WO2020240884A1 - Medical simulator and method for evaluating procedure using medical simulator - Google Patents

Medical simulator and method for evaluating procedure using medical simulator Download PDF

Info

Publication number
WO2020240884A1
WO2020240884A1 PCT/JP2019/040115 JP2019040115W WO2020240884A1 WO 2020240884 A1 WO2020240884 A1 WO 2020240884A1 JP 2019040115 W JP2019040115 W JP 2019040115W WO 2020240884 A1 WO2020240884 A1 WO 2020240884A1
Authority
WO
WIPO (PCT)
Prior art keywords
organ
model
large intestine
region
accommodating portion
Prior art date
Application number
PCT/JP2019/040115
Other languages
French (fr)
Japanese (ja)
Inventor
智大 下田
正晃 松岡
福田 知治
廉 大田
章 米田
賢 植木
政至 藤井
Original Assignee
株式会社Micotoテクノロジー
国立大学法人鳥取大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Micotoテクノロジー, 国立大学法人鳥取大学 filed Critical 株式会社Micotoテクノロジー
Priority to JP2021522613A priority Critical patent/JP7378837B2/en
Publication of WO2020240884A1 publication Critical patent/WO2020240884A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • G09B23/32Anatomical models with moving parts
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes

Definitions

  • the present invention relates to a medical simulator, in particular, a simulator capable of training a medical procedure for inserting a medical device such as an endoscope into a luminal organ, and a method for evaluating a procedure of a trainee using such a medical simulator. Regarding.
  • simulation education using a model that simulates a living body is attracting particular attention because it enables skill acquisition and training as if it were practiced.
  • Patent Document 1 discloses an endoscopic training system that prevents perforation of an organ model and enables efficient training.
  • the organ model into which the scope of the endoscope device is inserted is housed in the outer box body, the space between the outer box body and the organ model is filled with liquid, and the flow rate of the liquid flowing out from the outer box body to the outside. Is detected as the pressure acting on the organ model.
  • the organ model is possible to prevent the organ model from being perforated by alerting the user before the unnecessary pressure is applied to the organ model to perforate.
  • the amount of liquid outflow is detected as the pressure acting on the organ model, but since the organ model may be greatly displaced by endoscopic procedures, the amount of liquid outflow detects the pressure acting on the organ model. It cannot be said that it can be detected accurately. For example, a large displacement of the organ model may cause the liquid to flow out regardless of the pressure acting on the organ model.
  • the medical procedure of inserting a medical device such as an endoscope into a luminal organ is only tacit knowledge of a doctor, and the current situation is that the situation of such a medical procedure cannot be appropriately visualized.
  • the present invention has been made in view of such circumstances, and by appropriately visualizing the state of a medical procedure for inserting a medical device such as an endoscope into a luminal organ, the medical procedure can be made efficient.
  • a medical simulator that enables training and a method for evaluating the procedure of a trainee using such a medical simulator are provided.
  • the term "medical device” includes not only medical devices but also devices and tools for medical technique training.
  • the medical simulator according to one aspect of the present invention adopts the following configuration in order to solve the above-mentioned problems. That is, the medical simulator related to this one aspect accommodates a tract organ model having flexibility and a shape imitating at least one tract organ and a tract organ model in a locally fixed state in an internal space.
  • the tract organ model is provided with an organ accommodating part and a detecting means, and a local fixation area that can be fixed to the organ accommodating part at different positions in the longitudinal direction and an operation of the target device by the trainee.
  • the detection means includes, at least during training, a displacement or deformation of a target site that is at least a part of the movable area of the tract organ model in the internal space, including a movable area that can be displaced within the internal space of the organ housing.
  • the luminal organ model is a hollow tubular body simulating a luminal organ.
  • the target device is a medical device such as an endoscope.
  • Another aspect of the present invention is a luminal organ model that is flexible and has a shape that imitates at least one luminal organ, an organ accommodating portion that accommodates the luminal organ model in an internal space, and a luminal organ model.
  • the present invention relates to a procedure evaluation method using a medical simulator executed by a control unit that controls a medical simulator including at least a plurality of sensors provided at different positions in the longitudinal direction of the lumen. Based on the detection signals from the plurality of sensors, this method determines that the site of the target device has passed through a plurality of checkpoints provided at different positions in the longitudinal direction in the tract of the tract organ model. Includes obtaining the dwell time of the above site between two checkpoints and using at least the obtained dwell time to evaluate the trainee's procedure.
  • it may be a computer program that causes a control unit that controls the medical simulator to execute the procedure evaluation method, or a storage medium that can be read by a computer that records such a program. Good.
  • This storage medium includes non-temporary tangible media.
  • a medical simulator that enables efficient training of the medical procedure by appropriately visualizing the status of the medical procedure for inserting a medical device such as an endoscope into a luminal organ and such. It is possible to provide a method of evaluating the procedure of a trainee using a medical simulator.
  • FIG. 5 (a) is a diagram showing a state of the large intestine model 30 in a state where the organ holding portion is arranged at a position relatively close to the anus holding portion
  • FIG. 5 (a) is a diagram showing the state of the large intestine model 30 in the state which is arranged at the position relatively far from the holding part.
  • FIG. 6A is a diagram showing the internal configuration of the organ accommodating portion and the motor accommodating portion in the supine position
  • FIG. 6B is an internal configuration of the organ accommodating portion and the motor accommodating portion in the left lateral decubitus position.
  • It is a figure which shows the display example of the training evaluation in the medical simulator which concerns on this embodiment.
  • FIG. 1 is a diagram conceptually showing the overall configuration of the medical simulator according to the present embodiment.
  • the medical simulator according to the present embodiment (hereinafter, may be abbreviated as this simulator) is mainly composed of a human body model unit 1 and a simulator control unit 10, and enables training in procedures related to colonoscopy. To do.
  • the simulator control unit 10 has a configuration for controlling a medical simulator, and may be a so-called computer such as a PC (Personal Computer), an embedded system, or a control board. The detailed configuration of the simulator control unit 10 will be described later.
  • FIG. 2 is a perspective view showing the appearance of the human body model portion 1 of the medical simulator according to the present embodiment.
  • the human body model unit 1 is mainly composed of an organ accommodating unit 2, a motor accommodating unit 7, and a base 9.
  • the vertical direction and the horizontal direction shown in FIG. 2 are conveniently used, and the direction orthogonal to them is referred to as the front-back direction. ..
  • the organ accommodating portion 2 is not only in the orientation shown in FIG. 2 (hereinafter, may be referred to as a supine position), but also in the orientation shown in FIG.
  • the left-right direction and the anteroposterior direction shall be fixedly set regardless of the orientation of the organ accommodating portion 2. Therefore, the left-right direction and the front-rear direction used in the explanation of the organ accommodating portion 2 in the left lateral decubitus position are different from the left-right direction and the anteroposterior direction used in the explanation of the motor accommodating portion 7 and the base 9. As described above, the direction described in the present specification may not coincide with the vertical direction in the direction of gravity, and does not limit the usage mode of the medical simulator.
  • the organ accommodating portion 2 is a substantially rectangular parallelepiped box body, and internally accommodates the large intestine model 30 described later. Specifically, the organ accommodating portion 2 is covered on all sides by a lower wall portion 21, an upper wall portion 22, a right side wall portion 23, and a left side wall portion 24 erected on the peripheral edge of the back side wall portion toward the ventral side. It is a hollow box that is closed by a window 25 on the ventral side.
  • the right side wall portion 23 and the left side wall portion 24 extend from the dorsal side to the ventral side, respectively, and are curved in a direction in which a part of the ventral end edge approaches each other. Therefore, the ventral side of the organ accommodating portion 2 is closed by a part of the ventral end edge of the right side wall portion 23 and the left side wall portion 24 and the window portion 25 (corresponding to the abdominal wall cover portion).
  • Two cameras 6 are installed outside the organ accommodating portion 2. Specifically, two camera support plates 61 extend diagonally forward from the lower wall portion 21 and the left wall portion 24 of the organ accommodating portion 2, respectively, and two cameras 6 are provided near the upper ends thereof. Has been done. Each camera 6 is supported by the camera support plate 61 at an angle at which the large intestine model 30 housed inside the organ accommodating portion 2 can be imaged through the window portion 25. As a result, each camera 6 is installed in a direction orthogonal to each other in a plan view of the organ accommodating portion 2 in the supine position as viewed from the ventral side.
  • each camera 6 may be a device capable of capturing an image, and the images (including still images and moving images) captured by each camera 6 include not only visible light images but also infrared rays, ultraviolet rays, X-rays, and the like. It goes without saying that such an image of invisible light may be used.
  • the window portion 25 is molded using a transparent material so that the large intestine model 30 in the organ accommodating portion 2 can be visually recognized from the outside. As a result, the large intestine model 30 can be imaged through the window 25 by the two cameras 6 provided outside the organ accommodating portion 2.
  • a film capable of suppressing surface reflection is attached to the outer surface of the window portion 25.
  • the window portion 25 may contain a material capable of suppressing surface reflection, or the outer surface of the window portion 25 may be coated with an agent capable of suppressing surface reflection. .. Any known film, material, or agent can be used as long as it is possible to suppress reflection and reflection of external light while maintaining the visibility of the large intestine model 30 from the outside.
  • the member or material that suppresses surface reflection in the window portion 25 By including the member or material that suppresses surface reflection in the window portion 25 in this way, the reflection and reflection of external light in the window portion 25 are suppressed in the image captured through the window portion 25 by the camera 6. Therefore, it is possible to prevent a decrease in the recognition accuracy of the large intestine model 30 in the image.
  • the upper end side of the organ accommodating portion 2 is supported by the motor accommodating portion 7 via the output shaft 75, and the back side is ventral side of the base 9 via a plurality of tire portions. It is supported by the support surface 91.
  • the tire portions 20a, 20b and 20c are rotatably provided in the organ accommodating portion 2. Specifically, the tire portion 20a is provided so that a part of the tire portion 20a projects outward at the center in the vertical direction of the corner connecting the right side wall portion 23 and the back side wall portion, and the tire portion 20b is provided on the upper wall.
  • a part of the tire portion 20c is provided so as to project outward at the right end portion of the dorsal end portion of the upper surface of the portion 22, and a part of the tire portion 20c is provided outward at the upper end portion of the right end portion of the upper surface portion of the upper wall portion 22. It is provided so as to protrude.
  • a plurality of tire portions are also provided in locations not shown in FIG. 2, and the plurality of tire portions rotate while abutting on the ventral support surface 91 of the base 9, thereby accommodating the organ.
  • Reference numeral 2 is swingably supported on the ventral support surface 91 of the base 9. The details of such swinging of the organ accommodating portion 2 will be described later.
  • the base 9 supports the organ accommodating portion 2 from the back side and holds the motor accommodating portion 7.
  • the base 9 and the motor accommodating portion 7 may be integrally molded or may be separately molded so as to be connected.
  • the motor accommodating portion 7 is arranged adjacent to the upper part of the organ accommodating portion 2, and is a box body that accommodates the posture change motor 71 (see FIG. 7) that realizes the swing of the organ accommodating portion 2. Details of the motor accommodating portion 7 will be described later.
  • FIG. 3 is a schematic view showing the internal configuration of the organ accommodating portion 2 according to the present embodiment.
  • FIG. 3 shows a state in which the organ accommodating portion 2 is viewed in a plan view.
  • the large intestine model 30 is a hollow tubular body simulating a large intestine consisting of a cecum, an ascending colon, a transverse colon, a descending colon, a sigmoid colon, and a rectum. Therefore, the large intestine model 30 can be said to be a luminal organ model.
  • the large intestine model 30 includes a rectal region corresponding to the rectum, an ascending colon region corresponding to the ascending colon, a transverse colon region corresponding to the transverse colon, a descending colon region corresponding to the descending colon, and a sigmoid colon region corresponding to the sigmoid colon. And the rectal region corresponding to the colon.
  • Each part of the large intestine model 30, such as the cecal region and the ascending colon region, is shaped so that the shape of the inner wall defining the lumen is as close as possible to the shape of each part of the large intestine of the living body imaged by the endoscope.
  • the shape of the inner wall defining the lumen is as close as possible to the shape of each part of the large intestine of the living body imaged by the endoscope.
  • a change in color tone occurs due to contact with other organs in splenic curve and liver curve.
  • Veteran doctors and others with advanced endoscopic techniques may grasp the position in the large intestine by the change in color tone.
  • the hepatic curve region corresponding to the hepatic curve and the splenic curve region corresponding to the splenic curve in the large intestine model 30 are colored in the splenic curve region and the hepatic curve region in the endoscopic image taken in the lumen of the large intestine model 30. It is preferable to include a color change region that causes a change. This color change occurs because the color tone reflected in the endoscopic image is different from the surrounding wall surface in the hepatic curve region and the splenic curve region.
  • the color tone change region of the large intestine model 30 can be realized by various methods.
  • the outer surface or the inner surface of the large intestine model 30 in the color tone change region can be realized by coloring the outer surface or the inner surface of the large intestine model 30 in the color tone change region with a color different from other parts.
  • This coloring may be realized by a paint, or may be realized by superimposing materials having different colors.
  • it can be realized by changing the wall thickness of the large intestine model 30 only in the color tone change region.
  • it may be realized by irradiating a light source having an appropriate color such as an LED (Light Emitting Diode) toward the outer surface of the large intestine model 30.
  • a dentate line is simulated on the inner wall of the anal side end of the large intestine model 30.
  • the large intestine model 30 is molded from a flexible material such as silicone rubber.
  • the present embodiment does not limit the material of the large intestine model 30, but it is preferable that the large intestine model 30 is molded so as to have flexibility close to that of the large intestine of an actual living body. Further, it is preferable that the large intestine model 30 is integrally molded without any joint. In this way, the feel when the endoscope is inserted into the lumen of the large intestine model 30 can be made closer to the real thing, and by extension, a realistic endoscope procedure simulation becomes possible.
  • each part such as the ascending colon region and the transverse colon region was locally (partially) fixed to the internal space of the organ accommodating portion 2 so as to be equal to the arrangement of the large intestine in the abdominal cavity of the human body. It is housed in a state.
  • the large intestine model 30 has a locally fixed region that can be fixed to the organ accommodating portion 2 at different positions in the longitudinal direction, and endoscopy by a person trained using this simulator (denoted as a trainee). It can be described as including a movable region that can be displaced (movable) in the internal space of the organ accommodating portion 2 by operating the mirror.
  • the state of being fixed to the organ accommodating part 2 means not only that it is completely fixed to the inside of the organ accommodating part 2 but also that it is fixed to the organ accommodating part 2. It means that it can be both in the other state.
  • the locally fixed region of the large intestine model 30 is an anal side end region held by the anal holding portion 31, a region held by the organ holding portion 32, a splenic curve region corresponding to the splenic curve, and a liver curve.
  • the corresponding hepatic curve region and cecal region, and the other regions are defined as movable regions.
  • the fixed portion for the organ accommodating portion 2 in the large intestine model 30 is not limited to the location shown in the present embodiment.
  • a plate (not shown) that divides the internal space into a ventral side and a dorsal side is provided inside the organ accommodating portion 2. That is, the internal space of the organ accommodating portion 2 is divided into a ventral internal space and a dorsal internal space by this plate, and the large intestine model 30 is accommodated in the ventral internal space. Since this plate forms the dorsal wall of the ventral internal space in which the large intestine model 30 is housed, it is hereinafter referred to as the dorsal plate.
  • a group of motors that realize sliding of the organ holding portion 32, the first slide wall portion 35, the second slide wall portion 34, etc., and power conversion and deceleration of each motor are provided. It is equipped with various mechanisms to perform.
  • the shape of the dorsal plate is not limited, and may have, for example, a flat plate shape or may be curved.
  • a plurality of marker rings 43 are arranged in the axial direction of the large intestine model 30 in the region between the anal holding portion 31 and the organ holding portion 32 in the large intestine model 30. They are located at separate positions. These marker rings 43 will be described in detail later, but are provided for detecting the displacement or deformation of the target portion of the large intestine model 30.
  • the “displacement of the target portion” means a change in the position of the target portion.
  • deformation of the target part means a change in the shape of the target part, and bending deformation, expansion / contraction deformation (extension deformation or shortening deformation of the length in the longitudinal direction), and twist deformation (rotation about the longitudinal direction). It shall include any one or more of twisting (twisting like squeezing a cloth), loop deformation (deformation forming a loop shape in the longitudinal direction), and the like.
  • Each marker ring 43 is wound around the outer side of the large intestine model 30 in a circular manner, and a part of the inner surface of each marker ring 43 and a part of the outer surface of the large intestine model 30 are adhered to each other. By partially joining each marker ring 43 to the outer surface of the large intestine model 30 in this way, it is possible to prevent the elasticity of the large intestine model 30 from being hindered by each marker ring 43.
  • markers are arranged on the outer surface of each marker ring 43.
  • a predetermined pattern image also referred to as an AR (Augmented Reality) marker
  • the marker may be a mark that can be recognized from the image captured by the camera 6, and may be a characteristic structure, shape, color, illuminant, or the like provided on the outer surface of the large intestine model 30.
  • a plurality of markers are arranged in a row on the outer surface of each marker ring 43 over the entire circumference. As a result, the marker can be reliably recognized from the image even when the large intestine model 30 is twisted in the endoscopic procedure.
  • only one marker may be arranged in each marker ring 43, or two or more markers may be arranged only in a part of the entire circumference.
  • the plurality of markers arranged in one marker ring 43 may be different markers. According to the present embodiment, the plurality of markers arranged in one marker ring 43 may be different pattern images. In this way, the twisted state and the loop state of the large intestine model 30 can be determined from the image in which the marker appears.
  • a marker ring 43 in which a plurality of markers are arranged in a circular array is provided around the outer side of the large intestine model 30, but the plurality of markers may be printed on the outer surface of the large intestine model 30. It may be affixed individually. That is, it can be described that a plurality of markers are arranged at positions separated in the axial direction of the large intestine model 30 on at least a part of the outer peripheral or outer surface surface of the movable region of the large intestine model 30.
  • markers holding portions markers 41 and 42
  • the anus holding portion 31 is attached to the inner surface (upper surface) of the lower wall portion 21 at the center in the left-right direction and near the dorsal side in the front-back direction.
  • the anus holding portion 31 is molded of a material having a hardness higher than that of the large intestine model 30 such as plastic, has a substantially cubic shape with rounded corners, and its lower surface is the inner surface of the lower wall portion 21. It is attached to the organ accommodating portion 2 in a contact state. When the direction is indicated in the description of the anus holding portion 31, the direction in which the anus holding portion 31 is attached to the organ accommodating portion 2 is used.
  • FIG. 4 is a cross-sectional view of the anal holding portion 31 cut along a plane orthogonal to the anterior-posterior direction.
  • the anus holding portion 31 has a through hole 310 penetrating in the vertical direction.
  • a through hole (not shown) is also provided in the lower wall portion 21 of the organ accommodating portion 2, and the through hole of the lower wall portion 21 is provided in a state where the anal holding portion 31 is attached to the organ accommodating portion 2.
  • the through hole 310 of the anal holding portion 31 communicate with each other.
  • the large intestine model 30 is held by the anal holding portion 31 with the anal side end region inserted through the through hole 310.
  • the large intestine model 30 is held by the anal holding portion 31 by joining the outer peripheral surface of the anal side end region inserted through the through hole 310 and the inner wall surface of the anal holding portion 31 defining the through hole 310. It may be held by the anal holding portion 31 by another method.
  • a flange lid projecting from the outer peripheral surface of the large intestine model 30 is provided at the anal side end of the large intestine model 30, and the anal side end region of the large intestine model 30 is a through hole 310 of the anal holding portion 31 and organ accommodation.
  • an anal holding portion 31 including the lower wall portion 21 of the organ accommodating portion 2.
  • the holding structure of the anal side end region of the large intestine model 30 by the anal holding portion 31 is not limited at all.
  • the inner wall surface defining the through hole 310 in the anal holding portion 31 partially includes the tapered wall surface portion 311 as shown in FIG.
  • the tapered wall surface portion 311 is formed so that the cross-sectional area of the through hole 310 gradually expands upward (upper surface of the anal holding portion 31).
  • the "cross-sectional area of the through hole 310" here means the area of the through hole 310 when it is assumed that the through hole 310 is cut in a plane orthogonal to the axial direction, and the area of the through hole 310 is anus holding. It is defined by the inner wall surface of the portion 31.
  • the inner wall surface of the anus holding portion 31 includes an inner wall surface that does not become tapered in a slight range upward from the lower opening 312 of the through hole 310, but all of the inner wall surface is the tapered wall surface portion. It may be 311.
  • the tapered wall surface portion 311 has a steeper slope from the lower end (wall surface lower end portion 313) to the upper end (wall surface upper end portion 314) of the tapered wall surface portion 311 than the first wall surface portion 316 and its first wall surface portion 316. Includes a gentle second wall surface portion 315.
  • the first wall surface portion 316 and the second wall surface portion 315 are present at least at positions facing each other in the axial direction of the through hole 310. Specifically, the first wall surface portion 316 exists on the left side of the tapered wall surface portion 311 and the second wall surface portion 315 exists on the right side of the tapered wall surface portion 311.
  • the organ holding portion 32 is formed of a material having a higher hardness than the material of the large intestine model 30, such as plastic. Further, the organ holding portion 32 has a through hole in the vertical direction, and holds a region of the large intestine model 30 inserted through the through hole. Specifically, the large intestine model 30 is formed by joining the outer peripheral surface of the region inserted through the through hole of the organ holding portion 32 in the large intestine model 30 and the inner wall surface of the organ holding portion 32 defining the through hole. The region of the organ is held by the organ holding portion 32.
  • the region held by the organ holding portion 32 in the large intestine model 30 may be a part of the range of the descending colon region and the sigmoid colon region. In this embodiment, the region near the anus in the descending colon region is held by the organ holding portion 32. Therefore, in the present embodiment, the region held by the organ holding portion 32 of the large intestine model 30 may be referred to as a descending colon holding region.
  • the organ holding portion 32 is slidably supported by the organ accommodating portion 2. Specifically, the organ holding portion 32 is slidable along the extending direction of the guide rail 33 provided on the inner surface of the right side wall portion 23 of the organ accommodating portion 2, and the support mechanism provided on the inner surface (FIG. Not shown).
  • the support mechanism of the organ holding portion 32 is not limited in any way.
  • the organ holding portion 32 may be supported by being slidably engaged with the guide rail 33.
  • the guide rail 33 extends in the vertical direction along the inner surface of the right side wall portion 23. Therefore, the linear distance from the organ holding portion 32 to the anal holding portion 31 changes due to the sliding of the organ holding portion 32. Further, in a plan view of the organ holding portion 2 (see FIG.
  • the inner surface of the lower wall portion 21 to which the lower end surface of the anal holding portion 31 joins and the straight line connecting the anal holding portion 31 and the organ holding portion 32 are formed.
  • the angle (hereinafter referred to as the angle of the anal holding portion 31 and the organ holding portion 32) has also changed.
  • FIG. 5 is a diagram showing the relationship between the distance between the anal holding portion 31 and the organ holding portion 32 and the state of the large intestine model 30 between them.
  • FIG. 5 (a) shows a state in which the organ holding portion 32 is arranged at a position relatively close to the anal holding portion 31, and
  • FIG. 5 (b) shows the organ holding portion 32 relative to the anus holding portion 31. Shows the state of being placed at a distant position.
  • the linear distances D1 and D2 from the organ holding part 32 to the anal holding part 31 are changed by the slide of the organ holding part 32, while the length from the anal side end region to the descending colon holding region in the large intestine model 30 (longitudinal direction).
  • (Length) L1 and L2 are constant.
  • the distances D1 and D2 are different from each other, the lengths L1 and L2 of the large intestine model 30 are the same.
  • the angles of the anal holding portion 31 and the organ holding portion 32 are also changed by sliding the organ holding portion 32. Therefore, as shown in FIG. 5, the slide of the organ holding portion 32 changes the linear distance, the angle, or both, and is between the anal side end region and the descending colon holding region in the large intestine model 30.
  • the degree of slack or the degree of bending changes.
  • the endoscope in the lumen of the large intestine model 30 becomes relatively easy to operate, and conversely, if the degree of slack or the degree of flexion is large, the endoscope is said to be the endoscope.
  • Mirror operation becomes relatively difficult. That is, according to the above configuration, the difficulty of training the endoscopic procedure can be changed.
  • the slide range of the organ holding portion 32 is the length from the anal side end region in the large intestine model 30 to the region held by the organ holding portion 32 (L1, L2, etc. in FIG. 5) from the anal holding portion 31. It is preferable to include a position that is twice the distance to the organ holding portion 32 (D1, D2, etc. in FIG. 5). Further, the ratio of the length from the anal end region to the region held by the organ holding portion 32 to the length from the anal end region to the splenic curve region in the large intestine model 30 is more than half and 10 minutes. It is preferably 7 or less.
  • the present inventors including a veteran doctor with advanced endoscopic techniques, have repeated the trial production of the organ accommodating portion 2 and the verification of the prototype by the veteran doctor, thereby forming the organ holding portion 32 and the anal holding portion 31.
  • the above-mentioned relationship that is close to the sensation obtained by the endoscopic procedure for the actual human body. That is, by including the above-mentioned position in the slide range of the organ holding portion 32, the sensation of the endoscopic procedure for the human body is realistically reproduced while the difficulty level of the training of the endoscopic procedure is variable, and the accuracy is high. Training can be made possible.
  • the slide of the organ holding portion 32 is realized by using the power of the motor housed in the dorsal internal space of the organ accommodating portion 2.
  • the slide of the organ holding portion 32 can be realized by, for example, the following configuration.
  • the rotation axis of the motor extends in a direction orthogonal to the extending direction of the guide rail 33, and a toothed drive pulley is directly or indirectly attached to the rotation axis, and the toothed drive pulley is rotatably supported.
  • a toothed timing belt is hung between the driven pulley and its driving pulley in parallel with the extending direction of the guide rail 33.
  • the organ holding portion 32 is directly or indirectly attached to the engaging member that engages with a part of the timing belt.
  • the rotational power of the motor is converted into the power of linear motion in the extending direction of the guide rail 33, so that the organ holding portion 32 can slide along the guide rail 33. Therefore, the organ holding portion 32 is slidable with respect to the anal holding portion 31 and the organ holding portion 32 holding the anal side end region of the large intestine model 30, and is fixed to the organ accommodating portion 2. It can be said that it is provided so that it can be switched between states.
  • the configuration for realizing the sliding of the organ holding portion 32 is not limited to such a configuration, and any configuration may be used as long as the rotational power of the motor is converted into the power of linear motion in the extending direction of the guide rail 33.
  • the details of the control related to the slide of the organ holding portion 32 will be described later.
  • the sliding of the organ holding portion 32 is realized by using the power of the motor, but it may be performed manually.
  • the organ holding part 32 is slidable with respect to the organ holding part 2 (including the anal holding part 31 fixed to the organ holding part 2) and fixed to the organ holding part 2. It suffices if it is provided so as to be switchable to a fixed state.
  • the organ holding portion 32 may be fixed to the organ accommodating portion 2 by the locking mechanism, and the organ holding portion 32 may be slidable to the organ accommodating portion 2 by releasing the locking mechanism.
  • the organ accommodating portion 2 is provided with a first slide wall portion 35 formed of a hard material such as plastic in the ventral internal space.
  • the first slide wall portion 35 is a substantially central portion in the lateral and vertical directions in the ventral internal space of the organ accommodating portion 2, and is below the accommodating position of the transverse colon region of the large intestine model 30 and the anal holding portion 31 and the anus holding portion 31. It is located above the rectal region of the large intestine model 30 and is slidably supported by the dorsal plate in the vertical direction.
  • the first slide wall portion 35 is a support mechanism provided on the ventral side surface of the dorsal plate so as to be slidable along the extending direction of the guide rail 36 provided on the ventral side surface of the dorsal plate. (Not shown).
  • the support mechanism of the first slide wall portion 35 is not limited in any way.
  • the first slide wall portion 35 may be supported by a support mechanism slidably engaged with the guide rail 36.
  • the guide rail 36 extends in the vertical direction along the ventral side surface of the dorsal plate. Therefore, the first slide wall portion 35 can slide in the direction approaching the anus holding portion 31 and in the direction away from the anus holding portion 31.
  • the first slide wall portion 35 is provided to simulate this abdominal compression. Therefore, the first slide wall portion 35 can also be called an auxiliary wall portion.
  • the first slide wall portion 35 has at least a downward wall surface having a curved shape in which the center in the left-right direction protrudes upward when viewed from the ventral side, and holds the anus when simulating abdominal compression. It is fixed at a position close to the portion 31.
  • a part of the sigmoid colon region (for example, the apex called S-top) of the large intestine model 30 in which the endoscope is inserted into the lumen and linearized upward is directed downward by the first slide wall portion 35.
  • the insertion direction of the endoscope is guided by abutting against the wall surface of the endoscope.
  • the first slide wall 35 is fixed at a position away from the anus holding portion 31 so that the first slide wall 35 is in a position where it is difficult to contact the large intestine model 30. Can be placed.
  • abdominal compression manual compression
  • the slide of the first slide wall portion 35 is realized by using the power of the motor housed in the dorsal internal space of the organ accommodating portion 2.
  • the slide of the first slide wall portion 35 can be realized, for example, with the same configuration as the organ holding portion 32.
  • the rotation axis of the motor extends in a direction orthogonal to the extending direction of the guide rail 36, and a toothed drive pulley is directly or indirectly attached to the rotation axis, and the toothed drive pulley is rotatably supported.
  • a toothed timing belt is hung between the driven pulley and its driving pulley in parallel with the extending direction of the guide rail 36.
  • the first slide wall portion 35 is directly or indirectly attached to an engaging member that engages with a part of the timing belt. According to this configuration, the rotational power of the motor is converted into the power of linear motion in the extending direction of the guide rail 36, so that the first slide wall portion 35 can slide along the guide rail 36. Even in such a configuration, the first slide wall portion 35 can be switched between a slide state in which the distance to the anal holding portion 31 changes and a fixed state in which the first slide wall portion 35 is fixed to the organ accommodating portion 2. It can be said that it has become.
  • the configuration for realizing the sliding of the first slide wall portion 35 is not limited to such a configuration, and may be a configuration in which the rotational power of the motor is converted into the power of linear motion in the extending direction of the guide rail 36. ..
  • the control contents related to the slide of the first slide wall portion 35 will be described later.
  • the slide of the first slide wall portion 35 is realized by using the power of the motor, but it may be performed manually.
  • the first slide wall portion 35 is provided so as to be switchable between a slide state in which the distance to the anal holding portion 31 changes and a fixed state in which the organ accommodating portion 2 is fixed. You just have to.
  • the first slide wall portion 35 is fixed to the organ accommodating portion 2 by the lock mechanism, and the first slide wall portion 35 is slidable to the organ accommodating portion 2 by releasing the lock mechanism. Can be said.
  • the first wire member 37 is connected to the outer surface of the sigmoid colon region of the large intestine model 30.
  • the first wire member 37 is connected to a position corresponding to the apex (S-top) of the sigmoid colon region of the large intestine model 30, and plays a role of returning the apex to the initial position.
  • the site to which the first wire member 37 of the large intestine model 30 is connected may be referred to as a wire connecting site in the sigmoid colon region.
  • the first wire member 37 may be a variable length member capable of returning the connecting portion to the initial position while enabling displacement of the connecting portion (S-top) with the large intestine model 30.
  • the first wire member 37 may be made of a stretchable material or may be made of a non-stretchable material.
  • the first wire member 37 does not realize a variable length with its own material, but has a variable length as a set with a wire reel (not shown) for winding the first wire member 37. It has been realized. Therefore, the first wire member 37 and the wire reel correspond to the variable length member. That is, in the present embodiment, the organ accommodating portion 2 includes a wire reel (not shown) for winding the first wire member 37. In the wire reel, the state of the first wire member 37 that is delivered in the state where the wire connecting portion of the sigmoid colon region of the large intestine model 30 is present at the initial position is set to the maximum winding state, and the wire reel is further delivered from the maximum winding state. The first wire member 37 is urged by a spring member so as to be wound up to the maximum winding state.
  • the wire reel is provided with a sensor (for example, a displacement meter or the like) for detecting the rotation amount of the wire reel from the maximum winding state, and the details will be described later, but the rotation amount detected by this sensor.
  • a sensor for example, a displacement meter or the like
  • the region including the wire connecting portion of the sigmoid colon region of the large intestine model 30 connected to the first wire member 37 is tensioned so as to return to the initial position while being displaceable without being fixed. Therefore, it can also be called a specific movable region of the large intestine model 30.
  • the organ accommodating portion 2 is provided with a second slide wall portion 34 formed of a hard material such as plastic in the ventral internal space.
  • the second slide wall portion 34 is erected with a downward wall surface further above the accommodation position of the transverse colon region of the large intestine model 30 in the ventral internal space of the organ accommodation portion 2.
  • the second slide wall portion 34 is supported by the organ accommodating portion 2 in a state where it can slide downward along the extending direction of the guide rails provided on the inner surface of the right side wall portion 23 and the inner surface of the left side wall portion 24, respectively.
  • the second slide wall portion 34 is supported by a support mechanism (not shown) provided on the inner surface of the right side wall portion 23 and the inner surface of the left side wall portion 24.
  • the support mechanism of the second slide wall portion 34 is not limited in any way.
  • the second slide wall portion 34 may be supported by a support mechanism slidably engaged with guide rails provided on the inner surface of the right side wall portion 23 and the inner surface of the left side wall portion 24, respectively. Good.
  • the second slide wall portion 34 is provided in order to simulate the state of the transverse colon when the subject takes a deep breath.
  • the second slide wall portion 34 has at least a downward wall surface that is wide in the left-right direction from the vicinity of the inner surface of the right side wall portion 23 to the vicinity of the inner surface of the left side wall portion 24. The left and right ends of this wall surface of the second slide wall portion 34 are curved downward.
  • the second slide wall portion 34 slides downward when simulating a deeply inhaled state, and is arranged upward in other cases. As a result, as the second slide wall portion 34 is slid downward, at least the spleen-curved region and the hepatic-curved region of the large intestine model 30 are also displaced downward. Therefore, according to the present embodiment, the test is performed. It is possible to realistically simulate the movement of the large intestine while the person is deeply inhaled.
  • the outer surfaces of the splenic curved region and the liver curved region of the large intestine model 30 are fixed to the downward wall surface of the second slide wall portion 34.
  • the outer surface of the splenic curve region and the liver curve region and the wall surface of the second slide wall portion 34 may be connected and fixed by a connecting member such as a hook-and-loop fastener or a snap button, or may be bonded by an adhesive or the like. You may. With such a configuration, the splenic curve region and the liver curve region of the large intestine model 30 can be reliably displaced downward together with the slide of the second slide wall portion 34.
  • the spleen-curved region and the hepatic-curved region of the large intestine model 30 can be displaced downward as the second slide wall portion 34 slides, they are not fixed to the wall surface of the second slide wall portion 34 in this way. May be good.
  • the slide of the second slide wall portion 34 is realized by using the power of the motor housed in the dorsal internal space of the organ accommodating portion 2.
  • the slide of the second slide wall portion 34 can be realized, for example, with the same configuration as that of the first slide wall portion 35. Therefore, although detailed description is omitted, the extension direction of the guide rail (provided on the inner surface of the right side wall portion 23 and the inner surface of the left side wall portion 24) in the engaging member in which the rotational power of the motor engages with the timing belt
  • the second slide wall portion 34 can slide downward along the guide rail.
  • the second slide wall portion 34 can be switched between a sliding state that can slide downward with respect to the organ accommodating portion 2 and a fixed state that is fixed to the organ accommodating portion 2. I can say.
  • the configuration for realizing the sliding of the second slide wall portion 34 is not limited to such a configuration, and any configuration may be used as long as the rotational power of the motor is converted into the power of linear motion in the vertical direction.
  • the control contents related to the slide of the second slide wall portion 34 will be described later.
  • the slide of the second slide wall portion 34 is realized by using the power of the motor, but it may be performed manually.
  • the second slide wall portion 34 is provided so as to be switchable between a sliding state that can slide downward with respect to the organ accommodating portion 2 and a fixed state that is fixed to the organ accommodating portion 2.
  • the second slide wall portion 34 is fixed to the organ accommodating portion 2 by the lock mechanism, and the second slide wall portion 34 is slidable to the organ accommodating portion 2 by releasing the lock mechanism. Can be said.
  • a second wire member 38 is connected to the outer surface of the transverse colon region of the large intestine model 30.
  • the second wire member 38 is connected to the central periphery of the transverse colon region of the large intestine model 30 in the longitudinal direction, and plays a role of pulling the connecting portion downward.
  • the site to which the second wire member 38 of the large intestine model 30 is connected may be referred to as a wire connecting site in the transverse colon region.
  • the second wire member 38 pulls the central portion of the transverse colon region of the large intestine model 30 in the longitudinal direction downward even in the normal state where the second slide wall portion 34 is located above, so that the curvature of the transverse colon in the living body Can be realistically reproduced.
  • the second wire member 38 may not be a variable length member or may be a variable length member.
  • the second wire member 38 When the second wire member 38 is a variable length member, it may have the same configuration as the first wire member 37. That is, the first wire member 37 may be made of a stretchable material or may be made of a non-stretchable material.
  • the organ accommodating portion 2 may include a wire reel for winding the second wire member 38, and the wire reel and the second wire member 38 may be a variable length member. The configuration of the wire reel is as described above.
  • the displacement of the wire connecting portion in the transverse colon region of the large intestine model 30 can be detected by the amount of rotation of the wire reel detected by the sensor, similarly to the first wire member 37. It may be.
  • a variable length member such as the first wire member 37 may be connected to the outer surface of the large intestine model 30 other than the wire connecting portion described above.
  • a variable length member may be connected to a site corresponding to the sigmoid colon descending colon transition portion (hereinafter referred to as SDJ) in the large intestine model 30.
  • SDJ sigmoid colon descending colon transition portion
  • the cecal region of the large intestine model 30 is also a locally fixed region and is fixed to the organ accommodating portion 2.
  • the cecal region may be fixed via a holding mechanism supported by the dorsal plate of the organ accommodating portion 2, or the cecal region and the dorsal plate are connected by a hook-and-loop fastener, a snap button, or the like. It may be connected and fixed by a member, or may be bonded by an adhesive or the like.
  • the large intestine model 30 is removable from the organ accommodating portion 2.
  • the organs A plurality of types of large intestine models 30 can be exchanged and used for the accommodating portion 2.
  • the anus holding part 31 and the organ holding part 32 may be detachable from the organ holding part 2 together with the large intestine model 30, and the anus holding part 31 and the organ holding part 32 may be left in the organ holding part 2.
  • Only the large intestine model 30 may be removable.
  • FIG. 6 is a diagram showing the internal configuration of the motor accommodating portion 7 and the swing of the organ accommodating portion 2, and FIG. 6A shows the internal configuration of the organ accommodating portion 2 in the supine position and the internal configuration of the motor accommodating portion 7.
  • FIG. 6B shows the internal configuration of the organ accommodating portion 2 and the motor accommodating portion 7 in the left lateral decubitus position.
  • the motor accommodating portion 7 internally supports the motor holding portion 72.
  • the motor holding portion 72 holds the posture changing motor 71, and the output shaft 75 driven by the rotational power of the posture changing motor 71 projects from the motor holding portion 72.
  • the output shaft 75 projects from the shaft hole 78 of the adjacent wall portion 77 (lower wall portion) of the motor accommodating portion 7 toward the organ accommodating portion 2, and the tip thereof is the upper surface of the upper wall portion 22 of the organ accommodating portion 2. It is fixed in the center.
  • the organ accommodating portion 2 has a plurality of tire portions (20a, 20b, 20c) rotatably provided in the organ accommodating portion 2 when the output shaft 75 is driven by the rotational power of the posture change motor 71.
  • the organ accommodating portion 2 has the tire portions 20a and 20b (in other words, the right wall portion 23) rotating on the ventral support surface 91 of the base 9 from the supine position shown in FIG. 6A. It rotates 90 degrees around the boundary edge (corner portion) with the back side wall portion, and transitions to the left lateral decubitus state shown in FIG. 6 (b). In the left lateral decubitus position, the tire portions 20a, 20b and 20c are in contact with the ventral support surface 91 of the base 9 (not shown).
  • the organ accommodating portion 2 that imitates the abdomen of the human body can be swung to simulate the postural change. Further, since the organ accommodating portion 2 is supported upward by the output shaft 75 and the side surfaces (dorsal side and right side surface) are supported by the ventral support surface 91 of the base 9 via the plurality of tire portions. It is possible to realize a stable swing of the organ accommodating portion 2, and it is possible to suppress the occurrence of damage or failure due to the swing of the organ accommodating portion 2.
  • the control content of the posture change motor 71 that simulates such posture change will be described later.
  • the output shaft 75 fixed by the upper end wall portion 22 of the organ accommodating portion 2 is organ accommodating.
  • the motor holding portion 72 since the output shaft 75 is rotatably held by the motor holding portion 72, the organ accommodating portion 2 swings from the supine position to the left lateral decubitus state by driving the output shaft 75.
  • the motor holding portion 72 moves at least forward, and the motor holding portion 72 moves at least backward as the organ accommodating portion 2 swings from the left lateral decubitus position to the supine position by driving the output shaft 75.
  • the motor accommodating portion 7 internally supports the motor holding portion 72 so as to be slidable in the front-rear direction, as shown in FIGS. 6 (a) and 6 (b).
  • the motor accommodating portion 7 has a pair of guide rails 73 extending in the front-rear direction inside, and the motor holding portion 72 is provided via engaging members provided on both left and right side surfaces. It is slidably engaged with the pair of guide rails 73. Since the motor holding portion 72 that holds the posture change motor 71 and the output shaft 75 is supported inside the motor accommodating portion 7 so as to be slidable in the front-rear direction, the organ accommodating portion 2 can be smoothly swung. be able to.
  • FIG. 7 is a diagram conceptually showing a control configuration in the medical simulator according to the present embodiment.
  • this simulator has a simulator control unit (hereinafter abbreviated as a control unit) 10, an input / output panel 15, a microphone 16, a motor group 17, a sensor group 18, and the like as configurations related to control.
  • the control of this simulator is executed by the control unit 10.
  • this simulator may have other control configurations (not shown in FIG. 7).
  • the control unit 10 has a CPU (Central Processing Unit) 11, a memory 12, an input / output interface (I / F) unit 13, and the like as a hardware configuration.
  • the CPU 11 may be one or more general CPUs or MPUs (Micro Processing Units), and may be replaced with or together with an integrated circuit (ASIC) for a specific application, a DSP (Digital Signal Processor), and a GPU (Graphics Processing). Unit), FPGA (Field Programmable Gate Array), etc. may be used.
  • the memory 12 is a RAM (Random Access Memory) and a ROM (Read Only Memory), and may include an auxiliary storage device (hard disk or the like).
  • the input / output I / F unit 13 is a device that controls the input or output of a signal to be processed or processed by the CPU 11, and is a user interface device such as an input / output panel 15, a microphone 16, a motor group 17, and a sensor group 18. Etc. are connected. Further, the input / output I / F unit 13 may include a communication unit that communicates with another computer or device, and may be connected to a portable recording medium or the like.
  • the control unit 10 may include hardware elements (not shown in FIG. 7), and the hardware configuration of the control unit 10 is not limited.
  • the input / output panel 15 includes a display device for displaying a training menu, an operation mode, an evaluation result, and the like, and an input device for operating a screen displayed on the display device.
  • the input / output panel 15 may be realized as a touch panel in which a display device and an input device are integrated.
  • the content displayed on the input / output panel 15 is not limited at all.
  • an operation button that allows selection of start and stop of training, a display of the elapsed time of training, a menu for selecting the difficulty level of training, an evaluation result, and the like are displayed.
  • a display example output to the input / output panel 15 will be described later.
  • the microphone 16 is a microphone and converts the collected sound into an electric signal.
  • the motor group 17 includes at least three motors that realize the slides of the organ holding portion 32, the first slide wall portion 35, and the second slide wall portion 34, and the posture change motor 71.
  • Each motor included in the motor group 17 may be an electric motor that converts electric energy into mechanical energy, may be a DC motor, may be an AC motor, or may be another motor. Good.
  • each motor included in the motor group 17 may be collectively referred to as a motor 17 without distinction.
  • the sensor group 18 is a plurality of various sensors provided inside or outside the modeling (outer surface or inner wall surface) of the large intestine model 30 or in other configurations, and detects the state of the endoscopic procedure at each position. ..
  • an object detection sensor provided in the locally fixed region (anal side end region, descending colon holding region, splenic curve region, hepatic curve region, cecal region) in the large intestine model 30 and detects the presence of an endoscope is the sensor group. 18 is included.
  • a photoelectric sensor as an object detection sensor is installed in the anal holding portion 31, the organ holding portion 32, and the holding mechanism (not shown) for holding the cecal region, respectively.
  • the object detection sensor can detect the presence of an endoscope passing through the lumen of the large intestine model 30, its specific type and detection principle are not limited, and its installation location is also not limited. ..
  • the sensor group 18 may include a pressure sensor that detects pressure on the downward wall surface of the first slide wall portion 35 or the second slide wall portion 34.
  • the sensor group 18 may include a barometric pressure sensor that detects the barometric pressure in the lumen of the large intestine model 30.
  • control unit 10 controls the motor group 17, controls the display of the input / output panel 15, and the like while receiving input signals from the sensor group 18 and the microphone 16. I do.
  • the control program may be stored in advance at the time of shipment, or may be stored in advance from a portable recording medium such as a CD (Compact Disc) or a memory card or another computer on the network via the input / output I / F unit 13. It may be installed and stored in the memory 12.
  • FIG. 8 is a block diagram conceptually showing a software configuration realized by the control unit 10.
  • the control unit 10 realizes the software configuration as shown in FIG.
  • the control unit 10 has an organ state detection module (hereinafter, may be abbreviated as a detection module) 101, a mode management module 102, an utterance processing module 103, a measurement module 104, and an evaluation module 105 as software configurations. Etc.
  • a detection module organ state detection module
  • the detection module 101 detects the displacement or deformation of the target site which is at least a part of the movable region of the large intestine model 30 housed in the organ accommodating portion 2.
  • the region between the anal holding portion 31 and the organ holding portion 32 in the large intestine model 30 is the target site.
  • the "displacement of the target portion” detected by the detection module 101 means a change in the position of the target portion as described above. Therefore, in "detection of displacement of the target part", either the acquisition of the three-dimensional position or the two-dimensional position of the target part or the detection of the position change in the three-dimensional space or the two-dimensional space of the target part is performed. One or both are included.
  • the detection module 101 acquires the image data in the organ accommodating portion 2 imaged by the two cameras 6, and recognizes the marker image from the image data to obtain the bent state of the target portion. It is possible to detect any one or more of the stretched state, the twisted state, and the loop state.
  • the "bent state” means a state of bending deformation, and may be indicated by, for example, the degree of bending, the bending angle, the number of bending points, and the like.
  • “Expandable state” means a state of extensional deformation or shortening deformation of length in the longitudinal direction, for example, the degree of extension or shortening and the extension rate or shortening rate (ratio of the changed length to the original length).
  • the "twisted state” means a state of twisted deformation, and is based on the degree of rotational twist (twist that squeezes a rag) and the number of twists (rotational speed) about the longitudinal direction of the large intestine model 30. Can be shown.
  • the “loop state” means a state of loop deformation forming a loop shape in the longitudinal direction of the large intestine model 30, and can be indicated by the type of loop shape, the number of loops, the size of the loop, and the like.
  • a technique of forming a loop shape and inserting the endoscope there is a technique of forming a loop shape and inserting the endoscope.
  • a loop shape there may be a type of loop shape called ⁇ loop, inverse ⁇ loop, ⁇ loop, inverse ⁇ loop, N loop, M loop and the like.
  • the detection module 101 may detect such a loop shape type as a loop state.
  • the three-dimensionality of each marker can be obtained by using a stereo imaging method or the like known from the images captured by the two cameras 6.
  • the original position information can be acquired.
  • the three-dimensional positions of each marker ring 43 can be acquired, and as a result, shape information such as a bent state, a stretched state, a twisted state, and a loop state can be detected with respect to the target portion.
  • shape information such as a bent state, a stretched state, a twisted state, and a loop state can be detected with respect to the target portion.
  • the bent state, the stretched state, the twisted state, the loop state, etc. of the target portion can be detected.
  • markers of different colors or shapes are arranged on the front surface, the back surface, and the middle of the target site of the large intestine model 30 in the state of being housed in the organ storage unit 2.
  • the bent state, the stretched state, the twisted state, the loop state, and the like of the target portion can be detected based on the reflected state of each marker in the images captured by the two cameras 6.
  • the pattern of the number of recognized markers indicating the front surface, the number of recognized markers indicating the back surface, and the number of recognized markers indicating the middle in the captured image, and the bent state, stretched state, twisted state, loop state, etc. of the target portion You may use this relationship by preserving the relationship with.
  • the holding portion markers 41 and 42 are also provided in the anal holding portion 31 and the organ holding portion 32.
  • the position can be calculated from the holding portions markers 41 and 42, so that the distance between the anal holding portion 31 and the organ holding portion 32 can also be calculated.
  • the detection module 101 detects the length of the variable length member including the first wire member 37 or the second wire member 38, and further uses the length to detect the displacement or deformation of the target portion. It may be.
  • the detection module 101 can detect the feed amount (length) of the first wire member 37 based on the detection signal from the sensor that detects the rotation amount of the wire reel that winds the first wire member 37. As a result, the displacement or the amount of displacement of the wire connecting portion of the sigmoid colon region of the large intestine model 30 can be detected.
  • the detection module 101 is a displacement or displacement amount of the wire connecting portion detected with respect to the length of the first wire member 37, and by supplementing the three-dimensional position information of the target portion detected by using the above-mentioned marker, tentatively. Even when a part of the marker ring 43 cannot be detected, the displacement or deformation (bent state, stretch state, twist state, loop state, etc.) of the target portion can be detected without deterioration of accuracy.
  • the region between the anal holding portion 31 and the organ holding portion 32 in the colon model 30 is the target site, but the detection module 101 is the other region of the colon model 30 (for example, displacement or deformation of the transverse colon region, etc.) may be detected.
  • the detection module 101 is the other region of the colon model 30 ( For example, displacement or deformation of the transverse colon region, etc.) may be detected.
  • a plurality of markers may be provided in the transverse colon region and, if necessary, the length information of the second wire member 38 may be used.
  • the mode management module 102 acquires training mode information in this simulator. For example, the mode management module 102 receives the signal from the input / output panel 15 via the input / output I / F unit 13, and thereby specifies whether the training start is specified or the training is stopped by the operation on the input / output panel 15. The training difficulty level that has been or is specified can be acquired as the training mode information. When the acquired training mode information indicates the start or stop of training, the mode management module 102 notifies the measurement module 104 and the evaluation module 105 to that effect.
  • the mode management module 102 determines the position of the organ holding unit 32 according to the training difficulty level indicated by the acquired training mode information, controls the corresponding motor, and controls the corresponding motor to the organ holding unit 32 at the determined position.
  • the training difficulty level can be specified by a predetermined number of steps (for example, 5 steps), and the position of the organ holding portion 32 may be determined for each step number of the training difficulty level. In this case, the higher the training difficulty level, the closer the organ holding portion 32 is to the anal holding portion 31.
  • the slide of the organ holding portion 32 to the determined position may be controlled by using the rotation amount of the motor, or may be controlled by using the detection signal from the position sensor (photo sensor or the like).
  • the utterance processing module 103 acquires the utterance information of the trainee. For example, the utterance processing module 103 receives the voice signal obtained from the microphone 16 via the input / output I / F unit 13, and applies voice recognition processing to the voice signal to provide the utterance information of the trainee. Can be obtained. The utterance processing module 103 may or may not identify the trainee, and the obtained utterance information may be used as the utterance information of the trainee. From the above, the utterance processing module 103 can be described as an utterance acquisition means.
  • the utterance processing module 103 can specify one or more predetermined utterances uttered by the trainee among a plurality of predetermined predetermined utterances based on the acquired utterance information.
  • the physician may instruct the caregiver to compress the abdomen to support endoscopic insertion, as described above.
  • the utterance corresponding to the abdominal compression instruction may be held in the utterance processing module 103 as a predetermined predetermined utterance.
  • the predetermined utterance for example, partial utterance information such as "abdominal compression” and "compression support” is held, and the utterance processing module 103 includes such predetermined utterance in the acquired utterance information.
  • the utterance corresponding to the instruction to release the abdominal compression may be held in the utterance processing module 103 as a predetermined predetermined utterance.
  • partial utterance information such as "release of compression” and "stop compression” may be retained.
  • the doctor may ask the subject (patient) to take a deep breath in order to smoothly insert the endoscope.
  • the utterance corresponding to this deep breathing request may be held in the utterance processing module 103 as a predetermined predetermined utterance.
  • predetermined utterances for example, utterance information such as "please take a deep breath” and "please take a breath and stop” is held, and the utterance processing module 103 has such predetermined utterance information.
  • the doctor asks you to return to normal breathing.
  • the utterance corresponding to the request to return to normal breathing may be held in the utterance processing module 103 as a predetermined predetermined utterance.
  • utterance information such as "you may exhale” or "return to normal breathing” may be retained as predetermined utterances.
  • the doctor may request the subject (patient) or a caregiver to change the position in order to smoothly insert the endoscope.
  • the utterance corresponding to the request for the position change may be held in the utterance processing module 103 as a predetermined predetermined utterance.
  • partial utterance information such as "backward” or “sideways” is held as the predetermined utterance, and the utterance processing module 103 determines whether or not the acquired utterance information includes such a predetermined utterance. Therefore, it is possible to identify a predetermined utterance uttered by the trainee.
  • the utterance processing module 103 can also be called the utterance specifying means.
  • the predetermined utterance to be specified in this embodiment is not limited to such an example. Further, the utterance processing module 103 may hold various variations as each predetermined utterance.
  • the voice recognition process can be a process using any existing recognition method.
  • the utterance processing module 103 When the utterance processing module 103 identifies a predetermined utterance corresponding to the slide of the first slide wall portion 35 or the second slide wall portion 34 among a plurality of predetermined types of predetermined utterances, the utterance processing module 103 controls the corresponding motor. Then, the first slide wall portion 35 or the second slide wall portion 34 is slid. In the present embodiment, when a predetermined utterance including "abdominal compression" is specified, the utterance processing module 103 slides the first slide wall portion 35 downward to specify the predetermined utterance including "stop compression". If so, the first slide wall portion 35 is slid upward to return to the original position.
  • the utterance processing module 103 slides the second slide wall portion 34 downward and says “You may exhale.”
  • the second slide wall portion 34 is slid upward to return to the original position.
  • the utterance processing module 103 controls the posture change motor 71 to swing the organ accommodating portion 2. For example, the utterance processing module 103 operates the body position change motor 71 so that the organ accommodating portion 2 swings from the left lateral decubitus position to the supine position when a predetermined utterance including "supine position" is specified. When a predetermined utterance including "sideways" is specified, the organ accommodating portion 2 operates the posture change motor 71 so as to swing from the supine position to the left lateral position.
  • the first slide wall portion 35 and the second slide wall portion 34 are slid and the organ accommodating portion 2 is swung by voice recognition, but these are the input / output panel 15. It may be executed by the operation input to the display. Further, the utterance processing module 103 holds a correspondence relationship between the position where the tip of the endoscope exists and the predetermined utterance that the doctor should utter at that position, and the tip of the endoscope is located at the target position. If a predetermined utterance to be uttered at that position is not specified within a predetermined time even though the utterance exists, the slide of the first slide wall portion 35 or the second slide wall portion 34 or the organ accommodation is voluntarily performed. The swing of the part 2 may be executed. In this way, the trainee can be assisted, so that the trainee who is unfamiliar with the operation of the endoscope can easily continue the training while receiving support.
  • the measurement module 104 acquires time information related to the endoscopic procedure.
  • object detection sensors are provided in the anal holding portion 31, the organ holding portion 32, and the holding mechanism for holding the anal region, respectively, and according to the detection signals from the respective object detection sensors, It is possible to detect that the tip of the endoscope has passed the position where the object detection sensor is provided in the large intestine model 30. Therefore, the position where each object detection sensor is provided in the large intestine model 30 can be described as a checkpoint, and a plurality of measurement modules 104 provided at different positions in the lumen of the large intestine model 30 in the longitudinal direction. It can be described as determining that the tip of the endoscope has passed the checkpoint of.
  • the measurement module 104 acquires the time spent at the tip of the endoscope between the two checkpoints.
  • the measurement module 104 measures the time from the region held by the anal holding portion 31 in the large intestine model 30 to the region held by the organ holding portion 32, and is held by the organ holding portion 32. Measure the time it takes to reach the cecal area from the area.
  • the colonoscopy procedure is a series of procedures from inserting the endoscope from the anus to the area around the cecum and then pulling it out from the anus. Therefore, the measurement module 104 sets the first stay time from passing the first checkpoint to passing the second checkpoint and the first checkpoint after passing the second checkpoint. Obtain the second stay time and the time to pass.
  • the measurement module 104 further measures the time from the cecal region in the large intestine model 30 to the region held by the organ holding portion 32, and from the region held by the organ holding portion 32 to the anal holding portion. The time required to reach the region held at 31 is further measured.
  • the measurement module 104 can measure not only the partial stay time as described above but also the total time of the colonoscopy procedure. That is, the measurement module 104 can measure the total time from inserting the endoscope from the anus to the periphery of the cecum and then pulling it out from the anus.
  • the evaluation module 105 evaluates the procedure of the trainee by using the time information regarding the endoscopic procedure acquired by the measurement module 104, the information regarding the predetermined utterance specified by the utterance processing module 103, and the like. For example, the evaluation module 105 sets a reference stay time for each of the two checkpoints in advance, and compares the stay time between the two checkpoints acquired by the measurement module 104 with the reference stay time. Evaluation points can be calculated for each of the two checkpoints. In this case, if the staying time is longer than the standard staying time, a base score will be given, and if the staying time is shorter than the standard staying time, the score corresponding to the shortened time will be added to the base score. Evaluation points may be calculated. The evaluation points calculated for each checkpoint in this way are totaled.
  • the evaluation module 105 may evaluate the staying time related to the insertion procedure of the endoscope and the staying time related to the returning procedure of the endoscope by separate evaluation methods. That is, the evaluation module 105 sets the first stay time from passing the first checkpoint to passing the second checkpoint and the first checkpoint after passing the second checkpoint. Each may be evaluated by a separate evaluation method for the second stay time until passing. For example, when inserting, a point is added when the staying time is shorter than the standard staying time as described above, and when returning, a predetermined time width is set for the standard staying time, and the staying time is that time. It may be an evaluation method in which whether or not a base score is given is determined depending on whether or not it fits within the range. Further, at the time of returning, if the staying time is shorter than the shortest standard staying time in the predetermined time width, points may be deducted.
  • the evaluation viewpoint of the procedure differs between the time of insertion and the time of return. Since it is important to insert the endoscope to the destination as quickly and gently as possible at the time of insertion, the evaluation viewpoint is the quality of the endoscope operation. On the other hand, it is more important to observe closely when returning, so whether or not the observation is performed properly is the evaluation point of view.
  • a high score is obtained when the operation can be performed quickly at the time of insertion.
  • a high score will be given if the patient can be observed by spending an appropriate amount of time, so that the evaluation can be made from an appropriate viewpoint based on the time related to the endoscopic procedure.
  • the evaluation module 105 determines whether or not one or more combinations of predetermined utterances have been correctly uttered based on the information regarding the predetermined utterances specified by the utterance processing module 103, and further takes this determination result into consideration. It is also possible to evaluate the procedure of the trainee. For example, evaluation points may be added or deducted depending on whether or not a predetermined utterance corresponding to an instruction for abdominal compression to a caregiver and a predetermined utterance corresponding to an instruction for releasing the abdominal compression are performed as a set. Points may be added when the two predetermined utterance sets are performed, and points may be deducted when only one of them is performed.
  • the evaluation module 105 holds a correspondence relationship between the position where the tip of the endoscope exists and the predetermined utterance that the doctor should utter at that position, and the detection signal and the utterance from the object detection sensor at each position. Based on the predetermined utterances specified by the processing module 103, it may be evaluated whether or not the doctor has made an utterance to be uttered at each position. Evaluation points may be added when an utterance to be uttered at each position is made, and evaluation points may be deducted when the utterance is not made. In this way, the endoscopic procedure can be evaluated from the viewpoint of communication between the doctor and the patient.
  • the evaluation module 105 acquires load information applied to a predetermined part of the large intestine model 30, and when the acquired load information indicates a load exceeding a threshold value, the evaluation module 105 uses the staying time acquired as described above.
  • the evaluation points of the trainee's procedure may be calculated by deducting points corresponding to the load information from the scored evaluation points.
  • the load information applied to a predetermined portion of the large intestine model 30 can be detected by the large intestine model 30 itself, a holding mechanism for holding the large intestine model 30, or a pressure sensor provided on a wall surface that can come into contact with the large intestine model 30. It can also be converted from the elongation length of the variable length member (first wire member 37, etc.) connected to the predetermined portion of the model 30.
  • a pressure sensor is provided on the downward wall surface of the first slide wall portion 35 or the second slide wall portion 34, and the evaluation module 105 acquires a detection signal from the pressure sensor and uses the detection signal.
  • the pressure values may be accumulated while the indicated pressure value exceeds the threshold value, and the evaluation points may be deducted when the pressure cumulative value exceeds the predetermined threshold value.
  • the load on the organs such as the large intestine is a burden on the subject (patient), and if the load is too large, the organs may be damaged.
  • the procedure of the trainee according to the load information applied to the predetermined site of the large intestine model 30, it is possible to appropriately evaluate the endoscopic procedure.
  • the evaluation module 105 can also evaluate the procedure of the trainee based on the atmospheric pressure information in the lumen of the large intestine model 30 indicated by the detection signal of the atmospheric pressure sensor.
  • the colonoscopy procedure there is a procedure in which air is supplied from the endoscope in order to expand the lumen of the large intestine for easy observation.
  • the evaluation module 105 presets an appropriate barometric pressure threshold value for each checkpoint in advance, and the cavity measured when the tip of the endoscope stays between the two checkpoints.
  • the procedure of the trainee may be evaluated by further using the comparison result between the internal pressure and the pressure threshold.
  • the evaluation module 105 further uses one or more of the bent state, the stretched state, the twisted state, and the loop state of the target portion of the large intestine model 30 detected by the detection module 101. You can also evaluate the trainee's technique. For example, when the detection module 101 detects the degree of expansion and contraction of the target part, the evaluation module 105 detects the expansion and contraction of the target part when the tip of the endoscope stays between the two checkpoints. May be held for each checkpoint, and points may be added or deducted to the evaluation points based on the comparison between the degree of expansion and contraction of the target part between checkpoints and the reference degree of expansion and contraction. .. Further, the evaluation module 105 may also evaluate the degree of bending, the number of loops, the type of loop shape, the degree of twist, and the like.
  • FIG. 9 is a diagram showing a display example during training in the medical simulator according to the present embodiment
  • FIG. 10 is a diagram showing a display example of training evaluation in the medical simulator according to the present embodiment.
  • the elapsed time from the detection of the passage of the tip of the endoscope by the object detection sensor provided in the anal holding portion 31 is displayed in the area DS1 and extends from the lower wall portion 21.
  • the image captured by the camera 6 supported by the camera support plate 61 is displayed in the area DS2.
  • mark displays MK1, MK2, MK3 and MK4 including numbers are arranged at each position of the four marker rings 43 detected by the detection module 101.
  • the line display connecting each mark display is also displayed, so that the deformation and shape information of the large intestine model 30 is presented.
  • the degree of expansion and contraction between the mark display MK1 and the mark display MK2 is displayed as a bar in the area DS3
  • the degree of expansion and contraction between the mark display MK2 and the mark display MK3 is displayed as a bar in the area DS4.
  • the degree of expansion and contraction between the mark display MK3 and the mark display MK4 is displayed as a bar.
  • a character string indicating the evaluation result of the procedure of the trainee is displayed in the area DS10.
  • the string contains a string that gives advice to the trainee according to the evaluation result (for example, "let's make an appropriate call to have the patient take a breath when inserting it into the transverse colon").
  • an evaluation point of 71 points out of 100 points is displayed in the area DS11.
  • a radar chart for five evaluation items is displayed in the area DS12.
  • the evaluation item of communication shows the evaluation result (“D” in FIG. 10) based on the information on the predetermined utterance specified by the utterance processing module 103, and the evaluation item of the load on the organ is the evaluation based on the load information.
  • the evaluation item of the observation shows the evaluation result (“C +” in FIG. 10) based on the time when the endoscope is returned, which is acquired by the measurement module 104, and the evaluation item of the insufflation is the large intestine model.
  • the evaluation result (“A +” in FIG. 10) based on the pressure in the lumen of 30 is shown.
  • the display content at the time of training and the display content of the training evaluation displayed by this simulator are not limited to the examples shown in FIGS. 9 and 10.
  • a graph display showing the change in the number of loops of the target part of the large intestine model 30 in time series or a graph display showing the change in the degree of expansion and contraction of the target part of the large intestine model 30 in time series are displayed during training.
  • a graph display showing changes in load over time may be included.
  • the display of the training evaluation may include the evaluation result regarding the expansion and contraction of the target portion of the large intestine model 30.
  • the evaluation result based on each of the five evaluation items may be scored numerically instead of a symbol.
  • the detected loop shape type ( ⁇ loop, inverse ⁇ loop, ⁇ loop, inverse ⁇ loop, N loop, M loop, etc.) may be displayed in real time in the display during training. At this time, depending on the type of the detected loop shape, advice regarding the operation of the endoscope for breaking the loop may also be displayed.
  • an advice such as "Turn the endoscope counterclockwise to release the loop” is displayed, and if a ⁇ loop is detected, May display advice such as "Turn the endoscope clockwise to break the loop.”
  • the detection module 101 holds in advance the correspondence between each type of loop shape and the advice character string information corresponding to that type, and corresponds to that type according to the detected loop shape type.
  • the advice character string may be displayed on the input / output panel 15.
  • Such real-time advice during training may be output not only by display but also by voice.
  • the above embodiment is an example.
  • the medical simulator is not limited to the above-mentioned configuration, and may be partially appropriately modified as long as it has at least a part of the above-mentioned configuration.
  • the large intestine model 30 is exemplified as the tract organ model, but a model simulating the digestive tract such as the esophagus, stomach, duodenum, ureter, blood vessel, etc. is adopted as the tract organ model. May be done. Therefore, in the above-described embodiment, the training of the colonoscopy examination technique is mainly described, but the medical procedure that can be trained by the present simulator is not limited to such a procedure. It is possible to train procedures related to colonoscopy treatment, as well as procedures related to examination and treatment of other luminal organs and intubation.
  • an endoscope has been exemplified as a target device (medical tool) used for training, but in this simulator, a medical device other than the endoscope such as an vascular endoscopic catheter may be used. Training-specific tools or equipment may be used.
  • the medical simulator may include at least a luminal organ model, an organ accommodating portion that accommodates the luminal organ model in a locally fixed state in an internal space, and a detection means.
  • the tract organ model is displaced in the internal space of the organ containment part by the operation of the target device by the trainee and the local fixation area that can be fixed to the organ accommodation part at different positions in the longitudinal direction.
  • the detecting means may be capable of detecting the displacement or deformation of the target site which is at least a part of the movable area of the luminal organ model in the internal space, at least during training, including the possible movable area.
  • the marker in order to detect the displacement or deformation of the target portion of the luminal organ model, only the marker may be used, or only the variable length member may be used. Furthermore, displacement or deformation of the target site of the luminal organ model may be detected without using either the marker or the variable length member.
  • a plurality of images showing various states in any one or more of the bent state, stretched state, twisted state, and loop state of the target part are prepared as teacher images, and for each teacher image.
  • a machine-learned trained model is generated based on a plurality of teacher data associated (tagged) with each state information.
  • the detection means gives an image captured from the camera 6 to the trained model, so that the target portion is in a bent state, an expanded / contracted state, a twisted state, or a loop state. Multiple can be detected (estimated). Further, in order to improve the detection accuracy, a plurality of captured images captured from different directions by two or more cameras 6 are input, and the target portion is in a bent state, a stretched state, a twisted state, or a loop state. It is preferable to use a trained model that outputs one or more of the above. In this case, a plurality of captured images captured from different directions indicating one state of the target site are prepared as teacher images, and in the teacher data, the one state is set with respect to the captured images.
  • a marker may or may not be arranged at a target site of the luminal organ model.
  • the image is characterized by the marker, so that the detection accuracy can be expected to be improved.
  • the bent state, stretched state, and twisted state of the target portion are based on the marker image included in the captured image. It can be described that the state or the loop state can be detected.
  • any one or more of the organ holding portion 32, the first slide wall portion 35, or the second slide wall portion 34 may be fixed so as not to slide. In this case, the corresponding motor is also unnecessary.
  • the position change may be performed manually, in which case the position change motor 71 becomes unnecessary.
  • the two cameras 6 are provided at positions separated from the lower side and the left side of the organ accommodating portion 2 toward the ventral side (see FIG. 2), but the number and arrangement of the cameras 6 Is not limited to the examples of the above-described embodiments.
  • the three-dimensional position of the target part is acquired by image recognition of the marker provided on the target part of the large intestine model 30, two or more cameras including two cameras 6 facing orthogonal directions in a plan view. It is preferable that 6 is provided.
  • one camera 6 for capturing the bird's-eye view image may be further provided. Further, only one camera 6 may be provided.
  • the detection of the deformation or displacement of the large intestine model 30 is supplemented by the detection of the length of the variable length member.
  • at least the lens portion of the camera 6 is arranged at a position closer to the window portion 25 of the organ accommodating portion 2 than the position shown in FIG. 2 although it is inside the organ accommodating portion 2 or outside the organ accommodating portion 2. May be good.
  • the simulator may be provided with a lighting material such as an LED on the inside or outside of the organ accommodating portion 2 or both, assuming use in a dark room.
  • a film or material that suppresses surface reflection is also provided on the inner surface of the window portion 25.
  • the posture change between the supine position and the left lateral position is simulated by swinging the organ accommodating portion 2, but further, the supine position and the right lateral position are described. It is also possible to simulate the repositioning between. This is done, for example, when the tire portions 20a, 20b and 20c provided on the right side wall portion 23 are symmetrically provided on the left side wall portion 24 and the organ accommodating portion 2 is in the supine position. This can be achieved by rotating the output shaft 75 in the direction opposite to that of the transition to the position state.
  • a mechanism for changing the luminal cross-sectional area of the large intestine model 30 is provided in the anal holding portion 31 to support a plurality of types of endoscopes. You may do so.
  • an air pump capable of intake and exhaust can be mentioned.
  • the difficulty level of the training may be lowered by injecting air into the lumen of the lumen organ model with an air pump or the like. This is because the injection of air into the lumen of the luminal organ model causes the luminal organ model to swell, making it easier to insert the endoscope. In this case, it is selected to add a configuration that allows air to be injected into the lumen of the luminal organ model from the air pump via the air tube, and to reduce the difficulty of training by input operation for the display on the input / output panel 15, for example. If this happens, the operation of the air pump should be started.
  • a growl voice indicating a painful state to the speaker For example, it is possible to output a voice called "Woo".
  • an error sound may be output to indicate damage to the organ.
  • the control unit 10 Automatically swings the first slide wall portion 35, the second slide wall portion 34, or the organ holding portion 32, or the organ accommodating portion 2 by operating a corresponding motor such as the posture change motor 71. It may be executed to automatically support the insertion of the endoscope. In this way, it becomes easy for the trainee who is unfamiliar with the operation of the endoscope to continue the training while receiving support.
  • the luminal organ model of the large intestine model 30 described above may be further provided with an injection portion for feeding the lubricating fluid into the lumen.
  • This injection includes a microinjection hole that penetrates the lumen from the outside of the tract organ model. It is preferable that the injection hole is small enough to allow a nozzle or tube connected to the lubricating liquid container to be inserted and to prevent the lubricating liquid injected into the lumen from leaking to the outside. Further, when the lubricating liquid is injected into the lumen from the lubricating liquid container via the liquid feeding tube, a tube connecting portion connected to the end portion of the liquid feeding tube may be attached to the injection portion.
  • the lubricating liquid may be any agent that improves the sliding in the lumen of the luminal organ model, and for example, a volatile silicone release agent is used.
  • a volatile silicone release agent is used.
  • the tract organ model has the lubricating fluid injected into the lumen on the inner wall surface defining the lumen. It is preferable to have a plurality of micro-grooves capable of retaining the water.
  • the width of the micro-groove may be such that the lubricating liquid can stay longer than the inner wall surface without the groove, and must be at least smaller than the diameter of the endoscope, preferably less than 1 mm. .. Further, the width of the micro-groove may be a size that can reduce the friction area between the inserted endoscope and the inner wall surface of the luminal organ model.
  • FIG. 11 is a diagram showing an inner wall surface of the large intestine model 30 in the present embodiment.
  • P1 of FIG. 11 schematically shows the inner wall surface of the large intestine model 30, and P2 shows a schematic view of an enlarged inner wall surface.
  • the ultrafine concave groove and the base surface of the inner wall are shown in an uneven shape.
  • a plurality of linear ultrafine concave grooves extending in a direction substantially orthogonal to the longitudinal direction of the large intestine model 30 are provided substantially in parallel on the inner wall surface of the large intestine model 30.
  • Such a linear concave groove may be provided over the entire area of the inner wall surface of the large intestine model 30, or may be provided only in a specific area of the inner wall surface.
  • such linear micro-grooves can be formed as stacking marks on the inner wall surface by molding the inner wall surface of the luminal organ model using a core. Further, even if a core having a minute convex shape on the surface is used, a minute groove on the inner wall surface of the large intestine model 30 can be formed.
  • the method for forming the minute groove is not limited in any way. Further, in the example of FIG. 11, the micro-groove is formed linearly, but may be formed as a hole.
  • the frictional area between the medical device inserted into the lumen and the inner wall surface is reduced, or the lubricating liquid stays in the minute groove. It is possible to reduce unnecessary resistance when inserting and returning (removing) the medical device.
  • the checkpoints from which time information is acquired by the measurement module 104 are set at the esophageal entrance, the junction (cardia), the duodenum, etc. It should be done. Further, the load information acquired by the evaluation module 105 may be a pressure value to the pharynx. When the pharyngeal reflex or ambiguity is simulated in the medical simulator, the evaluation module 105 may deduct evaluation points each time the pharyngeal reflex or ambiguity is performed.
  • the barometric pressure sensor detects the barometric pressure in the lumen of the luminal organ model
  • the barometric pressure from the start until the tip of the endoscope is inserted into the duodenum, from the duodenum to the tip The air pressure after being removed from the joint, the air pressure after being removed from the joint (cardia), and the like may be evaluated.
  • the evaluation module 105 "take a breath”, “hold a breath”, and “please relax” when the tip of the endoscope is present around the joint (cardia). It is also possible to evaluate whether or not a set of predetermined utterances "" is specified by the utterance processing module 103.
  • FIG. 12 is a perspective view showing the appearance of the human body model unit 1 according to the modified example
  • FIG. 13 is an exploded view in which the organ accommodating portion 200 and the light-shielding portion 210 in the human body model unit 1 according to the modified example are separated. is there.
  • the organ accommodating portion 200 has a ventral structure different from that of the organ accommodating portion 2 in the above-described embodiment, and other structures are the same as those of the organ accommodating portion 2.
  • the organ accommodating portion 200 is a substantially rectangular parallelepiped box body, and the ventral side is closed by a window portion 201 formed of a transparent material. According to the window portion 201, not only the large intestine model 30 in the organ accommodating portion 200 can be imaged by the camera 6 from the outside of the organ accommodating portion 200, but also the peritoneum of the human body can be simulated.
  • the light-shielding portion 210 has a substantially rectangular parallelepiped shape and is detachably attached to the ventral side of the organ accommodating portion 200.
  • the light-shielding portion 210 covers the window portion 201 from the ventral side in the worn state, and together with the lower wall portion 21, the upper wall portion 22, the right side wall portion 23, and the left side wall portion 24 of the organ accommodating portion 200, the inside of the organ accommodating portion 200. Shield the space from outside light. As a result, the image of the camera 6 that captures the large intestine model 30 in the organ accommodating portion 200 can be prevented from being affected by external light.
  • the light-shielding portion 210 has a lower wall portion 221 and an upper wall portion 222 (not shown in FIG.
  • the dorsal edges of the right wall 223 and the left wall 224 of the light-shielding portion 210 and the ventral edge of the right wall 23 and the left wall 24 of the organ accommodating portion 200 extend linearly in the vertical direction, respectively. It has a structure that can be engaged with each other. As a result, by sliding the light-shielding portion 210 in the vertical direction with respect to the organ accommodating portion 200, the light-shielding portion 210 can be attached to and detached from the organ accommodating portion 200. By making the light-shielding portion 210 detachable from the organ accommodating portion 200 in this way, it is possible to facilitate the replacement work of the large intestine model 30 and the maintenance work in the organ accommodating portion 200.
  • the light-shielding portion 210 divides the internal space defined by the lower wall portion 221, the upper wall portion 222, the right side wall portion 223, the left side wall portion 224, and the ventral side wall portion 225 into an open dorsal space and a ventral space. It also has a partition plate. The partition plate is fixed by connecting the upper, lower, left and right edge portions to the lower wall portion 221 and the upper wall portion 222, the right side wall portion 223 and the left side wall portion 224.
  • a light emitting unit 215 is provided on the inner wall surface of the ventral space partitioned by the partition plate. The light emitting unit 215 extends at a predetermined length.
  • Each light emitting unit 215 may be formed by arranging a plurality of light sources such as LEDs (Light Emitting Diodes) in a row, or may be formed by one long light source.
  • the camera 6 is installed at substantially the center of the partition plate so that the lens portion of the camera 6 is exposed toward the dorsal space of the light-shielding portion 210.
  • the dorsal space of the light-shielding portion 210 is open, it can be said that the camera 6 is installed at a position and orientation in which the large intestine model 30 can be imaged through the window portion 201 of the organ accommodating portion 200.
  • the partition plate is formed of a light-shielding region 211 and a light-transmitting region 212.
  • the light-shielding region 211 is formed of a member or material capable of blocking light from the light emitting unit 215 provided in the ventral space of the light-shielding portion 210 so as not to be transmitted to the dorsal space side as much as possible.
  • the light-shielding region 211 may be formed by attaching a light-shielding film to the ventral surface of the partition plate, or the light-shielding agent may be applied to the ventral surface of the partition plate. It may be formed as a partial plate formed of a material having a light-shielding property.
  • the light transmitting region 212 is formed of a member or material capable of transmitting light from the light emitting unit 215 provided in the ventral space of the light shielding portion 210 to the dorsal space side.
  • the arrangement of the light-shielding region 211 and the light-transmitting region 212 is such that the light from the light-emitting unit 215 can indirectly illuminate the internal space of the organ accommodating unit 200 in order to suppress the surface reflection of the window unit 201. And it may be decided according to the position of the camera 6. Therefore, the light-shielding region 211 and the translucent region 212 of the partition plate are provided between the light source (light emitting unit 215) and the window portion 201, and the internal space of the organ accommodating portion 200 is indirectly provided by the light from the light source. It can be described as an indirect lighting unit that illuminates.
  • the light-shielding area 211 and the light-transmitting area 212 are connected in the vertical direction to form a partition plate, and the light-transmitting area 212 is about 1/5 to 1/6 of the light-shielding area 211.
  • the light-shielding region 211 is located below (anal side) and above as the remaining region of the partition plate.
  • two light emitting units 215 are provided on the left and right inner wall surfaces of the ventral space of the light emitting unit 210, and the light emitting region 211 is arranged at a position covering the back side of the light source of the two light emitting units 215, and is transparent.
  • the light region 212 is arranged at a position where the light emitting unit 215 does not have a light source.
  • the light-shielding unit 210 shields the internal space of the organ-containing unit 200 from outside light, and the inside of the organ-containing unit 200 is indirectly illuminated by the light from the light emitting unit 215 provided in the internal space of the light-shielding unit 210.
  • By illuminating the space it is possible to appropriately image the large intestine model 30 in the internal space of the organ accommodating portion 200 while suppressing the surface reflection and reflection of the window portion 201. As a result, the image recognition accuracy of the large intestine model 30 can be maintained.
  • the window portion 201 may or may not include a member or material that suppresses surface reflection.
  • the inner wall surface of the organ accommodating portion 200 may also include a member or material that suppresses surface reflection. Furthermore, of the inner wall surface of the organ accommodating portion 200, at least the region around the target portion of the large intestine model 30 whose deformation or displacement is to be detected may include a member or material that suppresses surface reflection. .. By doing so, it is possible to suppress surface reflection of the inner wall surface due to indirect illumination, and it is possible to maintain the image recognition accuracy of the large intestine model 30. Further, not only the inner wall surface of the organ accommodating portion 200, but also the anal holding portion 31, the organ holding portion 32, the first slide wall portion 35, the second slide wall portion 34, and the holding portion provided in the internal space of the organ accommodating portion 200. The pillar 39 and the like may also include a member or material that suppresses surface reflection.
  • the human body model unit 1 in addition to the camera 6 provided in the light-shielding unit 210 and capturing a plan view image of the internal space of the organ accommodating unit 200, mainly.
  • Another camera 6 (not shown) that images the sigmoid colon region of the large intestine model 30 from the side is provided in the organ accommodating portion 200.
  • the latter camera 6 is provided, for example, toward the left side near the inner surface on the right side in the organ accommodating portion 200, or facing the right side near the inner surface on the left side in the organ accommodating portion 200.
  • FIG. 14 is a diagram showing a part of the display at the time of training in the modified example.
  • the evaluation module 105 may display the display as shown in FIG. 14 on the input / output panel 15 in addition to or in place of the display shown in FIG.
  • the plan view image captured by the camera 6 in the shading unit 210 is displayed in the area DS21
  • the side view image captured by the camera 6 in the organ accommodating unit 200 is displayed in the area DS22.
  • the endoscopic image captured by the endoscope handled by the trainee is displayed in the area DS23
  • the image of the trainee captured by an external camera (not shown) is displayed in the area DS24.
  • the degree of expansion and contraction of the large intestine model 30 shown in the regions DS3, DS4 and DS5 in the example of FIG. 9 is displayed in the region DS25 as the elongation of the sigmoid colon in the example of FIG.
  • the degree of pressure detected by the pressure sensor provided on the downward wall surface of the first slide wall portion 35 is displayed in the area DS26 as the pressure on the compression wall.
  • the detection module 101 acquires image data of a plan view image and a side view image captured by each camera 6 in the light-shielding portion 210 and the organ accommodating portion 200, and the large intestine model 30 is obtained from this image data.
  • the detection module 101 acquires image data of a plan view image and a side view image captured by each camera 6 in the light-shielding portion 210 and the organ accommodating portion 200, and the large intestine model 30 is obtained from this image data.
  • Recognition of the large intestine model 30 can be realized based on color characteristics and the like by using a well-known image recognition technique.
  • the evaluation position is set as a line extending in the vertical direction to a predetermined position in the vertical direction of the internal space of the organ accommodating portion 200 in the plan view image, and in the front-back direction (ventral) of the internal space of the organ accommodating portion 200 in the lateral view image. It is set as a line extending in the vertical direction at a predetermined position (in the lateral-dorsal direction).
  • the detection module 101 holds the evaluation position (evaluation line) in advance for each of the plan view image and the side view image, and at least a part of the recognized image area of the large intestine model 30 exceeds the evaluation position. Detect that. Further, the detection module 101 may calculate the area of the movable area beyond the evaluation position in addition to detecting that at least a part of the movable area of the large intestine model 30 exceeds the evaluation position. ..
  • the evaluation module 105 may further use the detection result by the detection module 101 to evaluate the technique of the trainee. For example, the evaluation module 105 detects when it is detected that at least a part of the movable area of the large intestine model 30 exceeds the evaluation position, or when the area of the movable area beyond the evaluation position becomes a predetermined area or more. , Deduct evaluation points. Further, the evaluation module 105 may increase the number of points to be deducted according to the time when at least a part of the large intestine model 30 exceeds the evaluation position, or at least a part of the large intestine model 30 exceeds the evaluation position. Evaluation points may be deducted by the number of points corresponding to the number of times.
  • the detection module 101 may increase the number of points to be deducted according to the detected area and the detection time, or the number of times that the area of the movable area beyond the evaluation position becomes equal to or more than a predetermined area. Evaluation points may be deducted by the number of corresponding points.
  • the evaluation module 105 can also display the lines DS211 and DS221 indicating the evaluation position superimposed on the plan view image or the side view image, as displayed in the area DS21 and the area DS22 in FIG. According to such an evaluation, it is possible to evaluate whether or not the endoscopic procedure performed by the trainee puts an excessive burden on the large intestine. In addition, by displaying a line indicating the evaluation position, it is possible to make it easier for the trainee to grasp the status of his / her own procedure.
  • a tract organ model that is flexible and has a shape that mimics at least one tract organ
  • An organ accommodating part that accommodates the luminal organ model in an internal space in a locally fixed state
  • Detection means and With
  • the luminal organ model has a locally fixed region that can be fixed to the organ accommodating portion at different positions in the longitudinal direction, and within the internal space of the organ accommodating portion by the operation of the target device by the trainee.
  • the detecting means can detect displacement or deformation of a target site which is at least a part of the movable region of the luminal organ model in the internal space, at least during training. Medical simulator.
  • the detection means acquires an image of the inside of the organ accommodating portion captured by a camera, and detects a bent state, a stretched state, a twisted state, or a loop state of the target site based on a marker image included in the image. It is possible, The medical simulator described in Appendix 1. (Appendix 3)
  • the organ accommodating portion includes an abdominal wall cover portion that seals the internal space from the ventral side while accommodating the luminal organ model.
  • the abdominal wall cover includes at least a transparent window so that the model of the luminal organ in the interior space is visible.
  • the window portion includes a member or material that suppresses surface reflection of the window portion in order to prevent a decrease in recognition accuracy of the luminal organ model in an image captured by the camera.
  • the medical simulator according to Appendix 1 or 2. (Appendix 4) A shading unit that is detachably attached to the organ accommodating portion and shields the internal space of the organ accommodating portion from outside light in the attached state.
  • the organ accommodating portion includes an abdominal wall cover portion that seals the internal space of the organ accommodating portion from the ventral side while accommodating the luminal organ model.
  • the abdominal wall cover portion includes a transparent window portion and includes a transparent window portion.
  • the light-shielding portion is provided between the camera, a light source, and the light source and the window portion, which are installed at a position and orientation in which the tract organ model can be imaged through the window portion.
  • the medical simulator according to Appendix 1 or 2. (Appendix 5) Of the inner wall surface of the organ accommodating portion, at least the region around the target portion of the luminal organ model to be detected by the detection means includes a member or material that suppresses surface reflection.
  • the medical simulator according to Appendix 3 or 4. (Appendix 6)
  • the movable region of the tract organ model includes a specific movable region connected to a variable length member.
  • the detecting means can detect the displacement or deformation of the target portion by detecting the length of the variable length member.
  • the medical simulator according to any one of Appendix 1 to 5.
  • the tract organ model is a large intestine model that imitates the shape of the large intestine.
  • the organ accommodating portion is switched between an anal holding portion holding the anal side end region of the large intestine model and a sliding state slidable with respect to the organ accommodating portion and a fixed state fixed with respect to the organ accommodating portion.
  • the local fixation region of the large intestine model includes the anal side end region held by the anal holding portion and the region held by the organ holding portion.
  • the region held by the organ holding portion of the large intestine model is a region corresponding to a part of the range from the descending colon to the sigmoid colon.
  • the slide of the organ holding portion changes the degree of flexion between the anal side end region and the region held by the organ holding portion in the large intestine model.
  • the medical simulator according to any one of Appendix 1 to 6. (Appendix 8) In the slide range of the organ holding portion, the length from the anal side end region to the region held by the organ holding portion in the large intestine model is twice the distance from the anal holding portion to the organ holding portion. Including the position The medical simulator described in Appendix 7.
  • the tract organ model is a large intestine model that imitates the shape of the large intestine.
  • the local fixation region of the luminal organ model includes the anal side end region of the large intestine model.
  • the movable region of the luminal organ model includes a transverse colon region corresponding to the transverse colon in the large intestine model and a rectal region corresponding to the rectum in the large intestine model.
  • the organ accommodating portion is located below the accommodating position of the transverse colon region of the large intestine model and above the accommodating position of the anal holding portion holding the anal side end region and the rectal region of the large intestine model. Including auxiliary walls with downward walls, The medical simulator according to any one of Appendix 1 to 8.
  • the auxiliary wall portion can be switched between a sliding state in which the distance to the anal holding portion changes and a fixed state in which the auxiliary wall portion is fixed to the organ accommodating portion.
  • the medical simulator described in Appendix 9. (Appendix 11)
  • the tract organ model is a large intestine model that imitates the shape of the large intestine.
  • the large intestine model includes a transverse colon region corresponding to the transverse colon, a splenic curve region corresponding to splenic curvature, and a hepatic curvature region corresponding to hepatic curvature.
  • the organ accommodating portion is erected with a downward wall surface above the internal space, and is provided so as to be switchable between a sliding state that can slide downward and a fixed state that is fixed to the organ accommodating portion.
  • Including the sliding wall At least the splenic curve region and the liver curve region of the large intestine model are displaced downward as the slide wall portion slides downward.
  • the medical simulator according to any one of Appendix 1 to 10. (Appendix 12)
  • the large intestine model includes a splenic curve region corresponding to a splenic curve and a liver curve region corresponding to a liver curve.
  • the spleen-curved region and the hepatic-curved region of the large intestine model are color tone-changing regions that cause a color change in the spleen-curved region and the hepatic-curved region in an endoscopic image taken in the lumen of the large intestine model.
  • the medical simulator according to Appendix 11. (Appendix 13) With the motor A motor accommodating portion accommodating the motor and An output shaft driven by the rotational power of the motor and A base for holding the motor housing and With more The organ accommodating portion further includes an upper end wall portion that seals the upper part of the internal space and fixes one end of the output shaft, and when the output shaft is driven by the rotational power of the motor, the base.
  • the medical simulator according to any one of Appendix 1 to 12.
  • the tract organ model is a large intestine model that imitates the shape of the large intestine.
  • the organ containment includes an anal retainer that holds the anal side end region of the large intestine model.
  • the local fixation region of the large intestine model includes the anal lateral end region held by the anal holding.
  • the anal holding portion includes a through hole through which the anal side end region of the large intestine model is inserted, and a tapered wall surface portion in which the cross-sectional area of the through hole gradually expands upward.
  • the tapered wall surface portion includes a first wall surface portion having a steep slope from the lower end to the upper end of the tapered wall surface portion and a second wall surface portion having a gentler slope than the first wall surface portion.
  • the first wall surface portion and the second wall surface portion are present at least at positions facing each other in the axial direction of the through hole.
  • the medical simulator according to any one of Appendix 1 to 13.
  • the luminal organ model has a plurality of microgrooves on the inner wall surface that defines the lumen, which can retain the lubricating fluid injected into the lumen.
  • the medical simulator according to any one of Appendix 1 to 14.
  • the time acquisition means includes the first stay time from passing the first checkpoint to passing the second checkpoint, and the first checkpoint after passing the second checkpoint. Get a second stay time and each until you pass The evaluation means evaluates the first staying time and the second staying time by separate evaluation methods.
  • a load acquisition means for acquiring load information applied to a predetermined site of the tract organ model, With more When the acquired load information indicates a load exceeding the threshold value, the evaluation means deducts points corresponding to the load information from the evaluation points scored using the acquired stay time. Calculate the evaluation points of the trainee's procedure, The medical simulator according to Appendix 16 or 17.
  • the utterance acquisition means for acquiring the utterance information of the trainee, and An utterance specifying means capable of identifying one or more predetermined utterances uttered by the trainee among a plurality of predetermined utterances based on the acquired utterance information.
  • the evaluation means calculates the evaluation points by adding or deducting points based on the combination of one or more specified predetermined utterances.
  • the medical simulator according to Appendix 18.
  • Appendix 20 A measuring means for measuring the air pressure in the lumen of the luminal organ model, With more The evaluation means evaluates the procedure of the trainee by further using the comparison result between the atmospheric pressure and the atmospheric pressure threshold value measured while the part of the target device is staying between the two checkpoints.
  • the medical simulator according to any one of Appendix 16 to 19.
  • Appendix 21 When the detecting means can detect the bent state, the stretched state, the twisted state, or the loop state of the target portion, the evaluation means detects the bent state, the stretched state, the twisted state, or the loop state.
  • the detection means detects that at least a part of the movable region of the luminal organ model exceeds the evaluation position in the anteroposterior direction or the evaluation position in the vertical direction in the internal space of the organ accommodating portion at least during training.
  • the evaluation means further uses the detection result of the detection means exceeding the evaluation position to evaluate the procedure of the trainee.
  • the medical simulator according to any one of Appendix 16 to 21.
  • a luminal organ model that is flexible and has a shape that imitates at least one luminal organ, an organ accommodating portion that accommodates the luminal organ model in an internal space, and a longitudinal direction in the lumen of the luminal organ model. It is a procedure evaluation method using a medical simulator executed by a control unit that controls a medical simulator having at least a plurality of sensors provided at different positions. Based on the detection signals from the plurality of sensors, it is determined that the site of the target device has passed through a plurality of checkpoints provided at different positions in the longitudinal direction in the tract of the tract organ model. Get the time spent at the site between the two checkpoints The trainee's procedure is evaluated using at least the acquired dwell time. A procedure evaluation method using a medical simulator including that.
  • (Appendix 26) Acquire the utterance information of the trainee and Based on the acquired utterance information, one or more predetermined utterances uttered by the trainee are specified among a plurality of predetermined utterances. Including that In the calculation of the evaluation points, the evaluation points are calculated by adding or deducting points based on the combination of one or more specified predetermined utterances. A procedure evaluation method using the medical simulator described in Appendix 25. (Appendix 27) Measuring the air pressure in the lumen of the luminal organ model, Including that In the evaluation, the procedure of the trainee is evaluated by further using the comparison result between the atmospheric pressure and the atmospheric pressure threshold value measured while the part of the target device is staying between the two checkpoints.
  • the procedure evaluation method using the medical simulator according to any one of Appendix 23 to 26. (Appendix 28) Detecting a bent state, a stretched state, a twisted state, or a loop state of a target site of the luminal organ model in the internal space. Including that In the evaluation, the procedure of the trainee is evaluated by further using the detected bending state, stretching state, twisting state, or loop state.
  • the procedure evaluation method using the medical simulator according to any one of Appendix 23 to 27. It is detected that at least a part of the luminal organ model exceeds the evaluation position in the anteroposterior direction or the evaluation position in the vertical direction in the internal space of the organ accommodating portion.
  • the procedure of the trainee is evaluated by further using the result of the detection that at least a part of the luminal organ model exceeds the evaluation position.
  • the procedure evaluation method using the medical simulator according to any one of Appendix 23 to 28. (Appendix 30) A computer program for causing the control unit to execute a procedure evaluation method using the medical simulator according to any one of Appendix 23 to 29.

Abstract

A medical simulator that comprises a hollow organ model having flexibility, an organ housing part for housing the hollow organ model in a state of being topically fixed within an inner space thereof, and a detection means, wherein: the hollow organ model includes, at different positions in the longitudinal direction, a topically fixed region and a movable region that is displaceable within the inner space of the organ housing part by a trainee's operation of a target device; and the detection means is capable of detecting the displacement or deformation of a target site that is at least a part of the movable region of the hollow organ model within the inner space.

Description

医療シミュレータ及び医療シミュレータを用いた手技評価方法Medical simulator and procedure evaluation method using medical simulator
 本発明は、医療シミュレータに関し、特に、管腔臓器へ内視鏡等の医療具を挿入する医療手技の訓練を可能とするシミュレータ及びそのような医療シミュレータを用いた被訓練者の手技の評価方法に関する。 The present invention relates to a medical simulator, in particular, a simulator capable of training a medical procedure for inserting a medical device such as an endoscope into a luminal organ, and a method for evaluating a procedure of a trainee using such a medical simulator. Regarding.
 近年の医学の進歩及び医療技術の高度化に伴い、医療従事者にも高度な技能が求められるようになってきており、医療従事者に対する教育の充実が求められている。中でも、生体を模擬したモデルを用いたシミュレーション教育は、実践さながらの技術習得及び訓練が可能となるため、特に注目されている。 With the progress of medicine and the sophistication of medical technology in recent years, medical professionals are also required to have advanced skills, and it is required to enhance education for medical professionals. In particular, simulation education using a model that simulates a living body is attracting particular attention because it enables skill acquisition and training as if it were practiced.
 下記特許文献1には、臓器モデルの穿孔を防ぎ、効率良くトレーニング可能な内視鏡トレーニングシステムが開示されている。このシステムは、内視鏡装置のスコープを挿入する臓器モデルを外箱本体に収容し、その外箱本体と臓器モデルとの間を液体で充填し、液体が外箱本体から外部へ流出する流量を臓器モデルに作用する圧力として検出する。これにより、臓器モデルが穿孔するほどの不必要な圧力がかかる前に使用者に注意喚起することで、臓器モデルの穿孔を防ぐことが可能となる。 Patent Document 1 below discloses an endoscopic training system that prevents perforation of an organ model and enables efficient training. In this system, the organ model into which the scope of the endoscope device is inserted is housed in the outer box body, the space between the outer box body and the organ model is filled with liquid, and the flow rate of the liquid flowing out from the outer box body to the outside. Is detected as the pressure acting on the organ model. As a result, it is possible to prevent the organ model from being perforated by alerting the user before the unnecessary pressure is applied to the organ model to perforate.
特開2012-8372号公報Japanese Unexamined Patent Publication No. 2012-8372
 上述のトレーニングシステムでは、液体の流出量を臓器モデルに作用する圧力として検出するが、内視鏡手技では臓器モデルは大きく変位する場合もあるため、液体の流出量では臓器モデルに作用する圧力を正確に検出できるとは言い切れない。例えば、臓器モデルが大きく変位することで臓器モデルに作用する圧力とは無関係に液体が流出してしまう場合があり得る。
 管腔臓器へ内視鏡等の医療具を挿入する医療手技は医師の暗黙知でしかなく、そのような医療手技の状況を適切に可視化することができていないのが現状である。
In the above training system, the amount of liquid outflow is detected as the pressure acting on the organ model, but since the organ model may be greatly displaced by endoscopic procedures, the amount of liquid outflow detects the pressure acting on the organ model. It cannot be said that it can be detected accurately. For example, a large displacement of the organ model may cause the liquid to flow out regardless of the pressure acting on the organ model.
The medical procedure of inserting a medical device such as an endoscope into a luminal organ is only tacit knowledge of a doctor, and the current situation is that the situation of such a medical procedure cannot be appropriately visualized.
 本発明は、このような事情に鑑みてなされたものであり、管腔臓器へ内視鏡等の医療具を挿入する医療手技の状況を適切に可視化することで、当該医療手技の効率的な訓練を可能とする医療シミュレータ及びそのような医療シミュレータを用いた被訓練者の手技の評価方法を提供する。
 本明細書において「医療具」とは、医療機器だけでなく、医療手技訓練用の機器や用具を含むものとする。
The present invention has been made in view of such circumstances, and by appropriately visualizing the state of a medical procedure for inserting a medical device such as an endoscope into a luminal organ, the medical procedure can be made efficient. A medical simulator that enables training and a method for evaluating the procedure of a trainee using such a medical simulator are provided.
In the present specification, the term "medical device" includes not only medical devices but also devices and tools for medical technique training.
 本発明の一側面に係る医療シミュレータは、上述した課題を解決するために、以下の構成を採用する。即ち、当該一側面に係る医療シミュレータは、柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、管腔臓器モデルを局所的に固定した状態で内部空間に収容する臓器収容部と、検出手段とを備え、管腔臓器モデルは、長手方向の異なる位置に、臓器収容部に固定されている状態となり得る局所固定領域と、被訓練者による対象装置の操作により臓器収容部の内部空間内で変位可能な可動領域とを含み、検出手段は、少なくとも訓練時において、当該内部空間内における管腔臓器モデルの可動領域の少なくとも一部である対象部位の変位又は変形を検出可能である。
 ここで、管腔臓器モデルとは、管腔臓器を模擬した中空の管状体である。
 対象装置は、内視鏡等のような医療具である。
The medical simulator according to one aspect of the present invention adopts the following configuration in order to solve the above-mentioned problems. That is, the medical simulator related to this one aspect accommodates a tract organ model having flexibility and a shape imitating at least one tract organ and a tract organ model in a locally fixed state in an internal space. The tract organ model is provided with an organ accommodating part and a detecting means, and a local fixation area that can be fixed to the organ accommodating part at different positions in the longitudinal direction and an operation of the target device by the trainee. The detection means includes, at least during training, a displacement or deformation of a target site that is at least a part of the movable area of the tract organ model in the internal space, including a movable area that can be displaced within the internal space of the organ housing. Can be detected.
Here, the luminal organ model is a hollow tubular body simulating a luminal organ.
The target device is a medical device such as an endoscope.
 本発明の他の側面は、柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、管腔臓器モデルを内部空間に収容する臓器収容部と、管腔臓器モデルの管腔における長手方向の相互に異なる位置に設けられた複数のセンサとを少なくとも備える医療シミュレータを制御する制御部により実行される医療シミュレータを用いた手技評価方法に関する。本方法は、当該複数のセンサによる検出信号に基づいて、管腔臓器モデルの管腔における長手方向の相互に異なる位置に設けられた複数のチェックポイントを対象装置の部位が通過したことを判定し、二つのチェックポイント間の上記部位の滞在時間を取得し、取得された滞在時間を少なくとも用いて被訓練者の手技を評価することを含む。
 また、他の側面として、上記手技評価方法を上記医療シミュレータを制御する制御部に実行させるコンピュータプログラムであってもよいし、このようなプログラムを記録したコンピュータが読み取り可能な記憶媒体であってもよい。この記憶媒体は、非一時的な有形の媒体を含む。
Another aspect of the present invention is a luminal organ model that is flexible and has a shape that imitates at least one luminal organ, an organ accommodating portion that accommodates the luminal organ model in an internal space, and a luminal organ model. The present invention relates to a procedure evaluation method using a medical simulator executed by a control unit that controls a medical simulator including at least a plurality of sensors provided at different positions in the longitudinal direction of the lumen. Based on the detection signals from the plurality of sensors, this method determines that the site of the target device has passed through a plurality of checkpoints provided at different positions in the longitudinal direction in the tract of the tract organ model. Includes obtaining the dwell time of the above site between two checkpoints and using at least the obtained dwell time to evaluate the trainee's procedure.
Further, as another aspect, it may be a computer program that causes a control unit that controls the medical simulator to execute the procedure evaluation method, or a storage medium that can be read by a computer that records such a program. Good. This storage medium includes non-temporary tangible media.
 本発明によれば、管腔臓器へ内視鏡等の医療具を挿入する医療手技の状況を適切に可視化することで、当該医療手技の効率的な訓練を可能とする医療シミュレータ及びそのような医療シミュレータを用いた被訓練者の手技の評価方法を提供することができる。 According to the present invention, a medical simulator that enables efficient training of the medical procedure by appropriately visualizing the status of the medical procedure for inserting a medical device such as an endoscope into a luminal organ and such. It is possible to provide a method of evaluating the procedure of a trainee using a medical simulator.
本実施形態に係る医療シミュレータの全体構成を概念的に示す図である。It is a figure which conceptually shows the whole structure of the medical simulator which concerns on this embodiment. 本実施形態に係る医療シミュレータの人体模型部の外観を示す斜視図である。It is a perspective view which shows the appearance of the human body model part of the medical simulator which concerns on this embodiment. 本実施形態に係る臓器収容部の内部構成を示す模式図である。It is a schematic diagram which shows the internal structure of the organ accommodating part which concerns on this embodiment. 肛門保持部を前後方向に直交する平面で切断した断面図である。It is sectional drawing which cut the anal holding part by the plane orthogonal to the anteroposterior direction. 図5(a)は、臓器保持部が肛門保持部から相対的に近い位置に配置されている状態における大腸モデル30の状態を示す図であり、図5(b)は、臓器保持部が肛門保持部に相対的に遠い位置に配置されている状態における大腸モデル30の状態を示す図である。FIG. 5 (a) is a diagram showing a state of the large intestine model 30 in a state where the organ holding portion is arranged at a position relatively close to the anus holding portion, and FIG. It is a figure which shows the state of the large intestine model 30 in the state which is arranged at the position relatively far from the holding part. 図6(a)は、仰臥位状態の臓器収容部とモータ収容部の内部構成とを示す図であり、図6(b)は、左側臥位状態の臓器収容部とモータ収容部の内部構成とを示す図である。FIG. 6A is a diagram showing the internal configuration of the organ accommodating portion and the motor accommodating portion in the supine position, and FIG. 6B is an internal configuration of the organ accommodating portion and the motor accommodating portion in the left lateral decubitus position. It is a figure which shows. 本実施形態に係る医療シミュレータにおける制御構成を概念的に示す図である。It is a figure which conceptually shows the control structure in the medical simulator which concerns on this embodiment. 制御部により実現されるソフトウェア構成を概念的に示すブロック図である。It is a block diagram which conceptually shows the software structure realized by a control part. 本実施形態に係る医療シミュレータにおける訓練時の表示例を示す図である。It is a figure which shows the display example at the time of training in the medical simulator which concerns on this embodiment. 本実施形態に係る医療シミュレータにおける訓練評価の表示例を示す図である。It is a figure which shows the display example of the training evaluation in the medical simulator which concerns on this embodiment. 本実施形態における大腸モデルの内壁面を示す図である。It is a figure which shows the inner wall surface of the large intestine model in this embodiment. 変形例に係る人体模型部の外観を示す斜視図である。It is a perspective view which shows the appearance of the human body model part which concerns on a modification. 変形例に係る人体模型部における臓器収容部と遮光部とを分離させた分解図である。It is an exploded view which separated the organ accommodating part and the light-shielding part in the human body model part which concerns on a modification. 変形例における訓練時の表示の一部を示す図である。It is a figure which shows a part of the display at the time of training in a modification.
 以下、本発明の実施形態について図面を用いて説明する。以下に挙げる実施形態は例示であり、本発明は以下の実施形態の構成に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments listed below are examples, and the present invention is not limited to the configurations of the following embodiments.
 図1は、本実施形態に係る医療シミュレータの全体構成を概念的に示す図である。
 本実施形態に係る医療シミュレータ(以降、本シミュレータと略称する場合もある)は、主に、人体模型部1及びシミュレータ制御部10により構成されており、大腸内視鏡に関する手技の訓練を可能とする。
 シミュレータ制御部10は、医療シミュレータを制御する構成であり、PC(Personal Computer)のようないわゆるコンピュータであってもよいし、組込みシステムであってもよいし、制御基板であってもよい。シミュレータ制御部10の詳細構成については後述する。
FIG. 1 is a diagram conceptually showing the overall configuration of the medical simulator according to the present embodiment.
The medical simulator according to the present embodiment (hereinafter, may be abbreviated as this simulator) is mainly composed of a human body model unit 1 and a simulator control unit 10, and enables training in procedures related to colonoscopy. To do.
The simulator control unit 10 has a configuration for controlling a medical simulator, and may be a so-called computer such as a PC (Personal Computer), an embedded system, or a control board. The detailed configuration of the simulator control unit 10 will be described later.
 図2は、本実施形態に係る医療シミュレータの人体模型部1の外観を示す斜視図である。
 人体模型部1は、図2に示されるように、主に、臓器収容部2、モータ収容部7及び基台9により構成されている。
 以降、人体模型部1の各部の相対的な位置関係を特定するために、図2に示される上下方向及び左右方向を便宜的に用い、それらに直交する方向を前後方向と表記することとする。但し、詳細は後述するが、臓器収容部2は、図2に示される向き(以降、仰臥位状態と表記する場合がある)だけでなく、後述する図6(b)に示される向き(以降、左側臥位状態と表記する場合がある)にもなるが、臓器収容部2の説明では、左右方向及び前後方向は、臓器収容部2の向きに関わらず固定的に設定するものとする。このため、左側臥位状態の臓器収容部2の説明で用いる左右方向及び前後方向は、モータ収容部7及び基台9の説明で用いる左右方向及び前後方向と異なることとなる。
 このように本明細書で表記する方向は、重力方向の上下とは一致しない場合もあるし、医療シミュレータの使用態様を限定するものでもない。
FIG. 2 is a perspective view showing the appearance of the human body model portion 1 of the medical simulator according to the present embodiment.
As shown in FIG. 2, the human body model unit 1 is mainly composed of an organ accommodating unit 2, a motor accommodating unit 7, and a base 9.
Hereinafter, in order to specify the relative positional relationship of each part of the human body model part 1, the vertical direction and the horizontal direction shown in FIG. 2 are conveniently used, and the direction orthogonal to them is referred to as the front-back direction. .. However, although the details will be described later, the organ accommodating portion 2 is not only in the orientation shown in FIG. 2 (hereinafter, may be referred to as a supine position), but also in the orientation shown in FIG. , It may be described as a left lateral decubitus position), but in the explanation of the organ accommodating portion 2, the left-right direction and the anteroposterior direction shall be fixedly set regardless of the orientation of the organ accommodating portion 2. Therefore, the left-right direction and the front-rear direction used in the explanation of the organ accommodating portion 2 in the left lateral decubitus position are different from the left-right direction and the anteroposterior direction used in the explanation of the motor accommodating portion 7 and the base 9.
As described above, the direction described in the present specification may not coincide with the vertical direction in the direction of gravity, and does not limit the usage mode of the medical simulator.
 臓器収容部2は、略直方体状の箱体であり、内部に、後述する大腸モデル30を収容する。具体的には、臓器収容部2は、背側壁部の周縁に腹側に向けて立設された下壁部21、上壁部22、右側壁部23及び左側壁部24で四方が覆われており、かつ腹側が窓部25で封鎖された中空の箱体である。右側壁部23及び左側壁部24は、背側から腹側へそれぞれ延設されており、腹側端縁の一部が双方接近する方向にそれぞれ湾曲している。このため、臓器収容部2の腹側は、右側壁部23及び左側壁部24の腹側端縁の一部と窓部25とで封鎖されている(腹壁カバー部に相当)。 The organ accommodating portion 2 is a substantially rectangular parallelepiped box body, and internally accommodates the large intestine model 30 described later. Specifically, the organ accommodating portion 2 is covered on all sides by a lower wall portion 21, an upper wall portion 22, a right side wall portion 23, and a left side wall portion 24 erected on the peripheral edge of the back side wall portion toward the ventral side. It is a hollow box that is closed by a window 25 on the ventral side. The right side wall portion 23 and the left side wall portion 24 extend from the dorsal side to the ventral side, respectively, and are curved in a direction in which a part of the ventral end edge approaches each other. Therefore, the ventral side of the organ accommodating portion 2 is closed by a part of the ventral end edge of the right side wall portion 23 and the left side wall portion 24 and the window portion 25 (corresponding to the abdominal wall cover portion).
 臓器収容部2の外側には二台のカメラ6が設置されている。具体的には、二つのカメラ支持プレート61が臓器収容部2の下壁部21及び左側壁部24から斜め前方に向けてそれぞれ延設されており、それらの上端付近で二台カメラ6が設けられている。
 各カメラ6は、臓器収容部2の内部に収容されている大腸モデル30を窓部25を介して撮像可能な角度でカメラ支持プレート61にそれぞれ支持されている。これにより、各カメラ6は、仰臥位状態の臓器収容部2を腹側から視た平面視で相互に直交する向きに設置されている。なお、以降の説明において単に「平面視」と表記する場合には、仰臥位状態の臓器収容部2を腹側から視た平面視を意味するものとする。
 各カメラ6は、映像を撮像可能な装置であればよく、各カメラ6で撮像される映像(静止画像、動画像を含む)は、可視光画像のみならず、赤外線、紫外線、X線等のような非可視光の画像であってもよいことは言うまでもない。
Two cameras 6 are installed outside the organ accommodating portion 2. Specifically, two camera support plates 61 extend diagonally forward from the lower wall portion 21 and the left wall portion 24 of the organ accommodating portion 2, respectively, and two cameras 6 are provided near the upper ends thereof. Has been done.
Each camera 6 is supported by the camera support plate 61 at an angle at which the large intestine model 30 housed inside the organ accommodating portion 2 can be imaged through the window portion 25. As a result, each camera 6 is installed in a direction orthogonal to each other in a plan view of the organ accommodating portion 2 in the supine position as viewed from the ventral side. In the following description, when the term "plan view" is simply used, it means a plan view of the organ accommodating portion 2 in the supine position as viewed from the ventral side.
Each camera 6 may be a device capable of capturing an image, and the images (including still images and moving images) captured by each camera 6 include not only visible light images but also infrared rays, ultraviolet rays, X-rays, and the like. It goes without saying that such an image of invisible light may be used.
 窓部25は、臓器収容部2内の大腸モデル30が外側から視認可能となるように透明な材質を用いて成形されている。これにより、臓器収容部2の外側に設けられている二台のカメラ6で窓部25を介して大腸モデル30が撮像可能となっている。
 ここで、窓部25の外側表面には、表面反射を抑制し得るフィルムが貼られていることが好ましい。但し、このようなフィルムによらず、窓部25が表面反射を抑制し得る材料を含んでいてもよいし、窓部25の外側表面に表面反射を抑制し得る剤が塗布されていてもよい。このようなフィルムや素材、剤には、外側からの大腸モデル30の視認性を維持しつつ外光の反射や映り込み等を抑制することができれば既知のあらゆるものが利用可能である。
 このように窓部25が表面反射を抑制する部材又は材料を含むことで、カメラ6により窓部25を介して撮像された画像において、窓部25における外光の反射や映り込み等を抑制することができるため、その画像における大腸モデル30の認識精度の低下を防ぐことができる。
The window portion 25 is molded using a transparent material so that the large intestine model 30 in the organ accommodating portion 2 can be visually recognized from the outside. As a result, the large intestine model 30 can be imaged through the window 25 by the two cameras 6 provided outside the organ accommodating portion 2.
Here, it is preferable that a film capable of suppressing surface reflection is attached to the outer surface of the window portion 25. However, regardless of such a film, the window portion 25 may contain a material capable of suppressing surface reflection, or the outer surface of the window portion 25 may be coated with an agent capable of suppressing surface reflection. .. Any known film, material, or agent can be used as long as it is possible to suppress reflection and reflection of external light while maintaining the visibility of the large intestine model 30 from the outside.
By including the member or material that suppresses surface reflection in the window portion 25 in this way, the reflection and reflection of external light in the window portion 25 are suppressed in the image captured through the window portion 25 by the camera 6. Therefore, it is possible to prevent a decrease in the recognition accuracy of the large intestine model 30 in the image.
 臓器収容部2は、詳細は後述するが(図6参照)、出力シャフト75を介して上端側がモータ収容部7に支持されると共に、背側が複数のタイヤ部を介して基台9の腹側支持面91で支持されている。
 タイヤ部20a、20b及び20cは、臓器収容部2に回動自在に設けられている。具体的には、タイヤ部20aは、右側壁部23と背側壁部とが接続する角の上下方向の中央に一部が外側に突出するように設けられており、タイヤ部20bは、上壁部22の上面の背側端部の右端部に一部が外側に突出するように設けられており、タイヤ部20cは、上壁部22の上面の右端部の上端部に一部が外側に突出するように設けられている。タイヤ部は、図2に示されていない箇所にも複数設けられており、このような複数のタイヤ部が基台9の腹側支持面91に当接しながら回動することで、臓器収容部2は、基台9の腹側支持面91上で揺動可能に支持されている。
 このような臓器収容部2の揺動の詳細については後述する。
Although the details of the organ accommodating portion 2 will be described later (see FIG. 6), the upper end side of the organ accommodating portion 2 is supported by the motor accommodating portion 7 via the output shaft 75, and the back side is ventral side of the base 9 via a plurality of tire portions. It is supported by the support surface 91.
The tire portions 20a, 20b and 20c are rotatably provided in the organ accommodating portion 2. Specifically, the tire portion 20a is provided so that a part of the tire portion 20a projects outward at the center in the vertical direction of the corner connecting the right side wall portion 23 and the back side wall portion, and the tire portion 20b is provided on the upper wall. A part of the tire portion 20c is provided so as to project outward at the right end portion of the dorsal end portion of the upper surface of the portion 22, and a part of the tire portion 20c is provided outward at the upper end portion of the right end portion of the upper surface portion of the upper wall portion 22. It is provided so as to protrude. A plurality of tire portions are also provided in locations not shown in FIG. 2, and the plurality of tire portions rotate while abutting on the ventral support surface 91 of the base 9, thereby accommodating the organ. Reference numeral 2 is swingably supported on the ventral support surface 91 of the base 9.
The details of such swinging of the organ accommodating portion 2 will be described later.
 基台9は、上述したとおり、臓器収容部2を背側から支持すると共に、モータ収容部7を保持している。なお、基台9とモータ収容部7とは一体成形されていてもよいし、連結可能に別体成形されていてもよい。
 モータ収容部7は、臓器収容部2の上方に隣接して配置されており、臓器収容部2の揺動を実現する体位変換モータ71(図7参照)を収容する箱体である。モータ収容部7の詳細については後述する。
As described above, the base 9 supports the organ accommodating portion 2 from the back side and holds the motor accommodating portion 7. The base 9 and the motor accommodating portion 7 may be integrally molded or may be separately molded so as to be connected.
The motor accommodating portion 7 is arranged adjacent to the upper part of the organ accommodating portion 2, and is a box body that accommodates the posture change motor 71 (see FIG. 7) that realizes the swing of the organ accommodating portion 2. Details of the motor accommodating portion 7 will be described later.
 以下、図3を用いて、臓器収容部2の内部構成について説明する。
 図3は、本実施形態に係る臓器収容部2の内部構成を示す模式図である。図3は、臓器収容部2を平面視した状態を示している。
 大腸モデル30は、盲腸、上行結腸、横行結腸、下行結腸、S状結腸及び直腸からなる大腸を模擬した中空の管状体である。このため、大腸モデル30は管腔臓器モデルということもできる。大腸モデル30は、盲腸に相当する盲腸領域、上行結腸に相当する上行結腸領域、横行結腸に相当する横行結腸領域、下行結腸に相当する下行結腸領域、S状結腸に相当するS状結腸領域、及び直腸に相当する直腸領域を含んでいる。
Hereinafter, the internal configuration of the organ accommodating portion 2 will be described with reference to FIG.
FIG. 3 is a schematic view showing the internal configuration of the organ accommodating portion 2 according to the present embodiment. FIG. 3 shows a state in which the organ accommodating portion 2 is viewed in a plan view.
The large intestine model 30 is a hollow tubular body simulating a large intestine consisting of a cecum, an ascending colon, a transverse colon, a descending colon, a sigmoid colon, and a rectum. Therefore, the large intestine model 30 can be said to be a luminal organ model. The large intestine model 30 includes a rectal region corresponding to the rectum, an ascending colon region corresponding to the ascending colon, a transverse colon region corresponding to the transverse colon, a descending colon region corresponding to the descending colon, and a sigmoid colon region corresponding to the sigmoid colon. And the rectal region corresponding to the colon.
 盲腸領域や上行結腸領域等のような大腸モデル30の各部位は、管腔を画定する内壁の形状が内視鏡で撮像される生体の大腸の各部位の形状にできる限り近くなるように成形されている。
 例えば、生体の大腸の内視鏡画像では、脾彎曲及び肝彎曲において他臓器との接触により色調変化が生じる。高度な内視鏡手技を持つベテラン医師等は、その色調変化で大腸内の位置を把握する場合もある。
 そこで、大腸モデル30における肝彎曲に相当する肝彎曲領域及び脾彎曲に相当する脾彎曲領域が、大腸モデル30の管腔内で撮像される内視鏡画像において脾彎曲領域及び肝彎曲領域で色調変化を生じさせる色調変化領域を含むことが好ましい。この色調変化は、当該内視鏡画像に写る色調が肝彎曲領域及び脾彎曲領域においてその周囲の壁面とは異なることで生じる。
 大腸モデル30のその色調変化領域は、様々な手法で実現することができる。例えば、その色調変化領域における大腸モデル30の外側表面又は内側表面を他の部分とは違う色で着色することで実現することができる。この着色は、塗料で実現してもよいし、色の異なる素材を重ね合わせることでも実現することができる。また、同色であっても色調変化領域のみ大腸モデル30の壁の厚みを変えることでも実現することができる。また、LED(Light Emitting Diode)のような適切な色味の光源を大腸モデル30の外側表面に向けて照射することで実現してもよい。
 また、大腸モデル30の肛門側端部の内壁には、歯状線が模擬されていることが好ましい。
Each part of the large intestine model 30, such as the cecal region and the ascending colon region, is shaped so that the shape of the inner wall defining the lumen is as close as possible to the shape of each part of the large intestine of the living body imaged by the endoscope. Has been done.
For example, in an endoscopic image of the large intestine of a living body, a change in color tone occurs due to contact with other organs in splenic curve and liver curve. Veteran doctors and others with advanced endoscopic techniques may grasp the position in the large intestine by the change in color tone.
Therefore, the hepatic curve region corresponding to the hepatic curve and the splenic curve region corresponding to the splenic curve in the large intestine model 30 are colored in the splenic curve region and the hepatic curve region in the endoscopic image taken in the lumen of the large intestine model 30. It is preferable to include a color change region that causes a change. This color change occurs because the color tone reflected in the endoscopic image is different from the surrounding wall surface in the hepatic curve region and the splenic curve region.
The color tone change region of the large intestine model 30 can be realized by various methods. For example, it can be realized by coloring the outer surface or the inner surface of the large intestine model 30 in the color tone change region with a color different from other parts. This coloring may be realized by a paint, or may be realized by superimposing materials having different colors. Further, even if the colors are the same, it can be realized by changing the wall thickness of the large intestine model 30 only in the color tone change region. Further, it may be realized by irradiating a light source having an appropriate color such as an LED (Light Emitting Diode) toward the outer surface of the large intestine model 30.
Further, it is preferable that a dentate line is simulated on the inner wall of the anal side end of the large intestine model 30.
 大腸モデル30は、シリコーンゴム等の柔軟性を有する素材により成形されている。本実施形態は、大腸モデル30の素材を限定するものではないが、大腸モデル30は実際の生体の大腸に近い柔軟性を有するように成形されることが好ましい。
 また、大腸モデル30は、繋ぎ目なく一体的に成形されていることが好ましい。
 このようにすれば、内視鏡を大腸モデル30の管腔に挿入した際の感触を実物に近づけることができ、ひいては、リアルな内視鏡手技シミュレーションが可能となる。
The large intestine model 30 is molded from a flexible material such as silicone rubber. The present embodiment does not limit the material of the large intestine model 30, but it is preferable that the large intestine model 30 is molded so as to have flexibility close to that of the large intestine of an actual living body.
Further, it is preferable that the large intestine model 30 is integrally molded without any joint.
In this way, the feel when the endoscope is inserted into the lumen of the large intestine model 30 can be made closer to the real thing, and by extension, a realistic endoscope procedure simulation becomes possible.
 大腸モデル30は、上行結腸領域、横行結腸領域等の各部位が人体の腹腔内の大腸の配置と等しくなるように、臓器収容部2の内部空間に局所的に(部分的に)固定された状態で収容されている。大腸モデル30は、長手方向の異なる位置に、臓器収容部2に固定されている状態となり得る局所固定領域と、本シミュレータを用いて訓練を受ける人(被訓練者と表記される)による内視鏡の操作により臓器収容部2の内部空間内で変位可能(動作可能)な可動領域とを含むと表記できる。
 ここで「臓器収容部2に固定されている状態となり得る」とは、臓器収容部2の内部に完全に固定されていることだけでなく、臓器収容部2に対して固定されている状態とそうでない状態との両方になり得ることを含む意味である。
 本実施形態では、大腸モデル30の局所固定領域は、肛門保持部31で保持される肛門側端部領域、臓器保持部32で保持される領域、脾彎曲に相当する脾彎曲領域、肝彎曲に相当する肝彎曲領域、及び盲腸領域であり、それ以外の領域は可動領域とされている。但し、大腸モデル30における臓器収容部2に対する固定箇所は、本実施形態で示される箇所に限定されない。
In the large intestine model 30, each part such as the ascending colon region and the transverse colon region was locally (partially) fixed to the internal space of the organ accommodating portion 2 so as to be equal to the arrangement of the large intestine in the abdominal cavity of the human body. It is housed in a state. The large intestine model 30 has a locally fixed region that can be fixed to the organ accommodating portion 2 at different positions in the longitudinal direction, and endoscopy by a person trained using this simulator (denoted as a trainee). It can be described as including a movable region that can be displaced (movable) in the internal space of the organ accommodating portion 2 by operating the mirror.
Here, "the state of being fixed to the organ accommodating part 2" means not only that it is completely fixed to the inside of the organ accommodating part 2 but also that it is fixed to the organ accommodating part 2. It means that it can be both in the other state.
In the present embodiment, the locally fixed region of the large intestine model 30 is an anal side end region held by the anal holding portion 31, a region held by the organ holding portion 32, a splenic curve region corresponding to the splenic curve, and a liver curve. The corresponding hepatic curve region and cecal region, and the other regions are defined as movable regions. However, the fixed portion for the organ accommodating portion 2 in the large intestine model 30 is not limited to the location shown in the present embodiment.
 また、臓器収容部2の内部には、内部空間を腹側と背側とに分割するプレート(図示せず)が設けられている。即ち、臓器収容部2の内部空間は、このプレートにより腹側内部空間と背側内部空間とに分割されており、大腸モデル30は腹側内部空間に収容されている。このプレートは、大腸モデル30が収容される腹側内部空間の背側の壁を形成しているため、以降、背側プレートと表記される。
 背側内部空間には、後述するように、臓器保持部32、第一スライド壁部35、第二スライド壁部34等のスライドを実現するモータ群や、各モータの動力の変換や減速等を行う各種機構が搭載されている。
 なお、当該背側プレートの形状は制限されず、例えば、平板形状を有していてもよいし、湾曲していてもよい。
Further, inside the organ accommodating portion 2, a plate (not shown) that divides the internal space into a ventral side and a dorsal side is provided. That is, the internal space of the organ accommodating portion 2 is divided into a ventral internal space and a dorsal internal space by this plate, and the large intestine model 30 is accommodated in the ventral internal space. Since this plate forms the dorsal wall of the ventral internal space in which the large intestine model 30 is housed, it is hereinafter referred to as the dorsal plate.
In the dorsal internal space, as will be described later, a group of motors that realize sliding of the organ holding portion 32, the first slide wall portion 35, the second slide wall portion 34, etc., and power conversion and deceleration of each motor are provided. It is equipped with various mechanisms to perform.
The shape of the dorsal plate is not limited, and may have, for example, a flat plate shape or may be curved.
 加えて、本実施形態では、図3に示されるように、複数のマーカリング43が、大腸モデル30における肛門保持部31と臓器保持部32との間の領域の、大腸モデル30の軸方向に離間する位置に配置されている。これらマーカリング43は、詳細は後述するが、大腸モデル30の対象部位の変位又は変形を検出するために設けられている。
 本明細書において「対象部位の変位」とは、対象部位の位置の変化を意味する。
 また、「対象部位の変形」は、対象部位の形状の変化を意味し、屈曲変形、伸縮変形(長手方向の長さの伸展変形又は短縮変形)、捻じれ変形(長手方向を軸とした回転捻じれ(雑巾を絞るような捻じれ))、ループ変形(長手方向にループ形状をなす変形)等のいずれか一つ以上を含むものとする。
 各マーカリング43は、大腸モデル30の外側周囲に周回状に巻かれており、各マーカリング43の内側表面の一部と大腸モデル30の外側表面の一部とが接着されている。このように各マーカリング43を大腸モデル30の外側表面に部分的に接合させることで、各マーカリング43で大腸モデル30の伸縮性が阻害されるのを防ぐことができる。
In addition, in the present embodiment, as shown in FIG. 3, a plurality of marker rings 43 are arranged in the axial direction of the large intestine model 30 in the region between the anal holding portion 31 and the organ holding portion 32 in the large intestine model 30. They are located at separate positions. These marker rings 43 will be described in detail later, but are provided for detecting the displacement or deformation of the target portion of the large intestine model 30.
In the present specification, the “displacement of the target portion” means a change in the position of the target portion.
In addition, "deformation of the target part" means a change in the shape of the target part, and bending deformation, expansion / contraction deformation (extension deformation or shortening deformation of the length in the longitudinal direction), and twist deformation (rotation about the longitudinal direction). It shall include any one or more of twisting (twisting like squeezing a cloth), loop deformation (deformation forming a loop shape in the longitudinal direction), and the like.
Each marker ring 43 is wound around the outer side of the large intestine model 30 in a circular manner, and a part of the inner surface of each marker ring 43 and a part of the outer surface of the large intestine model 30 are adhered to each other. By partially joining each marker ring 43 to the outer surface of the large intestine model 30 in this way, it is possible to prevent the elasticity of the large intestine model 30 from being hindered by each marker ring 43.
 また、各マーカリング43の外側表面にはマーカが配置されている。本実施形態では、マーカには予め定められたパターン画像(AR(Augmented Reality)マーカとも呼ばれる)が用いられている。但し、マーカは、カメラ6により撮像された画像から認識可能な目印であればよく、大腸モデル30の外側表面に設けられた特徴的な構造、形状や色、発光体等であってもよい。
 更に言えば、本実施形態では、各マーカリング43の外側表面には、複数のマーカが全周に亘って一列に配置されている。これにより大腸モデル30が内視鏡手技において捻られた場合等であってもマーカを当該画像から確実に認識することができる。但し、各マーカリング43において一つのマーカのみが配置されていてもよいし、二以上のマーカが全周のうちの一部にのみ配置されていてもよい。
Further, markers are arranged on the outer surface of each marker ring 43. In the present embodiment, a predetermined pattern image (also referred to as an AR (Augmented Reality) marker) is used as the marker. However, the marker may be a mark that can be recognized from the image captured by the camera 6, and may be a characteristic structure, shape, color, illuminant, or the like provided on the outer surface of the large intestine model 30.
Furthermore, in the present embodiment, a plurality of markers are arranged in a row on the outer surface of each marker ring 43 over the entire circumference. As a result, the marker can be reliably recognized from the image even when the large intestine model 30 is twisted in the endoscopic procedure. However, only one marker may be arranged in each marker ring 43, or two or more markers may be arranged only in a part of the entire circumference.
 また、一つのマーカリング43に配置される複数のマーカはそれぞれ異なるマーカとされてもよい。本実施形態によれば、一つのマーカリング43に配置される複数のマーカはそれぞれ異なるパターン画像とされてもよい。このようにすれば、大腸モデル30の捻じれ状態やループ状態をマーカが写る画像から判定することができる。 Further, the plurality of markers arranged in one marker ring 43 may be different markers. According to the present embodiment, the plurality of markers arranged in one marker ring 43 may be different pattern images. In this way, the twisted state and the loop state of the large intestine model 30 can be determined from the image in which the marker appears.
 また、本実施形態では、複数のマーカが周回状に一列に並ぶマーカリング43が大腸モデル30の外側周囲に設けられたが、当該複数のマーカは、大腸モデル30の外側表面に印刷されてもよいし、個々に貼付されてもよい。即ち、大腸モデル30の可動領域の少なくとも一部の外側周囲又は外側表面面には、大腸モデル30の軸方向に離間する位置に複数のマーカが配置されていると表記することができる。
 加えて、本実施形態では、肛門保持部31及び臓器保持部32の上面にもそれぞれマーカ(保持部マーカ41及び42)が設けられている。
 このようなマーカを用いた大腸モデル30の対象部位の変位又は変形を検出する手法については後述する。
Further, in the present embodiment, a marker ring 43 in which a plurality of markers are arranged in a circular array is provided around the outer side of the large intestine model 30, but the plurality of markers may be printed on the outer surface of the large intestine model 30. It may be affixed individually. That is, it can be described that a plurality of markers are arranged at positions separated in the axial direction of the large intestine model 30 on at least a part of the outer peripheral or outer surface surface of the movable region of the large intestine model 30.
In addition, in the present embodiment, markers (holding portions markers 41 and 42) are also provided on the upper surfaces of the anal holding portion 31 and the organ holding portion 32, respectively.
A method for detecting the displacement or deformation of the target portion of the large intestine model 30 using such a marker will be described later.
 肛門保持部31は、下壁部21の内面(上面)における左右方向の中央かつ前後方向の背側寄りに装着されている。肛門保持部31は、プラスチックのような、大腸モデル30の素材よりも高硬度の素材で成形されており、角丸の略立方体形状を有しており、その下面が下壁部21の内面と当接した状態で臓器収容部2に装着されている。
 肛門保持部31の説明で方向を示す場合には、肛門保持部31が臓器収容部2に装着された状態における方向を用いることとする。
The anus holding portion 31 is attached to the inner surface (upper surface) of the lower wall portion 21 at the center in the left-right direction and near the dorsal side in the front-back direction. The anus holding portion 31 is molded of a material having a hardness higher than that of the large intestine model 30 such as plastic, has a substantially cubic shape with rounded corners, and its lower surface is the inner surface of the lower wall portion 21. It is attached to the organ accommodating portion 2 in a contact state.
When the direction is indicated in the description of the anus holding portion 31, the direction in which the anus holding portion 31 is attached to the organ accommodating portion 2 is used.
 図4は、肛門保持部31を前後方向に直交する平面で切断した断面図である。
 肛門保持部31は、上下方向に貫通する貫通孔310を有している。一方で、臓器収容部2の下壁部21にも貫通孔(図示せず)が設けられており、肛門保持部31が臓器収容部2に装着されている状態において下壁部21の貫通孔と肛門保持部31の貫通孔310とが連通している。
FIG. 4 is a cross-sectional view of the anal holding portion 31 cut along a plane orthogonal to the anterior-posterior direction.
The anus holding portion 31 has a through hole 310 penetrating in the vertical direction. On the other hand, a through hole (not shown) is also provided in the lower wall portion 21 of the organ accommodating portion 2, and the through hole of the lower wall portion 21 is provided in a state where the anal holding portion 31 is attached to the organ accommodating portion 2. And the through hole 310 of the anal holding portion 31 communicate with each other.
 大腸モデル30は、肛門側端部領域がその貫通孔310に挿通された状態で肛門保持部31に保持される。大腸モデル30は、貫通孔310に挿通されている肛門側端部領域の外周面と貫通孔310を画定する肛門保持部31の内壁面とが接合されることで、肛門保持部31に保持されてもよいし、他の方法で肛門保持部31に保持されてもよい。例えば、大腸モデル30の肛門側端部に大腸モデル30の外周面から突出したフランジ蓋部が設けられており、大腸モデル30の肛門側端部領域が肛門保持部31の貫通孔310及び臓器収容部2の下壁部21の貫通孔に挿通されて、当該フランジ蓋部が臓器収容部2の下壁部21の外側面(下面)と係合するようにしてもよい。このようにして保持される場合には、臓器収容部2の下壁部21も含めて肛門保持部31と呼ぶことができる。このように肛門保持部31による大腸モデル30の肛門側端部領域の保持構造は何ら制限されない。 The large intestine model 30 is held by the anal holding portion 31 with the anal side end region inserted through the through hole 310. The large intestine model 30 is held by the anal holding portion 31 by joining the outer peripheral surface of the anal side end region inserted through the through hole 310 and the inner wall surface of the anal holding portion 31 defining the through hole 310. It may be held by the anal holding portion 31 by another method. For example, a flange lid projecting from the outer peripheral surface of the large intestine model 30 is provided at the anal side end of the large intestine model 30, and the anal side end region of the large intestine model 30 is a through hole 310 of the anal holding portion 31 and organ accommodation. It may be inserted through the through hole of the lower wall portion 21 of the portion 2 so that the flange lid portion engages with the outer surface (lower surface) of the lower wall portion 21 of the organ accommodating portion 2. When it is held in this way, it can be called an anal holding portion 31 including the lower wall portion 21 of the organ accommodating portion 2. As described above, the holding structure of the anal side end region of the large intestine model 30 by the anal holding portion 31 is not limited at all.
 肛門保持部31における貫通孔310を画定する内壁面は、図4に示されるように、テーパ状壁面部311を一部に含んでいる。
 テーパ状壁面部311は、貫通孔310の断面積が上方(肛門保持部31の上面)に向かって漸次拡大するように形成されている。
 ここでの「貫通孔310の断面積」とは、貫通孔310を軸方向と直交する平面で切断したと仮定した場合における貫通孔310の面積を意味し、貫通孔310のその面積は肛門保持部31の内壁面で画定される。
 本実施形態では、肛門保持部31の内壁面は、貫通孔310の下方口312から上方に向けて僅かな範囲でテーパ状とならない内壁面を含むが、当該内壁面の全てがテーパ状壁面部311とされてもよい。
The inner wall surface defining the through hole 310 in the anal holding portion 31 partially includes the tapered wall surface portion 311 as shown in FIG.
The tapered wall surface portion 311 is formed so that the cross-sectional area of the through hole 310 gradually expands upward (upper surface of the anal holding portion 31).
The "cross-sectional area of the through hole 310" here means the area of the through hole 310 when it is assumed that the through hole 310 is cut in a plane orthogonal to the axial direction, and the area of the through hole 310 is anus holding. It is defined by the inner wall surface of the portion 31.
In the present embodiment, the inner wall surface of the anus holding portion 31 includes an inner wall surface that does not become tapered in a slight range upward from the lower opening 312 of the through hole 310, but all of the inner wall surface is the tapered wall surface portion. It may be 311.
 テーパ状壁面部311は、テーパ状壁面部311の下端(壁面下端部313)から上端(壁面上端部314)までの傾斜が急峻な第一壁面部316とその第一壁面部316よりもその傾斜が緩やか第二壁面部315とを含んでいる。
 第一壁面部316と第二壁面部315とは、貫通孔310の軸方向視で対向する位置に少なくとも存在している。具体的には、第一壁面部316は、テーパ状壁面部311の左側に存在し、第二壁面部315は、テーパ状壁面部311の右側に存在する。
 これにより、肛門から大腸モデル30の管腔内に挿入した内視鏡が大腸の延びる方向(向かって反時計回り)とは違う方向に向かうのを抑制することができるため、内視鏡手技の訓練が無駄に難しくならず、効率的な訓練を可能とする。
The tapered wall surface portion 311 has a steeper slope from the lower end (wall surface lower end portion 313) to the upper end (wall surface upper end portion 314) of the tapered wall surface portion 311 than the first wall surface portion 316 and its first wall surface portion 316. Includes a gentle second wall surface portion 315.
The first wall surface portion 316 and the second wall surface portion 315 are present at least at positions facing each other in the axial direction of the through hole 310. Specifically, the first wall surface portion 316 exists on the left side of the tapered wall surface portion 311 and the second wall surface portion 315 exists on the right side of the tapered wall surface portion 311.
As a result, it is possible to prevent the endoscope inserted into the lumen of the large intestine model 30 from the anus in a direction different from the direction in which the large intestine extends (counterclockwise), so that the endoscopic procedure can be performed. Training is not unnecessarily difficult and enables efficient training.
 臓器保持部32は、プラスチックのような、大腸モデル30の素材よりも高硬度の素材で成形されている。また、臓器保持部32は、上下方向に貫通孔を有しており、その貫通孔に挿通されている大腸モデル30の領域を保持する。具体的には、大腸モデル30における臓器保持部32の貫通孔に挿通されている領域の外周面とその貫通孔を画定する臓器保持部32の内壁面とが接合されることで、大腸モデル30のその領域が臓器保持部32に保持されている。
 大腸モデル30における臓器保持部32で保持される領域は、下行結腸領域及びS状結腸領域の範囲の中の一部であればよい。本実施形態では、下行結腸領域における肛門寄りの領域が臓器保持部32で保持されている。このため、本実施形態では、大腸モデル30の臓器保持部32で保持される領域は、下行結腸保持領域と表記する場合がある。
The organ holding portion 32 is formed of a material having a higher hardness than the material of the large intestine model 30, such as plastic. Further, the organ holding portion 32 has a through hole in the vertical direction, and holds a region of the large intestine model 30 inserted through the through hole. Specifically, the large intestine model 30 is formed by joining the outer peripheral surface of the region inserted through the through hole of the organ holding portion 32 in the large intestine model 30 and the inner wall surface of the organ holding portion 32 defining the through hole. The region of the organ is held by the organ holding portion 32.
The region held by the organ holding portion 32 in the large intestine model 30 may be a part of the range of the descending colon region and the sigmoid colon region. In this embodiment, the region near the anus in the descending colon region is held by the organ holding portion 32. Therefore, in the present embodiment, the region held by the organ holding portion 32 of the large intestine model 30 may be referred to as a descending colon holding region.
 臓器保持部32は、臓器収容部2にスライド可能に支持されている。具体的には、臓器保持部32は、臓器収容部2の右側壁部23の内面に設けられたガイドレール33の延在方向に沿ってスライド可能に、当該内面に設けられた支持機構(図示せず)により支持されている。臓器保持部32の支持機構は何ら限定されない。臓器保持部32は、ガイドレール33に対して摺動可能に係合されることで支持されてもよい。
 ここで、ガイドレール33は右側壁部23の内面に沿って上下方向に延設されている。このため、臓器保持部32のスライドにより臓器保持部32から肛門保持部31までの直線距離が変化する。また、臓器収容部2の平面視(図3参照)において、肛門保持部31の下端面が接合する下壁部21の内面と、肛門保持部31と臓器保持部32とを結ぶ直線とのなす角度(以降、肛門保持部31及び臓器保持部32の角度と表記する)も変化している。
The organ holding portion 32 is slidably supported by the organ accommodating portion 2. Specifically, the organ holding portion 32 is slidable along the extending direction of the guide rail 33 provided on the inner surface of the right side wall portion 23 of the organ accommodating portion 2, and the support mechanism provided on the inner surface (FIG. Not shown). The support mechanism of the organ holding portion 32 is not limited in any way. The organ holding portion 32 may be supported by being slidably engaged with the guide rail 33.
Here, the guide rail 33 extends in the vertical direction along the inner surface of the right side wall portion 23. Therefore, the linear distance from the organ holding portion 32 to the anal holding portion 31 changes due to the sliding of the organ holding portion 32. Further, in a plan view of the organ holding portion 2 (see FIG. 3), the inner surface of the lower wall portion 21 to which the lower end surface of the anal holding portion 31 joins and the straight line connecting the anal holding portion 31 and the organ holding portion 32 are formed. The angle (hereinafter referred to as the angle of the anal holding portion 31 and the organ holding portion 32) has also changed.
 図5は、肛門保持部31と臓器保持部32との間の距離とその間の大腸モデル30の状態との関係を示す図である。図5(a)は、臓器保持部32が肛門保持部31から相対的に近い位置に配置されている状態を示し、図5(b)は、臓器保持部32が肛門保持部31に相対的に遠い位置に配置されている状態を示す。
 臓器保持部32のスライドにより臓器保持部32から肛門保持部31までの直線距離D1及びD2は変化する一方で、大腸モデル30における肛門側端部領域から下行結腸保持領域までの長さ(長手方向の長さ)L1及びL2は一定である。即ち、距離D1及びD2は相互に異なるが、大腸モデル30の長さL1とL2とは同一である。
 また、臓器保持部32のスライドにより肛門保持部31及び臓器保持部32の角度も変化する。
 このため、図5に示されるとおり、臓器保持部32のスライドにより、当該直線距離若しくは当該角度、又はそれら両方が変化し、大腸モデル30における肛門側端部領域から下行結腸保持領域までの間の弛み度合或いは屈曲度合が変化する。
 ここで大腸モデル30の弛み度合或いは屈曲度合が小さいと、大腸モデル30の管腔内の内視鏡は相対的に操作し易くなり、逆にその弛み度合或いは屈曲度合が大きいと、当該内視鏡操作は相対的に難しくなる。
 つまり、上述の構成によれば、内視鏡手技の訓練の難易度を変えることができる。
FIG. 5 is a diagram showing the relationship between the distance between the anal holding portion 31 and the organ holding portion 32 and the state of the large intestine model 30 between them. FIG. 5 (a) shows a state in which the organ holding portion 32 is arranged at a position relatively close to the anal holding portion 31, and FIG. 5 (b) shows the organ holding portion 32 relative to the anus holding portion 31. Shows the state of being placed at a distant position.
The linear distances D1 and D2 from the organ holding part 32 to the anal holding part 31 are changed by the slide of the organ holding part 32, while the length from the anal side end region to the descending colon holding region in the large intestine model 30 (longitudinal direction). (Length) L1 and L2 are constant. That is, although the distances D1 and D2 are different from each other, the lengths L1 and L2 of the large intestine model 30 are the same.
In addition, the angles of the anal holding portion 31 and the organ holding portion 32 are also changed by sliding the organ holding portion 32.
Therefore, as shown in FIG. 5, the slide of the organ holding portion 32 changes the linear distance, the angle, or both, and is between the anal side end region and the descending colon holding region in the large intestine model 30. The degree of slack or the degree of bending changes.
Here, if the degree of slack or the degree of flexion of the large intestine model 30 is small, the endoscope in the lumen of the large intestine model 30 becomes relatively easy to operate, and conversely, if the degree of slack or the degree of flexion is large, the endoscope is said to be the endoscope. Mirror operation becomes relatively difficult.
That is, according to the above configuration, the difficulty of training the endoscopic procedure can be changed.
 ここで、臓器保持部32のスライド範囲は、大腸モデル30における肛門側端部領域から臓器保持部32で保持される領域までの長さ(図5のL1、L2等)が肛門保持部31から臓器保持部32までの距離(図5のD1、D2等)の2倍となる位置を含むことが好ましい。また、大腸モデル30における肛門端部領域から脾彎曲領域までの長さに対する当該肛門端部領域から臓器保持部32で保持される領域までの長さの割合は、2分の1以上かつ10分の7以下とされることが好ましい。
 高度な内視鏡手技を持つベテラン医師を含む本発明者らは、臓器収容部2の試作及びその試作機の当該ベテラン医師による検証を繰り返すことで、臓器保持部32と肛門保持部31との間の距離とその間の大腸モデル30の状態との関係で、実際の人体に対する内視鏡手技で得る感覚に近くなる上述の関係を見出したのである。
 即ち、臓器保持部32のスライド範囲に上述の位置を含めることで、内視鏡手技の訓練の難易度を可変としながらも、人体に対する内視鏡手技の感覚をリアルに再現し、高精度な訓練を可能とすることができる。
Here, the slide range of the organ holding portion 32 is the length from the anal side end region in the large intestine model 30 to the region held by the organ holding portion 32 (L1, L2, etc. in FIG. 5) from the anal holding portion 31. It is preferable to include a position that is twice the distance to the organ holding portion 32 (D1, D2, etc. in FIG. 5). Further, the ratio of the length from the anal end region to the region held by the organ holding portion 32 to the length from the anal end region to the splenic curve region in the large intestine model 30 is more than half and 10 minutes. It is preferably 7 or less.
The present inventors, including a veteran doctor with advanced endoscopic techniques, have repeated the trial production of the organ accommodating portion 2 and the verification of the prototype by the veteran doctor, thereby forming the organ holding portion 32 and the anal holding portion 31. In the relationship between the distance between them and the state of the large intestine model 30 between them, we found the above-mentioned relationship that is close to the sensation obtained by the endoscopic procedure for the actual human body.
That is, by including the above-mentioned position in the slide range of the organ holding portion 32, the sensation of the endoscopic procedure for the human body is realistically reproduced while the difficulty level of the training of the endoscopic procedure is variable, and the accuracy is high. Training can be made possible.
 本実施形態では、臓器保持部32のスライドは、臓器収容部2の背側内部空間に収容されているモータの動力を用いて実現される。臓器保持部32のスライドは、例えば、次のような構成により実現され得る。モータの回転軸がガイドレール33の延在方向に直交する方向に延びており、その回転軸に直接又は間接的に歯付きの駆動プーリが取り付けられており、回転自在に支持された歯付きの従動プーリとその駆動プーリとの間に、ガイドレール33の延在方向と並行に歯付きのタイミングベルトが掛け渡されている。そのタイミングベルトの一部に係合する係合部材に直接又は間接的に臓器保持部32が取り付けられる。この構成によれば、モータの回転動力がガイドレール33の延在方向の直線運動の動力に変換されることで、臓器保持部32がガイドレール33に沿ってスライド可能となる。
 このため、臓器保持部32は、大腸モデル30の肛門側端部領域を保持する肛門保持部31及び臓器保持部32に対してスライド可能なスライド状態と臓器収容部2に対して固定される固定状態とに切り替え可能に設けられているということができる。
In the present embodiment, the slide of the organ holding portion 32 is realized by using the power of the motor housed in the dorsal internal space of the organ accommodating portion 2. The slide of the organ holding portion 32 can be realized by, for example, the following configuration. The rotation axis of the motor extends in a direction orthogonal to the extending direction of the guide rail 33, and a toothed drive pulley is directly or indirectly attached to the rotation axis, and the toothed drive pulley is rotatably supported. A toothed timing belt is hung between the driven pulley and its driving pulley in parallel with the extending direction of the guide rail 33. The organ holding portion 32 is directly or indirectly attached to the engaging member that engages with a part of the timing belt. According to this configuration, the rotational power of the motor is converted into the power of linear motion in the extending direction of the guide rail 33, so that the organ holding portion 32 can slide along the guide rail 33.
Therefore, the organ holding portion 32 is slidable with respect to the anal holding portion 31 and the organ holding portion 32 holding the anal side end region of the large intestine model 30, and is fixed to the organ accommodating portion 2. It can be said that it is provided so that it can be switched between states.
 但し、臓器保持部32のスライドを実現する構成はこのような構成に限定されず、モータの回転動力がガイドレール33の延在方向の直線運動の動力に変換される構成であればよい。
 なお、臓器保持部32のスライドに関する制御内容については後述することとする。
 また、本実施形態では、臓器保持部32のスライドはモータの動力を用いて実現されたが、手動で行われてもよい。この場合には、臓器保持部32は、臓器収容部2(臓器収容部2に固定された肛門保持部31も含む)に対してスライド可能なスライド状態と臓器収容部2に対して固定される固定状態とに切り替え可能に設けられれば良い。例えば、ロック機構により臓器保持部32が臓器収容部2に対して固定される状態となり、ロック機構を解除することで臓器保持部32が臓器収容部2に対してスライド可能な状態とされ得る。
However, the configuration for realizing the sliding of the organ holding portion 32 is not limited to such a configuration, and any configuration may be used as long as the rotational power of the motor is converted into the power of linear motion in the extending direction of the guide rail 33.
The details of the control related to the slide of the organ holding portion 32 will be described later.
Further, in the present embodiment, the sliding of the organ holding portion 32 is realized by using the power of the motor, but it may be performed manually. In this case, the organ holding part 32 is slidable with respect to the organ holding part 2 (including the anal holding part 31 fixed to the organ holding part 2) and fixed to the organ holding part 2. It suffices if it is provided so as to be switchable to a fixed state. For example, the organ holding portion 32 may be fixed to the organ accommodating portion 2 by the locking mechanism, and the organ holding portion 32 may be slidable to the organ accommodating portion 2 by releasing the locking mechanism.
 更に、臓器収容部2は、腹側内部空間内に、プラスチック等の硬い素材で成形された第一スライド壁部35を備えている。
 第一スライド壁部35は、臓器収容部2の腹側内部空間における左右方向及び上下方向の略中央部であって、大腸モデル30の横行結腸領域の収容位置よりも下方かつ肛門保持部31及び大腸モデル30の直腸領域の収容位置よりも上方に位置し、背側プレートに上下方向にスライド可能に支持されている。具体的には、第一スライド壁部35は、背側プレートの腹側面に設けられたガイドレール36の延在方向に沿ってスライド可能に、背側プレートの腹側面に設けられた支持機構(図示せず)により支持されている。第一スライド壁部35の支持機構は何ら限定されない。第一スライド壁部35は、ガイドレール36に対して摺動可能に係合されている支持機構により支持されるようにしてもよい。
 ここで、ガイドレール36は背側プレートの腹側面に沿って上下方向に延設されている。このため、第一スライド壁部35は、肛門保持部31に接近する方向及び肛門保持部31から離れる方向にスライド可能となっている。
Further, the organ accommodating portion 2 is provided with a first slide wall portion 35 formed of a hard material such as plastic in the ventral internal space.
The first slide wall portion 35 is a substantially central portion in the lateral and vertical directions in the ventral internal space of the organ accommodating portion 2, and is below the accommodating position of the transverse colon region of the large intestine model 30 and the anal holding portion 31 and the anus holding portion 31. It is located above the rectal region of the large intestine model 30 and is slidably supported by the dorsal plate in the vertical direction. Specifically, the first slide wall portion 35 is a support mechanism provided on the ventral side surface of the dorsal plate so as to be slidable along the extending direction of the guide rail 36 provided on the ventral side surface of the dorsal plate. (Not shown). The support mechanism of the first slide wall portion 35 is not limited in any way. The first slide wall portion 35 may be supported by a support mechanism slidably engaged with the guide rail 36.
Here, the guide rail 36 extends in the vertical direction along the ventral side surface of the dorsal plate. Therefore, the first slide wall portion 35 can slide in the direction approaching the anus holding portion 31 and in the direction away from the anus holding portion 31.
 大腸内視鏡の手技において挿入が困難となる場合に看護師等の介助者が腹部を圧迫して内視鏡挿入をサポートする場合がある(用手圧迫法とも呼ばれる)。本実施形態では、この腹部圧迫を模擬するべく、第一スライド壁部35が設けられている。このため、第一スライド壁部35は補助壁部と呼ぶこともできる。
 第一スライド壁部35は、腹側から視た場合に左右方向の中央が上方に突出した湾曲形状を有した下向きの壁面を少なくとも有しており、腹部圧迫を模擬する場合には、肛門保持部31に近い位置で固定される。これにより、管腔内に内視鏡が挿入されて上方に直線化された大腸モデル30のS状結腸領域の一部(例えば、S-topと呼ばれる頂部)が第一スライド壁部35の下向きの壁面に当接することで、内視鏡の挿入方向がガイドされる。
 一方で、腹部圧迫が行われていない状態では、第一スライド壁部35を肛門保持部31から離間した位置に固定することで、第一スライド壁部35を大腸モデル30と接触し難い位置に置くことができる。
 このように本実施形態によれば、介助者による腹部圧迫(用手圧迫)を模擬することができる。
When insertion is difficult in the procedure of colonoscopy, a caregiver such as a nurse may press the abdomen to support the insertion of the endoscope (also called manual compression method). In this embodiment, the first slide wall portion 35 is provided to simulate this abdominal compression. Therefore, the first slide wall portion 35 can also be called an auxiliary wall portion.
The first slide wall portion 35 has at least a downward wall surface having a curved shape in which the center in the left-right direction protrudes upward when viewed from the ventral side, and holds the anus when simulating abdominal compression. It is fixed at a position close to the portion 31. As a result, a part of the sigmoid colon region (for example, the apex called S-top) of the large intestine model 30 in which the endoscope is inserted into the lumen and linearized upward is directed downward by the first slide wall portion 35. The insertion direction of the endoscope is guided by abutting against the wall surface of the endoscope.
On the other hand, when the abdominal compression is not performed, the first slide wall 35 is fixed at a position away from the anus holding portion 31 so that the first slide wall 35 is in a position where it is difficult to contact the large intestine model 30. Can be placed.
As described above, according to the present embodiment, it is possible to simulate abdominal compression (manual compression) by a caregiver.
 本実施形態では、第一スライド壁部35のスライドは、臓器収容部2の背側内部空間に収容されているモータの動力を用いて実現される。第一スライド壁部35のスライドは、例えば、臓器保持部32と同様の構成で実現することができる。モータの回転軸がガイドレール36の延在方向に直交する方向に延びており、その回転軸に直接又は間接的に歯付きの駆動プーリが取り付けられており、回転自在に支持された歯付きの従動プーリとその駆動プーリとの間に、ガイドレール36の延在方向と並行に歯付きのタイミングベルトが掛け渡されている。そのタイミングベルトの一部に係合する係合部材に直接又は間接的に第一スライド壁部35が取り付けられる。この構成によれば、モータの回転動力がガイドレール36の延在方向の直線運動の動力に変換されることで、第一スライド壁部35がガイドレール36に沿ってスライド可能となる。
 このような構成においても、第一スライド壁部35は、肛門保持部31への距離が変化する方向にスライド可能なスライド状態と臓器収容部2に対して固定される固定状態とに切り替え可能となっていると言える。
In the present embodiment, the slide of the first slide wall portion 35 is realized by using the power of the motor housed in the dorsal internal space of the organ accommodating portion 2. The slide of the first slide wall portion 35 can be realized, for example, with the same configuration as the organ holding portion 32. The rotation axis of the motor extends in a direction orthogonal to the extending direction of the guide rail 36, and a toothed drive pulley is directly or indirectly attached to the rotation axis, and the toothed drive pulley is rotatably supported. A toothed timing belt is hung between the driven pulley and its driving pulley in parallel with the extending direction of the guide rail 36. The first slide wall portion 35 is directly or indirectly attached to an engaging member that engages with a part of the timing belt. According to this configuration, the rotational power of the motor is converted into the power of linear motion in the extending direction of the guide rail 36, so that the first slide wall portion 35 can slide along the guide rail 36.
Even in such a configuration, the first slide wall portion 35 can be switched between a slide state in which the distance to the anal holding portion 31 changes and a fixed state in which the first slide wall portion 35 is fixed to the organ accommodating portion 2. It can be said that it has become.
 但し、第一スライド壁部35のスライドを実現する構成はこのような構成に限定されず、モータの回転動力がガイドレール36の延在方向の直線運動の動力に変換される構成であればよい。
 なお、第一スライド壁部35のスライドに関する制御内容については後述することとする。
 また、本実施形態では、第一スライド壁部35のスライドはモータの動力を用いて実現されたが、手動で行われてもよい。この場合には、第一スライド壁部35は、肛門保持部31への距離が変化する方向にスライド可能なスライド状態と臓器収容部2に対して固定される固定状態とに切り替え可能に設けられていればよい。例えば、ロック機構により第一スライド壁部35が臓器収容部2に対して固定される状態となり、ロック機構を解除することで第一スライド壁部35が臓器収容部2に対してスライド可能な状態とされ得る。
However, the configuration for realizing the sliding of the first slide wall portion 35 is not limited to such a configuration, and may be a configuration in which the rotational power of the motor is converted into the power of linear motion in the extending direction of the guide rail 36. ..
The control contents related to the slide of the first slide wall portion 35 will be described later.
Further, in the present embodiment, the slide of the first slide wall portion 35 is realized by using the power of the motor, but it may be performed manually. In this case, the first slide wall portion 35 is provided so as to be switchable between a slide state in which the distance to the anal holding portion 31 changes and a fixed state in which the organ accommodating portion 2 is fixed. You just have to. For example, the first slide wall portion 35 is fixed to the organ accommodating portion 2 by the lock mechanism, and the first slide wall portion 35 is slidable to the organ accommodating portion 2 by releasing the lock mechanism. Can be said.
 ここで、大腸モデル30のS状結腸領域の外側表面に第一ワイヤ部材37が連結されている。本実施形態では、第一ワイヤ部材37は、大腸モデル30のS状結腸領域の頂部(S-top)に相当する位置に連結されており、その頂部を初期位置に戻す役割を担う。大腸モデル30の第一ワイヤ部材37が連結されている部位をS状結腸領域のワイヤ連結部位と表記する場合がある。
 第一ワイヤ部材37は、大腸モデル30との連結部位(S-top)の変位を可能としながら当該連結部位を初期位置に戻すことができる可変長部材であればよい。第一ワイヤ部材37は、伸縮性を持つ素材で形成されていてもよいし、伸縮性を持たない素材で形成されていてもよい。
Here, the first wire member 37 is connected to the outer surface of the sigmoid colon region of the large intestine model 30. In the present embodiment, the first wire member 37 is connected to a position corresponding to the apex (S-top) of the sigmoid colon region of the large intestine model 30, and plays a role of returning the apex to the initial position. The site to which the first wire member 37 of the large intestine model 30 is connected may be referred to as a wire connecting site in the sigmoid colon region.
The first wire member 37 may be a variable length member capable of returning the connecting portion to the initial position while enabling displacement of the connecting portion (S-top) with the large intestine model 30. The first wire member 37 may be made of a stretchable material or may be made of a non-stretchable material.
 本実施形態では、第一ワイヤ部材37は、それ自体の素材で可変長を実現しているわけではなく、第一ワイヤ部材37を巻き取るワイヤリール(図示せず)とのセットで可変長を実現している。このため、第一ワイヤ部材37及びワイヤリールが可変長部材に相当する。即ち、本実施形態では、臓器収容部2は、第一ワイヤ部材37を巻き取るワイヤリール(図示せず)を備えている。ワイヤリールは、大腸モデル30のS状結腸領域のワイヤ連結部位が初期位置に存在する状態において送り出されている第一ワイヤ部材37の状態を最大巻き取り状態とし、その最大巻き取り状態から更に送り出された第一ワイヤ部材37を最大巻き取り状態まで巻き取るようにバネ部材により付勢されている。 In the present embodiment, the first wire member 37 does not realize a variable length with its own material, but has a variable length as a set with a wire reel (not shown) for winding the first wire member 37. It has been realized. Therefore, the first wire member 37 and the wire reel correspond to the variable length member. That is, in the present embodiment, the organ accommodating portion 2 includes a wire reel (not shown) for winding the first wire member 37. In the wire reel, the state of the first wire member 37 that is delivered in the state where the wire connecting portion of the sigmoid colon region of the large intestine model 30 is present at the initial position is set to the maximum winding state, and the wire reel is further delivered from the maximum winding state. The first wire member 37 is urged by a spring member so as to be wound up to the maximum winding state.
 更に、ワイヤリールには、最大巻き取り状態からのワイヤリールの回転量を検出するセンサ(例えば、ポイテンショメータ等)が設けられており、詳細は後述するが、このセンサにより検出された回転量により大腸モデル30のS状結腸領域のワイヤ連結部位の変位が検出可能となっている。
 このように、第一ワイヤ部材37と連結される大腸モデル30のS状結腸領域のワイヤ連結部位を含む領域は、固定されておらず変位可能でありながら初期位置に戻るようにテンションがかけられているため、大腸モデル30の特定可動領域と呼ぶこともできる。
Further, the wire reel is provided with a sensor (for example, a displacement meter or the like) for detecting the rotation amount of the wire reel from the maximum winding state, and the details will be described later, but the rotation amount detected by this sensor. This makes it possible to detect the displacement of the wire connecting portion of the sigmoid colon region of the large intestine model 30.
In this way, the region including the wire connecting portion of the sigmoid colon region of the large intestine model 30 connected to the first wire member 37 is tensioned so as to return to the initial position while being displaceable without being fixed. Therefore, it can also be called a specific movable region of the large intestine model 30.
 更に、臓器収容部2は、腹側内部空間に、プラスチック等の硬い素材で成形された第二スライド壁部34を備えている。
 第二スライド壁部34は、図3に示されるように、臓器収容部2の腹側内部空間における大腸モデル30の横行結腸領域の収容位置よりも更に上方に、下向きの壁面を持って立設されている。第二スライド壁部34は、右側壁部23の内面及び左側壁部24の内面にそれぞれ設けられたガイドレールの延在方向に沿って下方へスライド可能な状態で臓器収容部2に支持されている。第二スライド壁部34は、右側壁部23の内面及び左側壁部24の内面に設けられた支持機構(図示せず)により支持される。但し、第二スライド壁部34の支持機構は何ら限定されない。第二スライド壁部34は、右側壁部23の内面及び左側壁部24の内面にそれぞれ設けられたガイドレールに対して摺動可能に係合されている支持機構により支持されるようにしてもよい。
Further, the organ accommodating portion 2 is provided with a second slide wall portion 34 formed of a hard material such as plastic in the ventral internal space.
As shown in FIG. 3, the second slide wall portion 34 is erected with a downward wall surface further above the accommodation position of the transverse colon region of the large intestine model 30 in the ventral internal space of the organ accommodation portion 2. Has been done. The second slide wall portion 34 is supported by the organ accommodating portion 2 in a state where it can slide downward along the extending direction of the guide rails provided on the inner surface of the right side wall portion 23 and the inner surface of the left side wall portion 24, respectively. There is. The second slide wall portion 34 is supported by a support mechanism (not shown) provided on the inner surface of the right side wall portion 23 and the inner surface of the left side wall portion 24. However, the support mechanism of the second slide wall portion 34 is not limited in any way. The second slide wall portion 34 may be supported by a support mechanism slidably engaged with guide rails provided on the inner surface of the right side wall portion 23 and the inner surface of the left side wall portion 24, respectively. Good.
 上述した腹部圧迫と同様に、大腸内視鏡の挿入が困難となる場合に被検者(患者)に深く息を吸ってもらうことで内視鏡挿入が容易となる場合がある。深く息を吸ってもらうことで横隔膜が下がり、結果として肝彎曲及び脾彎曲が下がることになる。本実施形態では、被検者に深く息を吸ってもらったときの横行結腸の状態を模擬するべく、第二スライド壁部34が設けられている。
 第二スライド壁部34は、右側壁部23の内面の近傍から左側壁部24の内面の近傍まで左右方向に幅広の下向きの壁面を少なくとも有している。第二スライド壁部34のこの壁面は、左右両端が下方凸状に湾曲している。
 第二スライド壁部34は、深く息を吸った状態を模擬する場合には下方へスライドし、それ以外では上方に配置される。
 これにより、第二スライド壁部34が下方へスライドされることに伴い、大腸モデル30の少なくとも脾彎曲領域及び肝彎曲領域も下方へ変位することになるため、本実施形態によれば、被検者に深く息を吸わせた状態の大腸の動きをリアルに模擬することができる。
Similar to the abdominal compression described above, when it is difficult to insert a colonoscope, it may be easier to insert the endoscope by having the subject (patient) take a deep breath. Taking a deep breath lowers the diaphragm, resulting in lower hepatic and splenic curvature. In the present embodiment, the second slide wall portion 34 is provided in order to simulate the state of the transverse colon when the subject takes a deep breath.
The second slide wall portion 34 has at least a downward wall surface that is wide in the left-right direction from the vicinity of the inner surface of the right side wall portion 23 to the vicinity of the inner surface of the left side wall portion 24. The left and right ends of this wall surface of the second slide wall portion 34 are curved downward.
The second slide wall portion 34 slides downward when simulating a deeply inhaled state, and is arranged upward in other cases.
As a result, as the second slide wall portion 34 is slid downward, at least the spleen-curved region and the hepatic-curved region of the large intestine model 30 are also displaced downward. Therefore, according to the present embodiment, the test is performed. It is possible to realistically simulate the movement of the large intestine while the person is deeply inhaled.
 ところで、本実施形態では、大腸モデル30の脾彎曲領域及び肝彎曲領域の外側面が第二スライド壁部34の下向きの壁面に固定されている。例えば、脾彎曲領域及び肝彎曲領域の外側面と第二スライド壁部34の壁面とは、面ファスナやスナップボタン等のような連結部材で連結固定されてもよいし、接着剤等により接着されてもよい。
 このような構成により、大腸モデル30の脾彎曲領域及び肝彎曲領域を第二スライド壁部34のスライドと共に確実に下方へ変位させることができる。
 但し、大腸モデル30の脾彎曲領域及び肝彎曲領域は、第二スライド壁部34のスライドに伴い下方へ変位することができれば、このように第二スライド壁部34の壁面に固定されていなくてもよい。
By the way, in the present embodiment, the outer surfaces of the splenic curved region and the liver curved region of the large intestine model 30 are fixed to the downward wall surface of the second slide wall portion 34. For example, the outer surface of the splenic curve region and the liver curve region and the wall surface of the second slide wall portion 34 may be connected and fixed by a connecting member such as a hook-and-loop fastener or a snap button, or may be bonded by an adhesive or the like. You may.
With such a configuration, the splenic curve region and the liver curve region of the large intestine model 30 can be reliably displaced downward together with the slide of the second slide wall portion 34.
However, if the spleen-curved region and the hepatic-curved region of the large intestine model 30 can be displaced downward as the second slide wall portion 34 slides, they are not fixed to the wall surface of the second slide wall portion 34 in this way. May be good.
 また、本実施形態では、第二スライド壁部34のスライドは、臓器収容部2の背側内部空間に収容されているモータの動力を用いて実現される。第二スライド壁部34のスライドは、例えば、第一スライド壁部35と同様の構成で実現することができる。このため詳細説明は割愛するが、モータの回転動力がタイミングベルトに係合する係合部材におけるガイドレール(右側壁部23の内面及び左側壁部24の内面に設けられた)の延在方向の直線運動の動力に変換されることで、第二スライド壁部34がそのガイドレールに沿って下方にスライド可能となる。
 このような構成により、第二スライド壁部34は、臓器収容部2に対して下方へスライド可能なスライド状態と臓器収容部2に対して固定される固定状態とに切り替え可能となっていると言える。
Further, in the present embodiment, the slide of the second slide wall portion 34 is realized by using the power of the motor housed in the dorsal internal space of the organ accommodating portion 2. The slide of the second slide wall portion 34 can be realized, for example, with the same configuration as that of the first slide wall portion 35. Therefore, although detailed description is omitted, the extension direction of the guide rail (provided on the inner surface of the right side wall portion 23 and the inner surface of the left side wall portion 24) in the engaging member in which the rotational power of the motor engages with the timing belt By being converted into the power of linear motion, the second slide wall portion 34 can slide downward along the guide rail.
With such a configuration, the second slide wall portion 34 can be switched between a sliding state that can slide downward with respect to the organ accommodating portion 2 and a fixed state that is fixed to the organ accommodating portion 2. I can say.
 但し、第二スライド壁部34のスライドを実現する構成はこのような構成に限定されず、モータの回転動力が上下方向の直線運動の動力に変換される構成であればよい。
 なお、第二スライド壁部34のスライドに関する制御内容については後述することとする。
 また、本実施形態では、第二スライド壁部34のスライドはモータの動力を用いて実現されたが、手動で行われてもよい。この場合には、第二スライド壁部34は、臓器収容部2に対して下方へスライド可能なスライド状態と臓器収容部2に対して固定される固定状態とに切り替え可能に設けられていればよい。例えば、ロック機構により第二スライド壁部34が臓器収容部2に対して固定される状態となり、ロック機構を解除することで第二スライド壁部34が臓器収容部2に対してスライド可能な状態とされ得る。
However, the configuration for realizing the sliding of the second slide wall portion 34 is not limited to such a configuration, and any configuration may be used as long as the rotational power of the motor is converted into the power of linear motion in the vertical direction.
The control contents related to the slide of the second slide wall portion 34 will be described later.
Further, in the present embodiment, the slide of the second slide wall portion 34 is realized by using the power of the motor, but it may be performed manually. In this case, if the second slide wall portion 34 is provided so as to be switchable between a sliding state that can slide downward with respect to the organ accommodating portion 2 and a fixed state that is fixed to the organ accommodating portion 2. Good. For example, the second slide wall portion 34 is fixed to the organ accommodating portion 2 by the lock mechanism, and the second slide wall portion 34 is slidable to the organ accommodating portion 2 by releasing the lock mechanism. Can be said.
 大腸モデル30の横行結腸領域の外側表面には、図3に示されるように、第二ワイヤ部材38が連結されている。本実施形態では、第二ワイヤ部材38は、大腸モデル30の横行結腸領域の長手方向の中央周辺に連結されており、その連結部を下方に引っ張る役割を担う。大腸モデル30の第二ワイヤ部材38が連結されている部位を横行結腸領域のワイヤ連結部位と表記する場合がある。
 この第二ワイヤ部材38により、第二スライド壁部34が上方に位置する通常状態においても、大腸モデル30の横行結腸領域の長手方向の中央部が下方に引っ張られるため、生体における横行結腸の湾曲をリアルに再現することができる。
As shown in FIG. 3, a second wire member 38 is connected to the outer surface of the transverse colon region of the large intestine model 30. In the present embodiment, the second wire member 38 is connected to the central periphery of the transverse colon region of the large intestine model 30 in the longitudinal direction, and plays a role of pulling the connecting portion downward. The site to which the second wire member 38 of the large intestine model 30 is connected may be referred to as a wire connecting site in the transverse colon region.
The second wire member 38 pulls the central portion of the transverse colon region of the large intestine model 30 in the longitudinal direction downward even in the normal state where the second slide wall portion 34 is located above, so that the curvature of the transverse colon in the living body Can be realistically reproduced.
 第二ワイヤ部材38は、可変長部材でなくてもよいし、可変長部材であってもよい。第二ワイヤ部材38が可変長部材とされる場合には、第一ワイヤ部材37と同様の構成とされればよい。即ち、第一ワイヤ部材37は、伸縮性を持つ素材で形成されていてもよいし、伸縮性を持たない素材で形成されていてもよい。また、臓器収容部2が第二ワイヤ部材38を巻き取るワイヤリールを備え、そのワイヤリールと第二ワイヤ部材38とで可変長部材とされてもよい。ワイヤリールの構成は上述した通りである。第二ワイヤ部材38が可変長部材とされる場合、第一ワイヤ部材37と同様に、センサにより検出されたワイヤリールの回転量により大腸モデル30の横行結腸領域のワイヤ連結部位の変位が検出可能となっていてもよい。 The second wire member 38 may not be a variable length member or may be a variable length member. When the second wire member 38 is a variable length member, it may have the same configuration as the first wire member 37. That is, the first wire member 37 may be made of a stretchable material or may be made of a non-stretchable material. Further, the organ accommodating portion 2 may include a wire reel for winding the second wire member 38, and the wire reel and the second wire member 38 may be a variable length member. The configuration of the wire reel is as described above. When the second wire member 38 is a variable length member, the displacement of the wire connecting portion in the transverse colon region of the large intestine model 30 can be detected by the amount of rotation of the wire reel detected by the sensor, similarly to the first wire member 37. It may be.
 ところで、上述したワイヤ連結部位以外で大腸モデル30の外側表面に、第一ワイヤ部材37のような可変長部材が連結されていてもよい。
 例えば、大腸モデル30におけるS状結腸下行結腸移行部(以降、SDJと表記される)に相当する部位に可変長部材が連結されていてもよい。このようにすれば、大腸モデル30におけるSDJに相当する部位の変位を可能としながら当該部位を初期位置に戻すことができる。更に、当該SDJに相当する部位の変位を検出することができる。
By the way, a variable length member such as the first wire member 37 may be connected to the outer surface of the large intestine model 30 other than the wire connecting portion described above.
For example, a variable length member may be connected to a site corresponding to the sigmoid colon descending colon transition portion (hereinafter referred to as SDJ) in the large intestine model 30. In this way, the site can be returned to the initial position while allowing the displacement of the site corresponding to the SDJ in the large intestine model 30. Further, the displacement of the portion corresponding to the SDJ can be detected.
 大腸モデル30の盲腸領域も局所固定領域であり臓器収容部2に固定される。例えば、臓器収容部2の背側プレートに支持される保持機構を介して当該盲腸領域が固定されてもよいし、当該盲腸領域と背側プレートとが、面ファスナやスナップボタン等のような連結部材で連結固定されてもよいし、接着剤等により接着されてもよい。 The cecal region of the large intestine model 30 is also a locally fixed region and is fixed to the organ accommodating portion 2. For example, the cecal region may be fixed via a holding mechanism supported by the dorsal plate of the organ accommodating portion 2, or the cecal region and the dorsal plate are connected by a hook-and-loop fastener, a snap button, or the like. It may be connected and fixed by a member, or may be bonded by an adhesive or the like.
 大腸モデル30は、臓器収容部2に対して着脱可能となっていることが好ましい。このようにすれば、生体の大腸にも長さや太さなど個人差があるように、異なる形状や大きさ、或いはポリープ等の疾患を持つ複数種の大腸モデル30が提供される場合に、臓器収容部2に対して複数種の大腸モデル30を取り換えて利用することができる。結果、様々な被検者を想定した大腸内視鏡手技の訓練を行うことができる。
 この場合、肛門保持部31及び臓器保持部32も大腸モデル30と共に臓器収容部2に対して着脱可能とされてもよいし、肛門保持部31及び臓器保持部32は臓器収容部2に残しながら、大腸モデル30のみが着脱可能とされてもよい。
It is preferable that the large intestine model 30 is removable from the organ accommodating portion 2. In this way, when a plurality of types of large intestine models 30 having different shapes and sizes or diseases such as polyps are provided so that the large intestine of a living body also has individual differences such as length and thickness, the organs A plurality of types of large intestine models 30 can be exchanged and used for the accommodating portion 2. As a result, it is possible to perform colonoscopy training assuming various subjects.
In this case, the anus holding part 31 and the organ holding part 32 may be detachable from the organ holding part 2 together with the large intestine model 30, and the anus holding part 31 and the organ holding part 32 may be left in the organ holding part 2. , Only the large intestine model 30 may be removable.
 次に、図6を用いて、モータ収容部7の内部構成及び臓器収容部2の揺動について説明する。
 図6は、モータ収容部7の内部構成及び臓器収容部2の揺動を示す図であり、図6(a)は、仰臥位状態の臓器収容部2とモータ収容部7の内部構成とを示しており、図6(b)は、左側臥位状態の臓器収容部2とモータ収容部7の内部構成とを示している。
Next, the internal configuration of the motor accommodating portion 7 and the swing of the organ accommodating portion 2 will be described with reference to FIG.
FIG. 6 is a diagram showing the internal configuration of the motor accommodating portion 7 and the swing of the organ accommodating portion 2, and FIG. 6A shows the internal configuration of the organ accommodating portion 2 in the supine position and the internal configuration of the motor accommodating portion 7. FIG. 6B shows the internal configuration of the organ accommodating portion 2 and the motor accommodating portion 7 in the left lateral decubitus position.
 モータ収容部7は、図6(a)及び図6(b)に示されるように、内部において、モータ保持部72を支持している。
 モータ保持部72は、体位変換モータ71を保持しており、体位変換モータ71の回転動力を用いて駆動される出力シャフト75がそのモータ保持部72から突出している。
 出力シャフト75は、モータ収容部7の隣接壁部77(下壁部)のシャフト孔78から臓器収容部2側に突出しており、その先端が、臓器収容部2の上壁部22の上面の略中央で固定されている。
 これにより、臓器収容部2は、体位変換モータ71の回転動力により出力シャフト75が駆動される際には、臓器収容部2に回動自在に設けられた複数のタイヤ部(20a、20b、20c等)を介して基台9の腹側支持面91に支持されながら、その出力シャフト75と共に揺動する。結果、臓器収容部2は、図6(a)に示される仰臥位状態から、基台9の腹側支持面91の上を回動するタイヤ部20a及び20b(言い換えれば、右側壁部23と背側壁部との境界縁(角部))を軸にして90度回転し、図6(b)に示される左側臥位状態に遷移することになる。左側臥位状態では、タイヤ部20a、20b及び20cが基台9の腹側支持面91に当接している(図示せず)。
 このように本実施形態によれば、人体の腹部を模した臓器収容部2を揺動させて、体位変換を模擬することができる。
 更に言えば、臓器収容部2は出力シャフト75で上方が支持されながら、複数のタイヤ部を介して側面(背側及び右側面)が基台9の腹側支持面91で支持されるため、安定した臓器収容部2の揺動を実現することができ、臓器収容部2の揺動に伴う破損や故障の発生を抑制することができる。なお、このような体位変換を模擬する体位変換モータ71の制御内容については後述する。
As shown in FIGS. 6A and 6B, the motor accommodating portion 7 internally supports the motor holding portion 72.
The motor holding portion 72 holds the posture changing motor 71, and the output shaft 75 driven by the rotational power of the posture changing motor 71 projects from the motor holding portion 72.
The output shaft 75 projects from the shaft hole 78 of the adjacent wall portion 77 (lower wall portion) of the motor accommodating portion 7 toward the organ accommodating portion 2, and the tip thereof is the upper surface of the upper wall portion 22 of the organ accommodating portion 2. It is fixed in the center.
As a result, the organ accommodating portion 2 has a plurality of tire portions (20a, 20b, 20c) rotatably provided in the organ accommodating portion 2 when the output shaft 75 is driven by the rotational power of the posture change motor 71. Etc.), while being supported by the ventral support surface 91 of the base 9, swinging together with the output shaft 75. As a result, the organ accommodating portion 2 has the tire portions 20a and 20b (in other words, the right wall portion 23) rotating on the ventral support surface 91 of the base 9 from the supine position shown in FIG. 6A. It rotates 90 degrees around the boundary edge (corner portion) with the back side wall portion, and transitions to the left lateral decubitus state shown in FIG. 6 (b). In the left lateral decubitus position, the tire portions 20a, 20b and 20c are in contact with the ventral support surface 91 of the base 9 (not shown).
As described above, according to the present embodiment, the organ accommodating portion 2 that imitates the abdomen of the human body can be swung to simulate the postural change.
Further, since the organ accommodating portion 2 is supported upward by the output shaft 75 and the side surfaces (dorsal side and right side surface) are supported by the ventral support surface 91 of the base 9 via the plurality of tire portions. It is possible to realize a stable swing of the organ accommodating portion 2, and it is possible to suppress the occurrence of damage or failure due to the swing of the organ accommodating portion 2. The control content of the posture change motor 71 that simulates such posture change will be described later.
 ここで、臓器収容部2が基台9の腹側支持面91上を上述のように揺動する際に、臓器収容部2の上端壁部22で固定されている出力シャフト75は、臓器収容部2の揺動動力によって、少なくとも図2で示される前後方向に移動する。本実施形態では、出力シャフト75はモータ保持部72で回動自在に保持されていることから、出力シャフト75の駆動で臓器収容部2が仰臥位状態から左側臥位状態へ揺動するに伴い、モータ保持部72は少なくとも前方へ移動し、出力シャフト75の駆動で臓器収容部2が左側臥位状態から仰臥位状態へ揺動するに伴い、モータ保持部72は少なくとも後方へ移動する。
 そこで、本実施形態では、モータ収容部7は、図6(a)及び図6(b)に示されるように、内部において、モータ保持部72を前後方向にスライド可能に支持している。具体的には、モータ収容部7は、内部に、前後方向に延在する一対のガイドレール73を有しており、モータ保持部72は、左右両側面に設けられた係合部材を介して当該一対のガイドレール73に摺動可能に係合されている。
 このように体位変換モータ71及び出力シャフト75を保持するモータ保持部72が前後方向にスライド可能にモータ収容部7の内部で支持されているため、臓器収容部2のスムーズな揺動を実現することができる。
Here, when the organ accommodating portion 2 swings on the ventral support surface 91 of the base 9 as described above, the output shaft 75 fixed by the upper end wall portion 22 of the organ accommodating portion 2 is organ accommodating. By the swinging power of the part 2, it moves at least in the front-rear direction shown in FIG. In the present embodiment, since the output shaft 75 is rotatably held by the motor holding portion 72, the organ accommodating portion 2 swings from the supine position to the left lateral decubitus state by driving the output shaft 75. The motor holding portion 72 moves at least forward, and the motor holding portion 72 moves at least backward as the organ accommodating portion 2 swings from the left lateral decubitus position to the supine position by driving the output shaft 75.
Therefore, in the present embodiment, the motor accommodating portion 7 internally supports the motor holding portion 72 so as to be slidable in the front-rear direction, as shown in FIGS. 6 (a) and 6 (b). Specifically, the motor accommodating portion 7 has a pair of guide rails 73 extending in the front-rear direction inside, and the motor holding portion 72 is provided via engaging members provided on both left and right side surfaces. It is slidably engaged with the pair of guide rails 73.
Since the motor holding portion 72 that holds the posture change motor 71 and the output shaft 75 is supported inside the motor accommodating portion 7 so as to be slidable in the front-rear direction, the organ accommodating portion 2 can be smoothly swung. be able to.
 〔制御構成〕
 次に、本シミュレータにおける制御構成について図7を用いて説明する。
 図7は、本実施形態に係る医療シミュレータにおける制御構成を概念的に示す図である。
 図7に示されるように、本シミュレータは、制御に関わる構成として、シミュレータ制御部(以降、制御部と略称する)10、入出力パネル15、マイク16、モータ群17、センサ群18等を有し、上述したとおり、本シミュレータの制御は、制御部10により実行される。但し、本シミュレータは、図7に図示されていない他の制御構成を有していてもよい。
[Control configuration]
Next, the control configuration in this simulator will be described with reference to FIG. 7.
FIG. 7 is a diagram conceptually showing a control configuration in the medical simulator according to the present embodiment.
As shown in FIG. 7, this simulator has a simulator control unit (hereinafter abbreviated as a control unit) 10, an input / output panel 15, a microphone 16, a motor group 17, a sensor group 18, and the like as configurations related to control. However, as described above, the control of this simulator is executed by the control unit 10. However, this simulator may have other control configurations (not shown in FIG. 7).
 制御部10は、ハードウェア構成として、CPU(Central Processing Unit)11、メモリ12、入出力インタフェース(I/F)ユニット13等を有する。
 CPU11は、一般的な一以上のCPU又はMPU(Micro Processing Unit)であってもよいし、それに替え又はそれと共に、特定用途向け集積回路(ASIC)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)、FPGA(Field Programmable Gate Array)等であってもよい。
 メモリ12は、RAM(Random Access Memory)及びROM(Read Only Memory)であり、補助記憶装置(ハードディスク等)を含んでもよい。
 入出力I/Fユニット13は、CPU11で処理すべき又は処理された信号の入力又は出力を制御する機器であり、入出力パネル15、マイク16等のユーザインタフェース装置、モータ群17、センサ群18等に接続される。また、入出力I/Fユニット13は、他のコンピュータや機器との通信を行う通信ユニットを含んでもよく、可搬型記録媒体等にも接続され得る。
 制御部10は、図7に図示されていないハードウェア要素を含んでもよく、制御部10のハードウェア構成は制限されない。
The control unit 10 has a CPU (Central Processing Unit) 11, a memory 12, an input / output interface (I / F) unit 13, and the like as a hardware configuration.
The CPU 11 may be one or more general CPUs or MPUs (Micro Processing Units), and may be replaced with or together with an integrated circuit (ASIC) for a specific application, a DSP (Digital Signal Processor), and a GPU (Graphics Processing). Unit), FPGA (Field Programmable Gate Array), etc. may be used.
The memory 12 is a RAM (Random Access Memory) and a ROM (Read Only Memory), and may include an auxiliary storage device (hard disk or the like).
The input / output I / F unit 13 is a device that controls the input or output of a signal to be processed or processed by the CPU 11, and is a user interface device such as an input / output panel 15, a microphone 16, a motor group 17, and a sensor group 18. Etc. are connected. Further, the input / output I / F unit 13 may include a communication unit that communicates with another computer or device, and may be connected to a portable recording medium or the like.
The control unit 10 may include hardware elements (not shown in FIG. 7), and the hardware configuration of the control unit 10 is not limited.
 入出力パネル15は、訓練メニュー、動作モード、評価結果などを表示する表示装置及び表示装置に表示された画面を操作するための入力装置を含む。入出力パネル15は、表示装置と入力装置とが一体化されたタッチパネルとして実現されてもよい。
 本実施形態では、入出力パネル15に表示される内容は何ら制限しない。本実施形態では、例えば、訓練の開始及び中止を選択可能な操作ボタンや、訓練の経過時間の表示や、訓練の難易度を選択するメニュー、評価結果などが表示される。入出力パネル15へ出力される表示例については後述する。
 マイク16は、マイクロフォンであり、集音された音を電気信号に変換する。
The input / output panel 15 includes a display device for displaying a training menu, an operation mode, an evaluation result, and the like, and an input device for operating a screen displayed on the display device. The input / output panel 15 may be realized as a touch panel in which a display device and an input device are integrated.
In the present embodiment, the content displayed on the input / output panel 15 is not limited at all. In the present embodiment, for example, an operation button that allows selection of start and stop of training, a display of the elapsed time of training, a menu for selecting the difficulty level of training, an evaluation result, and the like are displayed. A display example output to the input / output panel 15 will be described later.
The microphone 16 is a microphone and converts the collected sound into an electric signal.
 モータ群17は、臓器保持部32、第一スライド壁部35、及び第二スライド壁部34の各スライドを実現する3つのモータ、及び体位変換モータ71を少なくとも含んでいる。
 モータ群17に含まれる各モータは、電気エネルギを機械エネルギに変換する電動機であればよく、直流モータであってもよいし、交流モータであってもよいし、それ以外のモータであってもよい。以降、モータ群17に含まれる各モータはそれぞれ区別されずモータ17と総称される場合がある。
The motor group 17 includes at least three motors that realize the slides of the organ holding portion 32, the first slide wall portion 35, and the second slide wall portion 34, and the posture change motor 71.
Each motor included in the motor group 17 may be an electric motor that converts electric energy into mechanical energy, may be a DC motor, may be an AC motor, or may be another motor. Good. Hereinafter, each motor included in the motor group 17 may be collectively referred to as a motor 17 without distinction.
 センサ群18は、大腸モデル30の造形内部若しくは造形外部(外表面或いは内壁面)、又は他の構成に設けられた複数の各種センサであり、各位置での内視鏡手技の状態を検知する。
 例えば、大腸モデル30における局所固定領域(肛門側端部領域、下行結腸保持領域、脾彎曲領域、肝彎曲領域、盲腸領域)に設けられ内視鏡の存在を検出する物体検出センサが当該センサ群18に含まれる。本実施形態では、肛門保持部31、臓器保持部32、及び盲腸領域を保持する保持機構(図示せず)に物体検出センサとしての光電センサがそれぞれ設置される。但し、当該物体検出センサは、大腸モデル30の管腔内を通過する内視鏡の存在を検出することができれば、その具体的な種類や検出原理は限定されないし、その設置場所についても限定されない。
 また、当該センサ群18には第一スライド壁部35又は第二スライド壁部34の下向き壁面に対する圧力を検出する圧力センサが含まれてもよい。
 更に、当該センサ群18には大腸モデル30の管腔内の気圧を検出する気圧センサが含まれてもよい。
The sensor group 18 is a plurality of various sensors provided inside or outside the modeling (outer surface or inner wall surface) of the large intestine model 30 or in other configurations, and detects the state of the endoscopic procedure at each position. ..
For example, an object detection sensor provided in the locally fixed region (anal side end region, descending colon holding region, splenic curve region, hepatic curve region, cecal region) in the large intestine model 30 and detects the presence of an endoscope is the sensor group. 18 is included. In the present embodiment, a photoelectric sensor as an object detection sensor is installed in the anal holding portion 31, the organ holding portion 32, and the holding mechanism (not shown) for holding the cecal region, respectively. However, if the object detection sensor can detect the presence of an endoscope passing through the lumen of the large intestine model 30, its specific type and detection principle are not limited, and its installation location is also not limited. ..
Further, the sensor group 18 may include a pressure sensor that detects pressure on the downward wall surface of the first slide wall portion 35 or the second slide wall portion 34.
Further, the sensor group 18 may include a barometric pressure sensor that detects the barometric pressure in the lumen of the large intestine model 30.
 CPU11によりメモリ12に格納される制御プログラムが実行されることにより、制御部10は、センサ群18やマイク16からの入力信号を受けつつ、モータ群17の制御、入出力パネル15の表示制御等を行う。
 当該制御プログラムは、出荷時に予め格納されてもいてもよいし、CD(Compact Disc)、メモリカード等のような可搬型記録媒体やネットワーク上の他のコンピュータから入出力I/Fユニット13を介してインストールされ、メモリ12に格納されてもよい。
When the control program stored in the memory 12 is executed by the CPU 11, the control unit 10 controls the motor group 17, controls the display of the input / output panel 15, and the like while receiving input signals from the sensor group 18 and the microphone 16. I do.
The control program may be stored in advance at the time of shipment, or may be stored in advance from a portable recording medium such as a CD (Compact Disc) or a memory card or another computer on the network via the input / output I / F unit 13. It may be installed and stored in the memory 12.
 図8は、制御部10により実現されるソフトウェア構成を概念的に示すブロック図である。
 CPU11によりメモリ12に格納される制御プログラムが実行されることにより、制御部10は、図8に示されるようなソフトウェア構成を実現する。具体的には、制御部10は、ソフトウェア構成として、臓器状態検出モジュール(以降、検出モジュールと略称される場合もある)101、モード管理モジュール102、発話処理モジュール103、計測モジュール104、評価モジュール105等を有している。
 但し、図8に示される各ソフトウェア構成要素は、説明の便宜のために概念的にそれぞれ分けて示したものであるため、制御部10で実現されるソフトウェア構成は、図8に示されるような各構成要素に明確に区分けされていなくてもよい。
FIG. 8 is a block diagram conceptually showing a software configuration realized by the control unit 10.
By executing the control program stored in the memory 12 by the CPU 11, the control unit 10 realizes the software configuration as shown in FIG. Specifically, the control unit 10 has an organ state detection module (hereinafter, may be abbreviated as a detection module) 101, a mode management module 102, an utterance processing module 103, a measurement module 104, and an evaluation module 105 as software configurations. Etc.
However, since each software component shown in FIG. 8 is conceptually shown separately for convenience of explanation, the software configuration realized by the control unit 10 is as shown in FIG. It does not have to be clearly separated into each component.
 検出モジュール101は、臓器収容部2に収容されている大腸モデル30の可動領域の少なくとも一部である対象部位の変位又は変形を検出する。本実施形態では、大腸モデル30における肛門保持部31と臓器保持部32との間の領域が当該対象部位とされている。
 ここで検出モジュール101により検出される「対象部位の変位」とは、上述したとおり、対象部位の位置の変化を意味する。このため、「対象部位の変位の検出」には、対象部位の三次元位置又は二次元位置を取得すること、対象部位の三次元空間内又は二次元空間内の位置変化を検出することのいずれか一方又は両方が含まれる。
 また、「対象部位の変形」についても、上述したとおり、対象部位の屈曲変形、伸縮変形(長手方向の長さの伸展変形又は短縮変形)、捻じれ変形(長手方向を軸とした回転捻じれ(雑巾を絞るような捻じれ))、ループ変形(長手方向にループ形状をなす変形)等のいずれか一つ以上を含む。
The detection module 101 detects the displacement or deformation of the target site which is at least a part of the movable region of the large intestine model 30 housed in the organ accommodating portion 2. In the present embodiment, the region between the anal holding portion 31 and the organ holding portion 32 in the large intestine model 30 is the target site.
Here, the "displacement of the target portion" detected by the detection module 101 means a change in the position of the target portion as described above. Therefore, in "detection of displacement of the target part", either the acquisition of the three-dimensional position or the two-dimensional position of the target part or the detection of the position change in the three-dimensional space or the two-dimensional space of the target part is performed. One or both are included.
As for "deformation of the target part", as described above, bending deformation, expansion / contraction deformation (extension deformation or shortening deformation of the length in the longitudinal direction), and twist deformation (rotational twist about the longitudinal direction) of the target part. (Twisting like squeezing a rag)), loop deformation (deformation forming a loop shape in the longitudinal direction), etc., any one or more is included.
 本実施形態では、検出モジュール101は、二台のカメラ6により撮像された臓器収容部2内の画像データを取得し、この画像データからマーカ画像を認識することで、当該対象部位の屈曲状態、伸縮状態、捻じれ状態、若しくはループ状態のいずれか一つ又はいずれか複数を検出することができる。
 ここで「屈曲状態」は、屈曲変形の状態を意味し、例えば、屈曲の程度や屈曲角度、屈曲している箇所の数等で示され得る。
 「伸縮状態」は、長手方向の長さの伸展変形又は短縮変形の状態を意味し、例えば、伸展又は短縮の程度や伸展率又は短縮率(元の長さに対する変化した長さの割合)、伸展又は短縮している箇所の数等で示され得る。
 「捻じれ状態」は、捻じれ変形の状態を意味し、大腸モデル30の長手方向を軸とした回転捻じれ(雑巾を絞るような捻じれ)の程度や捻じれ数(回転数)等で示され得る。
 「ループ状態」は、大腸モデル30の長手方向にループ形状をなすループ変形の状態を意味し、ループ形状のタイプやループの数、ループの大きさ等で示され得る。ここで、大腸内視鏡の手技においてS状結腸や横行結腸等に内視鏡を挿入するにあたり、ループ形状を作って内視鏡を挿入する手技がある。このようなループ形状には、αループ、逆αループ、γループ、逆γループ、Nループ、Mループ等と呼ばれるループ形状のタイプが存在し得る。検出モジュール101は、このようなループ形状のタイプをループ状態として検出してもよい。
In the present embodiment, the detection module 101 acquires the image data in the organ accommodating portion 2 imaged by the two cameras 6, and recognizes the marker image from the image data to obtain the bent state of the target portion. It is possible to detect any one or more of the stretched state, the twisted state, and the loop state.
Here, the "bent state" means a state of bending deformation, and may be indicated by, for example, the degree of bending, the bending angle, the number of bending points, and the like.
"Expandable state" means a state of extensional deformation or shortening deformation of length in the longitudinal direction, for example, the degree of extension or shortening and the extension rate or shortening rate (ratio of the changed length to the original length). It can be indicated by the number of stretched or shortened parts.
The "twisted state" means a state of twisted deformation, and is based on the degree of rotational twist (twist that squeezes a rag) and the number of twists (rotational speed) about the longitudinal direction of the large intestine model 30. Can be shown.
The “loop state” means a state of loop deformation forming a loop shape in the longitudinal direction of the large intestine model 30, and can be indicated by the type of loop shape, the number of loops, the size of the loop, and the like. Here, in the procedure of colonoscopy, when inserting an endoscope into a sigmoid colon, a transverse colon, or the like, there is a technique of forming a loop shape and inserting the endoscope. As such a loop shape, there may be a type of loop shape called α loop, inverse α loop, γ loop, inverse γ loop, N loop, M loop and the like. The detection module 101 may detect such a loop shape type as a loop state.
 本実施形態では、二台のカメラ6の姿勢パラメータを正確に保持しておくことができるため、二台のカメラ6からの撮像画像により既知のステレオ画像法などを用いることで、各マーカの三次元位置情報が取得可能である。結果、各マーカリング43の三次元位置をそれぞれ取得することができ、結果として、対象部位に関して屈曲状態、伸縮状態、捻じれ状態、ループ状態等の形状情報が検出可能となる。
 但し、各マーカの三次元位置情報を取得しなくても、当該対象部位の屈曲状態、伸縮状態、捻じれ状態、ループ状態等は検出可能である。例えば、臓器収容部2に収容された状態における大腸モデル30の当該対象部位の表面、裏面及びその中間にそれぞれ異なる色又は形のマーカを配置しておく。これにより、二台のカメラ6からの撮像画像における各マーカの写り込み状態に基づいて、当該対象部位の屈曲状態、伸縮状態、捻じれ状態、ループ状態等が検出可能である。撮像画像内における表面を示すマーカの認識数、裏面を示すマーカの認識数、及びその中間を示すマーカの認識数のパターンと、当該対象部位の屈曲状態、伸縮状態、捻じれ状態、ループ状態等との関係を予め保持しておき、この関係を用いてもよい。
 更に言えば、本実施形態では、肛門保持部31及び臓器保持部32にも保持部マーカ41及び42が設けられている。これにより、保持部マーカ41及び42からその位置が算出可能であるため、肛門保持部31と臓器保持部32との間の距離も算出可能である。
In the present embodiment, since the posture parameters of the two cameras 6 can be accurately held, the three-dimensionality of each marker can be obtained by using a stereo imaging method or the like known from the images captured by the two cameras 6. The original position information can be acquired. As a result, the three-dimensional positions of each marker ring 43 can be acquired, and as a result, shape information such as a bent state, a stretched state, a twisted state, and a loop state can be detected with respect to the target portion.
However, even if the three-dimensional position information of each marker is not acquired, the bent state, the stretched state, the twisted state, the loop state, etc. of the target portion can be detected. For example, markers of different colors or shapes are arranged on the front surface, the back surface, and the middle of the target site of the large intestine model 30 in the state of being housed in the organ storage unit 2. Thereby, the bent state, the stretched state, the twisted state, the loop state, and the like of the target portion can be detected based on the reflected state of each marker in the images captured by the two cameras 6. The pattern of the number of recognized markers indicating the front surface, the number of recognized markers indicating the back surface, and the number of recognized markers indicating the middle in the captured image, and the bent state, stretched state, twisted state, loop state, etc. of the target portion. You may use this relationship by preserving the relationship with.
Furthermore, in the present embodiment, the holding portion markers 41 and 42 are also provided in the anal holding portion 31 and the organ holding portion 32. As a result, the position can be calculated from the holding portions markers 41 and 42, so that the distance between the anal holding portion 31 and the organ holding portion 32 can also be calculated.
 しかしながら、内視鏡手技に伴う大腸モデル30の変形や変位によって、死角が生じ、マーカが検出できないマーカリング43が存在する場合があり得る。
 そこで、検出モジュール101は、第一ワイヤ部材37又は第二ワイヤ部材38を含む可変長部材の長さを検出して、その長さを更に用いて、当該対象部位の変位又は変形を検出するようにしてもよい。例えば、検出モジュール101は、第一ワイヤ部材37を巻き取るワイヤリールの回転量を検出するセンサからの検出信号に基づいて、第一ワイヤ部材37の送り出し量(長さ)を検出することができ、ひいては、大腸モデル30のS状結腸領域のワイヤ連結部位の変位又は変位量を検出することができる。検出モジュール101は、第一ワイヤ部材37の長さに関して検出されるワイヤ連結部位の変位又は変位量で、上述のマーカを用いて検出された対象部位の三次元位置情報を補足することで、仮に一部のマーカリング43が検出できない場合であっても、当該対象部位の変位又は変形(屈曲状態、伸縮状態、捻じれ状態、ループ状態等)を精度の低下なく検出することができる。
However, there may be a marker ring 43 in which a marker cannot be detected due to a blind spot caused by deformation or displacement of the large intestine model 30 accompanying the endoscopic procedure.
Therefore, the detection module 101 detects the length of the variable length member including the first wire member 37 or the second wire member 38, and further uses the length to detect the displacement or deformation of the target portion. It may be. For example, the detection module 101 can detect the feed amount (length) of the first wire member 37 based on the detection signal from the sensor that detects the rotation amount of the wire reel that winds the first wire member 37. As a result, the displacement or the amount of displacement of the wire connecting portion of the sigmoid colon region of the large intestine model 30 can be detected. The detection module 101 is a displacement or displacement amount of the wire connecting portion detected with respect to the length of the first wire member 37, and by supplementing the three-dimensional position information of the target portion detected by using the above-mentioned marker, tentatively. Even when a part of the marker ring 43 cannot be detected, the displacement or deformation (bent state, stretch state, twist state, loop state, etc.) of the target portion can be detected without deterioration of accuracy.
 上述したとおり、本実施形態では、大腸モデル30における肛門保持部31と臓器保持部32との間の領域が当該対象部位とされたが、検出モジュール101は、大腸モデル30のそれ以外の領域(例えば、横行結腸領域等)の変位又は変形を検出してもよい。この場合、複数のマーカが横行結腸領域に設けられ、必要に応じて、第二ワイヤ部材38の長さ情報が用いられればよい。 As described above, in the present embodiment, the region between the anal holding portion 31 and the organ holding portion 32 in the colon model 30 is the target site, but the detection module 101 is the other region of the colon model 30 ( For example, displacement or deformation of the transverse colon region, etc.) may be detected. In this case, a plurality of markers may be provided in the transverse colon region and, if necessary, the length information of the second wire member 38 may be used.
 モード管理モジュール102は、本シミュレータにおける訓練モード情報を取得する。例えば、モード管理モジュール102は、入出力パネル15からの信号を入出力I/Fユニット13を介して受信することで、入出力パネル15に対する操作で、訓練開始が指定されたか、訓練中止が指定されたか、或いは指定された訓練難易度を当該訓練モード情報として取得することができる。
 モード管理モジュール102は、取得された訓練モード情報が訓練開始又は訓練中止を示す場合には、計測モジュール104及び評価モジュール105にその旨を通知する。
The mode management module 102 acquires training mode information in this simulator. For example, the mode management module 102 receives the signal from the input / output panel 15 via the input / output I / F unit 13, and thereby specifies whether the training start is specified or the training is stopped by the operation on the input / output panel 15. The training difficulty level that has been or is specified can be acquired as the training mode information.
When the acquired training mode information indicates the start or stop of training, the mode management module 102 notifies the measurement module 104 and the evaluation module 105 to that effect.
 また、モード管理モジュール102は、取得された訓練モード情報により示される訓練難易度に応じて、臓器保持部32の位置を決め、対応するモータを制御してその決められた位置に臓器保持部32をスライドさせる。訓練難易度は予め決められた段階数(例えば5段階)で指定可能とされており、訓練難易度の段階数ごとに臓器保持部32の位置がそれぞれ決められていてもよい。この場合、訓練難易度が高い程、臓器保持部32が肛門保持部31に近い位置に決められていればよい。決められた位置への臓器保持部32のスライドは、モータの回転量を用いて制御されてもよいし、位置センサ(フォトセンサ等)からの検出信号を用いて制御されてもよい。 Further, the mode management module 102 determines the position of the organ holding unit 32 according to the training difficulty level indicated by the acquired training mode information, controls the corresponding motor, and controls the corresponding motor to the organ holding unit 32 at the determined position. Slide. The training difficulty level can be specified by a predetermined number of steps (for example, 5 steps), and the position of the organ holding portion 32 may be determined for each step number of the training difficulty level. In this case, the higher the training difficulty level, the closer the organ holding portion 32 is to the anal holding portion 31. The slide of the organ holding portion 32 to the determined position may be controlled by using the rotation amount of the motor, or may be controlled by using the detection signal from the position sensor (photo sensor or the like).
 発話処理モジュール103は、被訓練者の発話情報を取得する。例えば、発話処理モジュール103は、マイク16から得られる音声信号を入出力I/Fユニット13を介して受信し、その音声信号に対して音声認識処理を適用することで、被訓練者の発話情報を取得することができる。発話処理モジュール103は、被訓練者を識別しても識別しなくてもよく、得られる発話情報を被訓練者の発話情報としてもよい。以上より、発話処理モジュール103は、発話取得手段と表記できる。 The utterance processing module 103 acquires the utterance information of the trainee. For example, the utterance processing module 103 receives the voice signal obtained from the microphone 16 via the input / output I / F unit 13, and applies voice recognition processing to the voice signal to provide the utterance information of the trainee. Can be obtained. The utterance processing module 103 may or may not identify the trainee, and the obtained utterance information may be used as the utterance information of the trainee. From the above, the utterance processing module 103 can be described as an utterance acquisition means.
 更に、発話処理モジュール103は、取得された発話情報に基づいて、予め定められた複数種の所定発話のうち被訓練者が発した一以上の所定発話を特定することができる。
 大腸内視鏡の手技において、医師は、上述したとおり、内視鏡挿入をサポートするべく、介助者に腹部圧迫を指示する場合がある。この腹部圧迫の指示に対応する発話が予め定められた所定発話として発話処理モジュール103に保持されてもよい。この場合、所定発話として、例えば、「腹部圧迫」、「圧迫サポート」といった部分的な発話情報が保持され、発話処理モジュール103は、取得された発話情報にそのような所定発話が含まれているか否かで、被訓練者が発した所定発話を特定することができる。
 同様に、腹部圧迫の解除の指示に対応する発話が予め定められた所定発話として発話処理モジュール103に保持されてもよい。この場合、所定発話として、例えば、「圧迫解除」、「圧迫止めて」といった部分的な発話情報が保持されてもよい。
Further, the utterance processing module 103 can specify one or more predetermined utterances uttered by the trainee among a plurality of predetermined predetermined utterances based on the acquired utterance information.
In the colonoscopy procedure, the physician may instruct the caregiver to compress the abdomen to support endoscopic insertion, as described above. The utterance corresponding to the abdominal compression instruction may be held in the utterance processing module 103 as a predetermined predetermined utterance. In this case, as the predetermined utterance, for example, partial utterance information such as "abdominal compression" and "compression support" is held, and the utterance processing module 103 includes such predetermined utterance in the acquired utterance information. Whether or not it is possible to identify a predetermined utterance made by the trainee.
Similarly, the utterance corresponding to the instruction to release the abdominal compression may be held in the utterance processing module 103 as a predetermined predetermined utterance. In this case, as a predetermined utterance, partial utterance information such as "release of compression" and "stop compression" may be retained.
 また、医師は、上述したとおり、内視鏡挿入をスムーズに行うために、被検者(患者)に深く息を吸うよう依頼する場合がある。この深く息を吸う依頼に対応する発話が予め定められた所定発話として発話処理モジュール103に保持されてもよい。この場合、所定発話として、例えば、「深く息を吸ってください」、「息を吸って止めてください」といった発話情報が保持され、発話処理モジュール103は、取得された発話情報がそのような所定発話であるか否かを判別することで、被訓練者が発した所定発話を特定することができる。
 このような依頼の後、医師は、通常の呼吸に戻すよう依頼する。この通常の呼吸に戻す依頼に対応する発話が予め定められた所定発話として発話処理モジュール103に保持されてもよい。この場合、所定発話として、例えば、「息を吐いてもいいですよ」、「通常の呼吸に戻してください」といった発話情報が保持されてもよい。
In addition, as described above, the doctor may ask the subject (patient) to take a deep breath in order to smoothly insert the endoscope. The utterance corresponding to this deep breathing request may be held in the utterance processing module 103 as a predetermined predetermined utterance. In this case, as predetermined utterances, for example, utterance information such as "please take a deep breath" and "please take a breath and stop" is held, and the utterance processing module 103 has such predetermined utterance information. By determining whether or not the utterance is an utterance, it is possible to identify a predetermined utterance uttered by the trainee.
After such a request, the doctor asks you to return to normal breathing. The utterance corresponding to the request to return to normal breathing may be held in the utterance processing module 103 as a predetermined predetermined utterance. In this case, utterance information such as "you may exhale" or "return to normal breathing" may be retained as predetermined utterances.
 加えて、医師は、内視鏡挿入をスムーズに行うために、被検者(患者)又は介助者に体位変換を依頼する場合がある。この体位変換の依頼に対応する発話が予め定められた所定発話として発話処理モジュール103に保持されてもよい。この場合、所定発話として、例えば、「仰向け」又は「横向き」といった部分的な発話情報が保持され、発話処理モジュール103は、取得された発話情報にそのような所定発話が含まれているか否かで、被訓練者が発した所定発話を特定することができる。
 このように発話処理モジュール103は、発話特定手段と呼ぶこともできる。但し、本実施形態において特定されるべき所定発話はこのような例のみに限定されない。また、予め定められた各所定発話として、発話処理モジュール103は、様々なバリエーションを保持するようにしてもよい。音声認識処理は、既存のあらゆる認識手法を用いた処理とすることができる。
In addition, the doctor may request the subject (patient) or a caregiver to change the position in order to smoothly insert the endoscope. The utterance corresponding to the request for the position change may be held in the utterance processing module 103 as a predetermined predetermined utterance. In this case, partial utterance information such as "backward" or "sideways" is held as the predetermined utterance, and the utterance processing module 103 determines whether or not the acquired utterance information includes such a predetermined utterance. Therefore, it is possible to identify a predetermined utterance uttered by the trainee.
In this way, the utterance processing module 103 can also be called the utterance specifying means. However, the predetermined utterance to be specified in this embodiment is not limited to such an example. Further, the utterance processing module 103 may hold various variations as each predetermined utterance. The voice recognition process can be a process using any existing recognition method.
 発話処理モジュール103は、予め定められた複数種の所定発話のうち、第一スライド壁部35又は第二スライド壁部34のスライドに対応する所定発話を特定した場合には、対応するモータを制御して第一スライド壁部35又は第二スライド壁部34をスライドさせる。
 本実施形態では、発話処理モジュール103は、「腹部圧迫」を含む所定発話が特定された場合には、第一スライド壁部35を下方にスライドさせ、「圧迫止めて」を含む所定発話が特定された場合には、第一スライド壁部35を上方にスライドさせて元の位置に戻す。また、発話処理モジュール103は、「深く息を吸ってください」といった所定発話が特定された場合には、第二スライド壁部34を下方にスライドさせ、「息を吐いてもいいですよ」といった所定発話が特定された場合には、第二スライド壁部34を上方にスライドさせて元の位置に戻す。
When the utterance processing module 103 identifies a predetermined utterance corresponding to the slide of the first slide wall portion 35 or the second slide wall portion 34 among a plurality of predetermined types of predetermined utterances, the utterance processing module 103 controls the corresponding motor. Then, the first slide wall portion 35 or the second slide wall portion 34 is slid.
In the present embodiment, when a predetermined utterance including "abdominal compression" is specified, the utterance processing module 103 slides the first slide wall portion 35 downward to specify the predetermined utterance including "stop compression". If so, the first slide wall portion 35 is slid upward to return to the original position. Further, when a predetermined utterance such as "Please take a deep breath" is specified, the utterance processing module 103 slides the second slide wall portion 34 downward and says "You may exhale." When the predetermined utterance is specified, the second slide wall portion 34 is slid upward to return to the original position.
 また、発話処理モジュール103は、体位変換に対応する所定発話を特定した場合には、体位変換モータ71を制御して臓器収容部2を揺動させる。例えば、発話処理モジュール103は、「仰向け」を含む所定発話が特定された場合には、臓器収容部2が左側臥位状態から仰臥位状態へ揺動するように体位変換モータ71を動作させ、「横向き」を含む所定発話が特定された場合には、臓器収容部2が仰臥位状態から左側臥位状態へ揺動すうりょうに体位変換モータ71を動作させる。
 このように本実施形態では、音声認識により、第一スライド壁部35及び第二スライド壁部34のスライド、並びに臓器収容部2の揺動が実行されたが、それらは、入出力パネル15の表示に対する操作入力により実行されるようにしてもよい。
 また、発話処理モジュール103は、内視鏡の先端部が存在する位置とその位置で医師が発声すべき所定発話との対応関係を保持しておき、対象となる位置に内視鏡の先端部が存在しているもののその位置で発声すべき所定発話が所定時間内に特定されなかった場合には、自発的に、第一スライド壁部35若しくは第二スライド壁部34のスライド、又は臓器収容部2の揺動を実行するようにしてもよい。このようにすれば、被訓練者を手助けすることができるため、内視鏡操作に不慣れな被訓練者もサポートを受けながら訓練を継続し易くなる。
Further, when the utterance processing module 103 identifies a predetermined utterance corresponding to the posture change, the utterance processing module 103 controls the posture change motor 71 to swing the organ accommodating portion 2. For example, the utterance processing module 103 operates the body position change motor 71 so that the organ accommodating portion 2 swings from the left lateral decubitus position to the supine position when a predetermined utterance including "supine position" is specified. When a predetermined utterance including "sideways" is specified, the organ accommodating portion 2 operates the posture change motor 71 so as to swing from the supine position to the left lateral position.
As described above, in the present embodiment, the first slide wall portion 35 and the second slide wall portion 34 are slid and the organ accommodating portion 2 is swung by voice recognition, but these are the input / output panel 15. It may be executed by the operation input to the display.
Further, the utterance processing module 103 holds a correspondence relationship between the position where the tip of the endoscope exists and the predetermined utterance that the doctor should utter at that position, and the tip of the endoscope is located at the target position. If a predetermined utterance to be uttered at that position is not specified within a predetermined time even though the utterance exists, the slide of the first slide wall portion 35 or the second slide wall portion 34 or the organ accommodation is voluntarily performed. The swing of the part 2 may be executed. In this way, the trainee can be assisted, so that the trainee who is unfamiliar with the operation of the endoscope can easily continue the training while receiving support.
 計測モジュール104は、内視鏡手技に関する時間情報を取得する。上述したとおり、本実施形態では、肛門保持部31、臓器保持部32、及び肛門領域を保持する保持機構に物体検出センサがそれぞれ設けられており、各物体検出センサからの検出信号によれば、大腸モデル30におけるその物体検出センサが設けられている位置を内視鏡の先端部が通過したことを検出することができる。このため、大腸モデル30における各物体検出センサが設けられた位置をチェックポイントと表記することができ、計測モジュール104は、大腸モデル30の管腔における長手方向の相互に異なる位置に設けられた複数のチェックポイントを内視鏡の先端部が通過したことを判定すると表記できる。 The measurement module 104 acquires time information related to the endoscopic procedure. As described above, in the present embodiment, object detection sensors are provided in the anal holding portion 31, the organ holding portion 32, and the holding mechanism for holding the anal region, respectively, and according to the detection signals from the respective object detection sensors, It is possible to detect that the tip of the endoscope has passed the position where the object detection sensor is provided in the large intestine model 30. Therefore, the position where each object detection sensor is provided in the large intestine model 30 can be described as a checkpoint, and a plurality of measurement modules 104 provided at different positions in the lumen of the large intestine model 30 in the longitudinal direction. It can be described as determining that the tip of the endoscope has passed the checkpoint of.
 計測モジュール104は、上記判定に基づいて、二つのチェックポイント間の内視鏡の先端部の滞在時間を取得する。本実施形態では、計測モジュール104は、大腸モデル30における肛門保持部31に保持される領域から臓器保持部32に保持される領域に到達するまでの時間を計測し、臓器保持部32に保持される領域から盲腸領域に到達するまでの時間を計測する。
 ここで大腸内視鏡手技は、内視鏡を肛門から盲腸周辺まで挿入し、その後、肛門から引き抜くまでが一連の手技となる。
 そこで、計測モジュール104は、第一のチェックポイントを通過してから第二のチェックポイントを通過するまでの第一の滞在時間と、第二のチェックポイントを通過してから第一のチェックポイントを通過するまでの第二の滞在時間とをそれぞれ取得する。本実施形態では、計測モジュール104は、大腸モデル30における盲腸領域から臓器保持部32に保持される領域に到達するまでの時間を更に計測し、臓器保持部32に保持される領域から肛門保持部31に保持される領域に到達するまでの時間を更に計測する。
 計測モジュール104は、上述のような部分的な滞在時間だけでなく、大腸内視鏡手技のトータル時間も計測することができる。即ち、計測モジュール104は、内視鏡を肛門から盲腸周辺まで挿入し、その後、肛門から引き抜くまでのトータル時間を計測することができる。
Based on the above determination, the measurement module 104 acquires the time spent at the tip of the endoscope between the two checkpoints. In the present embodiment, the measurement module 104 measures the time from the region held by the anal holding portion 31 in the large intestine model 30 to the region held by the organ holding portion 32, and is held by the organ holding portion 32. Measure the time it takes to reach the cecal area from the area.
Here, the colonoscopy procedure is a series of procedures from inserting the endoscope from the anus to the area around the cecum and then pulling it out from the anus.
Therefore, the measurement module 104 sets the first stay time from passing the first checkpoint to passing the second checkpoint and the first checkpoint after passing the second checkpoint. Obtain the second stay time and the time to pass. In the present embodiment, the measurement module 104 further measures the time from the cecal region in the large intestine model 30 to the region held by the organ holding portion 32, and from the region held by the organ holding portion 32 to the anal holding portion. The time required to reach the region held at 31 is further measured.
The measurement module 104 can measure not only the partial stay time as described above but also the total time of the colonoscopy procedure. That is, the measurement module 104 can measure the total time from inserting the endoscope from the anus to the periphery of the cecum and then pulling it out from the anus.
 評価モジュール105は、計測モジュール104により取得された内視鏡手技に関する時間情報、発話処理モジュール103により特定された所定発話に関する情報などを用いて、被訓練者の手技を評価する。
 例えば、評価モジュール105は、二つのチェックポイント間ごとに基準滞在時間を予め設定しておき、計測モジュール104で取得された二つのチェックポイント間の滞在時間とその基準滞在時間を比較することで、二つのチェックポイント間ごとに評価ポイントを算出することができる。この場合、基準滞在時間以上の滞在時間となった場合にはベース得点が付与され、基準滞在時間より短い滞在時間となった場合にはベース得点に短縮時間に対応する得点を加点することで、評価ポイントが算出されてもよい。このようにチェックポイント間ごとに算出された評価ポイントが合計される。
The evaluation module 105 evaluates the procedure of the trainee by using the time information regarding the endoscopic procedure acquired by the measurement module 104, the information regarding the predetermined utterance specified by the utterance processing module 103, and the like.
For example, the evaluation module 105 sets a reference stay time for each of the two checkpoints in advance, and compares the stay time between the two checkpoints acquired by the measurement module 104 with the reference stay time. Evaluation points can be calculated for each of the two checkpoints. In this case, if the staying time is longer than the standard staying time, a base score will be given, and if the staying time is shorter than the standard staying time, the score corresponding to the shortened time will be added to the base score. Evaluation points may be calculated. The evaluation points calculated for each checkpoint in this way are totaled.
 また、評価モジュール105は、内視鏡の挿入手技に関する当該滞在時間と内視鏡の戻し手技に関する当該滞在時間とを別個の評価方式でそれぞれ評価するようにしてもよい。即ち、評価モジュール105は、第一のチェックポイントを通過してから第二のチェックポイントを通過するまでの第一の滞在時間と、第二のチェックポイントを通過してから第一のチェックポイントを通過するまでの第二の滞在時間とに対して別個の評価方式でそれぞれ評価してもよい。
 例えば、挿入時については上述のような基準滞在時間よりも短い滞在時間となる場合に加点される評価方式とし、戻し時については基準滞在時間に所定の時間幅を設け、当該滞在時間がその時間幅内に収まるか否かでベース得点が付与されるか否かが決定される評価方式とされてもよい。更に戻し時には当該所定の時間幅における最短基準滞在時間よりも短い滞在時間となった場合には減点されるようにしてもよい。
Further, the evaluation module 105 may evaluate the staying time related to the insertion procedure of the endoscope and the staying time related to the returning procedure of the endoscope by separate evaluation methods. That is, the evaluation module 105 sets the first stay time from passing the first checkpoint to passing the second checkpoint and the first checkpoint after passing the second checkpoint. Each may be evaluated by a separate evaluation method for the second stay time until passing.
For example, when inserting, a point is added when the staying time is shorter than the standard staying time as described above, and when returning, a predetermined time width is set for the standard staying time, and the staying time is that time. It may be an evaluation method in which whether or not a base score is given is determined depending on whether or not it fits within the range. Further, at the time of returning, if the staying time is shorter than the shortest standard staying time in the predetermined time width, points may be deducted.
 一般的には、内視鏡手技において挿入時と戻し時とでは手技の評価観点が異なる。挿入時はできるだけ素早くかつ優しく目的地点まで内視鏡を挿入することが大切であるため、内視鏡操作の良し悪しが評価観点とされる。一方で戻し時はしっかり観察することがより大切になるため、観察を適切に行っているか否かが評価観点とされる。
 上述のように、内視鏡の挿入手技に関する当該滞在時間と内視鏡の戻し手技に関する当該滞在時間とで別個の評価方式で評価することで、挿入時には素早く操作できた場合に高得点となり、戻し時には適切な時間を費やして観察できた場合に高得点となるため、内視鏡手技に関する時間に基づいて適切な観点で評価することができる。
Generally, in an endoscopic procedure, the evaluation viewpoint of the procedure differs between the time of insertion and the time of return. Since it is important to insert the endoscope to the destination as quickly and gently as possible at the time of insertion, the evaluation viewpoint is the quality of the endoscope operation. On the other hand, it is more important to observe closely when returning, so whether or not the observation is performed properly is the evaluation point of view.
As described above, by evaluating the staying time related to the insertion procedure of the endoscope and the staying time related to the returning procedure of the endoscope by different evaluation methods, a high score is obtained when the operation can be performed quickly at the time of insertion. When returning, a high score will be given if the patient can be observed by spending an appropriate amount of time, so that the evaluation can be made from an appropriate viewpoint based on the time related to the endoscopic procedure.
 更に、評価モジュール105は、発話処理モジュール103により特定された所定発話に関する情報に基づいて、一以上の所定発話の組合せが正しく発声されたか否かを判定し、この判定結果を更に加味して、被訓練者の手技を評価することもできる。例えば、介助者に対する腹部圧迫の指示に対応する所定発話とその腹部圧迫の解除の指示に対応する所定発話とがセットで行われたか否かで評価ポイントが加点又は減点されてもよい。当該二つの所定発話のセットが行われている場合には加点され、一方のみが行われた場合には減点されるようにしてもよい。
 同様に、深く息を吸う依頼に対応する所定発話と通常の呼吸に戻す依頼に対応する所定発話とがセットで行われたか否かが評価されてもよい。
 また、評価モジュール105は、内視鏡の先端部が存在する位置とその位置で医師が発声すべき所定発話との対応関係を保持しておき、各位置の物体検出センサからの検出信号と発話処理モジュール103により特定された所定発話とに基づいて、各位置で医師が発声すべき発話を行ったか否かを評価するようにしてもよい。各位置で発声すべき発話が行われた場合には評価ポイントを加点し、行われなかった場合には評価ポイントを減点するようにしてもよい。
 このようにすれば、医師と患者とのコミュニケーションという観点でも内視鏡手技を評価することができる。
Further, the evaluation module 105 determines whether or not one or more combinations of predetermined utterances have been correctly uttered based on the information regarding the predetermined utterances specified by the utterance processing module 103, and further takes this determination result into consideration. It is also possible to evaluate the procedure of the trainee. For example, evaluation points may be added or deducted depending on whether or not a predetermined utterance corresponding to an instruction for abdominal compression to a caregiver and a predetermined utterance corresponding to an instruction for releasing the abdominal compression are performed as a set. Points may be added when the two predetermined utterance sets are performed, and points may be deducted when only one of them is performed.
Similarly, it may be evaluated whether or not the predetermined utterance corresponding to the request to take a deep breath and the predetermined utterance corresponding to the request to return to normal breathing are performed as a set.
Further, the evaluation module 105 holds a correspondence relationship between the position where the tip of the endoscope exists and the predetermined utterance that the doctor should utter at that position, and the detection signal and the utterance from the object detection sensor at each position. Based on the predetermined utterances specified by the processing module 103, it may be evaluated whether or not the doctor has made an utterance to be uttered at each position. Evaluation points may be added when an utterance to be uttered at each position is made, and evaluation points may be deducted when the utterance is not made.
In this way, the endoscopic procedure can be evaluated from the viewpoint of communication between the doctor and the patient.
 更に、評価モジュール105は、大腸モデル30の所定部位にかかる負荷情報を取得し、その取得された負荷情報が閾値を超えた負荷を示す場合に、上述のように取得される滞在時間を用いて点数付けされた評価ポイントからその負荷情報に対応する減点を行うことで、被訓練者の手技の評価ポイントを算出するようにしてもよい。
 大腸モデル30の所定部位にかかる負荷情報は、大腸モデル30自体、大腸モデル30を保持する保持機構、或いは大腸モデル30に当接し得る壁面に設けられた圧力センサで検出することができるし、大腸モデル30の所定部位に連結された可変長部材(第一ワイヤ部材37等)の伸びの長さから換算することもできる。
 本実施形態では、第一スライド壁部35又は第二スライド壁部34の下向き壁面に圧力センサが設けられており、評価モジュール105は、その圧力センサからの検出信号を取得し、その検出信号で示される圧力値が閾値を超えている間、圧力値を累積し、圧力累積値が所定閾値を超えた場合に、評価ポイントを減点するようにしてもよい。
 大腸等の臓器にかかる負荷は、被検者(患者)に対する負担となり、その負荷が大き過ぎた場合には臓器が損傷する可能性もある。上述のように、大腸モデル30の所定部位にかかる負荷情報に応じて被訓練者の手技を評価することで、内視鏡手技に関して適切な評価を行うことができる。
Further, the evaluation module 105 acquires load information applied to a predetermined part of the large intestine model 30, and when the acquired load information indicates a load exceeding a threshold value, the evaluation module 105 uses the staying time acquired as described above. The evaluation points of the trainee's procedure may be calculated by deducting points corresponding to the load information from the scored evaluation points.
The load information applied to a predetermined portion of the large intestine model 30 can be detected by the large intestine model 30 itself, a holding mechanism for holding the large intestine model 30, or a pressure sensor provided on a wall surface that can come into contact with the large intestine model 30. It can also be converted from the elongation length of the variable length member (first wire member 37, etc.) connected to the predetermined portion of the model 30.
In the present embodiment, a pressure sensor is provided on the downward wall surface of the first slide wall portion 35 or the second slide wall portion 34, and the evaluation module 105 acquires a detection signal from the pressure sensor and uses the detection signal. The pressure values may be accumulated while the indicated pressure value exceeds the threshold value, and the evaluation points may be deducted when the pressure cumulative value exceeds the predetermined threshold value.
The load on the organs such as the large intestine is a burden on the subject (patient), and if the load is too large, the organs may be damaged. As described above, by evaluating the procedure of the trainee according to the load information applied to the predetermined site of the large intestine model 30, it is possible to appropriately evaluate the endoscopic procedure.
 また、評価モジュール105は、気圧センサの検出信号で示される大腸モデル30の管腔内の気圧情報に基づいて、被訓練者の手技を評価することもできる。大腸内視鏡手技において大腸の管腔を拡げて観察し易くするために内視鏡から送気を行う手技がある。但し、過度な送気は、大腸の管腔を拡げ過ぎることになり、被検者(患者)にとって負担になる。
 そこで、評価モジュール105は、例えば、チェックポイント間ごとに適切な気圧閾値をそれぞれ予め設定しておき、二つのチェックポイント間に内視鏡の先端部が滞在している際に測定された管腔内の気圧と気圧閾値との比較結果を更に用いて、被訓練者の手技を評価してもよい。
The evaluation module 105 can also evaluate the procedure of the trainee based on the atmospheric pressure information in the lumen of the large intestine model 30 indicated by the detection signal of the atmospheric pressure sensor. In the colonoscopy procedure, there is a procedure in which air is supplied from the endoscope in order to expand the lumen of the large intestine for easy observation. However, excessive insufflation causes the lumen of the large intestine to expand too much, which is a burden on the subject (patient).
Therefore, for example, the evaluation module 105 presets an appropriate barometric pressure threshold value for each checkpoint in advance, and the cavity measured when the tip of the endoscope stays between the two checkpoints. The procedure of the trainee may be evaluated by further using the comparison result between the internal pressure and the pressure threshold.
 また、評価モジュール105は、検出モジュール101により検出された大腸モデル30の当該対象部位の屈曲状態、伸縮状態、捻じれ状態、若しくはループ状態のいずれか一つ又はいずれか複数を更に用いて、被訓練者の手技を評価することもできる。例えば、検出モジュール101で当該対象部位の伸縮の程度が検出される場合、評価モジュール105は、二つのチェックポイント間に内視鏡の先端部が滞在している際に検出された対象部位の伸縮の程度をチェックポイント間ごとに保持しておき、チェックポイント間ごとの対象部位の伸縮の程度と基準となる伸縮の程度との比較に基づいて、評価ポイントに加点又は減点するようにしてもよい。また、評価モジュール105は、屈曲の程度や、ループの数、ループ形状のタイプ、捻じれの度合なども評価対象とするようにしてもよい。 Further, the evaluation module 105 further uses one or more of the bent state, the stretched state, the twisted state, and the loop state of the target portion of the large intestine model 30 detected by the detection module 101. You can also evaluate the trainee's technique. For example, when the detection module 101 detects the degree of expansion and contraction of the target part, the evaluation module 105 detects the expansion and contraction of the target part when the tip of the endoscope stays between the two checkpoints. May be held for each checkpoint, and points may be added or deducted to the evaluation points based on the comparison between the degree of expansion and contraction of the target part between checkpoints and the reference degree of expansion and contraction. .. Further, the evaluation module 105 may also evaluate the degree of bending, the number of loops, the type of loop shape, the degree of twist, and the like.
 図9は、本実施形態に係る医療シミュレータにおける訓練時の表示例を示す図であり、図10は、本実施形態に係る医療シミュレータにおける訓練評価の表示例を示す図である。
 評価モジュール105は、モード管理モジュール102により取得された訓練モード情報が訓練開始を示す場合に、図9に示すような表示を入出力パネル15に表示させる。
FIG. 9 is a diagram showing a display example during training in the medical simulator according to the present embodiment, and FIG. 10 is a diagram showing a display example of training evaluation in the medical simulator according to the present embodiment.
When the training mode information acquired by the mode management module 102 indicates the start of training, the evaluation module 105 causes the input / output panel 15 to display the display as shown in FIG.
 図9の例では、肛門保持部31に設けられた物体検出センサで内視鏡の先端部の通過が検出されてからの経過時間が領域DS1に表示されており、下壁部21から延設されたカメラ支持プレート61で支持されるカメラ6で撮像された映像が領域DS2に表示されている。
 領域DS2では更に、検出モジュール101により検出された4つのマーカリング43の各位置に数字を含むマーク表示MK1、MK2、MK3及びMK4が配置されている。合わせて、各マーク表示を結ぶ線表示も表示されることで、大腸モデル30の変形及び形状情報が提示されている。
 また、領域DS3にはマーク表示MK1とマーク表示MK2との間の伸縮の程度がバー表示されており、領域DS4にはマーク表示MK2とマーク表示MK3との間の伸縮の程度がバー表示されており、領域DS5にはマーク表示MK3とマーク表示MK4との間の伸縮の程度がバー表示されている。
 「テスト中止」の操作ボタンOPの操作により、訓練中止を示す訓練モード情報が生成される。
In the example of FIG. 9, the elapsed time from the detection of the passage of the tip of the endoscope by the object detection sensor provided in the anal holding portion 31 is displayed in the area DS1 and extends from the lower wall portion 21. The image captured by the camera 6 supported by the camera support plate 61 is displayed in the area DS2.
Further, in the area DS2, mark displays MK1, MK2, MK3 and MK4 including numbers are arranged at each position of the four marker rings 43 detected by the detection module 101. At the same time, the line display connecting each mark display is also displayed, so that the deformation and shape information of the large intestine model 30 is presented.
Further, the degree of expansion and contraction between the mark display MK1 and the mark display MK2 is displayed as a bar in the area DS3, and the degree of expansion and contraction between the mark display MK2 and the mark display MK3 is displayed as a bar in the area DS4. In the area DS5, the degree of expansion and contraction between the mark display MK3 and the mark display MK4 is displayed as a bar.
By operating the operation button OP of "test stop", training mode information indicating training stop is generated.
 図10の例では、領域DS10に被訓練者の手技の評価結果を示す文字列が表示されている。当該文字列には、評価結果に伴う被訓練者へのアドバイスを示す文字列(例えば「横行結腸への挿入時に息を吸ってもらうよう適切な声かけをしましょう」)が含まれている。
 領域DS11には、100点満点中の71点という評価ポイントが表示されている。
 領域DS12には、5つの評価項目に関するレーダーチャートが表示されている。コミュニケーションの評価項目には、発話処理モジュール103により特定された所定発話に関する情報に基づく評価結果(図10では「D」)が示され、器官への負荷の評価項目には、負荷情報に基づく評価結果(図10では「A+」)が示され、手技時間の評価項目には、計測モジュール104で取得される内視鏡の挿入時の時間に基づく評価結果(図10では「B+」)が示され、観察の評価項目には、計測モジュール104で取得される内視鏡の戻し時の時間に基づく評価結果(図10では「C+」)が示され、送気の評価項目には、大腸モデル30の管腔内の気圧に基づく評価結果(図10では「A+」)が示されている。
In the example of FIG. 10, a character string indicating the evaluation result of the procedure of the trainee is displayed in the area DS10. The string contains a string that gives advice to the trainee according to the evaluation result (for example, "let's make an appropriate call to have the patient take a breath when inserting it into the transverse colon").
In the area DS11, an evaluation point of 71 points out of 100 points is displayed.
A radar chart for five evaluation items is displayed in the area DS12. The evaluation item of communication shows the evaluation result (“D” in FIG. 10) based on the information on the predetermined utterance specified by the utterance processing module 103, and the evaluation item of the load on the organ is the evaluation based on the load information. The result (“A +” in FIG. 10) is shown, and the evaluation result (“B +” in FIG. 10) based on the time when the endoscope is inserted, which is acquired by the measurement module 104, is shown in the evaluation item of the procedure time. The evaluation item of the observation shows the evaluation result (“C +” in FIG. 10) based on the time when the endoscope is returned, which is acquired by the measurement module 104, and the evaluation item of the insufflation is the large intestine model. The evaluation result (“A +” in FIG. 10) based on the pressure in the lumen of 30 is shown.
 しかしながら、本シミュレータで表示される訓練時の表示内容及び訓練評価の表示内容は、図9及び図10に示される例に限定されない。
 例えば、訓練時の表示に、大腸モデル30の対象部位のループの数の変化が時系列に示されるグラフ表示や、大腸モデル30の対象部位の伸縮の度合の変化が時系列に示されるグラフ表示や、負荷の変化が時系列に示されるグラフ表示が含まれてもよい。また、訓練評価の表示に、大腸モデル30の対象部位の伸縮についての評価結果が含まれてもよい。また、5つの評価項目の各項目に基づく評価結果は記号ではなく、数字による採点であってもよい。
However, the display content at the time of training and the display content of the training evaluation displayed by this simulator are not limited to the examples shown in FIGS. 9 and 10.
For example, a graph display showing the change in the number of loops of the target part of the large intestine model 30 in time series or a graph display showing the change in the degree of expansion and contraction of the target part of the large intestine model 30 in time series are displayed during training. Alternatively, a graph display showing changes in load over time may be included. In addition, the display of the training evaluation may include the evaluation result regarding the expansion and contraction of the target portion of the large intestine model 30. Further, the evaluation result based on each of the five evaluation items may be scored numerically instead of a symbol.
 また、訓練時の表示において、検出されたループ形状のタイプ(αループ、逆αループ、γループ、逆γループ、Nループ、Mループ等)がリアルタイムに表示されるようにしてもよい。このとき、検出されたループ形状のタイプに応じて、そのループを解除するための内視鏡の操作に関するアドバイスが合わせて表示されてもよい。例えば、ループ形状のタイプとしてαループが検出された場合には、「内視鏡の軸の反時計回りに回すとループを解除できます」といったアドバイスが表示され、γループが検出された場合には、「内視鏡の軸の時計回りに回すとループを解除できます」といったアドバイスが表示されてもよい。
 この場合、検出モジュール101は、ループ形状の各タイプとそのタイプに対応するアドバイス文字列情報との対応関係を予め保持しておき、検出されたループ形状のタイプに応じて、そのタイプに対応するアドバイス文字列を入出力パネル15に表示されるようにすればよい。
 このような訓練時のリアルタイムのアドバイスは、表示のみでなく、音声で出力されてもよい。
In addition, the detected loop shape type (α loop, inverse α loop, γ loop, inverse γ loop, N loop, M loop, etc.) may be displayed in real time in the display during training. At this time, depending on the type of the detected loop shape, advice regarding the operation of the endoscope for breaking the loop may also be displayed. For example, if an α loop is detected as the type of loop shape, an advice such as "Turn the endoscope counterclockwise to release the loop" is displayed, and if a γ loop is detected, May display advice such as "Turn the endoscope clockwise to break the loop."
In this case, the detection module 101 holds in advance the correspondence between each type of loop shape and the advice character string information corresponding to that type, and corresponds to that type according to the detected loop shape type. The advice character string may be displayed on the input / output panel 15.
Such real-time advice during training may be output not only by display but also by voice.
[変形例]
 上述の実施形態は一例である。医療シミュレータは、上述の構成のみに限定されるわけではなく、上述の少なくとも一部の構成を有していれば、部分的に適宜変形されてもよい。
[Modification example]
The above embodiment is an example. The medical simulator is not limited to the above-mentioned configuration, and may be partially appropriately modified as long as it has at least a part of the above-mentioned configuration.
 例えば、上述の実施形態では、管腔臓器モデルとして、大腸モデル30が例示されたが、食道、胃、十二指腸などの消化管や、尿管、血管等を模擬したモデルが管腔臓器モデルとして採用されてもよい。
 このため、上述の実施形態では、大腸内視鏡の検査手技の訓練について主に記載されたが、本シミュレータで訓練可能な医療手技は、そのような手技にのみ限定されない。大腸内視鏡の治療に関する手技も訓練可能であるし、その他の管腔臓器に対する検査や治療、挿管に関する手技も訓練可能である。
 また、訓練に用いられる対象装置(医療具)として内視鏡が例示されたが、本シミュレータでは、血管内視鏡カテーテルなどのような内視鏡以外の医療具が利用されてもよいし、訓練専用の用具或いは機器が利用されてもよい。
For example, in the above embodiment, the large intestine model 30 is exemplified as the tract organ model, but a model simulating the digestive tract such as the esophagus, stomach, duodenum, ureter, blood vessel, etc. is adopted as the tract organ model. May be done.
Therefore, in the above-described embodiment, the training of the colonoscopy examination technique is mainly described, but the medical procedure that can be trained by the present simulator is not limited to such a procedure. It is possible to train procedures related to colonoscopy treatment, as well as procedures related to examination and treatment of other luminal organs and intubation.
In addition, an endoscope has been exemplified as a target device (medical tool) used for training, but in this simulator, a medical device other than the endoscope such as an vascular endoscopic catheter may be used. Training-specific tools or equipment may be used.
 例えば、医療シミュレータは、管腔臓器モデルと、管腔臓器モデルを局所的に固定した状態で内部空間に収容する臓器収容部と、検出手段とを少なくとも備えていればよい。この場合、管腔臓器モデルは、長手方向の異なる位置に、臓器収容部に固定されている状態となり得る局所固定領域と、被訓練者による対象装置の操作により臓器収容部の内部空間内で変位可能な可動領域とを含み、検出手段は、少なくとも訓練時において、当該内部空間内における管腔臓器モデルの可動領域の少なくとも一部である対象部位の変位又は変形を検出可能であればよい。
 このため、管腔臓器モデルの対象部位の変位又は変形を検出するために、マーカのみが利用されてもよいし、可変長部材のみが利用されてもよい。
 更に言えば、マーカも可変長部材もいずれも利用することなく、管腔臓器モデルの対象部位の変位又は変形が検出されてもよい。例えば、当該対象部位の屈曲状態、伸縮状態、捻じれ状態、又はループ状態のいずれか一つ又は複数における様々な状態を示す複数の画像を教師用画像として準備し、各教師用画像に対して各状態情報を関連付けた(タグ付けした)複数の教師データに基づいて機械学習された学習済みモデルを生成しておく。検出手段(検出モジュール101)は、この学習済みモデルに対してカメラ6からの撮像画像を与えることで、当該対象部位の屈曲状態、伸縮状態、捻じれ状態、又はループ状態のいずれか一つ又は複数を検出(推定)することができる。
 また、検出精度を上げるためには、2台以上のカメラ6により相互に異なる方向から撮像された複数の撮像画像を入力とし、当該対象部位の屈曲状態、伸縮状態、捻じれ状態、又はループ状態のいずれか一つ又は複数を出力する学習済みモデルが利用されることが好ましい。この場合には、当該対象部位の一つの状態を示す、相互に異なる方向から撮像された複数の撮像画像が教師用画像として準備され、教師データでは、それら撮像画像に対して当該一つの状態を示す状態情報が関連付けられていればよい。
 このような学習済みモデルが利用される場合には、管腔臓器モデルの対象部位にはマーカが配置されていてもよいし、配置されていなくてもよい。
 マーカが配置される場合にはそのマーカで画像が特徴付けされるため、検出精度の向上が見込める。この場合には、撮像画像からマーカ自体を認識する必要はないが、マーカ画像を用いているといえるため、撮像画像に含まれるマーカ画像に基づいて、当該対象部位の屈曲状態、伸縮状態、捻じれ状態、又はループ状態を検出可能であると表記できる。
 また、臓器保持部32、第一スライド壁部35、又は第二スライド壁部34のいずれか一つ又は複数はスライド不能に固定されていてもよい。この場合には対応するモータも不要となる。
 同様に、体位変換は手動で行われてもよく、この場合には、体位変換モータ71は不要となる。
For example, the medical simulator may include at least a luminal organ model, an organ accommodating portion that accommodates the luminal organ model in a locally fixed state in an internal space, and a detection means. In this case, the tract organ model is displaced in the internal space of the organ containment part by the operation of the target device by the trainee and the local fixation area that can be fixed to the organ accommodation part at different positions in the longitudinal direction. The detecting means may be capable of detecting the displacement or deformation of the target site which is at least a part of the movable area of the luminal organ model in the internal space, at least during training, including the possible movable area.
Therefore, in order to detect the displacement or deformation of the target portion of the luminal organ model, only the marker may be used, or only the variable length member may be used.
Furthermore, displacement or deformation of the target site of the luminal organ model may be detected without using either the marker or the variable length member. For example, a plurality of images showing various states in any one or more of the bent state, stretched state, twisted state, and loop state of the target part are prepared as teacher images, and for each teacher image. A machine-learned trained model is generated based on a plurality of teacher data associated (tagged) with each state information. The detection means (detection module 101) gives an image captured from the camera 6 to the trained model, so that the target portion is in a bent state, an expanded / contracted state, a twisted state, or a loop state. Multiple can be detected (estimated).
Further, in order to improve the detection accuracy, a plurality of captured images captured from different directions by two or more cameras 6 are input, and the target portion is in a bent state, a stretched state, a twisted state, or a loop state. It is preferable to use a trained model that outputs one or more of the above. In this case, a plurality of captured images captured from different directions indicating one state of the target site are prepared as teacher images, and in the teacher data, the one state is set with respect to the captured images. It suffices if the indicated state information is associated.
When such a trained model is used, a marker may or may not be arranged at a target site of the luminal organ model.
When a marker is placed, the image is characterized by the marker, so that the detection accuracy can be expected to be improved. In this case, it is not necessary to recognize the marker itself from the captured image, but since it can be said that the marker image is used, the bent state, stretched state, and twisted state of the target portion are based on the marker image included in the captured image. It can be described that the state or the loop state can be detected.
Further, any one or more of the organ holding portion 32, the first slide wall portion 35, or the second slide wall portion 34 may be fixed so as not to slide. In this case, the corresponding motor is also unnecessary.
Similarly, the position change may be performed manually, in which case the position change motor 71 becomes unnecessary.
 また、上述の実施形態では、2台のカメラ6が臓器収容部2における下側及び左側から腹側に向けて離間した位置に設けられていたが(図2参照)、カメラ6の台数及び配置は、上述の実施形態の例に限定されない。大腸モデル30の対象部位に設けられたマーカの画像認識で当該対象部位の三次元位置が取得される場合には、平面視において直交する方向を向く2台のカメラ6を含む2台以上のカメラ6が設けられることが好ましい。また、図9に例示されるような大腸モデル30全体を俯瞰する映像を表示する場合には、その俯瞰映像を撮像する1台のカメラ6が更に設けられてもよい。また、1台のカメラ6のみが設けられてもよい。この場合には死角が増えるため、可変長部材の長さの検出により、大腸モデル30の変形又は変位の検出が補足されることが好ましい。
 また、カメラ6の少なくともレンズ部は、臓器収容部2の内側或いは臓器収容部2の外側ではあるが図2に示される位置よりも臓器収容部2の窓部25に近接した位置に配置されてもよい。この場合には、カメラ6のレンズ部が大腸モデル30に近くなるため、広角レンズが利用されることが好ましい。
 また、本シミュレータは、暗室での利用も想定し、臓器収容部2の内側若しくは外側又は両方にLED等のような照明材が設けられてもよい。照明材が臓器収容部2の内側に設けられる場合には、窓部25の内側表面での表面反射を抑制するために、窓部25の内側表面にも、表面反射を抑制するフィルムや素材、剤があってもよい。
 このような大腸モデル30を撮像する構成の具体的な変形例の一つは後述される。
Further, in the above-described embodiment, the two cameras 6 are provided at positions separated from the lower side and the left side of the organ accommodating portion 2 toward the ventral side (see FIG. 2), but the number and arrangement of the cameras 6 Is not limited to the examples of the above-described embodiments. When the three-dimensional position of the target part is acquired by image recognition of the marker provided on the target part of the large intestine model 30, two or more cameras including two cameras 6 facing orthogonal directions in a plan view. It is preferable that 6 is provided. Further, when displaying an image of the entire colon model 30 as illustrated in FIG. 9, one camera 6 for capturing the bird's-eye view image may be further provided. Further, only one camera 6 may be provided. In this case, since the blind spot increases, it is preferable that the detection of the deformation or displacement of the large intestine model 30 is supplemented by the detection of the length of the variable length member.
Further, at least the lens portion of the camera 6 is arranged at a position closer to the window portion 25 of the organ accommodating portion 2 than the position shown in FIG. 2 although it is inside the organ accommodating portion 2 or outside the organ accommodating portion 2. May be good. In this case, since the lens portion of the camera 6 is close to the large intestine model 30, it is preferable to use a wide-angle lens.
Further, the simulator may be provided with a lighting material such as an LED on the inside or outside of the organ accommodating portion 2 or both, assuming use in a dark room. When the lighting material is provided inside the organ accommodating portion 2, in order to suppress surface reflection on the inner surface of the window portion 25, a film or material that suppresses surface reflection is also provided on the inner surface of the window portion 25. There may be an agent.
One of the specific modifications of the configuration for imaging the large intestine model 30 will be described later.
 また、上述の実施形態では、臓器収容部2の揺動により仰臥位状態と左側臥位状態との間の体位変換を模擬することを例示したが、更に、仰臥位状態と右側臥位状態との間の体位変換を模擬することもできる。これは、例えば、右側壁部23に設けられているタイヤ部20a、20b及び20cを左右対称に左側壁部24にも設け、かつ、臓器収容部2が仰臥位状態である場合に、左側臥位状態へ遷移する際とは逆の回転方向へ出力シャフト75を回動させることで実現可能である。 Further, in the above-described embodiment, it is illustrated that the posture change between the supine position and the left lateral position is simulated by swinging the organ accommodating portion 2, but further, the supine position and the right lateral position are described. It is also possible to simulate the repositioning between. This is done, for example, when the tire portions 20a, 20b and 20c provided on the right side wall portion 23 are symmetrically provided on the left side wall portion 24 and the organ accommodating portion 2 is in the supine position. This can be achieved by rotating the output shaft 75 in the direction opposite to that of the transition to the position state.
 内視鏡は提供元メーカごとに太さ(径)が異なるため、肛門保持部31に大腸モデル30の管腔断面積を可変とする機構を設けることで、複数種の内視鏡に対応するようにしてもよい。この場合、管腔断面積を可変とする機構として、吸気及び排気が可能なエアポンプ等が挙げられる。また、大腸モデル30の肛門側端部に大腸モデル30の外周面から突出したフランジ蓋部が設けられている場合には、そのフランジ蓋部と臓器収容部2の下壁部21の外側面(下面)との間に、大腸モデル30の肛門側端部領域を挿通可能な貫通孔を持つ中間プレートを介在させて、大腸モデル30のフランジ蓋部と臓器収容部2の下壁部21の外側面とを係合させる。そして、各内視鏡の太さ(径)に対応して貫通孔の大きさが異なる複数種の中間プレートが付け替え可能とされてもよい。
 また、エアポンプ等で管腔臓器モデルの管腔内に空気を注入することで、訓練の難易度を下げるようにしてもよい。管腔臓器モデルの管腔内に空気が注入されることで、管腔臓器モデルが膨らむため、内視鏡が挿入し易くなるからである。この場合、エアチューブを介してエアポンプから管腔臓器モデルの管腔内に空気を注入可能な構成を付加し、例えば、入出力パネル15の表示に対する入力操作で訓練の難易度を下げることが選ばれた場合にエアポンプの動作が開始されればよい。
Since the thickness (diameter) of endoscopes differs depending on the manufacturer of the endoscope, a mechanism for changing the luminal cross-sectional area of the large intestine model 30 is provided in the anal holding portion 31 to support a plurality of types of endoscopes. You may do so. In this case, as a mechanism for changing the cross-sectional area of the cavity, an air pump capable of intake and exhaust can be mentioned. When a flange lid portion protruding from the outer peripheral surface of the large intestine model 30 is provided at the anal side end of the large intestine model 30, the flange lid portion and the outer surface of the lower wall portion 21 of the organ accommodating portion 2 An intermediate plate having a through hole through which the anal side end region of the large intestine model 30 can be inserted is interposed between the lower surface) and the outside of the flange lid portion of the large intestine model 30 and the lower wall portion 21 of the organ accommodating portion 2. Engage with the sides. Then, a plurality of types of intermediate plates having different sizes of through holes corresponding to the thickness (diameter) of each endoscope may be replaceable.
Further, the difficulty level of the training may be lowered by injecting air into the lumen of the lumen organ model with an air pump or the like. This is because the injection of air into the lumen of the luminal organ model causes the luminal organ model to swell, making it easier to insert the endoscope. In this case, it is selected to add a configuration that allows air to be injected into the lumen of the luminal organ model from the air pump via the air tube, and to reduce the difficulty of training by input operation for the display on the input / output panel 15, for example. If this happens, the operation of the air pump should be started.
 また、本実施形態のように、管腔臓器モデルの対象部位の伸び度合が検出可能である場合には、その伸び度合が第一閾値を超えた場合に、スピーカに苦しい状態を示すうなり音声(例えば「ウーッ」という音声)を出力させることもできる。更に、その伸び度合が第一閾値より大きい第二閾値を更に超えた場合には、臓器の損傷を示すべくエラー音を出力させるようにしてもよい。
 また、上述の計測モジュール104は、内視鏡の先端部が一定場所で一定時間留まっていることを上述の手法で検出することができるため、このような検出がなされた場合に、制御部10は、体位変換モータ71等の対応するモータを動作させることで、第一スライド壁部35、第二スライド壁部34、若しくは臓器保持部32のスライド、又は臓器収容部2の揺動を自動で実行し、内視鏡の挿入を自動でサポートするようにしてもよい。
 このようにすれば、内視鏡操作に不慣れな被訓練者もサポートを受けながら訓練を継続し易くなる。
Further, as in the present embodiment, when the degree of elongation of the target part of the luminal organ model can be detected, when the degree of elongation exceeds the first threshold value, a growl voice indicating a painful state to the speaker ( For example, it is possible to output a voice called "Woo". Further, when the degree of elongation further exceeds the second threshold value larger than the first threshold value, an error sound may be output to indicate damage to the organ.
Further, since the above-mentioned measurement module 104 can detect that the tip of the endoscope stays at a certain place for a certain period of time by the above-mentioned method, when such a detection is made, the control unit 10 Automatically swings the first slide wall portion 35, the second slide wall portion 34, or the organ holding portion 32, or the organ accommodating portion 2 by operating a corresponding motor such as the posture change motor 71. It may be executed to automatically support the insertion of the endoscope.
In this way, it becomes easy for the trainee who is unfamiliar with the operation of the endoscope to continue the training while receiving support.
 加えて、上述の大腸モデル30の管腔臓器モデルには、管腔内に潤滑液を送り込むための注入部が更に設けられてもよい。この注入部は、管腔臓器モデルの外側から管腔に貫通する極細の注入孔を含む。この注入孔は潤滑液容器に繋がるノズルやチューブを挿入可能であり、かつ管腔内に注入された潤滑液が外部に漏れ出すのを抑制する程度の細さであることが好ましい。また、送液チューブを介して潤滑液容器から潤滑液を管腔内に注入する場合には、注入部には、送液チューブの端部と連結するチューブ連結部が装着されてもよい。
 潤滑液は、管腔臓器モデルの管腔内の滑りをよくする剤であればよく、例えば、揮発性のシリコン離型剤が利用される。
 このように管腔臓器モデルに外部からシリコン離型剤のような潤滑液を注入可能とすることで、管腔臓器モデルの管腔内を実物により近付けることができ、内視鏡を挿入した際の感触をリアルに再現することができる。更に、注入する潤滑液として揮発性の離型剤を用いることで、利用時のみ注入すれば利用後には揮発するため、管腔臓器モデルのメンテナンス負荷を低減することができる。
In addition, the luminal organ model of the large intestine model 30 described above may be further provided with an injection portion for feeding the lubricating fluid into the lumen. This injection includes a microinjection hole that penetrates the lumen from the outside of the tract organ model. It is preferable that the injection hole is small enough to allow a nozzle or tube connected to the lubricating liquid container to be inserted and to prevent the lubricating liquid injected into the lumen from leaking to the outside. Further, when the lubricating liquid is injected into the lumen from the lubricating liquid container via the liquid feeding tube, a tube connecting portion connected to the end portion of the liquid feeding tube may be attached to the injection portion.
The lubricating liquid may be any agent that improves the sliding in the lumen of the luminal organ model, and for example, a volatile silicone release agent is used.
By making it possible to inject a lubricating liquid such as a silicone release agent into the tract organ model from the outside in this way, the inside of the tract of the tract organ model can be brought closer to the real thing, and when an endoscope is inserted. You can realistically reproduce the feel of. Furthermore, by using a volatile release agent as the lubricating liquid to be injected, it is possible to reduce the maintenance load of the luminal organ model because it volatilizes after use if it is injected only at the time of use.
 更に、上述のように管腔臓器モデルの管腔内に潤滑液が注入される場合には、管腔臓器モデルは、管腔を画定する内壁面に、その管腔内に注入された潤滑液を滞留させ得る複数の微小凹溝を有することが好ましい。微小凹溝の幅は、その凹溝がない内壁面よりも潤滑液が長く滞留し得る大きさであればよく、少なくとも内視鏡の径よりも小さい必要があり、1mm未満であることが好ましい。また、当該微小凹溝の幅は、挿入された内視鏡と管腔臓器モデルの内壁面との摩擦面積を軽減させ得る大きさであればよい。
 図11は、本実施形態における大腸モデル30の内壁面を示す図である。
 図11のP1には、大腸モデル30の内壁面が模式的に示されており、P2には、内壁面を拡大した模式図が示されている。P2には、極細の凹溝と内壁のベース面とが凹凸状に示されている。このように、図11の例では、大腸モデル30の内壁面には、大腸モデル30の長手方向に略直交する方向に延びる線状の極細の凹溝が複数略平行に設けられている。
 このような線状の凹溝は、大腸モデル30の内壁面の全領域に亘って設けられてもよいし、該内壁面の特定領域にのみ設けられてもよい。
 また、このような線状の微小凹溝は、中子を用いた管腔臓器モデルの内壁面の型取りにより当該内壁表面に積層痕として形成することができる。また、微小凸形状が表面に施されている中子を用いても、大腸モデル30の内壁面の微小凹溝を形成することができる。このように、当該微小凹溝の形成方法については何ら限定されない。
 また、図11の例では、当該微小凹溝は、線状に形成されているが、穴として形成されていてもよい。
 このような微小凹溝を大腸モデル30の内壁面に設けることで、管腔内に挿入する医療具と当該内壁面との摩擦面積が軽減され或いは当該微小凹溝に潤滑液が滞留するため、その医療具の挿入時及び戻し(抜去)時の不要な抵抗感を低減させることができる。
Further, when the lubricating fluid is injected into the lumen of the tract organ model as described above, the tract organ model has the lubricating fluid injected into the lumen on the inner wall surface defining the lumen. It is preferable to have a plurality of micro-grooves capable of retaining the water. The width of the micro-groove may be such that the lubricating liquid can stay longer than the inner wall surface without the groove, and must be at least smaller than the diameter of the endoscope, preferably less than 1 mm. .. Further, the width of the micro-groove may be a size that can reduce the friction area between the inserted endoscope and the inner wall surface of the luminal organ model.
FIG. 11 is a diagram showing an inner wall surface of the large intestine model 30 in the present embodiment.
P1 of FIG. 11 schematically shows the inner wall surface of the large intestine model 30, and P2 shows a schematic view of an enlarged inner wall surface. In P2, the ultrafine concave groove and the base surface of the inner wall are shown in an uneven shape. As described above, in the example of FIG. 11, a plurality of linear ultrafine concave grooves extending in a direction substantially orthogonal to the longitudinal direction of the large intestine model 30 are provided substantially in parallel on the inner wall surface of the large intestine model 30.
Such a linear concave groove may be provided over the entire area of the inner wall surface of the large intestine model 30, or may be provided only in a specific area of the inner wall surface.
Further, such linear micro-grooves can be formed as stacking marks on the inner wall surface by molding the inner wall surface of the luminal organ model using a core. Further, even if a core having a minute convex shape on the surface is used, a minute groove on the inner wall surface of the large intestine model 30 can be formed. As described above, the method for forming the minute groove is not limited in any way.
Further, in the example of FIG. 11, the micro-groove is formed linearly, but may be formed as a hole.
By providing such a minute groove on the inner wall surface of the large intestine model 30, the frictional area between the medical device inserted into the lumen and the inner wall surface is reduced, or the lubricating liquid stays in the minute groove. It is possible to reduce unnecessary resistance when inserting and returning (removing) the medical device.
 また、管腔臓器モデルとして上部消化管モデルが適用される場合には、計測モジュール104で時間情報が取得される当該チェックポイントは、食道入口部、接合部(噴門部)、十二指腸部等に設定されればよい。また、評価モジュール105で取得される負荷情報は咽頭部への圧力値とされればよい。医療シミュレータにおいて咽頭反射や曖気が模擬されている場合には、咽頭反射や曖気が行われる度に、評価モジュール105は評価ポイントを減点するようにしてもよい。また、気圧センサで管腔臓器モデルの管腔内の気圧が検出される場合には、内視鏡の先端部が開始から十二指腸部に挿入されるまでの間の気圧、十二指腸部から当該先端部が抜かれた後の気圧、接合部(噴門部)から抜かれた後の気圧などが評価対象とされてもよい。また、評価モジュール105は、接合部(噴門部)の周辺に内視鏡の先端部が存在する場合に、「息を吸ってください」、「息を止めてください」、及び「楽にしてください」という所定発話のセットが発話処理モジュール103により特定されたか否かで評価することもできる。 When the upper gastrointestinal tract model is applied as the luminal organ model, the checkpoints from which time information is acquired by the measurement module 104 are set at the esophageal entrance, the junction (cardia), the duodenum, etc. It should be done. Further, the load information acquired by the evaluation module 105 may be a pressure value to the pharynx. When the pharyngeal reflex or ambiguity is simulated in the medical simulator, the evaluation module 105 may deduct evaluation points each time the pharyngeal reflex or ambiguity is performed. When the barometric pressure sensor detects the barometric pressure in the lumen of the luminal organ model, the barometric pressure from the start until the tip of the endoscope is inserted into the duodenum, from the duodenum to the tip. The air pressure after being removed from the joint, the air pressure after being removed from the joint (cardia), and the like may be evaluated. In addition, the evaluation module 105 "take a breath", "hold a breath", and "please relax" when the tip of the endoscope is present around the joint (cardia). It is also possible to evaluate whether or not a set of predetermined utterances "" is specified by the utterance processing module 103.
 以下、図12及び図13を用いて、臓器収容部2の内部空間を撮像する構成(カメラ6を含む)及び臓器収容部2の変形例について説明する。
 図12は、変形例に係る人体模型部1の外観を示す斜視図であり、図13は、変形例に係る人体模型部1における臓器収容部200と遮光部210とを分離させた分解図である。
 本変形例では、臓器収容部200は、腹側の構造が上述の実施形態における臓器収容部2と相違し、それ以外の構造は臓器収容部2と同様である。
 臓器収容部200は、略直方体状の箱体であり、透明な材質で成形されている窓部201で腹側が封鎖されている。この窓部201によれば、臓器収容部200内の大腸モデル30を臓器収容部200の外側からカメラ6で撮像可能となるだけでなく、人体の腹膜を模擬することもできる。
Hereinafter, a configuration (including the camera 6) for imaging the internal space of the organ accommodating portion 2 and a modified example of the organ accommodating portion 2 will be described with reference to FIGS. 12 and 13.
FIG. 12 is a perspective view showing the appearance of the human body model unit 1 according to the modified example, and FIG. 13 is an exploded view in which the organ accommodating portion 200 and the light-shielding portion 210 in the human body model unit 1 according to the modified example are separated. is there.
In this modification, the organ accommodating portion 200 has a ventral structure different from that of the organ accommodating portion 2 in the above-described embodiment, and other structures are the same as those of the organ accommodating portion 2.
The organ accommodating portion 200 is a substantially rectangular parallelepiped box body, and the ventral side is closed by a window portion 201 formed of a transparent material. According to the window portion 201, not only the large intestine model 30 in the organ accommodating portion 200 can be imaged by the camera 6 from the outside of the organ accommodating portion 200, but also the peritoneum of the human body can be simulated.
 遮光部210は、略直方体形状を有し、臓器収容部200の腹側に着脱自在に装着される。遮光部210は、装着状態において窓部201を腹側から覆って、臓器収容部200の下壁部21、上壁部22、右側壁部23及び左側壁部24と共に、臓器収容部200の内部空間を外光から遮光する。これにより、臓器収容部200内の大腸モデル30を撮像するカメラ6の映像が外光に影響を受けないようにすることができる。
 遮光部210は、下壁部221、上壁部222(図13では図示せず)、右側壁部223、左側壁部224、腹側壁部225を有し、それらにより上下左右及び腹側が覆われている一方で、背側が開放されている。
 遮光部210の右側壁部223及び左側壁部224の背側縁部と、臓器収容部200の右側壁部23及び左側壁部24の腹側端縁とはそれぞれ上下方向に直線状に延在しており、相互に係合可能な構造を有している。これにより、遮光部210を臓器収容部200に対して上下方向にスライドさせることで、遮光部210は臓器収容部200に装着及び離脱が可能となっている。このように、遮光部210が臓器収容部200に対して着脱自在とされることで、大腸モデル30の交換作業や臓器収容部200内のメンテナンス作業を容易化することができる。
The light-shielding portion 210 has a substantially rectangular parallelepiped shape and is detachably attached to the ventral side of the organ accommodating portion 200. The light-shielding portion 210 covers the window portion 201 from the ventral side in the worn state, and together with the lower wall portion 21, the upper wall portion 22, the right side wall portion 23, and the left side wall portion 24 of the organ accommodating portion 200, the inside of the organ accommodating portion 200. Shield the space from outside light. As a result, the image of the camera 6 that captures the large intestine model 30 in the organ accommodating portion 200 can be prevented from being affected by external light.
The light-shielding portion 210 has a lower wall portion 221 and an upper wall portion 222 (not shown in FIG. 13), a right side wall portion 223, a left side wall portion 224, and a ventral side wall portion 225, which cover the upper, lower, left, right, and ventral sides. On the other hand, the back side is open.
The dorsal edges of the right wall 223 and the left wall 224 of the light-shielding portion 210 and the ventral edge of the right wall 23 and the left wall 24 of the organ accommodating portion 200 extend linearly in the vertical direction, respectively. It has a structure that can be engaged with each other. As a result, by sliding the light-shielding portion 210 in the vertical direction with respect to the organ accommodating portion 200, the light-shielding portion 210 can be attached to and detached from the organ accommodating portion 200. By making the light-shielding portion 210 detachable from the organ accommodating portion 200 in this way, it is possible to facilitate the replacement work of the large intestine model 30 and the maintenance work in the organ accommodating portion 200.
 遮光部210は、下壁部221、上壁部222、右側壁部223、左側壁部224、及び腹側壁部225で画定された内部空間を開放された背側空間と腹側空間とに区画する仕切りプレートを更に有している。仕切りプレートは、上下左右の端縁部が下壁部221、上壁部222、右側壁部223及び左側壁部224に接続されることで固定されている。
 仕切りプレートで区画される腹側空間の内壁面には発光ユニット215が設けられている。発光ユニット215は、所定の長さで延在している。各発光ユニット215は、LED(Light Emitting Diode)のような複数の光源が列に並んで形成されていてもよいし、一つの長い光源により形成されていてもよい。
 また、仕切プレートの略中央に、カメラ6のレンズ部が遮光部210の背側空間に向かって露出するようにカメラ6が設置されている。これにより、遮光部210の背側空間は開放されているため、カメラ6は、臓器収容部200の窓部201を介して大腸モデル30を撮像可能な位置及び向きに設置されているといえる。
The light-shielding portion 210 divides the internal space defined by the lower wall portion 221, the upper wall portion 222, the right side wall portion 223, the left side wall portion 224, and the ventral side wall portion 225 into an open dorsal space and a ventral space. It also has a partition plate. The partition plate is fixed by connecting the upper, lower, left and right edge portions to the lower wall portion 221 and the upper wall portion 222, the right side wall portion 223 and the left side wall portion 224.
A light emitting unit 215 is provided on the inner wall surface of the ventral space partitioned by the partition plate. The light emitting unit 215 extends at a predetermined length. Each light emitting unit 215 may be formed by arranging a plurality of light sources such as LEDs (Light Emitting Diodes) in a row, or may be formed by one long light source.
Further, the camera 6 is installed at substantially the center of the partition plate so that the lens portion of the camera 6 is exposed toward the dorsal space of the light-shielding portion 210. As a result, since the dorsal space of the light-shielding portion 210 is open, it can be said that the camera 6 is installed at a position and orientation in which the large intestine model 30 can be imaged through the window portion 201 of the organ accommodating portion 200.
 仕切プレートは、遮光領域211及び透光領域212で形成されている。
 遮光領域211は、遮光部210の腹側空間内に設けられている発光ユニット215からの光を背側空間側へできるだけ透過しないように遮断可能な部材又は材料で形成されている。例えば、遮光領域211は、遮光性を有するフィルムが仕切プレートの腹側表面に貼付されることで形成されていてもよいし、遮光性を有する剤が仕切プレートの腹側表面に塗布されることで形成されていてもよいし、遮光性を有する材料で成形された部分プレートとして形成されていてもよい。
 透光領域212は、遮光部210の腹側空間内に設けられている発光ユニット215からの光を背側空間側へ透過可能な部材又は材料で形成されている。
 遮光領域211及び透光領域212の配置は、窓部201の表面反射を抑制するべく発光ユニット215からの光で間接的に臓器収容部200の内部空間を照らすことができるように、発光ユニット215及びカメラ6の位置に応じて決められればよい。このため、仕切プレートの遮光領域211及び透光領域212は、光源(発光ユニット215)と窓部201との間に設けられておりその光源からの光で間接的に臓器収容部200の内部空間を照らす間接照明部と表記することができる。
The partition plate is formed of a light-shielding region 211 and a light-transmitting region 212.
The light-shielding region 211 is formed of a member or material capable of blocking light from the light emitting unit 215 provided in the ventral space of the light-shielding portion 210 so as not to be transmitted to the dorsal space side as much as possible. For example, the light-shielding region 211 may be formed by attaching a light-shielding film to the ventral surface of the partition plate, or the light-shielding agent may be applied to the ventral surface of the partition plate. It may be formed as a partial plate formed of a material having a light-shielding property.
The light transmitting region 212 is formed of a member or material capable of transmitting light from the light emitting unit 215 provided in the ventral space of the light shielding portion 210 to the dorsal space side.
The arrangement of the light-shielding region 211 and the light-transmitting region 212 is such that the light from the light-emitting unit 215 can indirectly illuminate the internal space of the organ accommodating unit 200 in order to suppress the surface reflection of the window unit 201. And it may be decided according to the position of the camera 6. Therefore, the light-shielding region 211 and the translucent region 212 of the partition plate are provided between the light source (light emitting unit 215) and the window portion 201, and the internal space of the organ accommodating portion 200 is indirectly provided by the light from the light source. It can be described as an indirect lighting unit that illuminates.
 図13の例では、遮光領域211及び透光領域212が上下方向に連設されて仕切プレートが形成されており、透光領域212は、遮光領域211の1/5から1/6程度の広さで下方(肛門側)に配置されており、遮光領域211は、仕切プレートの残りの領域として上方に配置されている。また、二つの発光ユニット215が遮光部210の腹側空間の左右の内壁面に設けられており、遮光領域211は二つの発光ユニット215の光源の背側を覆う位置に配置されており、透光領域212は当該発光ユニット215の光源のない位置に配置されている。
 このように遮光部210で臓器収容部200の内部空間を外光から遮光しつつ、遮光部210の内部空間に設けられた発光ユニット215からの光を用いた間接照明で臓器収容部200の内部空間を照らすことで、窓部201の表面反射や映り込みを抑制しつつ臓器収容部200の内部空間内の大腸モデル30を適切に撮像することができる。ひいては、大腸モデル30に関する画像認識精度を維持することができる。
 但し、発光ユニット215の位置及び数、並びに遮光領域211及び透光領域212の配置は、発光ユニット215からの光で間接的に臓器収容部200の内部空間を照らすことができれば、図13の例に限定されず適宜変形可能である。
 また、本変形例において、窓部201は、表面反射を抑制する部材又は材料を含むようにしてもよいし、含まなくてもよい。
In the example of FIG. 13, the light-shielding area 211 and the light-transmitting area 212 are connected in the vertical direction to form a partition plate, and the light-transmitting area 212 is about 1/5 to 1/6 of the light-shielding area 211. The light-shielding region 211 is located below (anal side) and above as the remaining region of the partition plate. Further, two light emitting units 215 are provided on the left and right inner wall surfaces of the ventral space of the light emitting unit 210, and the light emitting region 211 is arranged at a position covering the back side of the light source of the two light emitting units 215, and is transparent. The light region 212 is arranged at a position where the light emitting unit 215 does not have a light source.
In this way, the light-shielding unit 210 shields the internal space of the organ-containing unit 200 from outside light, and the inside of the organ-containing unit 200 is indirectly illuminated by the light from the light emitting unit 215 provided in the internal space of the light-shielding unit 210. By illuminating the space, it is possible to appropriately image the large intestine model 30 in the internal space of the organ accommodating portion 200 while suppressing the surface reflection and reflection of the window portion 201. As a result, the image recognition accuracy of the large intestine model 30 can be maintained.
However, if the position and number of the light emitting units 215 and the arrangement of the light shielding region 211 and the light transmitting region 212 can indirectly illuminate the internal space of the organ accommodating portion 200 with the light from the light emitting unit 215, the example of FIG. It is not limited to, and can be appropriately deformed.
Further, in the present modification, the window portion 201 may or may not include a member or material that suppresses surface reflection.
 更に、臓器収容部200の内壁面においても表面反射を抑制する部材又は材料を含むようにしてもよい。更に言えば、臓器収容部200の内壁面のうち、少なくとも、変形や変位の検出対象とされる大腸モデル30の対象部位の周囲の領域が、表面反射を抑制する部材又は材料を含むようにしてもよい。このようにすれば、間接照明による内壁面の表面反射等も抑制することができ、大腸モデル30に関する画像認識精度を維持することができる。
 また、臓器収容部200の内壁面だけでなく、臓器収容部200の内部空間に設けられている肛門保持部31、臓器保持部32、第一スライド壁部35、第二スライド壁部34、保持柱39等も表面反射を抑制する部材又は材料を含むようにしてもよい。
Further, the inner wall surface of the organ accommodating portion 200 may also include a member or material that suppresses surface reflection. Furthermore, of the inner wall surface of the organ accommodating portion 200, at least the region around the target portion of the large intestine model 30 whose deformation or displacement is to be detected may include a member or material that suppresses surface reflection. .. By doing so, it is possible to suppress surface reflection of the inner wall surface due to indirect illumination, and it is possible to maintain the image recognition accuracy of the large intestine model 30.
Further, not only the inner wall surface of the organ accommodating portion 200, but also the anal holding portion 31, the organ holding portion 32, the first slide wall portion 35, the second slide wall portion 34, and the holding portion provided in the internal space of the organ accommodating portion 200. The pillar 39 and the like may also include a member or material that suppresses surface reflection.
 図12及び図13に示される本変形例に係る人体模型部1では、遮光部210内に設けられており臓器収容部200の内部空間の平面視映像を撮像するカメラ6に加えて、主に大腸モデル30のS状結腸領域を側方から撮像するもう一台のカメラ6(図示せず)が臓器収容部200内に設けられている。後者のカメラ6は、例えば、臓器収容部200内の右側内面付近に左側に向けて、或いは臓器収容部200内の左側内面付近に右側を向けて設けられる。このように後者のカメラ6を設けることで、大腸モデル30の前後方向(腹側背側方向)の変位及び変形についても検出することができる。 In the human body model unit 1 according to the present modification shown in FIGS. 12 and 13, in addition to the camera 6 provided in the light-shielding unit 210 and capturing a plan view image of the internal space of the organ accommodating unit 200, mainly. Another camera 6 (not shown) that images the sigmoid colon region of the large intestine model 30 from the side is provided in the organ accommodating portion 200. The latter camera 6 is provided, for example, toward the left side near the inner surface on the right side in the organ accommodating portion 200, or facing the right side near the inner surface on the left side in the organ accommodating portion 200. By providing the latter camera 6 in this way, it is possible to detect displacement and deformation of the large intestine model 30 in the anteroposterior direction (ventral dorsal direction).
 図14は、変形例における訓練時の表示の一部を示す図である。
 評価モジュール105は、訓練が開始されると、図9に示される表示に加えて又は代えて、図14に示されるような表示を入出力パネル15に表示させてもよい。
 図14の例では、遮光部210内のカメラ6により撮像された平面視映像が領域DS21に表示され、臓器収容部200内のカメラ6により撮像された側方視映像が領域DS22に表示され、被訓練者が扱う内視鏡で撮像された内視鏡映像が領域DS23に表示され、外部のカメラ(図示せず)により撮像された被訓練者の映像が領域DS24に表示されている。このように様々な映像を表示することで、被訓練者の内視鏡手技を様々な角度から評価及び分析することができる。
 また、図9の例で領域DS3、DS4及びDS5で示されていた大腸モデル30の伸縮の程度が、図14の例では、S状結腸の伸びとして領域DS25で表示されている。加えて、図14の例では、第一スライド壁部35の下向き壁面に設けられた圧力センサで検出された圧力の程度が圧迫壁への圧力として領域DS26に表示されている。更に、上部には実行中の訓練の難易度(図14では初級)及びそのときの体位(図14では左側臥位)も表示されている。
FIG. 14 is a diagram showing a part of the display at the time of training in the modified example.
When the training is started, the evaluation module 105 may display the display as shown in FIG. 14 on the input / output panel 15 in addition to or in place of the display shown in FIG.
In the example of FIG. 14, the plan view image captured by the camera 6 in the shading unit 210 is displayed in the area DS21, and the side view image captured by the camera 6 in the organ accommodating unit 200 is displayed in the area DS22. The endoscopic image captured by the endoscope handled by the trainee is displayed in the area DS23, and the image of the trainee captured by an external camera (not shown) is displayed in the area DS24. By displaying various images in this way, it is possible to evaluate and analyze the endoscopic procedure of the trainee from various angles.
Further, the degree of expansion and contraction of the large intestine model 30 shown in the regions DS3, DS4 and DS5 in the example of FIG. 9 is displayed in the region DS25 as the elongation of the sigmoid colon in the example of FIG. In addition, in the example of FIG. 14, the degree of pressure detected by the pressure sensor provided on the downward wall surface of the first slide wall portion 35 is displayed in the area DS26 as the pressure on the compression wall. Further, the difficulty level of the training during execution (beginner level in FIG. 14) and the posture at that time (left lateral decubitus position in FIG. 14) are also displayed at the upper part.
 本変形例において、検出モジュール101は、遮光部210内及び臓器収容部200内の各カメラ6により撮像された平面視映像及び側方視映像の画像データを取得し、この画像データから大腸モデル30を認識することで、大腸モデル30の可動領域の少なくとも一部が予め決められた評価位置を超えたことを検出するようにしてもよい。大腸モデル30の認識は、周知の画像認識技術を用いて色の特徴等に基づいて実現することができる。
 評価位置は、例えば、平面視映像では臓器収容部200の内部空間の上下方向の所定位置に左右方向に延びる線として設定され、側方視映像では臓器収容部200の内部空間の前後方向(腹側背側方向)の所定位置に上下方向に延びる線として設定される。検出モジュール101は、平面視映像及び側方視映像のそれぞれについて当該評価位置(評価線)を予め保持しておき、認識された大腸モデル30の画像領域の少なくとも一部がその評価位置を超えたことを検出する。
 また、検出モジュール101は、大腸モデル30の可動領域の少なくとも一部が当該評価位置を超えたことの検出に加えて、当該評価位置を超えた当該可動領域の面積を算出するようにしてもよい。
In this modification, the detection module 101 acquires image data of a plan view image and a side view image captured by each camera 6 in the light-shielding portion 210 and the organ accommodating portion 200, and the large intestine model 30 is obtained from this image data. By recognizing, it may be detected that at least a part of the movable region of the large intestine model 30 exceeds a predetermined evaluation position. Recognition of the large intestine model 30 can be realized based on color characteristics and the like by using a well-known image recognition technique.
For example, the evaluation position is set as a line extending in the vertical direction to a predetermined position in the vertical direction of the internal space of the organ accommodating portion 200 in the plan view image, and in the front-back direction (ventral) of the internal space of the organ accommodating portion 200 in the lateral view image. It is set as a line extending in the vertical direction at a predetermined position (in the lateral-dorsal direction). The detection module 101 holds the evaluation position (evaluation line) in advance for each of the plan view image and the side view image, and at least a part of the recognized image area of the large intestine model 30 exceeds the evaluation position. Detect that.
Further, the detection module 101 may calculate the area of the movable area beyond the evaluation position in addition to detecting that at least a part of the movable area of the large intestine model 30 exceeds the evaluation position. ..
 更に、評価モジュール105は、検出モジュール101による上記検出結果を更に用いて、記被訓練者の手技を評価するようにしてもよい。例えば、評価モジュール105は、大腸モデル30の可動領域の少なくとも一部が評価位置を超えたことが検出された場合、或いは評価位置を超えた当該可動領域の面積が所定面積以上となった場合に、評価ポイントを減点する。また、評価モジュール105は、大腸モデル30の少なくとも一部が評価位置を超えている時間に応じて、減点するポイント数を増加させてもよいし、大腸モデル30の少なくとも一部が評価位置を超えた回数に対応するポイント数分、評価ポイントを減点するようにしてもよい。また、検出モジュール101は、検出された面積とその検出時間とに応じて減点するポイント数を増加させてもよいし、評価位置を超えた当該可動領域の面積が所定面積以上となった回数に対応するポイント数分、評価ポイントを減点するようにしてもよい。
 また、評価モジュール105は、図14において領域DS21及び領域DS22において表示されるように、評価位置を示す線DS211及びDS221を平面視映像又は側方視映像に重畳して表示させることもできる。
 このような評価によれば、被訓練者による内視鏡手技が大腸に負担をかけ過ぎているか否かを評価することができる。また、評価位置を示す線を表示することで、被訓練者に自身の手技の状況を把握させ易くすることができる。
Further, the evaluation module 105 may further use the detection result by the detection module 101 to evaluate the technique of the trainee. For example, the evaluation module 105 detects when it is detected that at least a part of the movable area of the large intestine model 30 exceeds the evaluation position, or when the area of the movable area beyond the evaluation position becomes a predetermined area or more. , Deduct evaluation points. Further, the evaluation module 105 may increase the number of points to be deducted according to the time when at least a part of the large intestine model 30 exceeds the evaluation position, or at least a part of the large intestine model 30 exceeds the evaluation position. Evaluation points may be deducted by the number of points corresponding to the number of times. Further, the detection module 101 may increase the number of points to be deducted according to the detected area and the detection time, or the number of times that the area of the movable area beyond the evaluation position becomes equal to or more than a predetermined area. Evaluation points may be deducted by the number of corresponding points.
Further, the evaluation module 105 can also display the lines DS211 and DS221 indicating the evaluation position superimposed on the plan view image or the side view image, as displayed in the area DS21 and the area DS22 in FIG.
According to such an evaluation, it is possible to evaluate whether or not the endoscopic procedure performed by the trainee puts an excessive burden on the large intestine. In addition, by displaying a line indicating the evaluation position, it is possible to make it easier for the trainee to grasp the status of his / her own procedure.
 上述した各実施形態の内容は、次のように特定することもできる。
(付記1)
 柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、
 前記管腔臓器モデルを局所的に固定した状態で内部空間に収容する臓器収容部と、
 検出手段と、
 を備え、
 前記管腔臓器モデルは、長手方向の異なる位置に、前記臓器収容部に固定されている状態となり得る局所固定領域と、被訓練者による対象装置の操作により前記臓器収容部の前記内部空間内で変位可能な可動領域とを含み、
 前記検出手段は、少なくとも訓練時において、前記内部空間内における前記管腔臓器モデルの前記可動領域の少なくとも一部である対象部位の変位又は変形を検出可能である、
 医療シミュレータ。
(付記2)
 前記管腔臓器モデルの前記可動領域の少なくとも一部の外側周囲又は外側表面には、前記管腔臓器モデルの軸方向に離間する位置に複数のマーカが配置されており、
 前記検出手段は、カメラにより撮像された前記臓器収容部内の画像を取得し、該画像に含まれるマーカ画像に基づいて、前記対象部位の屈曲状態、伸縮状態、捻じれ状態、又はループ状態を検出可能である、
 付記1に記載の医療シミュレータ。
(付記3)
 前記臓器収容部は、前記管腔臓器モデルを収容した状態で前記内部空間を腹側から封鎖する腹壁カバー部を含み、
 前記腹壁カバー部は、少なくとも前記内部空間内の前記管腔臓器モデルが視認可能となるように透明な窓部を含み、
 前記窓部は、前記カメラにより撮像される画像における前記管腔臓器モデルの認識精度の低下を防ぐための、前記窓部の表面反射を抑制する部材又は材料を含む、
 付記1又は2に記載の医療シミュレータ。
(付記4)
 前記臓器収容部に着脱自在に装着され、装着状態で前記臓器収容部の内部空間を外光から遮光する遮光部、
 を更に備え、
 前記臓器収容部は、前記管腔臓器モデルを収容した状態で前記臓器収容部の内部空間を腹側から封鎖する腹壁カバー部を含み、
 前記腹壁カバー部は、透明な窓部を含み、
 前記遮光部は、前記窓部を介して前記管腔臓器モデルを撮像可能な位置及び向きに設置された前記カメラと、光源と、該光源と前記窓部との間に設けられており該光源からの光で間接的に前記臓器収容部の内部空間を照らす間接照明部とを含む、
 付記1又は2に記載の医療シミュレータ。
(付記5)
 前記臓器収容部の内壁面のうち、少なくとも、前記検出手段の検出対象とされる前記管腔臓器モデルの前記対象部位の周囲の領域は、表面反射を抑制する部材又は材料を含む、
 付記3又は4に記載の医療シミュレータ。
(付記6)
 前記管腔臓器モデルの前記可動領域は、可変長部材と連結された特定可動領域を含み、
 前記検出手段は、前記可変長部材の長さを検出することで、前記対象部位の変位又は変形を検出可能である、
 付記1から5のいずれか一つに記載の医療シミュレータ。
(付記7)
 前記管腔臓器モデルは、大腸の形状を模した大腸モデルであり、
 前記臓器収容部は、前記大腸モデルの肛門側端部領域を保持する肛門保持部及び前記臓器収容部に対してスライド可能なスライド状態と前記臓器収容部に対して固定される固定状態とに切り替え可能に設けられた臓器保持部を含み、
 前記大腸モデルの前記局所固定領域は、前記肛門保持部に保持される前記肛門側端部領域及び前記臓器保持部に保持される領域を含み、
 前記大腸モデルの前記臓器保持部に保持される領域は、下行結腸からS状結腸までの範囲の一部に相当する領域であり、
 前記臓器保持部のスライドにより、前記大腸モデルにおける前記肛門側端部領域から前記臓器保持部に保持される領域までの間の屈曲度合が変化する、
 付記1から6のいずれか一つに記載の医療シミュレータ。
(付記8)
 前記臓器保持部のスライド範囲は、前記大腸モデルにおける前記肛門側端部領域から前記臓器保持部に保持される領域までの長さが前記肛門保持部から前記臓器保持部までの距離の2倍となる位置を含む、
 付記7に記載の医療シミュレータ。
(付記9)
 前記管腔臓器モデルは、大腸の形状を模した大腸モデルであり、
 前記管腔臓器モデルの前記局所固定領域は、前記大腸モデルの肛門側端部領域を含み、
 前記管腔臓器モデルの前記可動領域は、前記大腸モデルにおける横行結腸に相当する横行結腸領域及び前記大腸モデルにおける直腸に相当する直腸領域を含み、
 前記臓器収容部は、前記大腸モデルの前記横行結腸領域の収容位置よりも下方かつ前記肛門側端部領域を保持する肛門保持部及び前記大腸モデルの前記直腸領域の収容位置よりも上方に位置し下向きの壁面を持つ補助壁部を含む、
 付記1から8のいずれか一つに記載の医療シミュレータ。
(付記10)
 前記補助壁部は、前記肛門保持部への距離が変化する方向にスライド可能なスライド状態と前記臓器収容部に対して固定される固定状態とに切り替え可能である、
 付記9に記載の医療シミュレータ。
(付記11)
 前記管腔臓器モデルは、大腸の形状を模した大腸モデルであり、
 前記大腸モデルは、横行結腸に相当する横行結腸領域、脾彎曲に相当する脾彎曲領域及び肝彎曲に相当する肝彎曲領域を含み、
 前記臓器収容部は、前記内部空間の上方に下向きの壁面を持って立設されており、下方へスライド可能なスライド状態と前記臓器収容部に対して固定される固定状態とに切り替え可能に設けられたスライド壁部を含み、
 前記大腸モデルの少なくとも前記脾彎曲領域及び前記肝彎曲領域は、前記スライド壁部の下方へのスライドに伴い、下方へ変位する、
 付記1から10のいずれか一つに記載の医療シミュレータ。
(付記12)
 前記大腸モデルは、脾彎曲に相当する脾彎曲領域及び肝彎曲に相当する肝彎曲領域を含み、
 前記大腸モデルの前記脾彎曲領域及び前記肝彎曲領域は、前記大腸モデルの管腔内で撮像される内視鏡画像において前記脾彎曲領域及び前記肝彎曲領域で色調変化を生じさせる色調変化領域を含む、
 付記11に記載の医療シミュレータ。
(付記13)
 モータと、
 前記モータを収容するモータ収容部と、
 前記モータの回転動力を用いて駆動される出力シャフトと、
 前記モータ収容部を保持する基台と、
 を更に備え、
 前記臓器収容部は、前記内部空間の上方を封鎖すると共に前記出力シャフトの一端を固定する上端壁部を更に含み、前記モータの回転動力により前記出力シャフトが駆動される場合には、前記基台又は前記臓器収容部に回動自在に設けられたタイヤ部を介して前記基台の腹側支持面に支持されながら前記出力シャフトと共に揺動する、
 付記1から12のいずれか一つに記載の医療シミュレータ。
(付記14)
 前記管腔臓器モデルは、大腸の形状を模した大腸モデルであり、
 前記臓器収容部は、前記大腸モデルの肛門側端部領域を保持する肛門保持部を含み、
 前記大腸モデルの前記局所固定領域は、前記肛門保持部に保持される前記肛門側端部領域を含み、
 前記肛門保持部は、前記大腸モデルの前記肛門側端部領域が挿通される貫通孔、及び前記貫通孔の断面積が上方に向かって漸次拡大するテーパ状壁面部を含み、
 前記テーパ状壁面部は、前記テーパ状壁面部の下端から上端までの傾斜が急峻な第一壁面部と該第一壁面部よりも該傾斜が緩やかな第二壁面部とを含み、
 前記第一壁面部及び前記第二壁面部は、前記貫通孔の軸方向視で対向する位置に少なくとも存在する、
 付記1から13のいずれか一つに記載の医療シミュレータ。
(付記15)
 前記管腔臓器モデルは、管腔を画定する内壁面に、該管腔内に注入された潤滑液を滞留させ得る複数の微小凹溝を有する、
 付記1から14のいずれか一つに記載の医療シミュレータ。
(付記16)
 前記管腔臓器モデルの管腔における長手方向の相互に異なる位置に設けられた複数のチェックポイントを前記対象装置の部位が通過したことを判定する判定手段と、
 二つのチェックポイント間の前記部位の滞在時間を取得する時間取得手段と、
 前記取得された滞在時間を少なくとも用いて前記被訓練者の手技を評価する評価手段と、
 を更に備える付記1から15のいずれか一つに記載の医療シミュレータ。
(付記17)
 前記時間取得手段は、第一のチェックポイントを通過してから第二のチェックポイントを通過するまでの第一の滞在時間と、該第二のチェックポイントを通過してから該第一のチェックポイントを通過するまでの第二の滞在時間とをそれぞれ取得し、
 前記評価手段は、前記第一の滞在時間及び前記第二の滞在時間に対して別個の評価方式でそれぞれ評価する、
 付記16に記載の医療シミュレータ。
(付記18)
 前記管腔臓器モデルの所定部位にかかる負荷情報を取得する負荷取得手段、
 を更に備え、
 前記評価手段は、前記取得される負荷情報が閾値を超えた負荷を示す場合に、前記取得される滞在時間を用いて点数付けされた評価ポイントから該負荷情報に対応する減点を行うことで、前記被訓練者の手技の評価ポイントを算出する、
 付記16又は17に記載の医療シミュレータ。
(付記19)
 前記被訓練者の発話情報を取得する発話取得手段と、
 前記取得された発話情報に基づいて、予め定められた複数種の所定発話のうち前記被訓練者が発した一以上の所定発話を特定可能な発話特定手段と、
 を更に備え、
 前記評価手段は、前記特定された一以上の所定発話の組合せに基づいて加点又は減点することで、前記評価ポイントを算出する、
 付記18に記載の医療シミュレータ。
(付記20)
 前記管腔臓器モデルの管腔内の気圧を測定する測定手段、
 を更に備え、
 前記評価手段は、前記対象装置の部位が二つのチェックポイント間に滞在している際に測定された気圧と気圧閾値との比較結果を更に用いて、前記被訓練者の手技を評価する、
 付記16から19のいずれか一つに記載の医療シミュレータ。
(付記21)
 前記評価手段は、前記検出手段が前記対象部位の屈曲状態、伸縮状態、捻じれ状態、又はループ状態を検出可能である場合に、検出された屈曲状態、伸縮状態、捻じれ状態、又はループ状態を更に用いて、前記被訓練者の手技を評価する、
 付記16から20のいずれか一つに記載の医療シミュレータ。
(付記22)
 前記検出手段は、少なくとも訓練時において、前記管腔臓器モデルの前記可動領域の少なくとも一部が前記臓器収容部の内部空間における前後方向の評価位置又は上下方向の評価位置を超えたことを検出し、
 前記評価手段は、前記検出手段による前記評価位置が超えられたことの検出結果を更に用いて、前記被訓練者の手技を評価する、
 付記16から21のいずれか一つに記載の医療シミュレータ。
(付記23)
 柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、前記管腔臓器モデルを内部空間に収容する臓器収容部と、前記管腔臓器モデルの管腔における長手方向の相互に異なる位置に設けられた複数のセンサとを少なくとも備える医療シミュレータを制御する制御部により実行される医療シミュレータを用いた手技評価方法であって、
 前記複数のセンサによる検出信号に基づいて、前記管腔臓器モデルの管腔における長手方向の相互に異なる位置に設けられた複数のチェックポイントを対象装置の部位が通過したことを判定し、
 二つのチェックポイント間の前記部位の滞在時間を取得し、
 前記取得された滞在時間を少なくとも用いて前記被訓練者の手技を評価する、
 ことを含む医療シミュレータを用いた手技評価方法。
(付記24)
 第一のチェックポイントを通過してから第二のチェックポイントを通過するまでの第一の滞在時間と、該第二のチェックポイントを通過してから該第一のチェックポイントを通過するまでの第二の滞在時間とをそれぞれ取得することを更に含み、
 前記評価では、前記第一の滞在時間及び前記第二の滞在時間に対して別個の評価方式でそれぞれ評価する、
 付記23に記載の医療シミュレータを用いた手技評価方法。
(付記25)
 前記管腔臓器モデルの所定部位にかかる負荷情報を取得し、
 前記取得される負荷情報が閾値を超えた負荷を示す場合に、前記取得される滞在時間を用いて点数付けされた評価ポイントから該負荷情報に対応する減点を行うことで、前記被訓練者の手技の評価ポイントを算出する、
 ことを更に含む付記23又は24に記載の医療シミュレータを用いた手技評価方法。
(付記26)
 前記被訓練者の発話情報を取得し、
 前記取得された発話情報に基づいて、予め定められた複数種の所定発話のうち前記被訓練者が発した一以上の所定発話を特定する、
 ことを更に含み、
 前記評価ポイントの算出では、前記特定された一以上の所定発話の組合せに基づいて加点又は減点することで、前記評価ポイントを算出する、
 付記25に記載の医療シミュレータを用いた手技評価方法。
(付記27)
 前記管腔臓器モデルの管腔内の気圧を測定する、
 ことを更に含み、
 前記評価では、前記対象装置の部位が二つのチェックポイント間に滞在している際に測定された気圧と気圧閾値との比較結果を更に用いて、前記被訓練者の手技を評価する、
 付記23から26のいずれか一つに記載の医療シミュレータを用いた手技評価方法。
(付記28)
 前記内部空間内における前記管腔臓器モデルの対象部位の屈曲状態、伸縮状態、捻じれ状態、又はループ状態を検出する、
 ことを更に含み、
 前記評価では、前記検出された屈曲状態、伸縮状態、捻じれ状態、又はループ状態を更に用いて、前記被訓練者の手技を評価する、
 付記23から27のいずれか一つに記載の医療シミュレータを用いた手技評価方法。
(付記29)
 前記管腔臓器モデルの少なくとも一部が前記臓器収容部の内部空間における前後方向の評価位置又は上下方向の評価位置を超えたことを検出する、
 ことを更に含み、
 前記評価では、前記管腔臓器モデルの少なくとも一部が前記評価位置を超えたことの前記検出の結果を更に用いて、前記被訓練者の手技を評価する、
 付記23から28のいずれか一つに記載の医療シミュレータを用いた手技評価方法。
(付記30)
 付記23から29のいずれか一つに記載の医療シミュレータを用いた手技評価方法を前記制御部に実行させるコンピュータプログラム。
 
The contents of each of the above-described embodiments can also be specified as follows.
(Appendix 1)
A tract organ model that is flexible and has a shape that mimics at least one tract organ,
An organ accommodating part that accommodates the luminal organ model in an internal space in a locally fixed state,
Detection means and
With
The luminal organ model has a locally fixed region that can be fixed to the organ accommodating portion at different positions in the longitudinal direction, and within the internal space of the organ accommodating portion by the operation of the target device by the trainee. Including displaceable movable area
The detecting means can detect displacement or deformation of a target site which is at least a part of the movable region of the luminal organ model in the internal space, at least during training.
Medical simulator.
(Appendix 2)
A plurality of markers are arranged at positions separated in the axial direction of the tract organ model on at least a part of the outer periphery or the outer surface of the movable region of the tract organ model.
The detection means acquires an image of the inside of the organ accommodating portion captured by a camera, and detects a bent state, a stretched state, a twisted state, or a loop state of the target site based on a marker image included in the image. It is possible,
The medical simulator described in Appendix 1.
(Appendix 3)
The organ accommodating portion includes an abdominal wall cover portion that seals the internal space from the ventral side while accommodating the luminal organ model.
The abdominal wall cover includes at least a transparent window so that the model of the luminal organ in the interior space is visible.
The window portion includes a member or material that suppresses surface reflection of the window portion in order to prevent a decrease in recognition accuracy of the luminal organ model in an image captured by the camera.
The medical simulator according to Appendix 1 or 2.
(Appendix 4)
A shading unit that is detachably attached to the organ accommodating portion and shields the internal space of the organ accommodating portion from outside light in the attached state.
With more
The organ accommodating portion includes an abdominal wall cover portion that seals the internal space of the organ accommodating portion from the ventral side while accommodating the luminal organ model.
The abdominal wall cover portion includes a transparent window portion and includes a transparent window portion.
The light-shielding portion is provided between the camera, a light source, and the light source and the window portion, which are installed at a position and orientation in which the tract organ model can be imaged through the window portion. Including an indirect lighting unit that indirectly illuminates the internal space of the organ accommodating portion with light from the organ.
The medical simulator according to Appendix 1 or 2.
(Appendix 5)
Of the inner wall surface of the organ accommodating portion, at least the region around the target portion of the luminal organ model to be detected by the detection means includes a member or material that suppresses surface reflection.
The medical simulator according to Appendix 3 or 4.
(Appendix 6)
The movable region of the tract organ model includes a specific movable region connected to a variable length member.
The detecting means can detect the displacement or deformation of the target portion by detecting the length of the variable length member.
The medical simulator according to any one of Appendix 1 to 5.
(Appendix 7)
The tract organ model is a large intestine model that imitates the shape of the large intestine.
The organ accommodating portion is switched between an anal holding portion holding the anal side end region of the large intestine model and a sliding state slidable with respect to the organ accommodating portion and a fixed state fixed with respect to the organ accommodating portion. Including the organ holding part provided as possible,
The local fixation region of the large intestine model includes the anal side end region held by the anal holding portion and the region held by the organ holding portion.
The region held by the organ holding portion of the large intestine model is a region corresponding to a part of the range from the descending colon to the sigmoid colon.
The slide of the organ holding portion changes the degree of flexion between the anal side end region and the region held by the organ holding portion in the large intestine model.
The medical simulator according to any one of Appendix 1 to 6.
(Appendix 8)
In the slide range of the organ holding portion, the length from the anal side end region to the region held by the organ holding portion in the large intestine model is twice the distance from the anal holding portion to the organ holding portion. Including the position
The medical simulator described in Appendix 7.
(Appendix 9)
The tract organ model is a large intestine model that imitates the shape of the large intestine.
The local fixation region of the luminal organ model includes the anal side end region of the large intestine model.
The movable region of the luminal organ model includes a transverse colon region corresponding to the transverse colon in the large intestine model and a rectal region corresponding to the rectum in the large intestine model.
The organ accommodating portion is located below the accommodating position of the transverse colon region of the large intestine model and above the accommodating position of the anal holding portion holding the anal side end region and the rectal region of the large intestine model. Including auxiliary walls with downward walls,
The medical simulator according to any one of Appendix 1 to 8.
(Appendix 10)
The auxiliary wall portion can be switched between a sliding state in which the distance to the anal holding portion changes and a fixed state in which the auxiliary wall portion is fixed to the organ accommodating portion.
The medical simulator described in Appendix 9.
(Appendix 11)
The tract organ model is a large intestine model that imitates the shape of the large intestine.
The large intestine model includes a transverse colon region corresponding to the transverse colon, a splenic curve region corresponding to splenic curvature, and a hepatic curvature region corresponding to hepatic curvature.
The organ accommodating portion is erected with a downward wall surface above the internal space, and is provided so as to be switchable between a sliding state that can slide downward and a fixed state that is fixed to the organ accommodating portion. Including the sliding wall
At least the splenic curve region and the liver curve region of the large intestine model are displaced downward as the slide wall portion slides downward.
The medical simulator according to any one of Appendix 1 to 10.
(Appendix 12)
The large intestine model includes a splenic curve region corresponding to a splenic curve and a liver curve region corresponding to a liver curve.
The spleen-curved region and the hepatic-curved region of the large intestine model are color tone-changing regions that cause a color change in the spleen-curved region and the hepatic-curved region in an endoscopic image taken in the lumen of the large intestine model. Including,
The medical simulator according to Appendix 11.
(Appendix 13)
With the motor
A motor accommodating portion accommodating the motor and
An output shaft driven by the rotational power of the motor and
A base for holding the motor housing and
With more
The organ accommodating portion further includes an upper end wall portion that seals the upper part of the internal space and fixes one end of the output shaft, and when the output shaft is driven by the rotational power of the motor, the base. Alternatively, it swings together with the output shaft while being supported by the ventral support surface of the base via a tire portion rotatably provided in the organ accommodating portion.
The medical simulator according to any one of Appendix 1 to 12.
(Appendix 14)
The tract organ model is a large intestine model that imitates the shape of the large intestine.
The organ containment includes an anal retainer that holds the anal side end region of the large intestine model.
The local fixation region of the large intestine model includes the anal lateral end region held by the anal holding.
The anal holding portion includes a through hole through which the anal side end region of the large intestine model is inserted, and a tapered wall surface portion in which the cross-sectional area of the through hole gradually expands upward.
The tapered wall surface portion includes a first wall surface portion having a steep slope from the lower end to the upper end of the tapered wall surface portion and a second wall surface portion having a gentler slope than the first wall surface portion.
The first wall surface portion and the second wall surface portion are present at least at positions facing each other in the axial direction of the through hole.
The medical simulator according to any one of Appendix 1 to 13.
(Appendix 15)
The luminal organ model has a plurality of microgrooves on the inner wall surface that defines the lumen, which can retain the lubricating fluid injected into the lumen.
The medical simulator according to any one of Appendix 1 to 14.
(Appendix 16)
A determination means for determining that the site of the target device has passed a plurality of checkpoints provided at positions different from each other in the longitudinal direction in the tract of the tract organ model.
A time acquisition means for acquiring the staying time of the part between two checkpoints, and
An evaluation means for evaluating the procedure of the trainee using at least the acquired staying time, and
The medical simulator according to any one of Appendix 1 to 15, further comprising.
(Appendix 17)
The time acquisition means includes the first stay time from passing the first checkpoint to passing the second checkpoint, and the first checkpoint after passing the second checkpoint. Get a second stay time and each until you pass
The evaluation means evaluates the first staying time and the second staying time by separate evaluation methods.
The medical simulator according to Appendix 16.
(Appendix 18)
A load acquisition means for acquiring load information applied to a predetermined site of the tract organ model,
With more
When the acquired load information indicates a load exceeding the threshold value, the evaluation means deducts points corresponding to the load information from the evaluation points scored using the acquired stay time. Calculate the evaluation points of the trainee's procedure,
The medical simulator according to Appendix 16 or 17.
(Appendix 19)
The utterance acquisition means for acquiring the utterance information of the trainee, and
An utterance specifying means capable of identifying one or more predetermined utterances uttered by the trainee among a plurality of predetermined utterances based on the acquired utterance information.
With more
The evaluation means calculates the evaluation points by adding or deducting points based on the combination of one or more specified predetermined utterances.
The medical simulator according to Appendix 18.
(Appendix 20)
A measuring means for measuring the air pressure in the lumen of the luminal organ model,
With more
The evaluation means evaluates the procedure of the trainee by further using the comparison result between the atmospheric pressure and the atmospheric pressure threshold value measured while the part of the target device is staying between the two checkpoints.
The medical simulator according to any one of Appendix 16 to 19.
(Appendix 21)
When the detecting means can detect the bent state, the stretched state, the twisted state, or the loop state of the target portion, the evaluation means detects the bent state, the stretched state, the twisted state, or the loop state. To evaluate the procedure of the trainee, using
The medical simulator according to any one of Appendix 16 to 20.
(Appendix 22)
The detection means detects that at least a part of the movable region of the luminal organ model exceeds the evaluation position in the anteroposterior direction or the evaluation position in the vertical direction in the internal space of the organ accommodating portion at least during training. ,
The evaluation means further uses the detection result of the detection means exceeding the evaluation position to evaluate the procedure of the trainee.
The medical simulator according to any one of Appendix 16 to 21.
(Appendix 23)
A luminal organ model that is flexible and has a shape that imitates at least one luminal organ, an organ accommodating portion that accommodates the luminal organ model in an internal space, and a longitudinal direction in the lumen of the luminal organ model. It is a procedure evaluation method using a medical simulator executed by a control unit that controls a medical simulator having at least a plurality of sensors provided at different positions.
Based on the detection signals from the plurality of sensors, it is determined that the site of the target device has passed through a plurality of checkpoints provided at different positions in the longitudinal direction in the tract of the tract organ model.
Get the time spent at the site between the two checkpoints
The trainee's procedure is evaluated using at least the acquired dwell time.
A procedure evaluation method using a medical simulator including that.
(Appendix 24)
The first staying time from passing the first checkpoint to passing the second checkpoint, and the first from passing the second checkpoint to passing the first checkpoint. Including getting each of the two staying times
In the evaluation, the first staying time and the second staying time are evaluated by separate evaluation methods.
A procedure evaluation method using the medical simulator described in Appendix 23.
(Appendix 25)
Obtaining load information applied to a predetermined part of the tract organ model,
When the acquired load information indicates a load exceeding the threshold value, the trainee is trained by deducting points corresponding to the load information from the evaluation points scored using the acquired stay time. Calculate the evaluation points of the procedure,
The procedure evaluation method using the medical simulator according to Appendix 23 or 24, further comprising the above.
(Appendix 26)
Acquire the utterance information of the trainee and
Based on the acquired utterance information, one or more predetermined utterances uttered by the trainee are specified among a plurality of predetermined utterances.
Including that
In the calculation of the evaluation points, the evaluation points are calculated by adding or deducting points based on the combination of one or more specified predetermined utterances.
A procedure evaluation method using the medical simulator described in Appendix 25.
(Appendix 27)
Measuring the air pressure in the lumen of the luminal organ model,
Including that
In the evaluation, the procedure of the trainee is evaluated by further using the comparison result between the atmospheric pressure and the atmospheric pressure threshold value measured while the part of the target device is staying between the two checkpoints.
The procedure evaluation method using the medical simulator according to any one of Appendix 23 to 26.
(Appendix 28)
Detecting a bent state, a stretched state, a twisted state, or a loop state of a target site of the luminal organ model in the internal space.
Including that
In the evaluation, the procedure of the trainee is evaluated by further using the detected bending state, stretching state, twisting state, or loop state.
The procedure evaluation method using the medical simulator according to any one of Appendix 23 to 27.
(Appendix 29)
It is detected that at least a part of the luminal organ model exceeds the evaluation position in the anteroposterior direction or the evaluation position in the vertical direction in the internal space of the organ accommodating portion.
Including that
In the evaluation, the procedure of the trainee is evaluated by further using the result of the detection that at least a part of the luminal organ model exceeds the evaluation position.
The procedure evaluation method using the medical simulator according to any one of Appendix 23 to 28.
(Appendix 30)
A computer program for causing the control unit to execute a procedure evaluation method using the medical simulator according to any one of Appendix 23 to 29.

Claims (20)

  1.  柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、
     前記管腔臓器モデルを局所的に固定した状態で内部空間に収容する臓器収容部と、
     検出手段と、
     を備え、
     前記管腔臓器モデルは、長手方向の異なる位置に、前記臓器収容部に固定されている状態となり得る局所固定領域と、被訓練者による対象装置の操作により前記臓器収容部の前記内部空間内で変位可能な可動領域とを含み、
     前記検出手段は、少なくとも訓練時において、前記内部空間内における前記管腔臓器モデルの前記可動領域の少なくとも一部である対象部位の変位又は変形を検出可能である、
     医療シミュレータ。
    A tract organ model that is flexible and has a shape that mimics at least one tract organ,
    An organ accommodating part that accommodates the luminal organ model in an internal space in a locally fixed state,
    Detection means and
    With
    The luminal organ model has a locally fixed region that can be fixed to the organ accommodating portion at different positions in the longitudinal direction, and within the internal space of the organ accommodating portion by the operation of the target device by the trainee. Including displaceable movable area
    The detecting means can detect displacement or deformation of a target site which is at least a part of the movable region of the luminal organ model in the internal space, at least during training.
    Medical simulator.
  2.  前記管腔臓器モデルの前記可動領域の少なくとも一部の外側周囲又は外側表面には、前記管腔臓器モデルの軸方向に離間する位置に複数のマーカが配置されており、
     前記検出手段は、カメラにより撮像された前記臓器収容部内の画像を取得し、該画像に含まれるマーカ画像に基づいて、前記対象部位の屈曲状態、伸縮状態、捻じれ状態、又はループ状態を検出可能である、
     請求項1に記載の医療シミュレータ。
    A plurality of markers are arranged at positions separated in the axial direction of the tract organ model on at least a part of the outer periphery or the outer surface of the movable region of the tract organ model.
    The detection means acquires an image of the inside of the organ accommodating portion captured by a camera, and detects a bent state, a stretched state, a twisted state, or a loop state of the target site based on a marker image included in the image. It is possible,
    The medical simulator according to claim 1.
  3.  前記臓器収容部に着脱自在に装着され、装着状態で前記臓器収容部の内部空間を外光から遮光する遮光部、
     を更に備え、
     前記臓器収容部は、前記管腔臓器モデルを収容した状態で前記臓器収容部の内部空間を腹側から封鎖する腹壁カバー部を含み、
     前記腹壁カバー部は、透明な窓部を含み、
     前記遮光部は、前記窓部を介して前記管腔臓器モデルを撮像可能な位置及び向きに設置された前記カメラと、光源と、該光源と前記窓部との間に設けられており該光源からの光で間接的に前記臓器収容部の内部空間を照らす間接照明部とを含む、
     請求項1又は2に記載の医療シミュレータ。
    A shading unit that is detachably attached to the organ accommodating portion and shields the internal space of the organ accommodating portion from outside light in the attached state.
    With more
    The organ accommodating portion includes an abdominal wall cover portion that seals the internal space of the organ accommodating portion from the ventral side while accommodating the luminal organ model.
    The abdominal wall cover portion includes a transparent window portion and includes a transparent window portion.
    The light-shielding portion is provided between the camera, a light source, and the light source and the window portion, which are installed at a position and orientation in which the tract organ model can be imaged through the window portion. Including an indirect lighting unit that indirectly illuminates the internal space of the organ accommodating portion with light from the organ.
    The medical simulator according to claim 1 or 2.
  4.  前記臓器収容部の内壁面のうち、少なくとも、前記検出手段の検出対象とされる前記管腔臓器モデルの前記対象部位の周囲の領域は、表面反射を抑制する部材又は材料を含む、
     請求項3に記載の医療シミュレータ。
    Of the inner wall surface of the organ accommodating portion, at least the region around the target portion of the luminal organ model to be detected by the detection means includes a member or material that suppresses surface reflection.
    The medical simulator according to claim 3.
  5.  前記管腔臓器モデルは、大腸の形状を模した大腸モデルであり、
     前記臓器収容部は、前記大腸モデルの肛門側端部領域を保持する肛門保持部及び前記臓器収容部に対してスライド可能なスライド状態と前記臓器収容部に対して固定される固定状態とに切り替え可能に設けられた臓器保持部を含み、
     前記大腸モデルの前記局所固定領域は、前記肛門保持部に保持される前記肛門側端部領域及び前記臓器保持部に保持される領域を含み、
     前記大腸モデルの前記臓器保持部に保持される領域は、下行結腸からS状結腸までの範囲の一部に相当する領域であり、
     前記臓器保持部のスライドにより、前記大腸モデルにおける前記肛門側端部領域から前記臓器保持部に保持される領域までの間の屈曲度合が変化する、
     請求項1から4のいずれか一項に記載の医療シミュレータ。
    The tract organ model is a large intestine model that imitates the shape of the large intestine.
    The organ accommodating portion is switched between an anal holding portion holding the anal side end region of the large intestine model and a sliding state slidable with respect to the organ accommodating portion and a fixed state fixed with respect to the organ accommodating portion. Including the organ holding part provided as possible,
    The local fixation region of the large intestine model includes the anal side end region held by the anal holding portion and the region held by the organ holding portion.
    The region held by the organ holding portion of the large intestine model is a region corresponding to a part of the range from the descending colon to the sigmoid colon.
    The slide of the organ holding portion changes the degree of flexion between the anal side end region and the region held by the organ holding portion in the large intestine model.
    The medical simulator according to any one of claims 1 to 4.
  6.  前記臓器保持部のスライド範囲は、前記大腸モデルにおける前記肛門側端部領域から前記臓器保持部に保持される領域までの長さが前記肛門保持部から前記臓器保持部までの距離の2倍となる位置を含む、
     請求項5に記載の医療シミュレータ。
    In the slide range of the organ holding portion, the length from the anal side end region to the region held by the organ holding portion in the large intestine model is twice the distance from the anal holding portion to the organ holding portion. Including the position
    The medical simulator according to claim 5.
  7.  前記管腔臓器モデルは、大腸の形状を模した大腸モデルであり、
     前記管腔臓器モデルの前記局所固定領域は、前記大腸モデルの肛門側端部領域を含み、
     前記管腔臓器モデルの前記可動領域は、前記大腸モデルにおける横行結腸に相当する横行結腸領域及び前記大腸モデルにおける直腸に相当する直腸領域を含み、
     前記臓器収容部は、前記大腸モデルの前記横行結腸領域の収容位置よりも下方かつ前記肛門側端部領域を保持する肛門保持部及び前記大腸モデルの前記直腸領域の収容位置よりも上方に位置し下向きの壁面を持つ補助壁部を含む、
     請求項1から6のいずれか一項に記載の医療シミュレータ。
    The tract organ model is a large intestine model that imitates the shape of the large intestine.
    The local fixation region of the luminal organ model includes the anal side end region of the large intestine model.
    The movable region of the luminal organ model includes a transverse colon region corresponding to the transverse colon in the large intestine model and a rectal region corresponding to the rectum in the large intestine model.
    The organ accommodating portion is located below the accommodating position of the transverse colon region of the large intestine model and above the accommodating position of the anal holding portion holding the anal side end region and the rectal region of the large intestine model. Including auxiliary walls with downward walls,
    The medical simulator according to any one of claims 1 to 6.
  8.  前記管腔臓器モデルは、大腸の形状を模した大腸モデルであり、
     前記大腸モデルは、横行結腸に相当する横行結腸領域、脾彎曲に相当する脾彎曲領域及び肝彎曲に相当する肝彎曲領域を含み、
     前記臓器収容部は、前記内部空間の上方に下向きの壁面を持って立設されており、下方へスライド可能なスライド状態と前記臓器収容部に対して固定される固定状態とに切り替え可能に設けられたスライド壁部を含み、
     前記大腸モデルの少なくとも前記脾彎曲領域及び前記肝彎曲領域は、前記スライド壁部の下方へのスライドに伴い、下方へ変位する、
     請求項1から7のいずれか一項に記載の医療シミュレータ。
    The tract organ model is a large intestine model that imitates the shape of the large intestine.
    The large intestine model includes a transverse colon region corresponding to the transverse colon, a splenic curve region corresponding to splenic curvature, and a hepatic curvature region corresponding to hepatic curvature.
    The organ accommodating portion is erected with a downward wall surface above the internal space, and is provided so as to be switchable between a sliding state that can slide downward and a fixed state that is fixed to the organ accommodating portion. Including the sliding wall
    At least the splenic curve region and the liver curve region of the large intestine model are displaced downward as the slide wall portion slides downward.
    The medical simulator according to any one of claims 1 to 7.
  9.  前記大腸モデルは、脾彎曲に相当する脾彎曲領域及び肝彎曲に相当する肝彎曲領域を含み、
     前記大腸モデルの前記脾彎曲領域及び前記肝彎曲領域は、前記大腸モデルの管腔内で撮像される内視鏡画像において前記脾彎曲領域及び前記肝彎曲領域で色調変化を生じさせる色調変化領域を含む、
     請求項8に記載の医療シミュレータ。
    The large intestine model includes a splenic curve region corresponding to a splenic curve and a liver curve region corresponding to a liver curve.
    The spleen-curved region and the hepatic-curved region of the large intestine model are color tone-changing regions that cause a color change in the spleen-curved region and the hepatic-curved region in an endoscopic image taken in the lumen of the large intestine model. Including,
    The medical simulator according to claim 8.
  10.  モータと、
     前記モータを収容するモータ収容部と、
     前記モータの回転動力を用いて駆動される出力シャフトと、
     前記モータ収容部を保持する基台と、
     を更に備え、
     前記臓器収容部は、前記内部空間の上方を封鎖すると共に前記出力シャフトの一端を固定する上端壁部を更に含み、前記モータの回転動力により前記出力シャフトが駆動される場合には、前記基台又は前記臓器収容部に回動自在に設けられたタイヤ部を介して前記基台の腹側支持面に支持されながら前記出力シャフトと共に揺動する、
     請求項1から9のいずれか一項に記載の医療シミュレータ。
    With the motor
    A motor accommodating portion accommodating the motor and
    An output shaft driven by the rotational power of the motor and
    A base for holding the motor housing and
    With more
    The organ accommodating portion further includes an upper end wall portion that seals the upper part of the internal space and fixes one end of the output shaft, and when the output shaft is driven by the rotational power of the motor, the base. Alternatively, it swings together with the output shaft while being supported by the ventral support surface of the base via a tire portion rotatably provided in the organ accommodating portion.
    The medical simulator according to any one of claims 1 to 9.
  11.  前記管腔臓器モデルは、大腸の形状を模した大腸モデルであり、
     前記臓器収容部は、前記大腸モデルの肛門側端部領域を保持する肛門保持部を含み、
     前記大腸モデルの前記局所固定領域は、前記肛門保持部に保持される前記肛門側端部領域を含み、
     前記肛門保持部は、前記大腸モデルの前記肛門側端部領域が挿通される貫通孔、及び前記貫通孔の断面積が上方に向かって漸次拡大するテーパ状壁面部を含み、
     前記テーパ状壁面部は、前記テーパ状壁面部の下端から上端までの傾斜が急峻な第一壁面部と該第一壁面部よりも該傾斜が緩やかな第二壁面部とを含み、
     前記第一壁面部及び前記第二壁面部は、前記貫通孔の軸方向視で対向する位置に少なくとも存在する、
     請求項1から10のいずれか一項に記載の医療シミュレータ。
    The tract organ model is a large intestine model that imitates the shape of the large intestine.
    The organ containment includes an anal retainer that holds the anal side end region of the large intestine model.
    The local fixation region of the large intestine model includes the anal lateral end region held by the anal holding.
    The anal holding portion includes a through hole through which the anal side end region of the large intestine model is inserted, and a tapered wall surface portion in which the cross-sectional area of the through hole gradually expands upward.
    The tapered wall surface portion includes a first wall surface portion having a steep slope from the lower end to the upper end of the tapered wall surface portion and a second wall surface portion having a gentler slope than the first wall surface portion.
    The first wall surface portion and the second wall surface portion are present at least at positions facing each other in the axial direction of the through hole.
    The medical simulator according to any one of claims 1 to 10.
  12.  前記管腔臓器モデルは、管腔を画定する内壁面に、該管腔内に注入された潤滑液を滞留させ得る複数の微小凹溝を有する、
     請求項1から11のいずれか一項に記載の医療シミュレータ。
    The luminal organ model has a plurality of microgrooves on the inner wall surface that defines the lumen, which can retain the lubricating fluid injected into the lumen.
    The medical simulator according to any one of claims 1 to 11.
  13.  前記管腔臓器モデルの管腔における長手方向の相互に異なる位置に設けられた複数のチェックポイントを前記対象装置の部位が通過したことを判定する判定手段と、
     二つのチェックポイント間の前記部位の滞在時間を取得する時間取得手段と、
     前記取得された滞在時間を少なくとも用いて前記被訓練者の手技を評価する評価手段と、
     を更に備える請求項1から12のいずれか一項に記載の医療シミュレータ。
    A determination means for determining that the site of the target device has passed a plurality of checkpoints provided at positions different from each other in the longitudinal direction in the tract of the tract organ model.
    A time acquisition means for acquiring the staying time of the part between two checkpoints, and
    An evaluation means for evaluating the procedure of the trainee using at least the acquired staying time, and
    The medical simulator according to any one of claims 1 to 12, further comprising.
  14.  前記時間取得手段は、第一のチェックポイントを通過してから第二のチェックポイントを通過するまでの第一の滞在時間と、該第二のチェックポイントを通過してから該第一のチェックポイントを通過するまでの第二の滞在時間とをそれぞれ取得し、
     前記評価手段は、前記第一の滞在時間及び前記第二の滞在時間に対して別個の評価方式でそれぞれ評価する、
     請求項13に記載の医療シミュレータ。
    The time acquisition means includes the first stay time from passing the first checkpoint to passing the second checkpoint, and the first checkpoint after passing the second checkpoint. Get a second stay time and each until you pass
    The evaluation means evaluates the first staying time and the second staying time by separate evaluation methods.
    The medical simulator according to claim 13.
  15.  前記管腔臓器モデルの所定部位にかかる負荷情報を取得する負荷取得手段、
     を更に備え、
     前記評価手段は、前記取得される負荷情報が閾値を超えた負荷を示す場合に、前記取得される滞在時間を用いて点数付けされた評価ポイントから該負荷情報に対応する減点を行うことで、前記被訓練者の手技の評価ポイントを算出する、
     請求項13又は14に記載の医療シミュレータ。
    A load acquisition means for acquiring load information applied to a predetermined site of the tract organ model,
    With more
    When the acquired load information indicates a load exceeding the threshold value, the evaluation means deducts points corresponding to the load information from the evaluation points scored using the acquired stay time. Calculate the evaluation points of the trainee's procedure,
    The medical simulator according to claim 13 or 14.
  16.  前記被訓練者の発話情報を取得する発話取得手段と、
     前記取得された発話情報に基づいて、予め定められた複数種の所定発話のうち前記被訓練者が発した一以上の所定発話を特定可能な発話特定手段と、
     を更に備え、
     前記評価手段は、前記特定された一以上の所定発話の組合せに基づいて加点又は減点することで、前記評価ポイントを算出する、
     請求項15に記載の医療シミュレータ。
    The utterance acquisition means for acquiring the utterance information of the trainee, and
    An utterance specifying means capable of identifying one or more predetermined utterances uttered by the trainee among a plurality of predetermined utterances based on the acquired utterance information.
    With more
    The evaluation means calculates the evaluation points by adding or deducting points based on the combination of one or more specified predetermined utterances.
    The medical simulator according to claim 15.
  17.  前記管腔臓器モデルの管腔内の気圧を測定する測定手段、
     を更に備え、
     前記評価手段は、前記対象装置の部位が二つのチェックポイント間に滞在している際に測定された気圧と気圧閾値との比較結果を更に用いて、前記被訓練者の手技を評価する、
     請求項13から16のいずれか一項に記載の医療シミュレータ。
    A measuring means for measuring the air pressure in the lumen of the luminal organ model,
    With more
    The evaluation means evaluates the procedure of the trainee by further using the comparison result between the atmospheric pressure and the atmospheric pressure threshold value measured while the part of the target device is staying between the two checkpoints.
    The medical simulator according to any one of claims 13 to 16.
  18.  前記評価手段は、前記検出手段が前記対象部位の屈曲状態、伸縮状態、捻じれ状態、又はループ状態を検出可能である場合に、検出された屈曲状態、伸縮状態、捻じれ状態、又はループ状態を更に用いて、前記被訓練者の手技を評価する、
     請求項13から17のいずれか一項に記載の医療シミュレータ。
    When the detecting means can detect the bent state, the stretched state, the twisted state, or the loop state of the target portion, the evaluation means detects the bent state, the stretched state, the twisted state, or the loop state. To evaluate the procedure of the trainee, using
    The medical simulator according to any one of claims 13 to 17.
  19.  前記検出手段は、少なくとも訓練時において、前記管腔臓器モデルの前記可動領域の少なくとも一部が前記臓器収容部の内部空間における前後方向の評価位置又は上下方向の評価位置を超えたことを検出し、
     前記評価手段は、前記検出手段による前記評価位置が超えられたことの検出結果を更に用いて、前記被訓練者の手技を評価する、
     請求項13から18のいずれか一項に記載の医療シミュレータ。
    The detection means detects that at least a part of the movable region of the luminal organ model exceeds the evaluation position in the anteroposterior direction or the evaluation position in the vertical direction in the internal space of the organ accommodating portion at least during training. ,
    The evaluation means further uses the detection result of the detection means exceeding the evaluation position to evaluate the procedure of the trainee.
    The medical simulator according to any one of claims 13 to 18.
  20.  柔軟性を有し少なくとも一つの管腔臓器を模した形状を有する管腔臓器モデルと、前記管腔臓器モデルを内部空間に収容する臓器収容部と、前記管腔臓器モデルの管腔における長手方向の相互に異なる位置に設けられた複数のセンサとを少なくとも備える医療シミュレータを制御する制御部により実行される医療シミュレータを用いた手技評価方法であって、
     前記複数のセンサによる検出信号に基づいて、前記管腔臓器モデルの管腔における長手方向の相互に異なる位置に設けられた複数のチェックポイントを対象装置の部位が通過したことを判定し、
     二つのチェックポイント間の前記部位の滞在時間を取得し、
     前記取得された滞在時間を少なくとも用いて前記被訓練者の手技を評価する、
     ことを含む医療シミュレータを用いた手技評価方法。
     
    A luminal organ model that is flexible and has a shape that imitates at least one luminal organ, an organ accommodating portion that accommodates the luminal organ model in an internal space, and a longitudinal direction in the lumen of the luminal organ model. It is a procedure evaluation method using a medical simulator executed by a control unit that controls a medical simulator equipped with at least a plurality of sensors provided at different positions.
    Based on the detection signals from the plurality of sensors, it is determined that the site of the target device has passed through a plurality of checkpoints provided at different positions in the longitudinal direction in the tract of the tract organ model.
    Get the time spent at the site between the two checkpoints
    The trainee's procedure is evaluated using at least the acquired dwell time.
    A procedure evaluation method using a medical simulator including that.
PCT/JP2019/040115 2019-05-30 2019-10-10 Medical simulator and method for evaluating procedure using medical simulator WO2020240884A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021522613A JP7378837B2 (en) 2019-05-30 2019-10-10 Medical simulator and procedure evaluation method using the medical simulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019101754 2019-05-30
JP2019-101754 2019-05-30

Publications (1)

Publication Number Publication Date
WO2020240884A1 true WO2020240884A1 (en) 2020-12-03

Family

ID=73552007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040115 WO2020240884A1 (en) 2019-05-30 2019-10-10 Medical simulator and method for evaluating procedure using medical simulator

Country Status (2)

Country Link
JP (1) JP7378837B2 (en)
WO (1) WO2020240884A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113393744A (en) * 2021-05-10 2021-09-14 皖南医学院 Simulated enteroscopy and diagnosis system and method
JP7412822B2 (en) 2021-02-24 2024-01-15 アナウト株式会社 Surgical content evaluation system, surgical content evaluation method, and computer program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199700A (en) * 2002-01-09 2003-07-15 Olympus Optical Co Ltd Colon endoscope examination training device
JP2003210386A (en) * 2002-01-24 2003-07-29 Olympus Optical Co Ltd Endoscope simulator system
JP2004085718A (en) * 2002-08-23 2004-03-18 Olympus Corp Endoscope training device
WO2008041456A1 (en) * 2006-09-29 2008-04-10 Waseda University Medical technique evaluation system, technique evaluation device, technique evaluation device program
JP3197290U (en) * 2015-02-18 2015-04-30 株式会社高研 High-frequency female treatment practice model
JP2015196075A (en) * 2014-04-03 2015-11-09 学校法人産業医科大学 Training device and training program for endoscope
JP2016218415A (en) * 2015-05-19 2016-12-22 株式会社ワインレッド Tubular organ installation device for endoscope surgery and inspection training
JP2017068413A (en) * 2015-09-29 2017-04-06 富士フイルム株式会社 Three-dimensional molding system, information processing apparatus, method, and program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199700A (en) * 2002-01-09 2003-07-15 Olympus Optical Co Ltd Colon endoscope examination training device
JP2003210386A (en) * 2002-01-24 2003-07-29 Olympus Optical Co Ltd Endoscope simulator system
JP2004085718A (en) * 2002-08-23 2004-03-18 Olympus Corp Endoscope training device
WO2008041456A1 (en) * 2006-09-29 2008-04-10 Waseda University Medical technique evaluation system, technique evaluation device, technique evaluation device program
JP2015196075A (en) * 2014-04-03 2015-11-09 学校法人産業医科大学 Training device and training program for endoscope
JP3197290U (en) * 2015-02-18 2015-04-30 株式会社高研 High-frequency female treatment practice model
JP2016218415A (en) * 2015-05-19 2016-12-22 株式会社ワインレッド Tubular organ installation device for endoscope surgery and inspection training
JP2017068413A (en) * 2015-09-29 2017-04-06 富士フイルム株式会社 Three-dimensional molding system, information processing apparatus, method, and program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TECHNOLOGY MICOTO: "Colonoscopy training model", 30 May 2019 (2019-05-30), Retrieved from the Internet <URL:https://www.youtube.com/watch?v=eJiiVU6pDq0> [retrieved on 20191213] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7412822B2 (en) 2021-02-24 2024-01-15 アナウト株式会社 Surgical content evaluation system, surgical content evaluation method, and computer program
CN113393744A (en) * 2021-05-10 2021-09-14 皖南医学院 Simulated enteroscopy and diagnosis system and method

Also Published As

Publication number Publication date
JPWO2020240884A1 (en) 2020-12-03
JP7378837B2 (en) 2023-11-14

Similar Documents

Publication Publication Date Title
JP6632020B1 (en) Endoscope image processing system
US10650703B2 (en) Suture technique training system
ES2323040T3 (en) ACOUSTIC GUIDANCE AND CONTROL SYSTEM FOR AN ENDOTRAQUEAL DEVICE.
US20080032273A1 (en) Anatomical model
CA2807614C (en) Endoscope simulator
RU2743410C2 (en) Patient simulator
JP2018120205A (en) Medical treatment simulator
JP7339679B2 (en) medical simulator
WO2020240884A1 (en) Medical simulator and method for evaluating procedure using medical simulator
US9053641B2 (en) Real-time X-ray vision for healthcare simulation
US10043415B2 (en) System, method and computer program for training for medical examinations involving manipulation of medical tools
JP2009532140A5 (en)
US20140106327A1 (en) Intra-oral anatomy training device
JP4681242B2 (en) Catheter examination simulation system
CN112204642A (en) Surgical training models, systems, and methods
JP2015018152A (en) Nursing practice simulation model
JP3926629B2 (en) Colonoscopy practice device
US20150302776A1 (en) Suite of coordinating diagnostic medical simulators for live training and evaluation
CN210667266U (en) Human throat diagnosis and treatment simulation device capable of being started by sound discrimination
JP5571605B2 (en) Medical training device and training management system
Manfredi Endorobotics: Design, R&D and future trends
JP2021049314A (en) Endoscopic image processing system
JP2021048928A (en) Endoscopic image processing system
Choi et al. Preliminary development of the active colonoscopy training model
KR102235818B1 (en) Endoscopic trainer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522613

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930685

Country of ref document: EP

Kind code of ref document: A1