WO2020240833A1 - Redundant network device, redundant network method, redundant network program, and transmission path redundancy system - Google Patents

Redundant network device, redundant network method, redundant network program, and transmission path redundancy system Download PDF

Info

Publication number
WO2020240833A1
WO2020240833A1 PCT/JP2019/021768 JP2019021768W WO2020240833A1 WO 2020240833 A1 WO2020240833 A1 WO 2020240833A1 JP 2019021768 W JP2019021768 W JP 2019021768W WO 2020240833 A1 WO2020240833 A1 WO 2020240833A1
Authority
WO
WIPO (PCT)
Prior art keywords
hops
network device
request
redundant network
clockwise
Prior art date
Application number
PCT/JP2019/021768
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 安友
敏典 堀
正基 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/021768 priority Critical patent/WO2020240833A1/en
Publication of WO2020240833A1 publication Critical patent/WO2020240833A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks

Definitions

  • the present invention relates to a redundant network device, a redundant network method, a redundant network program, and a transmission path redundant system.
  • a network with a ring-type network topology called a ring network is used for industrial networks such as factories.
  • the ring network has excellent fault tolerance, and many methods for improving the fault tolerance of the ring network have been proposed.
  • Patent Document 1 when a failure occurs in a link between devices constituting the ring network in the ring network, the device adjacent to the failure occurrence position takes a clockwise and counterclockwise path.
  • a method is disclosed in which a device that transmits a message indicating a failure position according to a predetermined protocol and receives the message updates the routing table so as to avoid the failure position indicated in the message.
  • the data transferred by the network devices that make up the ring network is roughly divided into those that are sent by other network devices that make up the ring network and those that are sent by PCs, sensors, networks, etc. that are connected to the network devices. Ru.
  • the network device that receives the latter data and transfers it to the ring network becomes a single point of failure.
  • the plurality of network devices that transfer the data received from the outside of the ring network to the ring network transmit in both clockwise and counterclockwise directions. Therefore, there is a problem that the same data flows multiple times in one path and the bandwidth is tight. As a specific example, when there are two network devices, the transfer of data received from the outside of the ring network requires twice as much bandwidth as in the case of no redundancy.
  • the redundant network device of the present invention A ring network whose network topology is a ring type, which is a redundant network device constituting a ring network including a plurality of redundant network devices.
  • a hop number table that stores the number of counterclockwise hops and the number of counterclockwise hops corresponding to each of the plurality of redundant network devices.
  • the transmission data is transmitted in the clockwise direction.
  • the transmission data is transmitted in the counterclockwise direction. It is provided with a transmission direction determination unit that determines transmission.
  • the transfer data received from the outside of the ring network to the destination device in the ring network When the number of clockwise hops to the destination device is the smallest among the number of clockwise hops to the destination device of the redundant network device constituting the ring network, the transfer data is transferred in the clockwise direction. When the number of counterclockwise hops to the destination device is the smallest among the number of counterclockwise hops to the destination device of the redundant network device constituting the ring network, the transfer data is transferred in the counterclockwise direction. Therefore, according to the redundant network device of the present invention, redundancy can be achieved without increasing the required bandwidth, and a single point of failure can be eliminated.
  • the flowchart which shows the operation of the procedure D which concerns on Embodiment 2.
  • Example of transmission direction table 126. An example of the hop count table 125.
  • FIG. 1 is a configuration example of a transmission path redundancy system including a ring network including the redundant network device 31 and the redundant network device 32 according to the present embodiment.
  • the network targeted by the present embodiment is a ring network whose network topology is a ring type.
  • the ring network is composed of a redundant network device 31, a redundant network device 32, and network devices 41 to 44.
  • the redundant network device 31 and the redundant network device 32 are redundant network devices that form a ring network including a plurality of redundant network devices.
  • the configuration of the redundant network device 31 is It may be the same as the configuration of the redundant network device 32. It may be the same as any configuration of the network devices 300 to 600.
  • a network device in general rather than a specific network device, it is referred to as a network device without a code. The same applies to the redundant network device, the information transmission source, and the components constituting the redundant network device.
  • the term network device is Unless otherwise specified, redundant network equipment shall be included. Unless otherwise specified, it refers to the network devices that make up the ring network.
  • the term redundant network device refers to a network device that makes the transmitted data transmitted to the destination network device transmitted by the information source redundant. Unless otherwise specified, it refers to redundant network devices that make up a ring network.
  • the transmitted data refers to the data transmitted by the information source to the network devices constituting the ring network.
  • the destination network device refers to a network device that is a destination of transmission data when an information source transmits transmission data to the network device.
  • the number of network devices may be arbitrary, and any number of network devices constituting the ring network may be redundant network devices.
  • the network devices may be connected by any method. The network devices do not have to be all the same. Hereinafter, the same applies when the connection is described.
  • the source of information is It is connected to a redundant network device and It may be any one such as a PC, a sensor, or a network.
  • the information source 51 is In this example, the redundant network device 31 and the redundant network device 32 are connected, It may be connected to any number of redundant network devices.
  • the information transmission source 51 transmits transmission data to the destination network device
  • the information transmission source 51 transmits the same transmission data to the redundant network device 31 and the redundant network device 32.
  • the redundant network device 31 and the redundant network device 32 transfer transmission data to the ring network.
  • FIG. 2 is another configuration example of a transmission path redundancy system including a ring network including the redundant network device 31 and the redundant network device 32 according to the present embodiment.
  • the information transmission source 51 and the information transmission source 52 synchronize with each other to transmit the same transmission data to the redundant network device 31 and the redundant network device 32, respectively.
  • any number of information transmission sources may exist.
  • at least one of the information transmission sources may be connected to a plurality of redundant network devices. When there are a plurality of information sources, the information sources do not have to be the same.
  • FIG. 3 is an example of a configuration diagram of the redundant network device 31. Since the configuration of the redundant network device 32 is the same as the configuration of the redundant network device 31, the redundant network device 31 will be described. As shown in this figure, the redundant network device 31 includes a communication path redundancy unit 120 in addition to the data transmission / reception unit 111 and the data transfer unit 112.
  • the data transmission / reception unit 111 transmits / receives data.
  • the data transfer unit 112 transfers the data that needs to be transferred to the outside among the data received by the data transmission / reception unit 111.
  • the communication path redundancy unit 120 includes a hop number investigation unit 121, a hop number transmission / reception unit 122, a hop number table creation unit 123, a transmission direction determination unit 124, a hop number table 125, and a transmission direction table 126. Will be done.
  • the hop number investigation unit 121 investigates the number of bidirectional hops from the redundant network device 31 to each network device.
  • the number of bidirectional hops is a general term for the number of clockwise hops and the number of counterclockwise hops.
  • the number of clockwise hops is the number of network devices that pass through the ring network in the clockwise direction, from the redundant network device to the network device.
  • the number of counterclockwise hops is similar to the number of clockwise hops, except that the ring network is traced counterclockwise. Either direction of the ring network may be regarded as the clockwise direction, and the direction opposite to the direction regarded as the clockwise direction is regarded as the counterclockwise direction.
  • the hop number investigation unit 121 may investigate the number of hops in both directions to each network device by an arbitrary method.
  • the hop number investigation unit 121 investigates the number of clockwise hops corresponding to the request for transmitting transmission data to the destination network device and the number of counterclockwise hops corresponding to the request.
  • the hop number investigation unit 121 investigates the number of hops in both directions assuming that the request exists even if the request for transmitting the transmission data does not actually exist. In the following, the request to transmit the transmission data does not have to actually exist.
  • the number of clockwise hops corresponding to the request for transmitting transmission data to the destination network device is the clockwise hop from the redundant network device 31 to the destination network device when any network device is regarded as the destination network device. It's a number.
  • the hop number transmission / reception unit 122 Information on the number of hops in both directions investigated by the hop number investigation unit 121 is transmitted to the hop number table creation unit 123 and other redundant network devices.
  • Number of hops in other redundant network devices Receives information on the number of hops in both directions transmitted by the transmitter / receiver. That is, the hop number transmission / reception unit 122 Data including the number of clockwise hops corresponding to the request for transmitting transmission data to the destination network device and the number of counterclockwise hops corresponding to the request is transmitted to another redundant network device provided in the ring network. Data including the number of clockwise hops corresponding to the request and the number of counterclockwise hops corresponding to the request is received from another redundant network device included in the ring network.
  • the other redundant network device is another redundant network device that constitutes the ring network.
  • the hop number table creation unit 123 determines the number of bidirectional hops for each network device other than the redundant network device based on the number of bidirectional hops investigated by the hop number survey unit 121 and the number of bidirectional hops received by the hop number transmission / reception unit 122.
  • the hop number table 125 shown is created.
  • the hop number table creation unit 123 may create a separate hop number table 125 for each network device.
  • the hop number table creation unit 123 includes the number of clockwise hops corresponding to the request for transmitting transmission data to the destination network device investigated by the hop number investigation unit 121, and the number of counterclockwise hops corresponding to the request.
  • the hop number table 125 is created based on the number of clockwise hops corresponding to the request and the number of counterclockwise hops corresponding to the request received by the hop number transmission / reception unit 122.
  • the hop number table 125 is a clockwise hop number corresponding to a request for transmitting transmission data to a destination network device constituting a ring network, and includes a clockwise hop number corresponding to each of a plurality of redundant network devices and the above-mentioned.
  • the number of counterclockwise hops corresponding to the request, and the number of counterclockwise hops corresponding to each of the plurality of redundant network devices is stored.
  • the hop number table 125 stores the number of clockwise hops corresponding to the request received by the hop number transmission / reception unit 122 and the number of counterclockwise hops corresponding to the request.
  • FIG. 12 is an example of the hop number table 125 destined for the network device 42 in the system configuration example shown in FIG.
  • the hop number table 125 can hold information on the number of hops to a network device that can be a destination for each redundant network device.
  • the network device that can be the destination typically refers to a network device other than the redundant network device that constitutes the ring network.
  • Network devices that can be destinations may include redundant network devices.
  • the transmission direction determination unit 124 Based on the hop number table 125, the transmission direction, which is the direction in which transmission data is transmitted, is determined for each network device that can be a destination.
  • the transmission direction table 126 is created based on the determined transmission direction.
  • the transmission direction determination unit 124 may create a separate transmission direction table 126 for each network device.
  • the transmission direction determination unit 124 has the smallest number of clockwise hops corresponding to itself among the number of clockwise hops corresponding to the request for transmitting transmission data to the destination network device stored in the hop number table 125. If you decide to send the send data in the clockwise direction, When the number of counterclockwise hops corresponding to itself is the smallest among the number of counterclockwise hops corresponding to the request stored in the hop number table 125, the transmission data is transmitted in the counterclockwise direction. To determine.
  • FIG. 13 is an example of the transmission direction table 126 of the redundant network device 31 in the system configuration example shown in FIG.
  • the transmission direction table 126 can hold the direction in which transmission data is transmitted for each network device that can be a destination.
  • the transmission direction table can hold that the transmission data is not transmitted to the network device.
  • the format for not transmitting may be arbitrary.
  • the transmission direction from the redundant network device 31 to the destination network device follows the transmission direction table 126.
  • FIG. 4 is an example of a hardware configuration diagram of the redundant network device 31.
  • the redundant network device 31 includes a processor 11 that performs operations such as sending and receiving data and operating a table, and a memory 12 that stores data and temporary storage required for operations by the processor 11.
  • the storage device 13 includes a port 15 connected to an information transmission source, a port 16 for transmitting in the clockwise direction, and a port 17 for transmitting in the counterclockwise direction.
  • the hop number investigation unit 121, the hop number table creation unit 123, and the transmission direction determination unit 124 are composed of a processor 11 and a memory 12.
  • the hop number table 125 and the transmission direction table 126 are composed of the memory 12.
  • the hop number table 125 and the transmission direction table 126 may be configured by the storage device 13.
  • the data transmission / reception unit 111 includes a processor 11, a memory 12, a port 15, a port 16, and a port 17.
  • the data transfer unit 112 and the hop number transmission / reception unit 122 are composed of a processor 11, a memory 12, a port 16, and a port 17.
  • the redundant network device 31 is composed of a general computer 10.
  • the processor 11 is connected to other hardware via the data bus 14 (signal line) and controls these other hardware.
  • the storage device 13 stores the redundant network program.
  • the processor 11 is a processing device that executes a program, an OS (Operating System), and the like.
  • the processing device is sometimes called an IC (Integrated Circuit), and the processor 11 is, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
  • the processor 11 reads and executes the program stored in the memory 12.
  • the computer 10 in this figure includes only one processor 11, but the computer 10 may include a plurality of processors that replace the processor 11. These plurality of processors share the execution of programs and the like.
  • the memory 12 is a storage device that temporarily stores data, and functions as a main memory used as a work area of the processor 11.
  • the memory 12 is a RAM (Random Access Memory) such as a SRAM (Static Random Access Memory) or a DRAM (Dynamic Random Access Memory).
  • the memory 12 holds the calculation result of the processor 11.
  • the storage device 13 is a storage device that stores data non-volatilely, and stores the OS, each program executed by the processor 11, data used when executing each program, and the like. Specific examples of the storage device 13 are an HDD (Hard Disk Drive) and an SSD (Solid State Drive).
  • the storage device 13 includes a memory card, an SD (Secure Digital, registered trademark) memory card, a CF (Compact Flash), a NAND flash, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, and a DVD (Digital Whatever Disk). ) Etc. may be a portable recording medium.
  • Ports 15 to 17 are interfaces for communicating with an external device. Specific examples of the ports 15 to 17 are Ethernet (registered trademark), USB (Universal Serial Bus), or HDMI (registered trademark, High-Definition Multimedia Interface) ports.
  • the port 15 is a port that receives transmission data from an information source.
  • the port 16 is a port for transmitting and receiving data in the clockwise direction of the ring network.
  • the port 17 is a port for transmitting and receiving data in the counterclockwise direction of the ring network. It should be noted that each of the ports 15 to 17 may exist in plurality, and the ports 15 to 17 do not have to be separate ports.
  • the OS is loaded from the storage device 13 by the processor 11, expanded into the memory 12, and executed on the processor 11.
  • the OS may be any one compatible with the processor 11, such as Linux (registered trademark) or Windows (registered trademark).
  • the redundant network program and the OS may be stored in the memory 12.
  • the redundant network device executes the procedure A and the procedure B.
  • Procedure A includes a process in which the redundant network device transmits information on the number of hops from itself to each network device to other redundant network devices.
  • Procedure B includes a process of determining the transmission direction for each network device that can be a destination.
  • the operation procedure of the redundant network device corresponds to the redundant network method. Further, the program that realizes the operation of the redundant network device corresponds to the redundant network program.
  • FIG. 5 is an example of a flowchart showing the operation of procedure A. The order of processing shown in this flowchart may be changed as appropriate.
  • the procedure A executed by the redundant network device 31 in the system configuration of FIG. 1 will be described with reference to the flowchart shown in FIG.
  • Step S1 Hop number investigation process
  • the hop number investigation unit 121 investigates the number of bidirectional hops from the redundant network device 31 to each network device that can be a destination based on the data transmitted / received by the data transmission / reception unit 111.
  • Step S2 Hop number transmission process
  • the hop number transmission / reception unit 122 transmits the obtained bidirectional hop number information to the hop number table creation unit 123 and the redundant network device 32.
  • FIG. 6 is an example of a flowchart showing the operation of procedure B. The order of processing shown in this flowchart may be changed as appropriate.
  • the procedure B executed by the redundant network device 31 in the system configuration of FIG. 1 will be described along with the operation flow of FIG.
  • Step S3 Hop number reception process
  • the hop number transmission / reception unit 122 receives the information on the number of bidirectional hops transmitted in the procedure A.
  • Step S4 Hop number table creation process
  • the hop number table creation unit 123 creates a hop number table 125 for each possible destination network device based on the information received in step S3.
  • Step S15 Destination determination process
  • the transmission direction determination unit 124 selects one network device whose transmission direction has not yet been determined by the redundant network device 31 among the network devices that can be destinations.
  • the network device selected in this step is expressed as a destination.
  • the transmission direction determination unit 124 has selected the network device 42. That is, the hop number table 125 is shown in FIG.
  • Step S5 Minimum number of hops confirmation process
  • the transmission direction determination unit 124 confirms whether or not the hop number table 125 has a plurality of minimum hops, which is the minimum number of all clockwise hops and all counterclockwise hops.
  • the transmission direction determination unit 124 If there are a plurality of minimum hops in the hop number table 125, the process proceeds to step S6. Otherwise, the process proceeds to step S9. In FIG. 12, since the minimum number of hops is 2 and the minimum number of hops is 1, the transmission direction determination unit 124 proceeds to step S9.
  • Step S9 Minimum number of hops device confirmation process
  • the transmission direction determination unit 124 Make sure the minimum number of hops corresponds to you, That is, it is confirmed whether either the number of clockwise hops corresponding to the self or the number of counterclockwise hops is the minimum number of hops.
  • the transmission direction determination unit 124 If the minimum number of hops corresponds to itself, the process proceeds to step S11. In other cases, the process proceeds to step S10. In FIG. 12, since the minimum number of hops corresponds to the redundant network device 32, the transmission direction determination unit 124 proceeds to step S10.
  • Step S10 Reverse direction confirmation process
  • the transmission direction determination unit 124 Refer to the number of hops in the opposite direction corresponding to the minimum number of hops, Make sure that the smallest number of hops out of all hops in the opposite direction corresponds to itself.
  • the direction opposite to the direction corresponding to the minimum number of hops is the counterclockwise direction, and the minimum number of hops among all the counterclockwise hops is 3.
  • the redundant network device 31 proceeds to step S12 in order to correspond to the minimum number of hops.
  • Step S12 Transmission direction recording process
  • the transmission direction determination unit 124 records the reverse direction in the transmission direction table 126 as the transmission direction to the destination.
  • the transmission direction determination unit 124 records the counterclockwise direction in the transmission direction table 126 as the transmission direction to the destination.
  • Step S14 Transmission direction table confirmation process
  • the transmission direction determination unit 124 confirms whether or not the transmission directions of all the network devices that can be destinations have been determined.
  • the transmission direction determination unit 124 When the transmission direction of all network devices that can be destinations is determined, procedure B is completed and procedure B is completed. In other cases, the process proceeds to step S15.
  • Step S9 Minimum number of hops device confirmation process
  • the minimum hop corresponds to the redundant network device 32. Therefore, the transmission direction determination unit 124 proceeds to step S11.
  • Step S11 Transmission direction recording process
  • the transmission direction determination unit 124 records the direction corresponding to the minimum number of hops in the transmission direction table 126 as the transmission direction to the destination. Since the direction corresponding to the minimum number of hops is the clockwise direction, the transmission direction determination unit 124 records the clockwise direction in the transmission direction table 126 as the transmission direction to the network device 42.
  • FIG. 7 is a configuration example of a transmission path redundancy system including a ring network including the redundant network device 31 and the redundant network device 32 according to the present embodiment.
  • FIG. 14 is an example of the hop number table 125 destined for the network device 43 in the system configuration shown in FIG. 7.
  • step S15 the transmission direction determination unit 124 selects the network device 43 in step S15. That is, the hop number table 125 is shown in FIG.
  • the processing before step S5 is the same as the processing of the redundant network device 31, and is therefore omitted.
  • Step S5 Minimum number of hops confirmation process
  • the minimum number of hops is 3, and there are a plurality of minimum hops. Therefore, the transmission direction determination unit 124 proceeds to step S6.
  • Step S6 Minimum number of hops device confirmation process
  • the transmission direction determination unit 124 make sure the minimum number of hops corresponds to you, That is, it is confirmed whether either the number of clockwise hops corresponding to the self or the number of counterclockwise hops is the minimum number of hops.
  • the transmission direction determination unit 124 If the minimum number of hops corresponds to itself, the process proceeds to step S7. In other cases, the process proceeds to step S8. In FIG. 14, since the minimum number of hops is 3 and the number of counterclockwise hops of the redundant network device 31 is the minimum number of hops, the transmission direction determination unit 124 proceeds to step S7.
  • Step S7 Transmission direction recording process
  • the transmission direction determination unit 124 records the direction corresponding to the minimum number of hops in the transmission direction table 126 as the transmission direction to the destination.
  • the transmission direction determination unit 124 records the counterclockwise direction, which is the direction corresponding to the minimum number of hops, in the transmission direction table 126 as the transmission direction to the destination.
  • step S14 is the same as the processing already described, so it is omitted.
  • procedure B *** Explanation of other operations of procedure B *** Hereinafter, among the processes of procedure B, the processes not described above will be described as being performed by the redundant network device 31.
  • Step S8 Non-transmission recording process
  • the transmission direction determination unit 124 records in the transmission direction table 126 that the redundant network device 31 does not transmit transmission data.
  • Step S13 Non-transmission recording process
  • the processing of this step is the same as the processing of step S8.
  • the transmission direction determination unit 124 Does the hop number table 125 store a plurality of the minimum number of hops among the number of clockwise hops corresponding to the request for transmitting transmission data to the destination network device and the number of counterclockwise hops corresponding to the request? Confirmed, When the hop count table 125 stores a plurality of minimum hop counts, If the minimum number of hops corresponds to the number of clockwise hops corresponding to the request, the transmission data is determined to be transmitted in the clockwise direction. When the minimum number of hops corresponds to the number of counterclockwise hops corresponding to the request, it is determined to transmit the transmission data in the counterclockwise direction.
  • the transmission direction determination unit 124 When the hop count table 125 stores the minimum number of hops of 1, When the number of hops corresponding to the request is the minimum number of hops, the transmission data is determined to be transmitted in the direction corresponding to the minimum number of hops. When the number of hops corresponding to the request is not the minimum number of hops, the number of hops corresponding to the direction opposite to the direction corresponding to the minimum number of hops corresponds to the request stored in the hop number table 125. When the number of hops corresponding to the reverse direction is the smallest, it is determined to transmit the transmission data in the reverse direction. Otherwise, decide not to send the transmitted data.
  • Embodiment 1 *** Explanation of the effect of Embodiment 1 *** As described above, according to the present embodiment, by executing the procedure A and the procedure B, when there are a plurality of redundant network devices in the ring network, the transmission data is made redundant and the same route is used. It is possible to prevent the same data from flowing multiple times. Therefore, according to the present embodiment, in the ring network, it is possible to make the network device that performs data transfer redundant without increasing the bandwidth.
  • the redundant network device may receive a hop count table created by another redundant network device and use the received hop count table.
  • at least one redundant network device constituting the ring network creates a hop number table and transmits the created hop number table to another redundant network device.
  • the redundant network device includes procedure A and procedure B when a new redundant network device or network device joins the ring network, or when the redundant network device or network device constituting the ring network leaves the ring network. May be executed. According to this modification, when the configuration of the ring network is changed, the redundant network device holds a hop number table and a transmission direction table corresponding to the changed ring network.
  • each function of the redundant network device is realized by software has been described.
  • each of the above functions may be realized by hardware.
  • the redundant network device includes an electronic circuit (processing circuit) instead of the processor 11.
  • the redundant network device includes an electronic circuit instead of the processor 11 and the memory 12.
  • the electronic circuit is a dedicated electronic circuit that realizes each of the above functions (and the memory 12).
  • the electronic circuit is assumed to be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA (Gate Array), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate Array). To.
  • Each of the above functions may be realized by one electronic circuit, or each of the above functions may be distributed and realized in a plurality of electronic circuits.
  • processing circuit Lee The above-mentioned processor 11, memory 12, and electronic circuit are collectively referred to as "processing circuit Lee". That is, each of the above functions is realized by the processing circuit.
  • the redundant network device corresponds to a case where the information transmission source cannot transmit transmission data to the redundant network device due to some kind of communication failure between the information transmission source and the redundant network device. To do.
  • FIG. 8 is a configuration example of a transmission path redundancy system including the redundant network devices 31 to 33 according to the present embodiment.
  • the ring network in this figure is composed of redundant network devices 31 to 33 and network devices 41 to 44.
  • the redundant network devices 31 to 33 are connected to the information source 51.
  • This figure shows a situation in which the information transmission source 51 cannot transmit transmission data to the redundant network device 31 due to some kind of communication failure between the information transmission source 51 and the redundant network device 31.
  • FIG. 9 is an example of a configuration diagram of the redundant network device 31 according to the present embodiment.
  • the redundant network device 31 includes a failure detection unit 113.
  • the failure detection unit 113 detects that the communication between the redundant network device 31 and the information transmission source 51 is unexpectedly interrupted.
  • the fault detection unit 113 detects a fault in which an information source outside the ring network that can send a request to send transmission data to the destination network device cannot send the transmission data to the redundant network device. ..
  • the communication path redundancy unit 120 includes a failure detection transmission / reception unit 127 and a hop number table update unit 128.
  • the fault detection transmission / reception unit 127 When the failure detection unit 113 detects a failure, the information source 51 transmits a message including the fact that the transmission data cannot be transmitted to the redundant network device 31 to the hop number table update unit 128 and the other redundant network device. , It is a message transmitted by the failure detection transmission / reception unit 127 of another redundant network device, and receives a message similar to the above message. A message including the fact that the information transmission source cannot transmit the transmission data to the redundant network device is called a failure detection message.
  • the failure detection message includes information on a pair of an information source and a redundant network device corresponding to a communication failure.
  • the fault detection transmission / reception unit 127 When the failure detection unit 113 detects a failure, a failure detection message including information on the redundant network device corresponding to the failure is transmitted. Receive a failure detection message from another redundant network device.
  • the hop number table update unit 128 updates the hop number table 125 based on the information transmitted by the failure detection transmission / reception unit 127.
  • the hop number table update unit 128 determines the number of clockwise hops corresponding to the redundant network device corresponding to the failure detection message and the counterclockwise rotation from the hop number table 125. Delete the number of hops.
  • the hardware configuration of the redundant network device 31 in the present embodiment is the same as that shown in the first embodiment.
  • the redundant network device of the embodiment according to the present embodiment executes the procedure C and the procedure D.
  • procedure C when some kind of communication failure occurs between the redundant network device and the information source and the transmission data cannot be transmitted from the information source to the redundant network device, the failure detection message is sent to another redundant network device. Includes processing to send to.
  • Procedure D includes a process of updating the hop number table 125 when a failure detection message is received from another redundant network device, and updating the transmission direction table 126 based on the updated hop number table 125.
  • FIG. 10 is an example of a flowchart showing the operation of procedure C. The order of processing shown in this flowchart may be changed as appropriate.
  • the procedure C executed by the redundant network device 31 when some kind of communication failure occurs between the redundant network device 31 and the information transmission source 51 will be described with reference to the flowchart of FIG. To do.
  • Step S21 Failure notification processing
  • the failure detection transmission / reception unit 127 causes the communication failure between the hop count table update unit and the other redundant network device. Send a fault detection message corresponding to.
  • the failure detection transmission / reception unit 127 has the redundant network device 32 and the redundant network. A failure detection message is transmitted to the device 33 informing that a failure has occurred.
  • FIG. 11 is an example of a flowchart showing the operation of procedure D.
  • the order of processing shown in this flowchart may be changed as appropriate.
  • the procedure D executed by the redundant network device 32 when a failure occurs between the redundant network device 31 and the information transmission source 51 will be described with reference to the flowchart of FIG. Further, in the present description, as the code of each part constituting the redundant network device 32, the code of each part constituting the redundant network device 31 is used.
  • Step S22 Failure detection message reception process
  • the failure detection transmission / reception unit 127 receives the failure detection message transmitted by the procedure C.
  • the failure detection transmission / reception unit 127 receives the failure detection message transmitted by the redundant network device 31.
  • Step S23 Hop number table update process
  • the hop number table update unit 128 deletes the information existing in the hop number table 125 and corresponding to the redundant network device that is the source of the failure detection message.
  • the hop number table update unit 128 of the redundant network device 32 deletes the hop number information of the redundant network device 31 in the hop number table 125.
  • FIG. 15 is an example of the hop number table 125 before the update
  • FIG. 16 is an example of the hop number table 125 after the update.
  • the transmission direction determination unit 124 recreates the transmission direction table 126 by the processing of steps S5 to S15 based on the updated hop number table 125.
  • Embodiment 2 *** Explanation of the effect of Embodiment 2 *** As described above, according to the present embodiment, even if the redundant network device executes the procedure C and the procedure D, the communication between the redundant network device and the information transmission source is interrupted. It is possible to maintain the redundancy of the transmitted data while preventing the same data from flowing in one path.
  • the failure detection transmission / reception unit 127 does not have to transmit the failure detection message to the hop number table update unit 128.
  • the hop number table update unit 128 of the redundant network device corresponding to the failure detection unit 113 does not update the hop number table 125.
  • the hop number table update unit 128 may update the hop number table 125 when the communication failure is resolved.
  • the failure detection unit 113 detects that the communication failure has been resolved, and determines that the communication failure has been resolved.
  • the failure detection transmission / reception unit 127 transmits a failure resolution message including the fact that the communication failure has been resolved to the hop count table update unit 128 and the other redundant network device.
  • the hop number survey unit 121 investigates the number of bidirectional hops to each network device,
  • the hop number transmission / reception unit 122 transmits information on the number of bidirectional hops investigated by the hop number investigation unit 121 to the hop number table creation unit 123 and other redundant network devices.
  • the hop count table update unit 128 of the other redundant network device is information on the bidirectional hop number of the redundant network device corresponding to the failure resolution message, and is the hop count of the other redundant network device.
  • the bidirectional hop number received by the transmission / reception unit 122.
  • the transmission direction determination unit 124 of the other redundant network device recreates the transmission direction table 126 by the processing of steps S5 to S15 based on the updated hop number table 125.
  • the embodiment is not limited to the one shown in the first and second embodiments, and various changes can be made as needed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

A redundant network device (31), which constitutes a ring network including a plurality of redundant network devices (31), is provided with: a number-of-hops table (125) that stores the numbers of clockwise hops each of which corresponds to a request for transmitting transmission data to a transmission destination network device constituting the ring network, and which respectively correspond to the plurality of redundant network devices; and a transmission direction determination unit (124) that, when the number of clockwise hops corresponding to the device itself is minimum among the numbers of clockwise hops stored in the number-of-hops table (125) and each corresponding to the request, determines to transmit transmission data in the clockwise direction.

Description

冗長ネットワーク装置、冗長ネットワーク方法、冗長ネットワークプログラム、及び、送信経路冗長化システムRedundant network device, redundant network method, redundant network program, and transmission path redundancy system
 この発明は、冗長ネットワーク装置、冗長ネットワーク方法、冗長ネットワークプログラム、及び、送信経路冗長化システムに関する。 The present invention relates to a redundant network device, a redundant network method, a redundant network program, and a transmission path redundant system.
 工場等の産業用ネットワーク等には、リングネットワークと呼ばれるネットワークトポロジがリング型であるネットワークが使われている。リングネットワークは、耐障害性に優れており、リングネットワークの耐障害性を高める方式が多く提案されている。 For industrial networks such as factories, a network with a ring-type network topology called a ring network is used. The ring network has excellent fault tolerance, and many methods for improving the fault tolerance of the ring network have been proposed.
 具体例としては、特許文献1では、リングネットワークにおいて、リングネットワークを構成する装置間のリンクに障害が発生した際に、障害発生位置に隣接している装置が時計回りと反時計回りの経路で障害位置を示すメッセージを所定のプロトコルに沿って送信し、メッセージを受信した装置は、メッセージに示される障害位置を回避するようにルーティングテーブルを更新する方式が開示されている。 As a specific example, in Patent Document 1, when a failure occurs in a link between devices constituting the ring network in the ring network, the device adjacent to the failure occurrence position takes a clockwise and counterclockwise path. A method is disclosed in which a device that transmits a message indicating a failure position according to a predetermined protocol and receives the message updates the routing table so as to avoid the failure position indicated in the message.
 リングネットワークを構成するネットワーク装置が転送するデータは、リングネットワークを構成する他のネットワーク装置が送信するものと、ネットワーク装置に接続するPC、センサ、又は、ネットワーク等が送信するものとに大別される。
 後者のデータを転送する場合に、後者のデータを受信し、リングネットワークへ転送するネットワーク装置が単一障害点となる。
 単一障害点を解消するために、後者のデータを受信するネットワーク装置をリングネットワーク内に複数台設置し、各ネットワーク装置が、リングネットワークへ転送するように冗長化することが考えられる。
The data transferred by the network devices that make up the ring network is roughly divided into those that are sent by other network devices that make up the ring network and those that are sent by PCs, sensors, networks, etc. that are connected to the network devices. Ru.
When transferring the latter data, the network device that receives the latter data and transfers it to the ring network becomes a single point of failure.
In order to eliminate a single point of failure, it is conceivable to install a plurality of network devices that receive the latter data in the ring network and make each network device redundant so as to transfer the data to the ring network.
特開平09-098180号公報Japanese Unexamined Patent Publication No. 09-098180
 しかしながら、リングネットワークの外部から受信したデータをリングネットワークへ転送する複数のネットワーク装置は、時計回りと、反時計回りとの両方向に送信する。そのため、一つの経路に同じデータが複数回流れ、帯域を逼迫するという課題があった。
 具体例としては、前記ネットワーク装置が2台存在するとき、リングネットワークの外部から受信したデータの転送には、冗長化しない場合と比較して2倍の帯域が必要である。
However, the plurality of network devices that transfer the data received from the outside of the ring network to the ring network transmit in both clockwise and counterclockwise directions. Therefore, there is a problem that the same data flows multiple times in one path and the bandwidth is tight.
As a specific example, when there are two network devices, the transfer of data received from the outside of the ring network requires twice as much bandwidth as in the case of no redundancy.
 本発明の冗長ネットワーク装置は、
 ネットワークトポロジがリング型であるリングネットワークであって、複数の冗長ネットワーク装置を備えるリングネットワークを構成する冗長ネットワーク装置であって、
 前記リングネットワークを構成する送信先ネットワーク装置に送信データを送信する要請に対応する時計回りホップ数であって、前記複数の冗長ネットワーク装置の各々に対応する時計回りホップ数と、前記要請に対応する反時計回りホップ数であって、前記複数の冗長ネットワーク装置の各々に対応する反時計回りホップ数とを記憶しているホップ数テーブルと、
 前記ホップ数テーブルが記憶している前記要請に対応する前記時計回りホップ数の中で、自身に対応する前記時計回りホップ数が最少である場合に、時計回り方向に前記送信データを送信することを決定し、
 前記ホップ数テーブルが記憶している前記要請に対応する前記反時計回りホップ数の中で、自身に対応する前記反時計回りホップ数が最少である場合に、反時計回り方向に前記送信データを送信することを決定する送信方向決定部とを備える。
The redundant network device of the present invention
A ring network whose network topology is a ring type, which is a redundant network device constituting a ring network including a plurality of redundant network devices.
The number of clockwise hops corresponding to the request for transmitting transmission data to the destination network device constituting the ring network, the number of clockwise hops corresponding to each of the plurality of redundant network devices, and the number of clockwise hops corresponding to the request. A hop number table that stores the number of counterclockwise hops and the number of counterclockwise hops corresponding to each of the plurality of redundant network devices.
When the number of clockwise hops corresponding to itself is the smallest among the number of clockwise hops corresponding to the request stored in the hop number table, the transmission data is transmitted in the clockwise direction. Decide,
When the number of counterclockwise hops corresponding to itself is the smallest among the number of counterclockwise hops corresponding to the request stored in the hop number table, the transmission data is transmitted in the counterclockwise direction. It is provided with a transmission direction determination unit that determines transmission.
 リングネットワークを構成する複数の本発明の冗長ネットワーク装置は、リングネットワークの外部から受信した転送データをリングネットワーク内の宛先装置に転送する場合、
 宛先装置までの時計回りホップ数がリングネットワークを構成する冗長ネットワーク装置の宛先装置までの時計回りホップ数の中で最少である場合に時計回り方向に転送データを転送し、
 宛先装置までの反時計回りホップ数がリングネットワークを構成する冗長ネットワーク装置の宛先装置までの反時計回りホップ数の中で最少である場合に反時計回り方向に転送データを転送する。
 そのため、本発明の冗長ネットワーク装置によれば、必要な帯域を増やさずに冗長化することができ、単一障害点を解消することができる。
When the plurality of redundant network devices of the present invention constituting the ring network transfer the transfer data received from the outside of the ring network to the destination device in the ring network,
When the number of clockwise hops to the destination device is the smallest among the number of clockwise hops to the destination device of the redundant network device constituting the ring network, the transfer data is transferred in the clockwise direction.
When the number of counterclockwise hops to the destination device is the smallest among the number of counterclockwise hops to the destination device of the redundant network device constituting the ring network, the transfer data is transferred in the counterclockwise direction.
Therefore, according to the redundant network device of the present invention, redundancy can be achieved without increasing the required bandwidth, and a single point of failure can be eliminated.
実施の形態1に係る送信経路冗長化システムの構成例。A configuration example of a transmission path redundancy system according to the first embodiment. 実施の形態1に係る送信経路冗長化システムの構成例。A configuration example of a transmission path redundancy system according to the first embodiment. 実施の形態1に係る冗長ネットワーク装置31の構成図。The block diagram of the redundant network apparatus 31 which concerns on Embodiment 1. FIG. 実施の形態1に係る冗長ネットワーク装置31のハードウェア構成図。The hardware block diagram of the redundant network apparatus 31 which concerns on Embodiment 1. FIG. 実施の形態1に係る手続きAの動作を示すフローチャート。The flowchart which shows the operation of the procedure A which concerns on Embodiment 1. 実施の形態1に係る手続きBの動作を示すフローチャート。The flowchart which shows the operation of the procedure B which concerns on Embodiment 1. 実施の形態1に係る送信経路冗長化システムの構成例。A configuration example of a transmission path redundancy system according to the first embodiment. 実施の形態2に係る送信経路冗長化システムの構成例。A configuration example of a transmission path redundancy system according to the second embodiment. 実施の形態2に係る冗長ネットワーク装置31の構成図。The block diagram of the redundant network apparatus 31 which concerns on Embodiment 2. FIG. 実施の形態2に係る手続きCの動作を示すフローチャート。The flowchart which shows the operation of the procedure C which concerns on Embodiment 2. 実施の形態2に係る手続きDの動作を示すフローチャート。The flowchart which shows the operation of the procedure D which concerns on Embodiment 2. ホップ数テーブル125の例。An example of the hop count table 125. 送信方向テーブル126の例。Example of transmission direction table 126. ホップ数テーブル125の例。An example of the hop count table 125. ホップ数テーブル125の例。An example of the hop count table 125. ホップ数テーブル125の例。An example of the hop count table 125.
 実施の形態1.
 以下、本実施の形態について、図面を参照しながら詳細に説明する。
Embodiment 1.
Hereinafter, the present embodiment will be described in detail with reference to the drawings.
***構成の説明***
 図1は、本実施の形態に係る冗長ネットワーク装置31と、冗長ネットワーク装置32とを備えるリングネットワークを備えた送信経路冗長化システムの構成例である。
*** Explanation of configuration ***
FIG. 1 is a configuration example of a transmission path redundancy system including a ring network including the redundant network device 31 and the redundant network device 32 according to the present embodiment.
 本実施の形態が対象とするネットワークは、ネットワークトポロジがリング型であるリングネットワークである。
 本例において、リングネットワークは、冗長ネットワーク装置31と、冗長ネットワーク装置32と、ネットワーク装置41~44とから構成される。
 冗長ネットワーク装置31と、冗長ネットワーク装置32とは、複数の冗長ネットワーク装置を備えるリングネットワークを構成する冗長ネットワーク装置である。
 冗長ネットワーク装置31の構成は、
 冗長ネットワーク装置32の構成と同じであっても良く、
 ネットワーク装置300~600のいずれかの構成と同じであっても良い。
 特定のネットワーク装置ではなく、ネットワーク装置全般を指す場合、ネットワーク装置と符号なしで表記する。冗長ネットワーク装置と、情報発信源と、これらを構成するものとについても同様とする。
 ネットワーク装置という用語は、
 特に断りがなければ、冗長ネットワーク装置を含むものとし、
 特に断りがなければ、リングネットワークを構成するネットワーク装置を指す。
 冗長ネットワーク装置という用語は、
 情報源が送信した送信先ネットワーク装置に送信した送信データを冗長化するネットワーク装置を指し、
 特に断りがなければ、リングネットワークを構成する冗長ネットワーク装置を指す。
 送信データは、特に断りがなければ、情報源がリングネットワークを構成するネットワーク装置に送信したデータを指す。
 送信先ネットワーク装置は、特に断りがなければ、情報源が送信データをネットワーク装置に送信する場合において、送信データの宛先であるネットワーク装置を指す。
 ネットワーク装置の台数は、任意であって良く、リングネットワークを構成するネットワーク装置の内、何台が冗長ネットワーク装置であっても良い。ネットワーク装置同士は、任意の方法により接続されていて良い。ネットワーク装置は、全て同じものでなくても良い。以下、接続について述べる場合、同様とする。
The network targeted by the present embodiment is a ring network whose network topology is a ring type.
In this example, the ring network is composed of a redundant network device 31, a redundant network device 32, and network devices 41 to 44.
The redundant network device 31 and the redundant network device 32 are redundant network devices that form a ring network including a plurality of redundant network devices.
The configuration of the redundant network device 31 is
It may be the same as the configuration of the redundant network device 32.
It may be the same as any configuration of the network devices 300 to 600.
When referring to a network device in general rather than a specific network device, it is referred to as a network device without a code. The same applies to the redundant network device, the information transmission source, and the components constituting the redundant network device.
The term network device is
Unless otherwise specified, redundant network equipment shall be included.
Unless otherwise specified, it refers to the network devices that make up the ring network.
The term redundant network device
Refers to a network device that makes the transmitted data transmitted to the destination network device transmitted by the information source redundant.
Unless otherwise specified, it refers to redundant network devices that make up a ring network.
Unless otherwise specified, the transmitted data refers to the data transmitted by the information source to the network devices constituting the ring network.
Unless otherwise specified, the destination network device refers to a network device that is a destination of transmission data when an information source transmits transmission data to the network device.
The number of network devices may be arbitrary, and any number of network devices constituting the ring network may be redundant network devices. The network devices may be connected by any method. The network devices do not have to be all the same. Hereinafter, the same applies when the connection is described.
 情報発信源は、
 冗長ネットワーク装置と接続しており、
 PC、センサ、又は、ネットワーク等、任意のものであって良い。
 情報発信源51は、
 本例において、冗長ネットワーク装置31と、冗長ネットワーク装置32と接続しているが、
 任意の台数の冗長ネットワーク装置と接続していても良い。
The source of information is
It is connected to a redundant network device and
It may be any one such as a PC, a sensor, or a network.
The information source 51 is
In this example, the redundant network device 31 and the redundant network device 32 are connected,
It may be connected to any number of redundant network devices.
 本例において、情報発信源51が、送信先ネットワーク装置に送信データを送信する場合に、
 情報発信源51は、冗長ネットワーク装置31と、冗長ネットワーク装置32とに同じ送信データを送信し、
 冗長ネットワーク装置31と、冗長ネットワーク装置32とは、送信データをリングネットワークに転送する。
In this example, when the information source 51 transmits transmission data to the destination network device,
The information transmission source 51 transmits the same transmission data to the redundant network device 31 and the redundant network device 32.
The redundant network device 31 and the redundant network device 32 transfer transmission data to the ring network.
 図2は、本実施の形態における冗長ネットワーク装置31と、冗長ネットワーク装置32とを備えるリングネットワークを備えた送信経路冗長化システムの別の構成例である。
 本例において、情報発信源51と、情報発信源52とは、同期して、それぞれ、冗長ネットワーク装置31と、冗長ネットワーク装置32とに対して、同じ送信データを送信する。
 なお、情報発信源は、任意の個数存在していても良い。また、情報発信源が複数存在する場合に、少なくともいずれか1の情報発信源が、複数の冗長ネットワーク装置と接続していても良い。
 情報発信源が複数存在する場合、情報発信源は、全て同じものでなくても良い。
FIG. 2 is another configuration example of a transmission path redundancy system including a ring network including the redundant network device 31 and the redundant network device 32 according to the present embodiment.
In this example, the information transmission source 51 and the information transmission source 52 synchronize with each other to transmit the same transmission data to the redundant network device 31 and the redundant network device 32, respectively.
It should be noted that any number of information transmission sources may exist. Further, when there are a plurality of information transmission sources, at least one of the information transmission sources may be connected to a plurality of redundant network devices.
When there are a plurality of information sources, the information sources do not have to be the same.
 図3は、冗長ネットワーク装置31の構成図の例である。
 冗長ネットワーク装置32の構成は、冗長ネットワーク装置31の構成と同様であるため、冗長ネットワーク装置31についての説明をする。
 本図に示すように、冗長ネットワーク装置31は、データ送受信部111と、データ転送部112とに加えて、通信経路冗長化部120を具備する。
FIG. 3 is an example of a configuration diagram of the redundant network device 31.
Since the configuration of the redundant network device 32 is the same as the configuration of the redundant network device 31, the redundant network device 31 will be described.
As shown in this figure, the redundant network device 31 includes a communication path redundancy unit 120 in addition to the data transmission / reception unit 111 and the data transfer unit 112.
 データ送受信部111は、データの送受信を行う。 The data transmission / reception unit 111 transmits / receives data.
 データ転送部112は、データ送受信部111が受信したデータの内、外部に転送する必要があるデータを転送する。 The data transfer unit 112 transfers the data that needs to be transferred to the outside among the data received by the data transmission / reception unit 111.
 通信経路冗長化部120は、ホップ数調査部121と、ホップ数送受信部122と、ホップ数テーブル作成部123と、送信方向決定部124と、ホップ数テーブル125と、送信方向テーブル126とから構成される。 The communication path redundancy unit 120 includes a hop number investigation unit 121, a hop number transmission / reception unit 122, a hop number table creation unit 123, a transmission direction determination unit 124, a hop number table 125, and a transmission direction table 126. Will be done.
 ホップ数調査部121は、冗長ネットワーク装置31から各ネットワーク装置までの両方向ホップ数を調査する。両方向ホップ数は、時計回りホップ数と、反時計回りホップ数との総称である。
 時計回りホップ数は、冗長ネットワーク装置から、ネットワーク装置まで、リングネットワークを時計回り方向に辿ったときに経由するネットワーク装置の数である。反時計回りホップ数は、リングネットワークを反時計回り方向に辿ること以外、時計回りホップ数と同様である。
 なお、リングネットワークのどちらの方向を時計回り方向とみなしても良く、時計回り方向とみなした方向の逆方向を反時計回り方向とみなす。
 なお、ホップ数調査部121は、任意の手法によって、各ネットワーク装置までの両方向ホップ数を調査して良い。
The hop number investigation unit 121 investigates the number of bidirectional hops from the redundant network device 31 to each network device. The number of bidirectional hops is a general term for the number of clockwise hops and the number of counterclockwise hops.
The number of clockwise hops is the number of network devices that pass through the ring network in the clockwise direction, from the redundant network device to the network device. The number of counterclockwise hops is similar to the number of clockwise hops, except that the ring network is traced counterclockwise.
Either direction of the ring network may be regarded as the clockwise direction, and the direction opposite to the direction regarded as the clockwise direction is regarded as the counterclockwise direction.
The hop number investigation unit 121 may investigate the number of hops in both directions to each network device by an arbitrary method.
 ホップ数調査部121は、送信先ネットワーク装置に送信データを送信する要請に対応する時計回りホップ数と、前記要請に対応する反時計回りホップ数とを調査する。
 なお、ホップ数調査部121は、送信データを送信する要請が実際に存在しなくても、前記要請が存在するものとして両方向ホップ数を調査する。下記において、送信データを送信する要請は、実際に存在しなくても良い。
 送信先ネットワーク装置に送信データを送信する要請に対応する時計回りホップ数は、いずれかのネットワーク装置を送信先ネットワーク装置とみなしたときの、冗長ネットワーク装置31から送信先ネットワーク装置までの時計回りホップ数のことである。
The hop number investigation unit 121 investigates the number of clockwise hops corresponding to the request for transmitting transmission data to the destination network device and the number of counterclockwise hops corresponding to the request.
The hop number investigation unit 121 investigates the number of hops in both directions assuming that the request exists even if the request for transmitting the transmission data does not actually exist. In the following, the request to transmit the transmission data does not have to actually exist.
The number of clockwise hops corresponding to the request for transmitting transmission data to the destination network device is the clockwise hop from the redundant network device 31 to the destination network device when any network device is regarded as the destination network device. It's a number.
 ホップ数送受信部122は、
 ホップ数調査部121が調査した両方向ホップ数の情報を、ホップ数テーブル作成部123と、他の冗長ネットワーク装置とに送信し、
 他の冗長ネットワーク装置のホップ数送受信部が送信した両方向ホップ数の情報を受信する。
 即ち、ホップ数送受信部122は、
 リングネットワークが備える他の冗長ネットワーク装置に、送信先ネットワーク装置に送信データを送信する要請に対応する時計回りホップ数と、前記要請に対応する反時計回りホップ数とを含むデータを送信し、
 リングネットワークが備える他の冗長ネットワーク装置から、前記要請に対応する時計回りホップ数と、前記要請に対応する反時計回りホップ数とを含むデータを受信する。
 他の冗長ネットワーク装置は、リングネットワークを構成する他の冗長ネットワーク装置のことである。
The hop number transmission / reception unit 122
Information on the number of hops in both directions investigated by the hop number investigation unit 121 is transmitted to the hop number table creation unit 123 and other redundant network devices.
Number of hops in other redundant network devices Receives information on the number of hops in both directions transmitted by the transmitter / receiver.
That is, the hop number transmission / reception unit 122
Data including the number of clockwise hops corresponding to the request for transmitting transmission data to the destination network device and the number of counterclockwise hops corresponding to the request is transmitted to another redundant network device provided in the ring network.
Data including the number of clockwise hops corresponding to the request and the number of counterclockwise hops corresponding to the request is received from another redundant network device included in the ring network.
The other redundant network device is another redundant network device that constitutes the ring network.
 ホップ数テーブル作成部123は、ホップ数調査部121が調査した両方向ホップ数と、ホップ数送受信部122が受信した両方向ホップ数とに基づいて、冗長ネットワーク装置以外の各ネットワーク装置に対する両方向ホップ数を示すホップ数テーブル125を作成する。
 ホップ数テーブル作成部123は、ネットワーク装置毎に別々のホップ数テーブル125を作成しても良い。
The hop number table creation unit 123 determines the number of bidirectional hops for each network device other than the redundant network device based on the number of bidirectional hops investigated by the hop number survey unit 121 and the number of bidirectional hops received by the hop number transmission / reception unit 122. The hop number table 125 shown is created.
The hop number table creation unit 123 may create a separate hop number table 125 for each network device.
 ホップ数テーブル作成部123は、ホップ数調査部121が調査した、送信先ネットワーク装置に送信データを送信する要請に対応する時計回りホップ数、及び、前記要請に対応する反時計回りホップ数と、ホップ数送受信部122が受信した、前記要請に対応する時計回りホップ数、及び、前記要請に対応する反時計回りホップ数とに基づいて、ホップ数テーブル125を作成する。 The hop number table creation unit 123 includes the number of clockwise hops corresponding to the request for transmitting transmission data to the destination network device investigated by the hop number investigation unit 121, and the number of counterclockwise hops corresponding to the request. The hop number table 125 is created based on the number of clockwise hops corresponding to the request and the number of counterclockwise hops corresponding to the request received by the hop number transmission / reception unit 122.
 ホップ数テーブル125は、リングネットワークを構成する送信先ネットワーク装置に送信データを送信する要請に対応する時計回りホップ数であって、複数の冗長ネットワーク装置の各々に対応する時計回りホップ数と、前記要請に対応する反時計回りホップ数であって、複数の冗長ネットワーク装置の各々に対応する反時計回りホップ数とを記憶している。
 ホップ数テーブル125は、ホップ数送受信部122が受信した、前記要請に対応する時計回りホップ数と、前記要請に対応する反時計回りホップ数とを記憶している。
The hop number table 125 is a clockwise hop number corresponding to a request for transmitting transmission data to a destination network device constituting a ring network, and includes a clockwise hop number corresponding to each of a plurality of redundant network devices and the above-mentioned. The number of counterclockwise hops corresponding to the request, and the number of counterclockwise hops corresponding to each of the plurality of redundant network devices is stored.
The hop number table 125 stores the number of clockwise hops corresponding to the request received by the hop number transmission / reception unit 122 and the number of counterclockwise hops corresponding to the request.
 図12は、図1に示すシステム構成例における、ネットワーク装置42を宛先とするホップ数テーブル125の例である。
 本図に示すように、ホップ数テーブル125は、冗長ネットワーク装置毎に、宛先となり得るネットワーク装置までのホップ数の情報を保持することができる。
 宛先となり得るネットワーク装置とは、典型的には、リングネットワークを構成する、冗長ネットワーク装置以外のネットワーク装置を指す。宛先となり得るネットワーク装置に、冗長ネットワーク装置が含まれる場合もある。
FIG. 12 is an example of the hop number table 125 destined for the network device 42 in the system configuration example shown in FIG.
As shown in this figure, the hop number table 125 can hold information on the number of hops to a network device that can be a destination for each redundant network device.
The network device that can be the destination typically refers to a network device other than the redundant network device that constitutes the ring network. Network devices that can be destinations may include redundant network devices.
 送信方向決定部124は、
 ホップ数テーブル125に基づいて、宛先となり得るネットワーク装置毎に、送信データを送信する方向である送信方向を決定し、
 決定した送信方向に基づいて、送信方向テーブル126を作成する。
 送信方向決定部124は、ネットワーク装置毎に別々の送信方向テーブル126を作成しても良い。
The transmission direction determination unit 124
Based on the hop number table 125, the transmission direction, which is the direction in which transmission data is transmitted, is determined for each network device that can be a destination.
The transmission direction table 126 is created based on the determined transmission direction.
The transmission direction determination unit 124 may create a separate transmission direction table 126 for each network device.
 送信方向決定部124は、ホップ数テーブル125が記憶している送信先ネットワーク装置に送信データを送信する要請に対応する時計回りホップ数の中で、自身に対応する時計回りホップ数が最少である場合に、時計回り方向に送信データを送信することを決定し、
 ホップ数テーブル125が記憶している前記要請に対応する反時計回りホップ数の中で、自身に対応する反時計回りホップ数が最少である場合に、反時計回り方向に送信データを送信することを決定する。
The transmission direction determination unit 124 has the smallest number of clockwise hops corresponding to itself among the number of clockwise hops corresponding to the request for transmitting transmission data to the destination network device stored in the hop number table 125. If you decide to send the send data in the clockwise direction,
When the number of counterclockwise hops corresponding to itself is the smallest among the number of counterclockwise hops corresponding to the request stored in the hop number table 125, the transmission data is transmitted in the counterclockwise direction. To determine.
 図13は、図1に示すシステム構成例における、冗長ネットワーク装置31の送信方向テーブル126の例である。
 送信方向テーブル126は、宛先となり得るネットワーク装置毎に、送信データを送信する方向を保持することができる。なお、送信方向テーブルに対応する冗長ネットワーク装置が送信データをあるネットワーク装置に送信しない場合、送信方向テーブルは、前記ネットワーク装置に対して送信データを送信しない旨を保持することができる。送信しない旨の形式は、任意であって良い。
 冗長ネットワーク装置31から送信先ネットワーク装置までの送信方向は、送信方向テーブル126に従う。
FIG. 13 is an example of the transmission direction table 126 of the redundant network device 31 in the system configuration example shown in FIG.
The transmission direction table 126 can hold the direction in which transmission data is transmitted for each network device that can be a destination. When the redundant network device corresponding to the transmission direction table does not transmit the transmission data to a certain network device, the transmission direction table can hold that the transmission data is not transmitted to the network device. The format for not transmitting may be arbitrary.
The transmission direction from the redundant network device 31 to the destination network device follows the transmission direction table 126.
 図4は、冗長ネットワーク装置31のハードウェア構成図の例である。
 本図に示すように、冗長ネットワーク装置31は、データの送受信及びテーブルを操作するための演算等を行うプロセッサ11と、プロセッサ11による演算に必要なデータ及び一時記憶等の保存を行うメモリ12と、記憶装置13と、情報発信源と接続するポート15と、時計回り方向の送信を行うポート16と、反時計回り方向の送信を行うポート17とを具備する。
FIG. 4 is an example of a hardware configuration diagram of the redundant network device 31.
As shown in this figure, the redundant network device 31 includes a processor 11 that performs operations such as sending and receiving data and operating a table, and a memory 12 that stores data and temporary storage required for operations by the processor 11. The storage device 13 includes a port 15 connected to an information transmission source, a port 16 for transmitting in the clockwise direction, and a port 17 for transmitting in the counterclockwise direction.
 本図に示すように、ホップ数調査部121と、ホップ数テーブル作成部123と、送信方向決定部124とは、プロセッサ11と、メモリ12とから構成される。
 ホップ数テーブル125と、送信方向テーブル126とは、メモリ12から構成される。ホップ数テーブル125と、送信方向テーブル126とは、記憶装置13から構成されても良い。
 データ送受信部111は、プロセッサ11と、メモリ12と、ポート15と、ポート16と、ポート17とから構成される。
 データ転送部112と、ホップ数送受信部122とは、プロセッサ11と、メモリ12と、ポート16と、ポート17とから構成される。
As shown in this figure, the hop number investigation unit 121, the hop number table creation unit 123, and the transmission direction determination unit 124 are composed of a processor 11 and a memory 12.
The hop number table 125 and the transmission direction table 126 are composed of the memory 12. The hop number table 125 and the transmission direction table 126 may be configured by the storage device 13.
The data transmission / reception unit 111 includes a processor 11, a memory 12, a port 15, a port 16, and a port 17.
The data transfer unit 112 and the hop number transmission / reception unit 122 are composed of a processor 11, a memory 12, a port 16, and a port 17.
 本図に示すように、冗長ネットワーク装置31は、一般的なコンピュータ10から構成される。
 プロセッサ11は、データバス14(信号線)を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
 記憶装置13は、冗長ネットワークプログラムを記憶する。
As shown in this figure, the redundant network device 31 is composed of a general computer 10.
The processor 11 is connected to other hardware via the data bus 14 (signal line) and controls these other hardware.
The storage device 13 stores the redundant network program.
 プロセッサ11は、プログラム及びOS(Operating System)等を実行するプロセッシング装置である。プロセッシング装置は、IC(Integrated Circuit)と呼ぶこともあり、プロセッサ11は、具体例としては、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。プロセッサ11は、メモリ12に格納されたプログラムを読み出して実行する。 The processor 11 is a processing device that executes a program, an OS (Operating System), and the like. The processing device is sometimes called an IC (Integrated Circuit), and the processor 11 is, for example, a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit). The processor 11 reads and executes the program stored in the memory 12.
 本図のコンピュータ10は、プロセッサ11を1つだけ備えているが、コンピュータ10は、プロセッサ11を代替する複数のプロセッサを備えていても良い。これら複数のプロセッサは、プログラムの実行等を分担する。 The computer 10 in this figure includes only one processor 11, but the computer 10 may include a plurality of processors that replace the processor 11. These plurality of processors share the execution of programs and the like.
 メモリ12は、データを一時的に記憶する記憶装置であり、プロセッサ11の作業領域として使用されるメインメモリとして機能する。メモリ12は、具体例としては、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)等のRAM(Random Access Memory)である。メモリ12は、プロセッサ11の演算結果を保持する。 The memory 12 is a storage device that temporarily stores data, and functions as a main memory used as a work area of the processor 11. As a specific example, the memory 12 is a RAM (Random Access Memory) such as a SRAM (Static Random Access Memory) or a DRAM (Dynamic Random Access Memory). The memory 12 holds the calculation result of the processor 11.
 記憶装置13は、データを不揮発的に保管する記憶装置であり、OS、プロセッサ11によって実行される各プログラム、各プログラムの実行時に使用されるデータ等を記憶する。記憶装置13は、具体例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)である。また、記憶装置13は、メモリカード、SD(Secure Digital、登録商標)メモリカード、CF(Compact Flash)、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVD(Digital Versatile Disk)等の可搬記録媒体であってもよい。 The storage device 13 is a storage device that stores data non-volatilely, and stores the OS, each program executed by the processor 11, data used when executing each program, and the like. Specific examples of the storage device 13 are an HDD (Hard Disk Drive) and an SSD (Solid State Drive). The storage device 13 includes a memory card, an SD (Secure Digital, registered trademark) memory card, a CF (Compact Flash), a NAND flash, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, and a DVD (Digital Versailles Disk). ) Etc. may be a portable recording medium.
 ポート15~17は、外部の装置と通信するためのインタフェースである。
 ポート15~17は、具体例としては、Ethernet(登録商標)、USB(Universal Serial Bus)、又は、HDMI(登録商標,High-Definition Multimedia Interface)のポートである。
 ポート15は、情報発信源から送信データを受信するポートである。
 ポート16は、リングネットワークの時計回り方向に関するデータを送受信するポートである。
 ポート17は、リングネットワークの反時計回り方向に関するデータを送受信するポートである。
 なお、ポート15~17のそれぞれが複数存在しても良く、ポート15~17は別々のポートでなくても良い。
Ports 15 to 17 are interfaces for communicating with an external device.
Specific examples of the ports 15 to 17 are Ethernet (registered trademark), USB (Universal Serial Bus), or HDMI (registered trademark, High-Definition Multimedia Interface) ports.
The port 15 is a port that receives transmission data from an information source.
The port 16 is a port for transmitting and receiving data in the clockwise direction of the ring network.
The port 17 is a port for transmitting and receiving data in the counterclockwise direction of the ring network.
It should be noted that each of the ports 15 to 17 may exist in plurality, and the ports 15 to 17 do not have to be separate ports.
 本図には記載していないが、OSは、プロセッサ11によって記憶装置13からロードされ、メモリ12に展開され、プロセッサ11上で実行される。OSは、具体例としては、Linux(登録商標)又はWindows(登録商標)等、プロセッサ11に適合する任意のものでよい。なお、冗長ネットワークプログラム及びOSは、メモリ12に記憶されていてもよい。 Although not shown in this figure, the OS is loaded from the storage device 13 by the processor 11, expanded into the memory 12, and executed on the processor 11. As a specific example, the OS may be any one compatible with the processor 11, such as Linux (registered trademark) or Windows (registered trademark). The redundant network program and the OS may be stored in the memory 12.
***動作の説明***
 本実施の形態に係る冗長ネットワーク装置は、手続きAと、手続きBとを実行する。
*** Explanation of operation ***
The redundant network device according to the present embodiment executes the procedure A and the procedure B.
 手続きAは、冗長ネットワーク装置が、自身から各ネットワーク装置までのホップ数の情報を、他の冗長ネットワーク装置に送信する処理を含む。 Procedure A includes a process in which the redundant network device transmits information on the number of hops from itself to each network device to other redundant network devices.
 手続きBは、宛先となり得るネットワーク装置毎に、送信方向を決定する処理を含む。 Procedure B includes a process of determining the transmission direction for each network device that can be a destination.
 冗長ネットワーク装置の動作手順は、冗長ネットワーク方法に相当する。また、冗長ネットワーク装置の動作を実現するプログラムは、冗長ネットワークプログラムに相当する。 The operation procedure of the redundant network device corresponds to the redundant network method. Further, the program that realizes the operation of the redundant network device corresponds to the redundant network program.
***手続きAの動作の説明***
 図5は、手続きAの動作を示すフローチャートの例である。
 本フローチャートに示す処理の順序は、適宜変更しても良い。
 図1のシステム構成における、冗長ネットワーク装置31が実行する手続きAを、図5に示すフローチャートに沿って説明する。
*** Explanation of the operation of procedure A ***
FIG. 5 is an example of a flowchart showing the operation of procedure A.
The order of processing shown in this flowchart may be changed as appropriate.
The procedure A executed by the redundant network device 31 in the system configuration of FIG. 1 will be described with reference to the flowchart shown in FIG.
(ステップS1:ホップ数調査処理)
 ホップ数調査部121は、データ送受信部111が送受信したデータに基づいて、冗長ネットワーク装置31から宛先となり得る各ネットワーク装置までの両方向ホップ数を調査する。
(Step S1: Hop number investigation process)
The hop number investigation unit 121 investigates the number of bidirectional hops from the redundant network device 31 to each network device that can be a destination based on the data transmitted / received by the data transmission / reception unit 111.
(ステップS2:ホップ数送信処理)
 ホップ数送受信部122は、得られた両方向ホップ数の情報を、ホップ数テーブル作成部123と、冗長ネットワーク装置32とへ送信する。
(Step S2: Hop number transmission process)
The hop number transmission / reception unit 122 transmits the obtained bidirectional hop number information to the hop number table creation unit 123 and the redundant network device 32.
***冗長ネットワーク装置31による手続きBの動作の説明***
 図6は、手続きBの動作を示すフローチャートの例である。
 本フローチャートに示す処理の順序は、適宜変更しても良い。
 図1のシステム構成における、冗長ネットワーク装置31が実行する手続きBを、図6の動作フローに沿って説明する。
*** Explanation of the operation of procedure B by the redundant network device 31 ***
FIG. 6 is an example of a flowchart showing the operation of procedure B.
The order of processing shown in this flowchart may be changed as appropriate.
The procedure B executed by the redundant network device 31 in the system configuration of FIG. 1 will be described along with the operation flow of FIG.
(ステップS3:ホップ数受信処理)
 ホップ数送受信部122は、手続きAにおいて送信される両方向ホップ数の情報を受信する。
(Step S3: Hop number reception process)
The hop number transmission / reception unit 122 receives the information on the number of bidirectional hops transmitted in the procedure A.
(ステップS4:ホップ数テーブル作成処理)
 ホップ数テーブル作成部123は、ステップS3において受信した情報に基づいて、各宛先となり得るネットワーク装置に関するホップ数テーブル125を作成する。
(Step S4: Hop number table creation process)
The hop number table creation unit 123 creates a hop number table 125 for each possible destination network device based on the information received in step S3.
(ステップS15:宛先決定処理)
 送信方向決定部124は、宛先となり得るネットワーク装置の中で、冗長ネットワーク装置31がまだ送信方向を決定していない1のネットワーク装置を選択する。本ステップにおいて選択したネットワーク装置を、宛先と表現する。
 本説明において、送信方向決定部124は、ネットワーク装置42を選択したものとする。即ち、ホップ数テーブル125は、図12に示すものとする。
(Step S15: Destination determination process)
The transmission direction determination unit 124 selects one network device whose transmission direction has not yet been determined by the redundant network device 31 among the network devices that can be destinations. The network device selected in this step is expressed as a destination.
In this description, it is assumed that the transmission direction determination unit 124 has selected the network device 42. That is, the hop number table 125 is shown in FIG.
(ステップS5:最少ホップ数確認処理)
 送信方向決定部124は、ホップ数テーブル125に、全ての時計回りホップ数と、全ての反時計回りホップ数との中で最少のホップ数である最少ホップ数が複数存在するか確認する。
 送信方向決定部124は、
 ホップ数テーブル125に最少ホップ数が複数存在する場合、ステップS6に進み、
 それ以外の場合、ステップS9に進む。
 図12において、最少ホップ数は2であり、最少ホップ数は1つであるため、送信方向決定部124は、ステップS9に進む。
(Step S5: Minimum number of hops confirmation process)
The transmission direction determination unit 124 confirms whether or not the hop number table 125 has a plurality of minimum hops, which is the minimum number of all clockwise hops and all counterclockwise hops.
The transmission direction determination unit 124
If there are a plurality of minimum hops in the hop number table 125, the process proceeds to step S6.
Otherwise, the process proceeds to step S9.
In FIG. 12, since the minimum number of hops is 2 and the minimum number of hops is 1, the transmission direction determination unit 124 proceeds to step S9.
(ステップS9:最少ホップ数装置確認処理)
 送信方向決定部124は、
 最少ホップ数が自身に対応するものであるか確認する、
 即ち、自身に対応する時計回りホップ数と、反時計回りホップ数とのいずれかが、最少ホップ数であるか確認する。
 送信方向決定部124は、
 最少ホップ数が自身に対応するものである場合、ステップS11に進み、
 それ以外の場合、ステップS10に進む。
 図12において、最少ホップ数は冗長ネットワーク装置32に対応するものであるため、送信方向決定部124はステップS10に進む。
(Step S9: Minimum number of hops device confirmation process)
The transmission direction determination unit 124
Make sure the minimum number of hops corresponds to you,
That is, it is confirmed whether either the number of clockwise hops corresponding to the self or the number of counterclockwise hops is the minimum number of hops.
The transmission direction determination unit 124
If the minimum number of hops corresponds to itself, the process proceeds to step S11.
In other cases, the process proceeds to step S10.
In FIG. 12, since the minimum number of hops corresponds to the redundant network device 32, the transmission direction determination unit 124 proceeds to step S10.
(ステップS10:逆方向確認処理)
 送信方向決定部124は、
 最少ホップ数に対応する方向の逆方向のホップ数を参照し、
 逆方向の全てのホップ数の中で最少のホップ数が、自身に対応するものであるか確認する。
 図12において、最少ホップ数に対応する方向の逆方向は反時計回り方向であり、全ての反時計回りホップ数の中で最少のホップ数は3である。冗長ネットワーク装置31は、前記最少のホップ数に対応するため、ステップS12へ進む。
(Step S10: Reverse direction confirmation process)
The transmission direction determination unit 124
Refer to the number of hops in the opposite direction corresponding to the minimum number of hops,
Make sure that the smallest number of hops out of all hops in the opposite direction corresponds to itself.
In FIG. 12, the direction opposite to the direction corresponding to the minimum number of hops is the counterclockwise direction, and the minimum number of hops among all the counterclockwise hops is 3. The redundant network device 31 proceeds to step S12 in order to correspond to the minimum number of hops.
(ステップS12:送信方向記録処理)
 送信方向決定部124は、宛先への送信方向として、前記逆方向を送信方向テーブル126に記録する。
 送信方向決定部124は、宛先への送信方向として、反時計回り方向を送信方向テーブル126に記録する。
(Step S12: Transmission direction recording process)
The transmission direction determination unit 124 records the reverse direction in the transmission direction table 126 as the transmission direction to the destination.
The transmission direction determination unit 124 records the counterclockwise direction in the transmission direction table 126 as the transmission direction to the destination.
(ステップS14:送信方向テーブル確認処理)
 送信方向決定部124は、宛先となり得るネットワーク装置全ての送信方向を決定したか確認する。
 送信方向決定部124は、
 宛先となり得るネットワーク装置全ての送信方向を決定した場合、手続きBを終了し、
 それ以外の場合、ステップS15に進む。
(Step S14: Transmission direction table confirmation process)
The transmission direction determination unit 124 confirms whether or not the transmission directions of all the network devices that can be destinations have been determined.
The transmission direction determination unit 124
When the transmission direction of all network devices that can be destinations is determined, procedure B is completed and procedure B is completed.
In other cases, the process proceeds to step S15.
***冗長ネットワーク装置32による手続きBの動作の説明***
 図1のシステム構成における、冗長ネットワーク装置32が実行する手続きBを、図6に示すフローチャートに沿って説明する。
 本説明において、送信方向決定部124は、ネットワーク装置42を選択したものとする。即ち、ホップ数テーブル125は、図12に示すものとする。ステップS9より前の処理については、上述の冗長ネットワーク装置31の処理と同様であるため割愛する。また、本説明において、冗長ネットワーク装置32を構成する各部の符号として、冗長ネットワーク装置31を構成する各部の符号を用いる。
*** Explanation of the operation of procedure B by the redundant network device 32 ***
The procedure B executed by the redundant network device 32 in the system configuration of FIG. 1 will be described with reference to the flowchart shown in FIG.
In this description, it is assumed that the transmission direction determination unit 124 has selected the network device 42. That is, the hop number table 125 is shown in FIG. The processing before step S9 is the same as the processing of the redundant network device 31 described above, and is therefore omitted. Further, in the present description, as the code of each part constituting the redundant network device 32, the code of each part constituting the redundant network device 31 is used.
(ステップS9:最少ホップ数装置確認処理)
 図12において、最少ホップは、冗長ネットワーク装置32に該当するものである。そのため、送信方向決定部124は、ステップS11に進む。
(Step S9: Minimum number of hops device confirmation process)
In FIG. 12, the minimum hop corresponds to the redundant network device 32. Therefore, the transmission direction determination unit 124 proceeds to step S11.
(ステップS11:送信方向記録処理)
 送信方向決定部124は、宛先への送信方向として、最少ホップ数に対応する方向を送信方向テーブル126に記録する。
 最少ホップ数に対応する方向が時計回り方向であるため、送信方向決定部124は、ネットワーク装置42への送信方向として、時計回り方向を送信方向テーブル126に記録する。
(Step S11: Transmission direction recording process)
The transmission direction determination unit 124 records the direction corresponding to the minimum number of hops in the transmission direction table 126 as the transmission direction to the destination.
Since the direction corresponding to the minimum number of hops is the clockwise direction, the transmission direction determination unit 124 records the clockwise direction in the transmission direction table 126 as the transmission direction to the network device 42.
***ステップS6に遷移する場合における手続きBの動作の説明***
 以下、図7と、図14とを用いて、冗長ネットワーク装置31が手続きBのステップS6に遷移する動作フローを説明する。
*** Explanation of the operation of procedure B when transitioning to step S6 ***
Hereinafter, the operation flow in which the redundant network device 31 transitions to step S6 of procedure B will be described with reference to FIGS. 7 and 14.
 図7は、本実施の形態に係る冗長ネットワーク装置31と、冗長ネットワーク装置32とを備えるリングネットワークを備えた送信経路冗長化システムの構成例である。 FIG. 7 is a configuration example of a transmission path redundancy system including a ring network including the redundant network device 31 and the redundant network device 32 according to the present embodiment.
 図14は、図7に示すシステム構成における、ネットワーク装置43を宛先とするホップ数テーブル125の例である。 FIG. 14 is an example of the hop number table 125 destined for the network device 43 in the system configuration shown in FIG. 7.
 本説明において、送信方向決定部124は、ステップS15においてネットワーク装置43を選択したものとする。即ち、ホップ数テーブル125は、図14に示すものとする。
 なお、ステップS5より前の処理については、冗長ネットワーク装置31の処理と同様であるため、割愛する。
In this description, it is assumed that the transmission direction determination unit 124 selects the network device 43 in step S15. That is, the hop number table 125 is shown in FIG.
The processing before step S5 is the same as the processing of the redundant network device 31, and is therefore omitted.
(ステップS5:最少ホップ数確認処理)
 図14において、最少ホップ数は3であり、最少ホップ数が複数存在する。
 そのため、送信方向決定部124は、ステップS6に進む。
(Step S5: Minimum number of hops confirmation process)
In FIG. 14, the minimum number of hops is 3, and there are a plurality of minimum hops.
Therefore, the transmission direction determination unit 124 proceeds to step S6.
(ステップS6:最少ホップ数装置確認処理)
 送信方向決定部124は、
 最少ホップ数が自身に対応するものであるか確認する、
 即ち、自身に対応する時計回りホップ数と、反時計回りホップ数とのいずれかが、最少ホップ数であるか確認する。
 送信方向決定部124は、
 最少ホップ数が自身に対応するものである場合、ステップS7に進み、
 それ以外の場合、ステップS8に進む。
 図14において、最少ホップ数は3であり、冗長ネットワーク装置31の反時計回りホップ数が最少ホップ数であるため、送信方向決定部124はステップS7に進む。
(Step S6: Minimum number of hops device confirmation process)
The transmission direction determination unit 124
Make sure the minimum number of hops corresponds to you,
That is, it is confirmed whether either the number of clockwise hops corresponding to the self or the number of counterclockwise hops is the minimum number of hops.
The transmission direction determination unit 124
If the minimum number of hops corresponds to itself, the process proceeds to step S7.
In other cases, the process proceeds to step S8.
In FIG. 14, since the minimum number of hops is 3 and the number of counterclockwise hops of the redundant network device 31 is the minimum number of hops, the transmission direction determination unit 124 proceeds to step S7.
(ステップS7:送信方向記録処理)
 送信方向決定部124は、宛先への送信方向として、最少ホップ数に対応する方向を送信方向テーブル126に記録する。
 送信方向決定部124は、宛先への送信方向として、最少ホップ数に対応する方向である反時計回り方向を送信方向テーブル126に記録する。
(Step S7: Transmission direction recording process)
The transmission direction determination unit 124 records the direction corresponding to the minimum number of hops in the transmission direction table 126 as the transmission direction to the destination.
The transmission direction determination unit 124 records the counterclockwise direction, which is the direction corresponding to the minimum number of hops, in the transmission direction table 126 as the transmission direction to the destination.
 ステップS14以降の処理については、既に説明した処理と同様であるため割愛する。 The processing after step S14 is the same as the processing already described, so it is omitted.
***手続きBのその他の動作の説明***
 以下、手続きBの処理の内、上述していない処理について、冗長ネットワーク装置31が処理を行うものとして説明する。
*** Explanation of other operations of procedure B ***
Hereinafter, among the processes of procedure B, the processes not described above will be described as being performed by the redundant network device 31.
(ステップS8:不送信記録処理)
 送信方向決定部124は、冗長ネットワーク装置31が送信データを送信しない旨を、送信方向テーブル126に記録する。
(Step S8: Non-transmission recording process)
The transmission direction determination unit 124 records in the transmission direction table 126 that the redundant network device 31 does not transmit transmission data.
(ステップS13:不送信記録処理)
 本ステップの処理は、ステップS8の処理と同様である。
(Step S13: Non-transmission recording process)
The processing of this step is the same as the processing of step S8.
***実施の形態1の特徴***
 送信方向決定部124は、
 ホップ数テーブル125が、送信先ネットワーク装置に送信データを送信する要請に対応する時計回りホップ数と、前記要請に対応する反時計回りホップ数との中で、最少ホップ数を複数記憶しているか確認し、
 ホップ数テーブル125が最少ホップ数を複数記憶しているとき、
 最少ホップ数が自身の前記要請に対応する時計回りホップ数に対応するものである場合に、時計回り方向に送信データを送信することを決定し、
 最少ホップ数が自身の前記要請に対応する反時計回りホップ数に対応するものである場合に、反時計回り方向に送信データを送信することを決定する。
*** Features of Embodiment 1 ***
The transmission direction determination unit 124
Does the hop number table 125 store a plurality of the minimum number of hops among the number of clockwise hops corresponding to the request for transmitting transmission data to the destination network device and the number of counterclockwise hops corresponding to the request? Confirmed,
When the hop count table 125 stores a plurality of minimum hop counts,
If the minimum number of hops corresponds to the number of clockwise hops corresponding to the request, the transmission data is determined to be transmitted in the clockwise direction.
When the minimum number of hops corresponds to the number of counterclockwise hops corresponding to the request, it is determined to transmit the transmission data in the counterclockwise direction.
 送信方向決定部124は、
 ホップ数テーブル125が1の最少ホップ数を記憶しているとき、
 自身の前記要請に対応するホップ数が最少ホップ数である場合に、最少ホップ数に対応する方向に送信データを送信することを決定し、
 自身の前記要請に対応するホップ数が最少ホップ数でない場合であって、最少ホップ数に対応する方向の逆方向に対応するホップ数が、ホップ数テーブル125が記憶している前記要請に対応する逆方向に対応するホップ数の中で最少である場合に、前記逆方向に送信データを送信することを決定し、
 それ以外の場合に、送信データを送信しないことを決定する。
The transmission direction determination unit 124
When the hop count table 125 stores the minimum number of hops of 1,
When the number of hops corresponding to the request is the minimum number of hops, the transmission data is determined to be transmitted in the direction corresponding to the minimum number of hops.
When the number of hops corresponding to the request is not the minimum number of hops, the number of hops corresponding to the direction opposite to the direction corresponding to the minimum number of hops corresponds to the request stored in the hop number table 125. When the number of hops corresponding to the reverse direction is the smallest, it is determined to transmit the transmission data in the reverse direction.
Otherwise, decide not to send the transmitted data.
***実施の形態1の効果の説明***
 以上のように、本実施の形態によれば、手続きAと、手続きBとを実行することにより、リングネットワークに複数の冗長ネットワーク装置が存在する場合において、送信データを冗長化しつつ、同じ経路に同じデータが複数流れないようにすることができる。そのため、本実施の形態によれば、リングネットワークにおいて、帯域を増やさずに、データ転送を行うネットワーク装置を冗長化することができる。
*** Explanation of the effect of Embodiment 1 ***
As described above, according to the present embodiment, by executing the procedure A and the procedure B, when there are a plurality of redundant network devices in the ring network, the transmission data is made redundant and the same route is used. It is possible to prevent the same data from flowing multiple times. Therefore, according to the present embodiment, in the ring network, it is possible to make the network device that performs data transfer redundant without increasing the bandwidth.
<変形例1>
 冗長ネットワーク装置は、他の冗長ネットワーク装置が作成したホップ数テーブルを受信し、受信したホップ数テーブルを使用しても良い。
 本変形例において、リングネットワークを構成する少なくとも1の冗長ネットワーク装置は、ホップ数テーブルを作成し、作成したホップ数テーブルを他の冗長ネットワーク装置に送信する。
<Modification example 1>
The redundant network device may receive a hop count table created by another redundant network device and use the received hop count table.
In this modification, at least one redundant network device constituting the ring network creates a hop number table and transmits the created hop number table to another redundant network device.
<変形例2>
 冗長ネットワーク装置は、新たな冗長ネットワーク装置若しくはネットワーク装置がリングネットワークに参加した場合、又は、リングネットワークを構成する冗長ネットワーク装置若しくはネットワーク装置がリングネットワークから離脱した場合に、手続きAと、手続きBとを実行しても良い。
 本変形例によれば、冗長ネットワーク装置は、リングネットワークの構成が変更された場合に、変更後のリングネットワークに対応したホップ数テーブル及び送信方向テーブルを保持する。
<変形例3>
<Modification 2>
The redundant network device includes procedure A and procedure B when a new redundant network device or network device joins the ring network, or when the redundant network device or network device constituting the ring network leaves the ring network. May be executed.
According to this modification, when the configuration of the ring network is changed, the redundant network device holds a hop number table and a transmission direction table corresponding to the changed ring network.
<Modification example 3>
 本実施の形態では、冗長ネットワーク装置の各機能をソフトウェアで実現する場合を説明した。しかし、変形例として、前記各機能は、ハードウェアにより実現されても良い。 In this embodiment, the case where each function of the redundant network device is realized by software has been described. However, as a modification, each of the above functions may be realized by hardware.
 前記各機能がハードウェアにより実現される場合には、冗長ネットワーク装置は、プロセッサ11に代えて、電子回路(処理回路)を備える。あるいは、冗長ネットワーク装置は、プロセッサ11、及び、メモリ12に代えて、電子回路を備える。電子回路は、前記各機能(及びメモリ12)を実現する専用の電子回路である。 When each of the above functions is realized by hardware, the redundant network device includes an electronic circuit (processing circuit) instead of the processor 11. Alternatively, the redundant network device includes an electronic circuit instead of the processor 11 and the memory 12. The electronic circuit is a dedicated electronic circuit that realizes each of the above functions (and the memory 12).
 電子回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA(Gate Array)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)が想定される。 The electronic circuit is assumed to be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA (Gate Array), an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate Array). To.
 前記各機能を1つの電子回路で実現してもよいし、前記各機能を複数の電子回路に分散させて実現してもよい。 Each of the above functions may be realized by one electronic circuit, or each of the above functions may be distributed and realized in a plurality of electronic circuits.
 あるいは、一部の前記各機能がハードウェアで実現され、他の前記各機能がソフトウェアで実現されてもよい。 Alternatively, some of the above-mentioned functions may be realized by hardware, and other above-mentioned functions may be realized by software.
 前述したプロセッサ11とメモリ12と電子回路とを、総称して「プロセッシングサーキットリー」という。つまり、前記各機能は、プロセッシングサーキットリーにより実現される。 The above-mentioned processor 11, memory 12, and electronic circuit are collectively referred to as "processing circuit Lee". That is, each of the above functions is realized by the processing circuit.
 実施の形態2.
 以下、前述した実施の形態と異なる点について、図面を参照しながら説明する。
Embodiment 2.
Hereinafter, points different from the above-described embodiment will be described with reference to the drawings.
***構成の説明***
 本実施の形態に係る冗長ネットワーク装置は、情報発信源と、冗長ネットワーク装置との間に何らかの通信障害が発生することにより、情報発信源が冗長ネットワーク装置に送信データを送信できなくなった場合に対応する。
*** Explanation of configuration ***
The redundant network device according to the present embodiment corresponds to a case where the information transmission source cannot transmit transmission data to the redundant network device due to some kind of communication failure between the information transmission source and the redundant network device. To do.
 図8は、本実施の形態に係る冗長ネットワーク装置31~33を備える、送信経路冗長化システムの構成例である。
 本図のリングネットワークは、冗長ネットワーク装置31~33と、ネットワーク装置41~44とから構成されている。冗長ネットワーク装置31~33は、情報発信源51に接続している。
 本図は、情報発信源51と、冗長ネットワーク装置31との間に何らかの通信障害が発生しており、情報発信源51が冗長ネットワーク装置31に送信データを送信できない状況を表している。
FIG. 8 is a configuration example of a transmission path redundancy system including the redundant network devices 31 to 33 according to the present embodiment.
The ring network in this figure is composed of redundant network devices 31 to 33 and network devices 41 to 44. The redundant network devices 31 to 33 are connected to the information source 51.
This figure shows a situation in which the information transmission source 51 cannot transmit transmission data to the redundant network device 31 due to some kind of communication failure between the information transmission source 51 and the redundant network device 31.
 図9は、本実施の形態に係る冗長ネットワーク装置31の構成図の例である。 FIG. 9 is an example of a configuration diagram of the redundant network device 31 according to the present embodiment.
 本実施の形態に係る冗長ネットワーク装置31は、本図に示すように、障害検知部113を備える。
 障害検知部113は、冗長ネットワーク装置31と、情報発信源51との通信が予期せずに途絶えたことを検知する。
 障害検知部113は、リングネットワークの外部の情報発信源であって、送信先ネットワーク装置に送信データを送信する要請を発信し得る情報発信源が送信データを冗長ネットワーク装置に送信できない障害を検知する。
As shown in this figure, the redundant network device 31 according to the present embodiment includes a failure detection unit 113.
The failure detection unit 113 detects that the communication between the redundant network device 31 and the information transmission source 51 is unexpectedly interrupted.
The fault detection unit 113 detects a fault in which an information source outside the ring network that can send a request to send transmission data to the destination network device cannot send the transmission data to the redundant network device. ..
 本実施の形態に係る通信経路冗長化部120は、本図に示すように、障害検知送受信部127と、ホップ数テーブル更新部128とを備える。 As shown in this figure, the communication path redundancy unit 120 according to the present embodiment includes a failure detection transmission / reception unit 127 and a hop number table update unit 128.
 障害検知送受信部127は、
 障害検知部113が障害を検知した場合に、情報発信源51が冗長ネットワーク装置31に送信データを送信できない旨を含むメッセージを、ホップ数テーブル更新部128と、他の冗長ネットワーク装置とへ送信し、
 他の冗長ネットワーク装置の障害検知送受信部127が送信したメッセージであって、前記メッセージと同様のメッセージを受信する。
 情報発信源が冗長ネットワーク装置に送信データを送信できない旨を含むメッセージを、障害検知メッセージと呼ぶ。障害検知メッセージには、通信障害に対応する、情報発信源と、冗長ネットワーク装置とのペアの情報が含まれる。
 障害検知送受信部127は、
 障害検知部113が障害を検知した場合に、障害に対応する冗長ネットワーク装置の情報を含む障害検知メッセージを送信し、
 他の冗長ネットワーク装置から障害検知メッセージを受信する。
The fault detection transmission / reception unit 127
When the failure detection unit 113 detects a failure, the information source 51 transmits a message including the fact that the transmission data cannot be transmitted to the redundant network device 31 to the hop number table update unit 128 and the other redundant network device. ,
It is a message transmitted by the failure detection transmission / reception unit 127 of another redundant network device, and receives a message similar to the above message.
A message including the fact that the information transmission source cannot transmit the transmission data to the redundant network device is called a failure detection message. The failure detection message includes information on a pair of an information source and a redundant network device corresponding to a communication failure.
The fault detection transmission / reception unit 127
When the failure detection unit 113 detects a failure, a failure detection message including information on the redundant network device corresponding to the failure is transmitted.
Receive a failure detection message from another redundant network device.
 ホップ数テーブル更新部128は、障害検知送受信部127が送信した情報に基づいて、ホップ数テーブル125を更新する。
 ホップ数テーブル更新部128は、障害検知送受信部127が障害検知メッセージを受信した場合に、ホップ数テーブル125から、障害検知メッセージに対応する冗長ネットワーク装置に対応する時計回りホップ数と、反時計回りホップ数とを削除する。
The hop number table update unit 128 updates the hop number table 125 based on the information transmitted by the failure detection transmission / reception unit 127.
When the failure detection transmission / reception unit 127 receives the failure detection message, the hop number table update unit 128 determines the number of clockwise hops corresponding to the redundant network device corresponding to the failure detection message and the counterclockwise rotation from the hop number table 125. Delete the number of hops.
 本実施の形態における冗長ネットワーク装置31のハードウェア構成は、実施の形態1において示したものと同様である。 The hardware configuration of the redundant network device 31 in the present embodiment is the same as that shown in the first embodiment.
***動作の説明***
 本実施に係る形態の冗長ネットワーク装置は、手続きCと、手続きDとを実行する。
*** Explanation of operation ***
The redundant network device of the embodiment according to the present embodiment executes the procedure C and the procedure D.
 手続Cは、冗長ネットワーク装置と、情報発信源との間に何らかの通信障害が発生し、情報発信源から冗長ネットワーク装置に送信データを送信できなくなった際に、障害検知メッセージを他の冗長ネットワーク装置へ送信する処理を含む。 In procedure C, when some kind of communication failure occurs between the redundant network device and the information source and the transmission data cannot be transmitted from the information source to the redundant network device, the failure detection message is sent to another redundant network device. Includes processing to send to.
 手続きDは、他の冗長ネットワーク装置から障害検知メッセージを受信した際に、ホップ数テーブル125を更新し、更新後のホップ数テーブル125に基づいて送信方向テーブル126を更新する処理を含む。 Procedure D includes a process of updating the hop number table 125 when a failure detection message is received from another redundant network device, and updating the transmission direction table 126 based on the updated hop number table 125.
***手続きCの動作の説明***
 図10は、手続きCの動作を示すフローチャートの例である。
 本フローチャートに示す処理の順序は、適宜変更しても良い。
 図8に示すシステム構成において、冗長ネットワーク装置31と、情報発信源51との間の何らかの通信障害が発生した場合における、冗長ネットワーク装置31が実行する手続きCを、図10のフローチャートに沿って説明する。
*** Explanation of the operation of procedure C ***
FIG. 10 is an example of a flowchart showing the operation of procedure C.
The order of processing shown in this flowchart may be changed as appropriate.
In the system configuration shown in FIG. 8, the procedure C executed by the redundant network device 31 when some kind of communication failure occurs between the redundant network device 31 and the information transmission source 51 will be described with reference to the flowchart of FIG. To do.
(ステップS21:障害通知処理)
 障害検知送受信部127は、障害検知部が冗長ネットワーク装置と、情報発信源との間で通信障害が発生したこと検知すると、ホップ数テーブル更新部と、他の冗長ネットワーク装置とに、前記通信障害に対応する障害検知メッセージを送信する。
 図8の場合、障害検知部113が、冗長ネットワーク装置31と、情報発信源51との間で通信障害が発生したことを検知すると、障害検知送受信部127は、冗長ネットワーク装置32と、冗長ネットワーク装置33とへ障害が発生したことを知らせる障害検知メッセージを送信する。
(Step S21: Failure notification processing)
When the failure detection unit 127 detects that a communication failure has occurred between the redundant network device and the information transmission source, the failure detection transmission / reception unit 127 causes the communication failure between the hop count table update unit and the other redundant network device. Send a fault detection message corresponding to.
In the case of FIG. 8, when the failure detection unit 113 detects that a communication failure has occurred between the redundant network device 31 and the information transmission source 51, the failure detection transmission / reception unit 127 has the redundant network device 32 and the redundant network. A failure detection message is transmitted to the device 33 informing that a failure has occurred.
***手続きDの動作の説明***
 図11は、手続きDの動作を示すフローチャートの例である。
 本フローチャートに示す処理の順序は、適宜変更しても良い。
 図8に示すシステム構成において、冗長ネットワーク装置31と、情報発信源51との間で障害が発生した場合における、冗長ネットワーク装置32が実行する手続きDを、図11のフローチャートに沿って説明する。また、本説明において、冗長ネットワーク装置32を構成する各部の符号として、冗長ネットワーク装置31を構成する各部の符号を用いる。
*** Explanation of the operation of procedure D ***
FIG. 11 is an example of a flowchart showing the operation of procedure D.
The order of processing shown in this flowchart may be changed as appropriate.
In the system configuration shown in FIG. 8, the procedure D executed by the redundant network device 32 when a failure occurs between the redundant network device 31 and the information transmission source 51 will be described with reference to the flowchart of FIG. Further, in the present description, as the code of each part constituting the redundant network device 32, the code of each part constituting the redundant network device 31 is used.
(ステップS22:障害検知メッセージ受信処理)
 障害検知送受信部127は、手続きCにより送信される障害検知メッセージを受信する。
 図8の場合、障害検知送受信部127は、冗長ネットワーク装置31が送信する障害検知メッセージを受信する。
(Step S22: Failure detection message reception process)
The failure detection transmission / reception unit 127 receives the failure detection message transmitted by the procedure C.
In the case of FIG. 8, the failure detection transmission / reception unit 127 receives the failure detection message transmitted by the redundant network device 31.
(ステップS23:ホップ数テーブル更新処理)
 ホップ数テーブル更新部128は、ホップ数テーブル125に存在する情報であって、障害検知メッセージの送信元である冗長ネットワーク装置に対応する情報を削除する。
 図8の場合、冗長ネットワーク装置32のホップ数テーブル更新部128は、ホップ数テーブル125中の冗長ネットワーク装置31のホップ数の情報を削除する。
 図15は更新前のホップ数テーブル125の例であり、図16は更新後のホップ数テーブル125の例である。
(Step S23: Hop number table update process)
The hop number table update unit 128 deletes the information existing in the hop number table 125 and corresponding to the redundant network device that is the source of the failure detection message.
In the case of FIG. 8, the hop number table update unit 128 of the redundant network device 32 deletes the hop number information of the redundant network device 31 in the hop number table 125.
FIG. 15 is an example of the hop number table 125 before the update, and FIG. 16 is an example of the hop number table 125 after the update.
 送信方向決定部124は、更新したホップ数テーブル125に基づいて、ステップS5~S15の処理により送信方向テーブル126を再作成する。 The transmission direction determination unit 124 recreates the transmission direction table 126 by the processing of steps S5 to S15 based on the updated hop number table 125.
***実施の形態2の効果の説明***
 以上のように、本実施の形態によれば、冗長ネットワーク装置は、手続きCと、手続きDとを実行することにより、冗長ネットワーク装置と、情報発信源との間の通信が途絶えたとしても、一つの経路に同じデータが複数流れないようにしつつ、送信データの冗長化を維持することができる。
*** Explanation of the effect of Embodiment 2 ***
As described above, according to the present embodiment, even if the redundant network device executes the procedure C and the procedure D, the communication between the redundant network device and the information transmission source is interrupted. It is possible to maintain the redundancy of the transmitted data while preventing the same data from flowing in one path.
<変形例4>
 障害検知送受信部127は、障害検知メッセージをホップ数テーブル更新部128に送信しなくても良い。
 本変形例において、障害検知部113が通信障害を検知した場合に、前記障害検知部113に対応する冗長ネットワーク装置のホップ数テーブル更新部128は、ホップ数テーブル125を更新しない。
<Modification example 4>
The failure detection transmission / reception unit 127 does not have to transmit the failure detection message to the hop number table update unit 128.
In this modification, when the failure detection unit 113 detects a communication failure, the hop number table update unit 128 of the redundant network device corresponding to the failure detection unit 113 does not update the hop number table 125.
<変形例5>
 ホップ数テーブル更新部128は、通信障害が解消した場合に、ホップ数テーブル125を更新しても良い。
 本変形例において、
 障害検知部113は、通信障害が解消したことを検知し、
 通信障害が解消したことを障害検知部113が検知した場合に、
 障害検知送受信部127は、通信障害が解消した旨を含む障害解消メッセージを、ホップ数テーブル更新部128と、他の冗長ネットワーク装置とに送信し、
 ホップ数調査部121は、各ネットワーク装置までの両方向ホップ数を調査し、
 ホップ数送受信部122は、ホップ数調査部121が調査した両方向ホップ数の情報を、ホップ数テーブル作成部123と、他の冗長ネットワーク装置とに送信する。
 他の冗長ネットワーク装置の障害検知送受信部127が障害解消メッセージを受信した場合、
 他の冗長ネットワーク装置のホップ数テーブル更新部128は、障害解消メッセージに対応する冗長ネットワーク装置の両方向ホップ数の情報であって、他の冗長ネットワーク装置のホップ数送受信部122が受信した両方向ホップ数の情報をホップ数テーブル125に追加し、
 他の冗長ネットワーク装置の送信方向決定部124は、更新したホップ数テーブル125に基づいて、ステップS5~S15の処理により送信方向テーブル126を再作成する。
***他の実施の形態***
 前述した各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
<Modification 5>
The hop number table update unit 128 may update the hop number table 125 when the communication failure is resolved.
In this modification,
The failure detection unit 113 detects that the communication failure has been resolved, and determines that the communication failure has been resolved.
When the failure detection unit 113 detects that the communication failure has been resolved,
The failure detection transmission / reception unit 127 transmits a failure resolution message including the fact that the communication failure has been resolved to the hop count table update unit 128 and the other redundant network device.
The hop number survey unit 121 investigates the number of bidirectional hops to each network device,
The hop number transmission / reception unit 122 transmits information on the number of bidirectional hops investigated by the hop number investigation unit 121 to the hop number table creation unit 123 and other redundant network devices.
When the failure detection transmitter / receiver 127 of another redundant network device receives the failure resolution message,
The hop count table update unit 128 of the other redundant network device is information on the bidirectional hop number of the redundant network device corresponding to the failure resolution message, and is the hop count of the other redundant network device. The bidirectional hop number received by the transmission / reception unit 122. Add the information of to the hop count table 125,
The transmission direction determination unit 124 of the other redundant network device recreates the transmission direction table 126 by the processing of steps S5 to S15 based on the updated hop number table 125.
*** Other embodiments ***
It is possible to freely combine the above-described embodiments, modify any component of each embodiment, or omit any component in each embodiment.
 また、実施の形態は、実施の形態1から2で示したものに限定されるものではなく、必要に応じて種々の変更が可能である。 Further, the embodiment is not limited to the one shown in the first and second embodiments, and various changes can be made as needed.
 10 コンピュータ、11 プロセッサ、12 メモリ、13 記憶装置、14 データバス、15 ポート、16 ポート、17 ポート、31 冗長ネットワーク装置、32 冗長ネットワーク装置、33 冗長ネットワーク装置、41 ネットワーク装置、42 ネットワーク装置、43 ネットワーク装置、44 ネットワーク装置、45 ネットワーク装置、51 情報発信源、52 情報発信源、111 データ送受信部、112 データ転送部、113 障害検知部、120 通信経路冗長化部、121 ホップ数調査部、122 ホップ数送受信部、123 ホップ数テーブル作成部、124 送信方向決定部、125 ホップ数テーブル、126 送信方向テーブル、127 障害検知送受信部、128 ホップ数テーブル更新部。 10 computers, 11 processors, 12 memories, 13 storage devices, 14 data buses, 15 ports, 16 ports, 17 ports, 31 redundant network devices, 32 redundant network devices, 33 redundant network devices, 41 network devices, 42 network devices, 43 Network device, 44 network device, 45 network device, 51 information source, 52 information source, 111 data transmission / reception unit, 112 data transfer unit, 113 failure detection unit, 120 communication path redundancy unit, 121 hop count investigation unit, 122 Hop number transmission / reception unit, 123 hop number table creation unit, 124 transmission direction determination unit, 125 hop number table, 126 transmission direction table 127 failure detection transmission / reception unit, 128 hop number table update unit.

Claims (9)

  1.  ネットワークトポロジがリング型であるリングネットワークであって、複数の冗長ネットワーク装置を備えるリングネットワークを構成する冗長ネットワーク装置であって、
     前記リングネットワークを構成する送信先ネットワーク装置に送信データを送信する要請に対応する時計回りホップ数であって、前記複数の冗長ネットワーク装置の各々に対応する時計回りホップ数と、前記要請に対応する反時計回りホップ数であって、前記複数の冗長ネットワーク装置の各々に対応する反時計回りホップ数とを記憶しているホップ数テーブルと、
     前記ホップ数テーブルが記憶している前記要請に対応する前記時計回りホップ数の中で、自身に対応する前記時計回りホップ数が最少である場合に、時計回り方向に前記送信データを送信することを決定し、
     前記ホップ数テーブルが記憶している前記要請に対応する前記反時計回りホップ数の中で、自身に対応する前記反時計回りホップ数が最少である場合に、反時計回り方向に前記送信データを送信することを決定する送信方向決定部と
    を備える冗長ネットワーク装置。
    A ring network whose network topology is a ring type, which is a redundant network device constituting a ring network including a plurality of redundant network devices.
    The number of clockwise hops corresponding to the request for transmitting transmission data to the destination network device constituting the ring network, the number of clockwise hops corresponding to each of the plurality of redundant network devices, and the number of clockwise hops corresponding to the request. A hop number table that stores the number of counterclockwise hops and the number of counterclockwise hops corresponding to each of the plurality of redundant network devices.
    When the number of clockwise hops corresponding to itself is the smallest among the number of clockwise hops corresponding to the request stored in the hop number table, the transmission data is transmitted in the clockwise direction. Decide,
    When the number of counterclockwise hops corresponding to itself is the smallest among the number of counterclockwise hops corresponding to the request stored in the hop number table, the transmission data is transmitted in the counterclockwise direction. A redundant network device including a transmission direction determination unit that determines transmission.
  2.  前記リングネットワークが備える他の前記冗長ネットワーク装置に、前記要請に対応する前記時計回りホップ数と、前記要請に対応する前記反時計回りホップ数とを含むデータを送信し、前記リングネットワークが備える他の前記冗長ネットワーク装置から、前記要請に対応する前記時計回りホップ数と、前記要請に対応する前記反時計回りホップ数とを含むデータを受信するホップ数送受信部を備え、
     前記ホップ数テーブルは、前記ホップ数送受信部が受信した、前記要請に対応する前記時計回りホップ数と、前記要請に対応する前記反時計回りホップ数とを記憶している請求項1に記載の冗長ネットワーク装置。
    Data including the number of clockwise hops corresponding to the request and the number of counterclockwise hops corresponding to the request is transmitted to the other redundant network device included in the ring network, and the ring network includes the other. A hop number transmission / reception unit for receiving data including the number of clockwise hops corresponding to the request and the number of counterclockwise hops corresponding to the request from the redundant network device of
    The hop number table according to claim 1, wherein the hop number transmission / reception unit stores the clockwise number of hops corresponding to the request and the counterclockwise hop number corresponding to the request. Redundant network device.
  3.  前記要請に対応する前記時計回りホップ数と、前記要請に対応する前記反時計回りホップ数とを調査するホップ数調査部と、
     前記ホップ数調査部が調査した、前記要請に対応する前記時計回りホップ数、及び、前記要請に対応する前記反時計回りホップ数と、前記ホップ数送受信部が受信した、前記要請に対応する前記時計回りホップ数、及び、前記要請に対応する前記反時計回りホップ数とに基づいて、前記ホップ数テーブルを作成するホップ数テーブル作成部と
    を備える請求項2に記載の冗長ネットワーク装置。
    A hop number investigation unit that investigates the number of clockwise hops corresponding to the request and the number of counterclockwise hops corresponding to the request.
    The number of clockwise hops corresponding to the request, the number of counterclockwise hops corresponding to the request, and the number of hops received by the hop number transmitting / receiving unit, which corresponds to the request The redundant network device according to claim 2, further comprising a hop number table creation unit that creates the hop number table based on the number of clockwise hops and the counterclockwise hop number corresponding to the request.
  4.  前記送信方向決定部は、
     前記ホップ数テーブルが、前記要請に対応する前記時計回りホップ数と、前記要請に対応する前記反時計回りホップ数との中で、最少ホップ数を複数記憶しているか確認し、
     前記ホップ数テーブルが前記最少ホップ数を複数記憶しているとき、
     前記最少ホップ数が自身の前記要請に対応する前記時計回りホップ数に対応するものである場合に、前記時計回り方向に前記送信データを送信することを決定し、
     前記最少ホップ数が自身の前記要請に対応する前記反時計回りホップ数に対応するものである場合に、前記反時計回り方向に前記送信データを送信することを決定する請求項1から3のいずれか1項に記載の冗長ネットワーク装置。
    The transmission direction determination unit
    It is confirmed whether the hop number table stores a plurality of the minimum number of hops among the number of clockwise hops corresponding to the request and the number of counterclockwise hops corresponding to the request.
    When the hop number table stores a plurality of the minimum hop numbers,
    When the minimum number of hops corresponds to the number of clockwise hops corresponding to the request, the transmission data is determined to be transmitted in the clockwise direction.
    Any of claims 1 to 3 for determining that the transmission data is transmitted in the counterclockwise direction when the minimum number of hops corresponds to the number of counterclockwise hops corresponding to the request. The redundant network device according to item 1.
  5.  前記送信方向決定部は、
     前記ホップ数テーブルが1の前記最少ホップ数を記憶しているとき、
     自身の前記要請に対応するホップ数が前記最少ホップ数である場合に、前記最少ホップ数に対応する方向に前記送信データを送信することを決定し、
     自身の前記要請に対応するホップ数が前記最少ホップ数でない場合であって、前記最少ホップ数に対応する方向の逆方向に対応するホップ数が、前記ホップ数テーブルが記憶している前記要請に対応する前記逆方向に対応するホップ数の中で最少である場合に、前記逆方向に前記送信データを送信することを決定し、
     それ以外の場合に、前記送信データを送信しないことを決定する請求項4に記載の冗長ネットワーク装置。
    The transmission direction determination unit
    When the hop count table stores the minimum number of hops of 1.
    When the number of hops corresponding to the request is the minimum number of hops, the transmission data is determined to be transmitted in the direction corresponding to the minimum number of hops.
    When the number of hops corresponding to the request is not the minimum number of hops, the number of hops corresponding to the direction opposite to the minimum number of hops corresponds to the request stored in the hop number table. When the number of hops corresponding to the corresponding reverse direction is the smallest, it is determined to transmit the transmission data in the reverse direction.
    The redundant network device according to claim 4, wherein it is determined not to transmit the transmission data in other cases.
  6.  前記リングネットワークの外部の情報発信源であって、前記要請を発信し得る情報発信源が送信データを前記冗長ネットワーク装置に送信できない障害を検知する障害検知部と、
     前記障害検知部が前記障害を検知した場合に、前記障害に対応する前記冗長ネットワーク装置の情報を含む障害検知メッセージを送信し、
     他の前記冗長ネットワーク装置から前記障害検知メッセージを受信する障害検知送受信部と、
     前記障害検知送受信部が前記障害検知メッセージを受信した場合に、前記ホップ数テーブルから、前記障害検知メッセージに対応する前記冗長ネットワーク装置に対応する前記時計回りホップ数と、前記反時計回りホップ数とを削除するホップ数テーブル更新部と
    を備える請求項1から5のいずれか1項に記載の冗長ネットワーク装置。
    An information transmission source outside the ring network, a failure detection unit that detects a failure in which an information transmission source capable of transmitting the request cannot transmit transmission data to the redundant network device, and a failure detection unit.
    When the failure detection unit detects the failure, a failure detection message including information on the redundant network device corresponding to the failure is transmitted.
    A failure detection transmitter / receiver that receives the failure detection message from the other redundant network device, and
    When the failure detection transmission / reception unit receives the failure detection message, the number of clockwise hops corresponding to the redundant network device corresponding to the failure detection message and the number of counterclockwise hops are obtained from the hop number table. The redundant network device according to any one of claims 1 to 5, further comprising a hop number table update unit for deleting.
  7.  請求項1から6のいずれか1項に記載の冗長ネットワーク装置を複数備える前記リングネットワークを備えた送信経路冗長化システム。 A transmission path redundancy system including the ring network including a plurality of redundant network devices according to any one of claims 1 to 6.
  8.  ネットワークトポロジがリング型であるリングネットワークであって、複数の冗長ネットワーク装置を備えるリングネットワークを構成する冗長ネットワーク装置の冗長ネットワーク方法であって、
     ホップ数テーブルが、前記リングネットワークを構成する送信先ネットワーク装置に送信データを送信する要請に対応する時計回りホップ数であって、前記複数の冗長ネットワーク装置の各々に対応する時計回りホップ数と、前記要請に対応する反時計回りホップ数であって、前記複数の冗長ネットワーク装置の各々に対応する反時計回りホップ数とを記憶しており、
     送信方向決定部が、前記ホップ数テーブルが記憶している前記要請に対応する前記時計回りホップ数の中で、自身に対応する前記時計回りホップ数が最少である場合に、時計回り方向に前記送信データを送信することを決定し、
     前記ホップ数テーブルが記憶している前記要請に対応する前記反時計回りホップ数の中で、自身に対応する前記反時計回りホップ数が最少である場合に、反時計回り方向に前記送信データを送信することを決定する冗長ネットワーク方法。
    It is a ring network in which the network topology is a ring type, and is a redundant network method of redundant network devices constituting a ring network including a plurality of redundant network devices.
    The hop number table is the number of clockwise hops corresponding to the request for transmitting transmission data to the destination network device constituting the ring network, and the number of clockwise hops corresponding to each of the plurality of redundant network devices and The number of counterclockwise hops corresponding to the request, and the number of counterclockwise hops corresponding to each of the plurality of redundant network devices is stored.
    When the transmission direction determination unit has the smallest number of clockwise hops corresponding to itself among the clockwise hops corresponding to the request stored in the hop number table, the transmission direction determination unit performs the clockwise direction. Decided to send the send data,
    When the number of counterclockwise hops corresponding to itself is the smallest among the number of counterclockwise hops corresponding to the request stored in the hop number table, the transmission data is transmitted in the counterclockwise direction. A redundant network method that decides to send.
  9.  ネットワークトポロジがリング型であるリングネットワークであって、複数の冗長ネットワーク装置を備えるリングネットワークを構成する冗長ネットワーク装置であるコンピュータに、
     前記リングネットワークを構成する送信先ネットワーク装置に送信データを送信する要請に対応する時計回りホップ数であって、前記複数の冗長ネットワーク装置の各々に対応する時計回りホップ数と、前記要請に対応する反時計回りホップ数であって、前記複数の冗長ネットワーク装置の各々に対応する反時計回りホップ数とを記憶させ、
     記憶させた前記要請に対応する前記時計回りホップ数の中で、自身に対応する前記時計回りホップ数が最少である場合に、時計回り方向に前記送信データを送信することを決定させ、
     記憶させた前記要請に対応する前記反時計回りホップ数の中で、自身に対応する前記反時計回りホップ数が最少である場合に、反時計回り方向に前記送信データを送信することを決定させる冗長ネットワークプログラム。
    For a computer that is a ring network whose network topology is a ring type and is a redundant network device that constitutes a ring network including a plurality of redundant network devices.
    The number of clockwise hops corresponding to the request for transmitting transmission data to the destination network device constituting the ring network, the number of clockwise hops corresponding to each of the plurality of redundant network devices, and the number of clockwise hops corresponding to the request. The number of counterclockwise hops, which is the number of counterclockwise hops corresponding to each of the plurality of redundant network devices, is stored.
    When the number of clockwise hops corresponding to itself is the smallest among the stored clockwise hops corresponding to the request, the transmission data is determined to be transmitted in the clockwise direction.
    When the number of counterclockwise hops corresponding to itself is the smallest among the number of counterclockwise hops corresponding to the stored request, the transmission data is determined to be transmitted in the counterclockwise direction. Redundant network program.
PCT/JP2019/021768 2019-05-31 2019-05-31 Redundant network device, redundant network method, redundant network program, and transmission path redundancy system WO2020240833A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/021768 WO2020240833A1 (en) 2019-05-31 2019-05-31 Redundant network device, redundant network method, redundant network program, and transmission path redundancy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/021768 WO2020240833A1 (en) 2019-05-31 2019-05-31 Redundant network device, redundant network method, redundant network program, and transmission path redundancy system

Publications (1)

Publication Number Publication Date
WO2020240833A1 true WO2020240833A1 (en) 2020-12-03

Family

ID=73553723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021768 WO2020240833A1 (en) 2019-05-31 2019-05-31 Redundant network device, redundant network method, redundant network program, and transmission path redundancy system

Country Status (1)

Country Link
WO (1) WO2020240833A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009017230A (en) * 2007-07-04 2009-01-22 Nec Corp Communication system, redundant node, and program for redundant node
JP2009016905A (en) * 2007-06-29 2009-01-22 Fujitsu Ltd Packet network system
JP2009118472A (en) * 2007-10-17 2009-05-28 Yokogawa Electric Corp Ip network system
JP2012161026A (en) * 2011-02-02 2012-08-23 Hitachi Cable Ltd Frame relay device, frame relay method, ring-type network system, and super ring-type network system
US20180145850A1 (en) * 2016-11-23 2018-05-24 DeGirum Corporation Permutated Ring Network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016905A (en) * 2007-06-29 2009-01-22 Fujitsu Ltd Packet network system
JP2009017230A (en) * 2007-07-04 2009-01-22 Nec Corp Communication system, redundant node, and program for redundant node
JP2009118472A (en) * 2007-10-17 2009-05-28 Yokogawa Electric Corp Ip network system
JP2012161026A (en) * 2011-02-02 2012-08-23 Hitachi Cable Ltd Frame relay device, frame relay method, ring-type network system, and super ring-type network system
US20180145850A1 (en) * 2016-11-23 2018-05-24 DeGirum Corporation Permutated Ring Network

Similar Documents

Publication Publication Date Title
JP4664159B2 (en) Slave device with independent error recovery function
US11403227B2 (en) Data storage method and apparatus, and server
JP7420484B2 (en) Error checking for main signals transmitted between the first clock domain and the second clock domain
JP6600518B2 (en) Bus system
JP6007152B2 (en) Communication system and communication system redundancy method
US7953902B2 (en) Negotiable exchange of link layer functional parameters in electronic systems having components interconnected by a point-to-point network
US20130114593A1 (en) Reliable Transportation a Stream of Packets Using Packet Replication
CN111049765A (en) Aggregation port switching method, device, chip, switch and storage medium
CN107852344A (en) Store NE Discovery method and device
US20210242953A1 (en) Network device, network system, network method, and computer readable medium
WO2020240833A1 (en) Redundant network device, redundant network method, redundant network program, and transmission path redundancy system
US10979356B2 (en) Communication method and communication system
JP5826381B2 (en) Switch, transmission method, program, recording medium
JP2006338374A (en) Network connection management device and network connection management method
JP2007334668A (en) Memory dumping method, cluster system, node constituting the system, and program
JP2007316755A (en) Pci-express communication system
JP5794748B2 (en) Switch, transmission method, program, recording medium
JP6559390B2 (en) Transfer device, transfer method, and transfer program
JP4655733B2 (en) Receiving method and apparatus in ring-type duplex network
TW202011715A (en) Controller, method for adjusting flow rule, and network communication system
JP7188602B2 (en) L2 switch, communication control method, and communication control program
JP5468494B2 (en) Data transmission apparatus and data transmission method
US10855610B2 (en) Information processing apparatus, information processing system, information processing method, and storage medium
WO2019187089A1 (en) Transfer device, transfer method, and transfer program
WO2015083212A1 (en) Information processing device, data transfer device, data transfer method, and control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP