and the punching die is arranged on the sheet metal material (step S201). After that, the punching NC data 120 is created by the NC program creation function (step S202).
  • the bending NC data creation process is performed.
  • the method of creating bending NC data there are the following methods depending on the form of input information.
  • the NC data creation program extracts the attribute information related to the bending process, and the bending NC data 130 is automatically created.
  • the design information 10 is a three-dimensional view of two-dimensional CAD
  • the bending die to be used, the bending flange size, the bending angle, the number of times of bending for bending, etc. are manually input according to the bending order, and the bending NC data 130 is created. Will be done.
  • the punching NC data 120 and the bending NC data 130 are created, these NC data are input to the NC machine tool, and the NC machine tool performs the actual machining of the punching and bending (step S104). ).
  • the trial machining is first performed, and the punching NC data 120 and the bending NC data 130 may be modified depending on the result of the trial machining.
  • the corrected punching NC data 120 and bending NC data 130 are input to the NC machine tool, and the actual machining is performed.
  • step S105 the appearance of the molded product is measured by a three-dimensional measuring device.
  • a visual inspection is performed by comparing the value measured in step S105 with the three-dimensional model of the molded product (step S106). More specifically, the visual inspection apparatus refers to the punching tolerance table 170 and the bending tolerance table 180 corresponding to the punching process and the bending process stored in the database 40, and the molded product indicated by the measurement data. It is determined whether or not the difference from the three-dimensional model is within the range of these margins of error. If the difference is within the margin of error, it is determined to be acceptable, and if the difference is outside the margin of error, it is determined to be a defective product.
  • the three-dimensional model that serves as the inspection reference is generated based on the design information 10 when the NC data is generated in step S103.
  • the NC data is generated in step S202
  • the molded product to be manufactured is different from that shown in the design information 10. Therefore, as the reference model for inspection, the 3D model restoration system 1 uses the 3D model restored in step S203 based on the NC data generated in step S202.
  • step S203 the 3D model restoration process in which the 3D model restoration system 1 restores or creates a 3D model that accurately represents the actually manufactured product will be described with reference to FIG.
  • the three-dimensional model restoration process (step S203) is a process executed after the punching NC data 120 and the bending NC data 130 are created (step S202), and is the expansion data restoration process (step S211) and three-dimensional.
  • the model restoration process (step S212) is included.
  • the expansion data restoration process (step S211) will be described with reference to FIG.
  • the expansion data restoration unit 2 stores it in the storage unit 12. Further, the expansion data restoration unit 2 notifies the punching NC data analysis unit 21 that the punching NC data 120 has been saved.
  • the punching NC data analysis unit 21 acquires the punching NC data 120 stored in the storage unit 12, reads the punching die master 140 stored in the database 40, and starts a process of generating punching information 200. To do.
  • the punching die master 140 information such as the die model number and die ID for identifying the punching die, the shape and dimensions of the punching die, the type of molding process, and the like are registered in advance. There is.
  • the punching NC data 120 information such as the die ID of the punching die to be used, the coordinate information of the machining position, the punching speed, and the machining type ID is described.
  • the punching NC data analysis unit 21 extracts necessary information from the punching NC data 120 and associates it with the information registered in the punching die master 140 to obtain the machining order, the model number of the punching die to be used, and the model number of the punching die to be used.
  • Punching processing information 200 such as processing type, shape and dimension, processing position coordinates (X, Y) and the like is created and stored in the storage unit 12.
  • the die arrangement unit 22 starts the die arrangement drawing creation process.
  • the die arranging unit 22 arranges the die 25 on the work 24 based on the machining position coordinates (X, Y) of the punching processing information 200 and the dimensions of the die, and creates a die arranging diagram 29.
  • An example of the mold arrangement FIG. 29 is shown in FIG.
  • FIG. 7 shows a punching die in which the shaded portion is arranged.
  • the punching die 25 may be arranged on the work 24 by the user operating the input device 51.
  • FIG. 7 shows a state in which the outer shape punching die 25a and the three hole punching dies 25b are arranged on the rectangular work 24 in a plan view.
  • the expansion data creation unit 23 performs the expansion data creation process.
  • the expansion data creation process includes the outline drawing process (step S301) for drawing the outline 26 representing the outer shape of the molded product and the hole shape for drawing the hole shape line 27 formed by the hole processing. It includes a drawing process (step S302) and a molding processing information combining process (step S303) in which molding processing information 30 such as a molding processing type, a molding die identification number, and processing position coordinates is added to the development data 28a.
  • the outline drawing unit 231 reads the mold layout drawing 29 from the storage unit 12 and draws the outline 26.
  • the outer line 26 is a line representing the outer shape of the molded product.
  • the outline drawing unit 231 performs a process of drawing the inner contour line of the closed region formed by the single or a plurality of outline drawing dies 25a used for the outline drawing process as the outline 26.
  • the hole shape drawing unit 232 performs a process of drawing the hole shape line 27 on the mold layout drawing 29 on which the outline is drawn (step S302).
  • the hole shape line 27 is an outer line of the hole punching die 25b arranged on the work 24.
  • the hole shape drawing unit 232 sets the outline of the hole punching die 25b as a hole shape line based on the coordinate information, shape information, and dimensional information of the hole punching die 25b arranged in the mold layout drawing 29.
  • the molding processing information coupling unit 233 generates a development drawing from the outline line 26 and the hole shape line 27, and creates the development data 28a showing the development drawing.
  • the molding processing information coupling unit 233 uses information such as the identification number of the molding die, the type of molding processing, and the processing position coordinates of the molding die from the punching processing information 200 created by the punching NC data analysis unit 21. Is extracted to create molding processing information 30, and molding processing information combining processing (step S303) is executed in which the molding processing information 30 is added to the development data 28a.
  • the expansion data restoration unit 2 stores the expansion data 28a to which the molding processing information 30 is added in the storage unit 12.
  • step S212 the three-dimensional model restoration process shown in FIG. 3 will be described with reference to FIG.
  • the three-dimensional model restoration unit 3 stores the bending NC data 130 in the storage unit 12. Further, the three-dimensional model restoration unit 3 notifies the bending NC data analysis unit 31 that the bending NC data 130 has been saved.
  • the bending NC data analysis unit 31 acquires the bending NC data 130 stored in the storage unit 12, reads the bending die master 150 stored in the database 40, and starts a process of generating the bending information 300. ..
  • the bending NC data 130 includes information such as the NC code of the bending die used, the machining position coordinates of the bending die, the bending angle, and the bending direction with respect to the machining origin for the bending process.
  • the bending direction with respect to the machining origin means the direction of the bending line connecting the start point coordinates to the end point coordinates with respect to the X axis, as shown in FIG.
  • the bending NC data analysis unit 31 extracts necessary information from the bending NC data 130 and associates it with the information registered in the bending die master 150 to perform bending as shown in FIG. Information 300 is created.
  • the bending processing information 300 includes the bending order, the model number of the bending die used for the bending process, the bending pattern, the start point coordinates and the end point coordinates of the processing position, the bending angle, and the like.
  • the bending NC data analysis unit 31 stores the bending information 300 in the storage unit 12 and notifies the flow direction reference correction unit 32.
  • the flow direction reference correction unit 32 Upon receiving the notification from the bending NC data analysis unit 31, the flow direction reference correction unit 32 acquires the punching NC data 120, the bending NC data 130, and the bending information 300 from the storage unit 12, and performs the flow direction reference correction processing. To start.
  • each machining origin is defined in the punching NC data 120 and the bending NC data 130 by presetting the distance from the machine origin of the machine tool.
  • the flow direction reference correction unit 32 compares the coordinate values of the respective machining origins from the punching NC data 120 and the bending NC data 130. When the coordinate values of the machining origin are different, the flow direction reference correction unit 32 calculates the difference value of the coordinates of the machining origin between the punching NC data 120 and the bending NC data 130, and the machining position of the bending information 300. Extraction processing Performs processing to unify the coordinates with the processing position coordinates of NC. Specifically, the flow direction reference correction unit 32 subtracts the coordinates (X2, Y2) of the machining origin of the punching NC data 120 from the coordinates (X1, Y1) of the machining origin of the bending NC data 130, and the difference (XD).
  • the flow direction reference correction unit 32 adds a difference (XD, YD) to the machining start point position coordinates (Xs, Ys) and end point position coordinates (Xe, Ye) of the bending machining information 300, respectively, to perform punching NC. Performs processing that is unified with the processing coordinates.
  • the flow direction reference correction unit 32 stores the bending processing information 300 (hereinafter, 300A for distinction) in which the start point coordinates and the end point coordinates of the processing position are corrected in the storage unit 12.
  • the bending information coupling unit 33 combines the expansion data 28a created by the expansion data restoration unit 2 and the bending information 300A created by the bending NC data analysis unit 31. Specifically, the bending information coupling unit 33 adds a bending line to the development drawing shown by the development data 28a according to the bending information 300A, and adds information such as the model number of the bending die and the bending angle to the bending line. Perform the processing.
  • the bending information coupling unit 33 adds a bending line having a bending direction of 0 ° to the development drawing represented by the development data 28a.
  • the bending line having a bending direction of 0 ° corresponds to a bending line parallel to the X-axis.
  • the bending processing information coupling unit 33 plots the processing start point coordinates (Xs, Ys) and end point coordinates (Xe, Ye) of the bending die. For example, in the case of bending in the bending order 1 of the bending information shown in FIG. 5, the machining start point coordinates (50, 50) and end point coordinates (480, 50) of the bending die are plotted.
  • the bending information coupling unit 33 is among a plurality of intersections where the line connecting the machining start point coordinates (Xs, Ys) of the bending die and the machining end point coordinates (Xe, Ye) of the bending die intersects the outline line 26.
  • the coordinates of the intersection that is larger than the X coordinate Xs of the processing start point of the bending die and has the minimum X value are set as the start point coordinates of the bending line.
  • the coordinates of the intersection that is smaller than the X coordinate Xe of the processing end point of the bending die and has the maximum X value are set as the end point coordinates of the bending line. If there are multiple bending processes with a bending direction of 0 °, this process is repeated for the number of times of bending, and the bending line is shown.
  • the bending information coupling portion 33 draws a bending line with a bending direction of 90 °.
  • the bending line having a bending direction of 90 ° corresponds to a bending line parallel to the Y axis.
  • the bending processing information coupling unit 33 plots the processing start point coordinates (Xs, Ys) and end point coordinates (Xe, Ye) of the bending die. For example, in the case of bending in the bending order 2 of the bending information shown in FIG. 4, the processing start point coordinates (40, 50) and end point coordinates (40, 90) of the bending die are plotted.
  • the bending information coupling unit 33 is among a plurality of intersections where the line connecting the machining start point coordinates (Xs, Ys) of the bending die and the machining end point coordinates (Xe, Ye) of the bending die intersects the outline line 26.
  • the coordinates that are larger than the processing start point Y coordinate Ys of the bending die and have the minimum Y value are set as the bending line coordinate start point.
  • the coordinates that are smaller than the machining end point Y coordinate Ye of the bending die and have the maximum Y value are set as the machining end point coordinates of the bending line. If there are multiple bending processes with a bending direction of 90 °, this process is repeated for the number of times of bending.
  • the bending processing information coupling unit 33 performs the same processing on the bending line.
  • the bending information coupling unit 33 adds bending information 300 such as the model number of the mold used for bending, the position coordinates of the bending line, and the bending angle to each bending line.
  • the development data 28b showing the development drawing to which the bending line is added and to which the bending processing information 300 is added can be obtained.
  • the bending information coupling unit 33 stores the created development data 28b in the storage unit 12, and notifies the three-dimensional model creation unit 34 to that effect.
  • the three-dimensional model creation unit 34 Upon receiving the notification from the bending information coupling unit 33, the three-dimensional model creation unit 34 acquires the expansion data 28b, reads the bending elongation value master 160 and the molding processing shape master 190 stored in the database 40, and three-dimensionally. Start the process of creating a model.
  • the three-dimensional model creation unit 34 reads the molding processing information 30 combined by the molding processing information coupling unit 233 from the expansion data 28b, and acquires the molding processing type information.
  • the three-dimensional molding shape corresponding to the acquired type of molding processing is acquired from the molding processing shape master 190, and the molding processing shape is added to the development shape of the development data 28b.
  • the three-dimensional model creation unit 34 makes the developed shape three-dimensional with reference to the bending elongation value master 160 stored in the database 40 based on the bending processing information 300 created by the bending processing information coupling unit 33. Perform processing.
  • the elongation values corresponding to the material information of the workpiece, the model number of the bending die, the plate thickness information, and the condition set of the bending angle are registered.
  • the 3D model creation unit 34 obtains the elongation value from the bending elongation value master 160 for each coordinate position of the bending process, calculates the dimension by subtracting the bending flange length, and adds the bending shape. And create a 3D model.
  • the 3D model creation unit 34 adds the hole shape line 27 in the outline 26 to the 3D model to create the 3D model.
  • the 3D model output according to the 3D model restoration process described above is the punch actually used in manufacturing when it is determined in step S102 that the punch die 25 cannot be arranged according to the design information 10. It is generated using type information and placement information. That is, since it is generated in consideration of the actual processing conditions, the shape of the molded product is more consistent than the three-dimensional model defined in the design information 10 in which the processing conditions are not added. Therefore, for example, as shown in FIG. 3, when three-dimensional measurement of the molded product obtained by actual processing is performed (step S105) and inspection is performed to compare the three-dimensional model with the measurement data of the molded product (step S106). ), It is possible to prevent operations such as being judged to be different from the three-dimensional model even though it is a normal molded product.
  • the 3D model output by this process includes equipment processing errors. Therefore, when actually inspecting, it is desirable to define a punching tolerance table and a bending tolerance table, and inspect the molded product depending on whether or not it is within the range of these errors.
  • each part of the three-dimensional model restoration system 1 may be mounted on a separate device and connected by a network.
  • step S203 the 3D model restoration process (step S203) of the 3D model restoration system 1 has been described as a process to be performed when the extraction die cannot be arranged according to the design information, but the extraction die could be arranged according to the design information. In some cases (step S102: YES), it may be carried out.
  • the function of the 3D model restoration system 1 can be realized by dedicated hardware or by a normal computer system.
  • an existing computer is written by writing a program for realizing each functional configuration by the three-dimensional model restoration system 1 illustrated in the above embodiment to a storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the information terminal device or the like can function as a three-dimensional model restoration system by reading a program stored in a storage medium and executing the program by the CPU.
  • the three-dimensional model restoration method according to the present disclosure can be carried out by using the three-dimensional model restoration system 1.
  • the method of applying such a program is arbitrary.
  • the program can be stored and applied on a computer-readable recording medium (CD-ROM (Compact Disk Ready-Only Memory), DVD (Digital Versaille Disc), MO (Magnet Optical disk), etc.), or on the Internet. It is also possible to apply by storing the program in the storage of and downloading it.
  • 1 3D model restoration system 2 Deployment data restoration unit, 3 3D model restoration unit, 4 3D model, 10 design information, 11 CPU, 12 storage unit, 13 communication unit, 14 input / output unit, 21 punching NC data Analysis unit, 22 mold placement unit, 23 development data creation unit, 24 workpieces, 25 punching mold, 25a outer punching mold, 25b drilling mold, 26 outer line, 27 hole shape line, 28 development drawing data, 28a , 28b development data, 29 mold layout, 30 molding processing information, 31 bending NC data analysis unit, 32 flow direction reference correction unit, 33 bending information coupling unit, 34 3D model creation unit, 40 database, 50 display Device, 51 input device, 52 output device, 53 external storage device, 60 CAD system, 99 internal bus, 110 network, 120 punching NC data, 130 bending NC data, 140 punching die master, 150 bending die master, 160 Bending elongation master, 170 Punching tolerance table, 180 Bending tolerance table, 190 Molding shape master, 200 Punching information, 231 Outline drawing part, 232 Hole shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Human Computer Interaction (AREA)
  • Architecture (AREA)
  • Numerical Control (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

This three-dimensional model recovery system (1) is provided with an expanded data recovery part (2) and a three-dimensional model recovery part (3). The expanded data recovery part (2) is provided with: a punching NC data analysis part (21) which creates punching information (200) from the punching NC data (120); a die layout part (22) which creates a die layout view (29) on the basis of the punching information (200); and an expanded data creation part (23) which creates expanded data (28a) on the basis of the die layout view (29). A three-dimensional mode recovery part (3) is provided with: a bending NC data analysis part (31) which creates bending information (300) from bending NC data (130); a bending information combination part (33) which combines the bending information (300) and a curve with the expanded data (28a); and a three-dimensional model creation part (34) which creates a three-dimensional model on the basis of the expanded data (28b) to which the bending information (300) and the curve are imparted.

Description

3次元モデル復元システム、3次元モデル復元方法、検査装置及びプログラム3D model restoration system, 3D model restoration method, inspection equipment and programs
 本開示は、3次元モデル復元システム、3次元モデル復元方法、検査装置及びプログラムに関する。 This disclosure relates to a 3D model restoration system, a 3D model restoration method, an inspection device, and a program.
 製品の設計には、通常、CAD(Computer Aided Design)が用いられる。このCADを用いて設計された3次元の完成形状モデルのCADデータを活用することにより、設計から製造、検査に至る作業の合理化が図られている。 CAD (Computer Aided Design) is usually used for product design. By utilizing the CAD data of the three-dimensional completed shape model designed using this CAD, the work from design to manufacturing and inspection is rationalized.
 例えば、特許文献1は、3次元物体検査装置を開示している。この3次元物体検査装置は、CADにより作成された設計データと検査対象物の計測データを比較して検査対象物を同定し、同定した検査対象物に割り当てられている検査方法により、検査対象物を検査する。 For example, Patent Document 1 discloses a three-dimensional object inspection device. This three-dimensional object inspection device identifies the inspection object by comparing the design data created by CAD with the measurement data of the inspection object, and uses the inspection method assigned to the identified inspection object to inspect the inspection object. Inspect.
特開平7-98217号公報Japanese Unexamined Patent Publication No. 7-98217
 ところで、板金加工の現場では、次の工程で、成形品を得る。まず、CADにより作成された設計データが表す3次元の完成形状モデルから展開図を作成する。その後、展開図に基づいて抜き加工、曲げ加工等を行うためのNC(Numerical Control:数値制御)データを作成する。作成したNCデータに基づいてNC工作機械で板金を実加工し、成形品を得る。その後、成形品の外観検査を行う。 By the way, at the sheet metal processing site, a molded product is obtained in the next process. First, a development drawing is created from the three-dimensional completed shape model represented by the design data created by CAD. After that, NC (Numerical Control) data for performing punching, bending, etc. is created based on the developed view. Based on the created NC data, the sheet metal is actually machined with an NC machine tool to obtain a molded product. After that, the appearance of the molded product is inspected.
 NCデータは、加工条件が加味されて作成される。例えば、NCデータ作成者は、設計図面において指示された形状通りにワークを加工ができない場合、設計者に問い合わせをし、設計データで指定された金型を別の金型に変更してNCデータを作成することがある。このため、設計者が修正された設計図面を発行するまでの間、成形品の形状と設計段階の完成形状に差異が生じることがある。 NC data is created in consideration of processing conditions. For example, when the NC data creator cannot process the workpiece according to the shape specified in the design drawing, the NC data creator inquires to the designer, changes the mold specified in the design data to another mold, and NC data. May be created. Therefore, there may be a difference between the shape of the molded product and the finished shape at the design stage until the designer issues the revised design drawing.
 一方、特許文献1に記載の3次元物体検査装置は、設計データに基づいて、成形品の自動検査を行う。このため、成形品の形状と設計データに基づく完成形状に差異がある場合には、3次元物体検査装置による検査ができない。この場合、設計者が、完成形状モデルを設計し直すまで検査を待つか、あるいは、人手によって、成形品が展開図通りに実加工されているか否かを確認する工数が発生する。 On the other hand, the three-dimensional object inspection device described in Patent Document 1 automatically inspects a molded product based on design data. Therefore, if there is a difference between the shape of the molded product and the finished shape based on the design data, the inspection by the three-dimensional object inspection device cannot be performed. In this case, the designer has to wait for the inspection until the finished shape model is redesigned, or manually confirm whether or not the molded product is actually processed according to the developed view.
 このように、設計データに基づく完成形状と実際に製造された成形品の形状に差異が生じた場合に、設計段階のCADデータを作業の合理化のために有効に活用できなくなる場合がある。 In this way, if there is a difference between the finished shape based on the design data and the shape of the actually manufactured molded product, the CAD data at the design stage may not be effectively used for rationalization of work.
 本開示は、上記実情に鑑みてなされたものであり、実際の成形品により近い3次元モデルを生成可能とすることを目的とする。 The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to make it possible to generate a three-dimensional model closer to an actual molded product.
 上記目的を達成するために、本開示に係る3次元モデル復元システムは、抜き加工NCデータに基づいて、展開データを作成する展開データ復元部と、曲げ加工NCデータと展開データとに基づいて、3次元モデルを作成する3次元モデル復元部と、を備える。展開データ復元部は、抜き加工NCデータから抜き加工情報を作成し、抜き加工情報に基づいて、抜き金型を座標位置に配置した金型配置図を作成し、金型配置図に基づいて展開データを作成する。3次元モデル復元部は、曲げ加工NCデータから、曲げ加工情報を作成し、曲げ加工情報と曲げ線とを展開データに結合し、曲げ加工情報と曲げ線とが付与された展開データに基づいて3次元モデルを作成する。 In order to achieve the above object, the three-dimensional model restoration system according to the present disclosure is based on an expansion data restoration unit that creates expansion data based on punching NC data, and bending NC data and expansion data. It includes a three-dimensional model restoration unit that creates a three-dimensional model. The unfolding data restoration unit creates punching processing information from the punching NC data, creates a mold layout drawing in which the punching die is arranged at the coordinate position based on the punching machining information, and develops based on the die layout drawing. Create data. The 3D model restoration unit creates bending information from the bending NC data, combines the bending information and the bending line with the expansion data, and based on the expansion data to which the bending information and the bending line are given. Create a 3D model.
 本開示によれば、抜き加工NCデータから成形品の展開データが作成され、曲げ加工NCデータと復元された展開データとに基づいて3次元の完成形状モデルが作成される。NC工作機械を制御するためのNCデータから3次元モデルを生成するので、実際の成形品により近い3次元モデルを生成することができる。従って、例えば、得られた3次元モデルを成形品の検査工程に使用すれば、成形品の3次元測定機データと3次元モデルとを自動で比較でき、NCデータ作成者が意図的に変更した形状の差異を、人手で再確認する工数を削減することができる。 According to the present disclosure, development data of a molded product is created from punching NC data, and a three-dimensional completed shape model is created based on bending NC data and restored development data. Since a three-dimensional model is generated from NC data for controlling an NC machine tool, it is possible to generate a three-dimensional model closer to an actual molded product. Therefore, for example, if the obtained 3D model is used in the inspection process of the molded product, the 3D measuring machine data of the molded product and the 3D model can be automatically compared, and the NC data creator intentionally changed it. It is possible to reduce the number of steps to manually reconfirm the difference in shape.
本開示の実施の形態に係る3次元モデル復元システムの物理的構成を示す図The figure which shows the physical structure of the 3D model restoration system which concerns on embodiment of this disclosure. 本開示の実施の形態に係る3次元モデル復元システムの機能構成図Functional configuration diagram of the 3D model restoration system according to the embodiment of the present disclosure 本開示の実施の形態に係る3次元モデル復元処理を含む、板金加工の工程を説明する図The figure explaining the process of sheet metal processing including the 3D model restoration processing which concerns on embodiment of this disclosure. 図2に示す抜き加工NCデータ分析部が行う処理を説明する図The figure explaining the process performed by the punching NC data analysis unit shown in FIG. 図2に示す曲げ加工NCデータ分析部が行う処理を説明する図The figure explaining the process performed by the bending NC data analysis part shown in FIG. 実施の形態における曲げ伸び値マスタの一例を示す図The figure which shows an example of the bending elongation value master in embodiment 図2に示す金型配置部が作成する金型配置図の説明図Explanatory drawing of the mold arrangement diagram created by the mold arrangement part shown in FIG. 図2に示す展開データ復元部が行う展開データ復元処理を説明する図The figure explaining the expansion data restoration processing performed by the expansion data restoration part shown in FIG. 図2に示す流し方向基準補正部が行う加工原点に対する曲げ線の向きの説明図Explanatory drawing of the direction of the bending line with respect to the machining origin performed by the flow direction reference correction unit shown in FIG. 図2に示す曲げ加工情報結合部が行う曲げ線を作図する処理の説明図Explanatory drawing of the process of drawing a bending line performed by the bending information coupling part shown in FIG. 本開示の実施の形態に係る3次元モデル復元システムが使用される環境を例示する図The figure which illustrates the environment where the 3D model restoration system which concerns on embodiment of this disclosure is used.
 以下、本開示の実施の形態に係る3次元モデル復元システム、3次元モデル復元方法、及びプログラムについて、図面を参照して説明する。 Hereinafter, the three-dimensional model restoration system, the three-dimensional model restoration method, and the program according to the embodiment of the present disclosure will be described with reference to the drawings.
 本実施の形態に係る3次元モデル復元システム1は、抜き加工と曲げ加工のNC(Numerical Control:数値制御)データから、抜き加工と曲げ加工の影響を考慮した、実際に成形される成形品の3次元モデルを復元するシステムである。本開示において、復元するとは、実際に成形される成形品に対応する展開データおよび3次元モデルを生成することを意味する。ここで、NCデータとは、工作機械の動作を制御するために、使用する工具、工具が移動する座標位置、速度等を指定する数値データである。NCデータは、CADにより作成された3次元モデルに曲げ加工によって発生する曲げ伸び値を考慮して作成された展開図データに基づき、加工条件を加味して作成される。 The three-dimensional model restoration system 1 according to the present embodiment is a molded product that is actually molded in consideration of the influence of punching and bending from NC (Numerical Control) data of punching and bending. It is a system that restores a 3D model. In the present disclosure, restoration means generating development data and a three-dimensional model corresponding to a molded product that is actually molded. Here, the NC data is numerical data that specifies a tool to be used, a coordinate position where the tool moves, a speed, and the like in order to control the operation of the machine tool. The NC data is created by adding the machining conditions to the three-dimensional model created by CAD based on the development drawing data created in consideration of the bending elongation value generated by the bending process.
 抜き加工NCデータは、成形品の輪郭形状を作る外形抜き加工、穴を形成する穴抜き加工、穴周辺を塑性変形させてバーリング形状を作る成形加工等の抜き加工を行う工作機械に入力されるNCデータである。曲げ加工NCデータは、曲げ加工を行う工作機械に入力されるNCデータである。 Punching NC data is input to machine tools that perform punching such as outer shape punching to create the contour shape of the molded product, hole punching to form a hole, and molding to plastically deform the area around the hole to create a burring shape. It is NC data. The bending NC data is NC data input to the machine tool that performs the bending.
 3次元モデル復元システム1は、例えば、図11に例示するような、製造環境で使用される。図11において、製造システム400は、抜き加工用工作機械410と曲げ加工用工作機械420を含み、ワークを加工して成形品を製造する。製造システム400には、NCデータが供給される。NCデータは、本来的には、設計情報が指定する仕様で生成される。ただし、設計情報の指定そのままの仕様では製造できない場合等の予め設定された場合には、設計情報の指定とは異なる仕様で生成される。 The 3D model restoration system 1 is used in a manufacturing environment as illustrated in FIG. 11, for example. In FIG. 11, the manufacturing system 400 includes a punching machine tool 410 and a bending machine tool 420, and processes a workpiece to manufacture a molded product. NC data is supplied to the manufacturing system 400. The NC data is originally generated according to the specifications specified by the design information. However, if it is set in advance, such as when it cannot be manufactured with the specifications as specified in the design information, it is generated with specifications different from the specifications specified in the design information.
 抜き加工用工作機械410は、NCデータに含まれる抜き加工NCデータに従って、成形品の輪郭形状を作る外形抜き加工、穴を形成する穴抜き加工、穴周辺を塑性変形させてバーリング形状を作る成形加工等の抜き加工をワークに対して行う。 The punching machine tool 410 is subjected to outer shape punching to create the contour shape of the molded product, hole punching to form a hole, and plastic deformation to form a burring shape around the hole according to the punching NC data included in the NC data. Perform punching such as machining on the work.
 曲げ加工用工作機械420は、NCデータに含まれる曲げ加工NCデータに従って、ワークを指定された位置で指定された向きに指定された角度だけ曲げる加工を行う工作機械である。 The bending machine tool 420 is a machine tool that bends a workpiece at a specified position in a specified direction and at a specified angle according to the bending NC data included in the NC data.
 計測装置430は、製造装置により製造された成形品の寸法、形状などを計測する装置である。 The measuring device 430 is a device that measures the dimensions, shape, etc. of the molded product manufactured by the manufacturing device.
 検査装置440は、成形品の3次元モデルと、計測装置430の出力する計測データとを比較して、製造システム400により製造された成形品の良否を判別する。検査装置440は、NCデータが設計情報に従った仕様で生成された際には、設定データに指定された仕様で基づいて生成された成形品の3次元モデルを良否判定の基準に使用し、NCデータが設計情報とは異なる仕様で生成された際には、3次元モデル復元システム1がNCデータに基づいて生成した3次元モデルを良否判定の基準に使用する。 The inspection device 440 compares the three-dimensional model of the molded product with the measurement data output by the measuring device 430, and determines the quality of the molded product manufactured by the manufacturing system 400. When the NC data is generated with the specifications according to the design information, the inspection device 440 uses the three-dimensional model of the molded product generated based on the specifications specified in the setting data as the criterion for quality judgment. When the NC data is generated with specifications different from the design information, the three-dimensional model restoration system 1 uses the three-dimensional model generated based on the NC data as a criterion for quality determination.
 次に、3次元モデル復元システム1の物理的構成について図1を参照して説明する。 Next, the physical configuration of the three-dimensional model restoration system 1 will be described with reference to FIG.
 3次元モデル復元システム1は、汎用のコンピュータであって、CPU(Central Processing Unit)11と記憶部12と通信部13と入出力部14とを備える。CPU11と記憶部12と通信部13と入出力部14とは、内部バス99を介して相互に接続されている。 The three-dimensional model restoration system 1 is a general-purpose computer, and includes a CPU (Central Processing Unit) 11, a storage unit 12, a communication unit 13, and an input / output unit 14. The CPU 11, the storage unit 12, the communication unit 13, and the input / output unit 14 are connected to each other via the internal bus 99.
 CPU11は、記憶部12の不揮発性メモリに記憶されたプログラムを、揮発性メモリをワークエリアとして実行することにより、後述する各種処理を実行する。 The CPU 11 executes various processes described later by executing the program stored in the non-volatile memory of the storage unit 12 using the volatile memory as a work area.
 記憶部12は、揮発性メモリと不揮発性メモリとを備える。揮発性メモリは、CPU11のワークエリアとして使用され、不揮発性メモリはCPU11が実行するプログラムを記憶する。 The storage unit 12 includes a volatile memory and a non-volatile memory. The volatile memory is used as a work area of the CPU 11, and the non-volatile memory stores a program executed by the CPU 11.
 通信部13は、ネットワーク110を介して、CADシステム60とデータベース40とに3次元モデル復元システム1を接続する。CADシステム60は成形品の設計データを生成するシステムである。データベース40については、後述する。 The communication unit 13 connects the 3D model restoration system 1 to the CAD system 60 and the database 40 via the network 110. The CAD system 60 is a system that generates design data of a molded product. The database 40 will be described later.
 入出力部14は、表示装置50と、入力装置51と、出力装置52と、外部記憶装置53とに接続される。表示装置50は、3次元モデル復元システム1により生成された情報を表示するユーザインタフェイスである。入力装置51は、キーボード、マウス等の情報入力装置を含むユーザインタフェイスである。出力装置52は、印刷装置を含み、3次元モデル復元システム1で生成された情報を紙媒体に印刷する。外部記憶装置53は、ハードディスクドライブ装置、ソリッドステートドライブ装置などを含み、3次元モデル復元システム1で生成された情報等を記憶する。なお、データベース40を外部記憶装置53に配置してもよい。 The input / output unit 14 is connected to the display device 50, the input device 51, the output device 52, and the external storage device 53. The display device 50 is a user interface that displays the information generated by the three-dimensional model restoration system 1. The input device 51 is a user interface including an information input device such as a keyboard and a mouse. The output device 52 includes a printing device and prints the information generated by the three-dimensional model restoration system 1 on a paper medium. The external storage device 53 includes a hard disk drive device, a solid state drive device, and the like, and stores information and the like generated by the three-dimensional model restoration system 1. The database 40 may be arranged in the external storage device 53.
 次に、3次元モデル復元システム1の機能構成について図2を参照しながら説明する。 Next, the functional configuration of the three-dimensional model restoration system 1 will be described with reference to FIG.
 前述のように、3次元モデル復元システム1は、板金加工用のNCデータから、抜き加工と曲げ加工の影響を考慮した、実際に成形される成形品の3次元モデルの3次元データを復元または生成するシステムである。この3次元モデル復元システム1には、板金加工用のNCデータとして、抜き加工NCデータ120と曲げ加工NCデータ130とが供給される。 As described above, the 3D model restoration system 1 restores or restores the 3D data of the 3D model of the actually molded molded product from the NC data for sheet metal processing, considering the effects of punching and bending. It is a system to generate. The punching NC data 120 and the bending NC data 130 are supplied to the three-dimensional model restoration system 1 as NC data for sheet metal processing.
 抜き加工NCデータ120は、ワークの一部を取り除く抜き加工に関し、工作機械の動作を制御するために、加工順、金型ID、加工位置座標位置、打ち抜き速度等を指定する数値データである。抜き加工NCデータ120は、展開図データ28から、CAM(Comuputor Aided Manufacturing)ソフトウウェア、NCデータ作成ソフトウェア等により、抜き加工の加工条件を加味して作成されたものである。展開図データ28は、CADシステム60により生成された設計情報10、すなわち、3次元設計データから、曲げ加工による伸びの大きさを示す伸び値を考慮して生成され、成形品の展開図を表すデータである。抜き加工NCデータ120は、図4に例示するように、加工順、抜き加工に使用される金型の識別情報(以下、単にID)、加工位置の座標情報、打ち抜き速度、加工種別のID等の情報を含む。 Punching NC data 120 is numerical data that specifies a machining order, a die ID, a machining position coordinate position, a punching speed, etc. in order to control the operation of a machine tool in relation to punching for removing a part of a work. The punching NC data 120 is created from the developed view data 28 by CAM (Computer Aided Manufacturing) software, NC data creation software, etc., in consideration of the machining conditions of the punching process. The development drawing data 28 is generated from the design information 10 generated by the CAD system 60, that is, the three-dimensional design data in consideration of the elongation value indicating the magnitude of the elongation due to the bending process, and represents the development drawing of the molded product. It is data. As illustrated in FIG. 4, the punching NC data 120 includes machining order, identification information of dies used for punching (hereinafter, simply ID), coordinate information of machining position, punching speed, ID of machining type, and the like. Includes information about.
 一方、曲げ加工NCデータ130は、ワークを折り曲げる曲げ加工に関し、工作機械の動作を制御するために、加工順、使用する金型のNCコード、金型の位置座標、加工原点を基準とする曲げの向き、曲げ角度等を指定する数値データである。なお、金型の位置座標は、加工始点の位置座標(Xs,Ys)と加工終点の位置座標(Xe,Ye)を含む。曲げ加工NCデータ130は、展開図データ28に基づいて、CAMソフトウェア、NCデータ作成ソフトウェア等により、曲げ加工の加工条件を加味して作成される。曲げ加工NCデータ130は、図5に例示するように、曲げ加工に使用される曲げ金型のID、加工位置の座標情報、曲げ角度、加工原点に対する曲げの向き等の情報を含む。 On the other hand, in the bending NC data 130, regarding the bending process of bending the work, in order to control the operation of the machine tool, the machining order, the NC code of the die to be used, the position coordinates of the die, and the bending based on the machining origin are used as reference. It is numerical data that specifies the direction, bending angle, etc. The position coordinates of the mold include the position coordinates of the machining start point (Xs, Ys) and the position coordinates of the machining end point (Xe, Ye). The bending NC data 130 is created based on the development drawing data 28 by the CAM software, the NC data creation software, etc., taking into account the processing conditions of the bending. As illustrated in FIG. 5, the bending NC data 130 includes information such as an ID of a bending die used for bending, coordinate information of a processing position, a bending angle, and a bending direction with respect to a processing origin.
 3次元モデル復元システム1は、抜き加工NCデータ120に基づいて板金製品の展開データ28aを復元する展開データ復元部2と、復元された展開データ28aと曲げ加工NCデータ130とに基づいて板金製品の3次元モデルを復元する3次元モデル復元部3と、を備える。 The three-dimensional model restoration system 1 is a sheet metal product based on the expansion data restoration unit 2 that restores the development data 28a of the sheet metal product based on the punching NC data 120, and the restored expansion data 28a and the bending NC data 130. The three-dimensional model restoration unit 3 for restoring the three-dimensional model of the above is provided.
 また、3次元モデル復元システム1に接続されているデータベース40は、抜き金型マスタ140、曲げ金型マスタ150、曲げ伸び値マスタ160、抜き許容誤差テーブル170、曲げ許容誤差テーブル180、成形加工形状マスタ190を備える。 The database 40 connected to the three-dimensional model restoration system 1 includes a punching die master 140, a bending die master 150, a bending elongation value master 160, a punching tolerance table 170, a bending tolerance table 180, and a molding processing shape. It has a master 190.
 抜き金型マスタ140は、図4に例示するように、抜き加工に使用する抜き金型の諸元情報を記憶する。諸元情報は、例えば、抜き金型の型番、金型ID、抜き金型の形状と寸法、その抜き金型を用いて実行される加工の加工種別等の情報等を含む。 As illustrated in FIG. 4, the punching die master 140 stores specification information of the punching die used for punching. The specification information includes, for example, information such as the model number of the punching die, the die ID, the shape and dimensions of the punching die, and the processing type of the processing performed using the punching die.
 曲げ金型マスタ150は、図5に例示するように、曲げ加工に使用する曲げ金型の諸元情報を記憶する。諸元情報は、例えば、金型ID,NCコード、ダイV幅、曲げ半径R、加工種別、を含む。 As illustrated in FIG. 5, the bending die master 150 stores specification information of the bending die used for bending. The specification information includes, for example, a mold ID, an NC code, a die V width, a bending radius R, and a processing type.
 曲げ伸び値マスタ160は、図6に例示するように、ワークの材質と板厚、使用する金型の型番、曲げ角度別に伸び値を記憶する。 As illustrated in FIG. 6, the bending elongation master 160 stores the elongation value according to the material and plate thickness of the work, the model number of the mold to be used, and the bending angle.
 抜き許容誤差テーブル170は、抜き加工別に許容誤差を記憶する。曲げ許容誤差テーブル180は、曲げ加工別に許容誤差を記憶する。成形加工形状マスタ190は、成形加工の種別とその成形加工により得られる3次元の形状とを対応付けて記憶する。 The punching tolerance table 170 stores the tolerance for each punching process. The bending tolerance table 180 stores the tolerance for each bending process. The molding processing shape master 190 stores the type of molding processing and the three-dimensional shape obtained by the molding processing in association with each other.
 図2に示す展開データ復元部2は、抜き加工NCデータ120を分析して抜き加工情報200を作成する抜き加工NCデータ分析部21と、抜き金型をワーク上に配置した金型配置図29を作図する金型配置部22と、成形品の展開データ28aを作成する展開データ作成部23と、を備える。 The development data restoration unit 2 shown in FIG. 2 includes a punching NC data analysis unit 21 that analyzes the punching NC data 120 to create punching processing information 200, and a die arrangement diagram 29 in which the punching die is arranged on the work. A mold arranging unit 22 for drawing the above and a development data creating unit 23 for creating the development data 28a of the molded product are provided.
 抜き加工NCデータ分析部21は、図4に示す抜き加工NCデータ120に含まれている金型IDをキーに抜き金型マスタ140を検索し、抜き加工に使用する抜き金型の諸元情報を抽出する。また、抜き加工NCデータ分析部21は、図4に示す抜き加工NCデータ120から、展開データ28aを作成するのに必要な情報、例えば、加工位置の座標、加工の種別等の情報を抽出する。抜き加工NCデータ分析部21は、金型の諸元情報、加工位置の座標、加工の種別等の情報を統合して、図4に例示する抜き加工情報200を生成する。抜き加工情報200は、例示するように、加工順、金型型番、加工種別、金型の形状と寸法、加工位置座標などの情報を含む。 The punching NC data analysis unit 21 searches the punching die master 140 using the die ID included in the punching NC data 120 shown in FIG. 4 as a key, and specifies the specifications of the punching die used for the punching. Is extracted. Further, the punching NC data analysis unit 21 extracts information necessary for creating the development data 28a from the punching NC data 120 shown in FIG. 4, for example, information such as the coordinates of the machining position and the type of machining. .. The punching NC data analysis unit 21 integrates information such as mold specification information, machining position coordinates, and machining type to generate punching information 200 illustrated in FIG. As an example, the punching processing information 200 includes information such as a processing order, a mold model number, a processing type, a mold shape and dimensions, and processing position coordinates.
 図2に示す金型配置部22は、抜き加工NCデータ分析部21によって作成された抜き加工情報200に含まれる加工位置座標、金型の形状、金型の寸法等に基づいて、ワーク上に抜き金型を配置した金型配置図29を作成する処理を行う。金型配置図29の一例を図7に示す。この金型配置図は、平面視で長方形のワーク24の上に外形抜き金型25aと3つの穴抜き金型25bを配置された状態を示す。 The die arranging unit 22 shown in FIG. 2 is placed on the work based on the processing position coordinates, the shape of the die, the dimensions of the die, etc. included in the punching processing information 200 created by the punching NC data analysis unit 21. A process of creating a die arrangement diagram 29 in which the punching die is arranged is performed. An example of the mold arrangement FIG. 29 is shown in FIG. This die arrangement diagram shows a state in which the outer shape punching die 25a and the three hole punching dies 25b are arranged on the rectangular work 24 in a plan view.
 図2に示す展開データ作成部23は、金型配置部22により作成された金型配置図29に基づいて成形品の展開データ28aを作成する処理を行う。展開データ作成部23は、外形抜き加工により形成される成形品の外形を表す外形線図を作図する外形線作図部231と、穴加工によって形成される穴の形状を示す穴形状図を作図する穴形状作図部232と、成形加工の種別、成形形状等を含む成形加工情報を展開データ28aに結合する成形加工情報結合部233を備える。 The development data creation unit 23 shown in FIG. 2 performs a process of creating development data 28a of the molded product based on the mold arrangement drawing 29 created by the mold arrangement unit 22. The development data creation unit 23 draws an outline drawing unit 231 that draws an outline drawing showing the outer shape of the molded product formed by the outer shape punching process, and a hole shape drawing showing the shape of the hole formed by the hole processing. It includes a hole shape drawing unit 232 and a molding processing information coupling unit 233 that binds molding processing information including a molding processing type, molding shape, etc. to the development data 28a.
 外形線作図部231は、図8に例示するように、金型配置部22により作成された金型配置図29上に、外形線26を作図する外形線作図処理S301を行う。なお、外形線26は、外形抜き加工によって形成される成形品の外形を表す線である。具体的には、外形線作図部231は、外形抜き加工に使用される外形抜き金型25aによって形成される閉じられた領域の内側輪郭線を、外形線26として金型配置図29に作図する処理を行う。 As illustrated in FIG. 8, the outline drawing unit 231 performs the outline drawing process S301 for drawing the outline 26 on the mold arrangement drawing 29 created by the mold arrangement unit 22. The outer line 26 is a line representing the outer shape of the molded product formed by the outer shape punching process. Specifically, the outline drawing unit 231 draws the inner contour line of the closed area formed by the outer shape punching die 25a used for the outer shape punching process as the outer line 26 in the die layout drawing 29. Perform processing.
 穴形状作図部232は、図8に例示すように、外形線作図部231により外形線26が作図された金型配置図29に穴形状線27を作図する穴形状作図処理S302を行う。具体的には、穴形状作図部232は、金型配置図29に配置された穴加工に使用される穴抜き金型25bの外周を穴形状線27として、金型配置図29に作図する。なお、穴形状線27が複数存在する場合は、全ての穴形状線27を作図する。 As shown in FIG. 8, the hole shape drawing unit 232 performs the hole shape drawing process S302 for drawing the hole shape line 27 on the mold layout drawing 29 in which the outline line 26 is drawn by the outline drawing unit 231. Specifically, the hole shape drawing unit 232 draws the outer circumference of the hole punching mold 25b used for hole drilling arranged in the mold arrangement drawing 29 as the hole shape line 27 in the mold arrangement drawing 29. If there are a plurality of hole shape lines 27, all the hole shape lines 27 are drawn.
 成形加工情報結合部233は、作図された外形線26と穴形状線27に基づいて、抜き加工により成形品の2次元の展開図を表す展開データ28aを作成する。さらに、成形加工情報結合部233は、作成した展開データ28aに、成形金型の識別番号、加工位置座標、成形加工の種別、寸法等の成形加工情報30を付加する成形加工情報結合処理S303を行う。成形加工には、バーリング加工、タップ加工等があるが、2次元の展開データ28aに、成形加工により形成される3次元の成形形状を図示することはできない。このため、展開データ28aに成形加工情報30を付加する形態を採用する。成形加工情報30は、後述する3次元モデル復元部3が3次元の成形形状を復元するために使用される。   The molding processing information coupling unit 233 creates development data 28a representing a two-dimensional development drawing of the molded product by punching based on the drawn outline 26 and hole shape line 27. Further, the molding processing information coupling unit 233 adds the molding processing information coupling process S303 that adds the molding processing information 30 such as the identification number of the molding die, the processing position coordinates, the type of molding processing, and the dimensions to the created development data 28a. Do. The molding process includes burring process, tap process, and the like, but the two-dimensional development data 28a cannot show the three-dimensional molding shape formed by the molding process. Therefore, a form in which the molding processing information 30 is added to the development data 28a is adopted. The molding processing information 30 is used by the three-dimensional model restoration unit 3 described later to restore the three-dimensional molding shape.
 次に、図2に示す3次元モデル復元部3の機能構成について説明する。 Next, the functional configuration of the three-dimensional model restoration unit 3 shown in FIG. 2 will be described.
 3次元モデル復元部3は、曲げ加工NCデータ130を分析して、曲げ加工情報300を作成する曲げ加工NCデータ分析部31と、抜き加工NCデータ120と曲げ加工NCデータ130とでそれぞれ定義される加工原点を一致させる流し方向基準補正部32と、展開データ28aに曲げ加工情報300と曲げ線とを付加する曲げ加工情報結合部33と、3次元モデルを作成する3次元モデル作成部34と、を備える。 The three-dimensional model restoration unit 3 is defined by a bending NC data analysis unit 31 that analyzes bending NC data 130 and creates bending information 300, and a punching NC data 120 and a bending NC data 130, respectively. A flow direction reference correction unit 32 that matches the machining origins, a bending information coupling section 33 that adds bending information 300 and bending lines to the development data 28a, and a 3D model creation section 34 that creates a 3D model. , Equipped with.
 曲げ加工NCデータ分析部31は、図5に示す曲げ加工NCデータ130に含まれている金型IDをキーに曲げ金型マスタ150を参照して、曲げ加工に使用する曲げ金型の諸元情報を取得する。また、曲げ加工NCデータ分析部31は、曲げ加工NCデータ130から3次元モデルを復元するために必要な情報、例えば、曲げ加工の曲げ順、加工位置座標、曲げ角度等の加工情報を抽出する。曲げ加工NCデータ分析部31は、これらのデータを統合して、図5に例示する曲げ加工情報300を作成する。曲げ加工情報300は、3次元モデルを復元するために必要な情報、例えば、曲げ金型の情報、曲げ加工の曲げ順、加工位置の始点座標と終点座標、曲げ角度等を含む。 The bending NC data analysis unit 31 refers to the bending die master 150 using the mold ID included in the bending NC data 130 shown in FIG. 5 as a key, and the specifications of the bending die used for the bending. Get information. Further, the bending NC data analysis unit 31 extracts processing information necessary for restoring a three-dimensional model from the bending NC data 130, for example, processing information such as bending order, processing position coordinates, and bending angle of bending. .. The bending NC data analysis unit 31 integrates these data to create the bending information 300 illustrated in FIG. The bending processing information 300 includes information necessary for restoring the three-dimensional model, for example, bending die information, bending order of bending processing, start point coordinates and end point coordinates of the processing position, bending angle, and the like.
 図2に示す流し方向基準補正部32は、抜き加工NCデータ120と曲げ加工NCデータ130に定義されたそれぞれの加工原点の座標値を比較して、加工原点の座標値が異なる場合、曲げ加工情報300の加工位置座標値を抜き加工NCデータ120の加工原点に合わせる補正をする処理を行う。 The flow direction reference correction unit 32 shown in FIG. 2 compares the coordinate values of the respective machining origins defined in the punching NC data 120 and the bending NC data 130, and if the coordinate values of the machining origins are different, the bending machining is performed. A process of extracting the processing position coordinate value of the information 300 and making a correction to match the processing origin of the processing NC data 120 is performed.
 具体的に説明すると、抜き加工NCデータ120と曲げ加工NCデータ130には、工作機械の機械原点からの距離を予め設定することにより、それぞれの加工原点が定義されている。抜き加工NCデータ120と曲げ加工NCデータ130との加工原点が異なっている場合には、座標系を統一する必要が生じる。そこで、流し方向基準補正部32は、抜き加工NCデータ120に加工原点として定義された機械原点からの距離の値と曲げ加工NCデータ130に加工原点として定義された機械原点からの距離の値を抜き出す。流し方向基準補正部32は、抜き出した2つの距離の値を比較し、値が異なっている場合は、曲げ加工情報300の加工位置座標を補正して、抜き加工NCに定義された加工原点と一致させる。 Specifically, in the punching NC data 120 and the bending NC data 130, the respective machining origins are defined by setting the distance from the machine origin of the machine tool in advance. When the machining origins of the punching NC data 120 and the bending NC data 130 are different, it becomes necessary to unify the coordinate system. Therefore, the flow direction reference correction unit 32 sets the value of the distance from the machine origin defined as the machining origin in the punching NC data 120 and the value of the distance from the machine origin defined as the machining origin in the bending NC data 130. Extract. The flow direction reference correction unit 32 compares the values of the two extracted distances, and if the values are different, corrects the processing position coordinates of the bending processing information 300 to match the processing origin defined in the extraction processing NC. Match.
 曲げ加工情報結合部33は、展開データ28aが示す展開図に、曲げ加工情報300に基づいて曲げ線を追加し、曲げ線を含む展開図を示す展開図データ28bを生成する処理を行う。曲げ線を追加した展開図を図10に例示する。また、曲げ加工情報結合部33は、展開データ28bに曲げ加工情報300を付与する。 The bending information coupling unit 33 adds a bending line to the development drawing shown by the development data 28a based on the bending information 300, and performs a process of generating development drawing data 28b showing the development drawing including the bending line. A developed view with a bending line added is illustrated in FIG. Further, the bending information coupling unit 33 adds bending information 300 to the development data 28b.
 3次元モデル作成部34は、データベース40に格納された曲げ伸び値マスタ160と成形加工形状マスタ190とを参照し、展開データ28bに基づいて、3次元モデルを作成する処理を行う。 The 3D model creation unit 34 refers to the bending / elongation value master 160 and the molding processing shape master 190 stored in the database 40, and performs a process of creating a 3D model based on the development data 28b.
 図6に例示するように、曲げ伸び値マスタ160には、被加工物の材質と板厚、曲げ金型の型番、曲げ角度等の曲げ条件に対応した被加工物の伸び値が予め登録されている。また、成形加工形状マスタ190には、バーリング加工、タップ加工等の成形加工の種別に対応する3次元の形状が予め登録されている。 As illustrated in FIG. 6, the elongation value of the workpiece corresponding to the bending conditions such as the material and plate thickness of the workpiece, the model number of the bending die, and the bending angle is registered in advance in the bending elongation master 160. ing. Further, in the molding processing shape master 190, a three-dimensional shape corresponding to a type of molding processing such as burring processing and tap processing is registered in advance.
 図2に示す3次元モデル作成部34は、成形加工形状マスタ190を参照し、成形加工情報30に基づいて3次元の成形加工形状を作成し、曲げ加工情報300と曲げ線とに基づいて曲げ形状を作成し、最後に穴形状を作成して、3次元モデルを作成する。 The three-dimensional model creation unit 34 shown in FIG. 2 refers to the molding processing shape master 190, creates a three-dimensional molding processing shape based on the molding processing information 30, and bends based on the bending processing information 300 and the bending line. Create a shape, and finally create a hole shape to create a 3D model.
 以上が、3次元モデル復元システム1の機能構成である。続いて、3次元モデル復元システム1の動作について説明する。なお、3次元モデル復元システム1は、NCデータが作成された後に動作する。このため、まず、板金加工に関し、設計情報10から展開図データ28を作成し、さらに、展開図データ28から抜き加工NCデータ120と曲げ加工NCデータ130とを作成する処理について図3を参照して説明する。 The above is the functional configuration of the 3D model restoration system 1. Subsequently, the operation of the three-dimensional model restoration system 1 will be described. The three-dimensional model restoration system 1 operates after the NC data is created. Therefore, regarding sheet metal processing, first, with respect to sheet metal processing, development drawing data 28 is created from design information 10, and further, with reference to FIG. 3, regarding the process of creating punching NC data 120 and bending NC data 130 from the development drawing data 28. I will explain.
 製品の3次元モデルの設計が完了すると、生成された設計情報10に基づいて、展開図データ28を作成する展開図データ作成処理を実行する(ステップS101)。展開図データ作成処理は、設計情報10の形態によって、次のようにして実行される。 When the design of the three-dimensional model of the product is completed, the development drawing data creation process for creating the development drawing data 28 is executed based on the generated design information 10 (step S101). The development drawing data creation process is executed as follows according to the form of the design information 10.
 設計情報10が3次元CADデータの場合、CADシステムの展開図自動作成機能によって、3次元CADデータから展開図データ28が作成される。設計情報10が2次元三面図のCADデータの場合は、展開図作成ソフトウェアによって、三面図の各面が合成されて、展開図データ28が作成される。設計情報10が紙媒体の2次元三面図の場合は、人手によって、CADを操作して展開図データ28が作成される。 When the design information 10 is 3D CAD data, the development drawing data 28 is created from the 3D CAD data by the development drawing automatic creation function of the CAD system. When the design information 10 is CAD data of a two-dimensional three-view drawing, each surface of the three-view drawing is combined by the development drawing creation software to create the development drawing data 28. When the design information 10 is a two-dimensional three-view drawing of a paper medium, the development drawing data 28 is manually operated by CAD.
 曲げ加工によって板金に伸びが発生するため、展開図データ28を作成する際は、図6に例示した曲げ伸び値マスタ160に格納される伸び値を考慮して展開図データ作成処理を行う。 Since the sheet metal is stretched by the bending process, when the development view data 28 is created, the development view data creation process is performed in consideration of the elongation value stored in the bending elongation value master 160 illustrated in FIG.
 図3に戻り、次に、ステップS101により作成された展開図データ28に基づいて、抜き加工NCデータ120と曲げ加工NCデータ130を作成するNCデータ作成処理を行う。抜き加工NCデータ作成処理は、まず、抜き金型マスタ140に登録されている保有している抜き金型の情報と、保有している板金材料の情報等の加工条件を参照し、抜き金型を適当なワーク上に配置する。抜き金型マスタ140に登録されている情報で、抜き金型を板金材料の上に適切に配置できた場合(ステップS102;Yes)、NCプログラム作成機能によって、抜き加工NCデータ120を作成する(ステップS103)。 Returning to FIG. 3, next, based on the development drawing data 28 created in step S101, NC data creation processing for creating punching NC data 120 and bending NC data 130 is performed. In the punching NC data creation process, first, referring to the processing conditions such as the information of the punching die registered in the punching die master 140 and the information of the sheet metal material held, the punching die Is placed on a suitable work. When the punching die can be appropriately arranged on the sheet metal material with the information registered in the punching die master 140 (step S102; Yes), the punching process NC data 120 is created by the NC program creation function (step S102; Yes). Step S103).
 抜き金型マスタ140に登録された情報では、抜き金型を板金材料の上に配置できない場合(ステップS102;No)、設計情報10の設計形状通りに成形品を加工することができない。このため、設計情報10に含まれる寸法公差、幾何公差の範囲内に収まる他の抜き金型を選択し、抜き金型を板金材料上に配置する(ステップS201)。その後、NCプログラム作成機能によって、抜き加工NCデータ120が作成される(ステップS202)。 With the information registered in the punching die master 140, if the punching die cannot be placed on the sheet metal material (step S102; No), the molded product cannot be processed according to the design shape of the design information 10. Therefore, another punching die within the range of the dimensional tolerance and the geometrical tolerance included in the design information 10 is selected, and the punching die is arranged on the sheet metal material (step S201). After that, the punching NC data 120 is created by the NC program creation function (step S202).
 抜き加工NCデータ120を作成すると、曲げ加工のNCデータ作成処理を行う。曲げ加工NCデータの作成方法については、インプット情報の形態により次のような方法がある。 When the punching NC data 120 is created, the bending NC data creation process is performed. Regarding the method of creating bending NC data, there are the following methods depending on the form of input information.
 設計情報10が3次元CADデータの場合は、NCデータ作成プログラムによって、曲げ工程に関する属性情報が抽出され、曲げ加工NCデータ130が自動作成される。設計情報10が2次元CADの三面図の場合は、人手によって、曲げ順に沿って、使用する曲げ金型、曲げフランジ寸法、曲げ角度、曲げに対する曲げ回数等が入力され曲げ加工NCデータ130が作成される。 When the design information 10 is 3D CAD data, the NC data creation program extracts the attribute information related to the bending process, and the bending NC data 130 is automatically created. When the design information 10 is a three-dimensional view of two-dimensional CAD, the bending die to be used, the bending flange size, the bending angle, the number of times of bending for bending, etc. are manually input according to the bending order, and the bending NC data 130 is created. Will be done.
 なお、抜き加工NCデータ120と曲げ加工NCデータ130とが作成されると、これらのNCデータがNC工作機械に入力され、NC工作機械は、抜き加工と曲げ加工の実加工を行う(ステップS104)。この時、実加工の前に、まず試し加工が行われ、試し加工の結果によって、抜き加工NCデータ120と曲げ加工NCデータ130とを修正してもよい。この場合、修正後の抜き加工NCデータ120と曲げ加工NCデータ130とがNC工作機械に入力され、実加工が行われる。 When the punching NC data 120 and the bending NC data 130 are created, these NC data are input to the NC machine tool, and the NC machine tool performs the actual machining of the punching and bending (step S104). ). At this time, before the actual machining, the trial machining is first performed, and the punching NC data 120 and the bending NC data 130 may be modified depending on the result of the trial machining. In this case, the corrected punching NC data 120 and bending NC data 130 are input to the NC machine tool, and the actual machining is performed.
 次に、成形品が正しく製造されているか否かをチェックするため、成形品の外観を3次元計測装置により計測する(ステップS105)。 Next, in order to check whether the molded product is manufactured correctly, the appearance of the molded product is measured by a three-dimensional measuring device (step S105).
 続いて、ステップS105で計測された値と成形品の3次元モデルとを比較することにより、外観検査を行う(ステップS106)。より具体的には、外観検査装置は、データベース40に格納されている抜き加工工程、曲げ加工工程に対応する抜き許容誤差テーブル170、曲げ許容誤差テーブル180を参照し、計測データが示す成形品と3次元モデルとの差がこれらの許容誤差の範囲内か否かを判別する。差が許容誤差の範囲内の場合には、合格と判別し、差が許容誤差の範囲外の場合には、欠陥品と判別する。 Subsequently, a visual inspection is performed by comparing the value measured in step S105 with the three-dimensional model of the molded product (step S106). More specifically, the visual inspection apparatus refers to the punching tolerance table 170 and the bending tolerance table 180 corresponding to the punching process and the bending process stored in the database 40, and the molded product indicated by the measurement data. It is determined whether or not the difference from the three-dimensional model is within the range of these margins of error. If the difference is within the margin of error, it is determined to be acceptable, and if the difference is outside the margin of error, it is determined to be a defective product.
 ここで、検査の基準となる3次元モデルは、NCデータがステップS103で生成されたときには、設計情報10に基づいて生成される。一方、NCデータがステップS202で生成されたときには、製造される成形品は、設計情報10が示すものとは異なる。このため、検査の基準モデルとして、3次元モデル復元システム1が、ステップS202で生成されたNCデータに基づいてステップS203で復元した3次元モデルを使用する。 Here, the three-dimensional model that serves as the inspection reference is generated based on the design information 10 when the NC data is generated in step S103. On the other hand, when the NC data is generated in step S202, the molded product to be manufactured is different from that shown in the design information 10. Therefore, as the reference model for inspection, the 3D model restoration system 1 uses the 3D model restored in step S203 based on the NC data generated in step S202.
 次に、3次元モデル復元システム1が、実際に製造される製品を正確に表している3次元モデルを復元あるいは作成する3次元モデル復元処理(ステップS203)について図3を参照して説明する。 Next, the 3D model restoration process (step S203) in which the 3D model restoration system 1 restores or creates a 3D model that accurately represents the actually manufactured product will be described with reference to FIG.
 3次元モデル復元処理(ステップS203)は、抜き加工NCデータ120と曲げ加工NCデータ130とが作成された(ステップS202)後に実行される処理であり、展開データ復元処理(ステップS211)と3次元モデル復元処理(ステップS212)を含む。 The three-dimensional model restoration process (step S203) is a process executed after the punching NC data 120 and the bending NC data 130 are created (step S202), and is the expansion data restoration process (step S211) and three-dimensional. The model restoration process (step S212) is included.
 まず、展開データ復元処理(ステップS211)について図4を参照して説明する。
 展開データ復元部2は、抜き加工NCデータ120が入力されると、これを記憶部12に保存する。また、展開データ復元部2は、抜き加工NCデータ120を保存したことを抜き加工NCデータ分析部21に通知する。
First, the expansion data restoration process (step S211) will be described with reference to FIG.
When the punching NC data 120 is input, the expansion data restoration unit 2 stores it in the storage unit 12. Further, the expansion data restoration unit 2 notifies the punching NC data analysis unit 21 that the punching NC data 120 has been saved.
 抜き加工NCデータ分析部21は、記憶部12に保存された抜き加工NCデータ120を取得し、データベース40に格納されている抜き金型マスタ140を読み込み、抜き加工情報200を生成する処理を開始する。 The punching NC data analysis unit 21 acquires the punching NC data 120 stored in the storage unit 12, reads the punching die master 140 stored in the database 40, and starts a process of generating punching information 200. To do.
 詳細に説明すると、抜き金型マスタ140には、抜き金型を識別するための金型型番及び金型ID、抜き金型の形状と寸法、成形加工の種別等の情報等が予め登録されている。一方、抜き加工NCデータ120には、使用する抜き金型の金型ID、加工位置の座標情報、打ち抜き速度、加工の種別ID等の情報が記述されている。 More specifically, in the punching die master 140, information such as the die model number and die ID for identifying the punching die, the shape and dimensions of the punching die, the type of molding process, and the like are registered in advance. There is. On the other hand, in the punching NC data 120, information such as the die ID of the punching die to be used, the coordinate information of the machining position, the punching speed, and the machining type ID is described.
 抜き加工NCデータ分析部21は、抜き加工NCデータ120から必要な情報を抽出し、抜き金型マスタ140に登録された情報と対応させることによって、加工順、使用される抜き金型の型番、加工種別、形状と寸法、加工位置座標(X,Y)等の抜き加工情報200を作成し、記憶部12に保存する。 The punching NC data analysis unit 21 extracts necessary information from the punching NC data 120 and associates it with the information registered in the punching die master 140 to obtain the machining order, the model number of the punching die to be used, and the model number of the punching die to be used. Punching processing information 200 such as processing type, shape and dimension, processing position coordinates (X, Y) and the like is created and stored in the storage unit 12.
 抜き加工情報200が作成されると、金型配置部22が、金型配置図作成処理を開始する。金型配置部22は、抜き加工情報200の加工位置座標(X,Y)と金型の寸法とに基づき、抜き金型25をワーク24上に配置し、金型配置図29を作成する。金型配置図29の例を図7に示す。図7において、斜線部が配置された抜き金型を示す。なお、ユーザが入力装置51を操作することにより、抜き金型25をワーク24上に配置してもよい。図7は、平面視で長方形のワーク24の上に外形抜き金型25aと3つの穴抜き金型25bを配置された状態を示す。 When the punching processing information 200 is created, the die arrangement unit 22 starts the die arrangement drawing creation process. The die arranging unit 22 arranges the die 25 on the work 24 based on the machining position coordinates (X, Y) of the punching processing information 200 and the dimensions of the die, and creates a die arranging diagram 29. An example of the mold arrangement FIG. 29 is shown in FIG. FIG. 7 shows a punching die in which the shaded portion is arranged. The punching die 25 may be arranged on the work 24 by the user operating the input device 51. FIG. 7 shows a state in which the outer shape punching die 25a and the three hole punching dies 25b are arranged on the rectangular work 24 in a plan view.
 金型配置図29が作成されると、展開データ作成部23が展開データ作成処理を行う。展開データ作成処理は、図8に示す通り、成形品の外形形状を表す外形線26を作図する外形線作図処理(ステップS301)と、穴加工によって形成される穴形状線27を作図する穴形状作図処理(ステップS302)と、成形加工の種別、成形金型の識別番号、加工位置座標等の成形加工情報30を展開データ28aに付加する成形加工情報結合処理(ステップS303)とを備える。 When the mold layout drawing 29 is created, the expansion data creation unit 23 performs the expansion data creation process. As shown in FIG. 8, the expansion data creation process includes the outline drawing process (step S301) for drawing the outline 26 representing the outer shape of the molded product and the hole shape for drawing the hole shape line 27 formed by the hole processing. It includes a drawing process (step S302) and a molding processing information combining process (step S303) in which molding processing information 30 such as a molding processing type, a molding die identification number, and processing position coordinates is added to the development data 28a.
 外形線作図処理(ステップS301)において、外形線作図部231は、金型配置図29を記憶部12から読み込み、外形線26を作図する。外形線26は、成形品の外形を表す線である。具体的に、外形線作図部231は、外形抜き加工に使用される単一もしくは複数の外形抜き金型25aによって形成される閉じられた領域の内側輪郭線を外形線26として描く処理を行う。 In the outline drawing process (step S301), the outline drawing unit 231 reads the mold layout drawing 29 from the storage unit 12 and draws the outline 26. The outer line 26 is a line representing the outer shape of the molded product. Specifically, the outline drawing unit 231 performs a process of drawing the inner contour line of the closed region formed by the single or a plurality of outline drawing dies 25a used for the outline drawing process as the outline 26.
 次に、穴形状作図部232は、外形線が作図された金型配置図29に穴形状線27を描く処理を行う(ステップS302)。穴形状線27は、ワーク24上に配置された穴抜き金型25bの外形線である。具体的に、穴形状作図部232は、金型配置図29に配置された穴抜き金型25bの座標情報、形状情報及び寸法情報に基づいて、穴抜き金型25bの外形線を穴形状線27としてワーク24上に作図する。なお、穴抜き金型25bが複数存在する場合は、全てについて、穴形状線27として作図する処理を行う。 Next, the hole shape drawing unit 232 performs a process of drawing the hole shape line 27 on the mold layout drawing 29 on which the outline is drawn (step S302). The hole shape line 27 is an outer line of the hole punching die 25b arranged on the work 24. Specifically, the hole shape drawing unit 232 sets the outline of the hole punching die 25b as a hole shape line based on the coordinate information, shape information, and dimensional information of the hole punching die 25b arranged in the mold layout drawing 29. Draw on the work 24 as 27. If there are a plurality of drilling dies 25b, all of them are drawn as hole shape lines 27.
 最後に、成形加工情報結合部233は、外形線26と穴形状線27とから展開図を生成し、この展開図を示す展開データ28aを作成する。次に、成形加工情報結合部233は、抜き加工NCデータ分析部21によって作成された抜き加工情報200から、成形金型の識別番号、成形加工の種別、成形金型の加工位置座標等の情報を抽出して成形加工情報30を作成し、成形加工情報30を展開データ28aに付加する成形加工情報結合処理(ステップS303)を実行する。 Finally, the molding processing information coupling unit 233 generates a development drawing from the outline line 26 and the hole shape line 27, and creates the development data 28a showing the development drawing. Next, the molding processing information coupling unit 233 uses information such as the identification number of the molding die, the type of molding processing, and the processing position coordinates of the molding die from the punching processing information 200 created by the punching NC data analysis unit 21. Is extracted to create molding processing information 30, and molding processing information combining processing (step S303) is executed in which the molding processing information 30 is added to the development data 28a.
 以上の処理により、成形加工情報30を付与した展開データ28aが作成される。展開データ復元部2は成形加工情報30を付与した展開データ28aを記憶部12に記憶させる。  By the above processing, the development data 28a to which the molding processing information 30 is added is created. The expansion data restoration unit 2 stores the expansion data 28a to which the molding processing information 30 is added in the storage unit 12.
 次に、図3に示す3次元モデル復元処理(ステップS212)について図5を参照して説明する。 Next, the three-dimensional model restoration process (step S212) shown in FIG. 3 will be described with reference to FIG.
 3次元モデル復元部3は、曲げ加工NCデータ130が入出力部14に入力されると、これを記憶部12に保存する。また、3次元モデル復元部3は、曲げ加工NCデータ130を保存したことを曲げ加工NCデータ分析部31に通知する。 When the bending NC data 130 is input to the input / output unit 14, the three-dimensional model restoration unit 3 stores the bending NC data 130 in the storage unit 12. Further, the three-dimensional model restoration unit 3 notifies the bending NC data analysis unit 31 that the bending NC data 130 has been saved.
 曲げ加工NCデータ分析部31は、記憶部12に保存された曲げ加工NCデータ130を取得し、データベース40に格納される曲げ金型マスタ150を読み込み、曲げ加工情報300を生成する処理を開始する。 The bending NC data analysis unit 31 acquires the bending NC data 130 stored in the storage unit 12, reads the bending die master 150 stored in the database 40, and starts a process of generating the bending information 300. ..
 曲げ金型マスタ150には、NCコードに対応する曲げ金型のID、ダイV幅、曲げ半径R、加工種別等の情報が登録されている。曲げ加工NCデータ130には、使用される曲げ金型のNCコード、曲げ金型の加工位置座標、曲げ角度、加工原点に対する曲げの向き等の情報が、曲げの工程分含まれる。ここで、加工原点に対する曲げの向きとは、図9に示す通り、始点座標から終点座標を結ぶ曲げ線のX軸に対する向きをいう。 Information such as the ID of the bending die, the die V width, the bending radius R, and the processing type corresponding to the NC code is registered in the bending die master 150. The bending NC data 130 includes information such as the NC code of the bending die used, the machining position coordinates of the bending die, the bending angle, and the bending direction with respect to the machining origin for the bending process. Here, the bending direction with respect to the machining origin means the direction of the bending line connecting the start point coordinates to the end point coordinates with respect to the X axis, as shown in FIG.
 具体的に、曲げ加工NCデータ分析部31は、曲げ加工NCデータ130から必要な情報を抽出し、曲げ金型マスタ150に登録された情報と対応させることによって、図5に示すような曲げ加工情報300を作成する。図示するように、曲げ加工情報300は、曲げ順、曲げ加工に使用される曲げ金型の型番、曲げパターン、加工位置の始点座標と終点座標、曲げ角度等を含む。曲げ加工NCデータ分析部31は、曲げ加工情報300を記憶部12に保存し、流し方向基準補正部32に通知する。 Specifically, the bending NC data analysis unit 31 extracts necessary information from the bending NC data 130 and associates it with the information registered in the bending die master 150 to perform bending as shown in FIG. Information 300 is created. As shown in the figure, the bending processing information 300 includes the bending order, the model number of the bending die used for the bending process, the bending pattern, the start point coordinates and the end point coordinates of the processing position, the bending angle, and the like. The bending NC data analysis unit 31 stores the bending information 300 in the storage unit 12 and notifies the flow direction reference correction unit 32.
 流し方向基準補正部32は、曲げ加工NCデータ分析部31から通知を受けると、抜き加工NCデータ120、曲げ加工NCデータ130、曲げ加工情報300を記憶部12から取得し、流し方向基準補正処理を開始する。 Upon receiving the notification from the bending NC data analysis unit 31, the flow direction reference correction unit 32 acquires the punching NC data 120, the bending NC data 130, and the bending information 300 from the storage unit 12, and performs the flow direction reference correction processing. To start.
 前提として、抜き加工NCデータ120と曲げ加工NCデータ130には、工作機械の機械原点からの距離を予め設定することにより、それぞれの加工原点が定義されている。 As a premise, each machining origin is defined in the punching NC data 120 and the bending NC data 130 by presetting the distance from the machine origin of the machine tool.
 流し方向基準補正部32は、抜き加工NCデータ120と曲げ加工NCデータ130からそれぞれの加工原点の座標値を比較する。加工原点の座標値が異なっている場合、流し方向基準補正部32は、抜き加工NCデータ120と曲げ加工NCデータ130との加工原点の座標の差分値を計算し、曲げ加工情報300の加工位置座標を抜き加工NCの加工位置座標と統一する処理を行う。具体的に、流し方向基準補正部32は、曲げ加工NCデータ130の加工原点の座標(X1、Y1)から抜き加工NCデータ120の加工原点の座標(X2,Y2)を減算し、差分(XD,YD)=(X1-X2,Y1-Y2)を求める。流し方向基準補正部32は、曲げ加工情報300の加工始点位置座標(Xs,Ys)と終点位置座標(Xe、Ye)に、それぞれ、差分(XD,YD)を加算して、抜き加工NCの加工座標と統一する処理を行う。流し方向基準補正部32は、加工位置の始点座標と終点座標を補正した曲げ加工情報300(以下、区別のため300A)を記憶部12に記憶させる。 The flow direction reference correction unit 32 compares the coordinate values of the respective machining origins from the punching NC data 120 and the bending NC data 130. When the coordinate values of the machining origin are different, the flow direction reference correction unit 32 calculates the difference value of the coordinates of the machining origin between the punching NC data 120 and the bending NC data 130, and the machining position of the bending information 300. Extraction processing Performs processing to unify the coordinates with the processing position coordinates of NC. Specifically, the flow direction reference correction unit 32 subtracts the coordinates (X2, Y2) of the machining origin of the punching NC data 120 from the coordinates (X1, Y1) of the machining origin of the bending NC data 130, and the difference (XD). , YD) = (X1-X2, Y1-Y2). The flow direction reference correction unit 32 adds a difference (XD, YD) to the machining start point position coordinates (Xs, Ys) and end point position coordinates (Xe, Ye) of the bending machining information 300, respectively, to perform punching NC. Performs processing that is unified with the processing coordinates. The flow direction reference correction unit 32 stores the bending processing information 300 (hereinafter, 300A for distinction) in which the start point coordinates and the end point coordinates of the processing position are corrected in the storage unit 12.
 曲げ加工情報結合部33は、展開データ復元部2にて作成された展開データ28aと、曲げ加工NCデータ分析部31により作成された曲げ加工情報300Aとを結合する。具体的には、曲げ加工情報結合部33は、展開データ28aが示す展開図に、曲げ加工情報300Aに従って曲げ線を追加し、その曲げ線に曲げ金型の型番、曲げ角度等の情報を付加する処理を行う。 The bending information coupling unit 33 combines the expansion data 28a created by the expansion data restoration unit 2 and the bending information 300A created by the bending NC data analysis unit 31. Specifically, the bending information coupling unit 33 adds a bending line to the development drawing shown by the development data 28a according to the bending information 300A, and adds information such as the model number of the bending die and the bending angle to the bending line. Perform the processing.
 展開図に曲げ線を追加する処理を説明する。曲げ加工情報結合部33は、まず、図9に示すように、展開データ28aが表す展開図に、曲げ向き0°の曲げ線を追加する。なお、曲げ向き0°の曲げ線とは、X軸に平行な曲げ線に相当する。 Explain the process of adding a bending line to the development drawing. First, as shown in FIG. 9, the bending information coupling unit 33 adds a bending line having a bending direction of 0 ° to the development drawing represented by the development data 28a. The bending line having a bending direction of 0 ° corresponds to a bending line parallel to the X-axis.
 より具体的には、曲げ加工情報結合部33は、曲げ金型の加工始点座標(Xs,Ys)と終点座標(Xe,Ye)をプロットする。例えば、図5示す曲げ加工情報の曲げ順1の曲げ加工であれば、曲げ金型の加工始点座標(50,50)と終点座標(480,50)をプロットする。 More specifically, the bending processing information coupling unit 33 plots the processing start point coordinates (Xs, Ys) and end point coordinates (Xe, Ye) of the bending die. For example, in the case of bending in the bending order 1 of the bending information shown in FIG. 5, the machining start point coordinates (50, 50) and end point coordinates (480, 50) of the bending die are plotted.
 曲げ加工情報結合部33は、曲げ金型の加工始点座標(Xs,Ys)と曲げ金型の加工終点座標(Xe,Ye)を繋いだ線が外形線26と交差する複数の交点のうち、曲げ金型の加工始点のX座標Xsより大きく、X値が最小となる交点の座標を、曲げ線の始点座標とする。また、曲げ金型の加工終点のX座標Xeより小さく、X値が最大となる交点の座標を、曲げ線の終点座標とする。曲げ向き0°の曲げ加工が複数回ある場合は、曲げ回数分、本処理を繰り返し、曲げ線を図示する。 The bending information coupling unit 33 is among a plurality of intersections where the line connecting the machining start point coordinates (Xs, Ys) of the bending die and the machining end point coordinates (Xe, Ye) of the bending die intersects the outline line 26. The coordinates of the intersection that is larger than the X coordinate Xs of the processing start point of the bending die and has the minimum X value are set as the start point coordinates of the bending line. Further, the coordinates of the intersection that is smaller than the X coordinate Xe of the processing end point of the bending die and has the maximum X value are set as the end point coordinates of the bending line. If there are multiple bending processes with a bending direction of 0 °, this process is repeated for the number of times of bending, and the bending line is shown.
 次に、曲げ加工情報結合部33は、曲げ向き90°の曲げ線を描く。なお、曲げ向き90°の曲げ線とは、Y軸に平行な曲げ線に相当する。より具体的には、曲げ加工情報結合部33は、曲げ金型の加工始点座標(Xs,Ys)と終点座標(Xe,Ye)をプロットする。例えば、図4に示す曲げ加工情報の曲げ順2の曲げ加工であれば、曲げ金型の加工始点座標(40,50)と終点座標(40,90)をプロットする。曲げ加工情報結合部33は、曲げ金型の加工始点座標(Xs,Ys)と曲げ金型の加工終点座標(Xe,Ye)を繋いだ線が外形線26と交差する複数の交点のうち、曲げ金型の加工始点Y座標Ysより大きく、Y値が最小となる座標を、曲げ線座標始点とする。曲げ金型の加工終点Y座標Yeより小さく、Y値が最大となる座標を、曲げ線の加工終点座標とする。曲げ向き90°の曲げ加工が複数回ある場合は、曲げ回数分、本処理を繰り返す。 Next, the bending information coupling portion 33 draws a bending line with a bending direction of 90 °. The bending line having a bending direction of 90 ° corresponds to a bending line parallel to the Y axis. More specifically, the bending processing information coupling unit 33 plots the processing start point coordinates (Xs, Ys) and end point coordinates (Xe, Ye) of the bending die. For example, in the case of bending in the bending order 2 of the bending information shown in FIG. 4, the processing start point coordinates (40, 50) and end point coordinates (40, 90) of the bending die are plotted. The bending information coupling unit 33 is among a plurality of intersections where the line connecting the machining start point coordinates (Xs, Ys) of the bending die and the machining end point coordinates (Xe, Ye) of the bending die intersects the outline line 26. The coordinates that are larger than the processing start point Y coordinate Ys of the bending die and have the minimum Y value are set as the bending line coordinate start point. The coordinates that are smaller than the machining end point Y coordinate Ye of the bending die and have the maximum Y value are set as the machining end point coordinates of the bending line. If there are multiple bending processes with a bending direction of 90 °, this process is repeated for the number of times of bending.
 曲げ加工情報結合部33は、他の曲げ向き曲げ線がある場合は、その曲げ線にも、同様の処理を行う。 If there is another bending direction bending line, the bending processing information coupling unit 33 performs the same processing on the bending line.
 曲げ加工情報結合部33は、各曲げ線に曲げ加工に使用される金型の型番、曲げ線の位置座標、曲げ角度等の曲げ加工情報300を付加する。 The bending information coupling unit 33 adds bending information 300 such as the model number of the mold used for bending, the position coordinates of the bending line, and the bending angle to each bending line.
 以上の処理をすることで、曲げ線が追加された展開図を示し且つ曲げ加工情報300が付加された展開データ28bが得られる。曲げ加工情報結合部33は、作成した展開データ28bを記憶部12に保存し、3次元モデル作成部34にその旨を通知する。 By performing the above processing, the development data 28b showing the development drawing to which the bending line is added and to which the bending processing information 300 is added can be obtained. The bending information coupling unit 33 stores the created development data 28b in the storage unit 12, and notifies the three-dimensional model creation unit 34 to that effect.
 3次元モデル作成部34は、曲げ加工情報結合部33から通知を受けると、展開データ28bを取得し、データベース40に格納されている曲げ伸び値マスタ160と成形加工形状マスタ190を読み込み、3次元モデルを作成する処理を開始する。 Upon receiving the notification from the bending information coupling unit 33, the three-dimensional model creation unit 34 acquires the expansion data 28b, reads the bending elongation value master 160 and the molding processing shape master 190 stored in the database 40, and three-dimensionally. Start the process of creating a model.
 最初に、3次元モデル作成部34は、展開データ28bから、成形加工情報結合部233により結合された成形加工情報30を読み込み、成形加工の種別情報を取得する。次に、成形加工形状マスタ190から、取得した成形加工の種別に対応する3次元の成形形状を取得して、その成形加工形状を展開データ28bの展開形状に付加する。 First, the three-dimensional model creation unit 34 reads the molding processing information 30 combined by the molding processing information coupling unit 233 from the expansion data 28b, and acquires the molding processing type information. Next, the three-dimensional molding shape corresponding to the acquired type of molding processing is acquired from the molding processing shape master 190, and the molding processing shape is added to the development shape of the development data 28b.
 次に、3次元モデル作成部34は、曲げ加工情報結合部33で作成された曲げ加工情報300に基づき、データベース40に格納される曲げ伸び値マスタ160を参照して、展開形状を立体化する処理を行う。 Next, the three-dimensional model creation unit 34 makes the developed shape three-dimensional with reference to the bending elongation value master 160 stored in the database 40 based on the bending processing information 300 created by the bending processing information coupling unit 33. Perform processing.
 図6に例示するように、曲げ伸び値マスタ160には、被加工物の材質情報、曲げ金型の型番、板厚情報、曲げ角度の条件セットに対応した伸び値が登録されている。3次元モデル作成部34は、曲げ加工の各座標位置に対して、曲げ伸び値マスタ160から伸び値を取得し、曲げのフランジ長さを減算することによって、寸法を計算し、曲げ形状を付加し、3次元モデルを作成する。 As illustrated in FIG. 6, in the bending elongation value master 160, the elongation values corresponding to the material information of the workpiece, the model number of the bending die, the plate thickness information, and the condition set of the bending angle are registered. The 3D model creation unit 34 obtains the elongation value from the bending elongation value master 160 for each coordinate position of the bending process, calculates the dimension by subtracting the bending flange length, and adds the bending shape. And create a 3D model.
 最後に、3次元モデル作成部34は、外形線26の中にある穴形状線27を3次元モデルに付加し、3次元モデルを作成する。 Finally, the 3D model creation unit 34 adds the hole shape line 27 in the outline 26 to the 3D model to create the 3D model.
 以上説明した3次元モデル復元処理に従い出力された3次元モデルは、ステップS102で、設計情報10の通りに抜き金型25を配置できないと判別された場合に、製造に実際に使用された抜き金型の情報及び配置情報を用いて生成されている。すなわち、実際の加工条件を加味して生成されているため、成形品の形状に、加工条件を加味していない設計情報10で定義される3次元モデルよりもより一致する。従って、例えば、図3に示すように、実加工によって得られた成形品の3次元計測を行い(ステップS105)、3次元モデルと成形品の計測データとを対比する検査を行う場合(ステップS106)に、正常な成形品であるにもかかわらず、3次元モデルと異なると判断される等の動作を防止できる。 The 3D model output according to the 3D model restoration process described above is the punch actually used in manufacturing when it is determined in step S102 that the punch die 25 cannot be arranged according to the design information 10. It is generated using type information and placement information. That is, since it is generated in consideration of the actual processing conditions, the shape of the molded product is more consistent than the three-dimensional model defined in the design information 10 in which the processing conditions are not added. Therefore, for example, as shown in FIG. 3, when three-dimensional measurement of the molded product obtained by actual processing is performed (step S105) and inspection is performed to compare the three-dimensional model with the measurement data of the molded product (step S106). ), It is possible to prevent operations such as being judged to be different from the three-dimensional model even though it is a normal molded product.
 従って、例えば、特許文献1に記載の3次元物体検査装置を用いて、復元された3次元モデルと検査対象物の計測データを比較し、検査対象物を同定する処理、検査対象物に対して行うべき検査法を決定する処理、センサおよび照明系の位置、姿勢等を制御する処理などをより適切に実施することが可能となる。 Therefore, for example, using the three-dimensional object inspection apparatus described in Patent Document 1, a process of comparing the restored three-dimensional model with the measurement data of the inspection object and identifying the inspection object, for the inspection object It becomes possible to more appropriately perform a process of determining an inspection method to be performed, a process of controlling the position, posture, etc. of a sensor and a lighting system.
 但し、本処理にて出力された3次元モデルには、設備の加工誤差が含まれている。よって、実際に検査する際は、抜き許容誤差テーブル、曲げ許容誤差テーブルを定義しておき、これらの誤差の範囲内にあるか否かによって、成形品の検査をすることが望ましい。 However, the 3D model output by this process includes equipment processing errors. Therefore, when actually inspecting, it is desirable to define a punching tolerance table and a bending tolerance table, and inspect the molded product depending on whether or not it is within the range of these errors.
 なお、上記の説明では、3次元モデル復元システム1が一つの装置に実装されている場合について説明したが、実装形態はこれに限定されることはない。例えば、3次元モデル復元システム1の各部が別々の装置に実装され、ネットワークで接続されていても良い。 In the above description, the case where the three-dimensional model restoration system 1 is mounted on one device has been described, but the mounting form is not limited to this. For example, each part of the three-dimensional model restoration system 1 may be mounted on a separate device and connected by a network.
 また、3次元モデル復元システム1の3次元モデル復元処理(ステップS203)は、抜き金型を設計情報通りに配置できない場合に行う処理として説明したが、抜き金型を設計情報通りに配置できた場合にも(ステップS102:YES)、実施されてもよい。 Further, the 3D model restoration process (step S203) of the 3D model restoration system 1 has been described as a process to be performed when the extraction die cannot be arranged according to the design information, but the extraction die could be arranged according to the design information. In some cases (step S102: YES), it may be carried out.
 また、3次元モデル復元システム1の機能は、専用のハードウェアによっても、また、通常のコンピュータシステムによっても実現することができる。例えば、上記実施の形態で例示した3次元モデル復元システム1による各機能構成を実現させるためのプログラムを、例えば磁気ディスク、光ディスク、光磁気ディスク、半導体メモリ等の記憶媒体に書き込んで、既存のコンピュータ、情報端末機器等は、記憶媒体に記憶されたプログラムを読み込み、CPUがこれを実行することで、3次元モデル復元システムとして機能させることができる。また、本開示に係る3次元モデル復元方法は、3次元モデル復元システム1を用いて実施できる。 Further, the function of the 3D model restoration system 1 can be realized by dedicated hardware or by a normal computer system. For example, an existing computer is written by writing a program for realizing each functional configuration by the three-dimensional model restoration system 1 illustrated in the above embodiment to a storage medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory. The information terminal device or the like can function as a three-dimensional model restoration system by reading a program stored in a storage medium and executing the program by the CPU. Further, the three-dimensional model restoration method according to the present disclosure can be carried out by using the three-dimensional model restoration system 1.
 また、このようなプログラムの適用方法は任意である。プログラムを、例えば、コンピュータが読取可能な記録媒体(CD-ROM(Compact Disc Read-Only Memory)、DVD(Digital Versatile Disc)、MO(Magneto Optical disc)等)に格納して適用できる他、インターネット上のストレージにプログラムを格納しておき、これをダウンロードさせることにより適用することもできる。 Also, the method of applying such a program is arbitrary. The program can be stored and applied on a computer-readable recording medium (CD-ROM (Compact Disk Ready-Only Memory), DVD (Digital Versaille Disc), MO (Magnet Optical disk), etc.), or on the Internet. It is also possible to apply by storing the program in the storage of and downloading it.
 なお、本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この開示を説明するためのものであり、本開示の範囲を限定するものではない。即ち、本開示の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、この開示の範囲内とみなされる。 It should be noted that the present disclosure allows various embodiments and modifications without departing from the broad spirit and scope of the present disclosure. Moreover, the above-described embodiment is for explaining this disclosure, and does not limit the scope of the present disclosure. That is, the scope of the present disclosure is indicated not by the embodiment but by the claims. And various modifications made within the scope of the claims and within the equivalent meaning of disclosure are considered to be within the scope of this disclosure.
 本出願は、2019年5月28日に出願された、日本国特許出願特願2019-099220号に基づく。本明細書中に日本国特許出願特願2019-099220号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2019-099220, which was filed on May 28, 2019. The specification, claims, and the entire drawing of Japanese Patent Application No. 2019-099220 shall be incorporated into this specification as a reference.
 1 3次元モデル復元システム、2 展開データ復元部、3 3次元モデル復元部、4 3次元モデル、10 設計情報、11 CPU、12 記憶部、13 通信部、14 入出力部、21 抜き加工NCデータ分析部、22 金型配置部、23 展開データ作成部、24 ワーク、25 抜き金型、25a 外形抜き金型、25b 穴抜き金型、26 外形線、27 穴形状線、28 展開図データ、28a、28b 展開データ、29 金型配置図、30 成形加工情報、31 曲げ加工NCデータ分析部、32 流し方向基準補正部、33 曲げ加工情報結合部、34 3次元モデル作成部、40 データベース、50 表示装置、51 入力装置、52 出力装置、53 外部記憶装置、60 CADシステム、99 内部バス、110 ネットワーク、120 抜き加工NCデータ、130 曲げ加工NCデータ、140 抜き金型マスタ、150 曲げ金型マスタ、160 曲げ伸び値マスタ、170 抜き許容誤差テーブル、180 曲げ許容誤差テーブル、190 成形加工形状マスタ、200 抜き加工情報、231 外形線作図部、232 穴形状作図部、233 成形加工情報結合部、300 曲げ加工情報、400 製造システム、410 抜き加工用工作機械、420 曲げ加工用工作機械、430 計測装置、440 検査装置。 1 3D model restoration system, 2 Deployment data restoration unit, 3 3D model restoration unit, 4 3D model, 10 design information, 11 CPU, 12 storage unit, 13 communication unit, 14 input / output unit, 21 punching NC data Analysis unit, 22 mold placement unit, 23 development data creation unit, 24 workpieces, 25 punching mold, 25a outer punching mold, 25b drilling mold, 26 outer line, 27 hole shape line, 28 development drawing data, 28a , 28b development data, 29 mold layout, 30 molding processing information, 31 bending NC data analysis unit, 32 flow direction reference correction unit, 33 bending information coupling unit, 34 3D model creation unit, 40 database, 50 display Device, 51 input device, 52 output device, 53 external storage device, 60 CAD system, 99 internal bus, 110 network, 120 punching NC data, 130 bending NC data, 140 punching die master, 150 bending die master, 160 Bending elongation master, 170 Punching tolerance table, 180 Bending tolerance table, 190 Molding shape master, 200 Punching information, 231 Outline drawing part, 232 Hole shape drawing part, 233 Molding processing information coupling part, 300 Bending Machining information, 400 manufacturing system, 410 punching machine, 420 bending machine, 430 measuring device, 440 inspection device.

Claims (8)

  1.  抜き加工NCデータに基づいて、展開データを作成する展開データ復元部と、
     曲げ加工NCデータと前記展開データとに基づいて、3次元モデルを作成する3次元モデル復元部と、
     を備える3次元モデル復元システムであって、
     前記展開データ復元部は、
     抜き加工NCデータから抜き加工情報を作成する抜き加工NCデータ分析部と、
     前記抜き加工情報に基づいて、抜き金型を座標位置に配置した金型配置図を作成する金型配置部と、
     前記金型配置図に基づいて展開データを作成する展開データ作成部と、
     を備え、
     前記3次元モデル復元部は、
     曲げ加工NCデータから、曲げ加工情報を作成する曲げ加工NCデータ分析部と、
     前記曲げ加工情報と曲げ線とを、前記展開データに結合する曲げ加工情報結合部と、
     前記曲げ加工情報と前記曲げ線とが付与された前記展開データに基づいて3次元モデルを作成する3次元モデル作成部と、
     を備える3次元モデル復元システム。
    Extraction data restoration unit that creates expansion data based on punching NC data,
    A 3D model restoration unit that creates a 3D model based on the bending NC data and the development data, and
    It is a 3D model restoration system equipped with
    The expanded data restoration unit
    Punching NC data analysis unit that creates punching information from NC data,
    Based on the punching processing information, a die arranging unit for creating a die arranging diagram in which the dies are arranged at coordinate positions, and
    A deployment data creation unit that creates deployment data based on the mold layout, and
    With
    The three-dimensional model restoration unit
    Bending processing NC data analysis unit that creates bending processing information from bending processing NC data,
    A bending information coupling portion that combines the bending information and the bending line with the development data,
    A 3D model creation unit that creates a 3D model based on the development data to which the bending processing information and the bending line are added.
    3D model restoration system with.
  2.  前記展開データ作成部は、
     前記金型配置図に配置された外形抜き金型によって形成される閉じられた領域の内側輪郭線を外形線として作図する外形線作図部と、
     前記金型配置図に配置された穴抜き金型の外形を穴形状として作図する穴形状作図部と、
     成形加工情報を前記展開データに結合する成形加工情報結合部と、
     を備える請求項1に記載の3次元モデル復元システム。
    The expansion data creation unit
    An outline drawing unit that draws the inner contour line of the closed area formed by the outer shape punching die arranged in the mold arrangement drawing as an outer line.
    A hole shape drawing unit that draws the outer shape of the drilling die arranged in the mold layout drawing as a hole shape, and
    A molding processing information coupling unit that combines molding processing information with the development data,
    The three-dimensional model restoration system according to claim 1.
  3.  前記3次元モデル復元部は、
     抜き加工NCデータと曲げ加工NCデータとにそれぞれ定義された加工原点の座標値を取得し、前記曲げ加工NCデータに定義された加工原点の座標値と前記抜き加工NCデータに定義された加工原点の座標値の差分に基づいて、前記曲げ加工情報の加工位置座標を補正する流し方向基準補正部をさらに有する、
     請求項1又は2に記載の3次元モデル復元システム。
    The three-dimensional model restoration unit
    The coordinate values of the machining origin defined in the punching NC data and the bending NC data are acquired, and the coordinate values of the machining origin defined in the bending NC data and the machining origin defined in the punching NC data. Further has a flow direction reference correction unit that corrects the processing position coordinates of the bending processing information based on the difference of the coordinate values of.
    The three-dimensional model restoration system according to claim 1 or 2.
  4.  請求項1から3のいずれか1項に係る3次元モデル復元システムと、
     前記3次元モデル復元システムにより生成された3次元モデルと、NCデータに基づいて製造された検査対象物の外観検査データとを比較して検査を行う検査手段と、
     を備える検査装置。
    The 3D model restoration system according to any one of claims 1 to 3 and
    An inspection means for inspecting by comparing the three-dimensional model generated by the three-dimensional model restoration system with the appearance inspection data of the inspection object manufactured based on the NC data.
    Inspection device equipped with.
  5.  設計情報により指定された通りに抜き金型を配置することが可能か否かを判別する配置可否判別手段をさらに備え、
     前記検査手段は、
     前記配置可否判別手段が配置可能と判別した場合には、前記設計情報に基づいて生成された3次元モデルを比較対象として使用し、
     前記配置可否判別手段が配置できないと判別した場合には、前記3次元モデル復元システムにより生成された3次元モデルを比較対象として使用する、
     請求項4に記載の検査装置。
    Further equipped with an arrangement possibility determination means for determining whether or not it is possible to arrange the punching die as specified by the design information.
    The inspection means
    When the dispositionability determination means determines that the dispositionability is possible, the three-dimensional model generated based on the design information is used as a comparison target.
    When it is determined that the dispositionability determination means cannot be arranged, the three-dimensional model generated by the three-dimensional model restoration system is used as a comparison target.
    The inspection device according to claim 4.
  6.  設計情報により指定された通りに抜き金型を配置することが可能か否かを判別する配置可否判別手段と、
     前記配置可否判別手段が配置可能と判別した場合には、前記設計情報に基づいてNCデータを生成する手段と、
     前記配置可否判別手段が配置可能と判別した場合には、前記設計情報とは異なる仕様でNCデータを生成する手段と、
     をさらに備える請求項4に記載の検査装置。
    Placement possibility determination means for determining whether or not it is possible to arrange the punching die as specified by the design information, and
    When it is determined that the dispositionability determination means can be arranged, the means for generating NC data based on the design information and the means for generating NC data
    When the dispositionability determination means determines that the dispositionability is possible, a means for generating NC data with specifications different from the design information and a means for generating NC data.
    The inspection device according to claim 4, further comprising.
  7.  展開データ復元部と、3次元モデル復元部と、を備える3次元モデル復元システムによる3次元モデル復元方法であって、
     前記展開データ復元部が、抜き加工NCデータに基づいて、展開データを作成する展開データ復元ステップと、
     前記3次元モデル復元部が、曲げ加工NCデータと前記展開データとに基づいて、3次元モデルを作成する3次元モデル復元ステップと、
     を備える3次元モデル復元方法。
    It is a 3D model restoration method by a 3D model restoration system including an expansion data restoration unit and a 3D model restoration unit.
    The expansion data restoration unit creates expansion data based on the punching NC data, and the expansion data restoration step.
    A 3D model restoration step in which the 3D model restoration unit creates a 3D model based on the bending NC data and the development data.
    A three-dimensional model restoration method including.
  8.  コンピュータに、
     抜き加工NCデータから展開データを作成し、
     曲げ加工NCデータと前記展開データとから、3次元モデルを作成する、
     処理を実行させるプログラム。
    On the computer
    Create expansion data from punching NC data and
    A three-dimensional model is created from the bending NC data and the development data.
    A program that executes processing.
PCT/JP2020/020892 2019-05-28 2020-05-27 Three-dimensional model recovery system, three-dimensional model recovery method, inspection device, and program WO2020241676A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021522805A JP7337154B2 (en) 2019-05-28 2020-05-27 3D model restoration system, 3D model restoration method, inspection device and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019099220 2019-05-28
JP2019-099220 2019-05-28

Publications (1)

Publication Number Publication Date
WO2020241676A1 true WO2020241676A1 (en) 2020-12-03

Family

ID=73552259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020892 WO2020241676A1 (en) 2019-05-28 2020-05-27 Three-dimensional model recovery system, three-dimensional model recovery method, inspection device, and program

Country Status (2)

Country Link
JP (1) JP7337154B2 (en)
WO (1) WO2020241676A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219341A (en) * 1998-06-05 2001-08-14 Amada Co Ltd Joint support system of working sheet metal
JP2002207504A (en) * 2001-01-11 2002-07-26 Mori Seiki Co Ltd Method and apparatus for producing three-dimensional shape data

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355737A (en) * 1998-06-29 2002-12-10 Amada Metrecs Co Ltd Sheet metal data management system and storage medium storing sheet metal data management program
JP4755779B2 (en) * 2001-07-31 2011-08-24 株式会社アマダ 3D inspection and utilization method for sheet metal products and its system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219341A (en) * 1998-06-05 2001-08-14 Amada Co Ltd Joint support system of working sheet metal
JP2002207504A (en) * 2001-01-11 2002-07-26 Mori Seiki Co Ltd Method and apparatus for producing three-dimensional shape data

Also Published As

Publication number Publication date
JPWO2020241676A1 (en) 2021-11-25
JP7337154B2 (en) 2023-09-01

Similar Documents

Publication Publication Date Title
JP3338373B2 (en) Sheet metal processing integrated support system
US8090557B2 (en) Quality assurance method when operating an industrial machine
US8086019B2 (en) Method of creating master data used for inspecting concave-convex figure
JP5238465B2 (en) Pattern shape evaluation method and pattern shape evaluation apparatus using the same
US6735489B1 (en) Horizontally structured manufacturing process modeling
CN110440739B (en) Dimension measuring method for matching relation of automobile outer covering parts
US7421363B2 (en) Method for virtual inspection of virtually machined parts
US10852709B2 (en) Machine tool certification for part specific working volume
WO2020241676A1 (en) Three-dimensional model recovery system, three-dimensional model recovery method, inspection device, and program
CN115812181A (en) Method and device for repairing a workpiece
JP2005199567A (en) Mold correction system, its device, mold correction method, recording medium, and program
JPH05127730A (en) Interference check device for numerically controlled machine tool
JP5062747B2 (en) Mold manufacturing apparatus and mold manufacturing method
Sulaiman et al. Integrated Interface Development Environment using STEP Universal Data Structure
Wang et al. A new approach for FEM simulation of NC machining processes
JP3056397B2 (en) Method for creating intermediate structure shape design data and method for creating tool path data
US6681144B1 (en) Process and system for working a workpiece through numerically controlled machine tools
JPH09150347A (en) Machining action simulation method
KR100737018B1 (en) Method for manufacturing a vehicle body welding jig
Inui et al. Milling Simulation-Based Method to Evaluate Manufacturability of Machine Parts
JP2006187816A (en) Method of producing optical product or mold for molding optical product
JP5892846B2 (en) Processing simulation apparatus and method
US20240161269A1 (en) System and method for identifying geometric feature associations for 3d models
JP3925506B2 (en) CAD / CAM equipment
US20240019848A1 (en) System and method for developing a numerical control manufacturing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814873

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522805

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814873

Country of ref document: EP

Kind code of ref document: A1