WO2020240763A1 - Electric power steering device for vehicle - Google Patents

Electric power steering device for vehicle Download PDF

Info

Publication number
WO2020240763A1
WO2020240763A1 PCT/JP2019/021471 JP2019021471W WO2020240763A1 WO 2020240763 A1 WO2020240763 A1 WO 2020240763A1 JP 2019021471 W JP2019021471 W JP 2019021471W WO 2020240763 A1 WO2020240763 A1 WO 2020240763A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
steering
shaft
steering wheel
electric power
Prior art date
Application number
PCT/JP2019/021471
Other languages
French (fr)
Japanese (ja)
Inventor
章浩 小暮
幸夫 田島
Original Assignee
株式会社ショーワ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ショーワ filed Critical 株式会社ショーワ
Priority to PCT/JP2019/021471 priority Critical patent/WO2020240763A1/en
Priority to JP2019529291A priority patent/JP6596615B1/en
Publication of WO2020240763A1 publication Critical patent/WO2020240763A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/181Steering columns yieldable or adjustable, e.g. tiltable with power actuated adjustment, e.g. with position memory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D1/00Steering controls, i.e. means for initiating a change of direction of the vehicle
    • B62D1/02Steering controls, i.e. means for initiating a change of direction of the vehicle vehicle-mounted
    • B62D1/16Steering columns
    • B62D1/18Steering columns yieldable or adjustable, e.g. tiltable
    • B62D1/183Steering columns yieldable or adjustable, e.g. tiltable adjustable between in-use and out-of-use positions, e.g. to improve access
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear

Definitions

  • the present invention relates to an improvement of an electric power steering device for a vehicle.
  • a steer-by-wire type electric power steering capable of telescopic movement and tilt movement of the steering wheel is possible.
  • Equipment development is required.
  • the steer-by-wire electric power steering device has a configuration in which the steering wheel and the steering portion are mechanically separated.
  • Patent Document 1 Although it is not a steer-by-wire type, in a general electric power steering device for vehicles, a technique for performing a telescopic movement and a tilt movement of a steering wheel by a single motor is known, for example, in Patent Document 1.
  • the electric power steering device for vehicles known in Patent Document 1 adds an auxiliary torque generated by an assist motor to the steering torque of the steering wheel, and integrates the tilt motion and the telescopic motion of the steering shaft into a single unit. It is performed by a motor (tilt / telescopic motor).
  • the steering shaft to which the steering wheel can be connected is inserted in the column tube.
  • One end of this column tube (the end opposite to the steering wheel) is coupled to a mounting bracket attached to the vehicle body so that it can be tilted.
  • the column tube is also surrounded by a telescoping tube.
  • the assist motor and the integrated motor are attached to the column tube.
  • the integrated motor rotates and linearly moves the moving rod.
  • This moving rod is along the axis of the column tube.
  • a tilt mechanism and a telescopic mechanism are connected to the moving rod.
  • the tilt mechanism and the telescopic mechanism are provided with independent clutches.
  • the tilt mechanism converts the linear movement of the moving rod into the tilt movement of the column tube via the link arm.
  • the telescopic clutch When the telescopic clutch is engaged, the telescopic mechanism converts the linear movement of the moving rod into the telescopic movement of the column tube via the telescoping tube. In this way, the tilt operation and the telescopic operation can be individually adjusted by switching the two clutches.
  • the electric power steering device for vehicles known in Patent Document 1 is not intended to have a steer-by-wire configuration. Therefore, this electric power steering device for vehicles does not include a reaction force motor for generating a steering reaction force applied to the steering wheel.
  • the steering device mounted on the autonomous driving vehicle is required to be a steer-by-wire electric power steering device capable of telescopic movement and tilt movement of the steering wheel. Moreover, this steering device is required to be further miniaturized in order to create a large living space in the vehicle interior during automatic driving.
  • An object of the present invention is to provide a smaller steer-by-wire electric power steering device having a function capable of telescopic movement and tilt movement of the steering wheel.
  • Hollow support member that can be attached to the car body, A first member slidably assembled on the inner peripheral surface of the support member and A second member swingably connected to the tip of the first member, A steering shaft that is arranged on the second member and is located concentrically with respect to the axis of the first member.
  • the steering wheel provided on the steering shaft and A steering reaction force that is held in either one of the first member and the second member, and the motor shaft is located concentrically with respect to the axis of the first member and resists the steering force of the steering wheel.
  • the first motor that generates and adds to the steering wheel A second motor provided on the support member and A first transmission mechanism that converts the driving force generated by the second motor into a slide driving force that slides the first member and transmits the driving force to the first member.
  • a second transmission mechanism that converts the driving force generated by the second motor into a swing driving force that drives the second member and transmits the second member to the second member.
  • the first member is slidably assembled on the inner peripheral surface of the support member attached to the vehicle body.
  • a second member is swingably connected to the tip of the first member.
  • a steering wheel is arranged on the second member.
  • the first member or the second member has a first motor that generates a steering reaction force. Therefore, the first motor, which is indispensable for the steer-by-wire type electric power steering device, can be incorporated into the first member or the second member without protruding outward from the support member.
  • both the motor shaft of the first motor and the steering wheel are located concentrically with respect to the axis of the first member. Therefore, it is possible to provide a smaller steer-by-wire electric power steering device having a function capable of telescopic movement and tilt movement of the steering wheel.
  • FIG. 1 It is a schematic diagram of the electric power steering apparatus for a vehicle of Example 1 by this invention. It is a schematic explanatory drawing of the self-driving vehicle equipped with the electric power steering device for a vehicle shown in FIG. It is a perspective view of the steering wheel adjustment device shown in FIG. It is sectional drawing of the steering wheel adjustment device shown in FIG. It is 5 arrow view of FIG. It is an operation diagram of the steering wheel adjustment device shown in FIG. It is a schematic diagram of the electric power steering apparatus for a vehicle of Example 2 by this invention. It is a perspective view of the steering wheel adjustment device shown in FIG. It is a side view of the steering wheel adjustment device shown in FIG. It is sectional drawing of the steering wheel adjustment device shown in FIG. It is sectional drawing which follows the 11-11 line of FIG. It is an operation diagram of the steering wheel adjustment device shown in FIG. It is a control flowchart of the control device of the electric power steering device for a vehicle of Example 3 by this invention.
  • the electric power steering device 10 of the first embodiment will be described with reference to FIGS. 1 to 6.
  • the electric power steering device 10 for a vehicle has a steering unit 12 in which a steering input of the steering wheel 11 is generated, and a steering unit that steers the left and right steering wheels 13 and 13 (including tires). 14 and a control device 15.
  • the left and right steering wheels 13 and 13 may be those that are steered by the steering portion 14, and include front wheels, rear wheels, or both.
  • the electric power steering device 10 for a vehicle is simply abbreviated as "steering device 10".
  • the steering unit 12 and the steering unit 14 are mechanically separated. Therefore, the steering device 10 steers the left and right steering wheels 13 and 13 by operating the steering actuator 34 according to the steering amount of the steering wheel 11, so-called steer-by. -wire) is adopted.
  • the steering unit 12 has a steering wheel 11 steered by the driver, a steering shaft 17 having one end connected to the steering wheel 11, and a steering reaction force (reaction torque) with respect to the steering wheel 11 via the steering shaft 17. 20 and the reaction force motor 20 for adding the above.
  • the reaction force motor 20 generates a steering reaction force that resists the steering force of the steering wheel 11 steered by the driver, and applies this steering reaction force to the steering wheel 11 to give the driver a feeling of steering. ..
  • the reaction force motor 20 is composed of an electric motor.
  • the reaction force motor 20 will be appropriately referred to as a “first motor 20”. Details of the first motor 20 will be described later.
  • the steering section 14 includes a steering shaft 31 extending in the vehicle width direction, and left and right steering wheels 13 connected to both ends of the steering shaft 31 via tie rods 32, 32 and knuckles 33, 33. 13 and a steering actuator 34 that applies steering power to the steering shaft 31 are included.
  • the steering actuator 34 includes a steering motor 35 that generates steering power and a steering power transmission mechanism 36 that transmits steering power to the steering shaft 31.
  • the steering motor 35 is composed of, for example, an electric motor.
  • the steering power transmission mechanism 36 includes, for example, a first transmission mechanism 37 and a second transmission mechanism 38.
  • the first transmission mechanism 37 is composed of, for example, a worm gear mechanism.
  • the worm gear mechanism 37 (first transmission mechanism 37) includes a worm 37a provided on the motor shaft 35a (output shaft 35a) of the steering motor 35 and a worm wheel 37c provided on the transmission shaft 37b.
  • the second transmission mechanism 38 is composed of, for example, a rack and pinion mechanism.
  • the rack and pinion mechanism 38 (second transmission mechanism 38) includes a pinion 38a provided on the transmission shaft 37b and a rack 38b provided on the steering shaft 31.
  • the steering power generated by the steering motor 35 is applied to the steering shaft 31 by the worm gear mechanism 37 and the rack and pinion mechanism 38.
  • the vehicle steering device 10 includes a steering angle sensor 41, a steering torque sensor 42, and various other sensors 43.
  • the steering angle sensor 41 detects the steering angle of the steering wheel 11.
  • the steering torque sensor 42 detects the steering torque generated on the steering shaft 17.
  • This steer-by-wire type electric power steering device 10 for a vehicle can be mounted on an automatic driving vehicle 50 (see FIG. 2), and is a steering wheel for performing a telescopic motion and a tilt motion of the steering wheel 11.
  • the adjusting device 60 is provided.
  • the steering wheel adjusting device 60 is controlled by a control device 15 that receives a command from the driving position device 51 mounted on the autonomous driving vehicle 50.
  • the telescopic motion and the tilt motion of the steering wheel 11 can be performed by a single motor 100 (second motor 100).
  • the single motor 100 is hereinafter appropriately referred to as a "second motor 100".
  • the second motor 100 is composed of, for example, an electric motor.
  • the control device 15 includes the first motor 20, the steering motor 35, and the second motor 100 in accordance with the signals of the steering angle sensor 41, the steering torque sensor 42, and various other sensors 43, and the command of the driving position device 51. Is in control.
  • the other various sensors 43 include sensors for detecting the rotation angles and drive currents of the motors 20, 35, 100, vehicle speed sensors, yaw rate sensors, and acceleration sensors.
  • the driving position device 51 determines the driving situation of the self-driving vehicle 50, and drives the various devices manually by the driver Dr shown in FIG. 2A and the first driving position shown in FIG. 2B. It is controlled to the second driving position in which the driver Dr shown in the above automatically operates.
  • FIG. 2A shows an example of the first driving position in which the driver Dr manually drives.
  • the steering wheel 11, seat 53 and pedal 54 are automatically controlled to preset positions suitable for manual driving by the driver Dr.
  • the steering wheel 11 is located at the non-retracted position P1 (first position P1).
  • This non-retracted position P1 is a position where the driver Dr can easily steer the steering wheel 11.
  • FIG. 2B shows an example of the second driving position in which the driver Dr automatically drives.
  • the steering wheel 11, seat 53 and pedals 54 are automatically controlled to preset positions where the driver Dr can relax.
  • the steering wheel 11 is located at the retracted position P2 (second position P2) in order to create a large living space in the vehicle interior 55 during this automatic driving.
  • the storage position P2 is tilted forward and upward as compared with the non-storage position P1 shown in FIG. 2A.
  • the steering wheel adjusting device 60 includes a support member 70, a first member 80, a second member 90, a second motor 100, a first transmission mechanism 110, and a second transmission mechanism 120. ,including.
  • the support member 70 is a hollow (for example, cylindrical, preferably cylindrical) member that can be positioned so as to extend in the front-rear direction of the autonomous driving vehicle 50, and is formed on the vehicle body 56 of the autonomous driving vehicle 50. It has a bracket 71 that can be attached. Both ends of the support member 70 are open. Further, the support member 70 has a slit 72 (including an elongated hole) parallel to the axis CL1 (center line CL1) of the support member 70. The slit 72 penetrates the peripheral wall 73 of the support member 70 in and out.
  • a slit 72 including an elongated hole
  • the first member 80 is a hollow (for example, cylindrical, preferably cylindrical) member slidably assembled along the axis CL1 of the support member 70 on the inner peripheral surface 73a of the peripheral wall 73 of the support member 70. is there. That is, the first member 80 is slidably fitted to the peripheral wall 73 of the support member 70 along the axis CL1, that is, can be telescopically moved. Both ends of the first member 80 are open.
  • the axis CL2 (center line CL2) of the first member 80 coincides with the axis CL1 of the support member 70.
  • the first member 80 houses the first motor 20.
  • the first motor 20 is restricted from relative displacement to the first member 80 in both the axial direction and the circumferential direction.
  • the motor housing 21 is press-fitted or shrink-fitted into the first member 80 to regulate the relative displacement of the first motor 20 with respect to the first member 80.
  • the length of the first member 80 is set to a length that can sufficiently secure the slidable range (stroke) of the first member 80 with respect to the support member 70, that is, the telescopic momentum of the steering wheel 11.
  • the first motor 20 becomes large in the axial direction in order to secure a sufficient stroke, which is not a good idea. Since the first member 80 is provided, the slide amount of the first motor 20 with respect to the support member 70 can be sufficiently secured without increasing the size of the first motor 20.
  • the first motor 20 is located concentrically with respect to the axis CL2 of the first member 80. More specifically, the first motor 20 is a bottomed hollow (for example, bottomed tubular shape, preferably bottomed cylindrical shape) motor housing fixed to the inner peripheral surface 81a of the peripheral wall 81 of the first member 80. 21, a lid 22 that closes the open end of the motor housing 21, a motor shaft 24 (output shaft 24) that is rotatably housed inside the motor housing 21 by bearings 23 and 23, and the motor shaft 24. Includes a rotor 25 provided in the motor housing 21 and a stator 26 located inside the motor housing 21 located on the outer periphery of the rotor 25.
  • a rotor 25 provided in the motor housing 21 and a stator 26 located inside the motor housing 21 located on the outer periphery of the rotor 25.
  • the first motor 20 has a motor rotation angle sensor 27 (for example, a resolver) and a control unit 28.
  • the motor rotation angle sensor 27 detects the rotation angle of the first motor 20.
  • the control unit 28 is assembled to the first motor 20 (for example, the lid 22) and housed in the first member 80, and controls the first motor 20 based on the control command of the control device 15 (see FIG. 1). To do.
  • the motor shaft 24 of the first motor 20 is located concentrically with respect to the axis CL2 of the first member 80.
  • the second member 90 is located concentrically with respect to the axis CL2 of the first member 80, and has a bottomed hollow shape (for example, having) that opens toward the first motor 20. It is a member having a bottom tubular shape, preferably a bottomed cylindrical shape).
  • the second member 90 can swing in the vertical direction with respect to the tip end portion 82 of the first member 80, that is, can tilt.
  • at least one of the first member 80 and the first motor 20 has an extension portion 91 extending to the second member 90 along the motor shaft 24.
  • the extension portion 91 has a fork-like structure that extends from the motor housing 21 to the side surface 90a (see FIG. 3) of the second member 90 while sandwiching the motor shaft 24, and sandwiches the side surface 90a. That is, the extension portion 91 has a pair of tip portions 91a, 91a.
  • the second member 90 is sandwiched between a pair of tip portions 91a, 91a of the extension portion 91, and is swingably connected to the pair of tip portions 91a, 91a by a support shaft 92. As a result, the second member 90 is swingably (tiltable) connected to the tip 82 of the first member 80.
  • the steering shaft 17 is provided with a bearing 93 that allows relative rotation and restricts relative movement in the axial direction.
  • the steering shaft 17 is located concentrically with respect to the axis CL2 of the first member 80, and inside the second member 90, a universal joint 94 (universal joint 94) is attached to the motor shaft 24 of the first motor 20. It is connected.
  • the steering wheel 11 is connected to the motor shaft 24 by a universal shaft joint 94.
  • the bending point Q1 (bending point Q1) of the universal shaft joint 94 coincides with the swing base point Q2 (center Q2 of the support shaft 92) of the second member 90 with respect to the first member 80.
  • the second motor 100 is attached to the gear housing 74 and drives a single shaft 111.
  • the gear housing 74 is attached to a base 75 provided on the peripheral wall 73 of the support member 70.
  • the first transmission mechanism 110 converts the driving force generated by the second motor 100 into a slide driving force that slides the first member 80 and transmits the driving force to the first member 80.
  • the first transmission mechanism 110 uses a single shaft 111, a driving force transmission unit 112 that transmits the driving force of the second motor 100 to the shaft 111, and a rotational movement of the shaft 111 as a sliding movement of the first member 80. It is composed of a first conversion mechanism 116 for conversion.
  • the single shaft 111 is located parallel to the axis CL2 of the first member 80 and extends along the outer peripheral surface 73b of the support member 70 (the outer peripheral surface 73b of the peripheral wall 73).
  • the shaft 111 is supported by bearings 76 and 76 in the gear housing 74, and is also supported by a support arm 95 extending from the extension portion 91 toward the shaft 111.
  • the shaft 111 is provided with respect to the support member 70 so that relative rotation is permitted and relative movement in the axial direction is restricted.
  • the shaft 111 has a first male screw 111a and a second male screw 111b.
  • the driving force transmission unit 112 is configured by, for example, a worm gear mechanism.
  • the worm gear mechanism 112 (driving force transmission unit 112) includes a worm 113 provided on the motor shaft 101 (output shaft 101) of the second motor 100, and a worm wheel 114 provided on the shaft 111.
  • the worm gear mechanism 112 is housed in the gear housing 74.
  • the first conversion mechanism 116 includes a first male screw 111a provided on the shaft 111, a first female screw 117 assembled with the first male screw 111a, and the first female screw 111a. It is composed of an arm 118 having a female screw 117.
  • the arm 118 extends from either the first member 80 or the first motor 20 toward the shaft 111.
  • the arm 118 extends from the first motor 20 through the slit 72 to the shaft 111.
  • the first male screw 111a and the first female screw 117 are preferably formed of trapezoidal screws.
  • the second transmission mechanism 120 converts the driving force generated by the second motor 100 into a swing driving force for swing-driving the second member 90, and converts the driving force into the second member 90. introduce.
  • the second transmission mechanism 120 is composed of a second conversion mechanism 121 that converts the rotational movement of the shaft 111 into the swing movement of the second member 90.
  • the second conversion mechanism 121 has a second male screw 111b on the shaft 111, a second female screw 122 engaged with the second male screw 111b, and a second female screw 122, and also has a shaft. It is composed of a slider 123 that can be displaced along 111, and a link 124 that connects the slider 123 and the second member 90 in a linkable manner.
  • the slider 123 has a first link connecting bracket 125 that connects one end of the link 124 so as to be swingable.
  • the second member 90 has a second link connecting bracket 126 that swingably connects the other end of the link 124.
  • the second male screw 111b and the second female screw 122 are preferably formed of trapezoidal screws. Further, it is preferable that at least one of the screw direction and the pitch of the second male screw 111b and the second female screw 122 is different from that of the first male screw 111a and the first female screw 117. For example, the screw direction is opposite.
  • the steering wheel 11 shown in FIG. 2A is located at the non-retracted position P1 (first position P1).
  • the steering wheel adjusting device 60 at this time is in the state shown in FIG. That is, the position of the steering wheel 11 is on the axis CL2 of the first member 80, and is the position farthest behind the autonomous driving vehicle 50 (see FIG. 2A) with respect to the support member 70 (advance position). Is located in.
  • the second motor 100 rotates forward (rotates in the first rotation direction) by receiving a storage command signal from the control device 15 (see FIG. 1).
  • the driving force of the forward rotation generated by the second motor 100 is transmitted to the shaft 111 via the worm gear mechanism 112. Due to the rotation of the shaft 111, the arm 118, the first member 80, and the first motor 20 move in the direction in which the steering wheel 11 approaches the support member 70 (backward direction), that is, telescopically.
  • the steering shaft 17 connected to the motor shaft 24 of the first motor 20 and the second member 90 connected to the pair of tip portions 91a, 91a of the extension portion 91 move in the backward direction.
  • the screw directions of the second male screw 111b and the second female screw 122 are opposite to those of the first male screw 111a and the first female screw 117. Therefore, the slider 123 moves in the opposite direction (forward direction) with respect to the arm 118, and swings the second member 90 upward via the link 124. As a result, the second member 90 and the steering shaft 17 tilt upward.
  • FIGS. 6 and 2 (b) show that the steering wheel 11 is located at the retracted position P2 (second position P2). That is, the position of the steering wheel 11 is located at a position (retracted position) in which the steering wheel 11 is tilted upward by a preset angle from the axis CL2 of the first member 80 and retracted.
  • the second motor 100 rotates in the reverse direction (rotates in the second rotation direction) by receiving a non-storing command signal from the control device 15 (see FIG. 1).
  • the driving force of the reverse rotation generated by the second motor 100 is transmitted to the shaft 111 via the worm gear mechanism 112. Due to the rotation of the shaft 111, the arm 118, the first member 80, and the first motor 20 move in the direction in which the steering wheel 11 separates from the support member 70 (forward direction), that is, telescopically moves.
  • the steering shaft 17 connected to the motor shaft 24 of the first motor 20 and the second member 90 connected to the pair of tip portions 91a, 91a of the extension portion 91 move in the forward direction.
  • the slider 123 moves in the opposite direction (backward direction) with respect to the arm 118, and swings the second member 90 downward via the link 124.
  • the second member 90 and the steering shaft 17 tilt downward. That is, the steering wheel 11 tilts downward while telescopically moving forward.
  • the results are shown in FIGS. 4 and 2 (a).
  • the steering wheel adjusting device 60 returns to the state shown in FIG.
  • the steering wheel 11 returns to the non-retracted position P1 (first position P1) shown in FIG. 2A.
  • the electric power steering device 10 for a vehicle is A hollow support member 70 that can be attached to the vehicle body 56, A first member 80 slidably assembled to the inner peripheral surface 73a of the support member 70, A second member 90 that is swingably connected to the tip 82 of the first member 80, A steering shaft 17 arranged on the second member 90 and located concentrically with respect to the axis CL2 of the first member 80.
  • a steering wheel 11 provided on the steering shaft 17 and The motor shaft 24 is located on one of the first member 80 and the second member 90 and is concentrically located with respect to the axis CL2 of the first member 80, and the steering force of the steering wheel 11 is provided.
  • the first motor 20 (reaction motor 20) that generates a steering reaction force that resists the steering wheel 11 and applies it to the steering wheel 11.
  • the second motor 100 provided on the support member 70 and A first transmission mechanism 110 that converts the driving force generated by the second motor 100 into a slide driving force that slides the first member 80 and transmits the driving force to the first member 80.
  • a second transmission mechanism 120 that converts the driving force generated by the second motor 100 into a swing driving force for swing-driving the second member 90 and transmits the driving force to the second member 90 is included.
  • the first member 80 is slidably assembled to the inner peripheral surface 73a of the hollow support member 70 attached to the vehicle body 56. Therefore, the support member 70 can sufficiently increase the rigidity for slidably supporting the first member 80.
  • a second member 90 is swingably connected to the tip 82 of the first member 80.
  • a steering wheel 11 is arranged on the second member 90.
  • the first member 80 or the second member 90 has a first motor 20 that generates a steering reaction force. Therefore, the first motor 20, which is indispensable for the steer-by-wire type electric power steering device 10, can be incorporated into the first member 80 or the second member 90 without protruding outward from the support member 70.
  • both the motor shaft 24 of the first motor 20 and the steering wheel 11 are located concentrically with respect to the axis CL2 of the first member 80. Therefore, it is possible to provide a smaller steer-by-wire type electric power steering device 10 having a function capable of telescopic movement and tilt movement of the steering wheel 11. As a result, the mountability of the electric power steering device 10 on the autonomous driving vehicle 50 can be improved.
  • the first motor 20 is housed in the first member 80 among the first member 80 and the second member 90.
  • the steering wheel 11 (either directly or via the steering shaft 17) is connected to the motor shaft 24 by a universal shaft joint 94.
  • the heavy first motor 20 is housed in the first member 80 that supports the second member 90, instead of the second member 90 that performs the tilting motion.
  • the support member 70 to which the first member 80 is assembled can be attached to the vehicle body 56. It is possible to concentrate heavy objects on the support member 70 and the first member 80 on the proximal end side attached to the vehicle body 56, and to reduce the weight of the second member 90 on the distal end side that performs the tilting motion. That is, the rigidity of the support member 70 and the first member 80 and the rigidity of the second member 90 can be reasonably increased. Therefore, the overall rigidity of the device 60 having the function of enabling the telescopic movement and the tilt movement of the steering wheel 11, that is, the steering wheel adjusting device 60 can be increased in a well-balanced manner.
  • the steering wheel 11 is connected to the motor shaft 24 of the first motor 20 by a universal shaft joint 94. That is, the transmission system that applies the steering reaction force from the motor shaft 24 of the first motor 20 to the steering wheel 11 does not have a speed reducer for decelerating the rotation of the first motor 20. Since the speed reducer does not intervene in the transmission system, the size of the first member 80 that houses the first motor 20 can be reduced. Therefore, the steering wheel adjusting device 60 and the electric power steering device 10 can be further miniaturized. Therefore, the mountability of the electric power steering device 10 on the autonomous driving vehicle 50 can be further enhanced. Moreover, when the steering wheel 11 is steered, it is not affected by the reverse efficiency of the speed reducer. Therefore, the steering feeling of the steering wheel 11 can be further enhanced.
  • the first transmission mechanism 110 is The first member 80 is located parallel to the axis CL2 and extends along the outer peripheral surface 73b of the support member 70, so that relative rotation is allowed with respect to the support member 70 and in the axial direction.
  • a driving force transmission unit 112 that transmits the driving force of the second motor 100 to the shaft 111, It is composed of a first conversion mechanism 116 that converts the rotational movement of the shaft 111 into the sliding movement of the first member 80.
  • the second transmission mechanism 120 is composed of a second conversion mechanism 121 that converts the rotational motion of the shaft 111 into the swing motion of the second member 90.
  • the first transmission mechanism 110 skillfully utilizes a single shaft 111 to make the rotational movement of the shaft 111 into a slide movement of the first member 80 and a swing movement of the second member 90, respectively. It only needs to be converted, and it can be made into a small and simple configuration.
  • the first conversion mechanism 116 The first male screw 111a provided on the shaft 111 and The first female screw 117 that is assembled to the first male screw 111a, It is composed of an arm 118 extending from either one of the first member 80 and the first motor 20 toward the shaft 111 and having the first female screw 117.
  • the first conversion mechanism 116 can have an extremely simple configuration by the shaft 111 having the first male screw 111a and the arm 118 having the first female screw 117.
  • the second conversion mechanism 121 The second male screw 111b on the shaft 111 and A second female screw 122 that is assembled to the second male screw 111b, A slider 123 having the second female screw 122 and displaceable along the axis 111, It is composed of a link 124 that connects the slider 123 and the second member 90 in a linkable manner.
  • the second conversion mechanism 121 is extremely provided by the shaft 111 having the second male screw 111b, the slider 123 having the second female screw 122, and the link 124 connecting the slider 123 to the second member 90. It can be a simple configuration.
  • the support arm 95 extending from at least one of the first member 80 and the first motor 20 toward the shaft 111 is further provided. Ori, The support arm 95 rotatably supports the shaft 111. Therefore, the shaft 111 can be reliably supported by the support arm 95 that makes a telescopic movement.
  • the first male screw 111a, the first female screw 117, the second male screw 111b, and the second female screw 122 are composed of a trapezoidal screw. There is. Therefore, the self-locking function can be enhanced by a simple configuration.
  • At least one of the pitch and the screw direction of the second male screw 111b and the second female screw 122 is relative to the first male screw 111a and the first female screw 117. Is different. Therefore, at least one of the pitch and the screw direction can be set so that both the telescopic movement and the tilt movement of the steering wheel 11 are optimized.
  • control unit 28 for controlling the first motor 20 is further provided.
  • the control unit 28 is assembled to the first motor 20 and housed in the first member 80. Therefore, the first motor 20 and the control unit 28 can be telescopically moved at the same time.
  • the wiring between the first motor 20 and the control unit 28 can be reasonably wired.
  • the electric power steering device 10 for a vehicle is A hollow support member 70 that can be attached to the vehicle body 56, A first member 80 slidably assembled to the inner peripheral surface 73a of the support member 70, A second member 90 swingably connected to the tip 82 of the first member 80, A steering shaft 17 rotatably supported by the second member 90 and located concentrically with respect to the axis CL2 of the first member 80.
  • a steering wheel 11 provided on the steering shaft 17 and The motor shaft 24 is housed in the first member 80 while being restricted in relative displacement, is located concentrically with respect to the axis CL2 of the first member 80, and is connected to the steering shaft 17 by a universal shaft joint 94.
  • a first motor 20 that generates a steering reaction force that resists the steering force of the steering wheel 11 and applies the steering reaction force to the steering wheel 11.
  • the first member 80 is located parallel to the axis CL2 and extends along the outer peripheral surface 73b of the support member 70 so that relative rotation with respect to the support member 70 is allowed and in the axial direction.
  • a single shaft 111 which is provided with restricted relative movement and has a first male thread 111a and a second male thread 111b
  • a second motor 100 which is provided on the support member 70 and drives the single shaft 111,
  • An arm 118 extending from either one of the first member 80 and the first motor 20 toward the shaft 111 and having a first female screw 117 that engages with the first male screw 111a.
  • a slider 123 that has a second female screw 122 that engages with the second male screw 111b and is displaceable along the axis 111.
  • a link 124 that connects the slider 123 and the second member 90 in a linkable manner is included.
  • the steering wheel 11 can be quickly switched between the non-retracted position P1 and the stored position P2. It is most suitable as the steering device 10 mounted on the autonomous driving vehicle 50.
  • the electric power steering device 10 for a vehicle is The steering wheel 11 provided on the steering shaft 17 and A first motor 20 (reaction motor 20) that generates a steering reaction force on the steering shaft 17 and It has a second motor 100 that controls a telescopic operation of moving the steering wheel 11 forward and backward and a tilt operation of raising and lowering the steering wheel 11.
  • the first motor 20 has a motor shaft 24 concentrically with the steering wheel 11, and moves due to a telescopic operation or a tilt operation when the second motor 100 is driven.
  • Example 2 The vehicle electric power steering device 200 of the second embodiment will be described with reference to FIGS. 7 to 12.
  • FIG. 7 is shown corresponding to FIG.
  • FIG. 8 is shown corresponding to FIG.
  • FIG. 10 is shown corresponding to FIG. 4 above.
  • the vehicle electric power steering device 200 of the second embodiment is the reaction force motor 20 and the steering wheel adjusting device 60 of the first embodiment shown in FIGS. 1 to 6, and the reaction force motor 220 shown in FIGS. 7 to 12. And the steering wheel adjusting device 260 is changed, and the other configurations are the same as those in the first embodiment, so the description thereof will be omitted.
  • the control device 15 of the second embodiment is a steering motor 35 according to each signal of the steering angle sensor 41, the steering torque sensor 42, and various other sensors 43, and a command of the driving position device 51. And the first motor 220 and the second motor 300 are controlled.
  • the steering unit 12 includes a reaction force motor 220 that applies a steering reaction force (reaction torque) to the steering wheel 11.
  • the reaction force motor 220 generates a steering reaction force that resists the steering force of the steering wheel 11 that the driver steers, and applies this steering reaction force to the steering wheel 11 to give the driver a feeling of steering. ..
  • the reaction force motor 220 is composed of an electric motor.
  • the reaction force motor 220 will be appropriately referred to as a “first motor 220”. Details of the first motor 220 will be described later.
  • the steering wheel adjusting device 260 of the second embodiment has a support member 270, a first member 280, a second member 290, a second motor 300, a first transmission mechanism 310, and a second transmission. Including the mechanism 320.
  • the support member 270 is a hollow (for example, cylindrical, preferably cylindrical) member capable of being positioned so as to extend in the front-rear direction of the autonomous driving vehicle 50 (see FIG. 2A). It has a bracket 271 that can be attached to the vehicle body 56 of the autonomous driving vehicle 50. Both ends of the support member 270 are open.
  • the first member 280 is a hollow shape (for example, a cylinder shape, preferably a cylinder shape) slidably attached to the inner peripheral surface 273a of the peripheral wall 273 of the support member 270 along the axis CL11 (center line CL11) of the support member 270. It is a member of the shape). In other words, the first member 280 is slidably fitted to the peripheral wall 273 of the support member 270 along the axis CL11, that is, telescopically. Both ends of the first member 80 are open.
  • the axis CL12 (center line CL12) of the first member 280 coincides with the axis CL1 of the support member 270.
  • the second member 290 is located concentrically with respect to the axis CL12 of the first member 280 and has a bottomed hollow shape (for example, a bottomed cylinder shape, preferably a bottomed cylindrical shape) that opens toward the first member 280. ) Is a member.
  • the second member 290 can swing in the vertical direction with respect to the tip end portion 282 of the first member 280, that is, can tilt.
  • the first member 280 has an extension 281 extending to the second member 290.
  • the extension portion 281 has, for example, a fork-like structure extending from the first member 280 to the side surface 290a of the second member 290 and sandwiching the side surface 290a. That is, the extension portion 281 has a pair of tip portions 281a and 281a.
  • the second member 290 is sandwiched between a pair of tip portions 281a and 281a of the extension portion 91, and is swingably connected to the pair of tip portions 281a and 281a by a support shaft 292. As a result, the second member 290 is swingably (tiltable) connected to the tip end portion 282 of the first member 280.
  • the second member 290 integrally includes the first motor 220.
  • the configuration of the first motor 220 integrally with the second member 290 includes the following configurations (1) and (2).
  • (1) the second member 290 has a configuration in which the first motor 220 is housed while restricting the relative displacement.
  • the second member 290 also serves as the motor housing 221 of the first motor 220. That is, the second member 290 is the first motor 220 itself.
  • the configuration of (2) will be illustrated.
  • the first motor 220 is located concentrically with respect to the axis CL12 of the first member 280. More specifically, the first motor 220 includes a bottomed hollow (for example, a bottomed tubular shape, preferably a bottomed cylindrical shape) motor housing 221 (composed of a second member 290) and the motor housing. A lid 222 that closes the open end of 221, a motor shaft 224 (output shaft 224) that is rotatably housed inside the motor housing 221 by bearings 223 and 223, and a rotor that the motor shaft 224 has. It includes a 225 and a stator 226 located inside the motor housing 221 located on the outer periphery of the rotor 225.
  • the first motor 220 has a motor rotation angle sensor 227 (for example, a resolver). The motor rotation angle sensor 227 detects the rotation angle of the first motor 220.
  • the motor shaft 224 of the first motor 220 is located concentrically with the axis CL12 of the first member 280, and also serves as the steering shaft 17. That is, the steering wheel 11 is directly attached to the motor shaft 224.
  • the second motor 300 is attached to the gear housing 274 and drives the first member 280.
  • the gear housing 274 is provided on the peripheral wall 273 of the support member 270.
  • the first transmission mechanism 310 converts the driving force generated by the second motor 300 into a slide driving force for driving the first member 280 and transmits it to the first member 280.
  • the first transmission mechanism 310 is composed of, for example, a rack and pinion mechanism.
  • the rack and pinion mechanism 310 (first transmission mechanism 310) includes a pinion 311 provided on the motor shaft 301 (output shaft 301) of the second motor 300 and a rack 312 provided on the outer peripheral surface 280a of the first member 280. It consists of.
  • the rack and pinion mechanism 310 is housed in a gear housing 274.
  • the second transmission mechanism 320 converts the driving force generated by the second motor 300 into a swing driving force for swing driving the second member 290 and transmits the driving force to the second member 290. More specifically, the second transmission mechanism 320 is composed of the first bracket 321 and the second bracket 322 and the link 323.
  • the first bracket 321 is a member provided on the outer peripheral surface 273b of the peripheral wall 273 of the support member 270, and has an elongated hole 324 parallel to the axis CL12 of the first member 280.
  • the length of the elongated hole 324 is set shorter than the slidable length of the first member 280 with respect to the support member 270.
  • the second bracket 322 is provided on the second member 290.
  • the link 323 connects the elongated hole 324 and the second bracket 322 in a linkable manner. That is, one end of the link 323 is slidably connected to the elongated hole 324 by the first pin 325. The other end of the link 323 is swingably connected to the second bracket 322 by a second pin 326.
  • the steering wheel 11 shown in FIG. 2A is located at the non-retracted position P1 (first position P1).
  • the steering wheel adjusting device 260 is in the state shown in FIG. 12 (a). That is, the position of the steering wheel 11 is on the axis CL12 of the first member 280, and is the position farthest behind the autonomous driving vehicle 50 (see FIG. 2A) with respect to the support member 270 (advance position). Is located in.
  • the first pin 325 is located at the front end of the elongated hole 324.
  • the second motor 300 rotates in the forward direction (rotates in the first rotation direction) by receiving the storage command signal from the control device 15 (see FIG. 7).
  • the driving force of the forward rotation generated by the second motor 300 is transmitted to the first member 280 by the rack and pinion mechanism 310 (first transmission mechanism 310).
  • the first member 280 retracts with respect to the support member 270. Therefore, the steering wheel 11, the second member 290, and the second motor 300 move in a direction closer to the support member 270 (backward direction), that is, telescopically move.
  • the first pin 325 is located at the rear end of the elongated hole 324.
  • the movement amount L11 of the first pin 325 corresponds to the length L1 of the elongated hole 324.
  • FIG. 2 (b). 12 (c) and 2 (b) show that the steering wheel 11 is located at the retracted position P2 (second position P2). That is, the position of the steering wheel 11 is located at a position (retracted position) in which the steering wheel 11 is tilted upward by a preset angle from the axis CL12 of the first member 280 and retracted.
  • the second motor 300 rotates in the reverse direction (rotates in the second rotation direction) by receiving a non-storing command signal from the control device 15 (see FIG. 7).
  • the driving force of the reverse rotation generated by the second motor 300 is transmitted to the first member 280 by the rack and pinion mechanism 310.
  • the first member 280 advances with respect to the support member 270. Therefore, the steering wheel 11 tilts downward while telescopically moving forward, and returns to the position of the axis CL11 of the support member 270. This result is shown in FIG. 12 (b).
  • the electric power steering device 200 for a vehicle is Hollow support member 270 that can be attached to the vehicle body 56, A first member 280 slidably assembled to the inner peripheral surface 273a of the support member 270, and A second member 290 swingably connected to the tip 282 of the first member 280, A steering shaft 17 arranged on the second member 290 and concentrically located with respect to the axis CL12 of the first member 280.
  • a steering wheel 11 provided on the steering shaft 17 and The motor shaft 301 is located concentrically with respect to the axis CL12 of the first member 280 while being provided on either one of the first member 280 and the second member 290, and the steering force of the steering wheel 11 is provided.
  • the first motor 220 reaction motor 220
  • the second motor 300 provided on the support member 270 and A first transmission mechanism 310 that converts the driving force generated by the second motor 300 into a slide driving force that slides the first member 280 and transmits the driving force to the first member 280. It includes a second transmission mechanism 320 that converts the driving force generated by the second motor 300 into a swing driving force for swing-driving the second member 290 and transmits the driving force to the second member 290.
  • the first member 280 is slidably assembled to the inner peripheral surface 273a of the hollow support member 270 attached to the vehicle body 56. Therefore, the support member 270 can sufficiently increase the rigidity for slidably supporting the first member 280.
  • a second member 290 is swingably connected to the tip end portion 282 of the first member 280.
  • a steering wheel 11 is arranged on the second member 290.
  • the first member 280 or the second member 290 has a first motor 220 that generates a steering reaction force. Therefore, the first motor 220, which is indispensable for the steer-by-wire type electric power steering device 200, can be incorporated into the first member 280 or the second member 290 without protruding outward from the support member 270.
  • both the motor shaft 224 of the first motor 220 and the steering wheel 11 are located concentrically with respect to the axis CL12 of the first member 280. Therefore, it is possible to provide a smaller steer-by-wire type electric power steering device 200 having a function capable of telescopic movement and tilt movement of the steering wheel 11. As a result, the mountability of the electric power steering device 200 on the autonomous driving vehicle 50 can be improved.
  • the steering wheel 11 is connected to the motor shaft 224 of the first motor 220. That is, the transmission system that applies the steering reaction force from the motor shaft 224 of the first motor 220 to the steering wheel 11 does not have a speed reducer for decelerating the rotation of the first motor 220. Since the speed reducer does not intervene in the transmission system, the first member 280 provided with the first motor 220 can be miniaturized. Therefore, the steering wheel adjusting device 260 and the electric power steering device 200 can be further miniaturized. Therefore, the mountability of the electric power steering device 200 on the autonomous driving vehicle 50 can be further enhanced. Moreover, when the steering wheel 11 is steered, it is not affected by the reverse efficiency of the speed reducer. Therefore, the steering feeling of the steering wheel 11 can be further enhanced.
  • first motor 220 is integrally provided with the second member 290 among the first member 280 and the second member 290 (a configuration that also serves as the second member 290, or , It is a configuration incorporated in the second member 290),
  • the steering wheel 11 is connected to the motor shaft 224 (either directly or via the steering shaft 17).
  • the first member 280 does not need to have the first motor 220, and only needs to slide.
  • First member 280 It can be made with a simple structure and can be miniaturized. Moreover, the support rigidity of the first member 280 with respect to the support member 270 can be increased.
  • the first transmission mechanism 310 includes a pinion 311 that is rotated by the driving force of the second motor 300 and a rack 312 that is provided on the outer peripheral surface 280a of the first member 280 so as to be able to mesh with the pinion 311.
  • Consists of The second transmission mechanism 320 A first bracket 321 provided on the outer peripheral surface 273b of the support member 270 and having an elongated hole 324 parallel to the axis CL12 of the first member 280. It is composed of a link 323 that connects the elongated hole 324 and the second bracket 322 provided on the second member 290 so as to be linked.
  • the rack 312 is included in the first member 280 itself. Therefore, no separate member is required to provide the rack 312. Further, the first transmission mechanism 310 that performs a sliding motion and the second transmission mechanism 320 that performs a swing motion are linked to each other via only the first member 280. The driving force generated by the second motor 300 is transmitted from the first member 280 to the second member 290 and the first motor 220 by the second transmission mechanism 320. In order to convert the slide motion of the first member 280 into a swing motion, the second transmission mechanism 320 is used as a link mechanism. The first transmission mechanism 310 and the second transmission mechanism 320 can be miniaturized with a simple configuration.
  • the first bracket 321 has an elongated hole 324 in order to ensure smooth swing motion of the second member 290 and the first motor 220 regardless of the size of the slide range of the first member 280.
  • the length of the elongated hole 324 determines the start timing and the completion timing of the swing motion of the second member 290 and the first motor 220. That is, when the slide range is large, the length of the elongated hole 324 may be set large.
  • the swing angles of the second member 290 and the first motor 220 can be optimally set. Further, while the first member 280 is in a sliding motion, the second member 290 and the first motor 220 are in a swing motion. Therefore, the telescopic motion and the tilt motion of the steering wheel 11 can be performed in a short time by a single motor 300 (second motor 300). Therefore, the steering wheel 11 can be quickly switched between the non-retracted position P1 and the stored position P2. It is most suitable as the steering device 200 mounted on the autonomous driving vehicle 50.
  • the electric power steering device 200 for a vehicle is Hollow support member 270 that can be attached to the vehicle body 56, A first member 280 slidably assembled to the inner peripheral surface 273a of the support member 270, and A second member 290 swingably connected to the tip 282 of the first member 280, A steering wheel 11 arranged on the second member 290 and concentrically with respect to the axis CL12 of the first member 280. It is integrally provided with the second member 290 (including a configuration housed in the second member 290 and a configuration that also serves as a motor housing 221 of the first motor 220).
  • the motor shaft 224 is located concentrically with respect to the axis CL12 of the first member 280 and is connected to the steering wheel 11 to generate a steering reaction force that resists the steering force of the steering wheel 11.
  • the first motor 220 added to the steering wheel 11 and The second motor 300 provided on the support member 270 and A pinion 311 that is rotated by the driving force of the second motor 300, With the rack 312 provided on the outer peripheral surface 280a of the first member 280 so as to be meshable with the pinion 311.
  • a first bracket 321 provided on the outer peripheral surface 280a of the first member 280 and having an elongated hole 324 parallel to the axis CL12 of the first member 280. Includes a link 323 that connects the elongated hole 324 and the second bracket 322 provided on the second member 290 so as to be linked.
  • the first motor 220 which is indispensable for the steer-by-wire type electric power steering device 200, can be incorporated into the first member 280 or the second member 290 without protruding outward from the support member 270.
  • the electric power steering device 200 for a vehicle is The steering wheel 11 provided on the steering shaft 17 and A first motor 220 (reaction motor 220) that generates a steering reaction force on the steering shaft 17 and It has a second motor 300 that controls a telescopic operation of moving the steering wheel 11 forward and backward and a tilt operation of raising and lowering the steering wheel 11.
  • the first motor 220 has a motor shaft 224 concentrically with the steering wheel 11, and moves due to a telescopic operation or a tilt operation when the second motor 300 is driven.
  • the vehicle electric power steering device 400 of the third embodiment will be described with reference to FIG.
  • the vehicle electric power steering device 400 of the third embodiment includes the vehicle electric power steering device 10 of the first embodiment shown in FIG. 1 and the vehicle electric power steering device 200 of the second embodiment shown in FIG.
  • the control device 15 included in the above is changed (see FIG. 13), and the other configurations are the same as those of the first and second embodiments, and thus the description thereof will be omitted.
  • the control device 15 of the third embodiment is a steering motor in accordance with a steering angle sensor 41, a steering torque sensor 42, various other sensors 43, and a command from the driving position device 51. It controls 35, the first motors 20, 220, and the second motors 100, 300.
  • the control device 15 is configured by, for example, a microcomputer. An example of specific control of the control device 15 configured by the microcomputer will be described as follows. The control of the control device 15 will be described with reference to FIGS. 1 to 12.
  • FIG. 13 is a control flowchart of the control device 15, and shows a subroutine that executes an operation mode switching process in a series of controls of the control device 15. This subroutine is executed, for example, by interrupt processing under a predetermined condition or time division processing.
  • step S01 the steering wheel 11 is set to the manual driving position (first driving position) as shown in FIG. 2A. That is, the second motors 100 and 300 are controlled.
  • step S02 it is determined from the driving position device 51 whether or not there is a command to switch to the automatic operation mode.
  • the process proceeds to step S03.
  • step S03 it is determined whether or not to terminate this subroutine.
  • this subroutine is terminated, and if it is determined to continue, the process returns to step S02.
  • this step S02 is repeated until it is determined that there is a command to switch to the automatic operation mode.
  • step S04 it is determined whether or not the automatic driving function of the automatic driving vehicle 50 is normal. If there is a command from the driving position device 51 that it is normal, it is determined that it is normal, and the process proceeds to step S05.
  • step S05 the steering wheel 11 is set to the automatic driving position (second driving position) as shown in FIG. 2B. That is, the second motors 100 and 300 are controlled.
  • step S06 it is determined whether or not there is a command to switch to the manual operation mode from the driving position device 51.
  • the process proceeds to step S08.
  • step S08 it is determined whether or not to terminate this subroutine.
  • this subroutine is terminated, and if it is determined to continue, the process returns to step S04. In this way, when the steering wheel 11 is set to the automatic driving position, it is always determined whether or not the automatic driving function of the automatic driving vehicle 50 is normal.
  • step S06 determines whether or not to terminate this subroutine.
  • step S07 it is determined whether or not to terminate this subroutine.
  • this subroutine is terminated, and if it is determined to continue, the process returns to step S01 and the steering wheel 11 is set to the manual driving position.
  • step S04 if the automatic driving function of the automatic driving vehicle 50 is abnormal, if there is a command from the driving position device 51, it is determined that the automatic driving vehicle 50 is abnormal, and the process proceeds to step S09.
  • step S09 the steering wheel 11 is set to the manual driving position, and the process proceeds to step S10. That is, the second motors 100 and 300 are controlled.
  • step S10 it is determined whether or not to terminate this subroutine. Here, if it is determined to end, this subroutine is terminated, and if it is determined to continue, step S10 is repeated.
  • the steering wheel 11 Is maintained in the state of the manual operation position (non-retracted state). That is, when it is determined that an abnormality has occurred when there is a command to switch from the manual operation mode to the automatic operation mode, the steering wheel 11 is maintained in the manual operation position as it is. Further, when it is determined that an abnormality has occurred when the steering wheel 11 is in the automatic driving position, the steering wheel 11 is switched to the manual driving position.
  • the electric power steering device 400 for a vehicle is Further, a control device 15 for controlling the second motors 100 and 300 is provided.
  • the control device 15 determines that an abnormality has occurred in the automatic driving function of the automatic driving vehicle 50 equipped with the electric power steering device 400 for the vehicle, the steering wheel 11 is in a non-retracted state (non-storing position P1).
  • the configuration is such that the second motors 100 and 300 are controlled.
  • the driver Dr can manually steer the steering wheel 11.
  • the driver Dr can freely drive the self-driving vehicle 50.
  • the electric power steering devices 10, 200, and 400 for vehicles according to the present invention are not limited to the examples as long as they exhibit the actions and effects of the present invention.
  • Example 3 each of Example 1 and Example 2 can be appropriately combined.
  • the electric power steering devices 10, 200, 400 for vehicles of the present invention are suitable for mounting on the autonomous driving vehicle 50.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Controls (AREA)
  • Power Steering Mechanism (AREA)

Abstract

An electric power steering device (10) for a vehicle comprises: a hollow support member (70); a first member (80) that is slidably mounted on an inner circumferential surface (73a) of the support member (70); a second member (90) that is swingably coupled to a tip section (82) of the first member (80); a steering wheel (11) that is disposed on the second member (90); a first motor (20) that is included in either the first member (80) or the second member (90); and a second motor (100) that is provided to the support member (70). A motor shaft (24) of the first motor (20) and the steering wheel (11) are positioned concentric to an axis (CL2) of the first member (80). The first motor (20) generates a steering reactive force and applies same to the steering wheel (11). The second motor (100) causes the first member (80) to slide via a first transmission mechanism (110) and causes the second member (90) to swing via a second transmission mechanism (120).

Description

車両用電動パワーステアリング装置Electric power steering device for vehicles
 本発明は車両用電動パワーステアリング装置の改良に関する。 The present invention relates to an improvement of an electric power steering device for a vehicle.
 近年、車両の自動運転技術の開発が加速している。自動運転車両においては、運転者が自動運転と手動運転とに適宜切り替えつつ走行させることが想定され、自動運転中における運転者の快適性を向上することが求められる。快適性を向上するための技術は、例えば次の技術が知られている。
 (1)自動運転時における、運転者のドライビングポジションの調整、リクライニング動作の拡大、格納可能なペダル類を一体とした、機能を集約した運転席の技術。
 (2)自動運転時における、車室内での広い居住空間を創出するために、ステアリングホイールを格納する技術。
In recent years, the development of automatic vehicle driving technology has been accelerating. In an autonomous driving vehicle, it is assumed that the driver runs while appropriately switching between automatic driving and manual driving, and it is required to improve the driver's comfort during automatic driving. For example, the following techniques are known as techniques for improving comfort.
(1) Driver's seat technology that integrates functions such as adjustment of the driver's driving position, expansion of reclining operation, and retractable pedals during automatic driving.
(2) Technology for retracting the steering wheel in order to create a large living space in the passenger compartment during autonomous driving.
 自動運転による走行の一例としては、市街地での走行のように、転舵用車輪の転舵頻度が多く、転舵角が大きく変化することが多い地域で走行することが想定される。その場合に、ステアリングホイールの回転は、転舵用車輪の転舵に連動して激しく変化し得る。運転者は、目の前で起こる、ステアリングホイールの回転の激しい変化を、不快に感じる可能性がある。このような状況に対処するためにも、ステアリングホイールと転舵部との間が機械的に分離されることによって、自動運転中のステアリングホイールの挙動を抑止できるシステムの、ニーズが増加するものと考えられる。 As an example of driving by automatic driving, it is assumed that the vehicle travels in an area where the steering wheels are frequently steered and the steering angle often changes significantly, such as when driving in an urban area. In that case, the rotation of the steering wheel may change drastically in conjunction with the steering of the steering wheel. The driver may feel uncomfortable with the drastic changes in steering wheel rotation that occur in front of him. In order to deal with such a situation, there is an increasing need for a system that can suppress the behavior of the steering wheel during automatic driving by mechanically separating the steering wheel and the steering section. Conceivable.
 このようなニーズを踏まえ、車両の高度な自動運転技術に対応するためのステアリング装置としては、ステアリングホイールのテレスコピック運動とチルト運動とが可能な、ステアバイワイヤ(steer-by-wire)式電動パワーステアリング装置の開発が必要となる。ステアバイワイヤ式電動パワーステアリング装置は、ステアリングホイールと転舵部との間を、機械的に分離した構成である。 Based on these needs, as a steering device to support the advanced automatic driving technology of vehicles, a steer-by-wire type electric power steering capable of telescopic movement and tilt movement of the steering wheel is possible. Equipment development is required. The steer-by-wire electric power steering device has a configuration in which the steering wheel and the steering portion are mechanically separated.
 ステアバイワイヤ式ではないものの、一般的な車両用電動パワーステアリング装置において、ステアリングホイールのテレスコピック運動とチルト運動とを、単一のモータによって行う技術は、例えば特許文献1によって知られている。 Although it is not a steer-by-wire type, in a general electric power steering device for vehicles, a technique for performing a telescopic movement and a tilt movement of a steering wheel by a single motor is known, for example, in Patent Document 1.
 特許文献1で知られている車両用電動パワーステアリング装置は、ステアリングホイールの操舵トルクにアシスト用モータが発生した補助トルクを付加するとともに、ステアリング軸のチルト運動とテレスコピック運動とを、単一の統合モータ(チルト/テレスコピック用モータ)によって行うものである。 The electric power steering device for vehicles known in Patent Document 1 adds an auxiliary torque generated by an assist motor to the steering torque of the steering wheel, and integrates the tilt motion and the telescopic motion of the steering shaft into a single unit. It is performed by a motor (tilt / telescopic motor).
 ステアリングホイールを連結可能なステアリング軸は、コラムチューブの中に挿通されている。このコラムチューブの一端(ステアリングホイールとは反対側の端)は、車体に取り付けられるマウンティングブラケットに対して、チルト動作可能に結合されている。また、コラムチューブは、テレスコーピングチューブによって囲まれている。コラムチューブには、前記アシスト用モータと前記統合モータとが取り付けられている。 The steering shaft to which the steering wheel can be connected is inserted in the column tube. One end of this column tube (the end opposite to the steering wheel) is coupled to a mounting bracket attached to the vehicle body so that it can be tilted. The column tube is also surrounded by a telescoping tube. The assist motor and the integrated motor are attached to the column tube.
 統合モータは、ムービングロッドを回転且つ直線移動させる。このムービングロッドは、コラムチューブの軸線に沿っている。ムービングロッドには、チルト機構とテレスコピック機構とが連結されている。チルト機構とテレスコピック機構とは、それぞれ独立したクラッチを備える。 The integrated motor rotates and linearly moves the moving rod. This moving rod is along the axis of the column tube. A tilt mechanism and a telescopic mechanism are connected to the moving rod. The tilt mechanism and the telescopic mechanism are provided with independent clutches.
 チルトクラッチを係合状態にすると、チルト機構は、ムービングロッドの直線移動を、リンクアームを介してコラムチューブのチルト運動に変換する。テレスコーピングクラッチを係合状態にすると、テレスコピック機構は、ムービングロッドの直線移動を、テレスコーピングチューブを介してコラムチューブのテレスコ運動に変換する。このように、2つのクラッチを切り替えて、チルト動作とテレスコピック動作とを、個別に調整ことができる。 When the tilt clutch is engaged, the tilt mechanism converts the linear movement of the moving rod into the tilt movement of the column tube via the link arm. When the telescopic clutch is engaged, the telescopic mechanism converts the linear movement of the moving rod into the telescopic movement of the column tube via the telescoping tube. In this way, the tilt operation and the telescopic operation can be individually adjusted by switching the two clutches.
米国特許第8904902号明細書U.S. Pat. No. 8,904,902
 上述のように、特許文献1で知られている車両用電動パワーステアリング装置は、ステアバイワイヤ式の構成を想定したものではない。このため、この車両用電動パワーステアリング装置は、ステアリングホイールに付加する操舵反力を発生するための、反力モータを備えていない。 As described above, the electric power steering device for vehicles known in Patent Document 1 is not intended to have a steer-by-wire configuration. Therefore, this electric power steering device for vehicles does not include a reaction force motor for generating a steering reaction force applied to the steering wheel.
 自動運転車両に搭載するステアリング装置は、ステアリングホイールのテレスコピック運動とチルト運動とが可能な、ステアバイワイヤ式電動パワーステアリング装置であることが求められる。しかも、このステアリング装置は、自動運転時における車室内での広い居住空間を創出するために、より小型化を図ることが求められる。 The steering device mounted on the autonomous driving vehicle is required to be a steer-by-wire electric power steering device capable of telescopic movement and tilt movement of the steering wheel. Moreover, this steering device is required to be further miniaturized in order to create a large living space in the vehicle interior during automatic driving.
 本発明は、ステアリングホイールのテレスコピック運動とチルト運動とが可能な機能を有した、より小型のステアバイワイヤ式電動パワーステアリング装置を提供することを課題とする。 An object of the present invention is to provide a smaller steer-by-wire electric power steering device having a function capable of telescopic movement and tilt movement of the steering wheel.
 本発明によれば、
 車体に取り付け可能な中空状の支持部材と、
 前記支持部材の内周面にスライド可能に組み付けられた第1部材と、
 前記第1部材の先端部にスイング可能に連結された第2部材と、
 前記第2部材に配置されるとともに、前記第1部材の軸線に対して同心に位置しているステアリング軸と、
 前記ステアリング軸に設けられたステアリングホイールと、
 前記第1部材と前記第2部材とのいずれか一方に有するとともに、前記第1部材の前記軸線に対して同心にモータ軸が位置しており、前記ステアリングホイールの操舵力に抵抗する操舵反力を発生して前記ステアリングホイールに付加する第1モータと、
 前記支持部材に設けられた第2モータと、
 前記第2モータが発生した駆動力を、前記第1部材をスライド駆動するスライド駆動力に変換して、前記第1部材に伝達する第1伝動機構と、
 前記第2モータが発生した駆動力を、前記第2部材をスイング駆動するスイング駆動力に変換して、前記第2部材に伝達する第2伝動機構と、
を含む車両用電動パワーステアリング装置が提供される。
According to the present invention
Hollow support member that can be attached to the car body,
A first member slidably assembled on the inner peripheral surface of the support member and
A second member swingably connected to the tip of the first member,
A steering shaft that is arranged on the second member and is located concentrically with respect to the axis of the first member.
The steering wheel provided on the steering shaft and
A steering reaction force that is held in either one of the first member and the second member, and the motor shaft is located concentrically with respect to the axis of the first member and resists the steering force of the steering wheel. And the first motor that generates and adds to the steering wheel,
A second motor provided on the support member and
A first transmission mechanism that converts the driving force generated by the second motor into a slide driving force that slides the first member and transmits the driving force to the first member.
A second transmission mechanism that converts the driving force generated by the second motor into a swing driving force that drives the second member and transmits the second member to the second member.
An electric power steering device for a vehicle including the above is provided.
 本発明では、車体に取り付けられる支持部材の内周面に、第1部材がスライド可能に組み付けられている。この第1部材の先端部には、第2部材がスイング可能に連結されている。この第2部材には、ステアリングホイールが配置されている。第1部材又は第2部材は、操舵反力を発生する第1モータを有している。このため、ステアバイワイヤ式の電動パワーステアリング装置に必須である第1モータを、支持部材から外方へ張り出すことなく、第1部材又は第2部材に組み込むことができる。しかも、第1モータのモータ軸とステアリングホイールとの両方を、第1部材の軸線に対して同心に位置している。従って、ステアリングホイールのテレスコピック運動とチルト運動とが可能な機能を有した、より小型のステアバイワイヤ式電動パワーステアリング装置を提供することができる。 In the present invention, the first member is slidably assembled on the inner peripheral surface of the support member attached to the vehicle body. A second member is swingably connected to the tip of the first member. A steering wheel is arranged on the second member. The first member or the second member has a first motor that generates a steering reaction force. Therefore, the first motor, which is indispensable for the steer-by-wire type electric power steering device, can be incorporated into the first member or the second member without protruding outward from the support member. Moreover, both the motor shaft of the first motor and the steering wheel are located concentrically with respect to the axis of the first member. Therefore, it is possible to provide a smaller steer-by-wire electric power steering device having a function capable of telescopic movement and tilt movement of the steering wheel.
本発明による実施例1の車両用電動パワーステアリング装置の模式図である。It is a schematic diagram of the electric power steering apparatus for a vehicle of Example 1 by this invention. 図1に示される車両用電動パワーステアリング装置を搭載した自動運転車両の模式的な説明図である。It is a schematic explanatory drawing of the self-driving vehicle equipped with the electric power steering device for a vehicle shown in FIG. 図1に示されるステアリングホイール調節装置の斜視図である。It is a perspective view of the steering wheel adjustment device shown in FIG. 図3に示されるステアリングホイール調節装置の断面図である。It is sectional drawing of the steering wheel adjustment device shown in FIG. 図4の5矢視図である。It is 5 arrow view of FIG. 図4に示されるステアリングホイール調節装置の作用図である。It is an operation diagram of the steering wheel adjustment device shown in FIG. 本発明による実施例2の車両用電動パワーステアリング装置の模式図である。It is a schematic diagram of the electric power steering apparatus for a vehicle of Example 2 by this invention. 図7に示されるステアリングホイール調節装置の斜視図である。It is a perspective view of the steering wheel adjustment device shown in FIG. 図8に示されるステアリングホイール調節装置の側面図である。It is a side view of the steering wheel adjustment device shown in FIG. 図9に示されるステアリングホイール調節装置の断面図である。It is sectional drawing of the steering wheel adjustment device shown in FIG. 図10の11-11線に沿った断面図である。It is sectional drawing which follows the 11-11 line of FIG. 図9に示されるステアリングホイール調節装置の作用図である。It is an operation diagram of the steering wheel adjustment device shown in FIG. 本発明による実施例3の車両用電動パワーステアリング装置の制御装置の制御フローチャートである。It is a control flowchart of the control device of the electric power steering device for a vehicle of Example 3 by this invention.
 本発明を実施するための形態を添付図に基づいて以下に説明する。添付図に示した形態は本発明の一例であり、本発明は当該形態に限定されない。 A mode for carrying out the present invention will be described below based on the attached figure. The form shown in the attached figure is an example of the present invention, and the present invention is not limited to this form.
<実施例1>
 図1~図6を参照しつつ、実施例1の車両用電動パワーステアリング装置10を説明する。図1に示されるように、車両用電動パワーステアリング装置10は、ステアリングホイール11の操舵入力が生じる操舵部12と、左右の転舵車輪13,13(タイヤを含む)を転舵する転舵部14と、制御装置15とを含む。左右の転舵車輪13,13は、転舵部14によって転舵されるものであればよく、前輪、後輪、又は両方を含む。以下、車両用電動パワーステアリング装置10のことを、単に「ステアリング装置10」と略称する。
<Example 1>
The vehicle electric power steering device 10 of the first embodiment will be described with reference to FIGS. 1 to 6. As shown in FIG. 1, the electric power steering device 10 for a vehicle has a steering unit 12 in which a steering input of the steering wheel 11 is generated, and a steering unit that steers the left and right steering wheels 13 and 13 (including tires). 14 and a control device 15. The left and right steering wheels 13 and 13 may be those that are steered by the steering portion 14, and include front wheels, rear wheels, or both. Hereinafter, the electric power steering device 10 for a vehicle is simply abbreviated as "steering device 10".
 操舵部12と転舵部14との間は、機械的に分離されている。このため、ステアリング装置10は、ステアリングホイール11の操舵量に応じて転舵用アクチュエータ34を作動させることにより、左右の転舵車輪13,13を転舵する方式、いわゆるステアバイワイヤ式(steer-by-wire)を採用している。 The steering unit 12 and the steering unit 14 are mechanically separated. Therefore, the steering device 10 steers the left and right steering wheels 13 and 13 by operating the steering actuator 34 according to the steering amount of the steering wheel 11, so-called steer-by. -wire) is adopted.
 操舵部12は、運転者が操舵するステアリングホイール11と、このステアリングホイール11に一端を連結されているステアリング軸17と、ステアリングホイール11に対しステアリング軸17を介して操舵反力(反力トルク)を付加する反力モータ20と、を含む。 The steering unit 12 has a steering wheel 11 steered by the driver, a steering shaft 17 having one end connected to the steering wheel 11, and a steering reaction force (reaction torque) with respect to the steering wheel 11 via the steering shaft 17. 20 and the reaction force motor 20 for adding the above.
 この反力モータ20は、運転者が操舵するステアリングホイール11の操舵力に抵抗する操舵反力を発生するとともに、この操舵反力をステアリングホイール11に付加することによって、運転者に操舵感を与える。この反力モータ20は、電動モータによって構成される。以下、この反力モータ20のことを、適宜「第1モータ20」と言い換える。この第1モータ20の詳細については、後述する。 The reaction force motor 20 generates a steering reaction force that resists the steering force of the steering wheel 11 steered by the driver, and applies this steering reaction force to the steering wheel 11 to give the driver a feeling of steering. .. The reaction force motor 20 is composed of an electric motor. Hereinafter, the reaction force motor 20 will be appropriately referred to as a “first motor 20”. Details of the first motor 20 will be described later.
 転舵部14は、車幅方向へ延びている転舵軸31と、この転舵軸31の両端にタイロッド32,32及びナックル33,33を介して連結されている左右の転舵車輪13,13と、転舵軸31に転舵用動力を付加する転舵用アクチュエータ34と、を含む。 The steering section 14 includes a steering shaft 31 extending in the vehicle width direction, and left and right steering wheels 13 connected to both ends of the steering shaft 31 via tie rods 32, 32 and knuckles 33, 33. 13 and a steering actuator 34 that applies steering power to the steering shaft 31 are included.
 転舵用アクチュエータ34は、転舵用動力を発生する転舵モータ35と、転舵用動力を転舵軸31に伝達する転舵動力伝達機構36とからなる。転舵モータ35は、例えば電動モータによって構成される。転舵動力伝達機構36は、例えば第1伝達機構37と第2伝達機構38とからなる。 The steering actuator 34 includes a steering motor 35 that generates steering power and a steering power transmission mechanism 36 that transmits steering power to the steering shaft 31. The steering motor 35 is composed of, for example, an electric motor. The steering power transmission mechanism 36 includes, for example, a first transmission mechanism 37 and a second transmission mechanism 38.
 第1伝達機構37は、例えばウォームギア機構によって構成される。このウォームギア機構37(第1伝達機構37)は、転舵モータ35のモータ軸35a(出力軸35a)に設けられたウォーム37aと、伝動軸37bに設けられたウォームホイール37cとからなる。 The first transmission mechanism 37 is composed of, for example, a worm gear mechanism. The worm gear mechanism 37 (first transmission mechanism 37) includes a worm 37a provided on the motor shaft 35a (output shaft 35a) of the steering motor 35 and a worm wheel 37c provided on the transmission shaft 37b.
 第2伝達機構38は、例えばラックアンドピニオン機構によって構成される。このラックアンドピニオン機構38(第2伝達機構38)は、伝動軸37bに設けられたピニオン38aと、転舵軸31に設けられたラック38bとからなる。転舵モータ35が発生した転舵用動力は、ウォームギア機構37及びラックアンドピニオン機構38によって転舵軸31に付加される。 The second transmission mechanism 38 is composed of, for example, a rack and pinion mechanism. The rack and pinion mechanism 38 (second transmission mechanism 38) includes a pinion 38a provided on the transmission shaft 37b and a rack 38b provided on the steering shaft 31. The steering power generated by the steering motor 35 is applied to the steering shaft 31 by the worm gear mechanism 37 and the rack and pinion mechanism 38.
 車両用ステアリング装置10は操舵角センサ41、操舵トルクセンサ42、その他の各種センサ43を備えている。操舵角センサ41は、ステアリングホイール11の操舵角を検出する。操舵トルクセンサ42は、ステアリング軸17に発生する操舵トルクを検出する。 The vehicle steering device 10 includes a steering angle sensor 41, a steering torque sensor 42, and various other sensors 43. The steering angle sensor 41 detects the steering angle of the steering wheel 11. The steering torque sensor 42 detects the steering torque generated on the steering shaft 17.
 このステアバイワイヤ式の車両用電動パワーステアリング装置10は、自動運転車両50(図2参照)に搭載することが可能であって、ステアリングホイール11のテレスコピック運動とチルト運動とを行うための、ステアリングホイール調節装置60を備えている。このステアリングホイール調節装置60は、自動運転車両50に搭載されているドライビングポジション装置51の指令を受けた制御装置15によって、制御される。 This steer-by-wire type electric power steering device 10 for a vehicle can be mounted on an automatic driving vehicle 50 (see FIG. 2), and is a steering wheel for performing a telescopic motion and a tilt motion of the steering wheel 11. The adjusting device 60 is provided. The steering wheel adjusting device 60 is controlled by a control device 15 that receives a command from the driving position device 51 mounted on the autonomous driving vehicle 50.
 このステアリングホイール調節装置60によれば、ステアリングホイール11のテレスコピック運動とチルト運動とを、単一のモータ100(第2モータ100)によって行うことができる。この単一のモータ100のことを、以下、適宜「第2モータ100」と言い換える。この第2モータ100は、例えば電動モータによって構成される。 According to the steering wheel adjusting device 60, the telescopic motion and the tilt motion of the steering wheel 11 can be performed by a single motor 100 (second motor 100). The single motor 100 is hereinafter appropriately referred to as a "second motor 100". The second motor 100 is composed of, for example, an electric motor.
 上記制御装置15は、操舵角センサ41と操舵トルクセンサ42とその他の各種センサ43との各信号、及びドライビングポジション装置51の指令に従って、第1モータ20と転舵モータ35と第2モータ100とを制御している。その他の各種センサ43には、各モータ20,35,100の回転角や駆動電流を検出する各センサ、車速センサ、ヨーレートセンサ、加速度センサを含む。 The control device 15 includes the first motor 20, the steering motor 35, and the second motor 100 in accordance with the signals of the steering angle sensor 41, the steering torque sensor 42, and various other sensors 43, and the command of the driving position device 51. Is in control. The other various sensors 43 include sensors for detecting the rotation angles and drive currents of the motors 20, 35, 100, vehicle speed sensors, yaw rate sensors, and acceleration sensors.
 ドライビングポジション装置51は、自動運転車両50による運転状況を判断して、各種の装置を、図2(a)に示される運転者Drが手動運転をする第1ドライビングポジションと、図2(b)に示される運転者Drが自動運転をする第2ドライビングポジションとに、制御する。 The driving position device 51 determines the driving situation of the self-driving vehicle 50, and drives the various devices manually by the driver Dr shown in FIG. 2A and the first driving position shown in FIG. 2B. It is controlled to the second driving position in which the driver Dr shown in the above automatically operates.
 図2(a)は、運転者Drが手動運転をする一例の第1ドライビングポジションを示している。この第1ドライビングポジションでは、ステアリングホイール11、シート53及びペダル54は、運転者Drが手動運転をするのに適している、予め設定された各位置に、自動的に制御される。ステアリングホイール11は、非格納位置P1(第1位置P1)に位置している。この非格納位置P1は、運転者Drがステアリングホイール11を操舵し易い位置である。 FIG. 2A shows an example of the first driving position in which the driver Dr manually drives. In this first driving position, the steering wheel 11, seat 53 and pedal 54 are automatically controlled to preset positions suitable for manual driving by the driver Dr. The steering wheel 11 is located at the non-retracted position P1 (first position P1). This non-retracted position P1 is a position where the driver Dr can easily steer the steering wheel 11.
 図2(b)は、運転者Drが自動運転をする一例の第2ドライビングポジションを示している。この第2ドライビングポジションでは、ステアリングホイール11、シート53及びペダル54は、運転者Drがリラックスすることができる、予め設定された各位置に、自動的に制御される。この自動運転時における、車室55内での広い居住空間を創出するために、ステアリングホイール11は格納位置P2(第2位置P2)に位置している。この格納位置P2は、図2(a)に示される非格納位置P1に比べて、前進位置に且つ上に傾いている。 FIG. 2B shows an example of the second driving position in which the driver Dr automatically drives. In this second driving position, the steering wheel 11, seat 53 and pedals 54 are automatically controlled to preset positions where the driver Dr can relax. The steering wheel 11 is located at the retracted position P2 (second position P2) in order to create a large living space in the vehicle interior 55 during this automatic driving. The storage position P2 is tilted forward and upward as compared with the non-storage position P1 shown in FIG. 2A.
 以下、このステアリングホイール調節装置60について、詳しく説明する。図3~図5に示されるように、このステアリングホイール調節装置60は、支持部材70と第1部材80と第2部材90と第2モータ100と第1伝動機構110と第2伝動機構120と、を含む。 Hereinafter, the steering wheel adjusting device 60 will be described in detail. As shown in FIGS. 3 to 5, the steering wheel adjusting device 60 includes a support member 70, a first member 80, a second member 90, a second motor 100, a first transmission mechanism 110, and a second transmission mechanism 120. ,including.
 支持部材70は、自動運転車両50の前後方向に延びた状態で位置することが可能な中空状(例えば筒状。好ましくは円筒状)の部材であって、この自動運転車両50の車体56に取り付け可能なブラケット71を有している。この支持部材70の両端は、開放されている。さらに、この支持部材70は、この支持部材70の軸線CL1(中心線CL1)に対して平行なスリット72(長孔を含む)を有する。このスリット72は、支持部材70の周壁73を内外に貫通している。 The support member 70 is a hollow (for example, cylindrical, preferably cylindrical) member that can be positioned so as to extend in the front-rear direction of the autonomous driving vehicle 50, and is formed on the vehicle body 56 of the autonomous driving vehicle 50. It has a bracket 71 that can be attached. Both ends of the support member 70 are open. Further, the support member 70 has a slit 72 (including an elongated hole) parallel to the axis CL1 (center line CL1) of the support member 70. The slit 72 penetrates the peripheral wall 73 of the support member 70 in and out.
 第1部材80は、支持部材70の周壁73の内周面73aに、この支持部材70の軸線CL1に沿ってスライド可能に組み付けられた中空状(例えば筒状。好ましくは円筒状)の部材である。つまり、第1部材80は、支持部材70の周壁73に軸線CL1に沿ってスライド可能、つまりテレスコピック運動が可能に嵌合している。この第1部材80の両端は、開放されている。第1部材80の軸線CL2(中心線CL2)は、支持部材70の軸線CL1に合致している。この第1部材80は、前記第1モータ20を収納している。この第1モータ20は、第1部材80に対して、軸方向と周方向との両方に相対変位を規制されている。例えば、モータハウジング21が第1部材80に圧入や焼き嵌めされることによって、第1モータ20は第1部材80に対する相対変位を規制される。 The first member 80 is a hollow (for example, cylindrical, preferably cylindrical) member slidably assembled along the axis CL1 of the support member 70 on the inner peripheral surface 73a of the peripheral wall 73 of the support member 70. is there. That is, the first member 80 is slidably fitted to the peripheral wall 73 of the support member 70 along the axis CL1, that is, can be telescopically moved. Both ends of the first member 80 are open. The axis CL2 (center line CL2) of the first member 80 coincides with the axis CL1 of the support member 70. The first member 80 houses the first motor 20. The first motor 20 is restricted from relative displacement to the first member 80 in both the axial direction and the circumferential direction. For example, the motor housing 21 is press-fitted or shrink-fitted into the first member 80 to regulate the relative displacement of the first motor 20 with respect to the first member 80.
 第1部材80の長さは、支持部材70に対する第1部材80のスライド可能な範囲(ストローク)、つまり、ステアリングホイール11のテレスコピック運動量を、十分に確保できる長さに設定されている。これに対し、支持部材70に第1モータ20を直接に収納した構成では、十分なストロークを確保するために、第1モータ20が軸方向に大型化してしまうので、得策ではない。第1部材80を設けたので、第1モータ20を大型化することなく、支持部材70に対する第1モータ20のスライド量を、十分に確保することができる。 The length of the first member 80 is set to a length that can sufficiently secure the slidable range (stroke) of the first member 80 with respect to the support member 70, that is, the telescopic momentum of the steering wheel 11. On the other hand, in the configuration in which the first motor 20 is directly housed in the support member 70, the first motor 20 becomes large in the axial direction in order to secure a sufficient stroke, which is not a good idea. Since the first member 80 is provided, the slide amount of the first motor 20 with respect to the support member 70 can be sufficiently secured without increasing the size of the first motor 20.
 図4に示されるように、この第1モータ20は、第1部材80の軸線CL2に対して同心に位置している。詳しく述べると、この第1モータ20は、第1部材80の周壁81の内周面81aに固定された有底の中空状(例えば有底筒状。好ましくは有底の円筒状)のモータハウジング21と、このモータハウジング21の開放端を塞いでいるリッド22と、このモータハウジング21の内部に軸受23,23によって回転可能に収納されたモータ軸24(出力軸24)と、このモータ軸24に有しているロータ25と、このロータ25の外周囲に位置してモータハウジング21の内部に設けられたステータ26と、を含む。 As shown in FIG. 4, the first motor 20 is located concentrically with respect to the axis CL2 of the first member 80. More specifically, the first motor 20 is a bottomed hollow (for example, bottomed tubular shape, preferably bottomed cylindrical shape) motor housing fixed to the inner peripheral surface 81a of the peripheral wall 81 of the first member 80. 21, a lid 22 that closes the open end of the motor housing 21, a motor shaft 24 (output shaft 24) that is rotatably housed inside the motor housing 21 by bearings 23 and 23, and the motor shaft 24. Includes a rotor 25 provided in the motor housing 21 and a stator 26 located inside the motor housing 21 located on the outer periphery of the rotor 25.
 この第1モータ20は、モータ回転角センサ27(例えばレゾルバ)と制御ユニット28とを有する。モータ回転角センサ27は、第1モータ20の回転角を検出する。制御ユニット28は、第1モータ20(例えばリッド22)に組み付けられるとともに、第1部材80に収納されされており、制御装置15(図1参照)の制御指令に基づいて第1モータ20を制御する。この第1モータ20のモータ軸24は、第1部材80の軸線CL2に対して同心に位置している。 The first motor 20 has a motor rotation angle sensor 27 (for example, a resolver) and a control unit 28. The motor rotation angle sensor 27 detects the rotation angle of the first motor 20. The control unit 28 is assembled to the first motor 20 (for example, the lid 22) and housed in the first member 80, and controls the first motor 20 based on the control command of the control device 15 (see FIG. 1). To do. The motor shaft 24 of the first motor 20 is located concentrically with respect to the axis CL2 of the first member 80.
 図3及び図4に示されるように、第2部材90は、第1部材80の軸線CL2に対して同心に位置するとともに、第1モータ20に向かって開放した有底の中空状(例えば有底筒状。好ましくは有底の円筒状)の部材である。この第2部材90は、第1部材80の先端部82に対して上下方向にスイング可能、つまりチルト運動が可能である。詳しく述べると、第1部材80と第1モータ20との、少なくともいずれか一方は、モータ軸24に沿いつつ、第2部材90まで延びた延長部91を有している。この延長部91は、例えば、モータハウジング21からモータ軸24を挟みつつ、第2部材90の側面90a(図3得参照)まで延びるとともに、この側面90aを挟んでいるフォーク状の構成である。つまり、延長部91は、一対の先端部91a,91aを有している。 As shown in FIGS. 3 and 4, the second member 90 is located concentrically with respect to the axis CL2 of the first member 80, and has a bottomed hollow shape (for example, having) that opens toward the first motor 20. It is a member having a bottom tubular shape, preferably a bottomed cylindrical shape). The second member 90 can swing in the vertical direction with respect to the tip end portion 82 of the first member 80, that is, can tilt. More specifically, at least one of the first member 80 and the first motor 20 has an extension portion 91 extending to the second member 90 along the motor shaft 24. The extension portion 91 has a fork-like structure that extends from the motor housing 21 to the side surface 90a (see FIG. 3) of the second member 90 while sandwiching the motor shaft 24, and sandwiches the side surface 90a. That is, the extension portion 91 has a pair of tip portions 91a, 91a.
 第2部材90は、延長部91の一対の先端部91a,91a間に挟まれており、この一対の先端部91a,91aに支持軸92によってスイング可能に連結されている。この結果、第2部材90は、第1部材80の先端部82にスイング可能(チルト可能)に連結されている。 The second member 90 is sandwiched between a pair of tip portions 91a, 91a of the extension portion 91, and is swingably connected to the pair of tip portions 91a, 91a by a support shaft 92. As a result, the second member 90 is swingably (tiltable) connected to the tip 82 of the first member 80.
 この第2部材90に対し、前記ステアリング軸17は軸受93により、相対回転が許容され且つ軸方向への相対移動が規制されて設けられている。このステアリング軸17は、第1部材80の軸線CL2に対して同心に位置しており、第2部材90の内部において、第1モータ20のモータ軸24に自在軸継手94(ユニバーサルジョイント94)により連結されている。この結果、前記ステアリングホイール11は、モータ軸24に自在軸継手94によって連結されている。この自在軸継手94が屈曲する点Q1(屈曲点Q1)は、第1部材80に対する第2部材90のスイング基点Q2(支持軸92の中心Q2)に合致している。 With respect to the second member 90, the steering shaft 17 is provided with a bearing 93 that allows relative rotation and restricts relative movement in the axial direction. The steering shaft 17 is located concentrically with respect to the axis CL2 of the first member 80, and inside the second member 90, a universal joint 94 (universal joint 94) is attached to the motor shaft 24 of the first motor 20. It is connected. As a result, the steering wheel 11 is connected to the motor shaft 24 by a universal shaft joint 94. The bending point Q1 (bending point Q1) of the universal shaft joint 94 coincides with the swing base point Q2 (center Q2 of the support shaft 92) of the second member 90 with respect to the first member 80.
 図3~図5に示されるように、第2モータ100は、ギヤハウジング74に取り付けられており、単一の軸111を駆動する。ギヤハウジング74は、支持部材70の周壁73に有しているベース75に、取り付けられている。 As shown in FIGS. 3 to 5, the second motor 100 is attached to the gear housing 74 and drives a single shaft 111. The gear housing 74 is attached to a base 75 provided on the peripheral wall 73 of the support member 70.
 第1伝動機構110は、第2モータ100が発生した駆動力を、第1部材80をスライド駆動するスライド駆動力に変換して、第1部材80に伝達する。この第1伝動機構110は、単一の軸111と、この軸111に第2モータ100の駆動力を伝達する駆動力伝達部112と、軸111の回転運動を第1部材80のスライド運動に変換する第1変換機構116と、によって構成されている。 The first transmission mechanism 110 converts the driving force generated by the second motor 100 into a slide driving force that slides the first member 80 and transmits the driving force to the first member 80. The first transmission mechanism 110 uses a single shaft 111, a driving force transmission unit 112 that transmits the driving force of the second motor 100 to the shaft 111, and a rotational movement of the shaft 111 as a sliding movement of the first member 80. It is composed of a first conversion mechanism 116 for conversion.
 この単一の軸111は、第1部材80の軸線CL2に対して平行に位置するとともに、支持部材70の外周面73b(周壁73の外周面73b)に沿って延びている。この軸111は、ギヤハウジング74に軸受76,76によって支持されるとともに、延長部91から軸111へ向かって延びた支持アーム95によって支持されている。この結果、この軸111は、支持部材70に対して、相対回転が許容され且つ軸方向への相対移動が規制されて設けられている。さらに、この軸111は、第1の雄ねじ111a及び第2の雄ねじ111bを有している。 The single shaft 111 is located parallel to the axis CL2 of the first member 80 and extends along the outer peripheral surface 73b of the support member 70 (the outer peripheral surface 73b of the peripheral wall 73). The shaft 111 is supported by bearings 76 and 76 in the gear housing 74, and is also supported by a support arm 95 extending from the extension portion 91 toward the shaft 111. As a result, the shaft 111 is provided with respect to the support member 70 so that relative rotation is permitted and relative movement in the axial direction is restricted. Further, the shaft 111 has a first male screw 111a and a second male screw 111b.
 図4に示されるように、駆動力伝達部112は、例えばウォームギヤ機構によって構成されている。このウォームギヤ機構112(駆動力伝達部112)は、第2モータ100のモータ軸101(出力軸101)に設けられたウォーム113と、軸111に設けられたウォームホイール114とからなる。このウォームギヤ機構112は、ギヤハウジング74に収納されている。 As shown in FIG. 4, the driving force transmission unit 112 is configured by, for example, a worm gear mechanism. The worm gear mechanism 112 (driving force transmission unit 112) includes a worm 113 provided on the motor shaft 101 (output shaft 101) of the second motor 100, and a worm wheel 114 provided on the shaft 111. The worm gear mechanism 112 is housed in the gear housing 74.
 図4に示されるように、第1変換機構116は、軸111に有している第1の雄ねじ111aと、この第1の雄ねじ111aに組み合っている第1の雌ねじ117と、この第1の雌ねじ117を有しているアーム118と、によって構成されている。このアーム118は、第1部材80と第1モータ20とのいずれか一方から軸111へ向かって延びている。例えば、このアーム118は、第1モータ20から、スリット72を貫通して軸111まで延びている。第1の雄ねじ111aと第1の雌ねじ117とは、台形ねじによって構成することが好ましい。 As shown in FIG. 4, the first conversion mechanism 116 includes a first male screw 111a provided on the shaft 111, a first female screw 117 assembled with the first male screw 111a, and the first female screw 111a. It is composed of an arm 118 having a female screw 117. The arm 118 extends from either the first member 80 or the first motor 20 toward the shaft 111. For example, the arm 118 extends from the first motor 20 through the slit 72 to the shaft 111. The first male screw 111a and the first female screw 117 are preferably formed of trapezoidal screws.
 図3及び図4に示されるように、第2伝動機構120は、第2モータ100が発生した駆動力を、第2部材90をスイング駆動するスイング駆動力に変換して、第2部材90に伝達する。この第2伝動機構120は、軸111の回転運動を第2部材90のスイング運動に変換する第2変換機構121によって構成されている。この第2変換機構121は、軸111に有している第2の雄ねじ111bと、第2の雄ねじ111bに組み合っている第2の雌ねじ122と、第2の雌ねじ122を有しているとともに軸111に沿って変位可能なスライダ123と、スライダ123と第2部材90との間を連係可能に繋いでいるリンク124と、によって構成されている。 As shown in FIGS. 3 and 4, the second transmission mechanism 120 converts the driving force generated by the second motor 100 into a swing driving force for swing-driving the second member 90, and converts the driving force into the second member 90. introduce. The second transmission mechanism 120 is composed of a second conversion mechanism 121 that converts the rotational movement of the shaft 111 into the swing movement of the second member 90. The second conversion mechanism 121 has a second male screw 111b on the shaft 111, a second female screw 122 engaged with the second male screw 111b, and a second female screw 122, and also has a shaft. It is composed of a slider 123 that can be displaced along 111, and a link 124 that connects the slider 123 and the second member 90 in a linkable manner.
 スライダ123は、リンク124の一端をスイング可能に連結する第1リンク用連結ブラケット125を有している。一方、第2部材90は、リンク124の他端をスイング可能に連結する第2リンク用連結ブラケット126を有している。 The slider 123 has a first link connecting bracket 125 that connects one end of the link 124 so as to be swingable. On the other hand, the second member 90 has a second link connecting bracket 126 that swingably connects the other end of the link 124.
 第2の雄ねじ111bと第2の雌ねじ122とは、台形ねじによって構成することが好ましい。また、第2の雄ねじ111b及び第2の雌ねじ122は、ねじ方向とピッチとの少なくとも一方を、第1の雄ねじ111a及び第1の雌ねじ117に対して異なっていることが好ましい。例えば、ねじ方向が逆向きである。 The second male screw 111b and the second female screw 122 are preferably formed of trapezoidal screws. Further, it is preferable that at least one of the screw direction and the pitch of the second male screw 111b and the second female screw 122 is different from that of the first male screw 111a and the first female screw 117. For example, the screw direction is opposite.
 次に、ステアリングホイール調節装置60の作用について、図2、図4及び図6を参照しつつ説明する。
 図2(a)に示されるステアリングホイール11は、非格納位置P1(第1位置P1)に位置している。このときのステアリングホイール調節装置60は、図4に示される状態にある。つまり、ステアリングホイール11の位置は、第1部材80の軸線CL2上にあるとともに、支持部材70に対して最も自動運転車両50(図2(a)参照)の後方へ離れた位置(前進位置)に位置している。
Next, the operation of the steering wheel adjusting device 60 will be described with reference to FIGS. 2, 4 and 6.
The steering wheel 11 shown in FIG. 2A is located at the non-retracted position P1 (first position P1). The steering wheel adjusting device 60 at this time is in the state shown in FIG. That is, the position of the steering wheel 11 is on the axis CL2 of the first member 80, and is the position farthest behind the autonomous driving vehicle 50 (see FIG. 2A) with respect to the support member 70 (advance position). Is located in.
 その後、第2モータ100は制御装置15(図1参照)から格納指令信号を受けることによって、正回転(第1の回転方向へ回転)する。第2モータ100が発生した正回転の駆動力は、ウォームギヤ機構112を介して軸111に伝わる。この軸111の回転によって、アーム118と第1部材80と第1モータ20は、ステアリングホイール11が支持部材70に対して近づく方向(後退方向)に移動、つまりテレスコピック運動をする。この結果、第1モータ20のモータ軸24に連結されているステアリング軸17と、延長部91の一対の先端部91a,91aに連結されている第2部材90は、後退方向に移動する。 After that, the second motor 100 rotates forward (rotates in the first rotation direction) by receiving a storage command signal from the control device 15 (see FIG. 1). The driving force of the forward rotation generated by the second motor 100 is transmitted to the shaft 111 via the worm gear mechanism 112. Due to the rotation of the shaft 111, the arm 118, the first member 80, and the first motor 20 move in the direction in which the steering wheel 11 approaches the support member 70 (backward direction), that is, telescopically. As a result, the steering shaft 17 connected to the motor shaft 24 of the first motor 20 and the second member 90 connected to the pair of tip portions 91a, 91a of the extension portion 91 move in the backward direction.
 一方、第2の雄ねじ111b及び第2の雌ねじ122のねじ方向が、第1の雄ねじ111a及び第1の雌ねじ117に対して逆向きである。このため、スライダ123はアーム118に対して逆方向(前進方向)に移動し、リンク124を介して第2部材90を上方にスイング駆動する。この結果、第2部材90及びステアリング軸17は、上方にチルト運動をする。 On the other hand, the screw directions of the second male screw 111b and the second female screw 122 are opposite to those of the first male screw 111a and the first female screw 117. Therefore, the slider 123 moves in the opposite direction (forward direction) with respect to the arm 118, and swings the second member 90 upward via the link 124. As a result, the second member 90 and the steering shaft 17 tilt upward.
 つまり、ステアリングホイール11は、後方にテレスコピック運動をしつつ上方にチルト運動をする。この結果を図6及び図2(b)に示している。図6及び図2(b)は、ステアリングホイール11が格納位置P2(第2位置P2)に位置していることを示している。つまり、ステアリングホイール11の位置は、第1部材80の軸線CL2から予め設定されている角度だけ上方に傾いて後退した位置(後退位置)に位置している。 That is, the steering wheel 11 tilts upward while telescopically moving backward. The results are shown in FIGS. 6 and 2 (b). 6 and 2 (b) show that the steering wheel 11 is located at the retracted position P2 (second position P2). That is, the position of the steering wheel 11 is located at a position (retracted position) in which the steering wheel 11 is tilted upward by a preset angle from the axis CL2 of the first member 80 and retracted.
 その後、第2モータ100は制御装置15(図1参照)から非格納指令信号を受けることによって、逆回転(第2の回転方向へ回転)する。第2モータ100が発生した逆回転の駆動力は、ウォームギヤ機構112を介して軸111に伝わる。この軸111の回転によって、アーム118と第1部材80と第1モータ20は、ステアリングホイール11が支持部材70に対して離れる方向(前進方向)に移動、つまりテレスコピック運動をする。この結果、第1モータ20のモータ軸24に連結されているステアリング軸17と、延長部91の一対の先端部91a,91aに連結されている第2部材90は、前進方向に移動する。 After that, the second motor 100 rotates in the reverse direction (rotates in the second rotation direction) by receiving a non-storing command signal from the control device 15 (see FIG. 1). The driving force of the reverse rotation generated by the second motor 100 is transmitted to the shaft 111 via the worm gear mechanism 112. Due to the rotation of the shaft 111, the arm 118, the first member 80, and the first motor 20 move in the direction in which the steering wheel 11 separates from the support member 70 (forward direction), that is, telescopically moves. As a result, the steering shaft 17 connected to the motor shaft 24 of the first motor 20 and the second member 90 connected to the pair of tip portions 91a, 91a of the extension portion 91 move in the forward direction.
 一方、スライダ123はアーム118に対して逆方向(後退方向)に移動し、リンク124を介して第2部材90を下方にスイング駆動する。この結果、第2部材90及びステアリング軸17は、下方にチルト運動をする。つまり、ステアリングホイール11は、前方にテレスコピック運動をしつつ下方にチルト運動をする。この結果を図4及び図2(a)に示している。ステアリングホイール調節装置60は、図4に示される状態に戻る。ステアリングホイール11は、図2(a)に示される非格納位置P1(第1位置P1)に戻る。 On the other hand, the slider 123 moves in the opposite direction (backward direction) with respect to the arm 118, and swings the second member 90 downward via the link 124. As a result, the second member 90 and the steering shaft 17 tilt downward. That is, the steering wheel 11 tilts downward while telescopically moving forward. The results are shown in FIGS. 4 and 2 (a). The steering wheel adjusting device 60 returns to the state shown in FIG. The steering wheel 11 returns to the non-retracted position P1 (first position P1) shown in FIG. 2A.
 上記実施例1の説明をまとめると、次の通りである。
 図1、図3~図6に示されるように、車両用電動パワーステアリング装置10は、
 車体56に取り付け可能な中空状の支持部材70と、
 前記支持部材70の内周面73aにスライド可能に組み付けられた第1部材80と、
 前記第1部材80の先端部82にスイング可能に連結された第2部材90と、
 前記第2部材90に配置されるとともに、前記第1部材80の軸線CL2に対して同心に位置しているステアリング軸17と、
 前記ステアリング軸17に設けられたステアリングホイール11と、
 前記第1部材80と前記第2部材90とのいずれか一方に有するとともに、前記第1部材80の前記軸線CL2に対して同心にモータ軸24が位置しており、前記ステアリングホイール11の操舵力に抵抗する操舵反力を発生して前記ステアリングホイール11に付加する第1モータ20(反力モータ20)と、
 前記支持部材70に設けられた第2モータ100と、
 前記第2モータ100が発生した駆動力を、前記第1部材80をスライド駆動するスライド駆動力に変換して、前記第1部材80に伝達する第1伝動機構110と、
 前記第2モータ100が発生した駆動力を、前記第2部材90をスイング駆動するスイング駆動力に変換して、前記第2部材90に伝達する第2伝動機構120と、を含む。
The description of the first embodiment is summarized as follows.
As shown in FIGS. 1, 3 to 6, the electric power steering device 10 for a vehicle is
A hollow support member 70 that can be attached to the vehicle body 56,
A first member 80 slidably assembled to the inner peripheral surface 73a of the support member 70,
A second member 90 that is swingably connected to the tip 82 of the first member 80,
A steering shaft 17 arranged on the second member 90 and located concentrically with respect to the axis CL2 of the first member 80.
A steering wheel 11 provided on the steering shaft 17 and
The motor shaft 24 is located on one of the first member 80 and the second member 90 and is concentrically located with respect to the axis CL2 of the first member 80, and the steering force of the steering wheel 11 is provided. The first motor 20 (reaction motor 20) that generates a steering reaction force that resists the steering wheel 11 and applies it to the steering wheel 11.
The second motor 100 provided on the support member 70 and
A first transmission mechanism 110 that converts the driving force generated by the second motor 100 into a slide driving force that slides the first member 80 and transmits the driving force to the first member 80.
A second transmission mechanism 120 that converts the driving force generated by the second motor 100 into a swing driving force for swing-driving the second member 90 and transmits the driving force to the second member 90 is included.
 このように、実施例1では、車体56に取り付けられる中空状の支持部材70の内周面73aに、第1部材80がスライド可能に組み付けられている。このため、支持部材70によって、第1部材80をスライド可能に支持する剛性を十分に高めることができる。この第1部材80の先端部82には、第2部材90がスイング可能に連結されている。この第2部材90には、ステアリングホイール11が配置されている。第1部材80又は第2部材90は、操舵反力を発生する第1モータ20を有している。このため、ステアバイワイヤ式の電動パワーステアリング装置10に必須である第1モータ20を、支持部材70から外方へ張り出すことなく、第1部材80又は第2部材90に組み込むことができる。しかも、第1モータ20のモータ軸24とステアリングホイール11との両方を、第1部材80の軸線CL2に対して同心に位置している。従って、ステアリングホイール11のテレスコピック運動とチルト運動とが可能な機能を有した、より小型のステアバイワイヤ式の電動パワーステアリング装置10を提供することができる。この結果、自動運転車両50に対する電動パワーステアリング装置10の搭載性を、高めることができる。 As described above, in the first embodiment, the first member 80 is slidably assembled to the inner peripheral surface 73a of the hollow support member 70 attached to the vehicle body 56. Therefore, the support member 70 can sufficiently increase the rigidity for slidably supporting the first member 80. A second member 90 is swingably connected to the tip 82 of the first member 80. A steering wheel 11 is arranged on the second member 90. The first member 80 or the second member 90 has a first motor 20 that generates a steering reaction force. Therefore, the first motor 20, which is indispensable for the steer-by-wire type electric power steering device 10, can be incorporated into the first member 80 or the second member 90 without protruding outward from the support member 70. Moreover, both the motor shaft 24 of the first motor 20 and the steering wheel 11 are located concentrically with respect to the axis CL2 of the first member 80. Therefore, it is possible to provide a smaller steer-by-wire type electric power steering device 10 having a function capable of telescopic movement and tilt movement of the steering wheel 11. As a result, the mountability of the electric power steering device 10 on the autonomous driving vehicle 50 can be improved.
 さらには、図4に示されるように、前記第1モータ20は、前記第1部材80と前記第2部材90とのなかの、前記第1部材80に収納されており、
 前記ステアリングホイール11は(直接に、又はステアリング軸17を介して)、前記モータ軸24に自在軸継手94によって連結されている。
Further, as shown in FIG. 4, the first motor 20 is housed in the first member 80 among the first member 80 and the second member 90.
The steering wheel 11 (either directly or via the steering shaft 17) is connected to the motor shaft 24 by a universal shaft joint 94.
 このように、重量物である第1モータ20を、チルト運動をする第2部材90ではなく、この第2部材90を支持する第1部材80に収納した。この第1部材80を組み付けた支持部材70は、車体56に取り付け可能である。車体56に取り付けられる基端側の支持部材70及び第1部材80に重量物を集約するとともに、チルト運動をする先端側の第2部材90を軽量化することができる。つまり、支持部材70及び第1部材80の剛性と、第2部材90の剛性とを、合理的に高めることができる。このため、ステアリングホイール11のテレスコピック運動とチルト運動とが可能な機能を有している装置60、つまりステアリングホイール調節装置60の全体の剛性をバランス良く高めることができる。 As described above, the heavy first motor 20 is housed in the first member 80 that supports the second member 90, instead of the second member 90 that performs the tilting motion. The support member 70 to which the first member 80 is assembled can be attached to the vehicle body 56. It is possible to concentrate heavy objects on the support member 70 and the first member 80 on the proximal end side attached to the vehicle body 56, and to reduce the weight of the second member 90 on the distal end side that performs the tilting motion. That is, the rigidity of the support member 70 and the first member 80 and the rigidity of the second member 90 can be reasonably increased. Therefore, the overall rigidity of the device 60 having the function of enabling the telescopic movement and the tilt movement of the steering wheel 11, that is, the steering wheel adjusting device 60 can be increased in a well-balanced manner.
 しかも、ステアリングホイール11を第1モータ20のモータ軸24に自在軸継手94によって連結している。つまり、第1モータ20のモータ軸24からステアリングホイール11へ操舵反力を付加する伝動系統には、第1モータ20の回転を減速するための減速装置が介在していない。減速装置が伝動系統に介在していない分、第1モータ20を収納する第1部材80を小型化することができる。このため、ステアリングホイール調節装置60及び電動パワーステアリング装置10を、より小型化することができる。従って、自動運転車両50に対する電動パワーステアリング装置10の搭載性を、より高めることができる。しかも、ステアリングホイール11の操舵の際に、減速装置の逆効率の影響を受けることはない。このため、ステアリングホイール11の操舵フィーリングを、より高めることができる。 Moreover, the steering wheel 11 is connected to the motor shaft 24 of the first motor 20 by a universal shaft joint 94. That is, the transmission system that applies the steering reaction force from the motor shaft 24 of the first motor 20 to the steering wheel 11 does not have a speed reducer for decelerating the rotation of the first motor 20. Since the speed reducer does not intervene in the transmission system, the size of the first member 80 that houses the first motor 20 can be reduced. Therefore, the steering wheel adjusting device 60 and the electric power steering device 10 can be further miniaturized. Therefore, the mountability of the electric power steering device 10 on the autonomous driving vehicle 50 can be further enhanced. Moreover, when the steering wheel 11 is steered, it is not affected by the reverse efficiency of the speed reducer. Therefore, the steering feeling of the steering wheel 11 can be further enhanced.
 さらには、図4に示されるように、前記第1伝動機構110は、
 前記第1部材80の前記軸線CL2に対して平行に位置するとともに、前記支持部材70の外周面73bに沿って延びており、前記支持部材70に対して、相対回転が許容され且つ軸方向への相対移動が規制された単一の軸111と、
 前記第2モータ100の駆動力を前記軸111に伝達する駆動力伝達部112と、
 前記軸111の回転運動を前記第1部材80のスライド運動に変換する第1変換機構116と、によって構成されており、
 前記第2伝動機構120は、前記軸111の回転運動を前記第2部材90のスイング運動に変換する第2変換機構121によって構成されている。
Further, as shown in FIG. 4, the first transmission mechanism 110 is
The first member 80 is located parallel to the axis CL2 and extends along the outer peripheral surface 73b of the support member 70, so that relative rotation is allowed with respect to the support member 70 and in the axial direction. With a single axis 111, whose relative movement is regulated,
A driving force transmission unit 112 that transmits the driving force of the second motor 100 to the shaft 111,
It is composed of a first conversion mechanism 116 that converts the rotational movement of the shaft 111 into the sliding movement of the first member 80.
The second transmission mechanism 120 is composed of a second conversion mechanism 121 that converts the rotational motion of the shaft 111 into the swing motion of the second member 90.
 このため、第1伝動機構110は、単一の軸111を巧みに利用することによって、この軸111の回転運動を、第1部材80のスライド運動と第2部材90のスイング運動とに、それぞれ変換するだけでよく、小型で簡単な構成とすることができる。 Therefore, the first transmission mechanism 110 skillfully utilizes a single shaft 111 to make the rotational movement of the shaft 111 into a slide movement of the first member 80 and a swing movement of the second member 90, respectively. It only needs to be converted, and it can be made into a small and simple configuration.
 さらには、図4に示されるように、前記第1変換機構116は、
 前記軸111に有している第1の雄ねじ111aと、
 前記第1の雄ねじ111aに組み合っている第1の雌ねじ117と、
 前記第1部材80と前記第1モータ20とのいずれか一方から前記軸111へ向かって延びており、前記第1の雌ねじ117を有しているアーム118と、によって構成されている。
Further, as shown in FIG. 4, the first conversion mechanism 116
The first male screw 111a provided on the shaft 111 and
The first female screw 117 that is assembled to the first male screw 111a,
It is composed of an arm 118 extending from either one of the first member 80 and the first motor 20 toward the shaft 111 and having the first female screw 117.
 このため、第1変換機構116を、第1の雄ねじ111aを有した軸111と、第1の雌ねじ117を有したアーム118と、によって極めて簡単な構成とすることができる。 Therefore, the first conversion mechanism 116 can have an extremely simple configuration by the shaft 111 having the first male screw 111a and the arm 118 having the first female screw 117.
 さらには、図4に示されるように、前記第2変換機構121は、
 前記軸111に有している第2の雄ねじ111bと、
 前記第2の雄ねじ111bに組み合っている第2の雌ねじ122と、
 前記第2の雌ねじ122を有しており、前記軸111に沿って変位可能なスライダ123と、
 前記スライダ123と前記第2部材90との間を、連係可能に繋いでいるリンク124と、によって構成されている。
Further, as shown in FIG. 4, the second conversion mechanism 121
The second male screw 111b on the shaft 111 and
A second female screw 122 that is assembled to the second male screw 111b,
A slider 123 having the second female screw 122 and displaceable along the axis 111,
It is composed of a link 124 that connects the slider 123 and the second member 90 in a linkable manner.
 このため、第2変換機構121を、第2の雄ねじ111bを有した軸111と、第2の雌ねじ122を有したスライダ123と、スライダ123を第2部材90に繋いだリンク124と、によって極めて簡単な構成とすることができる。 Therefore, the second conversion mechanism 121 is extremely provided by the shaft 111 having the second male screw 111b, the slider 123 having the second female screw 122, and the link 124 connecting the slider 123 to the second member 90. It can be a simple configuration.
 さらには、図3及び図4に示されるように、前記第1部材80と前記第1モータ20との、少なくともいずれか一方から前記軸111へ向かって延びた支持アーム95を、更に有しており、
 前記支持アーム95は、前記軸111を回転可能に支持している。
 このため、テレスコピック運動をする支持アーム95によって、軸111を確実に支持することができる。
Further, as shown in FIGS. 3 and 4, the support arm 95 extending from at least one of the first member 80 and the first motor 20 toward the shaft 111 is further provided. Ori,
The support arm 95 rotatably supports the shaft 111.
Therefore, the shaft 111 can be reliably supported by the support arm 95 that makes a telescopic movement.
 さらには、図4に示されるように、前記第1の雄ねじ111aと、前記第1の雌ねじ117と、前記第2の雄ねじ111bと、前記第2の雌ねじ122とは、台形ねじによって構成されている。
 このため、簡単な構成によって、セルフロック機能を高めることができる。
Further, as shown in FIG. 4, the first male screw 111a, the first female screw 117, the second male screw 111b, and the second female screw 122 are composed of a trapezoidal screw. There is.
Therefore, the self-locking function can be enhanced by a simple configuration.
 さらには、図4に示されるように、前記第2の雄ねじ111b及び前記第2の雌ねじ122の、ピッチとねじ方向の少なくとも一方は、前記第1の雄ねじ111a及び前記第1の雌ねじ117に対して異なっている。
 従って、ステアリングホイール11のテレスコピック運動とチルト運動との、両方が最適となるように、ピッチとねじ方向の少なくとも一方を、設定することができる。
Further, as shown in FIG. 4, at least one of the pitch and the screw direction of the second male screw 111b and the second female screw 122 is relative to the first male screw 111a and the first female screw 117. Is different.
Therefore, at least one of the pitch and the screw direction can be set so that both the telescopic movement and the tilt movement of the steering wheel 11 are optimized.
 さらには、図4に示されるように、前記第1モータ20を制御する制御ユニット28を、更に有し、
 前記制御ユニット28は、前記第1モータ20に組み付けられるとともに、前記第1部材80に収納されされている。
 このため、第1モータ20と制御ユニット28とを、同時にテレスコピック運動させることができる。第1モータ20と制御ユニット28との間の配線を合理的に配線することができる。
Further, as shown in FIG. 4, the control unit 28 for controlling the first motor 20 is further provided.
The control unit 28 is assembled to the first motor 20 and housed in the first member 80.
Therefore, the first motor 20 and the control unit 28 can be telescopically moved at the same time. The wiring between the first motor 20 and the control unit 28 can be reasonably wired.
 実施例1を、より詳しくまとめると、図1、図3~図6に示されるように、車両用電動パワーステアリング装置10は、
車体56に取り付け可能な中空状の支持部材70と、
 前記支持部材70の内周面73aにスライド可能に組み付けられた第1部材80と、
 前記第1部材80の先端部82にスイング可能に連結された第2部材90と、
 前記第2部材90に回転可能に支持されるとともに、前記第1部材80の前記軸線CL2に対して同心に位置したステアリング軸17と、
 前記ステアリング軸17に設けられたステアリングホイール11と、
 前記第1部材80に相対変位が規制されつつ収納されており、前記第1部材80の前記軸線CL2に対して同心に位置するとともに自在軸継手94によって前記ステアリング軸17に連結されたモータ軸24を有しており、前記ステアリングホイール11の操舵力に抵抗する操舵反力を発生して前記ステアリングホイール11に付加する第1モータ20と、
 前記第1部材80の前記軸線CL2に対して平行に位置するとともに、前記支持部材70の外周面73bに沿って延びており、前記支持部材70に対して相対回転が許容され且つ軸方向への相対移動が規制されて設けられており、第1の雄ねじ111a及び第2の雄ねじ111bを有している単一の軸111と、
 前記支持部材70に設けられており、前記単一の軸111を駆動する第2モータ100と、
 前記第1部材80と前記第1モータ20とのいずれか一方から前記軸111へ向かって延びており、前記第1の雄ねじ111aに組み合う第1の雌ねじ117を有しているアーム118と、
 前記第2の雄ねじ111bに組み合う第2の雌ねじ122を有しており、前記軸111に沿って変位可能なスライダ123と、
 前記スライダ123と前記第2部材90との間を、連係可能に繋いでいるリンク124と、を含む。
Summarizing the first embodiment in more detail, as shown in FIGS. 1, 3 to 6, the electric power steering device 10 for a vehicle is
A hollow support member 70 that can be attached to the vehicle body 56,
A first member 80 slidably assembled to the inner peripheral surface 73a of the support member 70,
A second member 90 swingably connected to the tip 82 of the first member 80,
A steering shaft 17 rotatably supported by the second member 90 and located concentrically with respect to the axis CL2 of the first member 80.
A steering wheel 11 provided on the steering shaft 17 and
The motor shaft 24 is housed in the first member 80 while being restricted in relative displacement, is located concentrically with respect to the axis CL2 of the first member 80, and is connected to the steering shaft 17 by a universal shaft joint 94. A first motor 20 that generates a steering reaction force that resists the steering force of the steering wheel 11 and applies the steering reaction force to the steering wheel 11.
The first member 80 is located parallel to the axis CL2 and extends along the outer peripheral surface 73b of the support member 70 so that relative rotation with respect to the support member 70 is allowed and in the axial direction. A single shaft 111, which is provided with restricted relative movement and has a first male thread 111a and a second male thread 111b,
A second motor 100, which is provided on the support member 70 and drives the single shaft 111,
An arm 118 extending from either one of the first member 80 and the first motor 20 toward the shaft 111 and having a first female screw 117 that engages with the first male screw 111a.
A slider 123 that has a second female screw 122 that engages with the second male screw 111b and is displaceable along the axis 111.
A link 124 that connects the slider 123 and the second member 90 in a linkable manner is included.
 単一の軸111に、2つの雄ねじ111a,111bを有することによって、第1部材80のスライド運動と第2部材90のスイング運動とが、同時に行われる。このため、ステアリングホイール11のテレスコピック運動とチルト運動とを、単一のモータ100(第2モータ100)によって、短時間に行うことができる。従って、ステアリングホイール11を非格納位置P1と格納位置P2とに、迅速に切り替えることができる。自動運転車両50に搭載されるステアリング装置10として最適である。 By having the two male screws 111a and 111b on the single shaft 111, the sliding motion of the first member 80 and the swing motion of the second member 90 are simultaneously performed. Therefore, the telescopic movement and the tilt movement of the steering wheel 11 can be performed in a short time by a single motor 100 (second motor 100). Therefore, the steering wheel 11 can be quickly switched between the non-retracted position P1 and the stored position P2. It is most suitable as the steering device 10 mounted on the autonomous driving vehicle 50.
 実施例1を、更にまとめると、図1、図3~図6に示されるように、車両用電動パワーステアリング装置10は、
 ステアリング軸17に設けられたステアリングホイール11と、
 前記ステアリング軸17に操舵反力を発生させる第1モータ20(反力モータ20)と、
 前記ステアリングホイール11を前方及び後方に移動させるテレスコピック動作と、前記ステアリングホイール11の昇降を行うチルト動作と、を制御する第2モータ100と、を有し、
 前記第1モータ20は、ステアリングホイール11と同心にモータ軸24を有しており、前記第2モータ100の駆動時にテレスコピック動作又はチルト動作に起因して移動する。
To further summarize the first embodiment, as shown in FIGS. 1, 3 to 6, the electric power steering device 10 for a vehicle is
The steering wheel 11 provided on the steering shaft 17 and
A first motor 20 (reaction motor 20) that generates a steering reaction force on the steering shaft 17 and
It has a second motor 100 that controls a telescopic operation of moving the steering wheel 11 forward and backward and a tilt operation of raising and lowering the steering wheel 11.
The first motor 20 has a motor shaft 24 concentrically with the steering wheel 11, and moves due to a telescopic operation or a tilt operation when the second motor 100 is driven.
 このため、ステアリングホイール11のテレスコピック運動とチルト運動とが可能な機能を有した、より小型のステアバイワイヤ式の電動パワーステアリング装置10を提供することができる。この結果、自動運転車両50に対する電動パワーステアリング装置10の搭載性を、高めることができる。 Therefore, it is possible to provide a smaller steer-by-wire type electric power steering device 10 having a function capable of telescopic movement and tilt movement of the steering wheel 11. As a result, the mountability of the electric power steering device 10 on the autonomous driving vehicle 50 can be improved.
<実施例2>
 図7~図12を参照しつつ、実施例2の車両用電動パワーステアリング装置200を説明する。図7は、上記図1に対応して表してある。図8は、上記図3に対応して表してある。図10は、上記図4に対応して表してある。
<Example 2>
The vehicle electric power steering device 200 of the second embodiment will be described with reference to FIGS. 7 to 12. FIG. 7 is shown corresponding to FIG. FIG. 8 is shown corresponding to FIG. FIG. 10 is shown corresponding to FIG. 4 above.
 実施例2の車両用電動パワーステアリング装置200は、図1~図6に示される上記実施例1の反力モータ20及びステアリングホイール調節装置60を、図7~図12に示される反力モータ220及びステアリングホイール調節装置260に変更したことを特徴とし、他の構成は実施例1と同じなので、説明を省略する。 The vehicle electric power steering device 200 of the second embodiment is the reaction force motor 20 and the steering wheel adjusting device 60 of the first embodiment shown in FIGS. 1 to 6, and the reaction force motor 220 shown in FIGS. 7 to 12. And the steering wheel adjusting device 260 is changed, and the other configurations are the same as those in the first embodiment, so the description thereof will be omitted.
 図7に示されるように、実施例2の制御装置15は、操舵角センサ41と操舵トルクセンサ42とその他の各種センサ43との各信号、及びドライビングポジション装置51の指令に従って、転舵モータ35と第1モータ220と第2モータ300とを制御している。 As shown in FIG. 7, the control device 15 of the second embodiment is a steering motor 35 according to each signal of the steering angle sensor 41, the steering torque sensor 42, and various other sensors 43, and a command of the driving position device 51. And the first motor 220 and the second motor 300 are controlled.
 図7に示されるように、操舵部12は、ステアリングホイール11に対し操舵反力(反力トルク)を付加する反力モータ220を含む。この反力モータ220は、運転者が操舵するステアリングホイール11の操舵力に抵抗する操舵反力を発生するとともに、この操舵反力をステアリングホイール11に付加することによって、運転者に操舵感を与える。この反力モータ220は、電動モータによって構成される。以下、この反力モータ220のことを、適宜「第1モータ220」と言い換える。この第1モータ220の詳細については、後述する。 As shown in FIG. 7, the steering unit 12 includes a reaction force motor 220 that applies a steering reaction force (reaction torque) to the steering wheel 11. The reaction force motor 220 generates a steering reaction force that resists the steering force of the steering wheel 11 that the driver steers, and applies this steering reaction force to the steering wheel 11 to give the driver a feeling of steering. .. The reaction force motor 220 is composed of an electric motor. Hereinafter, the reaction force motor 220 will be appropriately referred to as a “first motor 220”. Details of the first motor 220 will be described later.
 図8~図10に示されるように、実施例2のステアリングホイール調節装置260は、支持部材270と第1部材280と第2部材290と第2モータ300と第1伝動機構310と第2伝動機構320と、を含む。 As shown in FIGS. 8 to 10, the steering wheel adjusting device 260 of the second embodiment has a support member 270, a first member 280, a second member 290, a second motor 300, a first transmission mechanism 310, and a second transmission. Including the mechanism 320.
 支持部材270は、自動運転車両50(図2(a)参照)の前後方向に延びた状態で位置することが可能な中空状(例えば筒状。好ましくは円筒状)の部材であって、この自動運転車両50の車体56に取り付け可能なブラケット271を有している。この支持部材270の両端は、開放されている。 The support member 270 is a hollow (for example, cylindrical, preferably cylindrical) member capable of being positioned so as to extend in the front-rear direction of the autonomous driving vehicle 50 (see FIG. 2A). It has a bracket 271 that can be attached to the vehicle body 56 of the autonomous driving vehicle 50. Both ends of the support member 270 are open.
 第1部材280は、支持部材270の周壁273の内周面273aに、この支持部材270の軸線CL11(中心線CL11)に沿ってスライド可能に組み付けられた中空状(例えば筒状。好ましくは円筒状)の部材である。言い換えると、第1部材280は、支持部材270の周壁273に軸線CL11に沿ってスライド可能、つまりテレスコピック運動が可能に嵌合している。この第1部材80の両端は、開放されている。第1部材280の軸線CL12(中心線CL12)は、支持部材270の軸線CL1に合致している。 The first member 280 is a hollow shape (for example, a cylinder shape, preferably a cylinder shape) slidably attached to the inner peripheral surface 273a of the peripheral wall 273 of the support member 270 along the axis CL11 (center line CL11) of the support member 270. It is a member of the shape). In other words, the first member 280 is slidably fitted to the peripheral wall 273 of the support member 270 along the axis CL11, that is, telescopically. Both ends of the first member 80 are open. The axis CL12 (center line CL12) of the first member 280 coincides with the axis CL1 of the support member 270.
 第2部材290は、第1部材280の軸線CL12に対して同心に位置するとともに、第1部材280に向かって開放した有底の中空状(例えば有底筒状。好ましくは有底の円筒状)の部材である。この第2部材290は、第1部材280の先端部282に対して上下方向にスイング可能、つまりチルト運動が可能である。詳しく述べると、第1部材280は、第2部材290まで延びた延長部281を有している。この延長部281は、例えば、第1部材280から第2部材290の側面290aまで延びるとともに、この側面290aを挟んでいるフォーク状の構成である。つまり、延長部281は、一対の先端部281a,281aを有している。 The second member 290 is located concentrically with respect to the axis CL12 of the first member 280 and has a bottomed hollow shape (for example, a bottomed cylinder shape, preferably a bottomed cylindrical shape) that opens toward the first member 280. ) Is a member. The second member 290 can swing in the vertical direction with respect to the tip end portion 282 of the first member 280, that is, can tilt. More specifically, the first member 280 has an extension 281 extending to the second member 290. The extension portion 281 has, for example, a fork-like structure extending from the first member 280 to the side surface 290a of the second member 290 and sandwiching the side surface 290a. That is, the extension portion 281 has a pair of tip portions 281a and 281a.
 第2部材290は、延長部91の一対の先端部281a,281a間に挟まれており、この一対の先端部281a,281aに支持軸292によってスイング可能に連結されている。この結果、第2部材290は、第1部材280の先端部282にスイング可能(チルト可能)に連結されている。 The second member 290 is sandwiched between a pair of tip portions 281a and 281a of the extension portion 91, and is swingably connected to the pair of tip portions 281a and 281a by a support shaft 292. As a result, the second member 290 is swingably (tiltable) connected to the tip end portion 282 of the first member 280.
 第2部材290は、第1モータ220を一体に有している。第1モータ220が第2部材290に一体に有する構成としては、次の(1)の構成及び(2)の構成がある。
 (1)図示してはいないが、第2部材290は、第1モータ220を相対変位を規制しつつ収納した構成である。
 (2)図10に示されるように、第2部材290は、第1モータ220のモータハウジング221を兼ねる。つまり、第2部材290は、前記第1モータ220自体である。
 以下、(2)の構成について例示する。
The second member 290 integrally includes the first motor 220. The configuration of the first motor 220 integrally with the second member 290 includes the following configurations (1) and (2).
(1) Although not shown, the second member 290 has a configuration in which the first motor 220 is housed while restricting the relative displacement.
(2) As shown in FIG. 10, the second member 290 also serves as the motor housing 221 of the first motor 220. That is, the second member 290 is the first motor 220 itself.
Hereinafter, the configuration of (2) will be illustrated.
 図10に示されるように、この第1モータ220は、第1部材280の軸線CL12に対して同心に位置している。詳しく述べると、この第1モータ220は、有底の中空状(例えば有底筒状。好ましくは有底の円筒状)のモータハウジング221(第2部材290によって構成される)と、このモータハウジング221の開放端を塞いでいるリッド222と、このモータハウジング221の内部に軸受223,223によって回転可能に収納されたモータ軸224(出力軸224)と、このモータ軸224に有しているロータ225と、このロータ225の外周囲に位置してモータハウジング221の内部に設けられたステータ226と、を含む。この第1モータ220は、モータ回転角センサ227(例えばレゾルバ)を有する。このモータ回転角センサ227は、第1モータ220の回転角を検出する。 As shown in FIG. 10, the first motor 220 is located concentrically with respect to the axis CL12 of the first member 280. More specifically, the first motor 220 includes a bottomed hollow (for example, a bottomed tubular shape, preferably a bottomed cylindrical shape) motor housing 221 (composed of a second member 290) and the motor housing. A lid 222 that closes the open end of 221, a motor shaft 224 (output shaft 224) that is rotatably housed inside the motor housing 221 by bearings 223 and 223, and a rotor that the motor shaft 224 has. It includes a 225 and a stator 226 located inside the motor housing 221 located on the outer periphery of the rotor 225. The first motor 220 has a motor rotation angle sensor 227 (for example, a resolver). The motor rotation angle sensor 227 detects the rotation angle of the first motor 220.
 この第1モータ220のモータ軸224は、第1部材280の軸線CL12に対して同心に位置しており、ステアリング軸17を兼ねている。つまり、ステアリングホイール11は、モータ軸224に直接に取り付けられている。 The motor shaft 224 of the first motor 220 is located concentrically with the axis CL12 of the first member 280, and also serves as the steering shaft 17. That is, the steering wheel 11 is directly attached to the motor shaft 224.
 図7、図10及び図11に示されるように、第2モータ300は、ギヤハウジング274に取り付けられており、第1部材280を駆動する。ギヤハウジング274は、支持部材270の周壁273に有している。 As shown in FIGS. 7, 10 and 11, the second motor 300 is attached to the gear housing 274 and drives the first member 280. The gear housing 274 is provided on the peripheral wall 273 of the support member 270.
 第1伝動機構310は、第2モータ300が発生した駆動力を、第1部材280をスラ イド駆動するスライド駆動力に変換して、第1部材280に伝達する。この第1伝動機構310は、例えばラックアンドピニオン機構によって構成される。このラックアンドピニオン機構310(第1伝動機構310)は、第2モータ300のモータ軸301(出力軸301)に設けられたピニオン311と、第1部材280の外周面280aに設けられたラック312とからなる。このラックアンドピニオン機構310は、ギヤハウジング274に収納されている。 The first transmission mechanism 310 converts the driving force generated by the second motor 300 into a slide driving force for driving the first member 280 and transmits it to the first member 280. The first transmission mechanism 310 is composed of, for example, a rack and pinion mechanism. The rack and pinion mechanism 310 (first transmission mechanism 310) includes a pinion 311 provided on the motor shaft 301 (output shaft 301) of the second motor 300 and a rack 312 provided on the outer peripheral surface 280a of the first member 280. It consists of. The rack and pinion mechanism 310 is housed in a gear housing 274.
 第2伝動機構320は、第2モータ300が発生した駆動力を、第2部材290をスイング駆動するスイング駆動力に変換して、第2部材290に伝達する。詳しく述べると、第2伝動機構320は、第1ブラケット321と第2ブラケット322とリンク323とによって構成されている。 The second transmission mechanism 320 converts the driving force generated by the second motor 300 into a swing driving force for swing driving the second member 290 and transmits the driving force to the second member 290. More specifically, the second transmission mechanism 320 is composed of the first bracket 321 and the second bracket 322 and the link 323.
 第1ブラケット321は、支持部材270の周壁273の外周面273bに設けられた部材であって、第1部材280の軸線CL12に対して平行な長孔324を有する。この長孔324の長さは、支持部材270に対する第1部材280のスライド可能な長さよりも短く設定されている。 The first bracket 321 is a member provided on the outer peripheral surface 273b of the peripheral wall 273 of the support member 270, and has an elongated hole 324 parallel to the axis CL12 of the first member 280. The length of the elongated hole 324 is set shorter than the slidable length of the first member 280 with respect to the support member 270.
 第2ブラケット322は、第2部材290に設けられている。リンク323は、長孔324と第2ブラケット322との間を、連係可能に繋いでいる。つまり、リンク323の一端は、第1ピン325によって長孔324にスライド可能に連結つされている。リンク323の他端は、第2ピン326によって第2ブラケット322にスイング可能に連結されている。 The second bracket 322 is provided on the second member 290. The link 323 connects the elongated hole 324 and the second bracket 322 in a linkable manner. That is, one end of the link 323 is slidably connected to the elongated hole 324 by the first pin 325. The other end of the link 323 is swingably connected to the second bracket 322 by a second pin 326.
 次に、ステアリングホイール調節装置260の作用について、図2、図10及び図12を参照しつつ説明する。
 図2(a)に示されるステアリングホイール11は、非格納位置P1(第1位置P1)に位置している。このときに、ステアリングホイール調節装置260は図12(a)に示される状態にある。つまり、ステアリングホイール11の位置は、第1部材280の軸線CL12上にあるとともに、支持部材270に対して最も自動運転車両50(図2(a)参照)の後方へ離れた位置(前進位置)に位置している。この状態では、第1ピン325は長孔324の前端に位置している。
Next, the operation of the steering wheel adjusting device 260 will be described with reference to FIGS. 2, 10 and 12.
The steering wheel 11 shown in FIG. 2A is located at the non-retracted position P1 (first position P1). At this time, the steering wheel adjusting device 260 is in the state shown in FIG. 12 (a). That is, the position of the steering wheel 11 is on the axis CL12 of the first member 280, and is the position farthest behind the autonomous driving vehicle 50 (see FIG. 2A) with respect to the support member 270 (advance position). Is located in. In this state, the first pin 325 is located at the front end of the elongated hole 324.
 その後、図10に示されるように、第2モータ300は制御装置15(図7参照)から格納指令信号を受けることによって、正回転(第1の回転方向へ回転)する。第2モータ300が発生した正回転の駆動力は、ラックアンドピニオン機構310(第1伝動機構310)によって第1部材280に伝わる。図12(b)に示されるように、第1部材280は、支持部材270に対して後退する。従って、ステアリングホイール11、第2部材290及び第2モータ300は、支持部材270に対して近づく方向(後退方向)に移動、つまりテレスコピック運動をする。この結果、第1ピン325は長孔324の後端に位置する。第1ピン325の移動量L11は、長孔324の長さL1に相当する。 After that, as shown in FIG. 10, the second motor 300 rotates in the forward direction (rotates in the first rotation direction) by receiving the storage command signal from the control device 15 (see FIG. 7). The driving force of the forward rotation generated by the second motor 300 is transmitted to the first member 280 by the rack and pinion mechanism 310 (first transmission mechanism 310). As shown in FIG. 12B, the first member 280 retracts with respect to the support member 270. Therefore, the steering wheel 11, the second member 290, and the second motor 300 move in a direction closer to the support member 270 (backward direction), that is, telescopically move. As a result, the first pin 325 is located at the rear end of the elongated hole 324. The movement amount L11 of the first pin 325 corresponds to the length L1 of the elongated hole 324.
 その後、第2モータ300が正回転を続行すると、図12(c)に示されるように、第1部材280は後退運動を続けるが、第2部材290及び第2モータ300の後退運動は規制される。しかも、支持軸292は第1部材80と共に後退運動を続ける。第1ピン325の移動量L12である。このため、第2部材290及び第2モータ300は、支持軸292を中心として上方にスイングしつつ、後退する。この結果、ステアリングホイール11は、後方にテレスコピック運動をしつつ上方にチルト運動をする。 After that, when the second motor 300 continues to rotate in the forward direction, as shown in FIG. 12 (c), the first member 280 continues to move backward, but the backward movement of the second member 290 and the second motor 300 is restricted. To. Moreover, the support shaft 292 continues to move backward together with the first member 80. The movement amount L12 of the first pin 325. Therefore, the second member 290 and the second motor 300 retreat while swinging upward about the support shaft 292. As a result, the steering wheel 11 tilts upward while telescopically moving backward.
 この結果を図2(b)に示している。図12(c)及び図2(b)は、ステアリングホイール11が格納位置P2(第2位置P2)に位置していることを示している。つまり、ステアリングホイール11の位置は、第1部材280の軸線CL12から予め設定されている角度だけ上方に傾いて後退した位置(後退位置)に位置している。 This result is shown in Fig. 2 (b). 12 (c) and 2 (b) show that the steering wheel 11 is located at the retracted position P2 (second position P2). That is, the position of the steering wheel 11 is located at a position (retracted position) in which the steering wheel 11 is tilted upward by a preset angle from the axis CL12 of the first member 280 and retracted.
 その後、第2モータ300は制御装置15(図7参照)から非格納指令信号を受けることによって、逆回転(第2の回転方向へ回転)する。第2モータ300が発生した逆回転の駆動力は、ラックアンドピニオン機構310によって第1部材280に伝わる。図12(c)に示されるように、第1部材280は、支持部材270に対して前進する。従って、ステアリングホイール11は、前方にテレスコピック運動をしつつ下方にチルト運動をして、支持部材270の軸線CL11の位置まで戻る。この結果を図12(b)に示している。 After that, the second motor 300 rotates in the reverse direction (rotates in the second rotation direction) by receiving a non-storing command signal from the control device 15 (see FIG. 7). The driving force of the reverse rotation generated by the second motor 300 is transmitted to the first member 280 by the rack and pinion mechanism 310. As shown in FIG. 12 (c), the first member 280 advances with respect to the support member 270. Therefore, the steering wheel 11 tilts downward while telescopically moving forward, and returns to the position of the axis CL11 of the support member 270. This result is shown in FIG. 12 (b).
 その後、第2モータ300が逆回転を続行すると、ステアリングホイール11、第2部材290及び第2モータ300は、支持部材270に対して離れる方向(前進方向)に移動、つまりテレスコピック運動をする。この結果、第1ピン325は長孔324の前端に位置する。この結果を図12(a)及び図2(a)に示している。ステアリングホイール調節装置260は、図12(a)に示される状態に戻る。ステアリングホイール11は、図2(a)に示される非格納位置P1(第1位置P1)に戻る。 After that, when the second motor 300 continues to rotate in the reverse direction, the steering wheel 11, the second member 290, and the second motor 300 move in a direction away from the support member 270 (forward direction), that is, telescopically move. As a result, the first pin 325 is located at the front end of the elongated hole 324. The results are shown in FIGS. 12 (a) and 2 (a). The steering wheel adjusting device 260 returns to the state shown in FIG. 12 (a). The steering wheel 11 returns to the non-retracted position P1 (first position P1) shown in FIG. 2A.
 上記実施例2の説明をまとめると、次の通りである。
 図7~図12に示されるように、車両用電動パワーステアリング装置200は、
 車体56に取り付け可能な中空状の支持部材270と、
 前記支持部材270の内周面273aにスライド可能に組み付けられた第1部材280と、
 前記第1部材280の先端部282にスイング可能に連結された第2部材290と、
 前記第2部材290に配置されるとともに、前記第1部材280の軸線CL12に対して同心に位置しているステアリング軸17と、
 前記ステアリング軸17に設けられたステアリングホイール11と、
 前記第1部材280と前記第2部材290とのいずれか一方に有するとともに、前記第1部材280の前記軸線CL12に対して同心にモータ軸301が位置しており、前記ステアリングホイール11の操舵力に抵抗する操舵反力を発生して前記ステアリングホイール11に付加する第1モータ220(反力モータ220)と、
 前記支持部材270に設けられた第2モータ300と、
 前記第2モータ300が発生した駆動力を、前記第1部材280をスライド駆動するスライド駆動力に変換して、前記第1部材280に伝達する第1伝動機構310と、
 前記第2モータ300が発生した駆動力を、前記第2部材290をスイング駆動するスイング駆動力に変換して、前記第2部材290に伝達する第2伝動機構320と、を含む。
The description of the second embodiment is summarized as follows.
As shown in FIGS. 7 to 12, the electric power steering device 200 for a vehicle is
Hollow support member 270 that can be attached to the vehicle body 56,
A first member 280 slidably assembled to the inner peripheral surface 273a of the support member 270, and
A second member 290 swingably connected to the tip 282 of the first member 280,
A steering shaft 17 arranged on the second member 290 and concentrically located with respect to the axis CL12 of the first member 280.
A steering wheel 11 provided on the steering shaft 17 and
The motor shaft 301 is located concentrically with respect to the axis CL12 of the first member 280 while being provided on either one of the first member 280 and the second member 290, and the steering force of the steering wheel 11 is provided. The first motor 220 (reaction motor 220) that generates a steering reaction force that resists the steering wheel 11 and applies it to the steering wheel 11.
The second motor 300 provided on the support member 270 and
A first transmission mechanism 310 that converts the driving force generated by the second motor 300 into a slide driving force that slides the first member 280 and transmits the driving force to the first member 280.
It includes a second transmission mechanism 320 that converts the driving force generated by the second motor 300 into a swing driving force for swing-driving the second member 290 and transmits the driving force to the second member 290.
 このように、実施例2では、車体56に取り付けられる中空状の支持部材270の内周面273aに、第1部材280がスライド可能に組み付けられている。このため、支持部材270によって、第1部材280をスライド可能に支持する剛性を十分に高めることができる。この第1部材280の先端部282には、第2部材290がスイング可能に連結されている。この第2部材290には、ステアリングホイール11が配置されている。第1部材280又は第2部材290は、操舵反力を発生する第1モータ220を有している。このため、ステアバイワイヤ式の電動パワーステアリング装置200に必須である第1モータ220を、支持部材270から外方へ張り出すことなく、第1部材280又は第2部材290に組み込むことができる。 As described above, in the second embodiment, the first member 280 is slidably assembled to the inner peripheral surface 273a of the hollow support member 270 attached to the vehicle body 56. Therefore, the support member 270 can sufficiently increase the rigidity for slidably supporting the first member 280. A second member 290 is swingably connected to the tip end portion 282 of the first member 280. A steering wheel 11 is arranged on the second member 290. The first member 280 or the second member 290 has a first motor 220 that generates a steering reaction force. Therefore, the first motor 220, which is indispensable for the steer-by-wire type electric power steering device 200, can be incorporated into the first member 280 or the second member 290 without protruding outward from the support member 270.
 しかも、第1モータ220のモータ軸224とステアリングホイール11との両方を、第1部材280の軸線CL12に対して同心に位置している。従って、ステアリングホイール11のテレスコピック運動とチルト運動とが可能な機能を有した、より小型のステアバイワイヤ式の電動パワーステアリング装置200を提供することができる。この結果、自動運転車両50に対する電動パワーステアリング装置200の搭載性を、高めることができる。 Moreover, both the motor shaft 224 of the first motor 220 and the steering wheel 11 are located concentrically with respect to the axis CL12 of the first member 280. Therefore, it is possible to provide a smaller steer-by-wire type electric power steering device 200 having a function capable of telescopic movement and tilt movement of the steering wheel 11. As a result, the mountability of the electric power steering device 200 on the autonomous driving vehicle 50 can be improved.
 しかも、ステアリングホイール11を第1モータ220のモータ軸224に連結している。つまり、第1モータ220のモータ軸224からステアリングホイール11へ操舵反力を付加する伝動系統には、第1モータ220の回転を減速するための減速装置が介在していない。減速装置が伝動系統に介在していない分、第1モータ220を設ける第1部材280を小型化することができる。このため、ステアリングホイール調節装置260及び電動パワーステアリング装置200を、より小型化することができる。従って、自動運転車両50に対する電動パワーステアリング装置200の搭載性を、より高めることができる。しかも、ステアリングホイール11の操舵の際に、減速装置の逆効率の影響を受けることはない。このため、ステアリングホイール11の操舵フィーリングを、より高めることができる。 Moreover, the steering wheel 11 is connected to the motor shaft 224 of the first motor 220. That is, the transmission system that applies the steering reaction force from the motor shaft 224 of the first motor 220 to the steering wheel 11 does not have a speed reducer for decelerating the rotation of the first motor 220. Since the speed reducer does not intervene in the transmission system, the first member 280 provided with the first motor 220 can be miniaturized. Therefore, the steering wheel adjusting device 260 and the electric power steering device 200 can be further miniaturized. Therefore, the mountability of the electric power steering device 200 on the autonomous driving vehicle 50 can be further enhanced. Moreover, when the steering wheel 11 is steered, it is not affected by the reverse efficiency of the speed reducer. Therefore, the steering feeling of the steering wheel 11 can be further enhanced.
 さらには、前記第1モータ220は、前記第1部材280と前記第2部材290とのなかの、前記第2部材290に一体に有しており(前記第2部材290を兼ねた構成、又は、前記第2部材290に組み込まれた構成であり)、
 前記ステアリングホイール11は(直接に、又はステアリング軸17を介して)、前記モータ軸224に連結されている。
Further, the first motor 220 is integrally provided with the second member 290 among the first member 280 and the second member 290 (a configuration that also serves as the second member 290, or , It is a configuration incorporated in the second member 290),
The steering wheel 11 is connected to the motor shaft 224 (either directly or via the steering shaft 17).
 このため、第1部材280は第1モータ220を有する必要がなく、スライド運動をするだけでよい。第1部材280簡素な構成でにできるとともに、小型化できる。しかも、支持部材270に対する第1部材280の支持剛性を高めることができる。 Therefore, the first member 280 does not need to have the first motor 220, and only needs to slide. First member 280 It can be made with a simple structure and can be miniaturized. Moreover, the support rigidity of the first member 280 with respect to the support member 270 can be increased.
 さらには、前記第1伝動機構310は、前記第2モータ300の駆動力によって回転するピニオン311と、前記ピニオン311に噛み合い可能に前記第1部材280の外周面280aに有しているラック312と、によって構成されており、
 前記第2伝動機構320は、
 前記支持部材270の外周面273bに設けられており、前記第1部材280の前記軸線CL12に対して平行な長孔324を有した第1ブラケット321と、
 前記長孔324と、前記第2部材290に設けられている第2ブラケット322との間を、連係可能に繋いでいるリンク323と、によって構成されている。
Further, the first transmission mechanism 310 includes a pinion 311 that is rotated by the driving force of the second motor 300 and a rack 312 that is provided on the outer peripheral surface 280a of the first member 280 so as to be able to mesh with the pinion 311. , Consists of
The second transmission mechanism 320
A first bracket 321 provided on the outer peripheral surface 273b of the support member 270 and having an elongated hole 324 parallel to the axis CL12 of the first member 280.
It is composed of a link 323 that connects the elongated hole 324 and the second bracket 322 provided on the second member 290 so as to be linked.
 このように、ラック312は、第1部材280自体に有している。このため、ラック312を設けるための別個の部材は、必要ない。また、スライド運動をする第1伝動機構310と、スイング運動をする第2伝動機構320とは、第1部材280のみを介して連係している。第2モータ300が発生した駆動力は、第1部材280から第2伝動機構320によって、第2部材290及び第1モータ220に伝わる。第1部材280のスライド運動をスイング運動に変換するために、第2伝動機構320をリンク機構にしている。第1伝動機構310と第2伝動機構320とを、簡単な構成で小型にすることができる。 As described above, the rack 312 is included in the first member 280 itself. Therefore, no separate member is required to provide the rack 312. Further, the first transmission mechanism 310 that performs a sliding motion and the second transmission mechanism 320 that performs a swing motion are linked to each other via only the first member 280. The driving force generated by the second motor 300 is transmitted from the first member 280 to the second member 290 and the first motor 220 by the second transmission mechanism 320. In order to convert the slide motion of the first member 280 into a swing motion, the second transmission mechanism 320 is used as a link mechanism. The first transmission mechanism 310 and the second transmission mechanism 320 can be miniaturized with a simple configuration.
 しかも、第1部材280のスライド範囲の大きさにかかわらず、第2部材290及び第1モータ220の円滑なスイング運動を確保するために、第1ブラケット321は長孔324を有している。長孔324の長さによって、第2部材290及び第1モータ220のスイング運動の開始タイミングや完了タイミングが決まる。つまり、スライド範囲が大きい場合には、長孔324の長さを大きく設定すればよい。 Moreover, the first bracket 321 has an elongated hole 324 in order to ensure smooth swing motion of the second member 290 and the first motor 220 regardless of the size of the slide range of the first member 280. The length of the elongated hole 324 determines the start timing and the completion timing of the swing motion of the second member 290 and the first motor 220. That is, when the slide range is large, the length of the elongated hole 324 may be set large.
 第1部材280のスライド範囲の大きさに対応して、長孔324の長さを適宜設定することにより、第2部材290及び第1モータ220のスイング角を最適に設定することができる。さらには、第1部材280がスライド運動をしている最中に、第2部材290及び第1モータ220がスイング運動をする。このため、ステアリングホイール11のテレスコピック運動とチルト運動とを、単一のモータ300(第2モータ300)によって、短時間に行うことができる。従って、ステアリングホイール11を非格納位置P1と格納位置P2とに、迅速に切り替えることができる。自動運転車両50に搭載されるステアリング装置200として最適である。 By appropriately setting the length of the elongated hole 324 corresponding to the size of the slide range of the first member 280, the swing angles of the second member 290 and the first motor 220 can be optimally set. Further, while the first member 280 is in a sliding motion, the second member 290 and the first motor 220 are in a swing motion. Therefore, the telescopic motion and the tilt motion of the steering wheel 11 can be performed in a short time by a single motor 300 (second motor 300). Therefore, the steering wheel 11 can be quickly switched between the non-retracted position P1 and the stored position P2. It is most suitable as the steering device 200 mounted on the autonomous driving vehicle 50.
 実施例2を、より詳しくまとめると、図7~図12に示されるように、車両用電動パワーステアリング装置200は、
 車体56に取り付け可能な中空状の支持部材270と、
 前記支持部材270の内周面273aにスライド可能に組み付けられた第1部材280と、
 前記第1部材280の先端部282にスイング可能に連結された第2部材290と、
 前記第2部材290に配置されるとともに、前記第1部材280の軸線CL12に対して同心に位置しているステアリングホイール11と、
 前記第2部材290に一体に有しており(第2部材290に収納した構成と、第1モータ220のモータハウジング221を兼ねた構成と、を含む)
、モータ軸224が前記第1部材280の前記軸線CL12に対して同心に位置するとともに前記ステアリングホイール11に連結されており、前記ステアリングホイール11の操舵力に抵抗する操舵反力を発生して前記ステアリングホイール11に付加する第1モータ220と、
 前記支持部材270に設けられている第2モータ300と、
 前記第2モータ300の駆動力によって回転するピニオン311と、
 前記ピニオン311に噛み合い可能に前記第1部材280の外周面280aに有しているラック312と、
 前記第1部材280の外周面280aに設けられており、前記第1部材280の前記軸線CL12に対して平行な長孔324を有した第1ブラケット321と、
 前記長孔324と、前記第2部材290に設けられている第2ブラケット322との間を、連係可能に繋いでいるリンク323と、を含む。
Summarizing the second embodiment in more detail, as shown in FIGS. 7 to 12, the electric power steering device 200 for a vehicle is
Hollow support member 270 that can be attached to the vehicle body 56,
A first member 280 slidably assembled to the inner peripheral surface 273a of the support member 270, and
A second member 290 swingably connected to the tip 282 of the first member 280,
A steering wheel 11 arranged on the second member 290 and concentrically with respect to the axis CL12 of the first member 280.
It is integrally provided with the second member 290 (including a configuration housed in the second member 290 and a configuration that also serves as a motor housing 221 of the first motor 220).
The motor shaft 224 is located concentrically with respect to the axis CL12 of the first member 280 and is connected to the steering wheel 11 to generate a steering reaction force that resists the steering force of the steering wheel 11. The first motor 220 added to the steering wheel 11 and
The second motor 300 provided on the support member 270 and
A pinion 311 that is rotated by the driving force of the second motor 300,
With the rack 312 provided on the outer peripheral surface 280a of the first member 280 so as to be meshable with the pinion 311.
A first bracket 321 provided on the outer peripheral surface 280a of the first member 280 and having an elongated hole 324 parallel to the axis CL12 of the first member 280.
Includes a link 323 that connects the elongated hole 324 and the second bracket 322 provided on the second member 290 so as to be linked.
 このため、ステアバイワイヤ式の電動パワーステアリング装置200に必須である第1モータ220を、支持部材270から外方へ張り出すことなく、第1部材280又は第2部材290に組み込むことができる。 Therefore, the first motor 220, which is indispensable for the steer-by-wire type electric power steering device 200, can be incorporated into the first member 280 or the second member 290 without protruding outward from the support member 270.
 実施例2を、更にまとめると、図7~図12に示されるように、車両用電動パワーステアリング装置200は、
 ステアリング軸17に設けられたステアリングホイール11と、
 前記ステアリング軸17に操舵反力を発生させる第1モータ220(反力モータ220)と、
 前記ステアリングホイール11を前方及び後方に移動させるテレスコピック動作と、前記ステアリングホイール11の昇降を行うチルト動作と、を制御する第2モータ300と、を有し、
 前記第1モータ220は、ステアリングホイール11と同心にモータ軸224を有しており、前記第2モータ300の駆動時にテレスコピック動作又はチルト動作に起因して移動する。
To further summarize the second embodiment, as shown in FIGS. 7 to 12, the electric power steering device 200 for a vehicle is
The steering wheel 11 provided on the steering shaft 17 and
A first motor 220 (reaction motor 220) that generates a steering reaction force on the steering shaft 17 and
It has a second motor 300 that controls a telescopic operation of moving the steering wheel 11 forward and backward and a tilt operation of raising and lowering the steering wheel 11.
The first motor 220 has a motor shaft 224 concentrically with the steering wheel 11, and moves due to a telescopic operation or a tilt operation when the second motor 300 is driven.
 このため、ステアリングホイール11のテレスコピック運動とチルト運動とが可能な機能を有した、より小型のステアバイワイヤ式の電動パワーステアリング装置200を提供することができる。この結果、自動運転車両50に対する電動パワーステアリング装置200の搭載性を、高めることができる。 Therefore, it is possible to provide a smaller steer-by-wire type electric power steering device 200 having a function capable of telescopic movement and tilt movement of the steering wheel 11. As a result, the mountability of the electric power steering device 200 on the autonomous driving vehicle 50 can be improved.
<実施例3>
 図13を参照しつつ、実施例3の車両用電動パワーステアリング装置400を説明する。実施例3の車両用電動パワーステアリング装置400は、上記図1に示される実施例1の車両用電動パワーステアリング装置10と、上記図7に示される実施例2の車両用電動パワーステアリング装置200と、に有している制御装置15を変更した(図13参照)ことを特徴とし、他の構成は実施例1~2と同じなので、説明を省略する。
<Example 3>
The vehicle electric power steering device 400 of the third embodiment will be described with reference to FIG. The vehicle electric power steering device 400 of the third embodiment includes the vehicle electric power steering device 10 of the first embodiment shown in FIG. 1 and the vehicle electric power steering device 200 of the second embodiment shown in FIG. The control device 15 included in the above is changed (see FIG. 13), and the other configurations are the same as those of the first and second embodiments, and thus the description thereof will be omitted.
 実施例3の制御装置15は、図1及び図7に示されるように、操舵角センサ41と操舵トルクセンサ42とその他の各種センサ43と、ドライビングポジション装置51からの指令とに従って、転舵モータ35と第1モータ20,220と第2モータ100,300とを制御している。 As shown in FIGS. 1 and 7, the control device 15 of the third embodiment is a steering motor in accordance with a steering angle sensor 41, a steering torque sensor 42, various other sensors 43, and a command from the driving position device 51. It controls 35, the first motors 20, 220, and the second motors 100, 300.
 この制御装置15は、例えばマイクロコンピュータによって構成される。マイクロコンピュータによって構成した制御装置15の、具体的な制御の一例を説明すると、次の通りである。図1~図12を参照しつつ、図13に基づいて制御装置15の制御について説明する。 The control device 15 is configured by, for example, a microcomputer. An example of specific control of the control device 15 configured by the microcomputer will be described as follows. The control of the control device 15 will be described with reference to FIGS. 1 to 12.
 図13は、制御装置15の制御フローチャートであって、制御装置15の一連の制御のなかの、運転モード切換え処理を実行するサブルーチンを示している。このサブルーチンは、例えば所定の条件による割込処理や、時分割処置によって実行する。 FIG. 13 is a control flowchart of the control device 15, and shows a subroutine that executes an operation mode switching process in a series of controls of the control device 15. This subroutine is executed, for example, by interrupt processing under a predetermined condition or time division processing.
 制御装置15は制御を開始すると、先ずステップS01では、図2(a)に示されるようにステアリングホイール11を手動運転用ポジション(第1ドライビングポジション)に設定する。つまり第2モータ100,300を制御する。 When the control device 15 starts control, first, in step S01, the steering wheel 11 is set to the manual driving position (first driving position) as shown in FIG. 2A. That is, the second motors 100 and 300 are controlled.
 次に、ステップS02では、ドライビングポジション装置51から、自動運転モードへの切換え指令があるか否かを判断する。ここで、自動運転モードへの切換え指令が無いと判断した場合には、ステップS03に進む。ステップS03では、このサブルーチンを終了するか否かを判断する。ここで、終了すると判断した場合にはこのサブルーチンを終了し、続行すると判断した場合にはステップS02に戻る。このように、ステップS02では、自動運転モードへの切換え指令が有ると判断するまで、このステップS02を繰り返す。 Next, in step S02, it is determined from the driving position device 51 whether or not there is a command to switch to the automatic operation mode. Here, if it is determined that there is no command to switch to the automatic operation mode, the process proceeds to step S03. In step S03, it is determined whether or not to terminate this subroutine. Here, if it is determined to end, this subroutine is terminated, and if it is determined to continue, the process returns to step S02. As described above, in step S02, this step S02 is repeated until it is determined that there is a command to switch to the automatic operation mode.
 ステップS02において、自動運転モードへの切換え指令が有ると判断と判断した場合には、ステップS04に進む。ステップS04では、自動運転車両50の自動運転機能が正常であるか否かを判断する。ドライビングポジション装置51から正常であるという指令が有る場合には、正常であると判断して、ステップS05に進む。ステップS05では、図2(b)に示されるようにステアリングホイール11を自動運転用ポジション(第2ドライビングポジション)に設定する。つまり第2モータ100,300を制御する。 If it is determined in step S02 that there is a command to switch to the automatic operation mode, the process proceeds to step S04. In step S04, it is determined whether or not the automatic driving function of the automatic driving vehicle 50 is normal. If there is a command from the driving position device 51 that it is normal, it is determined that it is normal, and the process proceeds to step S05. In step S05, the steering wheel 11 is set to the automatic driving position (second driving position) as shown in FIG. 2B. That is, the second motors 100 and 300 are controlled.
 次に、ステップS06では、ドライビングポジション装置51から、手動運転モードへの切換え指令があるか否かを判断する。ここで、手動運転モードへの切換え指令が無いと判断した場合には、ステップS08に進む。ステップS08では、このサブルーチンを終了するか否かを判断する。ここで、終了すると判断した場合にはこのサブルーチンを終了し、続行すると判断した場合にはステップS04に戻る。このように、ステアリングホイール11を自動運転用ポジションに設定した場合には、自動運転車両50の自動運転機能が正常であるか否かを、常に判断する。 Next, in step S06, it is determined whether or not there is a command to switch to the manual operation mode from the driving position device 51. Here, if it is determined that there is no command to switch to the manual operation mode, the process proceeds to step S08. In step S08, it is determined whether or not to terminate this subroutine. Here, if it is determined to end, this subroutine is terminated, and if it is determined to continue, the process returns to step S04. In this way, when the steering wheel 11 is set to the automatic driving position, it is always determined whether or not the automatic driving function of the automatic driving vehicle 50 is normal.
 一方、ステップS06において、手動運転モードへの切換え指令が有ると判断した場合には、ステップS07に進む。ステップS07では、このサブルーチンを終了するか否かを判断する。ここで、終了すると判断した場合にはこのサブルーチンを終了し、続行すると判断した場合にはステップS01に戻って、ステアリングホイール11を手動運転用ポジションに設定する。 On the other hand, if it is determined in step S06 that there is a command to switch to the manual operation mode, the process proceeds to step S07. In step S07, it is determined whether or not to terminate this subroutine. Here, if it is determined to end, this subroutine is terminated, and if it is determined to continue, the process returns to step S01 and the steering wheel 11 is set to the manual driving position.
 上記ステップS04において、自動運転車両50の自動運転機能が異常であると、ドライビングポジション装置51から指令が有った場合には、異常であると判断して、ステップS09に進む。ステップS09では、ステアリングホイール11を手動運転用ポジションに設定して、ステップS10に進む。つまり第2モータ100,300を制御する。ステップS10では、このサブルーチンを終了するか否かを判断する。ここで、終了すると判断した場合にはこのサブルーチンを終了し、続行すると判断した場合にはステップS10を繰り返す。 In step S04, if the automatic driving function of the automatic driving vehicle 50 is abnormal, if there is a command from the driving position device 51, it is determined that the automatic driving vehicle 50 is abnormal, and the process proceeds to step S09. In step S09, the steering wheel 11 is set to the manual driving position, and the process proceeds to step S10. That is, the second motors 100 and 300 are controlled. In step S10, it is determined whether or not to terminate this subroutine. Here, if it is determined to end, this subroutine is terminated, and if it is determined to continue, step S10 is repeated.
 以上の説明から明らかなように、制御装置15はステップS09において、車両用電動パワーステアリング装置400を搭載した自動運転車両50の自動運転機能に異常が発生したと判断した場合には、ステアリングホイール11を手動運転用ポジションの状態(非格納状態)に維持する。つまり、手動運転モードから自動運転モードへの切換え指令があった場合に、異常が発生したと判断したときには、ステアリングホイール11をそのまま手動運転用ポジションに維持する。また、ステアリングホイール11が自動運転用ポジションにある場合に、異常が発生したと判断したときには、ステアリングホイール11を手動運転用ポジションに切り替える。 As is clear from the above description, when the control device 15 determines in step S09 that an abnormality has occurred in the automatic driving function of the automatic driving vehicle 50 equipped with the electric power steering device 400 for the vehicle, the steering wheel 11 Is maintained in the state of the manual operation position (non-retracted state). That is, when it is determined that an abnormality has occurred when there is a command to switch from the manual operation mode to the automatic operation mode, the steering wheel 11 is maintained in the manual operation position as it is. Further, when it is determined that an abnormality has occurred when the steering wheel 11 is in the automatic driving position, the steering wheel 11 is switched to the manual driving position.
 上記実施例3の説明をまとめると、次の通りである。
 図1、図2、図7及び図13に示されるように、車両用電動パワーステアリング装置400は、
 前記第2モータ100,300を制御する制御装置15を、更に有し、
 前記制御装置15は、前記車両用電動パワーステアリング装置400を搭載した自動運転車両50の自動運転機能に異常が発生したと判断した場合に、前記ステアリングホイール11を非格納状態(非格納位置P1)とするように、前記第2モータ100,300を制御する構成である。
The description of the third embodiment is summarized as follows.
As shown in FIGS. 1, 2, 7, and 13, the electric power steering device 400 for a vehicle is
Further, a control device 15 for controlling the second motors 100 and 300 is provided.
When the control device 15 determines that an abnormality has occurred in the automatic driving function of the automatic driving vehicle 50 equipped with the electric power steering device 400 for the vehicle, the steering wheel 11 is in a non-retracted state (non-storing position P1). The configuration is such that the second motors 100 and 300 are controlled.
 このため、自動運転車両50の自動運転機能に異常が発生した場合には、運転者Drがステアリングホイール11を手動によって操舵することができる。運転者Drは自動運転車両50を自由に運転することができる。 Therefore, when an abnormality occurs in the automatic driving function of the automatic driving vehicle 50, the driver Dr can manually steer the steering wheel 11. The driver Dr can freely drive the self-driving vehicle 50.
 なお、本発明による車両用電動パワーステアリング装置10,200,400は、本発明の作用及び効果を奏する限りにおいて、実施例に限定されるものではない。
 例えば、実施例3は、実施例1と実施例2に対して、それぞれを適宜に組み合わせることが可能である。
The electric power steering devices 10, 200, and 400 for vehicles according to the present invention are not limited to the examples as long as they exhibit the actions and effects of the present invention.
For example, in Example 3, each of Example 1 and Example 2 can be appropriately combined.
 本発明の車両用電動パワーステアリング装置10,200,400は、自動運転車両50に搭載するのに好適である。 The electric power steering devices 10, 200, 400 for vehicles of the present invention are suitable for mounting on the autonomous driving vehicle 50.
 10,200,400 車両用電動パワーステアリング装置
 11         ステアリングホイール
 15         制御装置
 17         ステアリング軸
 20, 220    第1モータ(反力モータ)
 24, 224    モータ軸
 28         制御ユニット
 50         自動運転車両
 56         車体
 60, 260    ステアリングホイール調節装置
 70, 270    支持部材
 73, 273    支持部材の周壁
 73a,273a   周壁の内周面
 73b,273b   周壁の外周面
 80, 280    第1部材
 81         第1部材の周壁
 81a        周壁の内周面
 82, 282    第1部材の先端部
 90, 290    第2部材
 90a,290a   第2部材の側面
 91         延長部
 91a        延長部の先端部
 92         支持軸
 94         自在軸継手
 95         支持アーム
 100,300    第2モータ
 101,301    モータ軸
 110,310    第1伝動機構
 111        単一の軸
 111a       第1の雄ねじ
 111b       第2の雄ねじ
 112        駆動力伝達部
 116        第1変換機構
 117        第1の雌ねじ
 118        アーム
 120,320    第2伝動機構
 121        第2変換機構
 122        第2の雌ねじ
 123        スライダ
 124        リンク
 280a       第1部材の外周面
 281        延長部
 281a       延長部の先端部
 282        第1部材の先端部
 311        ピニオン
 312        ラック
 323        リンク
 CL2,CL12   第1部材の軸線
10,200,400 Electric power steering device for vehicles 11 Steering wheel 15 Control device 17 Steering shaft 20, 220 First motor (reaction motor)
24, 224 Motor shaft 28 Control unit 50 Autonomous vehicle 56 Body 60, 260 Steering wheel adjustment device 70, 270 Support member 73, 273 Peripheral wall of support member 73a, 273a Inner peripheral surface of peripheral wall 73b, 273b Outer peripheral surface of peripheral wall 80, 280 1st member 81 Peripheral wall of 1st member 81a Inner peripheral surface of peripheral wall 82, 282 Tip of 1st member 90, 290 2nd member 90a, 290a Side of 2nd member 91 Extension 91a Tip of extension 92 Support Shaft 94 Free shaft joint 95 Support arm 100,300 Second motor 101,301 Motor shaft 110,310 First transmission mechanism 111 Single shaft 111a First male screw 111b Second male screw 112 Driving force transmission part 116 First conversion Mechanism 117 1st female screw 118 Arm 120, 320 2nd transmission mechanism 121 2nd conversion mechanism 122 2nd female screw 123 Slider 124 Link 280a Outer surface surface of 1st member 281 Extension part 281a Tip part of extension part 282 1st member Tip 311 Pinion 312 Rack 323 Link CL2, CL12 Axis of 1st member

Claims (9)

  1.  車体に取り付け可能な中空状の支持部材と、
     前記支持部材の内周面にスライド可能に組み付けられた第1部材と、
     前記第1部材の先端部にスイング可能に連結された第2部材と、
     前記第2部材に配置されるとともに、前記第1部材の軸線に対して同心に位置しているステアリング軸と、
     前記ステアリング軸に設けられたステアリングホイールと、
     前記第1部材と前記第2部材とのいずれか一方に有するとともに、前記第1部材の前記軸線に対して同心にモータ軸が位置しており、前記ステアリングホイールの操舵力に抵抗する操舵反力を発生して前記ステアリングホイールに付加する第1モータと、
     前記支持部材に設けられた第2モータと、
     前記第2モータが発生した駆動力を、前記第1部材をスライド駆動するスライド駆動力に変換して、前記第1部材に伝達する第1伝動機構と、
     前記第2モータが発生した駆動力を、前記第2部材をスイング駆動するスイング駆動力に変換して、前記第2部材に伝達する第2伝動機構と、
    を含む車両用電動パワーステアリング装置。
    Hollow support member that can be attached to the car body,
    A first member slidably assembled on the inner peripheral surface of the support member and
    A second member swingably connected to the tip of the first member,
    A steering shaft that is arranged on the second member and is located concentrically with respect to the axis of the first member.
    The steering wheel provided on the steering shaft and
    A steering reaction force that is held in either one of the first member and the second member, and the motor shaft is located concentrically with respect to the axis of the first member and resists the steering force of the steering wheel. And the first motor that generates and adds to the steering wheel,
    A second motor provided on the support member and
    A first transmission mechanism that converts the driving force generated by the second motor into a slide driving force that slides the first member and transmits the driving force to the first member.
    A second transmission mechanism that converts the driving force generated by the second motor into a swing driving force that drives the second member and transmits the second member to the second member.
    Electric power steering device for vehicles including.
  2.  前記第1モータは、前記第1部材と前記第2部材とのなかの、前記第1部材に収納されており、
     前記ステアリングホイールは、前記モータ軸に自在軸継手によって連結されている、
    請求項1に記載の車両用電動パワーステアリング装置。
    The first motor is housed in the first member of the first member and the second member.
    The steering wheel is connected to the motor shaft by a universal shaft joint.
    The electric power steering device for a vehicle according to claim 1.
  3.  前記第1伝動機構は、
     前記第1部材の前記軸線に対して平行に位置するとともに、前記支持部材の外周面に沿って延びており、前記支持部材に対して、相対回転が許容され且つ軸方向への相対移動が規制された軸と、
     前記第2モータの駆動力を前記軸に伝達する駆動力伝達部と、
     前記軸の回転運動を前記第1部材のスライド運動に変換する第1変換機構と、
    によって構成されており、
     前記第2伝動機構は、前記軸の回転運動を前記第2部材のスイング運動に変換する第2変換機構によって構成されている、
    請求項2に記載の車両用電動パワーステアリング装置。
    The first transmission mechanism is
    It is located parallel to the axis of the first member and extends along the outer peripheral surface of the support member, allowing relative rotation of the support member and restricting relative movement in the axial direction. With the axis
    A driving force transmission unit that transmits the driving force of the second motor to the shaft,
    A first conversion mechanism that converts the rotational movement of the shaft into the sliding movement of the first member,
    Consists of
    The second transmission mechanism is configured by a second conversion mechanism that converts the rotational motion of the shaft into the swing motion of the second member.
    The electric power steering device for a vehicle according to claim 2.
  4.  前記第1モータは、前記第1部材と前記第2部材とのなかの、前記第2部材に一体に有しており、
     前記ステアリングホイールは、前記モータ軸に連結されている、
    請求項1に記載の車両用電動パワーステアリング装置。
    The first motor is integrally provided with the second member of the first member and the second member.
    The steering wheel is connected to the motor shaft.
    The electric power steering device for a vehicle according to claim 1.
  5.  前記第1伝動機構は、前記第2モータの駆動力によって回転するピニオンと、前記ピニオンに噛み合い可能に前記第1部材の外周面に有しているラックと、によって構成されており、
     前記第2伝動機構は、
     前記支持部材の外周面に設けられており、前記第1部材の前記軸線に対して平行な長孔を有した第1ブラケットと、
     前記長孔と、前記第2部材に設けられている第2ブラケットとの間を、連係可能に繋いでいるリンクと、
    によって構成されている、
    請求項4に記載の車両用電動パワーステアリング装置。
    The first transmission mechanism is composed of a pinion that is rotated by a driving force of the second motor and a rack that is provided on the outer peripheral surface of the first member so as to be able to mesh with the pinion.
    The second transmission mechanism is
    A first bracket provided on the outer peripheral surface of the support member and having an elongated hole parallel to the axis of the first member, and
    A link that connects the elongated hole and the second bracket provided on the second member so as to be linkable with each other.
    Consists of,
    The electric power steering device for a vehicle according to claim 4.
  6.  車体に取り付け可能な中空状の支持部材と、
     前記支持部材の内周面にスライド可能に組み付けられた第1部材と、
     前記第1部材の先端部にスイング可能に連結された第2部材と、
     前記第2部材に回転可能に支持されるとともに、前記第1部材の前記軸線に対して同心に位置したステアリング軸と、
     前記ステアリング軸に設けられたステアリングホイールと、
     前記第1部材に相対変位が規制されつつ収納されており、前記第1部材の前記軸線に対して同心に位置するとともに自在軸継手によって前記ステアリング軸に連結されたモータ軸を有しており、前記ステアリングホイールの操舵力に抵抗する操舵反力を発生して前記ステアリングホイールに付加する第1モータと、
     前記第1部材の前記軸線に対して平行に位置するとともに、前記支持部材の外周面に沿って延びており、前記支持部材に対して相対回転が許容され且つ軸方向への相対移動が規制されて設けられており、第1の雄ねじ及び第2の雄ねじを有している単一の軸と、
     前記支持部材に設けられており、前記単一の軸を駆動する第2モータと、
     前記第1部材と前記第1モータとのいずれか一方から前記軸へ向かって延びており、前記第1の雄ねじに組み合う第1の雌ねじを有しているアームと、
     前記第2の雄ねじに組み合う第2の雌ねじを有しており、前記軸に沿って変位可能なスライダと、
     前記スライダと前記第2部材との間を、連係可能に繋いでいるリンクと、
    を含む車両用電動パワーステアリング装置。
    Hollow support member that can be attached to the car body,
    A first member slidably assembled on the inner peripheral surface of the support member and
    A second member swingably connected to the tip of the first member,
    A steering shaft that is rotatably supported by the second member and is located concentrically with respect to the axis of the first member.
    The steering wheel provided on the steering shaft and
    It is housed in the first member while its relative displacement is restricted, and has a motor shaft located concentrically with respect to the axis of the first member and connected to the steering shaft by a universal shaft joint. A first motor that generates a steering reaction force that resists the steering force of the steering wheel and applies it to the steering wheel.
    It is located parallel to the axis of the first member and extends along the outer peripheral surface of the support member, allowing relative rotation with respect to the support member and restricting relative movement in the axial direction. A single shaft that is provided with a first and second male thread, and
    A second motor provided on the support member and driving the single shaft, and
    An arm extending from either one of the first member and the first motor toward the shaft and having a first female screw to be engaged with the first male screw.
    A slider that has a second female thread that engages with the second male thread and is displaceable along the axis.
    A link that connects the slider and the second member so as to be linked,
    Electric power steering device for vehicles including.
  7.  車体に取り付け可能な中空状の支持部材と、
     前記支持部材の内周面にスライド可能に組み付けられた第1部材と、
     前記第1部材の先端部にスイング可能に連結された第2部材と、
     前記第2部材に配置されるとともに、前記第1部材の軸線に対して同心に位置しているステアリングホイールと、
     前記第2部材に一体に有しており、モータ軸が前記第1部材の前記軸線に対して同心に位置するとともに前記ステアリングホイールに連結されており、前記ステアリングホイールの操舵力に抵抗する操舵反力を発生して前記ステアリングホイールに付加する第1モータと、
     前記支持部材に設けられている第2モータと、
     前記第2モータの駆動力によって回転するピニオンと、
     前記ピニオンに噛み合い可能に前記第1部材の外周面に有しているラックと、
     前記第1ハウジングの外周面に設けられており、前記第1部材の前記軸線に対して平行な長孔を有した第1ブラケットと、
     前記長孔と、前記第2部材に設けられている第2ブラケットとの間を、連係可能に繋いでいるリンクと、
    を含む車両用電動パワーステアリング装置。
    Hollow support member that can be attached to the car body,
    A first member slidably assembled on the inner peripheral surface of the support member and
    A second member swingably connected to the tip of the first member,
    A steering wheel that is arranged on the second member and is located concentrically with respect to the axis of the first member.
    It is integrally provided with the second member, and the motor shaft is located concentrically with respect to the axis of the first member and is connected to the steering wheel, so that the steering reaction resists the steering force of the steering wheel. The first motor that generates force and applies it to the steering wheel,
    The second motor provided on the support member and
    A pinion that is rotated by the driving force of the second motor,
    A rack provided on the outer peripheral surface of the first member so as to be able to mesh with the pinion,
    A first bracket provided on the outer peripheral surface of the first housing and having an elongated hole parallel to the axis of the first member, and
    A link that connects the elongated hole and the second bracket provided on the second member so as to be linkable with each other.
    Electric power steering device for vehicles including.
  8.  前記第2モータを制御する制御装置を、更に有し、
     前記制御装置は、請求項1~7のいずれか1項に記載の車両用電動パワーステアリング装置を搭載した自動運転車両の自動運転機能に異常が発生したと判断した場合に、前記ステアリングホイールを非格納状態とするように前記第2モータを制御する、車両用電動パワーステアリング装置。
    Further having a control device for controlling the second motor,
    The control device does not use the steering wheel when it is determined that an abnormality has occurred in the automatic driving function of the automatic driving vehicle equipped with the electric power steering device for a vehicle according to any one of claims 1 to 7. An electric power steering device for a vehicle that controls the second motor so as to be in a retracted state.
  9.  ステアリング軸に設けられたステアリングホイールと、
     前記ステアリング軸に操舵反力を発生させる第1モータと、
     前記ステアリングホイールを前方及び後方に移動させるテレスコピック動作と、前記ステアリングホイールの昇降を行うチルト動作と、を制御する第2モータと、
    を有し、
     前記第1モータは、ステアリングホイールと同心にモータ軸を有しており、前記第2モータの駆動時にテレスコピック動作又はチルト動作に起因して移動する、
    車両用電動パワーステアリング装置。
    The steering wheel provided on the steering shaft and
    A first motor that generates a steering reaction force on the steering shaft,
    A second motor that controls a telescopic operation for moving the steering wheel forward and backward and a tilt operation for raising and lowering the steering wheel.
    Have,
    The first motor has a motor shaft concentrically with the steering wheel, and moves due to a telescopic operation or a tilt operation when the second motor is driven.
    Electric power steering device for vehicles.
PCT/JP2019/021471 2019-05-30 2019-05-30 Electric power steering device for vehicle WO2020240763A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/021471 WO2020240763A1 (en) 2019-05-30 2019-05-30 Electric power steering device for vehicle
JP2019529291A JP6596615B1 (en) 2019-05-30 2019-05-30 Electric power steering device for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/021471 WO2020240763A1 (en) 2019-05-30 2019-05-30 Electric power steering device for vehicle

Publications (1)

Publication Number Publication Date
WO2020240763A1 true WO2020240763A1 (en) 2020-12-03

Family

ID=68314229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021471 WO2020240763A1 (en) 2019-05-30 2019-05-30 Electric power steering device for vehicle

Country Status (2)

Country Link
JP (1) JP6596615B1 (en)
WO (1) WO2020240763A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119362A1 (en) * 2021-12-20 2023-06-29 株式会社ジェイテクト Steering device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891114B2 (en) * 2018-10-19 2024-02-06 Nsk, Ltd. Steering device
KR20210069995A (en) * 2019-12-04 2021-06-14 현대자동차주식회사 Device for storing steering wheel and its control method
CN111114643B (en) * 2019-12-26 2021-03-19 中国科学院自动化研究所南京人工智能芯片创新研究院 Artificial intelligence automatic obstacle avoidance walking chassis
JP7452216B2 (en) 2020-01-15 2024-03-19 株式会社ジェイテクト steering gear
JP7380445B2 (en) 2020-06-25 2023-11-15 株式会社ジェイテクト Steering device, abnormality determination method, and abnormality determination program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05229375A (en) * 1991-06-03 1993-09-07 Mccord Winn Textron Inc Power system with memory for freely adjustably positioned mechanism
JP2008120229A (en) * 2006-11-10 2008-05-29 Toyota Motor Corp Steering device
JP2008179294A (en) * 2007-01-25 2008-08-07 Toyota Motor Corp Vehicular steering device
JP2018092336A (en) * 2016-12-01 2018-06-14 三菱自動車工業株式会社 Vehicle having automatic traveling function
JP2019043220A (en) * 2017-08-30 2019-03-22 いすゞ自動車株式会社 Steering device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05229375A (en) * 1991-06-03 1993-09-07 Mccord Winn Textron Inc Power system with memory for freely adjustably positioned mechanism
JP2008120229A (en) * 2006-11-10 2008-05-29 Toyota Motor Corp Steering device
JP2008179294A (en) * 2007-01-25 2008-08-07 Toyota Motor Corp Vehicular steering device
JP2018092336A (en) * 2016-12-01 2018-06-14 三菱自動車工業株式会社 Vehicle having automatic traveling function
JP2019043220A (en) * 2017-08-30 2019-03-22 いすゞ自動車株式会社 Steering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119362A1 (en) * 2021-12-20 2023-06-29 株式会社ジェイテクト Steering device

Also Published As

Publication number Publication date
JPWO2020240763A1 (en) 2021-09-13
JP6596615B1 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
WO2020240763A1 (en) Electric power steering device for vehicle
WO2020240764A1 (en) Electric power steering device for vehicle
EP2033875B1 (en) Vehicle steering apparatus with retractable steering column
EP2033874B1 (en) Vehicle steering apparatus
JP5759311B2 (en) Single motor type electric column device
JP2638871B2 (en) Steering device
US10640139B2 (en) Telescoping steering column
US11338839B2 (en) Electrically adjustable steering
JP4254273B2 (en) Steering device
JP2009292429A (en) Vehicular steering device
CN215706609U (en) Adjustable steering column assembly for a steer-by-wire apparatus
JP5105233B2 (en) Electric steering column device
KR101493094B1 (en) Motor Driven Power Steering System
WO2022264295A1 (en) Steering device
JP4590688B2 (en) Electric tilt steering device
JPH03262774A (en) Seat slide-interlocked steering device
JPH10167082A (en) Steering wheel positioning device
JP2006347371A (en) Steering position adjustment device
JPH0952576A (en) Steering device
JP2005255040A (en) Electric position adjustment type steering column device
JP2009090713A (en) Vehicular steering device
KR19980033789U (en) Single articulated steering column
JP2004249825A (en) Golf car
JP2003276613A (en) Tilt position adjusting device
JP2016124518A (en) Electric power steering with telescopic function

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019529291

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930218

Country of ref document: EP

Kind code of ref document: A1