WO2020241376A1 - Reserve tank - Google Patents

Reserve tank Download PDF

Info

Publication number
WO2020241376A1
WO2020241376A1 PCT/JP2020/019750 JP2020019750W WO2020241376A1 WO 2020241376 A1 WO2020241376 A1 WO 2020241376A1 JP 2020019750 W JP2020019750 W JP 2020019750W WO 2020241376 A1 WO2020241376 A1 WO 2020241376A1
Authority
WO
WIPO (PCT)
Prior art keywords
cap
reserve tank
screw portion
cooling water
screw
Prior art date
Application number
PCT/JP2020/019750
Other languages
French (fr)
Japanese (ja)
Inventor
宮川 雅志
治 袴田
山中 章
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020241376A1 publication Critical patent/WO2020241376A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00

Definitions

  • the present disclosure relates to a reserve tank provided in the middle of a path through which cooling water circulates.
  • the vehicle is provided with a cooling system for cooling each part of the vehicle by circulating cooling water.
  • Examples of objects to be cooled by the cooling system include an engine and auxiliary equipment such as an intercooler.
  • the path through which the cooling water circulates is provided with a water pump for sending out the cooling water, a reserve tank for storing a part of the cooling water, and the like, in addition to the above-mentioned equipment to be cooled. ..
  • the cooling water decreases for some reason, the cooling water is supplemented from the reserve tank. As a result, deterioration of cooling performance due to reduction of cooling water is prevented.
  • the reserve tank is provided with a neck filler, which is a part for attaching a cap, at the upper end of a substantially cylindrical container in which a space for storing cooling water is formed. It is composed.
  • the diameter of the inner peripheral surface of the neck filler is smaller than the diameter of the inner peripheral surface of the container portion on the lower side thereof.
  • the reserve tank is often made of resin.
  • the reserve tank having the conventional configuration as described above has a so-called "undercut" shape in which the diameter of the inner peripheral surface is narrowed at the neck filler portion. For this reason, it is difficult to mold the entire part of the reserve tank except the cap at a time with a single mold. For this reason, it is necessary to form a reserve tank by dividing the reserve tank into, for example, two upper and lower parts, molding each part individually, and then joining these parts by welding or the like. As a result, the cost and man-hours of the mold have increased, and the manufacturing cost has increased.
  • the purpose of this disclosure is to provide a reserve tank that can reduce manufacturing costs.
  • the reserve tank according to the present disclosure is a reserve tank provided in the middle of a path through which cooling water circulates, and is a portion for storing cooling water, and at least the upper portion thereof is formed in a cylindrical shape. It is provided with a portion and a mounted portion which is a cylindrical portion formed above the storage portion and to which a cap is mounted so that cooling water does not leak from the storage portion to the outside.
  • the diameter of the inner peripheral surface of the mounted portion is larger than the diameter of the inner peripheral surface of the storage portion.
  • the diameter of the inner peripheral surface of the mounted portion is larger than the diameter of the inner peripheral surface of the storage portion, so that the undercut portion can be eliminated. Therefore, the entire portion of the reserve tank excluding the cap can be formed at once by a single mold. Since the cost and man-hours of the mold are reduced, the manufacturing cost of the reserve tank can be reduced as compared with the conventional case.
  • FIG. 1 is a diagram showing an overall configuration of a reserve tank according to the first embodiment.
  • FIG. 2 is a diagram showing an internal configuration of the cap and its vicinity in the reserve tank according to the first embodiment.
  • FIG. 3 shows the configuration of the reserve tank cap according to the first embodiment.
  • FIG. 4 shows the configuration of the reserve tank cap according to the first embodiment.
  • FIG. 5 is a diagram showing a configuration of a mounted portion, which is a portion to which a cap is mounted, in the reserve tank according to the first embodiment.
  • FIG. 6 is a diagram showing a configuration of a mounted portion, which is a portion to which a cap is mounted, in the reserve tank according to the first embodiment.
  • FIG. 1 is a diagram showing an overall configuration of a reserve tank according to the first embodiment.
  • FIG. 2 is a diagram showing an internal configuration of the cap and its vicinity in the reserve tank according to the first embodiment.
  • FIG. 3 shows the configuration of the reserve tank cap according to the first embodiment.
  • FIG. 4 shows the configuration of
  • FIG. 7 is a diagram showing a configuration of a mounted portion, which is a portion to which the cap is mounted, in the reserve tank according to the first embodiment.
  • FIG. 8 is a diagram showing an internal configuration of the cap and its vicinity in the reserve tank according to the second embodiment.
  • FIG. 9 is a diagram showing a configuration of a mounted portion, which is a portion to which the cap is mounted, in the reserve tank according to the third embodiment.
  • the reserve tank 10 constitutes a part of a cooling system mounted on a vehicle (not shown).
  • the cooling system is a system for cooling each part of the vehicle, specifically, an internal combustion engine and auxiliary machinery by circulating cooling water.
  • the cooling water sent out by the water pump is supplied to a cooling target such as an internal combustion engine and used for cooling these.
  • the cooling water that has passed through the object to be cooled and becomes hot is returned to the water pump after the temperature is lowered in the radiator, and is sent out from the water pump again. Since a known configuration of such a cooling system can be adopted, specific illustrations and explanations thereof will be omitted.
  • the reserve tank 10 is a container provided in the above cooling system at a position in the middle of the path through which the cooling water circulates, for example, a position on the upstream side of the water pump. It should be noted that "in the middle of the path in which the cooling water circulates” does not have to be in the middle of the path in which the cooling water is always flowing. There may be.
  • the configuration of the reserve tank 10 will be described with reference to FIGS. 1 to 5.
  • the reserve tank 10 includes a storage portion 100, a mounted portion 130, and a cap 200.
  • the storage unit 100 is a part that temporarily stores the supplied cooling water.
  • the entire storage unit 100 is made of resin.
  • the storage unit 100 is a container whose entire shape is formed in a cylindrical shape, and is arranged in a vehicle with its central axis aligned in the vertical direction. As shown in FIG. 2, an internal space SP for storing cooling water is formed inside the storage unit 100.
  • the entire storage unit 100 may be formed in a cylindrical shape as in the present embodiment, but the storage unit 100 may be in a form in which only the upper portion thereof is formed in a cylindrical shape. .. In that case, it is preferable that the shape of the portion below the portion formed in the cylindrical shape is a shape that does not cause a so-called undercut.
  • a sealing surface 101 is formed on the inner peripheral surface of the upper portion of the storage portion 100.
  • the sealing surface 101 is a portion that comes into contact with the gasket 225 provided on the cap 200, which will be described later, in order to prevent the cooling water from leaking from the internal space SP to the outside.
  • the storage unit 100 is provided with an inlet portion 110 and an outlet portion 120.
  • the inlet 110 is a portion for receiving the cooling water circulating in the cooling system and supplying it to the internal space SP.
  • the inlet portion 110 is a tubular portion formed so as to extend linearly along the horizontal direction, and one end thereof is connected to the side surface of the storage portion 100.
  • the direction in which the entrance portion 110 extends is the direction from the back side to the front side of the paper in FIG.
  • a pipe (not shown) constituting a cooling water circulation path is connected to the tip of the inlet 110.
  • the outlet portion 120 is a portion for discharging the cooling water from the internal space SP to the outside.
  • the outlet portion 120 is a tubular portion formed so as to extend linearly along the vertical direction, and the upper end thereof is connected to the bottom portion of the storage portion 100.
  • a pipe (not shown) constituting a cooling water circulation path is connected to the tip of the outlet portion 120.
  • the cooling water supplied from the inlet portion 110 flows into the internal space SP, swirls and flows, and then is discharged from the outlet portion 120 to the outside.
  • the bubbles contained in the cooling water reach the liquid level of the internal space SP while swirling as described above, they are taken into the air above the liquid level and disappear.
  • the storage unit 100 in addition to the function of temporarily storing the cooling water, the storage unit 100 also has a function of separating gas and liquid of the cooling water to remove air bubbles.
  • the mounted portion 130 is a portion to which the cap 200 described later is mounted so that the cooling water does not leak to the outside from the internal space SP of the storage portion 100.
  • the mounted portion 130 is provided on the upper side of the storage portion 100, and is a portion integrally formed with the storage portion 100 by the resin.
  • the entire mounted portion 130 has a cylindrical shape.
  • the central axis of the mounted portion 130 coincides with the central axis of the storage portion 100.
  • the diameter of the inner peripheral surface of the mounted portion 130 is larger than the diameter of the inner peripheral surface of the storage portion 100. Therefore, the reserve tank 10 has a shape in which the diameter of the upper portion thereof is enlarged.
  • the “diameter on the inner peripheral surface of the mounted portion 130" in the above is the diameter of the portion of the inner peripheral surface of the mounted portion 130 in which the fitting recess 131 described below is not formed. Further, the “diameter on the inner peripheral surface of the storage portion 100" in the above is the diameter on the inner peripheral surface of the upper portion of the storage portion 100, that is, the portion formed in a cylindrical shape, and is the present embodiment. Then, it is the diameter of the sealing surface 101.
  • a fitting recess 131 is formed on the inner peripheral surface of the mounted portion 130.
  • the fitting recess 131 is a concave groove formed in a spiral shape.
  • the fitting recess 131 is formed so as to be screwed with the fitting convex portion 212 formed on the cap 200, and is a portion that functions as a female screw.
  • the fitting recess 131 corresponds to a "first screw portion" formed on the inner peripheral surface of the mounted portion 130.
  • the cap 200 is a member for closing the opening formed at the upper end of the mounted portion 130 by being mounted on the mounted portion 130 and preventing the cooling water from leaking from the internal space SP to the outside. As shown in FIG. 2, the cap 200 includes an upper member 210, a lower member 220, and a valve mechanism 230.
  • the upper member 210 is the upper part of the cap 200.
  • the upper member 210 has a substantially disk shape as a whole.
  • the upper member 210 is provided with a handle 201, a cylindrical portion 211, and a holding portion 214.
  • the handle 201 is a portion that is gripped by the user when the cap 200 is attached / detached.
  • the handle 201 is formed so as to project upward from the upper surface of the upper member 210.
  • the actual shape of the handle 201 is as shown in FIGS. 3 and 4, but in FIG. 2, the shape of the handle 201 is simplified and schematically shown.
  • the cylindrical portion 211 is a portion formed in a cylindrical shape, and is formed so as to project downward from the lower surface of the upper member 210.
  • the central axis of the cylindrical portion 211 coincides with the central axis of the mounted portion 130 and the storage portion 100.
  • the outer diameter of the cylindrical portion 211 is slightly smaller than the inner diameter of the mounted portion 130. In the state where the cap 200 is attached to the attached portion 130 as shown in FIG. 2, the cylindrical portion 211 is arranged inside the attached portion 130.
  • a fitting convex portion 212 is formed on the outer peripheral surface of the cylindrical portion 211.
  • the fitting convex portion 212 is a protrusion formed in a spiral shape.
  • the fitting convex portion 212 is formed so as to be screwed with the fitting concave portion 131 described above, and is a portion that functions as a male screw.
  • the fitting convex portion 212 corresponds to the “second screw portion” formed on the outer peripheral surface of the upper member 210 in the cap 200.
  • the fitting recess 131 which is the first screw portion and the fitting convex portion 212 which is the second screw portion are screwed together. There is.
  • the first screw portion and the second screw portion are disengaged, and the cap 200 is attached to the mounted portion 130. Is removed from.
  • the user rotates the cap 200 in the clockwise direction when viewed from above the first screw portion and the second screw portion are screwed together, and the cap 200 is tightened and mounted on the mounted portion 130. ..
  • the holding portion 214 is a portion for holding the lower member 220 described below.
  • the holding portion 214 is formed so as to project downward from the portion inside the cylindrical portion 211 of the lower surface of the upper member 210.
  • a plurality of holding portions 214 are provided, and these are arranged so as to be arranged at equal intervals along the circumferential direction of the cylindrical portion 211.
  • the position where each holding portion 214 is provided is the position where the hook 226 described later is formed in the lower member 220.
  • the holding portion 214 may be formed as a single cylinder. In this case, it is necessary to form a notch or a through hole in a part of the holding portion 214 so that air can pass therethrough.
  • the lower member 220 is the lower part of the cap 200.
  • the lower member 220 has a bottom plate portion 221, an outer cylinder portion 223, and an inner cylinder portion 227.
  • the bottom plate portion 221 is a portion formed in a substantially disk shape.
  • the outer cylinder portion 223 is a substantially cylindrical portion formed so as to extend upward from the outer peripheral side end portion of the bottom plate portion 221.
  • a holding groove 224 is formed on the outer peripheral surface of the outer cylinder portion 223 over the entire circumference thereof.
  • a gasket 225 is held in the holding groove 224.
  • the gasket 225 is a member formed of an annular rubber, and a part thereof projects outward from the holding groove 224.
  • a plurality of hooks 226 are formed on the outer cylinder portion 223. Each hook 226 is formed so as to extend upward from the upper end edge of the outer cylinder portion 223. Each hook 226 is engaged with a holding portion 214 provided on the upper member 210, whereby the lower member 220 is held by the upper member 210.
  • the inner cylinder portion 227 is a substantially cylindrical portion formed so as to extend upward from the portion inside the outer cylinder portion 223 of the upper surface of the bottom plate portion 221.
  • the central axis of the inner cylinder portion 227 coincides with the central axis of the outer cylinder portion 223.
  • a through hole 222 is formed in the bottom plate portion 221 of the lower member 220 so as to penetrate the center thereof in the vertical direction. Further, as shown in FIGS. 2 and 3, the cylindrical portion 211 of the upper member 210 is formed with a notch 213 at a part of the lower end thereof. Further, as shown in FIGS. 2 and 5, a through hole 132 is formed in the mounted portion 130 so as to penetrate the mounted portion 130 in the horizontal direction.
  • the space between the upper member 210 and the lower member 220 is connected to the internal space SP through the through hole 222, and is connected to the outside through the notch 213 and the through hole 132. Therefore, the path from the through hole 222 to the through hole 132 can be regarded as a "communication passage" which is a passage for communicating between the storage unit 100 and the outside. As described above, the communication passage is formed so as to penetrate each of the cap 200 and the mounted portion 130. In addition, instead of the notch 213, a through hole may be formed through the cylindrical portion 211 along the horizontal direction.
  • the valve mechanism 230 is arranged at a position in the middle of the above-mentioned communication passage.
  • the valve mechanism 230 is provided as a mechanism for switching the opening and closing of the communication passage. In a normal state, the valve mechanism 230 is in a closed state, blocking the above-mentioned communication passage.
  • the configuration of the valve mechanism 230 will be described with reference to FIG.
  • the valve mechanism 230 has a support plate 231, a positive pressure valve 233, and a negative pressure valve 235.
  • the support plate 231 is a substantially disk-shaped member made of metal.
  • the support plate 231 is a member for supporting the positive pressure valve 233 described below from above.
  • a through hole 232 is formed in the center of the support plate 231 so as to penetrate the support plate 231 in the vertical direction.
  • a spring 237 is arranged between the support plate 231 and the upper member 210. The support plate 231 is urged downward by a spring 237 together with the positive pressure valve 233.
  • the positive pressure valve 233 is a disk-shaped member made of rubber.
  • the positive pressure valve 233 is joined to the lower surface of the support plate 231 described above.
  • a through hole 234 is formed in the center of the positive pressure valve 233 so as to penetrate the positive pressure valve 233 in the vertical direction.
  • the positive pressure valve 233 is urged downward by the spring 237 as described above. Therefore, in the normal state, the positive pressure valve 233 is in contact with the entire valve seat 228 from above.
  • the negative pressure valve 235 is a member having a substantially disk shape.
  • the negative pressure valve 235 is arranged on the lower side of the positive pressure valve 233 and in the space inside the inner cylinder portion 227.
  • a spring 238 is arranged between the negative pressure valve 235 and the bottom plate portion 221 of the lower member 220.
  • the negative pressure valve 235 is urged upward by a spring 238. Therefore, in the normal state, the negative pressure valve 235 is in contact with the positive pressure valve 233 from the lower side. As a result, the above-mentioned communication passage is blocked by the positive pressure valve 233, the negative pressure valve 235, and the inner cylinder portion 227.
  • the support plate 231 and the positive pressure valve 233 move upward due to the pressure, and the positive pressure is positive.
  • the pressure valve 233 is separated from the valve seat 228. That is, the positive pressure valve 233 is in the opened state.
  • the air in the internal space SP can flow out to the outside of the reserve tank 10 through the through hole 222, the gap between the positive pressure valve 233 and the valve seat 228, the notch 213, and the through hole 132 in this order. become. As a result, a situation in which the pressure of the internal space SP rises too much is prevented.
  • the "first predetermined pressure” in the above is a pressure predetermined as a pressure higher than the atmospheric pressure, and the spring 237 is selected according to the first predetermined pressure.
  • the valve mechanism 230 in the present embodiment includes a positive pressure valve 233 that opens when the internal pressure of the storage unit 100 becomes equal to or higher than the first predetermined pressure higher than the atmospheric pressure.
  • the negative pressure valve 235 moves downward due to the pressure difference with the outside air and becomes negative.
  • the pressure valve 235 is separated from the positive pressure valve 233. That is, the negative pressure valve 235 is in the opened state.
  • the air outside the reserve tank 10 passes through the through hole 132, the notch 213, the through hole 232, the through hole 234, the gap between the positive pressure valve 233 and the negative pressure valve 235, and the through hole 222 in this order, and passes through the internal space SP. Will be able to flow into.
  • the "second predetermined pressure" in the above is a pressure predetermined as a pressure lower than the atmospheric pressure, and the spring 238 is selected according to the second predetermined pressure.
  • the valve mechanism 230 in the present embodiment includes a negative pressure valve 235 that opens when the internal pressure of the storage unit 100 becomes equal to or lower than the second predetermined pressure lower than the atmospheric pressure.
  • the length L1 shown in FIG. 2 is a length along the vertical direction within a range in which the fitting recess 131, which is the first screw portion, and the fitting convex portion 212, which is the second screw portion, are screwed together. That's right. Further, the length L2 shown in FIG. 2 is a length in the vertical direction in the range from the position of the gasket 225 to the upper end portion of the sealing surface 101. As shown in FIG. 2, when the cap 200 is attached to the attached portion 130, L1 is longer than L2.
  • the gasket 225 which is a sealing member, comes from the sealing surface 101. After being disengaged, the screw between the first screw portion and the second screw portion will be disengaged.
  • the cap 200 When the gasket 225 comes off from the sealing surface 101, the cap 200 may be pushed up by the air in the internal space SP that is higher than the atmospheric pressure, and high-pressure air or water vapor may be ejected toward the user.
  • the first screw portion and the second screw portion are in a state of being screwed together at that time, so that the cap 200 is pushed up by air. It never ends up.
  • most of the high-pressure air and water vapor leaked from the internal space SP are ejected sideways through the through hole 132, so that they do not go to the upper side where the user is.
  • the diameter of the mounted portion 130 on the inner peripheral surface is larger than the diameter of the inner peripheral surface of the storage portion.
  • the entire storage portion 100 and the mounted portion 130 have a structure without so-called undercuts, so that they can be formed at once by a single mold. Since the cost and man-hours of the mold are reduced, the manufacturing cost of the reserve tank 10 can be reduced as compared with the conventional case.
  • the cap 200 is fixed by screwing the fitting concave portion 131 which is the first screw portion and the fitting convex portion 212 which is the second screw portion.
  • the rotation angle of the cap 200 required to screw them together is about 90 degrees in this embodiment. Therefore, the cap 200 can be attached with a simpler operation than before.
  • the pressure resistance performance of the cap 200 portion deteriorates due to the narrowing of the hooking allowance of the screw portion. Is a concern.
  • the fitting recess 131 is formed in the mounted portion 130 having a large inner diameter, it is possible to secure a wide hooking allowance for the screw portion even when the required rotation angle is reduced as described above. It is possible to sufficiently secure the pressure resistance performance of the cap 200 portion.
  • the opening at the upper end of the mounted portion 130 is large, there is an advantage that it is easy to inject the cooling water.
  • a convex portion 215 protruding laterally is formed on the side surface of the cylindrical portion 211 of the cap 200.
  • a slide surface 140 that is inclined with respect to the horizontal plane is formed on a part of the edge of the upper end portion of the mounted portion 130.
  • the detachment prevention projection 142 and the decompression projection 143 are both formed so as to project upward.
  • a stopper 141 which is a surface extending upward, is formed from the lower end of the slide surface 140.
  • FIGS. 6 and 7 show the positional relationship between the fitting recess 131 formed in the mounted portion 130 and the slide surface 140. Shown on the lower side of each of FIGS. 6 and 7, the mounted portion 130 is viewed from the upper side, and only the edge thereof is schematically drawn. Further, what is shown on the upper side of FIG. 6 is a view of the inner peripheral surface of the mounted portion 130 on which the fitting recess 131 is formed, as viewed from the inside. In the figure, the lengths L1 and L2 described with reference to FIG. 2 are shown, respectively.
  • FIG. 7 What is shown on the upper side of FIG. 7 is a view of the portion of the mounted portion 130 on which the slide surface 140 is formed as viewed from the inside. As shown in FIGS. 6 and 7, the slide surface 140 is formed in a range that does not overlap with the portion where the fitting recess 131 is formed in the top view.
  • the cap 200 When the cap 200 is mounted on the mounted portion 130, the cap 200 rotates as described above, and the fitting concave portion 131 and the fitting convex portion 212 are screwed together with this rotation.
  • the cap 200 will move downward while rotating.
  • the slide surface 140 is formed so that the lower end of the convex portion 215 provided on the cap 200 follows a trajectory that moves downward while rotating. Therefore, when the cap 200 is rotated, the lower end of the convex portion 215 formed on the cap 200 moves along the slide surface 140 in a state of being in contact with the slide surface 140 formed on the mounted portion 130 from above. Will go.
  • the angle formed by the slide surface 140 with respect to the horizontal plane and the angle formed by the extending direction of the fitting recess 131 and the fitting convex portion 212 with respect to the horizontal plane are equal to each other.
  • the convex portion 215 when the cap 200 is attached to the attached portion 130 will be described.
  • the convex portion 215 keeps its lower end in contact with the slide surface 140, and in FIG. Move in the direction indicated by the arrow AR1.
  • the convex portion 215 hits the decompression protrusion 143 and the detachment prevention protrusion 142, and the convex portion 215 gets over these protrusions as the cap 200 and the mounted portion 130 are deformed.
  • the convex portion 215 hits the stopper 141, and the cap 200 cannot rotate any more.
  • a stopper is provided at the end of the slide surface 140.
  • the convex portion 215 hits the stopper 141 to restrict the rotation of the cap 200. Will be done. As a result, it is possible to prevent the cap 200 from being tightened more than necessary by the user.
  • the detachment prevention protrusion 142 is provided at a position on the slide surface 140 near the stopper 141.
  • the distance from the detachment prevention protrusion 142 to the stopper 141 along the longitudinal direction of the slide surface 140 is substantially the same as the width dimension of the convex portion 215 along the same direction. Therefore, if the cap 200 is to be removed by rotating it counterclockwise in a top view from the state where the cap 200 is attached, the convex portion 215 needs to get over the detachment prevention protrusion 142 immediately after that. Therefore, the detachment prevention protrusion 142 can be said to be a protrusion for holding the convex portion 215 at the position where the cap 200 is attached. As described above, in the present embodiment, since the protrusion 142 for preventing disengagement is formed on the slide surface 140, it is possible to prevent the cap 200 from rotating and disengaging due to vibration or the like.
  • the slide surface 140 of the present embodiment is provided with the protrusion 142 for preventing disengagement.
  • the convex portion 215 is configured to get over the detachment prevention protrusion 142.
  • the convex portion 215 first gets over the detachment prevention protrusion 142 and then moves along the slide surface 140. On the way, the convex portion 215 needs to get over the decompression protrusion 143.
  • the rotation of the cap 200 is temporarily stopped or decelerated.
  • the position where the convex portion 215 hits the decompression projection 143 from the detachment prevention projection 142 is a position immediately after the gasket 225 moves upward and is detached from the sealing surface 101, and also with the fitting recess 131. The screwing with the fitting convex portion 212 is still in a position where it cannot be removed.
  • the cap 200 will be removed from the mounted portion 130 in an extremely short time, and high-pressure air or water vapor from the internal space SP will be removed from the mounted portion 130. There is a possibility that it will be ejected from the opening at the upper end toward the user on the upper side.
  • high-pressure air or water vapor from the internal space SP is externally introduced from the through hole 132. You can escape to. As a result, it is possible to prevent a situation in which high-pressure air or water vapor is blown out toward the user from the opening at the upper end of the mounted portion 130.
  • the slide surface 140 of the present embodiment is provided with the decompression protrusion 143.
  • the gasket 225 which is a sealing member, came off from the sealing surface 101.
  • the convex portion 215 is configured to get over the decompression protrusion 143 at a later time and before the screwing between the first screw portion and the second screw portion is disengaged.
  • only one slide surface 140 is formed on the mounted portion 130.
  • a mode in which two or more slide surfaces 140 are formed on the mounted portion 130 may be used.
  • the cap 200 is formed with two or more convex portions 215 corresponding to the slide surface 140.
  • the mounted portion 130 is formed with two fitting recesses 131
  • the cap 200 is formed with two fitting convex portions 212. That is, two sets of the first screw portion and the second screw portion are formed. Instead of such a mode, only one set of the first screw portion and the second screw portion may be formed, or three or more sets may be formed.
  • FIG. 8 shows the internal configuration of the reserve tank 10 according to the present embodiment from the same viewpoint as in FIG.
  • the points different from the first embodiment will be mainly described, and the points common to the first embodiment will be omitted as appropriate.
  • valve mechanism 230 is not provided in the communication passage, and the air permeable membrane 219 is arranged instead.
  • the air permeable membrane 219 is a membrane formed of a material that allows air to pass through but does not allow vapor to pass through.
  • the air permeable membrane 219 is arranged so as to close the upper end of the inner cylinder portion 227.
  • An inner cylinder portion 217 is formed on the upper member 210.
  • the inner cylinder portion 217 is a substantially cylindrical portion formed so as to extend downward from a portion inside the holding portion 214 of the lower surface of the upper member 210.
  • the central axis of the inner cylinder portion 217 coincides with the central axis of the cylindrical portion 211.
  • the lower end of the inner cylinder portion 217 is in contact with the upper surface of the air permeable membrane 219.
  • the air permeable membrane 219 is held in a state of being sandwiched between the lower end of the inner cylinder portion 217 and the upper end of the inner cylinder portion 227.
  • a notch 218 is formed in a part of the lower end of the inner cylinder portion 217. Further, a notch 216 is formed at the lower end of the holding portion 214.
  • the space between the upper member 210 and the lower member 220 is connected to the internal space SP through the through hole 222, and is connected to the outside through the notch 218, the notch 216, the notch 213, and the through hole 132. Therefore, the path from the through hole 222 to the through hole 132 can be regarded as a "communication passage" which is a passage for communicating between the storage unit 100 and the outside. As described above, the communication passage is formed so as to penetrate each of the cap 200 and the mounted portion 130.
  • the air permeable membrane 219 is arranged at a position in the middle of the above-mentioned communication passage.
  • the convex portion 215 is not formed on the cap 200, and the slide surface 140 is not formed on the mounted portion 130.
  • the convex portion 215 and the slide surface 140 similar to those of the first embodiment may be formed.
  • FIG. 9 is a schematic view of the inner peripheral surface of the mounted portion 130.
  • the fitting concave portion 131 is not formed on the inner peripheral surface of the mounted portion 130, and the fitting convex portion 131A is formed instead.
  • the fitting convex portion 131A is a plurality of protrusions formed so as to project inward from the inner peripheral surface of the mounted portion 130. As shown in FIG. 9, each fitting convex portion 131A is formed so that its longitudinal direction is inclined with respect to the horizontal plane. Further, the fitting convex portions 131A are formed so as to be arranged in the vertical direction with a gap between them.
  • the fitting convex portion 212A is a plurality of protrusions formed so as to project outward from the outer peripheral surface of the cap 200.
  • Each fitting convex portion 212A is formed so that its longitudinal direction is inclined with respect to the horizontal plane. Further, the fitting convex portions 212A are formed so as to be arranged in the vertical direction with a gap between them.
  • the fitting convex portion 212A moves in the direction indicated by the arrow AR3 in FIG. 9 and is sandwiched between the vertically adjacent fitting convex portions 131A. .. As a result, the fitting convex portion 131A and the fitting convex portion 212A are screwed together.
  • the cap 200 is mounted on the mounted portion 130 by screwing the fitting convex portion 131A formed on the mounted portion 130 and the fitting convex portion 212A formed on the cap 200 to each other. ing. That is, the fitting convex portion 131A corresponds to the first screw portion in the present embodiment, and the fitting convex portion 212A corresponds to the second screw portion in the present embodiment. Even in such an embodiment, the same effect as that described in the first embodiment can be obtained. Further, such a first screw portion and a second screw portion can also be adopted in the configuration of the second embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Closures For Containers (AREA)

Abstract

A reserve tank (10) provided midway along a pathway through which cooling water circulates is provided with a storage portion (100), which is a part for storing cooling water, and at least an upper side part of which is formed in a cylindrical shape, and a fitting portion (130), which is a cylindrical part formed further upward than the storage portion and to which a cap is fitted to prevent cooling water leaking to the outside from the storage portion, wherein the diameter of an inner circumferential surface of the fitting portion is greater than the diameter of an inner circumferential surface of the storage portion.

Description

リザーブタンクReserve tank 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年5月30日に出願された日本国特許出願2019-101346号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2019-101346 filed on May 30, 2019, claiming the benefit of its priority, and the entire content of the patent application is: Incorporated herein by reference.
 本開示は、冷却水が循環する経路の途中に設けられるリザーブタンクに関する。 The present disclosure relates to a reserve tank provided in the middle of a path through which cooling water circulates.
 車両には、冷却水を循環させることにより車両の各部を冷却するための冷却システムが設けられる。冷却システムによって冷却される対象としては、例えばエンジンや、インタークーラ等の補機類が挙げられる。冷却システムにおいて冷却水が循環する経路には、上記のような冷却対象となる機器の他、冷却水を送り出すためのウォーターポンプや、冷却水の一部を貯留するためのリザーブタンク等が設けられる。何らかの原因で冷却水が減少した際には、リザーブタンクから冷却水が補われる。これにより、冷却水の減少に伴う冷却性能の低下が防止される。 The vehicle is provided with a cooling system for cooling each part of the vehicle by circulating cooling water. Examples of objects to be cooled by the cooling system include an engine and auxiliary equipment such as an intercooler. In the cooling system, the path through which the cooling water circulates is provided with a water pump for sending out the cooling water, a reserve tank for storing a part of the cooling water, and the like, in addition to the above-mentioned equipment to be cooled. .. When the cooling water decreases for some reason, the cooling water is supplemented from the reserve tank. As a result, deterioration of cooling performance due to reduction of cooling water is prevented.
 下記特許文献1に記載されているように、リザーブタンクは、冷却水を貯留する空間が形成された略円筒形状の容器の上端に、キャップを装着するための部分であるネックフィラが設けられた構成となっている。従来のリザーブタンクにおいては、ネックフィラの内周面における直径が、その下方側にある容器部分の内周面における直径よりも小さくなっていた。 As described in Patent Document 1 below, the reserve tank is provided with a neck filler, which is a part for attaching a cap, at the upper end of a substantially cylindrical container in which a space for storing cooling water is formed. It is composed. In the conventional reserve tank, the diameter of the inner peripheral surface of the neck filler is smaller than the diameter of the inner peripheral surface of the container portion on the lower side thereof.
特開2001-27121号公報Japanese Unexamined Patent Publication No. 2001-27121
 リザーブタンクは、樹脂により形成されることが多い。上記のような従来構成のリザーブタンクは、ネックフィラの部分において内周面の直径が絞られており、所謂「アンダーカット」の形状となっている。このため、リザーブタンクのうちキャップを除く部分の全体を、単一の金型によって一度に成形することが難しい。このため、リザーブタンクを例えば上下2つの部分に分けた上で、それぞれの部分を個別に成形した後、これらを溶着等により接合することでリザーブタンクを形成する必要があった。その結果、金型の費用及び工数が増加し、製造コストが大きくなっていた。 The reserve tank is often made of resin. The reserve tank having the conventional configuration as described above has a so-called "undercut" shape in which the diameter of the inner peripheral surface is narrowed at the neck filler portion. For this reason, it is difficult to mold the entire part of the reserve tank except the cap at a time with a single mold. For this reason, it is necessary to form a reserve tank by dividing the reserve tank into, for example, two upper and lower parts, molding each part individually, and then joining these parts by welding or the like. As a result, the cost and man-hours of the mold have increased, and the manufacturing cost has increased.
 本開示は、製造コストを低減することのできるリザーブタンク、を提供することを目的とする。 The purpose of this disclosure is to provide a reserve tank that can reduce manufacturing costs.
 本開示に係るリザーブタンクは、冷却水が循環する経路の途中に設けられるリザーブタンクであって、冷却水を貯留するための部分であって、少なくともその上方側部分が円筒形状に形成された貯留部と、貯留部よりも上方側に形成された円筒形状の部分であって、貯留部から外部へと冷却水が漏出しないようにキャップが装着される被装着部と、を備える。被装着部の内周面における直径は、貯留部の内周面における直径よりも大きくなっている。 The reserve tank according to the present disclosure is a reserve tank provided in the middle of a path through which cooling water circulates, and is a portion for storing cooling water, and at least the upper portion thereof is formed in a cylindrical shape. It is provided with a portion and a mounted portion which is a cylindrical portion formed above the storage portion and to which a cap is mounted so that cooling water does not leak from the storage portion to the outside. The diameter of the inner peripheral surface of the mounted portion is larger than the diameter of the inner peripheral surface of the storage portion.
 このような構成のリザーブタンクは、被装着部の内周面における直径が、貯留部の内周面における直径よりも大きくなっているので、アンダーカットとなる部分をなくすことができる。このため、リザーブタンクのうちキャップを除く部分の全体を、単一の金型により一度に形成することが可能となる。金型の費用及び工数が低減されるので、リザーブタンクの製造コストを従来よりも低減することができる。 In the reserve tank having such a configuration, the diameter of the inner peripheral surface of the mounted portion is larger than the diameter of the inner peripheral surface of the storage portion, so that the undercut portion can be eliminated. Therefore, the entire portion of the reserve tank excluding the cap can be formed at once by a single mold. Since the cost and man-hours of the mold are reduced, the manufacturing cost of the reserve tank can be reduced as compared with the conventional case.
 本開示によれば、製造コストを低減することのできるリザーブタンク、を提供することができる。 According to the present disclosure, it is possible to provide a reserve tank that can reduce the manufacturing cost.
図1は、第1実施形態に係るリザーブタンクの全体構成を示す図である。FIG. 1 is a diagram showing an overall configuration of a reserve tank according to the first embodiment. 図2は、第1実施形態に係るリザーブタンクのうち、キャップ及びその近傍における内部構成を示す図である。FIG. 2 is a diagram showing an internal configuration of the cap and its vicinity in the reserve tank according to the first embodiment. 図3は、第1実施形態に係るリザーブタンクのキャップの構成を示すである。FIG. 3 shows the configuration of the reserve tank cap according to the first embodiment. 図4は、第1実施形態に係るリザーブタンクのキャップの構成を示すである。FIG. 4 shows the configuration of the reserve tank cap according to the first embodiment. 図5は、第1実施形態に係るリザーブタンクのうち、キャップが装着される部分である被装着部の構成を示す図である。FIG. 5 is a diagram showing a configuration of a mounted portion, which is a portion to which a cap is mounted, in the reserve tank according to the first embodiment. 図6は、第1実施形態に係るリザーブタンクのうち、キャップが装着される部分である被装着部の構成を示す図である。FIG. 6 is a diagram showing a configuration of a mounted portion, which is a portion to which a cap is mounted, in the reserve tank according to the first embodiment. 図7は、第1実施形態に係るリザーブタンクのうち、キャップが装着される部分である被装着部の構成を示す図である。FIG. 7 is a diagram showing a configuration of a mounted portion, which is a portion to which the cap is mounted, in the reserve tank according to the first embodiment. 図8は、第2実施形態に係るリザーブタンクのうち、キャップ及びその近傍における内部構成を示す図である。FIG. 8 is a diagram showing an internal configuration of the cap and its vicinity in the reserve tank according to the second embodiment. 図9は、第3実施形態に係るリザーブタンクのうち、キャップが装着される部分である被装着部の構成を示す図である。FIG. 9 is a diagram showing a configuration of a mounted portion, which is a portion to which the cap is mounted, in the reserve tank according to the third embodiment.
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, the present embodiment will be described with reference to the attached drawings. In order to facilitate understanding of the description, the same components are designated by the same reference numerals as much as possible in each drawing, and duplicate description is omitted.
 第1実施形態について説明する。本実施形態に係るリザーブタンク10は、不図示の車両に搭載される冷却システムの一部を構成するものである。冷却システムは、冷却水を循環させることにより、車両の各部、具体的には内燃機関や補機類を冷却するためのシステムである。冷却システムでは、ウォーターポンプにより送り出された冷却水が内燃機関等の冷却対象に供給され、これらの冷却に供される。冷却対象を通過して高温となった冷却水は、ラジエータにおいてその温度を低下させた後でウォーターポンプに戻り、再びウォーターポンプから送り出される。尚、このような冷却システムの構成としては公知のものを採用することができるため、その具体的な図示や説明については省略する。 The first embodiment will be described. The reserve tank 10 according to the present embodiment constitutes a part of a cooling system mounted on a vehicle (not shown). The cooling system is a system for cooling each part of the vehicle, specifically, an internal combustion engine and auxiliary machinery by circulating cooling water. In the cooling system, the cooling water sent out by the water pump is supplied to a cooling target such as an internal combustion engine and used for cooling these. The cooling water that has passed through the object to be cooled and becomes hot is returned to the water pump after the temperature is lowered in the radiator, and is sent out from the water pump again. Since a known configuration of such a cooling system can be adopted, specific illustrations and explanations thereof will be omitted.
 リザーブタンク10は、上記の冷却システムのうち、冷却水が循環する経路の途中の位置、例えばウォーターポンプの上流側となる位置に設けられる容器である。尚、「冷却水が循環する経路の途中」とは、常に冷却水が流れている経路の途中である必要は無く、例えば、バイパス流路のように一時的に冷却水が流れる経路の途中であってもよい。図1乃至図5を参照しながら、リザーブタンク10の構成について説明する。 The reserve tank 10 is a container provided in the above cooling system at a position in the middle of the path through which the cooling water circulates, for example, a position on the upstream side of the water pump. It should be noted that "in the middle of the path in which the cooling water circulates" does not have to be in the middle of the path in which the cooling water is always flowing. There may be. The configuration of the reserve tank 10 will be described with reference to FIGS. 1 to 5.
 図1に示されるように、リザーブタンク10は、貯留部100と、被装着部130と、キャップ200と、を備えている。 As shown in FIG. 1, the reserve tank 10 includes a storage portion 100, a mounted portion 130, and a cap 200.
 貯留部100は、供給される冷却水を一時的に貯留する部分である。貯留部100は、その全体が樹脂により形成されている。貯留部100は、その全体が円筒形状に形成された容器であって、その中心軸を上下方向に沿わせた状態で車両に配置されている。図2に示されるように、貯留部100の内側には、冷却水を貯留するための内部空間SPが形成されている。尚、貯留部100は、本実施形態のようにその全体が円筒形状に形成されていてもよいのであるが、その上方側部分のみが円筒形状に形成されているような態様であってもよい。その場合、円筒形状に形成された部分よりも下方側の部分の形状は、所謂アンダーカットとならないような形状としておくことが好ましい。 The storage unit 100 is a part that temporarily stores the supplied cooling water. The entire storage unit 100 is made of resin. The storage unit 100 is a container whose entire shape is formed in a cylindrical shape, and is arranged in a vehicle with its central axis aligned in the vertical direction. As shown in FIG. 2, an internal space SP for storing cooling water is formed inside the storage unit 100. The entire storage unit 100 may be formed in a cylindrical shape as in the present embodiment, but the storage unit 100 may be in a form in which only the upper portion thereof is formed in a cylindrical shape. .. In that case, it is preferable that the shape of the portion below the portion formed in the cylindrical shape is a shape that does not cause a so-called undercut.
 図2に示されるように、貯留部100のうち上方側部分の内周面には、シール面101が形成されている。シール面101は、内部空間SPから外部へと冷却水が漏出することを防ぐために、後述のキャップ200に設けられたガスケット225が当接する部分となっている。 As shown in FIG. 2, a sealing surface 101 is formed on the inner peripheral surface of the upper portion of the storage portion 100. The sealing surface 101 is a portion that comes into contact with the gasket 225 provided on the cap 200, which will be described later, in order to prevent the cooling water from leaking from the internal space SP to the outside.
 貯留部100には、入口部110と出口部120とが設けられている。入口部110は、冷却システムを循環する冷却水を受け入れて、これを内部空間SPへと供給するための部分である。入口部110は、水平方向に沿って直線状に伸びるように形成された筒状の部分となっており、その一端が貯留部100の側面に接続されている。入口部110が伸びる方向は、図1において紙面奥側から手前側へと向かう方向である。入口部110の先端には、冷却水の循環経路を構成する不図示の配管が接続される。 The storage unit 100 is provided with an inlet portion 110 and an outlet portion 120. The inlet 110 is a portion for receiving the cooling water circulating in the cooling system and supplying it to the internal space SP. The inlet portion 110 is a tubular portion formed so as to extend linearly along the horizontal direction, and one end thereof is connected to the side surface of the storage portion 100. The direction in which the entrance portion 110 extends is the direction from the back side to the front side of the paper in FIG. A pipe (not shown) constituting a cooling water circulation path is connected to the tip of the inlet 110.
 出口部120は、内部空間SPから外部へと冷却水を排出するための部分である。出口部120は、上下方向に沿って直線状に伸びるように形成された筒状の部分となっており、その上端が貯留部100の底部に接続されている。出口部120の先端には、冷却水の循環経路を構成する不図示の配管が接続される。 The outlet portion 120 is a portion for discharging the cooling water from the internal space SP to the outside. The outlet portion 120 is a tubular portion formed so as to extend linearly along the vertical direction, and the upper end thereof is connected to the bottom portion of the storage portion 100. A pipe (not shown) constituting a cooling water circulation path is connected to the tip of the outlet portion 120.
 入口部110から供給された冷却水は、内部空間SPに流入し旋回して流れた後、出口部120から外部へと排出される。冷却水に含まれていた気泡は、上記のように旋回しながら内部空間SPの液面に到達した際に、液面よりも上方側の空気に取り込まれて消滅する。このように、貯留部100は、冷却水を一時的に貯留する機能に加えて、冷却水の気液を分離して気泡を除去する機能をも有している。 The cooling water supplied from the inlet portion 110 flows into the internal space SP, swirls and flows, and then is discharged from the outlet portion 120 to the outside. When the bubbles contained in the cooling water reach the liquid level of the internal space SP while swirling as described above, they are taken into the air above the liquid level and disappear. As described above, in addition to the function of temporarily storing the cooling water, the storage unit 100 also has a function of separating gas and liquid of the cooling water to remove air bubbles.
 被装着部130は、貯留部100の内部空間SPから外部へと冷却水が漏出しないように、後述のキャップ200が装着される部分である。被装着部130は、貯留部100の上方側に設けられており、樹脂により貯留部100と一体に形成された部分となっている。被装着部130は、その全体が円筒形状となっている。被装着部130の中心軸は、貯留部100の中心軸と一致している。また、被装着部130の内周面における直径は、貯留部100の内周面における直径よりも大きくなっている。このため、リザーブタンク10は、その上方側部分を拡径させた形状となっている。 The mounted portion 130 is a portion to which the cap 200 described later is mounted so that the cooling water does not leak to the outside from the internal space SP of the storage portion 100. The mounted portion 130 is provided on the upper side of the storage portion 100, and is a portion integrally formed with the storage portion 100 by the resin. The entire mounted portion 130 has a cylindrical shape. The central axis of the mounted portion 130 coincides with the central axis of the storage portion 100. Further, the diameter of the inner peripheral surface of the mounted portion 130 is larger than the diameter of the inner peripheral surface of the storage portion 100. Therefore, the reserve tank 10 has a shape in which the diameter of the upper portion thereof is enlarged.
 尚、上記における「被装着部130の内周面における直径」とは、被装着部130の内周面のうち、次に述べる嵌合凹部131が形成されていない部分における直径のことである。また、上記における「貯留部100の内周面における直径」とは、貯留部100のうち上方側部分、すなわち、円筒形状に形成された部分の内周面における直径のことであり、本実施形態ではシール面101の直径のことである。 The "diameter on the inner peripheral surface of the mounted portion 130" in the above is the diameter of the portion of the inner peripheral surface of the mounted portion 130 in which the fitting recess 131 described below is not formed. Further, the "diameter on the inner peripheral surface of the storage portion 100" in the above is the diameter on the inner peripheral surface of the upper portion of the storage portion 100, that is, the portion formed in a cylindrical shape, and is the present embodiment. Then, it is the diameter of the sealing surface 101.
 図2及び図5に示されるように、被装着部130の内周面には嵌合凹部131が形成されている。嵌合凹部131は、螺旋状に形成された凹状の溝である。嵌合凹部131は、キャップ200に形成された嵌合凸部212と螺合するように形成されており、雌螺子として機能する部分である。嵌合凹部131は、被装着部130の内周面に形成された「第1螺子部」に該当するものである。 As shown in FIGS. 2 and 5, a fitting recess 131 is formed on the inner peripheral surface of the mounted portion 130. The fitting recess 131 is a concave groove formed in a spiral shape. The fitting recess 131 is formed so as to be screwed with the fitting convex portion 212 formed on the cap 200, and is a portion that functions as a female screw. The fitting recess 131 corresponds to a "first screw portion" formed on the inner peripheral surface of the mounted portion 130.
 キャップ200は、被装着部130に装着されることで、被装着部130の上端に形成された開口を塞ぎ、内部空間SPから外部へと冷却水が漏出することを防ぐための部材である。図2に示されるように、キャップ200は、アッパ部材210と、ロア部材220と、弁機構230と、を備えている。 The cap 200 is a member for closing the opening formed at the upper end of the mounted portion 130 by being mounted on the mounted portion 130 and preventing the cooling water from leaking from the internal space SP to the outside. As shown in FIG. 2, the cap 200 includes an upper member 210, a lower member 220, and a valve mechanism 230.
 アッパ部材210は、キャップ200のうち上方側の部分である。アッパ部材210は、その全体が略円盤形状となっている。アッパ部材210には、取手201と、円筒部211と、保持部214と、設けられている。 The upper member 210 is the upper part of the cap 200. The upper member 210 has a substantially disk shape as a whole. The upper member 210 is provided with a handle 201, a cylindrical portion 211, and a holding portion 214.
 取手201は、キャップ200の着脱が行われる際において、使用者によって把持される部分である。取手201は、アッパ部材210の上面から上方側に突出するように形成されている。尚、取手201の実際の形状は、図3や図4に示されるような形状なのであるが、図2においては取手201の形状を簡略化して模式的に示してある。 The handle 201 is a portion that is gripped by the user when the cap 200 is attached / detached. The handle 201 is formed so as to project upward from the upper surface of the upper member 210. The actual shape of the handle 201 is as shown in FIGS. 3 and 4, but in FIG. 2, the shape of the handle 201 is simplified and schematically shown.
 円筒部211は、円筒形状に形成された部分であって、アッパ部材210の下面から下方側に向けて突出するように形成されている。円筒部211の中心軸は、被装着部130や貯留部100の中心軸と一致している。円筒部211の外径は、被装着部130の内径よりも僅かに小さい。図2のようにキャップ200が被装着部130に装着された状態においては、円筒部211は、被装着部130の内側に配置されている。 The cylindrical portion 211 is a portion formed in a cylindrical shape, and is formed so as to project downward from the lower surface of the upper member 210. The central axis of the cylindrical portion 211 coincides with the central axis of the mounted portion 130 and the storage portion 100. The outer diameter of the cylindrical portion 211 is slightly smaller than the inner diameter of the mounted portion 130. In the state where the cap 200 is attached to the attached portion 130 as shown in FIG. 2, the cylindrical portion 211 is arranged inside the attached portion 130.
 円筒部211の外周面には嵌合凸部212が形成されている。嵌合凸部212は、螺旋状に形成された突起である。嵌合凸部212は、先に述べた嵌合凹部131と螺合するように形成されており、雄螺子として機能する部分である。嵌合凸部212は、キャップ200のうちアッパ部材210の外周面に形成された「第2螺子部」に該当するものである。 A fitting convex portion 212 is formed on the outer peripheral surface of the cylindrical portion 211. The fitting convex portion 212 is a protrusion formed in a spiral shape. The fitting convex portion 212 is formed so as to be screwed with the fitting concave portion 131 described above, and is a portion that functions as a male screw. The fitting convex portion 212 corresponds to the “second screw portion” formed on the outer peripheral surface of the upper member 210 in the cap 200.
 図2のようにキャップ200が被装着部130に装着された状態においては、第1螺子部である嵌合凹部131と、第2螺子部である嵌合凸部212とが互いに螺合している。使用者が取手201を把持して、キャップ200を上面視で反時計回り方向に回転させると、第1螺子部と前記第2螺子部との螺合が外れて、キャップ200が被装着部130から取り外される。逆に、使用者がキャップ200を上面視で時計回り方向に回転させると、第1螺子部と前記第2螺子部とが螺合し、キャップ200が締め付けられて被装着部130に装着される。 When the cap 200 is mounted on the mounted portion 130 as shown in FIG. 2, the fitting recess 131 which is the first screw portion and the fitting convex portion 212 which is the second screw portion are screwed together. There is. When the user grips the handle 201 and rotates the cap 200 in the counterclockwise direction when viewed from above, the first screw portion and the second screw portion are disengaged, and the cap 200 is attached to the mounted portion 130. Is removed from. On the contrary, when the user rotates the cap 200 in the clockwise direction when viewed from above, the first screw portion and the second screw portion are screwed together, and the cap 200 is tightened and mounted on the mounted portion 130. ..
 保持部214は、次に述べるロア部材220を保持するための部分である。保持部214は、アッパ部材210の下面のうち、円筒部211よりも内側の部分から、下方側に向けて突出するように形成されている。保持部214は複数設けられており、円筒部211の周方向に沿って、これらが等間隔に並ぶように配置されている。それぞれの保持部214が設けられている位置は、ロア部材220において後述のフック226が形成されている位置となっている。このような態様に替えて、保持部214が単一の円筒として形成されていてもよい。この場合、保持部214の一部に切り欠き又は貫通穴を形成し、空気が通過し得るようにしておく必要がある。 The holding portion 214 is a portion for holding the lower member 220 described below. The holding portion 214 is formed so as to project downward from the portion inside the cylindrical portion 211 of the lower surface of the upper member 210. A plurality of holding portions 214 are provided, and these are arranged so as to be arranged at equal intervals along the circumferential direction of the cylindrical portion 211. The position where each holding portion 214 is provided is the position where the hook 226 described later is formed in the lower member 220. Instead of such an embodiment, the holding portion 214 may be formed as a single cylinder. In this case, it is necessary to form a notch or a through hole in a part of the holding portion 214 so that air can pass therethrough.
 ロア部材220は、キャップ200のうち下方側の部分である。ロア部材220は、底板部221と、外筒部223と、内筒部227と、を有している。 The lower member 220 is the lower part of the cap 200. The lower member 220 has a bottom plate portion 221, an outer cylinder portion 223, and an inner cylinder portion 227.
 底板部221は、略円板形状に形成された部分である。外筒部223は、底板部221の外周側端部から上方側に向けて伸びるように形成された略円筒形状の部分である。 The bottom plate portion 221 is a portion formed in a substantially disk shape. The outer cylinder portion 223 is a substantially cylindrical portion formed so as to extend upward from the outer peripheral side end portion of the bottom plate portion 221.
 外筒部223の外周面には、その全周に亘って保持溝224が形成されている。保持溝224にはガスケット225が保持されている。ガスケット225は、円環状のゴムにより形成された部材であって、その一部が保持溝224から外側へと突出している。図2のようにキャップ200が被装着部130に装着された状態においては、キャップ200に設けられたガスケット225が、被装着部130よりも下方側に形成されたシール面101に当接している。これにより、貯留部100の内部空間SPと、外側の空間との間が水密に遮断されている。その結果、内部空間SPにある冷却水が、外部へと漏出してしまうことが防止されている。ガスケット225は、本実施形態における「シール部材」に該当する。 A holding groove 224 is formed on the outer peripheral surface of the outer cylinder portion 223 over the entire circumference thereof. A gasket 225 is held in the holding groove 224. The gasket 225 is a member formed of an annular rubber, and a part thereof projects outward from the holding groove 224. When the cap 200 is mounted on the mounted portion 130 as shown in FIG. 2, the gasket 225 provided on the cap 200 is in contact with the sealing surface 101 formed below the mounted portion 130. .. As a result, the internal space SP of the storage unit 100 and the outer space are watertightly shielded. As a result, the cooling water in the internal space SP is prevented from leaking to the outside. Gasket 225 corresponds to the "seal member" in this embodiment.
 外筒部223には、複数のフック226が形成されている。それぞれのフック226は、外筒部223の上端の縁から、上方側に向かって伸びるように形成されている。それぞれのフック226は、アッパ部材210に設けられた保持部214に係合しており、これにより、ロア部材220がアッパ部材210に保持されている。 A plurality of hooks 226 are formed on the outer cylinder portion 223. Each hook 226 is formed so as to extend upward from the upper end edge of the outer cylinder portion 223. Each hook 226 is engaged with a holding portion 214 provided on the upper member 210, whereby the lower member 220 is held by the upper member 210.
 内筒部227は、底板部221の上面のうち外筒部223よりも内側の部分から、上方側に向けて伸びるように形成された略円筒形状の部分である。内筒部227の中心軸は、外筒部223の中心軸と一致している。内筒部227の上端には、後述の正圧弁233が当接する部分である弁座228が形成されている。 The inner cylinder portion 227 is a substantially cylindrical portion formed so as to extend upward from the portion inside the outer cylinder portion 223 of the upper surface of the bottom plate portion 221. The central axis of the inner cylinder portion 227 coincides with the central axis of the outer cylinder portion 223. A valve seat 228, which is a portion with which the positive pressure valve 233, which will be described later, abuts, is formed at the upper end of the inner cylinder portion 227.
 弁機構230について説明するに先立ち、キャップ200に形成された連通路について説明する。ロア部材220の底板部221には、その中央を上下方向に貫くように貫通穴222が形成されている。また、図2及び図3に示されるように、アッパ部材210の円筒部211には、その下端の一部に切り欠き213が形成されている。更に、図2及び図5に示されるように、被装着部130には、これを水平方向に貫くように貫通穴132が形成されている。 Prior to explaining the valve mechanism 230, the communication passage formed in the cap 200 will be described. A through hole 222 is formed in the bottom plate portion 221 of the lower member 220 so as to penetrate the center thereof in the vertical direction. Further, as shown in FIGS. 2 and 3, the cylindrical portion 211 of the upper member 210 is formed with a notch 213 at a part of the lower end thereof. Further, as shown in FIGS. 2 and 5, a through hole 132 is formed in the mounted portion 130 so as to penetrate the mounted portion 130 in the horizontal direction.
 アッパ部材210とロア部材220との間の空間は、貫通穴222を通じて内部空間SPと繋がっており、切り欠き213及び貫通穴132を通じて外部と繋がっている。このため、貫通穴222から貫通穴132に至るまでの経路は、貯留部100と外部との間を連通させるための通路である「連通路」とみなすことができる。連通路は上記のように、キャップ200及び被装着部130のそれぞれを貫くように形成されている。尚、切り欠き213に替えて、円筒部211を水平方向に沿って貫く貫通穴が形成されている態様であってもよい。 The space between the upper member 210 and the lower member 220 is connected to the internal space SP through the through hole 222, and is connected to the outside through the notch 213 and the through hole 132. Therefore, the path from the through hole 222 to the through hole 132 can be regarded as a "communication passage" which is a passage for communicating between the storage unit 100 and the outside. As described above, the communication passage is formed so as to penetrate each of the cap 200 and the mounted portion 130. In addition, instead of the notch 213, a through hole may be formed through the cylindrical portion 211 along the horizontal direction.
 弁機構230は、上記の連通路の途中となる位置に配置されている。弁機構230は、連通路の開閉を切り替えるための機構として設けられている。通常時においては、弁機構230は閉状態となっており、上記の連通路を遮断している。 The valve mechanism 230 is arranged at a position in the middle of the above-mentioned communication passage. The valve mechanism 230 is provided as a mechanism for switching the opening and closing of the communication passage. In a normal state, the valve mechanism 230 is in a closed state, blocking the above-mentioned communication passage.
 弁機構230の構成について、引き続き図2を参照しながら説明する。弁機構230は、支持板231と、正圧弁233と、負圧弁235と、を有している。 The configuration of the valve mechanism 230 will be described with reference to FIG. The valve mechanism 230 has a support plate 231, a positive pressure valve 233, and a negative pressure valve 235.
 支持板231は、金属により形成された略円板形状の部材である。支持板231は、次に述べる正圧弁233を上方側から支持するための部材である。支持板231の中央には、これを上下方向に貫くように貫通穴232が形成されている。支持板231と、アッパ部材210との間には、バネ237が配置されている。支持板231は、正圧弁233と共に、バネ237によって下方側へ向けて付勢されている。 The support plate 231 is a substantially disk-shaped member made of metal. The support plate 231 is a member for supporting the positive pressure valve 233 described below from above. A through hole 232 is formed in the center of the support plate 231 so as to penetrate the support plate 231 in the vertical direction. A spring 237 is arranged between the support plate 231 and the upper member 210. The support plate 231 is urged downward by a spring 237 together with the positive pressure valve 233.
 正圧弁233は、ゴムにより形成された円盤形状の部材である。正圧弁233は、先に述べた支持板231の下面に対して接合されている。正圧弁233の中央には、これを上下方向に貫くように貫通穴234が形成されている。正圧弁233は、上記のようにバネ237によって下方側へ向けて付勢されている。このため、通常時においては、正圧弁233は弁座228の全体に対して上方側から当接した状態となっている。 The positive pressure valve 233 is a disk-shaped member made of rubber. The positive pressure valve 233 is joined to the lower surface of the support plate 231 described above. A through hole 234 is formed in the center of the positive pressure valve 233 so as to penetrate the positive pressure valve 233 in the vertical direction. The positive pressure valve 233 is urged downward by the spring 237 as described above. Therefore, in the normal state, the positive pressure valve 233 is in contact with the entire valve seat 228 from above.
 負圧弁235は、略円板形状の部材である。負圧弁235は、正圧弁233の下方側であって、且つ内筒部227の内側の空間内に配置されている。負圧弁235と、ロア部材220の底板部221との間には、バネ238が配置されている。負圧弁235は、バネ238によって上方側へ向けて付勢されている。このため、通常時においては、負圧弁235は正圧弁233に対して下方側から当接した状態となっている。その結果、上記の連通路は、正圧弁233、負圧弁235、及び内筒部227によって遮断されている。 The negative pressure valve 235 is a member having a substantially disk shape. The negative pressure valve 235 is arranged on the lower side of the positive pressure valve 233 and in the space inside the inner cylinder portion 227. A spring 238 is arranged between the negative pressure valve 235 and the bottom plate portion 221 of the lower member 220. The negative pressure valve 235 is urged upward by a spring 238. Therefore, in the normal state, the negative pressure valve 235 is in contact with the positive pressure valve 233 from the lower side. As a result, the above-mentioned communication passage is blocked by the positive pressure valve 233, the negative pressure valve 235, and the inner cylinder portion 227.
 例えば冷却水の温度上昇等に伴い、貯留部100の内圧、すなわち内部空間SPの圧力が第1の所定圧以上になると、当該圧力によって支持板231及び正圧弁233が上方側に移動し、正圧弁233が弁座228から離れた状態となる。つまり、正圧弁233が開弁した状態となる。内部空間SPの空気は、貫通穴222、正圧弁233と弁座228との間の隙間、切り欠き213、及び貫通穴132を順に通って、リザーブタンク10の外側へと流出することができるようになる。これにより、内部空間SPの圧力が上昇し過ぎてしまうような事態が防止される。尚、上記における「第1の所定圧」とは、大気圧よりも高い圧力として予め定められた圧力であって、この第1の所定圧に合わせてバネ237が選定されている。このように、本実施形態における弁機構230には、貯留部100の内圧が、大気圧よりも高い第1の所定圧以上となったときに開弁する正圧弁233が含まれている。 For example, when the internal pressure of the storage unit 100, that is, the pressure of the internal space SP becomes equal to or higher than the first predetermined pressure due to the temperature rise of the cooling water, the support plate 231 and the positive pressure valve 233 move upward due to the pressure, and the positive pressure is positive. The pressure valve 233 is separated from the valve seat 228. That is, the positive pressure valve 233 is in the opened state. The air in the internal space SP can flow out to the outside of the reserve tank 10 through the through hole 222, the gap between the positive pressure valve 233 and the valve seat 228, the notch 213, and the through hole 132 in this order. become. As a result, a situation in which the pressure of the internal space SP rises too much is prevented. The "first predetermined pressure" in the above is a pressure predetermined as a pressure higher than the atmospheric pressure, and the spring 237 is selected according to the first predetermined pressure. As described above, the valve mechanism 230 in the present embodiment includes a positive pressure valve 233 that opens when the internal pressure of the storage unit 100 becomes equal to or higher than the first predetermined pressure higher than the atmospheric pressure.
 また、冷却水の温度低下等に伴い、貯留部100の内圧、すなわち内部空間SPの圧力が第2の所定圧以下になると、外気との気圧差によって負圧弁235が下方側に移動し、負圧弁235が正圧弁233から離れた状態となる。つまり、負圧弁235が開弁した状態となる。リザーブタンク10の外部の空気は、貫通穴132、切り欠き213、貫通穴232、貫通穴234、正圧弁233と負圧弁235との間の隙間、及び貫通穴222を順に通って、内部空間SPへと流入することができるようになる。これにより、内部空間SPの圧力が低下し過ぎてしまうような事態が防止される。尚、上記における「第2の所定圧」とは、大気圧よりも低い圧力として予め定められた圧力であって、この第2の所定圧に合わせてバネ238が選定されている。このように、本実施形態における弁機構230には、貯留部100の内圧が、大気圧よりも低い第2の所定圧以下となったときに開弁する負圧弁235が含まれている。 Further, when the internal pressure of the storage unit 100, that is, the pressure of the internal space SP becomes equal to or lower than the second predetermined pressure due to the temperature decrease of the cooling water or the like, the negative pressure valve 235 moves downward due to the pressure difference with the outside air and becomes negative. The pressure valve 235 is separated from the positive pressure valve 233. That is, the negative pressure valve 235 is in the opened state. The air outside the reserve tank 10 passes through the through hole 132, the notch 213, the through hole 232, the through hole 234, the gap between the positive pressure valve 233 and the negative pressure valve 235, and the through hole 222 in this order, and passes through the internal space SP. Will be able to flow into. As a result, a situation in which the pressure of the internal space SP drops too much is prevented. The "second predetermined pressure" in the above is a pressure predetermined as a pressure lower than the atmospheric pressure, and the spring 238 is selected according to the second predetermined pressure. As described above, the valve mechanism 230 in the present embodiment includes a negative pressure valve 235 that opens when the internal pressure of the storage unit 100 becomes equal to or lower than the second predetermined pressure lower than the atmospheric pressure.
 図2に示される長さL1は、第1螺子部である嵌合凹部131と、第2螺子部である嵌合凸部212とが互いに螺合している範囲の、上下方向に沿った長さである。また、図2に示される長さL2は、ガスケット225の位置から、シール面101の上端部に至るまでの範囲の、上下方向に沿った長さである。図2のように、キャップ200が被装着部130に対して装着されている状態においては、L1の方がL2よりも長くなっている。このため、キャップ200を、第1螺子部と第2螺子部との螺合が外れる方向、すなわち上面視で時計回り方向に回転させた場合には、シール部材であるガスケット225がシール面101から外れた後に、第1螺子部と第2螺子部との螺合が外れることとなる。 The length L1 shown in FIG. 2 is a length along the vertical direction within a range in which the fitting recess 131, which is the first screw portion, and the fitting convex portion 212, which is the second screw portion, are screwed together. That's right. Further, the length L2 shown in FIG. 2 is a length in the vertical direction in the range from the position of the gasket 225 to the upper end portion of the sealing surface 101. As shown in FIG. 2, when the cap 200 is attached to the attached portion 130, L1 is longer than L2. Therefore, when the cap 200 is rotated in the direction in which the first screw portion and the second screw portion are unscrewed, that is, in the clockwise direction when viewed from above, the gasket 225, which is a sealing member, comes from the sealing surface 101. After being disengaged, the screw between the first screw portion and the second screw portion will be disengaged.
 ガスケット225がシール面101から外れると、大気圧よりも高くなっている内部空間SPの空気によってキャップ200が押し上げられて、使用者に向けて高圧の空気や水蒸気が噴き出してしまう可能性がある。しかしながら、本実施形態では、ガスケット225がシール面101から外れても、その時点では第1螺子部と第2螺子部とが互いに螺合した状態となっているので、空気によってキャップ200が押し上げられてしまうことがない。また、内部空間SPから漏出した高圧の空気や水蒸気は、その大部分が貫通穴132を通じて側方へと噴き出すので、使用者のいる上方側に向かうことはない。 When the gasket 225 comes off from the sealing surface 101, the cap 200 may be pushed up by the air in the internal space SP that is higher than the atmospheric pressure, and high-pressure air or water vapor may be ejected toward the user. However, in the present embodiment, even if the gasket 225 is removed from the sealing surface 101, the first screw portion and the second screw portion are in a state of being screwed together at that time, so that the cap 200 is pushed up by air. It never ends up. In addition, most of the high-pressure air and water vapor leaked from the internal space SP are ejected sideways through the through hole 132, so that they do not go to the upper side where the user is.
 以上に説明したように、本実施形態に係るリザーブタンク10では、被装着部130の内周面における直径が、貯留部の内周面における直径よりも大きくなっている。これにより、貯留部100及び被装着部130の全体が、所謂アンダーカットの無い構成となっているので、これらを単一の金型により一度に形成することが可能となっている。金型の費用及び工数が低減されるので、リザーブタンク10の製造コストを従来よりも低減することができる。 As described above, in the reserve tank 10 according to the present embodiment, the diameter of the mounted portion 130 on the inner peripheral surface is larger than the diameter of the inner peripheral surface of the storage portion. As a result, the entire storage portion 100 and the mounted portion 130 have a structure without so-called undercuts, so that they can be formed at once by a single mold. Since the cost and man-hours of the mold are reduced, the manufacturing cost of the reserve tank 10 can be reduced as compared with the conventional case.
 本実施形態では、キャップ200の固定が、第1螺子部である嵌合凹部131と、第2螺子部である嵌合凸部212との螺合によって実現されている。これらを螺合させるために必要なキャップ200の回転角度は、本実施形態では概ね90度程度となっている。このため、従来に比べて簡単な操作でキャップ200を装着することができる。 In the present embodiment, the cap 200 is fixed by screwing the fitting concave portion 131 which is the first screw portion and the fitting convex portion 212 which is the second screw portion. The rotation angle of the cap 200 required to screw them together is about 90 degrees in this embodiment. Therefore, the cap 200 can be attached with a simpler operation than before.
 尚、螺合させるために必要な回転角度を、本実施形態のように小さくした場合には、螺子部分の掛かり代が狭くなることに起因して、キャップ200部分の耐圧性能が低下してしまうことが懸念される。しかしながら、本実施形態では、内径の大きな被装着部130に嵌合凹部131が形成されているので、上記のように必要な回転角度を小さくした場合でも、螺子部分の掛かり代を広く確保することができ、キャップ200部分の耐圧性能を十分に確保することができる。 If the rotation angle required for screwing is reduced as in the present embodiment, the pressure resistance performance of the cap 200 portion deteriorates due to the narrowing of the hooking allowance of the screw portion. Is a concern. However, in the present embodiment, since the fitting recess 131 is formed in the mounted portion 130 having a large inner diameter, it is possible to secure a wide hooking allowance for the screw portion even when the required rotation angle is reduced as described above. It is possible to sufficiently secure the pressure resistance performance of the cap 200 portion.
 更に本実施形態では、被装着部130の上端の開口が大きいため、冷却水の注水作業を行いやすいという利点も得られる。 Further, in the present embodiment, since the opening at the upper end of the mounted portion 130 is large, there is an advantage that it is easy to inject the cooling water.
 リザーブタンク10におけるその他の工夫点について説明する。図4に示されるように、キャップ200のうち円筒部211の側面には、側方に向けて突出する凸部215が形成されている。また、図5に示されるように、被装着部130のうち上端部の縁の一部には、水平面に対して傾斜しているスライド面140が形成されている。スライド面140の途中には、外れ防止用突起142と、除圧突起143とが、いずれも上方側に向けて突出するように形成されている。また、スライド面140のうち下方側の端部からは、上方に向けて伸びる面であるストッパ141が形成されている。 Other points to be devised in the reserve tank 10 will be explained. As shown in FIG. 4, a convex portion 215 protruding laterally is formed on the side surface of the cylindrical portion 211 of the cap 200. Further, as shown in FIG. 5, a slide surface 140 that is inclined with respect to the horizontal plane is formed on a part of the edge of the upper end portion of the mounted portion 130. In the middle of the slide surface 140, the detachment prevention projection 142 and the decompression projection 143 are both formed so as to project upward. Further, a stopper 141, which is a surface extending upward, is formed from the lower end of the slide surface 140.
 図6及び図7には、被装着部130に形成された嵌合凹部131と、上記のスライド面140との位置関係が示されている。図6及び図7のそれぞれの下方側に示されているのは、被装着部130を上方側から見て、その縁のみを模式的に描いたものである。また、図6の上方側に示されているのは、被装着部130のうち、嵌合凹部131が形成されている内周面を内側から見て描いたものである。同図には、図2を参照しながら説明した長さL1、L2がそれぞれ示されている。 6 and 7 show the positional relationship between the fitting recess 131 formed in the mounted portion 130 and the slide surface 140. Shown on the lower side of each of FIGS. 6 and 7, the mounted portion 130 is viewed from the upper side, and only the edge thereof is schematically drawn. Further, what is shown on the upper side of FIG. 6 is a view of the inner peripheral surface of the mounted portion 130 on which the fitting recess 131 is formed, as viewed from the inside. In the figure, the lengths L1 and L2 described with reference to FIG. 2 are shown, respectively.
 図7の上方側に示されているのは、被装着部130のうち、スライド面140が形成されている部分を内側から見て描いたものである。図6及び図7に示されるように、スライド面140は、上面視において、嵌合凹部131が形成されている部分と重ならない範囲に形成されている。 What is shown on the upper side of FIG. 7 is a view of the portion of the mounted portion 130 on which the slide surface 140 is formed as viewed from the inside. As shown in FIGS. 6 and 7, the slide surface 140 is formed in a range that does not overlap with the portion where the fitting recess 131 is formed in the top view.
 キャップ200が被装着部130に装着される際には、先に述べたようにキャップ200が回転し、これに伴って嵌合凹部131と嵌合凸部212とが螺合していく。キャップ200は、回転しながら下方側へと移動して行くこととなる。スライド面140は、キャップ200に設けられた凸部215の下端が、回転しながら下方側に移動する軌道に沿うように形成されている。従って、キャップ200を回転させると、キャップ200に形成された凸部215の下端が、被装着部130に形成されたスライド面140に上方側から当接した状態で、スライド面140に沿って移動して行くこととなる。これを実現するために、スライド面140が水平面に対してなす角度と、嵌合凹部131や嵌合凸部212の伸びる方向が水平面に対してなす角度とは、互いに等しくなっている。 When the cap 200 is mounted on the mounted portion 130, the cap 200 rotates as described above, and the fitting concave portion 131 and the fitting convex portion 212 are screwed together with this rotation. The cap 200 will move downward while rotating. The slide surface 140 is formed so that the lower end of the convex portion 215 provided on the cap 200 follows a trajectory that moves downward while rotating. Therefore, when the cap 200 is rotated, the lower end of the convex portion 215 formed on the cap 200 moves along the slide surface 140 in a state of being in contact with the slide surface 140 formed on the mounted portion 130 from above. Will go. In order to realize this, the angle formed by the slide surface 140 with respect to the horizontal plane and the angle formed by the extending direction of the fitting recess 131 and the fitting convex portion 212 with respect to the horizontal plane are equal to each other.
 キャップ200が被装着部130に装着される際の、凸部215の動きについて説明する。このとき、キャップ200が上面視で時計回り方向(図7の矢印AR2の方向)に回転することに伴って、凸部215は、その下端をスライド面140に当接させたまま、図7の矢印AR1で示される方向に移動する。その途中において、凸部215は除圧突起143及び外れ防止用突起142に当たるのであるが、キャップ200や被装着部130の変形に伴って、凸部215はこれらの突起を乗り越える。最終的には、凸部215がストッパ141に当たり、キャップ200がそれ以上は回転し得ない状態となる。 The movement of the convex portion 215 when the cap 200 is attached to the attached portion 130 will be described. At this time, as the cap 200 rotates in the clockwise direction (direction of arrow AR2 in FIG. 7) in the top view, the convex portion 215 keeps its lower end in contact with the slide surface 140, and in FIG. Move in the direction indicated by the arrow AR1. In the middle of the process, the convex portion 215 hits the decompression protrusion 143 and the detachment prevention protrusion 142, and the convex portion 215 gets over these protrusions as the cap 200 and the mounted portion 130 are deformed. Eventually, the convex portion 215 hits the stopper 141, and the cap 200 cannot rotate any more.
 このように、スライド面140の端部にはストッパが設けられている。キャップ200を、第1螺子部と第2螺子部とが螺合する方向、すなわちキャップ200を装着する方向に回転させた場合には、凸部215がストッパ141に当たることによりキャップ200の回転が規制される。これにより、キャップ200が、使用者によって必要以上に締め付けられてしまうような事態を防止することができる。 In this way, a stopper is provided at the end of the slide surface 140. When the cap 200 is rotated in the direction in which the first screw portion and the second screw portion are screwed, that is, in the direction in which the cap 200 is mounted, the convex portion 215 hits the stopper 141 to restrict the rotation of the cap 200. Will be done. As a result, it is possible to prevent the cap 200 from being tightened more than necessary by the user.
 図7に示されるように、外れ防止用突起142は、スライド面140のうちストッパ141の近傍となる位置に設けられている。スライド面140の長手方向に沿った、外れ防止用突起142からストッパ141までの距離は、同方向に沿った凸部215の幅寸法と概ね同一である。従って、キャップ200が装着された状態から、キャップ200を上面視で反時計回り方向に回転させて取り外そうとすると、その直後において、凸部215が外れ防止用突起142を乗り越える必要がある。このため、外れ防止用突起142は、キャップ200が装着されている位置において、凸部215を保持しておくための突起、ということができる。このように、本実施形態では、スライド面140に外れ防止用突起142が形成されているので、キャップ200が振動等により回転し外れてしまうような事態を防止することができる。 As shown in FIG. 7, the detachment prevention protrusion 142 is provided at a position on the slide surface 140 near the stopper 141. The distance from the detachment prevention protrusion 142 to the stopper 141 along the longitudinal direction of the slide surface 140 is substantially the same as the width dimension of the convex portion 215 along the same direction. Therefore, if the cap 200 is to be removed by rotating it counterclockwise in a top view from the state where the cap 200 is attached, the convex portion 215 needs to get over the detachment prevention protrusion 142 immediately after that. Therefore, the detachment prevention protrusion 142 can be said to be a protrusion for holding the convex portion 215 at the position where the cap 200 is attached. As described above, in the present embodiment, since the protrusion 142 for preventing disengagement is formed on the slide surface 140, it is possible to prevent the cap 200 from rotating and disengaging due to vibration or the like.
 以上のように、本実施形態のスライド面140には外れ防止用突起142が設けられている。凸部215がストッパ141に当たっている状態から、キャップ200を、第1螺子部と第2螺子部との螺合が外れる方向、すなわち上面視で反時計回り方向に回転させようとした場合には、凸部215が外れ防止用突起142を乗り越えるように構成されている。 As described above, the slide surface 140 of the present embodiment is provided with the protrusion 142 for preventing disengagement. When the cap 200 is rotated in the direction in which the first screw portion and the second screw portion are unscrewed from the state where the convex portion 215 is in contact with the stopper 141, that is, in the counterclockwise direction when viewed from above, The convex portion 215 is configured to get over the detachment prevention protrusion 142.
 キャップ200が被装着部130から取り外される際の、凸部215の動きについて説明する。このとき、キャップ200が上面視で反時計回り方向に回転することに伴って、凸部215は、その下端をスライド面140に当接させたまま、図7の矢印AR1で示される方向とは反対の方向に移動する。 The movement of the convex portion 215 when the cap 200 is removed from the mounted portion 130 will be described. At this time, as the cap 200 rotates counterclockwise in the top view, the convex portion 215 keeps its lower end in contact with the slide surface 140, and is in the direction indicated by the arrow AR1 in FIG. Move in the opposite direction.
 上記のように、キャップ200が回転し始めた直後において、凸部215は先ず外れ防止用突起142を乗り越えた後、スライド面140に沿って移動して行く。その途中において、凸部215が除圧突起143を乗り越える必要がある。凸部215が除圧突起143に当たると、キャップ200の回転は一旦停止又は減速する。凸部215が、外れ防止用突起142の方から除圧突起143に当たる位置は、ガスケット225が上方側に移動して、シール面101から外れた直後となる位置であり、且つ嵌合凹部131と嵌合凸部212との螺合が未だ外れない位置となっている。 As described above, immediately after the cap 200 starts to rotate, the convex portion 215 first gets over the detachment prevention protrusion 142 and then moves along the slide surface 140. On the way, the convex portion 215 needs to get over the decompression protrusion 143. When the convex portion 215 hits the decompression protrusion 143, the rotation of the cap 200 is temporarily stopped or decelerated. The position where the convex portion 215 hits the decompression projection 143 from the detachment prevention projection 142 is a position immediately after the gasket 225 moves upward and is detached from the sealing surface 101, and also with the fitting recess 131. The screwing with the fitting convex portion 212 is still in a position where it cannot be removed.
 このため、キャップ200の回転が上記のように一旦停止又は減速した直後には、内部空間SPからの高圧の空気や水蒸気が、ガスケット225の近傍を通って上方側に移動し、貫通穴132から外部へと放出される。 Therefore, immediately after the rotation of the cap 200 is temporarily stopped or decelerated as described above, high-pressure air or water vapor from the internal space SP moves upward through the vicinity of the gasket 225 and is transmitted from the through hole 132. It is released to the outside.
 仮に、除圧突起143が形成されていない場合には、キャップ200が極めて短時間のうちに被装着部130から取り外されてしまい、内部空間SPからの高圧の空気や水蒸気が、被装着部130の上端の開口から上方側の使用者に向けて噴き出されてしまう可能性がある。しかしながら、本実施形態では、凸部215が除圧突起143に当たり、キャップ200が上記のように一旦停止又は減速している間に、内部空間SPからの高圧の空気や水蒸気を貫通穴132から外部へと逃がし切ることができる。これにより、高圧の空気や水蒸気が、被装着部130の上端の開口から使用者に向けて噴き出されてしまうような事態を防止することができる。 If the decompression projection 143 is not formed, the cap 200 will be removed from the mounted portion 130 in an extremely short time, and high-pressure air or water vapor from the internal space SP will be removed from the mounted portion 130. There is a possibility that it will be ejected from the opening at the upper end toward the user on the upper side. However, in the present embodiment, while the convex portion 215 hits the decompression projection 143 and the cap 200 is temporarily stopped or decelerated as described above, high-pressure air or water vapor from the internal space SP is externally introduced from the through hole 132. You can escape to. As a result, it is possible to prevent a situation in which high-pressure air or water vapor is blown out toward the user from the opening at the upper end of the mounted portion 130.
 以上のように、本実施形態のスライド面140には除圧突起143が設けられている。
キャップ200を、第1螺子部と第2螺子部との螺合が外れる方向、すなわち上面視で反時計回り方向に回転させた場合には、シール部材であるガスケット225がシール面101から外れた後であり、且つ第1螺子部と第2螺子部との螺合が外れるよりも前の時点で、凸部215が除圧突起143を乗り越えるように構成されている。
As described above, the slide surface 140 of the present embodiment is provided with the decompression protrusion 143.
When the cap 200 was rotated in the direction in which the first screw portion and the second screw portion were unscrewed, that is, in the counterclockwise direction when viewed from above, the gasket 225, which is a sealing member, came off from the sealing surface 101. The convex portion 215 is configured to get over the decompression protrusion 143 at a later time and before the screwing between the first screw portion and the second screw portion is disengaged.
 図6や図7に示されるように、本実施形態では、被装着部130にスライド面140が1つだけ形成されている。このような態様に替えて、被装着部130に、スライド面140が2つ以上形成されているような態様であってもよい。この場合、キャップ200には、スライド面140に対応して凸部215が2つ以上形成されることとなる。 As shown in FIGS. 6 and 7, in this embodiment, only one slide surface 140 is formed on the mounted portion 130. Instead of such a mode, a mode in which two or more slide surfaces 140 are formed on the mounted portion 130 may be used. In this case, the cap 200 is formed with two or more convex portions 215 corresponding to the slide surface 140.
 また、本実施形態では、被装着部130には嵌合凹部131が2つ形成されており、キャップ200には嵌合凸部212が2つ形成されている。つまり、第1螺子部と第2螺子部とが2組形成されている。このような態様に替えて、第1螺子部と第2螺子部とが1組のみ形成されている態様としてもよく、3組以上形成されている態様としてもよい。 Further, in the present embodiment, the mounted portion 130 is formed with two fitting recesses 131, and the cap 200 is formed with two fitting convex portions 212. That is, two sets of the first screw portion and the second screw portion are formed. Instead of such a mode, only one set of the first screw portion and the second screw portion may be formed, or three or more sets may be formed.
 第2実施形態について、図8を参照しながら説明する。図8は、本実施形態に係るリザーブタンク10の内部構成を、図2と同様の視点で描いたものである。以下では、第1実施形態と異なる点について主に説明し、第1実施形態と共通する点については適宜説明を省略する。 The second embodiment will be described with reference to FIG. FIG. 8 shows the internal configuration of the reserve tank 10 according to the present embodiment from the same viewpoint as in FIG. In the following, the points different from the first embodiment will be mainly described, and the points common to the first embodiment will be omitted as appropriate.
 本実施形態では、連通路に弁機構230が設けられておらず、代わりに空気透過膜219が配置されている。空気透過膜219は、空気を透過させる一方で、蒸気は透過させない材料によって形成された膜である。本実施形態では、内筒部227の上端を塞ぐように空気透過膜219が配置されている。 In the present embodiment, the valve mechanism 230 is not provided in the communication passage, and the air permeable membrane 219 is arranged instead. The air permeable membrane 219 is a membrane formed of a material that allows air to pass through but does not allow vapor to pass through. In the present embodiment, the air permeable membrane 219 is arranged so as to close the upper end of the inner cylinder portion 227.
 アッパ部材210には内筒部217が形成されている。内筒部217は、アッパ部材210の下面のうち保持部214よりも内側の部分から、下方側に向けて伸びるように形成された略円筒形状の部分である。内筒部217の中心軸は、円筒部211の中心軸と一致している。内筒部217の下端は、空気透過膜219の上面に当接している。空気透過膜219は、内筒部217の下端と、内筒部227の上端との間に挟み込まれた状態で保持されている。 An inner cylinder portion 217 is formed on the upper member 210. The inner cylinder portion 217 is a substantially cylindrical portion formed so as to extend downward from a portion inside the holding portion 214 of the lower surface of the upper member 210. The central axis of the inner cylinder portion 217 coincides with the central axis of the cylindrical portion 211. The lower end of the inner cylinder portion 217 is in contact with the upper surface of the air permeable membrane 219. The air permeable membrane 219 is held in a state of being sandwiched between the lower end of the inner cylinder portion 217 and the upper end of the inner cylinder portion 227.
 内筒部217の下端の一部には切り欠き218が形成されている。また、保持部214の下端には切り欠き216が形成されている。アッパ部材210とロア部材220との間の空間は、貫通穴222を通じて内部空間SPと繋がっており、切り欠き218、切り欠き216、切り欠き213、及び貫通穴132を通じて外部と繋がっている。このため、貫通穴222から貫通穴132に至るまでの経路は、貯留部100と外部との間を連通させるための通路である「連通路」とみなすことができる。連通路は上記のように、キャップ200及び被装着部130のそれぞれを貫くように形成されている。空気透過膜219は、上記の連通路の途中となる位置に配置されている。 A notch 218 is formed in a part of the lower end of the inner cylinder portion 217. Further, a notch 216 is formed at the lower end of the holding portion 214. The space between the upper member 210 and the lower member 220 is connected to the internal space SP through the through hole 222, and is connected to the outside through the notch 218, the notch 216, the notch 213, and the through hole 132. Therefore, the path from the through hole 222 to the through hole 132 can be regarded as a "communication passage" which is a passage for communicating between the storage unit 100 and the outside. As described above, the communication passage is formed so as to penetrate each of the cap 200 and the mounted portion 130. The air permeable membrane 219 is arranged at a position in the middle of the above-mentioned communication passage.
 内部空間SPの圧力が大気圧よりも高くなると、内部空間SPにある空気の一部が空気透過膜219を通過し、連通路を通ってリザーブタンク10の外部へと排出される。また、内部空間SPの圧力が大気圧よりも低くなると、リザーブタンク10の外側の空気が空気透過膜219を通過し、連通路を通って内部空間SPへと流入する。このため、内部空間SPの圧力は、概ね大気圧近くに維持される。上記いずれの場合であっても、水蒸気は空気透過膜219を通過しないので、リザーブタンク10に貯留された冷却水の量が変動してしまうことは無い。このような態様であっても、第1実施形態で説明したものと同様の効果を奏する。 When the pressure in the internal space SP becomes higher than the atmospheric pressure, a part of the air in the internal space SP passes through the air permeable membrane 219 and is discharged to the outside of the reserve tank 10 through the continuous passage. Further, when the pressure of the internal space SP becomes lower than the atmospheric pressure, the air outside the reserve tank 10 passes through the air permeable membrane 219 and flows into the internal space SP through the continuous passage. Therefore, the pressure of the internal space SP is generally maintained near the atmospheric pressure. In any of the above cases, since the water vapor does not pass through the air permeable membrane 219, the amount of cooling water stored in the reserve tank 10 does not fluctuate. Even in such an embodiment, the same effect as that described in the first embodiment can be obtained.
 尚、本実施形態では、キャップ200に凸部215は形成されておらず、被装着部130にスライド面140は形成されていない。しかしながら、本実施形態の構成においても、第1実施形態と同様の凸部215やスライド面140が形成されていることとしてもよい。 In the present embodiment, the convex portion 215 is not formed on the cap 200, and the slide surface 140 is not formed on the mounted portion 130. However, also in the configuration of the present embodiment, the convex portion 215 and the slide surface 140 similar to those of the first embodiment may be formed.
 第3実施形態について、図9を参照しながら説明する。図9は、被装着部130の内周面を模式的に描いたものである。本実施形態では、被装着部130の内周面に嵌合凹部131が形成されておらず、代わりに嵌合凸部131Aが形成されている。嵌合凸部131Aは、被装着部130の内周面から、内側に向けて突出するように形成された複数の突起である。図9に示されるように、それぞれの嵌合凸部131Aは、その長手方向が、水平面に対して傾斜するように形成されている。また、嵌合凸部131Aは、互いに間を空けて上下方向に並ぶように形成されている。 The third embodiment will be described with reference to FIG. FIG. 9 is a schematic view of the inner peripheral surface of the mounted portion 130. In the present embodiment, the fitting concave portion 131 is not formed on the inner peripheral surface of the mounted portion 130, and the fitting convex portion 131A is formed instead. The fitting convex portion 131A is a plurality of protrusions formed so as to project inward from the inner peripheral surface of the mounted portion 130. As shown in FIG. 9, each fitting convex portion 131A is formed so that its longitudinal direction is inclined with respect to the horizontal plane. Further, the fitting convex portions 131A are formed so as to be arranged in the vertical direction with a gap between them.
 図9において点線で示されているのは、キャップ200の外周面に形成された嵌合凸部212Aである。嵌合凸部212Aは、キャップ200の外周面から、外側に向けて突出するように形成された複数の突起である。それぞれの嵌合凸部212Aは、その長手方向が、水平面に対して傾斜するように形成されている。また、嵌合凸部212Aは、互いに間を空けて上下方向に並ぶように形成されている。 What is shown by the dotted line in FIG. 9 is the fitting convex portion 212A formed on the outer peripheral surface of the cap 200. The fitting convex portion 212A is a plurality of protrusions formed so as to project outward from the outer peripheral surface of the cap 200. Each fitting convex portion 212A is formed so that its longitudinal direction is inclined with respect to the horizontal plane. Further, the fitting convex portions 212A are formed so as to be arranged in the vertical direction with a gap between them.
 キャップ200を、上面視で時計回り方向に回転させると、嵌合凸部212Aが、図9の矢印AR3で示される方向に移動して、上下に隣り合う嵌合凸部131Aに間に挟み込まれる。これにより、嵌合凸部131Aと嵌合凸部212Aとが互いに螺合する。 When the cap 200 is rotated clockwise in a top view, the fitting convex portion 212A moves in the direction indicated by the arrow AR3 in FIG. 9 and is sandwiched between the vertically adjacent fitting convex portions 131A. .. As a result, the fitting convex portion 131A and the fitting convex portion 212A are screwed together.
 本実施形態では、被装着部130に形成された嵌合凸部131Aと、キャップ200に形成された嵌合凸部212Aとが互いに螺合することにより、キャップ200が被装着部130に装着されている。つまり、嵌合凸部131Aが本実施形態における第1螺子部に該当し、嵌合凸部212Aが本実施形態における第2螺子部に該当する。このような態様であっても、第1実施形態で説明したものと同様の効果を奏する。また、このような第1螺子部及び第2螺子部は、第2実施形態の構成に採用することもできる。 In the present embodiment, the cap 200 is mounted on the mounted portion 130 by screwing the fitting convex portion 131A formed on the mounted portion 130 and the fitting convex portion 212A formed on the cap 200 to each other. ing. That is, the fitting convex portion 131A corresponds to the first screw portion in the present embodiment, and the fitting convex portion 212A corresponds to the second screw portion in the present embodiment. Even in such an embodiment, the same effect as that described in the first embodiment can be obtained. Further, such a first screw portion and a second screw portion can also be adopted in the configuration of the second embodiment.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Those skilled in the art with appropriate design changes to these specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the above-mentioned specific examples, its arrangement, conditions, shape, etc. is not limited to the illustrated one, and can be appropriately changed. The combinations of the elements included in each of the above-mentioned specific examples can be appropriately changed as long as there is no technical contradiction.

Claims (11)

  1.  冷却水が循環する経路の途中に設けられるリザーブタンク(10)であって、
     冷却水を貯留するための部分であって、少なくともその上方側部分が円筒形状に形成された貯留部(100)と、
     前記貯留部よりも上方側に形成された円筒形状の部分であって、前記貯留部から外部へと冷却水が漏出しないようにキャップが装着される被装着部(130)と、を備え、
     前記被装着部の内周面における直径が、前記貯留部の内周面における直径よりも大きいリザーブタンク。
    A reserve tank (10) provided in the middle of the path through which the cooling water circulates.
    A storage portion (100) for storing cooling water, at least the upper portion thereof is formed in a cylindrical shape.
    It is provided with a cylindrical portion (130) formed above the storage portion and to which a cap is mounted so that cooling water does not leak from the storage portion to the outside.
    A reserve tank in which the diameter of the inner peripheral surface of the mounted portion is larger than the diameter of the inner peripheral surface of the storage portion.
  2.  前記貯留部と外部との間を連通させるための通路である連通路が、前記キャップ及び前記被装着部のそれぞれを貫くように形成されており、
     前記キャップのうち前記連通路の途中となる位置には、前記連通路の開閉を切り替える弁機構(230)が配置されている、請求項1に記載のリザーブタンク。
    A communication passage, which is a passage for communicating between the storage portion and the outside, is formed so as to penetrate each of the cap and the mounted portion.
    The reserve tank according to claim 1, wherein a valve mechanism (230) for switching the opening and closing of the communication passage is arranged at a position in the middle of the communication passage in the cap.
  3.  前記弁機構には、
     前記貯留部の内圧が、大気圧よりも高い所定圧以上となったときに開弁する正圧弁(233)が含まれる、請求項2に記載のリザーブタンク。
    The valve mechanism has
    The reserve tank according to claim 2, further comprising a positive pressure valve (233) that opens when the internal pressure of the storage portion becomes a predetermined pressure higher than the atmospheric pressure.
  4.  前記弁機構には、
     前記貯留部の内圧が、大気圧よりも低い所定圧以下となったときに開弁する負圧弁(235)が含まれる、請求項2に記載のリザーブタンク。
    The valve mechanism has
    The reserve tank according to claim 2, further comprising a negative pressure valve (235) that opens when the internal pressure of the storage portion becomes a predetermined pressure lower than the atmospheric pressure.
  5.  前記貯留部と外部との間を連通させるための通路である連通路が、前記キャップ及び前記被装着部のそれぞれを貫くように形成されており、
     前記キャップのうち前記連通路の途中となる位置には、空気を透過させる一方で蒸気は透過させない空気透過膜(219)が配置されている、請求項1に記載のリザーブタンク。
    A communication passage, which is a passage for communicating between the storage portion and the outside, is formed so as to penetrate each of the cap and the mounted portion.
    The reserve tank according to claim 1, wherein an air permeable membrane (219) that allows air to pass through but does not allow vapor to permeate is arranged at a position of the cap in the middle of the passage.
  6.  前記被装着部の内周面に形成された第1螺子部(131)と、前記キャップの外周面に形成された第2螺子部(212)と、が互いに螺合しており、
     前記キャップに設けられたシール部材(225)が、前記被装着部よりも下方側に形成されたシール面(101)に当接している、請求項1乃至5のいずれか1項に記載のリザーブタンク。
    The first screw portion (131) formed on the inner peripheral surface of the mounted portion and the second screw portion (212) formed on the outer peripheral surface of the cap are screwed together.
    The reserve according to any one of claims 1 to 5, wherein the seal member (225) provided on the cap is in contact with the seal surface (101) formed on the lower side of the mounted portion. tank.
  7.  前記キャップを、前記第1螺子部と前記第2螺子部との螺合が外れる方向に回転させた場合には、
     前記シール部材が前記シール面から外れた後に、前記第1螺子部と前記第2螺子部との螺合が外れるように構成されている、請求項6に記載のリザーブタンク。
    When the cap is rotated in a direction in which the first screw portion and the second screw portion are unscrewed,
    The reserve tank according to claim 6, wherein the first screw portion and the second screw portion are disengaged after the seal member is disengaged from the seal surface.
  8.  前記キャップを回転させると、
     前記キャップに形成された凸部(215)が、前記被装着部に形成されたスライド面(140)に当接した状態で、前記スライド面に沿って移動するように構成されている、請求項6又は7に記載のリザーブタンク。
    When the cap is rotated,
    Claimed, the convex portion (215) formed on the cap is configured to move along the slide surface in a state of being in contact with the slide surface (140) formed on the mounted portion. The reserve tank according to 6 or 7.
  9.  前記スライド面の端部にはストッパ(141)が設けられており、
     前記キャップを、前記第1螺子部と前記第2螺子部とが螺合する方向に回転させた場合には、前記凸部が前記ストッパに当たることにより前記キャップの回転が規制される、請求項8に記載のリザーブタンク。
    A stopper (141) is provided at the end of the slide surface.
    8. Claim 8 that when the cap is rotated in a direction in which the first screw portion and the second screw portion are screwed together, the rotation of the cap is restricted by the convex portion hitting the stopper. The reserve tank described in.
  10.  前記スライド面には外れ防止用突起(142)が設けられており、
     前記凸部が前記ストッパに当たっている状態から、前記キャップを、前記第1螺子部と前記第2螺子部との螺合が外れる方向に回転させようとした場合には、前記凸部が前記外れ防止用突起を乗り越えるように構成されている、請求項9に記載のリザーブタンク。
    A protrusion (142) for preventing disengagement is provided on the slide surface.
    When the cap is rotated in a direction in which the first screw portion and the second screw portion are unscrewed from the state where the convex portion is in contact with the stopper, the convex portion prevents the cap from coming off. The reserve tank according to claim 9, which is configured to get over the protrusion.
  11.  前記スライド面には除圧突起(143)が設けられており、
     前記キャップを、前記第1螺子部と前記第2螺子部との螺合が外れる方向に回転させた場合には、
     前記シール部材が前記シール面から外れた後であり、且つ前記第1螺子部と前記第2螺子部との螺合が外れるよりも前の時点で、前記凸部が前記除圧突起を乗り越えるように構成されている、請求項8乃至10のいずれか1項に記載のリザーブタンク。
    A decompression protrusion (143) is provided on the slide surface.
    When the cap is rotated in a direction in which the first screw portion and the second screw portion are unscrewed,
    The convex portion gets over the decompression protrusion after the sealing member is disengaged from the sealing surface and before the screwing between the first screw portion and the second screw portion is disengaged. The reserve tank according to any one of claims 8 to 10, which is configured in the above.
PCT/JP2020/019750 2019-05-30 2020-05-19 Reserve tank WO2020241376A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-101346 2019-05-30
JP2019101346A JP2020193610A (en) 2019-05-30 2019-05-30 Reservoir tank

Publications (1)

Publication Number Publication Date
WO2020241376A1 true WO2020241376A1 (en) 2020-12-03

Family

ID=73545790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019750 WO2020241376A1 (en) 2019-05-30 2020-05-19 Reserve tank

Country Status (2)

Country Link
JP (1) JP2020193610A (en)
WO (1) WO2020241376A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229428U (en) * 1985-08-07 1987-02-23
JPS62197722U (en) * 1986-06-09 1987-12-16
US5071020A (en) * 1988-11-23 1991-12-10 Reutter Metallwarenfabrik Gmbh Radiator neck with radiator cover cap
KR20090051557A (en) * 2007-11-19 2009-05-22 현대자동차주식회사 Radiator cap
JP2010275902A (en) * 2009-05-27 2010-12-09 Toyota Motor Corp Cap for reserve tank
JP2012132388A (en) * 2010-12-22 2012-07-12 T Rad Co Ltd Radiator cap
JP2016169652A (en) * 2015-03-12 2016-09-23 株式会社ティラド Attaching structure of radiator cap and filler neck

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229428U (en) * 1985-08-07 1987-02-23
JPS62197722U (en) * 1986-06-09 1987-12-16
US5071020A (en) * 1988-11-23 1991-12-10 Reutter Metallwarenfabrik Gmbh Radiator neck with radiator cover cap
KR20090051557A (en) * 2007-11-19 2009-05-22 현대자동차주식회사 Radiator cap
JP2010275902A (en) * 2009-05-27 2010-12-09 Toyota Motor Corp Cap for reserve tank
JP2012132388A (en) * 2010-12-22 2012-07-12 T Rad Co Ltd Radiator cap
JP2016169652A (en) * 2015-03-12 2016-09-23 株式会社ティラド Attaching structure of radiator cap and filler neck

Also Published As

Publication number Publication date
JP2020193610A (en) 2020-12-03

Similar Documents

Publication Publication Date Title
US5762093A (en) Fuel overflow restrictor/water intake restraining devices
US9266428B2 (en) Capless fuel filler assembly for vehicle
US9216891B2 (en) Refueling assembly including a flow guide
JP2006206042A (en) Discharge side connection pipe
KR102617567B1 (en) fluid device
KR20090033793A (en) Fuel tank
JP6510839B2 (en) Resin filler port
US9545845B2 (en) Fueling device
KR101191747B1 (en) Capless filler tube assembly for car
WO2020241376A1 (en) Reserve tank
US10407295B2 (en) Fuel supply apparatus
WO2020080096A1 (en) Reserve tank device
JPS5945525B2 (en) Liquid fuel injection coupling for vehicles
JP6576258B2 (en) Discharge cap with stopper
JPH1178549A (en) Fuel back-flow preventing valve
JP6637803B2 (en) Filling port
JP4308246B2 (en) Fuel filter
KR100876466B1 (en) Pcv valve
US9404442B2 (en) Fuel bowl for carburetor system and associated methods
JP6289212B2 (en) Reserve tank
KR100876468B1 (en) Pcv valve
JP2020007953A (en) Reserve tank device
JPH1185U (en) Connector for fuel tank
JP4326364B2 (en) Valve structure
KR102110362B1 (en) Liquid tank for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20815051

Country of ref document: EP

Kind code of ref document: A1