WO2020241642A1 - Cured film formation composition, alignment member, and retardation member - Google Patents

Cured film formation composition, alignment member, and retardation member Download PDF

Info

Publication number
WO2020241642A1
WO2020241642A1 PCT/JP2020/020754 JP2020020754W WO2020241642A1 WO 2020241642 A1 WO2020241642 A1 WO 2020241642A1 JP 2020020754 W JP2020020754 W JP 2020020754W WO 2020241642 A1 WO2020241642 A1 WO 2020241642A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
cured film
liquid crystal
forming composition
Prior art date
Application number
PCT/JP2020/020754
Other languages
French (fr)
Japanese (ja)
Inventor
直也 西村
伊藤 潤
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2021522786A priority Critical patent/JP7569016B2/en
Priority to CN202080038503.1A priority patent/CN113874470A/en
Priority to KR1020217038911A priority patent/KR20220012859A/en
Publication of WO2020241642A1 publication Critical patent/WO2020241642A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/23Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a cured film forming composition, an alignment material and a retardation material.
  • a retardation material is usually arranged on a display element such as a liquid crystal panel that forms an image.
  • a display element such as a liquid crystal panel that forms an image.
  • a plurality of two types of retardation regions having different retardation characteristics are regularly arranged to form a patterned retardation material.
  • a retardation material patterned so as to arrange a plurality of retardation regions having different retardation characteristics is referred to as a patterned retardation material.
  • the patterned retardation material can be produced, for example, by optically patterning a retardation material made of a polymerizable liquid crystal, as disclosed in Patent Document 1.
  • the optical patterning of a retardation material composed of a polymerizable liquid crystal utilizes a photoalignment technique known for forming an alignment material for a liquid crystal panel. That is, a coating film made of a photo-oriented material is provided on a substrate, and two types of polarized light having different polarization directions are irradiated on the coating film. Then, a photoalignment film is obtained as an alignment material in which two types of liquid crystal alignment regions having different orientation control directions of the liquid crystal are formed.
  • a solution-like retardation material containing a polymerizable liquid crystal is applied onto the photoalignment film to realize the orientation of the polymerizable liquid crystal. Then, the oriented polymerizable liquid crystal is cured to form a patterned retardation material.
  • the antireflection film of the organic EL display is composed of a linear polarizing plate and a 1/4 wavelength retardation plate, and the external light directed to the panel surface of the image display panel is converted into linear polarized light by the linear polarizing plate, followed by 1/4 wavelength. It is converted to circularly polarized light by the retardation plate.
  • the external light due to this circular polarization is reflected by the surface of the image display panel or the like, but the rotation direction of the polarizing surface is reversed during this reflection.
  • this reflected light is converted from the 1/4 wavelength retardation plate to linearly polarized light in the direction shaded by the linear polarizing plate, and then shielded by the subsequent linear polarizing plate, contrary to the time of arrival. As a result, the emission to the outside is remarkably suppressed.
  • Patent Document 2 describes that the optical film has inverse dispersion characteristics by forming a 1/4 wavelength retardation plate by combining a 1/2 wavelength plate and a 1/4 wavelength plate.
  • the method of constructing by is proposed. In the case of this method, in a wide wavelength band used for displaying a color image, a liquid crystal material having a positive dispersion characteristic can be used to form an optical film having a reverse dispersion characteristic.
  • Patent Documents 3 and 4 As a liquid crystal material applicable to this retardation layer, a material having a reverse dispersion characteristic has been proposed (Patent Documents 3 and 4). According to the liquid crystal material having such a reverse dispersion characteristic, instead of forming a 1/4 wavelength retardation plate by combining a 1/2 wavelength plate and a 1/4 wavelength plate to form a 1/4 wavelength retardation plate by two retardation layers, a retardation layer is used. Can be configured with a single layer to ensure inverse dispersion characteristics, whereby an optical film capable of securing a desired phase difference in a wide wavelength band can be realized with a simple configuration.
  • An alignment layer is used to orient the liquid crystal.
  • a method for forming an alignment layer for example, a rubbing method and a photo-alignment method are known.
  • the photo-alignment method does not generate static electricity or dust, which is a problem of the rubbing method, and can quantitatively control the alignment process. Is useful in.
  • acrylic resin, polyimide resin, etc. which have photodimerization sites such as a cinnamoyl group and a chalcone group in the side chain, are known as usable photo-orientation materials. It has been reported that these resins exhibit the ability to control the orientation of liquid crystals (hereinafter, also referred to as liquid crystal orientation) by irradiating with polarized UV (see Patent Documents 5 to 7).
  • the alignment layer is required to have solvent resistance as well as liquid crystal alignment ability.
  • the alignment layer may be exposed to heat or a solvent during the manufacturing process of the retardation material. When the alignment layer is exposed to a solvent, the liquid crystal alignment ability may be significantly reduced.
  • Patent Document 8 in order to obtain a stable liquid crystal alignment ability, a liquid crystal aligning agent containing a polymer component having a structure capable of a cross-linking reaction by light and a structure cross-linked by heat, and light are used.
  • a liquid crystal alignment agent containing a polymer component having a structure capable of a cross-linking reaction and a compound having a structure cross-linked by heat has been proposed.
  • the retardation material is formed by laminating a layer of a cured polymerizable liquid crystal on a photoalignment film which is an alignment material. Therefore, it is necessary to develop an alignment material capable of achieving both excellent liquid crystal orientation and solvent resistance.
  • an acrylic resin having a photodimerization site such as a cinnamoyl group or a chalcone group in the side chain does not have sufficient characteristics when applied to the formation of a retardation material. ing.
  • a large amount of polarized UV exposure is required.
  • the polarized UV exposure amount is much larger than the polarized UV exposure amount (for example, about 30 mJ / cm 2 ) sufficient to orient the liquid crystal for a normal liquid crystal panel.
  • the reason why the amount of polarized UV exposure increases is that in the case of retardation material formation, unlike the liquid crystal for liquid crystal panels, the polymerizable liquid crystal is used in a solution state and is applied on the alignment material. There is.
  • an alignment material is formed using an acrylic resin or the like having a photodimerization site such as a cinnamoyl group in the side chain to orient a polymerizable liquid crystal
  • the acrylic resin or the like is photocrosslinked by a photodimerization reaction. .. Then, it is necessary to perform polarized irradiation with a large exposure amount until resistance to the polymerizable liquid crystal solution is developed.
  • liquid crystal ink a film having low resistance to the organic solvent may be used as the substrate, and for the purpose of protecting the film, an alignment film having high solvent resistance is used. It has been demanded.
  • a photo-alignment technique capable of improving the orientation sensitivity of the alignment material and reducing the amount of polarized UV exposure, and a cured film forming composition that can be used as a liquid crystal alignment agent for photo-alignment used for forming the alignment material are required. Has been done. Then, there is a demand for a technique capable of providing a retardation material with high efficiency.
  • an object of the present invention is to have excellent orientation sensitivity, excellent orientation uniformity, resistance to a solvent in a liquid crystal solution even if it is a thin film, and also as a protective layer for protecting a film substrate.
  • the purpose of the present invention is to provide a cured film forming composition that can be used as a liquid crystal alignment agent for photoalignment to provide a functional alignment material.
  • the first aspect of the present invention is (A) A compound having a photo-oriented group and one substituent selected from the group consisting of a hydroxy group, a carboxyl group and an amino group. (B) Containing a polymer obtained by polymerizing a monomer containing at least an N-alkoxymethyl (meth) acrylamide compound, and (C) containing a polymer obtained by polymerizing a monomer containing at least an N-hydroxyalkyl (meth) acrylamide compound.
  • the present invention relates to a cured film-forming composition.
  • the photooriented group of the component (A) is a functional group having a structure of photodimerification or photoisomerization.
  • the light of the component (A) The orientation group is preferably a cinnamoyl group.
  • the photooriented group of the component (A) is a group having an azobenzene structure.
  • the component (E) further contains an adhesion improving component.
  • the total amount of the component (B) and the component (C) is preferably 100 to 3000 parts by mass based on 100 parts by mass of the component (A).
  • the mass ratio of the component (B) to the component (C) is preferably 1:99 to 99: 1.
  • the second aspect of the present invention relates to an alignment material obtained by using the cured film forming composition of the first aspect of the present invention.
  • a third aspect of the present invention relates to a retardation material, which is formed by using a cured film obtained from the cured film forming composition of the first aspect of the present invention.
  • the present invention has excellent orientation sensitivity, excellent orientation uniformity, resistance to a solvent in a liquid crystal solution even if it is a thin film, and protection for protecting a film substrate.
  • a cured film-forming composition for providing an alignment material that can also function as a layer can be provided.
  • the second aspect of the present invention has excellent orientation sensitivity, excellent orientation uniformity, resistance to a solvent in a liquid crystal solution even if it is a thin film, and protection for protecting a film substrate.
  • An alignment material that can also function as a layer can be provided.
  • the third aspect of the present invention it is possible to provide a retardation material which can be formed on a film substrate with high efficiency and can be optically patterned.
  • the cured film-forming composition of the present invention is a compound having a photo-oriented group which is a component (A) and one substituent selected from the group consisting of a hydroxy group, a carboxyl group and an amino group (hereinafter, "low molecular weight”). It is also described as “photo-alignment component”), a polymer obtained by polymerizing a monomer containing at least an N-alkoxymethyl (meth) acrylamide compound which is a component (B), and at least N-hydroxyalkyl which is a component (C) (C). Meta) Contains a polymer obtained by polymerizing a monomer containing an acrylamide compound.
  • the cured film-forming composition of the present invention further improves the adhesion of the cured film as a component (D), a cross-linking catalyst, and a component (E). It can also contain a component that causes it. Then, other additives can be contained as long as the effects of the present invention are not impaired.
  • the component (A) contained in the cured film-forming composition of the present invention is the above-mentioned low-molecular-weight photoalignment component.
  • the low-molecular-weight photo-oriented component (A) is a compound having a photo-oriented group and one substituent selected from the group consisting of a hydroxy group, a carboxyl group and an amino group.
  • the photo-oriented group reacts with light to make hydrophobic light.
  • An oriented portion is formed, and a hydroxy group or the like constitutes a hydrophilic thermal reaction portion.
  • the photo-oriented group refers to a functional group having a structural site that undergoes photodimerization or photoisomerization.
  • the photodimerizable structural site is a site that forms a dimer by light irradiation, and specific examples thereof include a cinnamoyl group, a chalcone group, a coumarin group, and an anthracene group. Of these, a cinnamoyl group having high transparency and photodimerization reactivity in the visible light region is preferable.
  • the structural site that photoisomerizes refers to a structural site that changes into a cis form and a trans form by light irradiation, and specific examples thereof include a site having an azobenzene structure, a stilbene structure, and the like. Of these, the azobenzene structure is preferable because of its high reactivity.
  • a compound having a photo-oriented group and a hydroxy group is represented by, for example, the following formula.
  • a 1 and A 2 independently represent a hydrogen atom or a methyl group
  • X 1 is a single bond, an ether bond, an ester bond, an amide bond, a urethane bond, amino bond
  • an alkylene group having 1 to 18 carbon atoms, a phenylene group, a biphenylene group, or 1 to 3 groups selected from a combination thereof are bonded via one or more bonds selected from a combination thereof.
  • X 2 represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 18 carbon atoms, a phenyl group, a biphenyl group or a cyclohexyl group.
  • the alkyl group, phenyl group, biphenyl group and cyclohexyl group having 1 to 18 carbon atoms may be bonded to the benzene ring via a covalent bond, an ether bond, an ester bond, an amide bond or a urea bond.
  • X 5 represents a hydroxy group, a carboxyl group, an amino group or an alkoxysilyl group.
  • X represents a single bond, an oxygen atom or a sulfur atom.
  • X 6 represents a hydroxy group, a mercapto group, an alkoxy group having 1 to 10 carbon atoms, an alkylthio group having 1 to 10 carbon atoms, a phenyl group, a phenoxy group or a biphenoxy group.
  • X 7 is a single bond, an alkylene group having 1 to 20 carbon atoms, a divalent group obtained by removing two hydrogen atoms from an aromatic ring, or a divalent group obtained by removing two hydrogen atoms from an aliphatic ring. Represent.
  • the alkylene group having 1 to 20 carbon atoms may be branched or linear.
  • the phenylene group, the phenyl group, the biphenylene group, the biphenyl group, the phenoxy group and the biphenoxy group are alkyl groups having 1 to 4 carbon atoms, alkoxy groups having 1 to 4 carbon atoms, halogen atoms, and the like. It may be substituted with the same or different substituents selected from the trifluoromethyl group and the cyano group.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are independently hydrogen atoms, alkyl groups having 1 to 4 carbon atoms, and 1 carbon atom, respectively. Represents 4 to 4 alkoxy groups, halogen atoms, trifluoromethyl groups or cyano groups.
  • alkyl group having 1 to 18 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group and n-pentyl.
  • Examples of the alkylene group having 1 to 18 carbon atoms include a divalent group obtained by removing one hydrogen atom from the above-mentioned alkyl group.
  • Examples of the alkyl group having 1 to 4 carbon atoms include the group having the corresponding carbon atom number among the groups listed above.
  • the alkoxy group having 1 to 10 carbon atoms, the alkoxy group having 1 to 4 carbon atoms, and the alkylthio group having 1 to 10 carbon atoms include the above-mentioned alkyl group oxylated or thiolated. The group having the corresponding number of carbon atoms can be mentioned.
  • the alkylene group having 1 to 20 carbon atoms includes the alkyl group and a divalent group obtained by removing one hydrogen atom from an alkyl group having 1 to 20 carbon atoms such as an n-nonadesyl group and an n-eicosyl group. Can be mentioned.
  • Specific examples of the compound having a photoorientating group and a hydroxy group which are the components (A), include 4- (8-hydroxyoctyloxy) silicic acid methyl ester and 4- (6-hydroxyhexyloxy) kei. Methyl Ester, 4- (4-Hydroxybutyloxy) Methyl Ceramic Acid, 4- (3-Hydroxypropyloxy) Methyl Ceramic Acid, 4- (2-Hydroxyethyloxy) Methyl Ceramic Acid, 4-Hydroxymethyloxy silicate methyl ester, 4-hydroxysilicic acid methyl ester, 4- (8-hydroxyoctyloxy) silicate ethyl ester, 4- (6-hydroxyhexyloxy) silicate ethyl ester, 4- (4-Hydroxybutyloxy) silicic acid ethyl ester, 4- (3-hydroxypropyloxy) silicic acid ethyl ester, 4- (2-hydroxyethyloxy) silicic acid
  • the compound having a photoorientation group and a carboxyl group include cinnamic acid, ferulic acid, 4-nitrocinnamic acid, 4-methoxycinnamic acid, 3,4-dimethoxycinnamic acid, and coumarin-3. -Carboxylic acid, 4- (dimethylamino) cinnamic acid and the like can be mentioned.
  • Specific examples of the compound having a photo-oriented group and an amino group include methyl 4-aminosilicate, ethyl 4-aminosilicate, methyl 3-aminosilicate, ethyl 3-aminosilicate and the like. Can be mentioned.
  • the low-molecular-weight photoalignment component (A) can be given the above specific examples, but is not limited thereto.
  • the low-molecular-weight photo-oriented component (A) is a compound having a photo-oriented group and a hydroxy group
  • two or more photo-oriented groups and two or more photo-oriented groups are contained in the molecule as the component (A).
  • a compound having two or more hydroxy groups can be used.
  • the component (A) a compound having two or more photo-oriented groups with one hydroxy group in the molecule, or two or more hydroxy groups with one photo-oriented group in the molecule. It is possible to use a compound having two or more photo-oriented groups and two or more hydroxy groups in the molecule.
  • a compound represented by the following formula can be shown as an example.
  • the cured film forming composition of the present invention can form an alignment material having high photoreaction efficiency as a cured film.
  • the compound of the component (A) in the cured film forming composition of the present invention there are a plurality of types having a photoorienting group and one substituent selected from the group consisting of a hydroxy group, a carboxyl group and an amino group. It may be a mixture of the compounds of.
  • the component (B) contained in the cured film-forming composition of the present invention is a polymer obtained by polymerizing a monomer containing at least an N-alkoxymethyl (meth) acrylamide compound.
  • N-alkoxymethyl (meth) acrylamide means both N-alkoxymethylacrylamide and N-alkoxymethylmethacrylamide.
  • Examples of such a polymer include a polymer obtained by copolymerizing an N-alkoxymethyl (meth) acrylamide compound alone or with a copolymerizable monomer.
  • Examples of such a polymer include poly (N-butoxymethylacrylamide), poly (N-ethoxymethylacrylamide), poly (N-methoxymethylacrylamide), a copolymer of N-butoxymethylacrylamide and styrene, and N.
  • the method for obtaining the polymer as the component (B) used in the present invention is not particularly limited, but for example, a solvent in which an N-alkoxymethyl (meth) acrylamide compound, a optionally copolymerizable monomer, a polymerization initiator and the like coexist. It is obtained by subjecting it to a polymerization reaction at a temperature of 50 to 110 ° C. At that time, the solvent used is not particularly limited as long as it dissolves an N-alkoxymethyl (meth) acrylamide compound, a optionally copolymerizable monomer, a polymerization initiator and the like. Specific examples will be described in ⁇ Solvent> described later.
  • the polymer obtained by the above method is usually in the state of a solution dissolved in a solvent.
  • the polymer solution obtained by the above method is poured into diethyl ether or water under stirring to precipitate, and the resulting precipitate is filtered and washed, and then dried or heated at room temperature under normal pressure or reduced pressure. It can be dried to a polymer powder.
  • the polymerization initiator and the unreacted monomer coexisting with the polymer can be removed, and as a result, a purified polymer powder is obtained. If the powder cannot be sufficiently purified by one operation, the obtained powder may be redissolved in a solvent and the above operation may be repeated.
  • the polymer as the component (B) may be used in the form of a powder, or in the form of a solution in which the purified powder is redissolved in a solvent described later.
  • the polymer as the component (B) may be a mixture of a plurality of types of polymers.
  • the amount of the copolymerizable monomer used is used to produce the polymer of the component (B). Based on the total number of moles of the monomers used, it is preferably 1 mol% to 200 mol%, more preferably 10% to 100 mol%.
  • the weight average molecular weight of the polymer as the component (B) is 1,000 to 500,000, preferably 2,000 to 200,000, and more preferably 3,000 to 150,000. Yes, more preferably 3,000 to 50,000.
  • the weight average molecular weight is a value obtained by gel permeation chromatography (GPC) using polystyrene as a standard sample.
  • the polymers of the component (B) can be used alone or in combination of two or more.
  • the component (C) is a polymer obtained by polymerizing a monomer containing at least an N-hydroxyalkyl (meth) acrylamide compound.
  • N-hydroxyalkyl (meth) acrylamide means both N-hydroxyalkylacrylamide and N-hydroxyalkylmethacrylamide.
  • the N-alkoxymethyl group of the component (B) reacts with the hydroxy group of the component (C) to form a bond.
  • the coating film becomes strong and solvent resistance is acquired.
  • N-hydroxyalkyl (meth) acrylamide compound examples include N- (2-hydroxyethyl) acrylamide, N- (2-hydroxyethyl) methacrylamide, N- (2-hydroxypropyl) acrylamide, and N- (2-hydroxypropyl).
  • a monomer other than the above N-hydroxyalkyl (meth) acrylamide compound (hereinafter, also referred to as “other monomer”) may be copolymerized.
  • the amount of the other monomers used is the number of moles of the monomers used in producing the polymer of the component (C). Based on the total, it is preferably 30 mol% to 90 mol%, more preferably 30% to 70 mol%.
  • Examples of other monomers include industrially available monomers capable of radical polymerization.
  • monomers include unsaturated carboxylic acids, acrylic acid ester compounds, methacrylic acid ester compounds, amide group-containing monomers, maleimide compounds, acrylonitrile, maleic anhydride, styrene compounds and vinyl compounds.
  • unsaturated carboxylic acid examples include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
  • acrylic acid ester compound examples include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, and tert-.
  • methacrylic acid ester compound examples include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate and tert-.
  • amide group-containing monomer examples include N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, and N-butyl.
  • vinyl compound examples include vinyl ether, methyl vinyl ether, benzyl vinyl ether, vinylnaphthalene, vinyl anthracene, vinyl biphenyl, vinyl carbazole, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether and the like.
  • styrene compound examples include styrene, methylstyrene, chlorostyrene, bromostyrene and the like.
  • maleimide compound examples include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
  • acrylonitrile compound examples include acrylonitrile.
  • the method for obtaining the polymer as the component (C) used in the present invention is not particularly limited, but in the method for producing the polymer as the component (B), N-hydroxyalkyl (instead of the N-alkoxymethyl (meth) acrylamide compound) ( A meta) acrylamide compound may be used.
  • the weight average molecular weight of the polymer as the component (C) is 1,000 to 500,000, preferably 2,000 to 200,000, and more preferably 3,000 to 150,000. Yes, more preferably 3,000 to 100,000.
  • the weight average molecular weight is a value obtained by gel permeation chromatography (GPC) using polystyrene as a standard sample.
  • the polymers of the component (C) can be used alone or in combination of two or more.
  • the content of the polymer which is the component (B) and the polymer which is the component (C) in the cured film forming composition of the present invention is based on 100 parts by mass of the component (A), and the component (B) and the component (C).
  • the total amount with the components is preferably 100 to 3000 parts by mass, more preferably 200 to 2500 parts by mass, and particularly preferably 300 to 2000 parts by mass.
  • the mass ratio of the component (B) to the component (C) is preferably 1:99 to 99: 1, more preferably 5:95 to 95: 5, and 10:90 to 90: 5. It is particularly preferable to be 10.
  • the cured film-forming composition of the present invention can further contain a cross-linking catalyst as a component (D) in addition to the components (A), (B) and (C).
  • a cross-linking catalyst as the component (D)
  • an acid or a thermoacid generator can be used as the cross-linking catalyst as the component (D).
  • This component (D) is effective in accelerating the thermosetting reaction of the cured film-forming composition of the present invention.
  • the acid examples include sulfonic acid group-containing compounds, hydrochloric acid or salts thereof.
  • the thermal acid generator is particularly limited as long as it is a compound that thermally decomposes during prebaking or postbaking to generate an acid, that is, a compound that thermally decomposes at a temperature of 80 ° C to 250 ° C to generate an acid. is not.
  • Examples of the acid include hydrochloric acid or a salt thereof; methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, pentansulfonic acid, octanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, camphasulfonic acid, trifluo.
  • Examples of compounds that generate acid by heat include bis (tosyloxy) ethane, bis (tosyloxy) propane, bis (tosyloxy) butane, p-nitrobenzyl tosylate, o-nitrobenzyl tosylate, 1,2,3-.
  • Fenilentris (methylsulfonate), p-toluenesulfonic acid pyridinium salt, p-toluenesulfonic acid morphonium salt, p-toluenesulfonic acid ethyl ester, p-toluenesulfonic acid propyl ester, p-toluenesulfonic acid butyl ester, p-toluene Ssulfonic acid isobutyl ester, p-toluenesulfonic acid methyl ester, p-toluenesulfonic acid phenethyl ester, cyanomethyl p-toluenesulfonate, 2,2,2-trifluoroethyl p-toluenesulfonate, 2-hydroxybutyl p-toluenesulfonate, Examples thereof include N-ethyl-p-toluenes
  • the content of the component (D) in the cured film-forming composition of the present invention is preferably 0.01 parts by mass or more based on 100 parts by mass of the total amount of the polymer of the component (B) and the polymer of the component (C). It is 10 parts by mass, more preferably 0.1 part by mass to 6 parts by mass, and further preferably 0.5 part by mass to 5 parts by mass.
  • the cured film forming composition of the present invention may also contain, as the component (E), a component that improves the adhesion of the formed cured film (hereinafter, also referred to as an adhesion improving component).
  • a component that improves the adhesion of the formed cured film hereinafter, also referred to as an adhesion improving component.
  • the adhesion improving component (E) is a polymerizable functional group and an alignment material of the polymerizable liquid crystal so as to improve the adhesion between the alignment material obtained from the cured film forming composition of the present invention and the layer of the polymerizable liquid crystal.
  • the cross-linking reaction sites of the above can be linked by covalent bonds.
  • the retardation material of the present embodiment which is formed by laminating a cured polymerizable liquid crystal on the alignment material of the present embodiment, can maintain strong adhesion even under high temperature and high quality conditions, and can be peeled off or the like. Can show high durability against.
  • a monomer and a polymer having a group selected from a hydroxy group and an N-alkoxymethyl group and a polymerizable group are preferable.
  • Such (E) components include a compound having a hydroxy group and a (meth) acrylic group, a compound having an N-alkoxymethyl group and a (meth) acrylic group, and an N-alkoxymethyl group and a (meth) acrylic group. Examples thereof include polymers having. Specific examples are shown below.
  • a hydroxy group-containing polyfunctional acrylate (hereinafter, also referred to as a hydroxy group-containing polyfunctional acrylate) can be mentioned.
  • examples of the hydroxy group-containing polyfunctional acrylate that is an example of the component (E) include pentaerythritol triacrylate and dipentaerythritol pentaacrylate.
  • component (E) is a compound having one (meth) acrylic group and one or more hydroxy groups.
  • a compound represented by the following formula (X1) is preferable.
  • R 31 represents a hydrogen atom or a methyl group
  • R 32 represents a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms).
  • alkyl group having 1 to 10 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group and n-pentyl.
  • the compound represented by the above formula (X1) include N-hydroxymethyl (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, and N-butoxymethyl (meth).
  • examples thereof include an acrylamide compound or a methacrylamide compound substituted with a hydroxymethyl group such as acrylamide or an alkoxymethyl group.
  • (meth) acrylamide means both methacrylamide and acrylamide.
  • the content of the component (E) in the cured film forming composition of the present invention is preferably 1 part by mass to 100 parts by mass based on 100 parts by mass of the low molecular weight photoalignment component which is the component (A). More preferably, it is 5 parts by mass to 70 parts by mass.
  • the cured film-forming composition of the present invention is mainly used in a solution state dissolved in a solvent.
  • the solvent used at that time may be sufficient as long as it can dissolve the component (A), the component (B) and the component (C), and if necessary, the component (D), the component (E) and / or other additives described later.
  • the type and structure are not particularly limited.
  • the solvent include, for example, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate.
  • the cured film-forming composition of the present invention is, if necessary, a sensitizer, a silane coupling agent, a surfactant, a rheology adjuster, a pigment, a dye, and storage stability as long as the effects of the present invention are not impaired. It can contain agents, antifoaming agents, antioxidants and the like.
  • a sensitizer is effective in promoting a photoreaction after forming a thermosetting film using the cured film forming composition of the present invention.
  • sensitizer examples include benzophenone, anthracene, anthraquinone, thioxanthone and its derivatives, derivatives thereof, and nitrophenyl compounds.
  • benzophenone derivatives and nitrophenyl compounds are preferred.
  • Specific examples of preferred compounds include N, N-diethylaminobenzophenone, 2-nitrofluorene, 2-nitrofluorenone, 5-nitroacenaphthene, 4-nitrobiphenyl, 4-nitrocinnamic acid, 4-nitrostilbene, 4-nitrobenzophenone. , 5-Nitroindole and the like.
  • N, N-diethylaminobenzophenone, which is a derivative of benzophenone is preferable.
  • sensitizers are not limited to the above.
  • the sensitizer can be used alone or in combination of two or more compounds.
  • the ratio of the sensitizer used in the cured film forming composition of the present invention is preferably 0.1 part by mass to 20 parts by mass based on 100 parts by mass of the low molecular weight photoalignment component of the component (A). , More preferably 0.2 parts by mass to 10 parts by mass. If this ratio is too small, the effect as a sensitizer may not be sufficiently obtained, and if it is too large, the transmittance may be lowered and the coating film may be roughened.
  • the cured film-forming composition of the present embodiment is formed by polymerizing a monomer containing a low-molecular-weight photoalignment component which is a component (A) and at least an N-alkoxymethyl (meth) acrylamide compound which is a component (B). It contains a polymer and a polymer obtained by polymerizing a monomer containing at least an N-hydroxyalkyl (meth) acrylamide compound which is a component (C). Then, if necessary, a cross-linking catalyst as a component (D), an adhesion improving component as a component (E), and / or other additives can be contained.
  • the proportion of the solid content in the cured film-forming composition of the present invention is not particularly limited as long as each component is uniformly dissolved in the solvent, but is 1% by mass to 80% by mass, preferably 3. It is from mass% to 60% by mass, more preferably 5% by mass to 40% by mass.
  • the solid content refers to a composition obtained by removing the solvent from all the components of the cured film forming composition.
  • the method for preparing the cured film-forming composition of the present invention is not particularly limited.
  • a preparation method for example, the component (A), the component (C) and, if necessary, the component (D) and the component (E) are mixed in a solution of the component (B) dissolved in a solvent at a predetermined ratio and uniformly.
  • a method of preparing a solution, or a method of further adding and mixing other additives as needed at an appropriate stage of this preparation method can be mentioned.
  • the polymer solution obtained by the polymerization reaction in the solvent can be used as it is.
  • the component (A), the component (B) and, if necessary, the components (D) and (E) are added to the solution of the component (C) to make a uniform solution.
  • an additional solvent may be added for the purpose of adjusting the concentration.
  • the solvent used in the process of producing the component (C) and the solvent used for adjusting the concentration of the cured film-forming composition may be the same or different.
  • the prepared solution of the cured film-forming composition is used after being filtered using a filter having a pore size of about 0.2 ⁇ m or the like.
  • the solution of the cured film forming composition of the present invention is applied to a substrate (for example, a silicon / silicon dioxide coated substrate, a silicon nitride substrate, a substrate coated with a metal such as aluminum, molybdenum, chromium, etc., a glass substrate, a quartz substrate, ITO. Bar coat, rotary coating, sink coating, roll coating, slit on a substrate, etc.) or film (for example, resin film such as triacetyl cellulose (TAC) film, cycloolefin polymer film, polyethylene terephthalate film, acrylic film).
  • a cured film can be formed by applying by coating, rotary coating following a slit, inkjet coating, printing, or the like to form a coating film, and then heating and drying in a hot plate or an oven.
  • the temperature is 60.
  • a heating temperature and heating time appropriately selected from the range of ° C. to 200 ° C. and a time of 0.4 minutes to 60 minutes are adopted.
  • the heating temperature and heating time are preferably 70 ° C. to 160 ° C., 0.5 minutes to 10 minutes.
  • the film thickness of the cured film formed by using the cured film forming composition of the present invention is, for example, 0.05 ⁇ m to 5 ⁇ m, and is appropriately selected in consideration of the step of the substrate to be used and the optical and electrical properties. Can be done.
  • the cured film thus formed can function as an alignment material, that is, a member for aligning a liquid crystal compound such as a liquid crystal by performing polarized UV irradiation.
  • ultraviolet light or visible light having a wavelength of 150 nm to 450 nm is usually used, and it is performed by irradiating linearly polarized light from a vertical or diagonal direction at room temperature or in a heated state.
  • the alignment material formed from the cured film forming composition of the present invention has solvent resistance and heat resistance
  • a retardation material composed of a polymerizable liquid crystal solution is applied onto the alignment material, and then the liquid crystal is used.
  • the retardation material is put into a liquid crystal state and oriented on the alignment material. Then, by curing the alignment material in the oriented state as it is, the retardation material can be formed as a layer having optical anisotropy.
  • the retardation material for example, a liquid crystal monomer having a polymerizable group and a composition containing the same are used.
  • the film having the retardation material of the present invention is useful as the retardation film.
  • Some retardation materials that form such retardation materials are in a liquid crystal state and take orientation states such as horizontal orientation, cholesteric orientation, vertical orientation, and hybrid orientation on the alignment material, and are required for each. It can be used properly according to the phase difference.
  • a predetermined cured film formed from the cured film forming composition of the present invention is formed on a cured film formed by the above method via a line-and-space pattern mask.
  • polarized UV exposure is performed in the direction of +45 degrees
  • polarized UV is exposed in the direction of -45 degrees after removing the mask
  • two types of liquid crystal alignment regions having different liquid crystal orientation control directions are formed.
  • the alignment material is obtained.
  • the retardation material is brought into a liquid crystal state by heating to the phase transition temperature of the liquid crystal, and is oriented on the alignment material.
  • the retarded material in the oriented state is cured as it is, and a patterned retardation material in which a plurality of two types of retardation regions having different retardation characteristics are regularly arranged can be obtained.
  • the alignment materials on both substrates are laminated so as to face each other via a spacer, and then between the substrates. It is also possible to inject a liquid crystal into a liquid crystal display element in which the liquid crystal is oriented.
  • the cured film forming composition of the present invention can be suitably used for producing various retardation materials (phase difference films), liquid crystal display elements, and the like.
  • ⁇ B component> PB-1 It is represented by the following structural formula.
  • PC-1 It is represented by the following structural formula.
  • PC-2 It is represented by the following structural formula.
  • ⁇ Measurement of molecular weight of polymer> For the molecular weight of the acrylic copolymer in the polymerization example, a gel permeation chromatography (GPC) apparatus (HLC-8320) manufactured by Toso Co., Ltd. and a column manufactured by Toso Co., Ltd. (TSKgel ALPHA4000, TSKgel ALPHA3000) were used. It was measured as follows. The following number average molecular weight (hereinafter referred to as Mn) and weight average molecular weight (hereinafter referred to as Mw) are represented by polystyrene-equivalent values.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Preparation Examples 2 to 6 The same procedure as in Preparation Example 1 was carried out except that each component of the type and blending amount shown in Table 1 below was used, and the liquid crystal alignment agents (A-2) to (A-4), (B-1), ( B-2) was prepared.
  • APEPO-1 RFK-505 (manufactured by Kawasaki Kasei Chemicals Co., Ltd.)
  • PEPO-1 Polylite 8651 (manufactured by DIC Corporation)
  • LC-242 1.57 g (manufactured by BASF), which is a polymerizable liquid crystal for horizontal orientation, 0.047 g (manufactured by BASF), which is a photoradical initiator, and 0.008 g of BYK-361N, which is a leveling material, are added. 6.55 g of N-methylpyrrolidone (NMP) and 9.83 g of cyclopentanone were added as a solvent, and the mixture was stirred for 2 hours and visually confirmed to be dissolved to obtain a 9% by mass polymerizable liquid crystal solution LC-1. It was.
  • NMP N-methylpyrrolidone
  • cyclopentanone 9.83 g of cyclopentanone
  • Example 1 The liquid crystal alignment agent (A-1) prepared in Preparation Example 1 was applied onto a triacetyl cellulol (TAC) film as a substrate using a bar coater at a Wet film thickness of 6 ⁇ m. A cured film was formed on the film by heating and drying at 130 ° C. for 2 minutes in a heat-circulating oven. Next, the surface of the cured film was vertically irradiated with linearly polarized light of 313 nm at an exposure amount of 10 mJ / cm 2 to form a liquid crystal alignment film.
  • TAC triacetyl cellulol
  • a polymerizable liquid crystal solution LC-1 for horizontal alignment was applied onto the liquid crystal alignment film using a bar coater with a Wet film thickness of 34 ⁇ m.
  • the polymerizable liquid crystal was cured by vertically irradiating it with unpolarized light at 365 nm under nitrogen at an exposure amount of 300 mJ / cm 2 , and the phase difference was obtained.
  • a film was made.
  • ⁇ Comparative example 1> The liquid crystal alignment agent (B-1) prepared in Preparation Example 1 was applied onto a TAC film as a substrate with a Wet film thickness of 4 ⁇ m using a bar coater. A cured film was formed on the film by heating and drying at 130 ° C. for 2 minutes in a heat-circulating oven. Next, the surface of the cured film was vertically irradiated with linearly polarized light of 313 nm at an exposure amount of 10 mJ / cm 2 to form a liquid crystal alignment film. A polymerizable liquid crystal solution LC-1 for horizontal alignment was applied onto the liquid crystal alignment film using a bar coater with a Wet film thickness of 34 ⁇ m. Next, after heat-drying at 120 ° C.
  • the polymerizable liquid crystal was cured by vertically irradiating it with unpolarized light at 365 nm under nitrogen at an exposure amount of 300 mJ / cm 2 , and the phase difference was obtained. A film was made.
  • ⁇ TAC protection> The non-curled retardation film including the prepared TAC film was marked with ⁇ , and the curled film was marked with x in the “Protectiveness” column.
  • the cured film forming composition according to the present invention is very useful as an alignment material for forming a liquid crystal alignment film of a liquid crystal display element or an optically anisotropic film provided inside or outside the liquid crystal display element, and in particular, It is suitable as a material for forming a patterned retardation material for a 3D display. Further, materials for forming a cured film such as a protective film, a flattening film and an insulating film in various displays such as a thin film transistor (TFT) type liquid crystal display element and an organic EL element, particularly an interlayer insulating film and a color filter of a TFT type liquid crystal element. It is suitable as a material for forming a protective film or an insulating film for an organic EL element.
  • TFT thin film transistor

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Liquid Crystal (AREA)

Abstract

[Problem] To provide: an alignment member that has excellent alignment sensitivity and alignment uniformity, is resistant to a solvent in a liquid crystal solution even when the alignment member is a thin film, and can function as a protection layer for protecting a film substrate; and a cured film formation composition for obtaining the alignment member. [Solution] This cured film formation composition contains (A) a compound having a photoalignable group and a substituent selected from the group consisting of a hydroxy group, a carboxyl group, and an amino group, (B) a polymer obtained by polymerization of monomers including at least an N-alkoxymethyl (meth)acrylamide compound, and (C) a polymer obtained by polymerization of monomers including at least an N-hydroxyalkyl (meth)acrylamide compound, and optionally further contains a crosslinking catalyst as a component (D) and an adhesion-improving component as a component (E). This cured film formation composition is used to form a cured film, and a photoalignment technique is utilized to form an alignment member. A polymerizable liquid crystal is applied to the alignment member and then cured to obtain a retardation member.

Description

硬化膜形成組成物、配向材および位相差材Hardened film forming composition, alignment material and retardation material
 本発明は、硬化膜形成組成物、配向材および位相差材に関する。 The present invention relates to a cured film forming composition, an alignment material and a retardation material.
 円偏光メガネ方式の3Dディスプレイの場合、液晶パネル等の画像を形成する表示素子の上に位相差材が配置されるのが通常である。この位相差材は、位相差特性の異なる2種類の位相差領域がそれぞれ複数、規則的に配置されており、パターニングされた位相差材を構成している。尚、以下、本明細書においては、このような位相差特性の異なる複数の位相差領域を配置するようにパターン化された位相差材をパターン化位相差材と称する。 In the case of a circularly polarized glasses type 3D display, a retardation material is usually arranged on a display element such as a liquid crystal panel that forms an image. In this retardation material, a plurality of two types of retardation regions having different retardation characteristics are regularly arranged to form a patterned retardation material. Hereinafter, in the present specification, a retardation material patterned so as to arrange a plurality of retardation regions having different retardation characteristics is referred to as a patterned retardation material.
 パターン化位相差材は、例えば、特許文献1に開示されるように、重合性液晶からなる位相差材料を光学パターニングすることで作製することができる。重合性液晶からなる位相差材料の光学パターニングは、液晶パネルの配向材形成で知られた光配向技術を利用する。すなわち、基板上に光配向性の材料からなる塗膜を設け、これに偏光方向が異なる2種類の偏光を照射する。そして、液晶の配向制御方向の異なる2種類の液晶配向領域が形成された配向材として光配向膜を得る。この光配向膜の上に重合性液晶を含む溶液状の位相差材料を塗布し、重合性液晶の配向を実現する。その後、配向された重合性液晶を硬化してパターン化位相差材を形成する。 The patterned retardation material can be produced, for example, by optically patterning a retardation material made of a polymerizable liquid crystal, as disclosed in Patent Document 1. The optical patterning of a retardation material composed of a polymerizable liquid crystal utilizes a photoalignment technique known for forming an alignment material for a liquid crystal panel. That is, a coating film made of a photo-oriented material is provided on a substrate, and two types of polarized light having different polarization directions are irradiated on the coating film. Then, a photoalignment film is obtained as an alignment material in which two types of liquid crystal alignment regions having different orientation control directions of the liquid crystal are formed. A solution-like retardation material containing a polymerizable liquid crystal is applied onto the photoalignment film to realize the orientation of the polymerizable liquid crystal. Then, the oriented polymerizable liquid crystal is cured to form a patterned retardation material.
 有機ELディスプレイの反射防止膜は、直線偏光板、1/4波長位相差板により構成され、画像表示パネルのパネル面に向かう外来光を直線偏光板により直線偏光に変換し、続く1/4波長位相差板により円偏光に変換する。ここでこの円偏光による外来光は、画像表示パネルの表面等で反射するものの、この反射の際に偏光面の回転方向が逆転する。その結果、この反射光は、到来時とは逆に、1/4波長位相差板より、直線偏光板により遮光される方向の直線偏光に変換された後、続く直線偏光板により遮光され、その結果、外部への出射が著しく抑制される。 The antireflection film of the organic EL display is composed of a linear polarizing plate and a 1/4 wavelength retardation plate, and the external light directed to the panel surface of the image display panel is converted into linear polarized light by the linear polarizing plate, followed by 1/4 wavelength. It is converted to circularly polarized light by the retardation plate. Here, the external light due to this circular polarization is reflected by the surface of the image display panel or the like, but the rotation direction of the polarizing surface is reversed during this reflection. As a result, this reflected light is converted from the 1/4 wavelength retardation plate to linearly polarized light in the direction shaded by the linear polarizing plate, and then shielded by the subsequent linear polarizing plate, contrary to the time of arrival. As a result, the emission to the outside is remarkably suppressed.
 この1/4波長位相差板に関して、特許文献2には、1/2波長板、1/4波長板を組み合わせて1/4波長位相差板を構成することにより、この光学フィルムを逆分散特性により構成する方法が提案されている。この方法の場合、カラー画像の表示に供する広い波長帯域において、正の分散特性による液晶材料を使用して逆分散特性により光学フィルムを構成することができる。 Regarding this 1/4 wavelength retardation plate, Patent Document 2 describes that the optical film has inverse dispersion characteristics by forming a 1/4 wavelength retardation plate by combining a 1/2 wavelength plate and a 1/4 wavelength plate. The method of constructing by is proposed. In the case of this method, in a wide wavelength band used for displaying a color image, a liquid crystal material having a positive dispersion characteristic can be used to form an optical film having a reverse dispersion characteristic.
 また近年、この位相差層に適用可能な液晶材料として、逆分散特性を備えるものが提案されている(特許文献3、4)。このような逆分散特性の液晶材料によれば、1/2波長板、1/4波長板を組み合わせて2層の位相差層により1/4波長位相差板を構成する代わりに、位相差層を単層により構成して逆分散特性を確保することができ、これにより広い波長帯域において所望の位相差を確保することが可能な光学フィルムを簡易な構成により実現することができる。 Further, in recent years, as a liquid crystal material applicable to this retardation layer, a material having a reverse dispersion characteristic has been proposed (Patent Documents 3 and 4). According to the liquid crystal material having such a reverse dispersion characteristic, instead of forming a 1/4 wavelength retardation plate by combining a 1/2 wavelength plate and a 1/4 wavelength plate to form a 1/4 wavelength retardation plate by two retardation layers, a retardation layer is used. Can be configured with a single layer to ensure inverse dispersion characteristics, whereby an optical film capable of securing a desired phase difference in a wide wavelength band can be realized with a simple configuration.
 液晶を配向させるためには配向層が用いられる。配向層の形成方法としては、例えばラビング法や光配向法が知られており、光配向法はラビング法の問題点である静電気や塵の発生がなく、定量的な配向処理の制御ができる点で有用である。 An alignment layer is used to orient the liquid crystal. As a method for forming an alignment layer, for example, a rubbing method and a photo-alignment method are known. The photo-alignment method does not generate static electricity or dust, which is a problem of the rubbing method, and can quantitatively control the alignment process. Is useful in.
 光配向法を用いた配向材形成では、利用可能な光配向性の材料として、側鎖にシンナモイル基およびカルコン基等の光二量化部位を有するアクリル樹脂やポリイミド樹脂等が知られている。これらの樹脂は、偏光UV照射することにより、液晶の配向を制御する性能(以下、液晶配向性とも言う。)を示すことが報告されている(特許文献5乃至特許文献7を参照。)。 In the formation of an alignment material using the photo-alignment method, acrylic resin, polyimide resin, etc., which have photodimerization sites such as a cinnamoyl group and a chalcone group in the side chain, are known as usable photo-orientation materials. It has been reported that these resins exhibit the ability to control the orientation of liquid crystals (hereinafter, also referred to as liquid crystal orientation) by irradiating with polarized UV (see Patent Documents 5 to 7).
 また、配向層には、液晶配向能の他、耐溶剤性が要求される。例えば、配向層が、位相差材の製造過程にて熱や溶剤にさらさる場合がある。配向層が溶剤にさらされると、液晶配向能が著しく低下するおそれがある。 In addition, the alignment layer is required to have solvent resistance as well as liquid crystal alignment ability. For example, the alignment layer may be exposed to heat or a solvent during the manufacturing process of the retardation material. When the alignment layer is exposed to a solvent, the liquid crystal alignment ability may be significantly reduced.
 そこで、例えば特許文献8には、安定した液晶配向能を得るために、光により架橋反応の可能な構造と熱によって架橋する構造とを有する重合体成分を含有する液晶配向剤、および、光により架橋反応の可能な構造を有する重合体成分と熱によって架橋する構造を有する化合物とを含有する液晶配向剤が提案されている。 Therefore, for example, in Patent Document 8, in order to obtain a stable liquid crystal alignment ability, a liquid crystal aligning agent containing a polymer component having a structure capable of a cross-linking reaction by light and a structure cross-linked by heat, and light are used. A liquid crystal alignment agent containing a polymer component having a structure capable of a cross-linking reaction and a compound having a structure cross-linked by heat has been proposed.
特開2005-49865号公報Japanese Unexamined Patent Publication No. 2005-49965 特開平10-68816号公報Japanese Unexamined Patent Publication No. 10-68816 米国特許第8119026号明細書U.S. Pat. No. 8119026 特開2009-179563号公報JP-A-2009-179563 特許第3611342号公報Japanese Patent No. 361342 特開2009-058584号公報JP-A-2009-058584 特表2001-517719号公報Special Table 2001-517719 特許第4207430号公報Japanese Patent No. 4207430
 以上のように、位相差材は、配向材である光配向膜の上に、硬化された重合性液晶の層を積層して構成される。そのため、優れた液晶配向性と耐溶剤性を両立することができる配向材の開発が必要とされている。 As described above, the retardation material is formed by laminating a layer of a cured polymerizable liquid crystal on a photoalignment film which is an alignment material. Therefore, it is necessary to develop an alignment material capable of achieving both excellent liquid crystal orientation and solvent resistance.
 しかしながら、本発明者の検討によれば、側鎖にシンナモイル基やカルコン基等の光二量化部位を有するアクリル樹脂は、位相差材の形成に適用した場合に充分な特性が得られないことが分かっている。特に、これらの樹脂に偏光UVを照射して配向材を形成し、その配向材を用いて重合性液晶からなる位相差材を作製するためには、大きな偏光UV露光量が必要となる。その偏光UV露光量は、通常の液晶パネル用の液晶を配向させるのに十分な偏光UV露光量(例えば、30mJ/cm程度。)より格段に多くなる。 However, according to the study by the present inventor, it has been found that an acrylic resin having a photodimerization site such as a cinnamoyl group or a chalcone group in the side chain does not have sufficient characteristics when applied to the formation of a retardation material. ing. In particular, in order to irradiate these resins with polarized UV to form an alignment material and to produce a retardation material made of a polymerizable liquid crystal using the alignment material, a large amount of polarized UV exposure is required. The polarized UV exposure amount is much larger than the polarized UV exposure amount (for example, about 30 mJ / cm 2 ) sufficient to orient the liquid crystal for a normal liquid crystal panel.
 偏光UV露光量が多くなる理由としては、位相差材形成の場合、液晶パネル用の液晶と異なり、重合性液晶が溶液の状態で用いられ、配向材の上に塗布されることが挙げられている。 The reason why the amount of polarized UV exposure increases is that in the case of retardation material formation, unlike the liquid crystal for liquid crystal panels, the polymerizable liquid crystal is used in a solution state and is applied on the alignment material. There is.
 側鎖にシンナモイル基等の光二量化部位を有するアクリル樹脂等を用いて配向材を形成し、重合性液晶を配向させようとする場合、そのアクリル樹脂等においては、光二量化反応による光架橋を行う。そして、重合性液晶溶液に対する耐性が発現するまで、大きな露光量の偏光照射を行う必要がある。液晶パネルの液晶を配向させるためには、通常、光配向性の配向材の表面のみを二量化反応すればよい。しかし、上述のアクリル樹脂等の従来材料を用いて配向材に溶剤耐性を発現させようとすると、配向材の内部まで反応をさせる必要があり、より多くの露光量が必要となる。その結果、従来材料の配向感度は非常に小さくなってしまうという問題があった。 When an alignment material is formed using an acrylic resin or the like having a photodimerization site such as a cinnamoyl group in the side chain to orient a polymerizable liquid crystal, the acrylic resin or the like is photocrosslinked by a photodimerization reaction. .. Then, it is necessary to perform polarized irradiation with a large exposure amount until resistance to the polymerizable liquid crystal solution is developed. In order to orient the liquid crystal of the liquid crystal panel, it is usually sufficient to carry out the dimerization reaction only on the surface of the photo-oriented aligning material. However, in order to develop solvent resistance in the alignment material using the above-mentioned conventional material such as acrylic resin, it is necessary to react even inside the alignment material, and a larger amount of exposure is required. As a result, there is a problem that the orientation sensitivity of the conventional material becomes very small.
 また、上述の従来材料である樹脂にこのような溶剤耐性を発現させるため、架橋剤を添加する技術が知られている。しかし、架橋剤による熱硬化反応を行った後、形成される塗膜の内部には3次元構造が形成され、光反応性は低下することがわかっている。すなわち、配向感度が大きく低下してしまい、従来材料に架橋剤を添加して使用しても、所望とする効果は得られていない。 Further, a technique of adding a cross-linking agent is known in order to develop such solvent resistance in the resin which is the above-mentioned conventional material. However, it is known that after the thermosetting reaction with a cross-linking agent, a three-dimensional structure is formed inside the coating film to be formed, and the photoreactivity is lowered. That is, the orientation sensitivity is greatly reduced, and even if a cross-linking agent is added to the conventional material and used, the desired effect is not obtained.
 さらに、液晶インキには様々な有機溶媒が使用されるが、基板として、有機溶媒に対して耐性の低いフィルムが使用されることがあり、フィルムの保護という理由で、溶剤耐性の高い配向膜が求められている。 Further, although various organic solvents are used for the liquid crystal ink, a film having low resistance to the organic solvent may be used as the substrate, and for the purpose of protecting the film, an alignment film having high solvent resistance is used. It has been demanded.
 以上より、配向材の配向感度を向上させ、偏光UV露光量を低減できる光配向技術と、その配向材の形成に用いられる光配向用液晶配向剤として用いることができる硬化膜形成組成物が求められている。そして、高効率に位相差材を提供することができる技術が求められている。 From the above, a photo-alignment technique capable of improving the orientation sensitivity of the alignment material and reducing the amount of polarized UV exposure, and a cured film forming composition that can be used as a liquid crystal alignment agent for photo-alignment used for forming the alignment material are required. Has been done. Then, there is a demand for a technique capable of providing a retardation material with high efficiency.
 本発明の目的は、以上の知見や検討結果に基づいてなされたものである。すなわち、本発明の目的は、優れた配向感度を有し、配向均一性にも優れるとともに、薄膜であっても液晶溶液中の溶剤への耐性を有し、フィルム基板を保護する保護層としても機能しうる配向材を提供するための光配向用液晶配向剤として用いることができる硬化膜形成組成物を提供することである。 The object of the present invention has been made based on the above findings and examination results. That is, an object of the present invention is to have excellent orientation sensitivity, excellent orientation uniformity, resistance to a solvent in a liquid crystal solution even if it is a thin film, and also as a protective layer for protecting a film substrate. The purpose of the present invention is to provide a cured film forming composition that can be used as a liquid crystal alignment agent for photoalignment to provide a functional alignment material.
 本発明の他の目的および利点は、以下の記載から明らかとなるであろう。 Other objects and advantages of the present invention will become clear from the following description.
 本発明の第1の態様は、
 (A)光配向性基と、ヒドロキシ基、カルボキシル基及びアミノ基からなる群より選ばれる1つの置換基とを有する化合物、
 (B)少なくともN-アルコキシメチル(メタ)アクリルアミド化合物を含むモノマーを重合させてなるポリマー、並びに
 (C)少なくともN-ヒドロキシアルキル(メタ)アクリルアミド化合物を含むモノマーを重合させてなるポリマーを含有することを特徴とする硬化膜形成組成物に関する。
The first aspect of the present invention is
(A) A compound having a photo-oriented group and one substituent selected from the group consisting of a hydroxy group, a carboxyl group and an amino group.
(B) Containing a polymer obtained by polymerizing a monomer containing at least an N-alkoxymethyl (meth) acrylamide compound, and (C) containing a polymer obtained by polymerizing a monomer containing at least an N-hydroxyalkyl (meth) acrylamide compound. The present invention relates to a cured film-forming composition.
 本発明の第1の態様において、(A)成分の光配向性基が光二量化又は光異性化する構造の官能基であることが好ましい
 本発明の第1の態様において、(A)成分の光配向性基がシンナモイル基であることが好ましい。
 本発明の第1の態様において、(A)成分の光配向性基がアゾベンゼン構造の基であることが好ましい。
 本発明の第1の態様において、(D)成分として、架橋触媒をさらに含有することが好ましい。
 本発明の第1の態様において、(E)成分として、密着向上成分をさらに含有することが好ましい。
 本発明の第1の態様において、(A)成分の100質量部に基づいて、(B)成分と(C)成分との合計量が100乃至3000質量部であることが好ましい。
 本発明の第1の態様において、(B)成分と(C)成分との質量比が1:99乃至99:1であることが好ましい。
 本発明の第1の態様において、(B)成分と(C)成分との合計量100質量部に基づいて、0.01質量部乃至10質量部の(D)成分を含有することが好ましい。
In the first aspect of the present invention, it is preferable that the photooriented group of the component (A) is a functional group having a structure of photodimerification or photoisomerization. In the first aspect of the present invention, the light of the component (A) The orientation group is preferably a cinnamoyl group.
In the first aspect of the present invention, it is preferable that the photooriented group of the component (A) is a group having an azobenzene structure.
In the first aspect of the present invention, it is preferable to further contain a cross-linking catalyst as the component (D).
In the first aspect of the present invention, it is preferable that the component (E) further contains an adhesion improving component.
In the first aspect of the present invention, the total amount of the component (B) and the component (C) is preferably 100 to 3000 parts by mass based on 100 parts by mass of the component (A).
In the first aspect of the present invention, the mass ratio of the component (B) to the component (C) is preferably 1:99 to 99: 1.
In the first aspect of the present invention, it is preferable to contain 0.01 parts by mass to 10 parts by mass of the component (D) based on 100 parts by mass of the total amount of the component (B) and the component (C).
 本発明の第2の態様は、本発明の第1の態様の硬化膜形成組成物を用いて得られることを特徴とする配向材に関する。 The second aspect of the present invention relates to an alignment material obtained by using the cured film forming composition of the first aspect of the present invention.
 本発明の第3の態様は、本発明の第1の態様の硬化膜形成組成物から得られる硬化膜を使用して形成されることを特徴とする位相差材に関する。 A third aspect of the present invention relates to a retardation material, which is formed by using a cured film obtained from the cured film forming composition of the first aspect of the present invention.
 本発明の第1の態様によれば、優れた配向感度を有し、配向均一性にも優れるとともに、薄膜であっても液晶溶液中の溶剤への耐性を有し、フィルム基板を保護する保護層としても機能しうる配向材を提供するための硬化膜形成組成物を提供することができる。 According to the first aspect of the present invention, it has excellent orientation sensitivity, excellent orientation uniformity, resistance to a solvent in a liquid crystal solution even if it is a thin film, and protection for protecting a film substrate. A cured film-forming composition for providing an alignment material that can also function as a layer can be provided.
 本発明の第2の態様によれば、優れた配向感度を有し、配向均一性にも優れるとともに、薄膜であっても液晶溶液中の溶剤への耐性を有し、フィルム基板を保護する保護層としても機能しうる配向材を提供することができる。 According to the second aspect of the present invention, it has excellent orientation sensitivity, excellent orientation uniformity, resistance to a solvent in a liquid crystal solution even if it is a thin film, and protection for protecting a film substrate. An alignment material that can also function as a layer can be provided.
 本発明の第3の態様によれば、フィルム基板上でも高い効率で形成できて、光学パターニングの可能な位相差材を提供することができる。 According to the third aspect of the present invention, it is possible to provide a retardation material which can be formed on a film substrate with high efficiency and can be optically patterned.
<硬化膜形成組成物>
 本発明の硬化膜形成組成物は、(A)成分である光配向性基と、ヒドロキシ基、カルボキシル基及びアミノ基からなる群より選ばれる1つの置換基とを有する化合物(以下「低分子の光配向成分」とも記載する。)と、(B)成分である少なくともN-アルコキシメチル(メタ)アクリルアミド化合物を含むモノマーを重合させてなるポリマーと、(C)成分である少なくともN-ヒドロキシアルキル(メタ)アクリルアミド化合物を含むモノマーを重合させてなるポリマーを含有する。本発明の硬化膜形成組成物は、(A)成分、(B)成分、(C)成分に加えて、さらに、(D)成分として架橋触媒、(E)成分として硬化膜の密着性を向上させる成分をも含有することができる。そして、本発明の効果を損なわない限りにおいて、その他の添加剤を含有することができる。
<Cured film forming composition>
The cured film-forming composition of the present invention is a compound having a photo-oriented group which is a component (A) and one substituent selected from the group consisting of a hydroxy group, a carboxyl group and an amino group (hereinafter, "low molecular weight"). It is also described as "photo-alignment component"), a polymer obtained by polymerizing a monomer containing at least an N-alkoxymethyl (meth) acrylamide compound which is a component (B), and at least N-hydroxyalkyl which is a component (C) (C). Meta) Contains a polymer obtained by polymerizing a monomer containing an acrylamide compound. In addition to the components (A), (B), and (C), the cured film-forming composition of the present invention further improves the adhesion of the cured film as a component (D), a cross-linking catalyst, and a component (E). It can also contain a component that causes it. Then, other additives can be contained as long as the effects of the present invention are not impaired.
 以下、各成分の詳細を説明する。
<(A)成分>
 本発明の硬化膜形成組成物に含有される(A)成分は、上述した、低分子の光配向成分である。
The details of each component will be described below.
<Ingredient (A)>
The component (A) contained in the cured film-forming composition of the present invention is the above-mentioned low-molecular-weight photoalignment component.
 そして、(A)成分である低分子の光配向成分は、光配向性基と、ヒドロキシ基、カルボキシル基及びアミノ基からなる群より選ばれる1つの置換基とを有する化合物である。光配向性基と、ヒドロキシ基、カルボキシル基及びアミノ基からなる群より選ばれる1つの置換基とを有する化合物においては、上述したように、光配向性基が光に反応して疎水性の光配向部を構成し、ヒドロキシ基等が親水性の熱反応部を構成する。
 尚、本発明において、光配向性基とは光二量化または光異性化する構造部位の官能基を言う。
The low-molecular-weight photo-oriented component (A) is a compound having a photo-oriented group and one substituent selected from the group consisting of a hydroxy group, a carboxyl group and an amino group. In a compound having a photo-oriented group and one substituent selected from the group consisting of a hydroxy group, a carboxyl group and an amino group, as described above, the photo-oriented group reacts with light to make hydrophobic light. An oriented portion is formed, and a hydroxy group or the like constitutes a hydrophilic thermal reaction portion.
In the present invention, the photo-oriented group refers to a functional group having a structural site that undergoes photodimerization or photoisomerization.
 光二量化する構造部位とは、光照射により二量体を形成する部位であり、その具体例としてはシンナモイル基、カルコン基、クマリン基、アントラセン基等が挙げられる。これらのうち可視光領域での高い透明性および光二量化反応性を有するシンナモイル基が好ましい。また、光異性化する構造部位とは、光照射によりシス体とトランス体とに変わる構造部位を指し、その具体例としてはアゾベンゼン構造、スチルベン構造等からなる部位が挙げられる。これらのうち反応性の高さからアゾベンゼン構造が好ましい。光配向性基とヒドロキシ基とを有する化合物は、例えば、下記式で表される。 The photodimerizable structural site is a site that forms a dimer by light irradiation, and specific examples thereof include a cinnamoyl group, a chalcone group, a coumarin group, and an anthracene group. Of these, a cinnamoyl group having high transparency and photodimerization reactivity in the visible light region is preferable. Further, the structural site that photoisomerizes refers to a structural site that changes into a cis form and a trans form by light irradiation, and specific examples thereof include a site having an azobenzene structure, a stilbene structure, and the like. Of these, the azobenzene structure is preferable because of its high reactivity. A compound having a photo-oriented group and a hydroxy group is represented by, for example, the following formula.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 前記式[A1]ないし式[A5]中、AとAはそれぞれ独立に、水素原子またはメチル基を表し、Xは単結合、エーテル結合、エステル結合、アミド結合、ウレタン結合、アミノ結合またはそれらの組み合わせから選ばれる1種又は2種以上の結合を介して、炭素原子数1乃至18のアルキレン基、フェニレン基、ビフェニレン基またはそれらの組み合わせから選ばれる1乃至3の基が結合してなる2価の基を表す。Xは水素原子、ハロゲン原子、シアノ基、炭素原子数1乃至18のアルキル基、フェニル基、ビフェニル基又はシクロヘキシル基を表す。その際、炭素原子数1乃至18のアルキル基、フェニル基、ビフェニル基及びシクロヘキシル基は、共有結合、エーテル結合、エステル結合、アミド結合又は尿素結合を介してベンゼン環と結合してもよい。Xはヒドロキシ基、カルボキシル基、アミノ基またはアルコキシシリル基を表す。Xは単結合、酸素原子又は硫黄原子を表す。Xはヒドロキシ基、メルカプト基、炭素原子数1乃至10のアルコキシ基、炭素原子数1乃至10のアルキルチオ基、フェニル基、フェノキシ基又はビフェノキシ基を表す。Xは単結合、炭素原子数1乃至20のアルキレン基、芳香族環から水素原子を2つ取り除いた2価の基、又は、脂肪族環から水素原子を2つ取り除いた2価の基を表す。ここで炭素原子数1乃至20のアルキレン基は分岐状でも直鎖状でもよい。 In the formula [A1] or the formula [A5], respectively A 1 and A 2 independently represent a hydrogen atom or a methyl group, X 1 is a single bond, an ether bond, an ester bond, an amide bond, a urethane bond, amino bond Alternatively, an alkylene group having 1 to 18 carbon atoms, a phenylene group, a biphenylene group, or 1 to 3 groups selected from a combination thereof are bonded via one or more bonds selected from a combination thereof. Represents a divalent group. X 2 represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 18 carbon atoms, a phenyl group, a biphenyl group or a cyclohexyl group. At that time, the alkyl group, phenyl group, biphenyl group and cyclohexyl group having 1 to 18 carbon atoms may be bonded to the benzene ring via a covalent bond, an ether bond, an ester bond, an amide bond or a urea bond. X 5 represents a hydroxy group, a carboxyl group, an amino group or an alkoxysilyl group. X represents a single bond, an oxygen atom or a sulfur atom. X 6 represents a hydroxy group, a mercapto group, an alkoxy group having 1 to 10 carbon atoms, an alkylthio group having 1 to 10 carbon atoms, a phenyl group, a phenoxy group or a biphenoxy group. X 7 is a single bond, an alkylene group having 1 to 20 carbon atoms, a divalent group obtained by removing two hydrogen atoms from an aromatic ring, or a divalent group obtained by removing two hydrogen atoms from an aliphatic ring. Represent. Here, the alkylene group having 1 to 20 carbon atoms may be branched or linear.
 なお、これらの置換基において、フェニレン基、フェニル基、ビフェニレン基、ビフェニル基、フェノキシ基及びビフェノキシ基は、炭素原子数1乃至4のアルキル基、炭素原子数1乃至4のアルコキシ基、ハロゲン原子、トリフルオロメチル基およびシアノ基から選ばれる同一又は相異なる1または複数の置換基によって置換されていてもよい。 In these substituents, the phenylene group, the phenyl group, the biphenylene group, the biphenyl group, the phenoxy group and the biphenoxy group are alkyl groups having 1 to 4 carbon atoms, alkoxy groups having 1 to 4 carbon atoms, halogen atoms, and the like. It may be substituted with the same or different substituents selected from the trifluoromethyl group and the cyano group.
 上記式中、R、R、R、R、R、R、RおよびRは、それぞれ独立して水素原子、炭素原子数1乃至4のアルキル基、炭素原子数1乃至4のアルコキシ基、ハロゲン原子、トリフルオロメチル基またはシアノ基を表す。 In the above formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are independently hydrogen atoms, alkyl groups having 1 to 4 carbon atoms, and 1 carbon atom, respectively. Represents 4 to 4 alkoxy groups, halogen atoms, trifluoromethyl groups or cyano groups.
 上記炭素原子数1乃至18のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、n-ヘプチル基、1-メチル-n-ヘキシル基、2-メチル-n-ヘキシル基、3-メチル-n-ヘキシル基、1,1-ジメチル-n-ペンチル基、1,2-ジメチル-n-ペンチル基、1,3-ジメチル-n-ペンチル基、2,2-ジメチル-n-ペンチル基、2,3-ジメチル-n-ペンチル基、3,3-ジメチル-n-ペンチル基、1-エチル-n-ペンチル基、2-エチル-n-ペンチル基、3-エチル-n-ペンチル基、1-メチル-1-エチル-n-ブチル基、1-メチル-2-エチル-n-ブチル基、1-エチル-2-メチル-n-ブチル基、2-メチル-2-エチル-n-ブチル基、2-エチル-3-メチル-n-ブチル基、n-オクチル基、1-メチル-n-ヘプチル基、2-メチル-n-ヘプチル基、3-メチル-n-ヘプチル基、1,1-ジメチル-n-ヘキシル基、1,2-ジメチル-n-ヘキシル基、1,3-ジメチル-n-ヘキシル基、2,2-ジメチル-n-ヘキシル基、2,3-ジメチル-n-ヘキシル基、3,3-ジメチル-n-ヘキシル基、1-エチル-n-ヘキシル基、2-エチル-n-ヘキシル基、3-エチル-n-ヘキシル基、1-メチル-1-エチル-n-ペンチル基、1-メチル-2-エチル-n-ペンチル基、1-メチル-3-エチル-n-ペンチル基、2-メチル-2-エチル-n-ペンチル基、2-メチル-3-エチル-n-ペンチル基、3-メチル-3-エチル-n-ペンチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基及びn-オクタデシル基等が挙げられる。
 上記炭素原子数1乃至18のアルキレン基としては、上記に挙げられたアルキル基から水素原子を1つ取り除いた2価の基が挙げられる。
 上記炭素原子数1乃至4のアルキル基としては、上記に挙げられた基のうち該当する炭素原子数の基が挙げられる。
 上記炭素原子数1乃至10のアルコキシ基、炭素原子数1乃至4のアルコキシ基、炭素原子数1乃至10のアルキルチオ基としては、上記に挙げられたアルキル基をオキシ化またはチオ化した基のうち該当する炭素原子数の基が挙げられる。
 上記炭素原子数1乃至20のアルキレン基としては、上記アルキル基並びにn-ノナデシル基、n-エイコシル基等の炭素原子数1乃至20のアルキル基から水素原子を1つ取り除いた2価の基が挙げられる。
Examples of the alkyl group having 1 to 18 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group and n-pentyl. Group, 1-methyl-n-butyl group, 2-methyl-n-butyl group, 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group , 2,2-Dimethyl-n-propyl group, 1-ethyl-n-propyl group, n-hexyl group, 1-methyl-n-pentyl group, 2-methyl-n-pentyl group, 3-methyl-n- Pentyl group, 4-methyl-n-pentyl group, 1,1-dimethyl-n-butyl group, 1,2-dimethyl-n-butyl group, 1,3-dimethyl-n-butyl group, 2,2-dimethyl -N-Butyl group, 2,3-dimethyl-n-butyl group, 3,3-dimethyl-n-butyl group, 1-ethyl-n-butyl group, 2-ethyl-n-butyl group, 1,1, 2-trimethyl-n-propyl group, 1,2,2-trimethyl-n-propyl group, 1-ethyl-1-methyl-n-propyl group, 1-ethyl-2-methyl-n-propyl group, n- Heptyl group, 1-methyl-n-hexyl group, 2-methyl-n-hexyl group, 3-methyl-n-hexyl group, 1,1-dimethyl-n-pentyl group, 1,2-dimethyl-n-pentyl group Group, 1,3-dimethyl-n-pentyl group, 2,2-dimethyl-n-pentyl group, 2,3-dimethyl-n-pentyl group, 3,3-dimethyl-n-pentyl group, 1-ethyl- n-pentyl group, 2-ethyl-n-pentyl group, 3-ethyl-n-pentyl group, 1-methyl-1-ethyl-n-butyl group, 1-methyl-2-ethyl-n-butyl group, 1 -Ethyl-2-methyl-n-butyl group, 2-methyl-2-ethyl-n-butyl group, 2-ethyl-3-methyl-n-butyl group, n-octyl group, 1-methyl-n-heptyl Group, 2-methyl-n-heptyl group, 3-methyl-n-heptyl group, 1,1-dimethyl-n-hexyl group, 1,2-dimethyl-n-hexyl group, 1,3-dimethyl-n- Hexyl group, 2,2-dimethyl-n-hexyl group, 2,3-dimethyl-n-hexyl group, 3,3-dimethyl-n-hexyl group, 1-ethyl-n-hexyl group, 2-ethyl-n -Hexyl group, 3-ethyl-n-hexyl group, 1-methyl-1-ethyl-n-pentyl group, 1-methyl-2-ethyl-n-pentyl group, 1-methyl-3-ethyl-n -Pentyl group, 2-methyl-2-ethyl-n-pentyl group, 2-methyl-3-ethyl-n-pentyl group, 3-methyl-3-ethyl-n-pentyl group, n-nonyl group, n- Examples thereof include decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group and n-octadecyl group.
Examples of the alkylene group having 1 to 18 carbon atoms include a divalent group obtained by removing one hydrogen atom from the above-mentioned alkyl group.
Examples of the alkyl group having 1 to 4 carbon atoms include the group having the corresponding carbon atom number among the groups listed above.
The alkoxy group having 1 to 10 carbon atoms, the alkoxy group having 1 to 4 carbon atoms, and the alkylthio group having 1 to 10 carbon atoms include the above-mentioned alkyl group oxylated or thiolated. The group having the corresponding number of carbon atoms can be mentioned.
The alkylene group having 1 to 20 carbon atoms includes the alkyl group and a divalent group obtained by removing one hydrogen atom from an alkyl group having 1 to 20 carbon atoms such as an n-nonadesyl group and an n-eicosyl group. Can be mentioned.
 (A)成分である光配向性基とヒドロキシ基とを有する化合物の具体例としては、例えば、4-(8-ヒドロキシオクチルオキシ)けい皮酸メチルエステル、4-(6-ヒドロキシヘキシルオキシ)けい皮酸メチルエステル、4-(4-ヒドロキシブチルオキシ)けい皮酸メチルエステル、4-(3-ヒドロキシプロピルオキシ)けい皮酸メチルエステル、4-(2-ヒドロキシエチルオキシ)けい皮酸メチルエステル、4-ヒドロキシメチルオキシけい皮酸メチルエステル、4-ヒドロキシけい皮酸メチルエステル、4-(8-ヒドロキシオクチルオキシ)けい皮酸エチルエステル、4-(6-ヒドロキシヘキシルオキシ)けい皮酸エチルエステル、4-(4-ヒドロキシブチルオキシ)けい皮酸エチルエステル、4-(3-ヒドロキシプロピルオキシ)けい皮酸エチルエステル、4-(2-ヒドロキシエチルオキシ)けい皮酸エチルエステル、4-ヒドロキシメチルオキシけい皮酸エチルエステル、4-ヒドロキシけい皮酸エチルエステル、4-(8-ヒドロキシオクチルオキシ)けい皮酸フェニルエステル、4-(6-ヒドロキシヘキシルオキシ)けい皮酸フェニルエステル、4-(4-ヒドロキシブチルオキシ)けい皮酸フェニルエステル、4-(3-ヒドロキシプロピルオキシ)けい皮酸フェニルエステル、4-(2-ヒドロキシエチルオキシ)けい皮酸フェニルエステル、4-ヒドロキシメチルオキシけい皮酸フェニルエステル、4-ヒドロキシけい皮酸フェニルエステル、4-(8-ヒドロキシオクチルオキシ)けい皮酸ビフェニルエステル、4-(6-ヒドロキシヘキシルオキシ)けい皮酸ビフェニルエステル、4-(4-ヒドロキシブチルオキシ)けい皮酸ビフェニルエステル、4-(3-ヒドロキシプロピルオキシ)けい皮酸ビフェニルエステル、4-(2-ヒドロキシエチルオキシ)けい皮酸ビフェニルエステル、4-ヒドロキシメチルオキシけい皮酸ビフェニルエステル、4-ヒドロキシけい皮酸ビフェニルエステル、けい皮酸8-ヒドロキオクチルエステル、けい皮酸6-ヒドロキシヘキシルエステル、けい皮酸4-ヒドロキシブチルエステル、けい皮酸3-ヒドロキシプロピルエステル、けい皮酸2-ヒドロキシエチルエステル、けい皮酸ヒドロキシメチルエステル、4-(8-ヒドロキシオクチルオキシ)アゾベンゼン、4-(6-ヒドロキシヘキシルオキシ)アゾベンゼン、4-(4-ヒドロキシブチルオキシ)アゾベンゼン、4-(3-ヒドロキシプロピルオキシ)アゾベンゼン、4-(2-ヒドロキシエチルオキシ)アゾベンゼン、4-ヒドロキシメチルオキシアゾベンゼン、4-ヒドロキシアゾベンゼン、4-(8-ヒドロキシオクチルオキシ)カルコン、4-(6-ヒドロキシヘキシルオキシ)カルコン、4-(4-ヒドロキシブチルオキシ)カルコン、4-(3-ヒドロキシプロピルオキシ)カルコン、4-(2-ヒドロキシエチルオキシ)カルコン、4-ヒドロキシメチルオキシカルコン、4-ヒドロキシカルコン、4’-(8-ヒドロキシオクチルオキシ)カルコン、4’-(6-ヒドロキシヘキシルオキシ)カルコン、4’-(4-ヒドロキシブチルオキシ)カルコン、4’-(3-ヒドロキシプロピルオキシ)カルコン、4’-(2-ヒドロキシエチルオキシ)カルコン、4’-ヒドロキシメチルオキシカルコン、4’-ヒドロキシカルコン、7-(8-ヒドロキシオクチルオキシ)クマリン、7-(6-ヒドロキシヘキシルオキシ)クマリン、7-(4-ヒドロキシブチルオキシ)クマリン、7-(3-ヒドロキシプロピルオキシ)クマリン、7-(2-ヒドロキシエチルオキシ)クマリン、7-ヒドロキシメチルオキシクマリン、7-ヒドロキシクマリン、6-ヒドロキシオクチルオキシクマリン、6-ヒドロキシヘキシルオキシクマリン、6-(4-ヒドロキシブチルオキシ)クマリン、6-(3-ヒドロキシプロピルオキシ)クマリン、6-(2-ヒドロキシエチルオキシ)クマリン、6-ヒドロキシメチルオキシクマリン、6-ヒドロキシクマリンが挙げられる。 Specific examples of the compound having a photoorientating group and a hydroxy group, which are the components (A), include 4- (8-hydroxyoctyloxy) silicic acid methyl ester and 4- (6-hydroxyhexyloxy) kei. Methyl Ester, 4- (4-Hydroxybutyloxy) Methyl Ceramic Acid, 4- (3-Hydroxypropyloxy) Methyl Ceramic Acid, 4- (2-Hydroxyethyloxy) Methyl Ceramic Acid, 4-Hydroxymethyloxy silicate methyl ester, 4-hydroxysilicic acid methyl ester, 4- (8-hydroxyoctyloxy) silicate ethyl ester, 4- (6-hydroxyhexyloxy) silicate ethyl ester, 4- (4-Hydroxybutyloxy) silicic acid ethyl ester, 4- (3-hydroxypropyloxy) silicic acid ethyl ester, 4- (2-hydroxyethyloxy) silicic acid ethyl ester, 4-hydroxymethyloxy Ethyl silicate ester, 4-hydroxy silicate ethyl ester, 4- (8-hydroxyoctyloxy) phenyl ester silicate, 4- (6-hydroxyhexyloxy) phenyl silicate ester, 4- (4- (4-) Hydroxybutyloxy) silicate phenyl ester, 4- (3-hydroxypropyloxy) phenyl ester silicate, 4- (2-hydroxyethyloxy) phenyl ester silicate, 4-hydroxymethyloxy phenyl ester silicate , 4-Hydroxysilicic acid phenyl ester, 4- (8-Hydroxyoctyloxy) citrus acid biphenyl ester, 4- (6-hydroxyhexyloxy) silicate biphenyl ester, 4- (4-hydroxybutyloxy) kei Biphenyl Ester, 4- (3-Hydroxypropyloxy) Biphenyl Esterate, 4- (2-Hydroxyethyloxy) Biphenyl Esterate, 4-Hydroxymethyloxy Biphenyl Esterate, 4-Hydroxy Biphenyl ester of dermal acid, 8-hydrochioctyl ester of silicate, 6-hydroxyhexyl ester of silicate, 4-hydroxybutyl ester of cinnamic acid, 3-hydroxypropyl ester of silicate, 2-hydroxyethyl ester of silicate, Hydroxymethyl ester of silicate, 4- (8-hydroxyoctyloxy) azobenzene, 4- (6-hydroxyhexyloxy) azobenzene, 4- (4- (4-) Hydroxybutyloxy) azobenzene, 4- (3-hydroxypropyloxy) azobenzene, 4- (2-hydroxyethyloxy) azobenzene, 4-hydroxymethyloxyazobenzene, 4-hydroxyazobenzene, 4- (8-hydroxyoctyloxy) chalcone , 4- (6-Hydroxyhexyloxy) chalcone, 4- (4-hydroxybutyloxy) chalcone, 4- (3-hydroxypropyloxy) chalcone, 4- (2-hydroxyethyloxy) chalcone, 4-hydroxymethyloxy Calcon, 4-hydroxycalcon, 4'-(8-hydroxyoctyloxy) calcon, 4'-(6-hydroxyhexyloxy) calcon, 4'-(4-hydroxybutyloxy) calcon, 4'-(3-hydroxy) Propyloxy) chalcone, 4'-(2-hydroxyethyloxy) chalcone, 4'-hydroxymethyloxychalcone, 4'-hydroxychalcone, 7- (8-hydroxyoctyloxy) coumarin, 7- (6-hydroxyhexyloxy) ) Kumarin, 7- (4-Hydroxybutyloxy) Kumarin, 7- (3-Hydroxypropyloxy) Kumarin, 7- (2-Hydroxyethyloxy) Kumarin, 7-Hydroxymethyloxy Kumarin, 7-Hydroxykumarin, 6- Hydroxyoctyloxykumarin, 6-hydroxyhexyloxykumarin, 6- (4-hydroxybutyloxy) coumarin, 6- (3-hydroxypropyloxy) coumarin, 6- (2-hydroxyethyloxy) coumarin, 6-hydroxymethyloxy Examples include coumarin and 6-hydroxycoumarin.
 光配向性基とカルボキシル基とを有する化合物の具体例としては、けい皮酸、フェルラ酸、4-ニトロけい皮酸、4-メトキシけい皮酸、3,4-ジメトキシけい皮酸、クマリン-3-カルボン酸、4-(ジメチルアミノ)けい皮酸等が挙げられる。
 光配向性基とアミノ基とを有する化合物の具体例としては、4-アミノけい皮酸メチル、4-アミノけい皮酸エチル、3-アミノけい皮酸メチル、3-アミノけい皮酸エチル等が挙げられる。
 (A)成分である低分子の光配向成分は、以上の具体例を挙げることができるが、これらに限定されるものではない。
Specific examples of the compound having a photoorientation group and a carboxyl group include cinnamic acid, ferulic acid, 4-nitrocinnamic acid, 4-methoxycinnamic acid, 3,4-dimethoxycinnamic acid, and coumarin-3. -Carboxylic acid, 4- (dimethylamino) cinnamic acid and the like can be mentioned.
Specific examples of the compound having a photo-oriented group and an amino group include methyl 4-aminosilicate, ethyl 4-aminosilicate, methyl 3-aminosilicate, ethyl 3-aminosilicate and the like. Can be mentioned.
The low-molecular-weight photoalignment component (A) can be given the above specific examples, but is not limited thereto.
 また、(A)成分である低分子の光配向成分が、光配向性基とヒドロキシ基とを有する化合物である場合、(A)成分として、分子内に、光配向性基を2個以上および/またはヒドロキシ基を2個以上有する化合物を用いることが可能である。具体的には、(A)成分として、分子内に1個のヒドロキシ基とともに2個以上の光配向性基を有する化合物や、分子内に1個の光配向性基とともに2個以上のヒドロキシ基を有する化合物や、分子内に光配向性基とヒドロキシ基をそれぞれ2個以上有する化合物を用いることが可能である。例えば、分子内に光配向性基とヒドロキシ基をそれぞれ2個以上有する化合物については、その一例として、下記式で表される化合物を示すことができる。
Figure JPOXMLDOC01-appb-C000002
When the low-molecular-weight photo-oriented component (A) is a compound having a photo-oriented group and a hydroxy group, two or more photo-oriented groups and two or more photo-oriented groups are contained in the molecule as the component (A). / Or a compound having two or more hydroxy groups can be used. Specifically, as the component (A), a compound having two or more photo-oriented groups with one hydroxy group in the molecule, or two or more hydroxy groups with one photo-oriented group in the molecule. It is possible to use a compound having two or more photo-oriented groups and two or more hydroxy groups in the molecule. For example, for a compound having two or more photo-oriented groups and two or more hydroxy groups in the molecule, a compound represented by the following formula can be shown as an example.
Figure JPOXMLDOC01-appb-C000002
 このような化合物を適宜選択することにより、(A)成分である低分子の光配向成分の分子量を高める制御が可能となる。その結果、後述するように、(A)成分である低分子の光配向成分および(B)成分であるポリマーと(C)成分であるポリマーとが熱反応する際に、(A)成分である低分子の光配向成分が昇華するのを抑制することができる。そして、本発明の硬化膜形成組成物は、硬化膜として、光反応効率の高い配向材を形成することができる。 By appropriately selecting such a compound, it is possible to control the increase in the molecular weight of the low molecular weight photoalignment component which is the component (A). As a result, as will be described later, when the low molecular weight photoalignment component which is the component (A) and the polymer which is the component (B) and the polymer which is the component (C) undergo a thermal reaction, the component (A) is used. It is possible to suppress the sublimation of low molecular weight photoalignment components. Then, the cured film forming composition of the present invention can form an alignment material having high photoreaction efficiency as a cured film.
 また、本発明の硬化膜形成組成物における(A)成分の化合物としては、光配向性基と、ヒドロキシ基、カルボキシル基及びアミノ基からなる群より選ばれる1つの置換基とを有する、複数種の化合物の混合物であってもよい。 Further, as the compound of the component (A) in the cured film forming composition of the present invention, there are a plurality of types having a photoorienting group and one substituent selected from the group consisting of a hydroxy group, a carboxyl group and an amino group. It may be a mixture of the compounds of.
<(B)成分>
 本発明の硬化膜形成組成物に含有される(B)成分は、少なくともN-アルコキシメチル(メタ)アクリルアミド化合物を含むモノマーを重合させてなるポリマーである。なお、N-アルコキシメチル(メタ)アクリルアミドとは、N-アルコキシメチルアクリルアミドとN-アルコキシメチルメタクリルアミドとの双方を意味する。
<Ingredient (B)>
The component (B) contained in the cured film-forming composition of the present invention is a polymer obtained by polymerizing a monomer containing at least an N-alkoxymethyl (meth) acrylamide compound. In addition, N-alkoxymethyl (meth) acrylamide means both N-alkoxymethylacrylamide and N-alkoxymethylmethacrylamide.
 そのようなポリマーとしては、N-アルコキシメチル(メタ)アクリルアミド化合物を単独または共重合可能なモノマーと共重合したポリマーが挙げられる。このようなポリマーとしては、例えば、ポリ(N-ブトキシメチルアクリルアミド)、ポリ(N-エトキシメチルアクリルアミド)、ポリ(N-メトキシメチルアクリルアミド)、N-ブトキシメチルアクリルアミドとスチレンとの共重合体、N-ブトキシメチルアクリルアミドとメチルメタクリレートとの共重合体、N-エトキシメチルメタクリルアミドとベンジルメタクリレートとの共重合体、及びN-ブトキシメチルアクリルアミドとベンジルメタクリレートと2-ヒドロキシプロピルメタクリレートとの共重合体等が挙げられる。 Examples of such a polymer include a polymer obtained by copolymerizing an N-alkoxymethyl (meth) acrylamide compound alone or with a copolymerizable monomer. Examples of such a polymer include poly (N-butoxymethylacrylamide), poly (N-ethoxymethylacrylamide), poly (N-methoxymethylacrylamide), a copolymer of N-butoxymethylacrylamide and styrene, and N. -Copolymers of butoxymethylacrylamide and methylmethacrylate, copolymers of N-ethoxymethylmethacrylate and benzylmethacrylate, and copolymers of N-butoxymethylacrylamide, benzylmethacrylate and 2-hydroxypropylmethacrylate, etc. Can be mentioned.
 本発明に用いる(B)成分であるポリマーを得る方法は特に限定されないが、例えば、N-アルコキシメチル(メタ)アクリルアミド化合物と所望により共重合可能なモノマーと重合開始剤等とを共存させた溶剤中において、50乃至110℃の温度下で重合反応させることにより得られる。その際、用いられる溶剤は、N-アルコキシメチル(メタ)アクリルアミド化合物、所望により共重合可能なモノマー及び重合開始剤等を溶解するものであれば特に限定されない。具体例としては、後述する<溶剤>に記載する。
 前記方法により得られるポリマーは、通常、溶剤に溶解した溶液の状態である。
The method for obtaining the polymer as the component (B) used in the present invention is not particularly limited, but for example, a solvent in which an N-alkoxymethyl (meth) acrylamide compound, a optionally copolymerizable monomer, a polymerization initiator and the like coexist. It is obtained by subjecting it to a polymerization reaction at a temperature of 50 to 110 ° C. At that time, the solvent used is not particularly limited as long as it dissolves an N-alkoxymethyl (meth) acrylamide compound, a optionally copolymerizable monomer, a polymerization initiator and the like. Specific examples will be described in <Solvent> described later.
The polymer obtained by the above method is usually in the state of a solution dissolved in a solvent.
 また、上記方法で得られたポリマーの溶液を、攪拌中のジエチルエーテルや水等に投入して沈殿させ、生成した沈殿物を濾過・洗浄した後に、常圧又は減圧下で、常温乾燥又は加熱乾燥し、ポリマーの粉体とすることができる。前記操作により、ポリマーと共存する重合開始剤及び未反応のモノマーを除去することができ、その結果、精製したポリマーの粉体が得られる。一度の操作で充分に精製できない場合は、得られた粉体を溶剤に再溶解させ、上記の操作を繰り返し行えば良い。 Further, the polymer solution obtained by the above method is poured into diethyl ether or water under stirring to precipitate, and the resulting precipitate is filtered and washed, and then dried or heated at room temperature under normal pressure or reduced pressure. It can be dried to a polymer powder. By the above operation, the polymerization initiator and the unreacted monomer coexisting with the polymer can be removed, and as a result, a purified polymer powder is obtained. If the powder cannot be sufficiently purified by one operation, the obtained powder may be redissolved in a solvent and the above operation may be repeated.
 本発明においては、(B)成分であるポリマーは粉体形態で、あるいは精製した粉末を後述する溶剤に再溶解した溶液形態で用いてもよい。 In the present invention, the polymer as the component (B) may be used in the form of a powder, or in the form of a solution in which the purified powder is redissolved in a solvent described later.
 また、本発明においては、(B)成分であるポリマーは、複数種のポリマーの混合物であってもよい。 Further, in the present invention, the polymer as the component (B) may be a mixture of a plurality of types of polymers.
 本発明において、(B)成分であるポリマーを製造する際に上記の共重合可能なモノマーを用いる場合は、該共重合可能なモノマーの使用量は、(B)成分のポリマーを製造するのに用いるモノマーのモル数の合計に基づいて、好ましくは1モル%乃至200モル%であり、より好ましくは10%モル乃至100モル%である。 In the present invention, when the above-mentioned copolymerizable monomer is used when producing the polymer which is the component (B), the amount of the copolymerizable monomer used is used to produce the polymer of the component (B). Based on the total number of moles of the monomers used, it is preferably 1 mol% to 200 mol%, more preferably 10% to 100 mol%.
 このような(B)成分であるポリマーの重量平均分子量は、1,000から500,000であり、好ましくは、2,000から200,000であり、より好ましくは3,000から150,000であり、更に好ましくは3,000から50,000である。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準試料としてポリスチレンを用いて得られる値である。 The weight average molecular weight of the polymer as the component (B) is 1,000 to 500,000, preferably 2,000 to 200,000, and more preferably 3,000 to 150,000. Yes, more preferably 3,000 to 50,000. The weight average molecular weight is a value obtained by gel permeation chromatography (GPC) using polystyrene as a standard sample.
 これらの(B)成分のポリマーは、単独でまたは2種以上を組み合わせて使用することができる。 The polymers of the component (B) can be used alone or in combination of two or more.
<(C)成分>
 (C)成分は、少なくともN-ヒドロキシアルキル(メタ)アクリルアミド化合物を含むモノマーを重合させてなるポリマーである。なお、N-ヒドロキシアルキル(メタ)アクリルアミドとは、N-ヒドロキシアルキルアクリルアミドとN-ヒドロキシアルキルメタクリルアミドとの双方を意味する。
<Component (C)>
The component (C) is a polymer obtained by polymerizing a monomer containing at least an N-hydroxyalkyl (meth) acrylamide compound. In addition, N-hydroxyalkyl (meth) acrylamide means both N-hydroxyalkylacrylamide and N-hydroxyalkylmethacrylamide.
 本発明の組成物を塗膜にして熱硬化させた際に、(B)成分のN-アルコキシメチル基と、(C)成分のヒドロキシ基とが反応して、結合を形成する。これにより、塗膜が強固になり、溶剤耐性を獲得するようになる。 When the composition of the present invention is used as a coating film and heat-cured, the N-alkoxymethyl group of the component (B) reacts with the hydroxy group of the component (C) to form a bond. As a result, the coating film becomes strong and solvent resistance is acquired.
 N-ヒドロキシアルキル(メタ)アクリルアミド化合物としては、N-(2-ヒドロキシエチル)アクリルアミド、N-(2-ヒドロキシエチル)メタクリルアミド、N-(2-ヒドロキシプロピル)アクリルアミド、N-(2-ヒドロキシプロピル)メタクリルアミド、N-(4-ヒドロキシブチル)アクリルアミド、N-(4-ヒドロキシブチル)メタクリルアミド、N-(2,3-ジヒドロキシプロピル)アクリルアミド、N-(2,3-ジヒドロキシプロピル)メタクリルアミド等が挙げられる。 Examples of the N-hydroxyalkyl (meth) acrylamide compound include N- (2-hydroxyethyl) acrylamide, N- (2-hydroxyethyl) methacrylamide, N- (2-hydroxypropyl) acrylamide, and N- (2-hydroxypropyl). ) Methacrylate, N- (4-hydroxybutyl) acrylamide, N- (4-hydroxybutyl) methacrylamide, N- (2,3-dihydroxypropyl) acrylamide, N- (2,3-dihydroxypropyl) methacrylamide, etc. Can be mentioned.
 本発明では、(C)成分のポリマーを製造する際に、上記N-ヒドロキシアルキル(メタ)アクリルアミド化合物以外のモノマー(以下「その他のモノマー」とも記載する。)を共重合させてもよい。
 本発明において、(C)成分であるポリマーを製造する際にその他のモノマーを用いる場合は、該その他のモノマーの使用量は、(C)成分のポリマーを製造するのに用いるモノマーのモル数の合計に基づいて、好ましくは30モル%乃至90モル%であり、より好ましくは30%モル乃至70モル%である。
In the present invention, when producing the polymer of the component (C), a monomer other than the above N-hydroxyalkyl (meth) acrylamide compound (hereinafter, also referred to as “other monomer”) may be copolymerized.
In the present invention, when other monomers are used in producing the polymer of the component (C), the amount of the other monomers used is the number of moles of the monomers used in producing the polymer of the component (C). Based on the total, it is preferably 30 mol% to 90 mol%, more preferably 30% to 70 mol%.
 その他のモノマーとしては、例えば工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。 Examples of other monomers include industrially available monomers capable of radical polymerization.
 その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、アミド基含有モノマー、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物及びビニル化合物等が挙げられる。 Specific examples of other monomers include unsaturated carboxylic acids, acrylic acid ester compounds, methacrylic acid ester compounds, amide group-containing monomers, maleimide compounds, acrylonitrile, maleic anhydride, styrene compounds and vinyl compounds.
 前記不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸等が挙げられる。 Specific examples of the unsaturated carboxylic acid include acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and the like.
 前記アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロデシルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、2,3-ジヒドロキシプロピルアクリレート、ジエチレングリコールモノアクリレート、カプロラクトン2-(アクリロイルオキシ)エチルエステル、ポリ(エチレングリコール)エチルエーテルアクリレート、5-アクリロイルオキシ-6-ヒドロキシノルボルネン-2-カルボキシリック-6-ラクトン、アクリロイルエチルイソシアネート、及び、8-エチル-8-トリシクロデシルアクリレート、グリシジルアクリレート等が挙げられる。 Examples of the acrylic acid ester compound include methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, 2,2,2-trifluoroethyl acrylate, and tert-. Butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxyethyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 2-methyl-2-adamantyl acrylate, 2 -Propyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2,3-dihydroxypropyl acrylate, diethylene glycol monoacrylate, caprolactone 2- (Acryloyloxy) ethyl ester, poly (ethylene glycol) ethyl ether acrylate, 5-acryloyloxy-6-hydroxynorbornene-2-carboxylic-6-lactone, acryloylethyl isocyanate, and 8-ethyl-8-tri Cyclodecyl acrylate, glycidyl acrylate and the like can be mentioned.
 前記メタクリル酸エステル化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、tert-ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2-メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、γ-ブチロラクトンメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロデシルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルメタクリレート、2,3-ジヒドロキシプロピルメタクリレート、ジエチレングリコールモノメタクリレート、カプロラクトン2-(メタクリロイルオキシ)エチルエステル、ポリ(エチレングリコール)エチルエーテルメタクリレート、5-メタクリロイルオキシ-6-ヒドロキシノルボルネン-2-カルボキシリック-6-ラクトン、メタクリロイルエチルイソシアネート、及び、8-エチル-8-トリシクロデシルメタクリレート、グリシジルメタクリレート等が挙げられる。 Examples of the methacrylic acid ester compound include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, 2,2,2-trifluoroethyl methacrylate and tert-. Butyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, 2-methoxyethyl methacrylate, methoxytriethylene glycol methacrylate, 2-ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, 2-methyl-2-adamantyl methacrylate, γ -Buchirolactone methacrylate, 2-propyl-2-adamantyl methacrylate, 8-methyl-8-tricyclodecyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, 2,3-dihydroxypropyl methacrylate, Diethylene glycol monomethacrylate, caprolactone 2- (methacryloyloxy) ethyl ester, poly (ethylene glycol) ethyl ether methacrylate, 5-methacryloyloxy-6-hydroxynorbornene-2-carboxylic-6-lactone, methacryloylethyl isocyanate, and 8- Examples thereof include ethyl-8-tricyclodecyl methacrylate and glycidyl methacrylate.
 前記アミド基含有モノマーとしては、N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-イソブチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド、N-オクチル(メタ)アクリルアミド、N-(メトキシメチル)(メタ)アクリルアミド、N-(メトキシブチル)(メタ)アクリルアミド、N-(エトキシメチル)(メタ)アクリルアミド、N-(ブトキシメチル)(メタ)アクリルアミド、N-(イソブトキシメチル)(メタ)アクリルアミド、N-(イソブトキシエチル)(メタ)アクリルアミド、N-ビニルフタルイミド、N-ビニルコハク酸イミド等が挙げられる。 Examples of the amide group-containing monomer include N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, and N-butyl. (Meta) acrylamide, N-isobutyl (meth) acrylamide, N-hexyl (meth) acrylamide, N-octyl (meth) acrylamide, N- (methoxymethyl) (meth) acrylamide, N- (methoxybutyl) (meth) acrylamide , N- (ethoxymethyl) (meth) acrylamide, N- (butoxymethyl) (meth) acrylamide, N- (isobutoxymethyl) (meth) acrylamide, N- (isobutoxyethyl) (meth) acrylamide, N-vinyl Examples thereof include phthalimide and N-vinylsuccinate imide.
 前記ビニル化合物としては、例えば、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、ビニルナフタレン、ビニルアントラセン、ビニルビフェニル、ビニルカルバゾール、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、及び、プロピルビニルエーテル等が挙げられる。 Examples of the vinyl compound include vinyl ether, methyl vinyl ether, benzyl vinyl ether, vinylnaphthalene, vinyl anthracene, vinyl biphenyl, vinyl carbazole, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether and the like.
 前記スチレン化合物としては、例えば、スチレン、メチルスチレン、クロロスチレン、ブロモスチレン等が挙げられる。 Examples of the styrene compound include styrene, methylstyrene, chlorostyrene, bromostyrene and the like.
 前記マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、及びN-シクロヘキシルマレイミド等が挙げられる。 Examples of the maleimide compound include maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide.
 前記アクリロニトリル化合物としては、例えば、アクリロニトリル等が挙げられる。 Examples of the acrylonitrile compound include acrylonitrile.
 本発明に用いる(C)成分であるポリマーを得る方法は特に限定されないが、上記(B)成分であるポリマーの製造方法において、N-アルコキシメチル(メタ)アクリルアミド化合物の代わりにN-ヒドロキシアルキル(メタ)アクリルアミド化合物を用いればよい。 The method for obtaining the polymer as the component (C) used in the present invention is not particularly limited, but in the method for producing the polymer as the component (B), N-hydroxyalkyl (instead of the N-alkoxymethyl (meth) acrylamide compound) ( A meta) acrylamide compound may be used.
 このような(C)成分であるポリマーの重量平均分子量は、1,000から500,000であり、好ましくは、2,000から200,000であり、より好ましくは3,000から150,000であり、更に好ましくは3,000から100,000である。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準試料としてポリスチレンを用いて得られる値である。 The weight average molecular weight of the polymer as the component (C) is 1,000 to 500,000, preferably 2,000 to 200,000, and more preferably 3,000 to 150,000. Yes, more preferably 3,000 to 100,000. The weight average molecular weight is a value obtained by gel permeation chromatography (GPC) using polystyrene as a standard sample.
 これらの(C)成分のポリマーは、単独でまたは2種以上を組み合わせて使用することができる。 The polymers of the component (C) can be used alone or in combination of two or more.
 本発明の硬化膜形成組成物における(B)成分であるポリマー及び(C)成分であるポリマーの含有量としては、(A)成分の100質量部に基づいて、(B)成分と(C)成分との合計量が100乃至3000質量部であることが好ましく、200乃至2500質量部であることがさらに好ましく、300乃至2000質量部であることが特に好ましい。 The content of the polymer which is the component (B) and the polymer which is the component (C) in the cured film forming composition of the present invention is based on 100 parts by mass of the component (A), and the component (B) and the component (C). The total amount with the components is preferably 100 to 3000 parts by mass, more preferably 200 to 2500 parts by mass, and particularly preferably 300 to 2000 parts by mass.
 また、(B)成分と(C)成分との質量比は、1:99乃至99:1であることが好ましく、5:95乃至95:5であることがさらに好ましく、10:90乃至90:10であることが特に好ましい。 The mass ratio of the component (B) to the component (C) is preferably 1:99 to 99: 1, more preferably 5:95 to 95: 5, and 10:90 to 90: 5. It is particularly preferable to be 10.
<(D)成分>
 本発明の硬化膜形成組成物は、(A)成分、(B)成分、(C)成分に加えて、さらに、(D)成分として架橋触媒を含有することができる。
 (D)成分である架橋触媒としては、例えば、酸または熱酸発生剤を使用することができる。この(D)成分は、本発明の硬化膜形成組成物の熱硬化反応を促進させることにおいて有効である。
<Ingredient (D)>
The cured film-forming composition of the present invention can further contain a cross-linking catalyst as a component (D) in addition to the components (A), (B) and (C).
As the cross-linking catalyst as the component (D), for example, an acid or a thermoacid generator can be used. This component (D) is effective in accelerating the thermosetting reaction of the cured film-forming composition of the present invention.
 上記酸としては、スルホン酸基含有化合物、塩酸またはその塩等が挙げられる。また、上記熱酸発生剤としては、プリベークまたはポストベーク時に熱分解して酸を発生する化合物、すなわち温度80℃から250℃で熱分解して酸を発生する化合物であれば特に限定されるものではない。
 酸としては、例えば、塩酸またはその塩;メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ブタンスルホン酸、ペンタンスルホン酸、オクタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、カンファスルホン酸、トリフルオロメタンスルホン酸、p-フェノールスルホン酸、2-ナフタレンスルホン酸、メシチレンスルホン酸、p-キシレン-2-スルホン酸、m-キシレン-2-スルホン酸、4-エチルベンゼンスルホン酸、1H,1H,2H,2H-パーフルオロオクタンスルホン酸、パーフルオロ(2-エトキシエタン)スルホン酸、ペンタフルオロエタンスルホン酸、ノナフルオロブタン-1-スルホン酸、ドデシルベンゼンスルホン酸等のスルホン酸またはその水和物や塩等が挙げられる。
 熱により酸を発生する化合物としては、例えば、ビス(トシルオキシ)エタン、ビス(トシルオキシ)プロパン、ビス(トシルオキシ)ブタン、p-ニトロベンジルトシレート、o-ニトロベンジルトシレート、1,2,3-フェニレントリス(メチルスルホネート)、p-トルエンスルホン酸ピリジニウム塩、p-トルエンスルホン酸モルホニウム塩、p-トルエンスルホン酸エチルエステル、p-トルエンスルホン酸プロピルエステル、p-トルエンスルホン酸ブチルエステル、p-トルエンスルホン酸イソブチルエステル、p-トルエンスルホン酸メチルエステル、p-トルエンスルホン酸フェネチルエステル、シアノメチルp-トルエンスルホネート、2,2,2-トリフルオロエチルp-トルエンスルホネート、2-ヒドロキシブチルp-トルエンスルホネート、N-エチル-p-トルエンスルホンアミド、及び下記式で表される化合物等が挙げられる。
Examples of the acid include sulfonic acid group-containing compounds, hydrochloric acid or salts thereof. The thermal acid generator is particularly limited as long as it is a compound that thermally decomposes during prebaking or postbaking to generate an acid, that is, a compound that thermally decomposes at a temperature of 80 ° C to 250 ° C to generate an acid. is not.
Examples of the acid include hydrochloric acid or a salt thereof; methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, pentansulfonic acid, octanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, camphasulfonic acid, trifluo. Lomethane sulfonic acid, p-phenol sulfonic acid, 2-naphthalene sulfonic acid, mecitylene sulfonic acid, p-xylene-2-sulfonic acid, m-xylene-2-sulfonic acid, 4-ethylbenzene sulfonic acid, 1H, 1H, 2H, 2H-Perfluorooctane sulfonic acid, perfluoro (2-ethoxyethane) sulfonic acid, pentafluoroethane sulfonic acid, nonafluorobutane-1-sulfonic acid, sulfonic acid such as dodecylbenzene sulfonic acid or hydrates and salts thereof, etc. Can be mentioned.
Examples of compounds that generate acid by heat include bis (tosyloxy) ethane, bis (tosyloxy) propane, bis (tosyloxy) butane, p-nitrobenzyl tosylate, o-nitrobenzyl tosylate, 1,2,3-. Fenilentris (methylsulfonate), p-toluenesulfonic acid pyridinium salt, p-toluenesulfonic acid morphonium salt, p-toluenesulfonic acid ethyl ester, p-toluenesulfonic acid propyl ester, p-toluenesulfonic acid butyl ester, p-toluene Ssulfonic acid isobutyl ester, p-toluenesulfonic acid methyl ester, p-toluenesulfonic acid phenethyl ester, cyanomethyl p-toluenesulfonate, 2,2,2-trifluoroethyl p-toluenesulfonate, 2-hydroxybutyl p-toluenesulfonate, Examples thereof include N-ethyl-p-toluenesulfoneamide and compounds represented by the following formulas.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 本発明の硬化膜形成組成物における(D)成分の含有量は、(B)成分のポリマーと(C)成分のポリマーとの合計量100質量部に基づいて、好ましくは0.01質量部乃至10質量部であり、より好ましくは0.1質量部乃至6質量部であり、更に好ましくは0.5質量部乃至5質量部である。(D)成分の含有量を0.01質量部以上とすることで、充分な熱硬化性および溶剤耐性を付与することができ、さらに光照射に対する高い感度をも付与することができる。しかし、10質量部より多い場合、組成物の保存安定性が低下する場合がある。 The content of the component (D) in the cured film-forming composition of the present invention is preferably 0.01 parts by mass or more based on 100 parts by mass of the total amount of the polymer of the component (B) and the polymer of the component (C). It is 10 parts by mass, more preferably 0.1 part by mass to 6 parts by mass, and further preferably 0.5 part by mass to 5 parts by mass. By setting the content of the component (D) to 0.01 parts by mass or more, sufficient thermosetting property and solvent resistance can be imparted, and further, high sensitivity to light irradiation can be imparted. However, if it is more than 10 parts by mass, the storage stability of the composition may decrease.
<(E)成分>
 本発明の硬化膜形成組成物は(E)成分として、形成される硬化膜の密着性を向上させる成分(以下、密着向上成分とも言う。)を含有することもできる。
<Ingredient (E)>
The cured film forming composition of the present invention may also contain, as the component (E), a component that improves the adhesion of the formed cured film (hereinafter, also referred to as an adhesion improving component).
 (E)成分である密着向上成分は、本発明の硬化膜形成組成物から得られる配向材と重合性液晶の層との密着性が向上するよう、重合性液晶の重合性官能基と配向材の架橋反応部位を共有結合によりリンクさせることができる。その結果、本実施形態の配向材上に硬化した重合性液晶を積層してなる本実施形態の位相差材は、高温高質の条件下でも、強い密着性を維持することができ、剥離等に対する高い耐久性を示すことができる。 The adhesion improving component (E) is a polymerizable functional group and an alignment material of the polymerizable liquid crystal so as to improve the adhesion between the alignment material obtained from the cured film forming composition of the present invention and the layer of the polymerizable liquid crystal. The cross-linking reaction sites of the above can be linked by covalent bonds. As a result, the retardation material of the present embodiment, which is formed by laminating a cured polymerizable liquid crystal on the alignment material of the present embodiment, can maintain strong adhesion even under high temperature and high quality conditions, and can be peeled off or the like. Can show high durability against.
 (E)成分としては、ヒドロキシ基及びN-アルコキシメチル基から選ばれる基と、重合性基とを有するモノマー及びポリマーが好ましい。
このような(E)成分としては、ヒドロキシ基と(メタ)アクリル基とを有する化合物、N-アルコキシメチル基と(メタ)アクリル基とを有する化合物、N-アルコキシメチル基と(メタ)アクリル基を有するポリマー等が挙げられる。以下、それぞれ具体例を示す。
As the component (E), a monomer and a polymer having a group selected from a hydroxy group and an N-alkoxymethyl group and a polymerizable group are preferable.
Such (E) components include a compound having a hydroxy group and a (meth) acrylic group, a compound having an N-alkoxymethyl group and a (meth) acrylic group, and an N-alkoxymethyl group and a (meth) acrylic group. Examples thereof include polymers having. Specific examples are shown below.
 (E)成分の一例として、ヒドロキシ基を含有した多官能アクリレート(以下、ヒドロキシ基含有多官能アクリレートとも言う。)を挙げることができる。
 (E)成分の例であるヒドロキシ基含有多官能アクリレートとしては、例えば、ペンタエリスリトールトリアクリレートおよびジペンタエリトリトールペンタアクリレート等を挙げることができる。
As an example of the component (E), a hydroxy group-containing polyfunctional acrylate (hereinafter, also referred to as a hydroxy group-containing polyfunctional acrylate) can be mentioned.
Examples of the hydroxy group-containing polyfunctional acrylate that is an example of the component (E) include pentaerythritol triacrylate and dipentaerythritol pentaacrylate.
 (E)成分の一例として、1つの(メタ)アクリル基と、1つ以上のヒドロキシ基とを有する化合物も挙げられる。 An example of the component (E) is a compound having one (meth) acrylic group and one or more hydroxy groups.
 また、(E)成分の化合物としては、1分子中にC=C二重結合を含む重合性基を少なくとも1つと、N-アルコキシメチル基を少なくとも1つ有する化合物が挙げられる。 Further, examples of the compound of the component (E) include a compound having at least one polymerizable group containing a C = C double bond in one molecule and at least one N-alkoxymethyl group.
 C=C二重結合を含む重合性基としては、アクリル基、メタクリル基、ビニル基、アリル基、マレイミド基等が挙げられる。 Examples of the polymerizable group containing a C = C double bond include an acrylic group, a methacryl group, a vinyl group, an allyl group, and a maleimide group.
 1分子中にC=C二重結合を含む重合性基を少なくとも1つと、N-アルコキシメチル基を少なくとも1つ有する化合物としては、好ましくは、例えば下記の式(X1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
(式中、R31は水素原子又はメチル基を表し、R32は水素原子、又は直鎖若しくは分岐の炭素原子数1乃至10のアルキル基を表す)
As a compound having at least one polymerizable group containing a C = C double bond and at least one N-alkoxymethyl group in one molecule, for example, a compound represented by the following formula (X1) is preferable. Can be mentioned.
Figure JPOXMLDOC01-appb-C000009
(In the formula, R 31 represents a hydrogen atom or a methyl group, and R 32 represents a hydrogen atom or a linear or branched alkyl group having 1 to 10 carbon atoms).
 上記炭素原子数1乃至10のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、n-ヘプチル基、1-メチル-n-ヘキシル基、2-メチル-n-ヘキシル基、3-メチル-n-ヘキシル基、1,1-ジメチル-n-ペンチル基、1,2-ジメチル-n-ペンチル基、1,3-ジメチル-n-ペンチル基、2,2-ジメチル-n-ペンチル基、2,3-ジメチル-n-ペンチル基、3,3-ジメチル-n-ペンチル基、1-エチル-n-ペンチル基、2-エチル-n-ペンチル基、3-エチル-n-ペンチル基、1-メチル-1-エチル-n-ブチル基、1-メチル-2-エチル-n-ブチル基、1-エチル-2-メチル-n-ブチル基、2-メチル-2-エチル-n-ブチル基、2-エチル-3-メチル-n-ブチル基、n-オクチル基、1-メチル-n-ヘプチル基、2-メチル-n-ヘプチル基、3-メチル-n-ヘプチル基、1,1-ジメチル-n-ヘキシル基、1,2-ジメチル-n-ヘキシル基、1,3-ジメチル-n-ヘキシル基、2,2-ジメチル-n-ヘキシル基、2,3-ジメチル-n-ヘキシル基、3,3-ジメチル-n-ヘキシル基、1-エチル-n-ヘキシル基、2-エチル-n-ヘキシル基、3-エチル-n-ヘキシル基、1-メチル-1-エチル-n-ペンチル基、1-メチル-2-エチル-n-ペンチル基、1-メチル-3-エチル-n-ペンチル基、2-メチル-2-エチル-n-ペンチル基、2-メチル-3-エチル-n-ペンチル基、3-メチル-3-エチル-n-ペンチル基、n-ノニル基、n-デシル基等が挙げられる。 Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group and n-pentyl. Group, 1-methyl-n-butyl group, 2-methyl-n-butyl group, 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group , 2,2-Dimethyl-n-propyl group, 1-ethyl-n-propyl group, n-hexyl group, 1-methyl-n-pentyl group, 2-methyl-n-pentyl group, 3-methyl-n- Pentyl group, 4-methyl-n-pentyl group, 1,1-dimethyl-n-butyl group, 1,2-dimethyl-n-butyl group, 1,3-dimethyl-n-butyl group, 2,2-dimethyl -N-butyl group, 2,3-dimethyl-n-butyl group, 3,3-dimethyl-n-butyl group, 1-ethyl-n-butyl group, 2-ethyl-n-butyl group, 1,1, 2-trimethyl-n-propyl group, 1,2,2-trimethyl-n-propyl group, 1-ethyl-1-methyl-n-propyl group, 1-ethyl-2-methyl-n-propyl group, n- Heptyl group, 1-methyl-n-hexyl group, 2-methyl-n-hexyl group, 3-methyl-n-hexyl group, 1,1-dimethyl-n-pentyl group, 1,2-dimethyl-n-pentyl group Group, 1,3-dimethyl-n-pentyl group, 2,2-dimethyl-n-pentyl group, 2,3-dimethyl-n-pentyl group, 3,3-dimethyl-n-pentyl group, 1-ethyl- n-pentyl group, 2-ethyl-n-pentyl group, 3-ethyl-n-pentyl group, 1-methyl-1-ethyl-n-butyl group, 1-methyl-2-ethyl-n-butyl group, 1 -Ethyl-2-methyl-n-butyl group, 2-methyl-2-ethyl-n-butyl group, 2-ethyl-3-methyl-n-butyl group, n-octyl group, 1-methyl-n-heptyl Group, 2-methyl-n-heptyl group, 3-methyl-n-heptyl group, 1,1-dimethyl-n-hexyl group, 1,2-dimethyl-n-hexyl group, 1,3-dimethyl-n- Hexyl group, 2,2-dimethyl-n-hexyl group, 2,3-dimethyl-n-hexyl group, 3,3-dimethyl-n-hexyl group, 1-ethyl-n-hexyl group, 2-ethyl-n -Hexyl group, 3-ethyl-n-hexyl group, 1-methyl-1-ethyl-n-pentyl group, 1-methyl-2-ethyl-n-pentyl group, 1-methyl-3-ethyl- n-Pentyl group, 2-methyl-2-ethyl-n-Pentyl group, 2-methyl-3-ethyl-n-Pentyl group, 3-Methyl-3-ethyl-n-Pentyl group, n-nonyl group, n -Examples include a decyl group.
 上記式(X1)で表される化合物の具体例としては、N-ヒドロキシメチル(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド等のヒドロキシメチル基若しくはアルコキシメチル基で置換されたアクリルアミド化合物又はメタクリルアミド化合物が挙げられる。なお(メタ)アクリルアミドとはメタクリルアミドとアクリルアミドの双方を意味する。 Specific examples of the compound represented by the above formula (X1) include N-hydroxymethyl (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, and N-butoxymethyl (meth). Examples thereof include an acrylamide compound or a methacrylamide compound substituted with a hydroxymethyl group such as acrylamide or an alkoxymethyl group. Note that (meth) acrylamide means both methacrylamide and acrylamide.
 (E)成分のC=C二重結合を含む重合性基とN-アルコキシメチル基を有する化合物の別の態様としては、好ましくは、例えば下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
Another embodiment of the compound having a polymerizable group containing a C = C double bond and an N-alkoxymethyl group of the component (E) is preferably, for example, the following compound.
Figure JPOXMLDOC01-appb-C000010
 本発明の硬化膜形成組成物における(E)成分の含有量は、(A)成分である低分子の光配向成分の100質量部に基づいて、好ましくは1質量部乃至100質量部であり、更に好ましくは5質量部乃至70質量部である。 The content of the component (E) in the cured film forming composition of the present invention is preferably 1 part by mass to 100 parts by mass based on 100 parts by mass of the low molecular weight photoalignment component which is the component (A). More preferably, it is 5 parts by mass to 70 parts by mass.
<溶剤>
 本発明硬化膜形成組成物は、主として溶剤に溶解した溶液状態で用いられる。その際に使用する溶剤は、(A)成分、(B)成分および(C)成分、必要に応じて(D)成分、(E)成分および/または後述するその他添加剤を溶解できればよく、その種類および構造などは特に限定されるものでない。
<Solvent>
The cured film-forming composition of the present invention is mainly used in a solution state dissolved in a solvent. The solvent used at that time may be sufficient as long as it can dissolve the component (A), the component (B) and the component (C), and if necessary, the component (D), the component (E) and / or other additives described later. The type and structure are not particularly limited.
 溶剤の具体例としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ブタノン、3-メチル-2-ペンタノン、2-ペンタノン、2-ヘプタノン、γ-ブチロラクトン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、およびN-メチルピロリドン等が挙げられる。これらの溶剤は、1種単独でまたは2種以上の組合せで使用することができる。 Specific examples of the solvent include, for example, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate. , Propropylene glycol propyl ether acetate, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-butanone, 3-methyl-2-pentanone, 2-pentanone, 2-heptanone, γ-butyrolactone, ethyl 2-hydroxypropionate, Ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutanoate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethyl 3-ethoxypropionate, Examples thereof include methyl 3-ethoxypropionate, methyl pyruvate, ethyl pyruvate, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like. .. These solvents can be used alone or in combination of two or more.
<その他添加剤>
 さらに、本発明の硬化膜形成組成物は、本発明の効果を損なわない限りにおいて、必要に応じて、増感剤、シランカップリング剤、界面活性剤、レオロジー調整剤、顔料、染料、保存安定剤、消泡剤、酸化防止剤等を含有することができる。
<Other additives>
Further, the cured film-forming composition of the present invention is, if necessary, a sensitizer, a silane coupling agent, a surfactant, a rheology adjuster, a pigment, a dye, and storage stability as long as the effects of the present invention are not impaired. It can contain agents, antifoaming agents, antioxidants and the like.
 例えば、増感剤は、本発明の硬化膜形成組成物を用いて熱硬化膜を形成した後、光反応を促進することにおいて有効である。 For example, a sensitizer is effective in promoting a photoreaction after forming a thermosetting film using the cured film forming composition of the present invention.
 その他添加剤の一例であるの増感剤としては、ベンゾフェノン、アントラセン、アントラキノン、チオキサントン等およびその誘導体、並びにニトロフェニル化合物等が挙げられる。これらのうち、ベンゾフェノン誘導体およびニトロフェニル化合物が好ましい。好ましい化合物の具体例としてN,N-ジエチルアミノベンゾフェノン、2-ニトロフルオレン、2-ニトロフルオレノン、5-ニトロアセナフテン、4-ニトロビフェニル、4-ニトロけい皮酸、4-ニトロスチルベン、4-ニトロベンゾフェノン、5-ニトロインドール等が挙げられる。特に、ベンゾフェノンの誘導体であるN,N-ジエチルアミノベンゾフェノンが好ましい。 Examples of the sensitizer, which is an example of other additives, include benzophenone, anthracene, anthraquinone, thioxanthone and its derivatives, derivatives thereof, and nitrophenyl compounds. Of these, benzophenone derivatives and nitrophenyl compounds are preferred. Specific examples of preferred compounds include N, N-diethylaminobenzophenone, 2-nitrofluorene, 2-nitrofluorenone, 5-nitroacenaphthene, 4-nitrobiphenyl, 4-nitrocinnamic acid, 4-nitrostilbene, 4-nitrobenzophenone. , 5-Nitroindole and the like. In particular, N, N-diethylaminobenzophenone, which is a derivative of benzophenone, is preferable.
 これらの増感剤は上記のものに限定されるものではない。また、増感剤は単独でまたは2種以上の化合物を組み合わせて使用することが可能である。 These sensitizers are not limited to the above. In addition, the sensitizer can be used alone or in combination of two or more compounds.
 本発明の硬化膜形成組成物における増感剤の使用割合は、(A)成分の低分子の光配向成分の100質量部に基づいて、0.1質量部乃至20質量部であることが好ましく、より好ましくは0.2質量部乃至10質量部である。この割合が過小である場合には、増感剤としての効果を充分に得られない場合があり、過大である場合には透過率の低下および塗膜の荒れが生じることがある。 The ratio of the sensitizer used in the cured film forming composition of the present invention is preferably 0.1 part by mass to 20 parts by mass based on 100 parts by mass of the low molecular weight photoalignment component of the component (A). , More preferably 0.2 parts by mass to 10 parts by mass. If this ratio is too small, the effect as a sensitizer may not be sufficiently obtained, and if it is too large, the transmittance may be lowered and the coating film may be roughened.
<硬化膜形成組成物の調製>
 本実施の形態の硬化膜形成組成物は、(A)成分である低分子の光配向成分と、(B)成分である少なくともN-アルコキシメチル(メタ)アクリルアミド化合物を含むモノマーを重合させてなるポリマーと、(C)成分である少なくともN-ヒドロキシアルキル(メタ)アクリルアミド化合物を含むモノマーを重合させてなるポリマーとを含有する。そして、必要に応じて(D)成分である架橋触媒、(E)成分である密着性向上成分および/またはその他添加剤を含有することができる。
<Preparation of cured film forming composition>
The cured film-forming composition of the present embodiment is formed by polymerizing a monomer containing a low-molecular-weight photoalignment component which is a component (A) and at least an N-alkoxymethyl (meth) acrylamide compound which is a component (B). It contains a polymer and a polymer obtained by polymerizing a monomer containing at least an N-hydroxyalkyl (meth) acrylamide compound which is a component (C). Then, if necessary, a cross-linking catalyst as a component (D), an adhesion improving component as a component (E), and / or other additives can be contained.
 本発明の硬化膜形成組成物を溶液として用いる場合の配合割合、調製方法等を以下に詳述する。
 本発明の硬化膜形成組成物における固形分の割合は、各成分が均一に溶剤に溶解している限り、特に限定されるものではないが、1質量%乃至80質量%であり、好ましくは3質量%乃至60質量%であり、より好ましくは5質量%乃至40質量%である。ここで、固形分とは、硬化膜形成組成物の全成分から溶剤を除いたものをいう。
The blending ratio, preparation method, etc. when the cured film-forming composition of the present invention is used as a solution will be described in detail below.
The proportion of the solid content in the cured film-forming composition of the present invention is not particularly limited as long as each component is uniformly dissolved in the solvent, but is 1% by mass to 80% by mass, preferably 3. It is from mass% to 60% by mass, more preferably 5% by mass to 40% by mass. Here, the solid content refers to a composition obtained by removing the solvent from all the components of the cured film forming composition.
 本発明の硬化膜形成組成物の調製方法は、特に限定されない。調製法としては、例えば、溶剤に溶解した(B)成分の溶液に(A)成分、(C)成分および必要に応じて(D)成分、(E)成分を所定の割合で混合し、均一な溶液とする方法、或いは、この調製法の適当な段階において、必要に応じてその他添加剤をさらに添加して混合する方法が挙げられる。 The method for preparing the cured film-forming composition of the present invention is not particularly limited. As a preparation method, for example, the component (A), the component (C) and, if necessary, the component (D) and the component (E) are mixed in a solution of the component (B) dissolved in a solvent at a predetermined ratio and uniformly. A method of preparing a solution, or a method of further adding and mixing other additives as needed at an appropriate stage of this preparation method can be mentioned.
 本発明の硬化膜形成組成物の調製においては、溶剤中の重合反応によって得られるポリマー溶液をそのまま使用することができる。この場合、例えば、(C)成分の溶液に(A)成分、(B)成分および必要に応じて(D)成分、(E)成分を入れて均一な溶液とする。この際に、濃度調整を目的としてさらに溶剤を追加投入してもよい。このとき、(C)成分の生成過程で用いられる溶剤と、硬化膜形成組成物の濃度調整に用いられる溶剤とは同一であってもよく、また異なってもよい。 In the preparation of the cured film-forming composition of the present invention, the polymer solution obtained by the polymerization reaction in the solvent can be used as it is. In this case, for example, the component (A), the component (B) and, if necessary, the components (D) and (E) are added to the solution of the component (C) to make a uniform solution. At this time, an additional solvent may be added for the purpose of adjusting the concentration. At this time, the solvent used in the process of producing the component (C) and the solvent used for adjusting the concentration of the cured film-forming composition may be the same or different.
 また、調製された硬化膜形成組成物の溶液は、孔径が0.2μm程度のフィルタなどを用いて濾過した後、使用することが好ましい。 Further, it is preferable that the prepared solution of the cured film-forming composition is used after being filtered using a filter having a pore size of about 0.2 μm or the like.
<硬化膜、配向材および位相差材>
 本発明の硬化膜形成組成物の溶液を基板(例えば、シリコン/二酸化シリコン被覆基板、シリコンナイトライド基板、金属、例えば、アルミニウム、モリブデン、クロムなどが被覆された基板、ガラス基板、石英基板、ITO基板等)やフィルム(例えば、トリアセチルセルロース(TAC)フィルム、シクロオレフィンポリマーフィルム、ポリエチレンテレフタレートフィルム、アクリルフィルム等の樹脂フィルム)等の上に、バーコート、回転塗布、流し塗布、ロール塗布、スリット塗布、スリットに続いた回転塗布、インクジェット塗布、印刷などによって塗布して塗膜を形成し、その後、ホットプレートまたはオーブン等で加熱乾燥することにより、硬化膜を形成することができる。
<Hardened film, alignment material and retardation material>
The solution of the cured film forming composition of the present invention is applied to a substrate (for example, a silicon / silicon dioxide coated substrate, a silicon nitride substrate, a substrate coated with a metal such as aluminum, molybdenum, chromium, etc., a glass substrate, a quartz substrate, ITO. Bar coat, rotary coating, sink coating, roll coating, slit on a substrate, etc.) or film (for example, resin film such as triacetyl cellulose (TAC) film, cycloolefin polymer film, polyethylene terephthalate film, acrylic film). A cured film can be formed by applying by coating, rotary coating following a slit, inkjet coating, printing, or the like to form a coating film, and then heating and drying in a hot plate or an oven.
 加熱乾燥の条件としては、硬化膜から形成される配向材の成分が、その上に塗布される重合性液晶溶液に溶出しない程度に、架橋剤による架橋反応が進行すればよく、例えば、温度60℃乃至200℃、時間0.4分間乃至60分間の範囲の中から適宜選択された加熱温度および加熱時間が採用される。加熱温度および加熱時間は、好ましくは70℃乃至160℃、0.5分間乃至10分間である。 As a condition of heat drying, it is sufficient that the cross-linking reaction by the cross-linking agent proceeds to the extent that the component of the alignment material formed from the cured film does not elute into the polymerizable liquid crystal solution applied thereto. For example, the temperature is 60. A heating temperature and heating time appropriately selected from the range of ° C. to 200 ° C. and a time of 0.4 minutes to 60 minutes are adopted. The heating temperature and heating time are preferably 70 ° C. to 160 ° C., 0.5 minutes to 10 minutes.
 本発明の硬化膜形成組成物を用いて形成される硬化膜の膜厚は、例えば、0.05μm乃至5μmであり、使用する基板の段差や光学的、電気的性質を考慮し適宜選択することができる。 The film thickness of the cured film formed by using the cured film forming composition of the present invention is, for example, 0.05 μm to 5 μm, and is appropriately selected in consideration of the step of the substrate to be used and the optical and electrical properties. Can be done.
 このようにして形成された硬化膜は、偏光UV照射を行うことで配向材、すなわち、液晶等の液晶性を有する化合物を配向させる部材として機能させることができる。 The cured film thus formed can function as an alignment material, that is, a member for aligning a liquid crystal compound such as a liquid crystal by performing polarized UV irradiation.
 偏光UVの照射方法としては、通常150nm乃至450nmの波長の紫外光乃至可視光が用いられ、室温または加熱した状態で垂直または斜め方向から直線偏光を照射することによって行われる。 As a method of irradiating polarized UV, ultraviolet light or visible light having a wavelength of 150 nm to 450 nm is usually used, and it is performed by irradiating linearly polarized light from a vertical or diagonal direction at room temperature or in a heated state.
 本発明の硬化膜形成組成物から形成された配向材は耐溶剤性および耐熱性を有しているため、この配向材上に、重合性液晶溶液からなる位相差材料を塗布した後、液晶の相転移温度まで加熱することで位相差材料を液晶状態とし、配向材上で配向させる。そして、配向状態となった位相差材料をそのまま硬化させることにより、光学異方性を有する層として位相差材を形成することができる。 Since the alignment material formed from the cured film forming composition of the present invention has solvent resistance and heat resistance, a retardation material composed of a polymerizable liquid crystal solution is applied onto the alignment material, and then the liquid crystal is used. By heating to the phase transition temperature, the retardation material is put into a liquid crystal state and oriented on the alignment material. Then, by curing the alignment material in the oriented state as it is, the retardation material can be formed as a layer having optical anisotropy.
 位相差材料としては、例えば、重合性基を有する液晶モノマーおよびそれを含有する組成物等が用いられる。そして、配向材を形成する基板がフィルムである場合には、本発明の位相差材を有するフィルムは、位相差フィルムとして有用である。このような位相差材を形成する位相差材料は、液晶状態となって、配向材上で、水平配向、コレステリック配向、垂直配向、ハイブリッド配向等の配向状態をとるものがあり、それぞれ必要とされる位相差に応じて使い分けることが出来る。 As the retardation material, for example, a liquid crystal monomer having a polymerizable group and a composition containing the same are used. When the substrate forming the alignment material is a film, the film having the retardation material of the present invention is useful as the retardation film. Some retardation materials that form such retardation materials are in a liquid crystal state and take orientation states such as horizontal orientation, cholesteric orientation, vertical orientation, and hybrid orientation on the alignment material, and are required for each. It can be used properly according to the phase difference.
 また、3Dディスプレイに用いられるパターン化位相差材を製造する場合には、本発明の硬化膜形成組成物から上記した方法で形成された硬化膜に、ラインアンドスペースパターンのマスクを介して所定の基準から、例えば、+45度の向きで偏光UV露光し、次いで、マスクを外してから-45度の向きで偏光UVを露光し、液晶の配向制御方向の異なる2種類の液晶配向領域が形成された配向材を得る。その後、重合性液晶溶液からなる位相差材料を塗布した後、液晶の相転移温度まで加熱することで位相差材料を液晶状態とし、配向材上で配向させる。そして、配向状態となった位相差材料をそのまま硬化させ、位相差特性の異なる2種類の位相差領域がそれぞれ複数、規則的に配置された、パターン化位相差材を得ることができる。 Further, in the case of producing a patterned retardation material used for a 3D display, a predetermined cured film formed from the cured film forming composition of the present invention is formed on a cured film formed by the above method via a line-and-space pattern mask. From the reference, for example, polarized UV exposure is performed in the direction of +45 degrees, then polarized UV is exposed in the direction of -45 degrees after removing the mask, and two types of liquid crystal alignment regions having different liquid crystal orientation control directions are formed. Obtain the alignment material. Then, after applying a retardation material composed of a polymerizable liquid crystal solution, the retardation material is brought into a liquid crystal state by heating to the phase transition temperature of the liquid crystal, and is oriented on the alignment material. Then, the retarded material in the oriented state is cured as it is, and a patterned retardation material in which a plurality of two types of retardation regions having different retardation characteristics are regularly arranged can be obtained.
 また、上記のようにして形成された、本発明の配向材を有する2枚の基板を用い、スペーサを介して両基板上の配向材が互いに向かい合うように張り合わせた後、それらの基板の間に液晶を注入して、液晶が配向した液晶表示素子とすることもできる。
 このように、本発明の硬化膜形成組成物は、各種位相差材(位相差フィルム)や液晶表示素子等の製造に好適に用いることができる。
Further, using two substrates having the alignment material of the present invention formed as described above, the alignment materials on both substrates are laminated so as to face each other via a spacer, and then between the substrates. It is also possible to inject a liquid crystal into a liquid crystal display element in which the liquid crystal is oriented.
As described above, the cured film forming composition of the present invention can be suitably used for producing various retardation materials (phase difference films), liquid crystal display elements, and the like.
 以下、本発明の実施例を挙げて、本発明を具体的に説明するが、本発明はこれらに限定して解釈されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples of the present invention, but the present invention is not construed as being limited to these.
[実施例で用いる略記号]
以下の実施例で用いる略記号の意味は、次のとおりである。
<原料>
BMAA:N-ブトキシメチルアクリルアミド
AIBN:α,α’-アゾビスイソブチロニトリル
MMA:メチルメタクリレート
HEAA:N-(2-ヒドロキシエチル)アクリルアミド
MAIB:ジメチル2,2-アゾビスイソブレート
[Abbreviations used in Examples]
The meanings of the abbreviations used in the following examples are as follows.
<Raw materials>
BMAA: N-butoxymethylacrylamide AIBN: α, α'-azobisisobutyronitrile MMA: Methyl methacrylate HEAA: N- (2-hydroxyethyl) Acrylamide MAIB: Dimethyl 2,2-azobisisobuty
<A成分>
MCA:4-メトキシけい皮酸
Figure JPOXMLDOC01-appb-C000011
<Component A>
MCA: 4-Methoxycinnamic acid
Figure JPOXMLDOC01-appb-C000011
<B成分>
PB-1:下記の構造式で表される。
Figure JPOXMLDOC01-appb-C000012
<B component>
PB-1: It is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000012
<C成分>
PC-1:下記の構造式で表される。
Figure JPOXMLDOC01-appb-C000013
PC-2:下記の構造式で表される。
Figure JPOXMLDOC01-appb-C000014
<C component>
PC-1: It is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000013
PC-2: It is represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000014
<D成分>
PTSA:p-トルエンスルホン酸・一水和物
<D component>
PTSA: p-toluenesulfonic acid monohydrate
<E成分>
E-1:下記の構造式で示されるN-アルコキシメチル基およびアクリル基を有する化合物
Figure JPOXMLDOC01-appb-C000015
<E component>
E-1: Compound having N-alkoxymethyl group and acrylic group represented by the following structural formula
Figure JPOXMLDOC01-appb-C000015
<溶剤>
 実施例及び比較例の各樹脂組成物は溶剤を含有し、その溶剤として、プロピレングリコールモノメチルエーテル(PM)、酢酸ブチル(BA)を用いた。
<Solvent>
Each of the resin compositions of Examples and Comparative Examples contained a solvent, and propylene glycol monomethyl ether (PM) and butyl acetate (BA) were used as the solvent.
<重合体の分子量の測定>
 重合例におけるアクリル共重合体の分子量は、東ソー(株)社製ゲル浸透クロマトグラフィー(GPC)装置(HLC-8320)、東ソー(株)社製カラム社製カラム(TSKgel ALPHA4000、TSKgel ALPHA3000)を用い以下のようにして測定した。
 なお、下記の数平均分子量(以下、Mnと称す。)及び重量平均分子量(以下、Mwと称す。)は、ポリスチレン換算値にて表した。
カラム温度:40℃
溶離液:テトラヒドロフラン
流速:1.0mL/分
検量線作成用標準サンプル:東ソー(株)社製 標準ポリスチレン(分子量 427,000、190,000、37,900、18,100、5,970、2,420、1,010)
<Measurement of molecular weight of polymer>
For the molecular weight of the acrylic copolymer in the polymerization example, a gel permeation chromatography (GPC) apparatus (HLC-8320) manufactured by Toso Co., Ltd. and a column manufactured by Toso Co., Ltd. (TSKgel ALPHA4000, TSKgel ALPHA3000) were used. It was measured as follows.
The following number average molecular weight (hereinafter referred to as Mn) and weight average molecular weight (hereinafter referred to as Mw) are represented by polystyrene-equivalent values.
Column temperature: 40 ° C
Eluent: Tetrahydrofuran Flow rate: 1.0 mL / Standard sample for preparing a calibration curve: Standard polystyrene manufactured by Tosoh Corporation (molecular weight 427,000, 190,000, 37,900, 18,100, 5,970,2) 420, 1,010)
<B成分の合成>
<重合例-1>
 BMAA 100.0g、重合触媒としてAIBN 1.0gをPM 193.5gに溶解し、80℃にて20時間反応させることによりアクリル重合体溶液を得た。得られたアクリル重合体のMnは10,000、Mwは23,000であった。アクリル重合体溶液をヘキサン2000.0gに徐々に滴下して固体を析出させ、ろ過および減圧乾燥することで、重合体(PB-1)を得た。
<Synthesis of component B>
<Polymerization Example-1>
An acrylic polymer solution was obtained by dissolving 100.0 g of BMAA and 1.0 g of AIBN as a polymerization catalyst in 193.5 g of PM and reacting at 80 ° C. for 20 hours. The obtained acrylic polymer had Mn of 10,000 and Mw of 23,000. The acrylic polymer solution was gradually added dropwise to 2000.0 g of hexane to precipitate a solid, which was then filtered and dried under reduced pressure to obtain a polymer (PB-1).
<C成分の合成>
<重合例―2>
 MMA 7.0g、HEAA 5.8g、重合触媒としてMAIB 0.23gをPM 13.0gに溶解した。あらかじめ四口フラスコにPM 6.50gを加え85℃に加熱しておいた滴下槽へ溶解した溶液を3時間かけて滴下し、還流下で3時間反応させることによりアクリル重合体溶液を得た。得られたアクリル重合体のMnは12,600、Mwは43,100であった。目的の重合体(PC-1)40%PM溶液を得た。
<Synthesis of C component>
<Polymerization example-2>
7.0 g of MMA, 5.8 g of HEAA, and 0.23 g of MAIB as a polymerization catalyst were dissolved in 13.0 g of PM. An acrylic polymer solution was obtained by adding 6.50 g of PM to a four-necked flask in advance, dropping the dissolved solution into a dropping tank heated to 85 ° C. over 3 hours, and reacting under reflux for 3 hours. The obtained acrylic polymer had Mn of 12,600 and Mw of 43,100. A 40% PM solution of the target polymer (PC-1) was obtained.
<C成分の合成>
<重合例―3>
 BMAA 47.10g、HEAA 34.5g、重合触媒としてMAIB 0.829gをPM 82.50gに溶解した。あらかじめ四口フラスコにPM 41.25gを加え85℃に加熱しておいた滴下槽へ溶解した溶液を3時間かけて滴下し、滴下後5時間反応させることによりアクリル重合体溶液を得た。得られたアクリル重合体のMnは6,500、Mwは17,000であった。目的の重合体(PC-2)40%PM溶液を得た。
<Synthesis of C component>
<Polymerization example-3>
47.10 g of BMAA, 34.5 g of HEAA, and 0.829 g of MAIB as a polymerization catalyst were dissolved in 82.50 g of PM. An acrylic polymer solution was obtained by adding 41.25 g of PM to a four-necked flask in advance, dropping the dissolved solution into a dropping tank heated to 85 ° C. over 3 hours, and reacting for 5 hours after the dropping. The obtained acrylic polymer had Mn of 6,500 and Mw of 17,000. A 40% PM solution of the target polymer (PC-2) was obtained.
<液晶配向剤(硬化膜形成組成物)の調製>
<調製例1>
 (A)成分としてMCA 0.079g、(B)成分として重合例-1で得たPB-1 0.66g、(C)成分として重合例-2で得た重合体(PC-1)の40%PM溶液を0.26g、(E)成分としてE-1 0.056g(純正化学(株)社製94.6%BA溶液)、(D)成分としてPTSA 0.021gを混合し、これに溶媒としてのPM 6.65g、BA 1.62gを加えて1時間攪拌し、目視で溶解したことを確認し溶液を得た。次いで、この得られた溶液を孔径0.2μmのフィルターでろ過することにより、液晶配向剤(A-1)を調製した。
<Preparation of liquid crystal alignment agent (cured film forming composition)>
<Preparation Example 1>
0.079 g of MCA as the component (A), 0.66 g of PB-1 obtained in Polymerization Example-1 as the component (B), and 40 of the polymer (PC-1) obtained in Polymerization Example-2 as the component (C). 0.26 g of% PM solution, 0.056 g of E-1 as component (E) (94.6% BA solution manufactured by Genuine Chemical Co., Ltd.), and 0.021 g of PTSA as component (D) were mixed and mixed with this. 6.65 g of PM and 1.62 g of BA as a solvent were added and stirred for 1 hour, and it was visually confirmed that the solution was obtained to obtain a solution. Then, the obtained solution was filtered through a filter having a pore size of 0.2 μm to prepare a liquid crystal alignment agent (A-1).
<調製例2~6>
 下記表1に示す種類及び配合量の各成分を用いた以外は、調製例1と同様に操作し、各液晶配向剤(A-2)~(A-4)、(B-1)、(B-2)を調製した。
<Preparation Examples 2 to 6>
The same procedure as in Preparation Example 1 was carried out except that each component of the type and blending amount shown in Table 1 below was used, and the liquid crystal alignment agents (A-2) to (A-4), (B-1), ( B-2) was prepared.
Figure JPOXMLDOC01-appb-T000016
APEPO-1:RFK-505(川崎化成工業株式会社製)
PEPO-1:ポリライト8651(DIC株式会社社製)
Figure JPOXMLDOC01-appb-T000016
APEPO-1: RFK-505 (manufactured by Kawasaki Kasei Chemicals Co., Ltd.)
PEPO-1: Polylite 8651 (manufactured by DIC Corporation)
<水平配向用重合性液晶溶液の作製>
<作製例1>
 水平配向用重合性液晶であるLC-242 1.57g(BASF社製)、光ラジカル開始剤であるIrgacure907 0.047g(BASF社製)、レベリング材であるBYK-361N 0.008gを加え、さらに溶媒としてN-メチルピロリドン(NMP)6.55g、シクロペンタノン9.83gを加え、2時間攪拌し目視で溶解していることを確認し、9質量%の重合性液晶溶液LC-1を得た。
<Preparation of polymerizable liquid crystal solution for horizontal orientation>
<Production example 1>
LC-242 1.57 g (manufactured by BASF), which is a polymerizable liquid crystal for horizontal orientation, 0.047 g (manufactured by BASF), which is a photoradical initiator, and 0.008 g of BYK-361N, which is a leveling material, are added. 6.55 g of N-methylpyrrolidone (NMP) and 9.83 g of cyclopentanone were added as a solvent, and the mixture was stirred for 2 hours and visually confirmed to be dissolved to obtain a 9% by mass polymerizable liquid crystal solution LC-1. It was.
<液晶配向膜の形成及び位相差フィルムの作製>
<実施例1>
 調製例1で調製した液晶配向剤(A-1)を基板としてのトリアセチルセルロール(TAC)フィルム上にバーコーターを用いてWet膜厚6μmにて塗布した。熱循環式オーブン内にて130℃で2分間の加熱乾燥を行い、フィルム上に硬化膜を形成した。次いで、この硬化膜表面に313nmの直線偏光を10mJ/cmの露光量で垂直に照射し、液晶配向膜を形成した。水平配向用重合性液晶溶液LC-1を、バーコーターを用いて上記液晶配向膜上にWet膜厚34μmにて塗布した。次いで、オーブン内にて120℃で2分間の加熱乾燥を行った後、窒素下、365nmの非偏光を300mJ/cmの露光量で垂直に照射することで重合性液晶を硬化させ、位相差フィルムを作製した。
<Formation of liquid crystal alignment film and fabrication of retardation film>
<Example 1>
The liquid crystal alignment agent (A-1) prepared in Preparation Example 1 was applied onto a triacetyl cellulol (TAC) film as a substrate using a bar coater at a Wet film thickness of 6 μm. A cured film was formed on the film by heating and drying at 130 ° C. for 2 minutes in a heat-circulating oven. Next, the surface of the cured film was vertically irradiated with linearly polarized light of 313 nm at an exposure amount of 10 mJ / cm 2 to form a liquid crystal alignment film. A polymerizable liquid crystal solution LC-1 for horizontal alignment was applied onto the liquid crystal alignment film using a bar coater with a Wet film thickness of 34 μm. Next, after heat-drying at 120 ° C. for 2 minutes in an oven, the polymerizable liquid crystal was cured by vertically irradiating it with unpolarized light at 365 nm under nitrogen at an exposure amount of 300 mJ / cm 2 , and the phase difference was obtained. A film was made.
<実施例2~4>
 液晶配向剤として(A-2)~(A-4)を用い、実施例1と同様の操作にて位相差フィルムを作製した。
<Examples 2 to 4>
Using (A-2) to (A-4) as the liquid crystal alignment agents, a retardation film was prepared by the same operation as in Example 1.
<比較例1>
 調製例1で調製した液晶配向剤(B-1)を基板としてのTACフィルム上にバーコーターを用いてWet膜厚4μmにて塗布した。熱循環式オーブン内にて130℃で2分間の加熱乾燥を行い、フィルム上に硬化膜を形成した。次いで、この硬化膜表面に313nmの直線偏光を10mJ/cmの露光量で垂直に照射し、液晶配向膜を形成した。水平配向用重合性液晶溶液LC-1を、バーコーターを用いて上記液晶配向膜上にWet膜厚34μmにて塗布した。次いで、オーブン内にて120℃で2分間の加熱乾燥を行った後、窒素下、365nmの非偏光を300mJ/cmの露光量で垂直に照射することで重合性液晶を硬化させ、位相差フィルムを作製した。
<Comparative example 1>
The liquid crystal alignment agent (B-1) prepared in Preparation Example 1 was applied onto a TAC film as a substrate with a Wet film thickness of 4 μm using a bar coater. A cured film was formed on the film by heating and drying at 130 ° C. for 2 minutes in a heat-circulating oven. Next, the surface of the cured film was vertically irradiated with linearly polarized light of 313 nm at an exposure amount of 10 mJ / cm 2 to form a liquid crystal alignment film. A polymerizable liquid crystal solution LC-1 for horizontal alignment was applied onto the liquid crystal alignment film using a bar coater with a Wet film thickness of 34 μm. Next, after heat-drying at 120 ° C. for 2 minutes in an oven, the polymerizable liquid crystal was cured by vertically irradiating it with unpolarized light at 365 nm under nitrogen at an exposure amount of 300 mJ / cm 2 , and the phase difference was obtained. A film was made.
<比較例2>
 液晶配向剤として(B-1)を用い、比較例1と同様に操作し、位相差フィルムを作製した。
<Comparative example 2>
Using (B-1) as the liquid crystal alignment agent, the same operation as in Comparative Example 1 was carried out to prepare a retardation film.
 上記で作製した各位相差フィルムについて、下記方法により評価を行った。その評価結果を表2に示す。 Each retardation film produced above was evaluated by the following method. The evaluation results are shown in Table 2.
<配向性の評価>
 作製した基板上の位相差フィルムを一対の偏光板で挟み込み、目視によりクロスニコル下での位相差特性の発現状況を観察した。位相差が欠陥なく発現しているものを○、位相差が発現していないものを×として「配向性」の欄に記載した。
<Evaluation of orientation>
The retardation film on the prepared substrate was sandwiched between a pair of polarizing plates, and the appearance of the retardation characteristics under cross Nicol was visually observed. Those in which the phase difference is expressed without defects are marked with ◯, and those in which the phase difference is not expressed are marked with x, and are described in the “Orientation” column.
<TAC保護性>
 作成したTACフィルムを含む位相差フィルムがカールしていないものを〇、カールしているものを×として「保護性」の欄に記載した。
<TAC protection>
The non-curled retardation film including the prepared TAC film was marked with 〇, and the curled film was marked with x in the “Protectiveness” column.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表2の結果より、(C)成分としてN-ヒドロキシアルキル(メタ)アクリルアミド化合物を含むモノマーを重合したポリマーを使用することにより、NMPを含む液晶溶液に対する配向性を得ることができるとともに、NMPによるTACフィルムへのダメージも保護できることが明らかである。 From the results in Table 2, by using a polymer obtained by polymerizing a monomer containing an N-hydroxyalkyl (meth) acrylamide compound as the component (C), orientation with respect to a liquid crystal solution containing NMP can be obtained, and by NMP. It is clear that damage to the TAC film can also be protected.
 本発明による硬化膜形成組成物は、液晶表示素子の液晶配向膜や、液晶表示素子に内部や外部に設けられる光学異方性フィルムを形成するための配向材として非常に有用であり、特に、3Dディスプレイのパターン化位相差材の形成材料として好適である。さらに、薄膜トランジスタ(TFT)型液晶表示素子や有機EL素子などの各種ディスプレイにおける保護膜、平坦化膜および絶縁膜などの硬化膜を形成する材料、特に、TFT型液晶素子の層間絶縁膜、カラーフィルタの保護膜または有機EL素子の絶縁膜などを形成する材料として好適である。 The cured film forming composition according to the present invention is very useful as an alignment material for forming a liquid crystal alignment film of a liquid crystal display element or an optically anisotropic film provided inside or outside the liquid crystal display element, and in particular, It is suitable as a material for forming a patterned retardation material for a 3D display. Further, materials for forming a cured film such as a protective film, a flattening film and an insulating film in various displays such as a thin film transistor (TFT) type liquid crystal display element and an organic EL element, particularly an interlayer insulating film and a color filter of a TFT type liquid crystal element. It is suitable as a material for forming a protective film or an insulating film for an organic EL element.

Claims (11)

  1.  (A)光配向性基と、ヒドロキシ基、カルボキシル基及びアミノ基からなる群より選ばれる1つの置換基とを有する化合物、
     (B)少なくともN-アルコキシメチル(メタ)アクリルアミド化合物を含むモノマーを重合させてなるポリマー、並びに
     (C)少なくともN-ヒドロキシアルキル(メタ)アクリルアミド化合物を含むモノマーを重合させてなるポリマーを含有することを特徴とする硬化膜形成組成物。
    (A) A compound having a photo-oriented group and one substituent selected from the group consisting of a hydroxy group, a carboxyl group and an amino group.
    (B) Containing a polymer obtained by polymerizing a monomer containing at least an N-alkoxymethyl (meth) acrylamide compound, and (C) containing a polymer obtained by polymerizing a monomer containing at least an N-hydroxyalkyl (meth) acrylamide compound. A cured film-forming composition comprising.
  2.  (A)成分の光配向性基が光二量化又は光異性化する構造の官能基であることを特徴とする、請求項1に記載の硬化膜形成組成物。 The cured film-forming composition according to claim 1, wherein the photo-oriented group of the component (A) is a functional group having a structure of photodimerization or photoisomerization.
  3.  (A)成分の光配向性基がシンナモイル基であることを特徴とする、請求項1又は請求項2に記載の硬化膜形成組成物。 The cured film-forming composition according to claim 1 or 2, wherein the photooriented group of the component (A) is a cinnamoyl group.
  4.  (A)成分の光配向性基がアゾベンゼン構造の基であることを特徴とする、請求項1又は請求項2に記載の硬化膜形成組成物。 The cured film-forming composition according to claim 1 or 2, wherein the photo-oriented group of the component (A) is a group having an azobenzene structure.
  5.  (D)成分として、架橋触媒をさらに含有することを特徴とする、請求項1乃至請求項4のいずれか1項に記載の硬化膜形成組成物。 The cured film-forming composition according to any one of claims 1 to 4, which further contains a cross-linking catalyst as the component (D).
  6.  (E)成分として、密着向上成分をさらに含有することを特徴とする、請求項1乃至請求項5のいずれか1項に記載の硬化膜形成組成物。 The cured film-forming composition according to any one of claims 1 to 5, which further contains an adhesion improving component as the component (E).
  7.  (A)成分の100質量部に基づいて、(B)成分と(C)成分との合計量が100乃至3000質量部であることを特徴とする、請求項1乃至請求項6のいずれか1項に記載の硬化膜形成組成物。 Any one of claims 1 to 6, characterized in that the total amount of the component (B) and the component (C) is 100 to 3000 parts by mass based on 100 parts by mass of the component (A). The cured film forming composition according to the item.
  8.  (B)成分と(C)成分との質量比が1:99乃至99:1であることを特徴とする、請求項1乃至請求項7のいずれか1項に記載の硬化膜形成組成物。 The cured film-forming composition according to any one of claims 1 to 7, wherein the mass ratio of the component (B) to the component (C) is 1:99 to 99: 1.
  9.  (B)成分と(C)成分との合計量100質量部に基づいて、0.01質量部乃至10質量部の(D)成分を含有する、請求項5至請求項8のいずれか1項に記載の硬化膜形成組成物。 Any one of claims 5 to 8, which contains 0.01 parts by mass to 10 parts by mass of the component (D) based on 100 parts by mass of the total amount of the component (B) and the component (C). The cured film forming composition according to.
  10.  請求項1乃至請求項9のいずれか1項に記載の硬化膜形成組成物を用いて得られることを特徴とする配向材。 An alignment material obtained by using the cured film-forming composition according to any one of claims 1 to 9.
  11.  請求項1乃至請求項9のいずれか1項に記載の硬化膜形成組成物から得られる硬化膜を使用して形成されることを特徴とする位相差材。 A retardation material, which is formed by using a cured film obtained from the cured film forming composition according to any one of claims 1 to 9.
PCT/JP2020/020754 2019-05-27 2020-05-26 Cured film formation composition, alignment member, and retardation member WO2020241642A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021522786A JP7569016B2 (en) 2019-05-27 2020-05-26 Cured film-forming composition, alignment material and retardation material
CN202080038503.1A CN113874470A (en) 2019-05-27 2020-05-26 Composition for forming cured film, alignment member, and phase difference member
KR1020217038911A KR20220012859A (en) 2019-05-27 2020-05-26 Cured film forming composition, alignment material and retardation material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-098701 2019-05-27
JP2019098701 2019-05-27

Publications (1)

Publication Number Publication Date
WO2020241642A1 true WO2020241642A1 (en) 2020-12-03

Family

ID=73552230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020754 WO2020241642A1 (en) 2019-05-27 2020-05-26 Cured film formation composition, alignment member, and retardation member

Country Status (5)

Country Link
JP (1) JP7569016B2 (en)
KR (1) KR20220012859A (en)
CN (1) CN113874470A (en)
TW (1) TW202104469A (en)
WO (1) WO2020241642A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056741A1 (en) * 2013-10-17 2015-04-23 日産化学工業株式会社 Composition for forming cured film, alignment material, and retardation material
WO2015122335A1 (en) * 2014-02-13 2015-08-20 大日本印刷株式会社 Thermosetting composition having photoalignment properties, alignment layer, substrate with alignment layer, phase difference plate, and device
WO2015129889A1 (en) * 2014-02-28 2015-09-03 日産化学工業株式会社 Phase difference material-forming resin composition, orientation material, and phase difference material
WO2018173727A1 (en) * 2017-03-24 2018-09-27 富士フイルム株式会社 Optically alignable copolymer, optical alignment film, and optical layered body
JP2019008170A (en) * 2017-06-26 2019-01-17 Dic株式会社 Polymer for liquid crystal alignment film, liquid crystal alignment film, liquid crystal display element, liquid crystal display, optical anisotropic material, optical anisotropic film and optical device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165858A (en) 1979-06-13 1980-12-24 Toppan Printing Co Ltd Center-bound bookbinding folding pagination and its processing method
JPH1068816A (en) 1996-08-29 1998-03-10 Sharp Corp Phase difference plate and circularly polarizing plate
WO1999015576A1 (en) 1997-09-25 1999-04-01 Rolic Ag Photocrosslinkable polyimides
JP4207430B2 (en) 2002-01-31 2009-01-14 Jsr株式会社 Liquid crystal aligning agent, method for forming liquid crystal aligning film, and liquid crystal display element
JP2005049865A (en) 2003-07-17 2005-02-24 Arisawa Mfg Co Ltd Manufacturing method of optical phase difference element
US8119026B2 (en) 2007-03-30 2012-02-21 Merck Patent Gesellschaft Mit Beschrankter Haftung Birefringent layer with negative optical dispersion
JP5316740B2 (en) 2007-08-30 2013-10-16 Jsr株式会社 Method for forming liquid crystal alignment film
JP5373293B2 (en) 2008-01-29 2013-12-18 富士フイルム株式会社 Compound, liquid crystal composition and anisotropic material
KR102119632B1 (en) * 2012-07-12 2020-06-05 닛산 가가쿠 가부시키가이샤 Composition for forming cured film, alignment material, and phase difference material
JP5974784B2 (en) * 2012-09-28 2016-08-23 Jnc株式会社 Inkjet ink
CN110408159B (en) * 2014-06-30 2022-02-08 日产化学工业株式会社 Composition for forming cured film, alignment material, and phase difference material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056741A1 (en) * 2013-10-17 2015-04-23 日産化学工業株式会社 Composition for forming cured film, alignment material, and retardation material
WO2015122335A1 (en) * 2014-02-13 2015-08-20 大日本印刷株式会社 Thermosetting composition having photoalignment properties, alignment layer, substrate with alignment layer, phase difference plate, and device
WO2015129889A1 (en) * 2014-02-28 2015-09-03 日産化学工業株式会社 Phase difference material-forming resin composition, orientation material, and phase difference material
WO2018173727A1 (en) * 2017-03-24 2018-09-27 富士フイルム株式会社 Optically alignable copolymer, optical alignment film, and optical layered body
JP2019008170A (en) * 2017-06-26 2019-01-17 Dic株式会社 Polymer for liquid crystal alignment film, liquid crystal alignment film, liquid crystal display element, liquid crystal display, optical anisotropic material, optical anisotropic film and optical device

Also Published As

Publication number Publication date
TW202104469A (en) 2021-02-01
CN113874470A (en) 2021-12-31
JP7569016B2 (en) 2024-10-17
JPWO2020241642A1 (en) 2020-12-03
KR20220012859A (en) 2022-02-04

Similar Documents

Publication Publication Date Title
KR101796954B1 (en) Composition forming heat-cured film having photo-alignment properties
TWI638836B (en) Thermosetting composition having photoalignment properties, alignment layer, substrate with alignment layer, retardation plate, and device
JP6823295B2 (en) Polymers containing repeating units with N-alkoxymethyl groups and repeating units with side chains containing polymerizable C = C double bonds
TWI640548B (en) Thermosetting composition having photoalignment properties, alignment layer, substrate with alignment layer, retardation plate, and device
TWI608047B (en) Film formed in cured coating, alignment material and retardation material
TW201116570A (en) Thermoset film forming composition having photo-alignment
TWI636069B (en) Thermosetting composition having photoalignment properties, alignment layer, substrate with alignment layer, retardation plate, and device
WO2015019962A1 (en) Cured film-forming composition, alignment material, and phase difference material
JP2023052367A (en) Cured film-forming composition, alignment material, and retardation material
JP6369146B2 (en) Thermosetting composition having photo-alignment, alignment layer, substrate with alignment layer, retardation plate and device
CN107532006B (en) Thermosetting resin composition and vertically aligned retardation film
JPWO2019189193A1 (en) Hardened film forming composition, alignment material and retardation material
JP7569016B2 (en) Cured film-forming composition, alignment material and retardation material
JP2015152743A (en) Thermosetting composition having photo-aligning property, alignment layer, substrate with alignment layer, retardation plate, and device
JP5626492B1 (en) Thermosetting composition having photo-alignment, alignment layer, substrate with alignment layer, retardation plate, and device
TWI794261B (en) Cured film forming composition, alignment material and retardation material
TWI850195B (en) Cured film formation composition, orientation material and retardation material
JP7472792B2 (en) Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
WO2021166701A1 (en) Cured film-forming composition, alignment material, and phase difference material
WO2021106858A1 (en) Cured film-forming composition, alignment material, and phase difference material
WO2023204280A1 (en) Cured film-forming composition, alignment material, and retardation material
JPWO2020013189A1 (en) Hardened film, alignment material and retardation material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522786

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814488

Country of ref document: EP

Kind code of ref document: A1