WO2020238808A1 - 一种信息上报的方法及装置 - Google Patents

一种信息上报的方法及装置 Download PDF

Info

Publication number
WO2020238808A1
WO2020238808A1 PCT/CN2020/091931 CN2020091931W WO2020238808A1 WO 2020238808 A1 WO2020238808 A1 WO 2020238808A1 CN 2020091931 W CN2020091931 W CN 2020091931W WO 2020238808 A1 WO2020238808 A1 WO 2020238808A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
communication system
terminal device
frequency domain
reporting
Prior art date
Application number
PCT/CN2020/091931
Other languages
English (en)
French (fr)
Inventor
刘哲
纪刘榴
彭金磷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020238808A1 publication Critical patent/WO2020238808A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for information reporting.
  • NR new radio
  • LTE long term evolution
  • GHz gigahertz
  • band 3 1.8 GHz
  • band 3 800 MHz
  • 2.6 GHz band 38
  • the terminal In order to adapt to changes in the wireless channel, the terminal needs to report channel state information for reference by the network equipment. In the scenario of spectrum sharing of different communication systems, how to report accurate channel state information is an urgent problem to be solved.
  • the present application provides a method and device for reporting information, which helps to more accurately feedback the channel quality status and avoid the loss of throughput and communication efficiency in the communication system.
  • an information reporting method in an embodiment of the present application includes:
  • the terminal device receives first configuration information from the network device, where the first configuration information is used by the terminal device to determine the overlap area of the first frequency domain resource of the first communication system and the second frequency domain resource of the second communication system.
  • the terminal device reports the channel state information CSI of the first communication system on the first frequency domain resource to the network device.
  • the CSI reporting method includes: reporting that the terminal device is based on the first frequency domain. In the domain resources, except for the CSI obtained by the coincidence area and the CSI obtained by the terminal device based on the coincidence area, the CSI obtained by the terminal device based on the first frequency domain resource is reported and the terminal device is based on the coincidence.
  • the present application by adopting one of the three newly designed CSI reporting methods, it can more accurately reflect the first CSI reporting method in the prior art, which is based on the entire first frequency domain resource.
  • the channel quality condition in the communication system avoids the loss of throughput and communication efficiency in the first communication system.
  • the terminal device receives second configuration information from the network device, where the second configuration information is used to indicate that the CSI reporting format is broadband reporting.
  • the reporting format is broadband reporting, all the three reporting methods described above can be applied.
  • the terminal device receives third configuration information from the network device, and the third configuration information is used to indicate that the reporting format of the CSI is subband reporting; in this case, the The CSI reporting manner is: reporting the CSI obtained by the terminal based on the overlapped area in the first frequency domain resource and the CSI obtained by the terminal based on the overlapped area.
  • the terminal device receives first indication information from the network device, where the first indication information is used to indicate a reporting manner of the CSI of the terminal device.
  • the indication information may be located in the downlink control information DCI.
  • the network device and the terminal device can also be agreed by agreement to use any of the above three reporting methods for reporting.
  • the dynamic indication method is more flexible than the agreed method.
  • the terminal device receives second indication information from the network device, and the second indication information is used to indicate whether the terminal device uses one of the above three methods to report CSI .
  • the second indication information may be included in the DCI and indicated by one bit.
  • the DCI may be a terminal equipment level (UE level) DCI, or a group (group) level DCI.
  • the CSI includes a channel quality indicator CQI or a precoding matrix indicator PMI.
  • the first communication system is an NR communication system
  • the second communication system is an LTE communication system.
  • the CSI may be carried on a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH).
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • an embodiment of the present application provides a method for receiving information reporting, including:
  • the network device sends first configuration information to the terminal device, where the first configuration information is used by the terminal device to determine the overlap area of the first frequency domain resource of the first communication system and the second frequency domain resource of the second communication system.
  • the receiving, by the network device, the channel state information CSI of the first communication system on the first frequency domain resource reported by the terminal device includes: receiving, by the network device, the information reported by the terminal device based on the first In the frequency domain resources, except for the CSI obtained in the coincidence area and the CSI obtained based on the coincidence area, the network device receives the CSI obtained based on the first frequency domain resource reported by the terminal device and is based on the coincidence area
  • the present application by adopting one of the three newly designed CSI reporting methods, it can more accurately reflect the first CSI reporting method based on the entire first frequency domain resource in the prior art.
  • the channel quality condition in the communication system avoids the loss of throughput and communication efficiency in the first communication system.
  • the network device sends second configuration information to the terminal device, where the second configuration information is used to indicate that the CSI reporting format is broadband reporting.
  • the network device sends third configuration information to the terminal device, where the third configuration information is used to indicate that the CSI reporting format is subband reporting; the network device receives the The channel state information CSI of the first communication system on the first frequency domain resource reported by the terminal equipment specifically includes: the network equipment receives the information reported by the terminal equipment based on the first frequency domain resource.
  • the network device sends instruction information to the terminal device, where the instruction information is used to indicate the CSI reporting manner of the terminal device.
  • This reporting manner corresponds to the above three situations in which the network device receives the channel state information CSI of the first communication system on the first frequency domain resource reported by the terminal device.
  • the indication information may be located in the downlink control information DCI.
  • the network device and the terminal device can also be agreed through an agreement to use which of the above three reporting methods to report.
  • the dynamic indication method is more flexible than the agreed method.
  • the network device sends second indication information to the terminal device, where the second indication information is used to indicate whether the terminal device uses one of the above three methods to report CSI.
  • the second indication information may be included in the DCI and indicated by one bit.
  • the DCI can be a terminal equipment level (UE level) DCI or a group level DCI.
  • the CSI includes a channel quality indicator CQI or a precoding matrix indicator PMI.
  • the first communication system is a New Radio NR communication system
  • the second communication system is a Long Term Evolution LTE communication system.
  • the CSI may be carried on a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH).
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • an embodiment of the present application provides a method for reporting information, including:
  • the terminal device receives first configuration information from the network device, where the first configuration information is used by the terminal device to determine that the first frequency domain resource of the first communication system and the second frequency domain resource of the second communication system have overlapping areas.
  • the terminal device reports to the network device the channel of the first communication system on the first frequency domain resource by measuring the channel state information reference signal CSI-RS resource set on the first frequency domain resource State information CSI, wherein, in the first frequency domain resource, the CSI-RS resource set of the first communication system is a subset of the CSI-RS candidate resource set of the second communication system.
  • the CSI-RS resource set of the first communication system is a subset of the CSI-RS candidate resource set of the second communication system, which can more accurately reflect the information in the first communication system
  • the channel quality condition avoids the loss of throughput and communication efficiency in the first communication system.
  • the terminal device receives the second configuration information from the network device.
  • the second configuration information may be CSI configuration information, which is used by the terminal device to determine a CSI report format.
  • the reporting format includes broadband reporting or subband reporting.
  • the terminal device receives indication information from the network device, and the indication information is used to indicate the time domain position of the CSI-RS resource set of the first communication system and the information configured to the terminal device The CSI-RS pattern of the first communication system.
  • the indication information may be included in the lower DCI and indicated by bits.
  • the DCI can be a terminal equipment level (UE level) DCI or a group level DCI.
  • the network device and the terminal device may also agree on the CSI-RS mapping pattern of the first communication system through a protocol, and then use the second indication information to indicate the time domain position of the CSI-RS resource set of the first communication system.
  • the former is more flexible, while the latter can save signaling overhead.
  • the CSI includes at least one of CQI, PMI, PTI, and RI.
  • the CSI may be carried on PUSCH or physical PUCCH.
  • the first communication system is a New Radio NR communication system
  • the second communication system is a Long Term Evolution LTE communication system.
  • the embodiments of the present application provide a method for receiving reported information, including:
  • the network device sends first configuration information to the terminal device, where the first configuration information is used by the terminal device to determine that the first frequency domain resource of the first communication system and the second frequency domain resource of the second communication system have overlapping areas.
  • the network device receives the channel state information CSI of the first communication system on the first frequency domain resource reported by the terminal device, where, in the first frequency domain resource, the channel state of the first communication system
  • the information reference signal CSI-RS resource set is a subset of the CSI-RS candidate resource set of the second communication system.
  • the CSI-RS resource set of the first communication system is a subset of the CSI-RS candidate resource set of the second communication system, which can more accurately reflect the information in the first communication system
  • the channel quality condition avoids the loss of throughput and communication efficiency in the first communication system.
  • the network device sends second configuration information to the terminal device, and the second configuration information may be CSI configuration information for the terminal device to determine a CSI report format.
  • the reporting format includes broadband reporting or subband reporting.
  • the network device sends instruction information to the terminal device, where the instruction information is used to indicate the time domain position of the CSI-RS resource set of the first communication system and the information configured to the terminal device
  • the CSI-RS pattern of the first communication system may be included in the lower DCI and indicated by bits.
  • the DCI may be a terminal equipment level (UE level) DCI, or a group (group) level DCI.
  • the network device and the terminal device may also agree on the CSI-RS mapping pattern of the NR communication system through a protocol, and then use the second indication information to indicate the time domain position of the CSI-RS resource set of the NR communication system.
  • the former is more flexible, while the latter can save signaling overhead.
  • the CSI includes at least one of CQI, PMI, PTI, and RI.
  • the CSI may be carried on PUSCH or physical PUCCH.
  • the first communication system is a New Radio NR communication system
  • the second communication system is a Long Term Evolution LTE communication system.
  • the present application provides a device, which may be a terminal device, a device in a terminal device, or a device that can be used with the terminal device.
  • the device may include a processing module and a transceiver module, and The module and the transceiver module can perform the corresponding functions in the method designed in any one of the first aspect and the first aspect and/or the method designed in the third aspect and the third aspect.
  • the present application provides a device, which may be a network device, a device in a network device, or a device that can be used with a network device.
  • the device may include a processing module and a transceiver module, and the processing The module and the transceiver module can perform the corresponding functions in any one of the design methods of the second aspect and the second aspect and/or any one of the fourth aspect and the fourth aspect.
  • an embodiment of the present application provides a device including a processor, configured to implement any possible design method of the first aspect and the first aspect and/or any of the third aspect and the third aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled to the processor, and when the processor executes the program instructions stored in the memory, it can implement any one of the possible design methods and/or the third aspect of the first aspect and the first aspect, and
  • the third aspect is the method described in any design method.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, and other devices may be Network equipment, etc.
  • an embodiment of the present application provides a device including a processor, configured to implement any possible design method of the second aspect and the second aspect and/or any of the fourth and fourth aspects.
  • the device may also include a memory for storing instructions and data. The memory is coupled with the processor, and when the processor executes the program instructions stored in the memory, it can implement any one of the foregoing description of the second aspect and any possible design method of the second aspect and/or the fourth aspect And the method of any possible design method in the fourth aspect.
  • the device may also include a communication interface, which is used for the device to communicate with other devices. Exemplarily, the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, and other devices may be Network equipment, etc.
  • an embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the first aspect and any possible design method of the first aspect, and the second Aspects and any possible design method of the second aspect, any possible design method of the third aspect and the second aspect, or any possible design method of the fourth aspect and the fourth aspect.
  • an embodiment of the present application further provides a chip system, which includes a processor and may also include a memory for implementing the first aspect and any possible design method of the first aspect, the second aspect, and Any possible design method of the second aspect, any possible design method of the third aspect and the second aspect, or any possible design method of the fourth aspect and the fourth aspect.
  • the chip system can be composed of chips, or can include chips and other discrete devices.
  • the embodiments of the present application also provide a computer program product, including instructions, which when run on a computer, cause the computer to execute the first aspect and any possible design method of the first aspect, and the second Aspects and any possible design method of the second aspect, any possible design method of the third aspect and the second aspect, or any possible design method of the fourth aspect and the fourth aspect.
  • an embodiment of the present application also provides a communication system, including the device of the fifth aspect and the device of the sixth aspect. Or include the device of the seventh aspect and the device of the eighth aspect.
  • FIG. 1 is a schematic diagram of the structure of a radio frame according to an embodiment of the application
  • FIG. 2 is a schematic diagram of a carrier bandwidth part and a bandwidth relationship between carriers according to an embodiment of the application;
  • FIG. 3 is an example diagram of a resource grid according to an embodiment of the application.
  • Fig. 4 is an information mapping diagram of an embodiment of the application.
  • 5a-5c are CSI-RS resource mapping diagrams of an LTE communication system according to an embodiment of this application.
  • 6a-6r are CSI-RS resource mapping patterns of an NR communication system according to an embodiment of the application.
  • FIG. 7 is a flowchart of an information reporting method according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of a network architecture of an embodiment of the application.
  • Figures 9a-9c are schematic diagrams of the overlapping manner of an embodiment of the application.
  • FIG. 10 is a flowchart of an information reporting method according to another embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a device according to an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of a device according to another embodiment of the application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, both A and B exist, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an “or” relationship.
  • the following at least one (item) or similar expressions refers to any combination of these items, including any combination of single item (item) or plural items (item).
  • At least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c Each of them can be an element or a collection containing one or more elements.
  • transmission can include sending and/or receiving, and can be a noun or a verb.
  • the terminal device in the embodiment of this application is a device with wireless transceiver function, which can be called terminal (terminal), user equipment (UE), mobile station (MS), mobile terminal (MT) ), access terminal equipment, vehicle-mounted terminal equipment, industrial control terminal equipment, UE unit, UE station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal device can be fixed or mobile. It should be noted that the terminal device can support at least one wireless communication technology, such as LTE, NR, and wideband code division multiple access (WCDMA).
  • WCDMA wideband code division multiple access
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (pad), a desktop computer, a notebook computer, an all-in-one machine, a vehicle-mounted terminal, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, wireless terminals in smart grid (smart grid), transportation safety Wireless terminals in (transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless Local loop (wireless local loop, WLL) stations, personal digital assistants (personal digital assistants, PDAs), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, wearable devices, future mobile communications
  • the terminal may also be a mobile phone (mobile phone),
  • the network device in the embodiment of the present application is a device that provides wireless communication functions for terminal devices, and may also be referred to as an access network device, a radio access network (radio access network, RAN) device, etc.
  • the network device can support at least one wireless communication technology, such as LTE, NR, WCDMA, and so on.
  • the network equipment includes but is not limited to: next-generation base station (gNB), evolved node B (evolved node B, eNB), and wireless network control in the fifth-generation mobile communication system (5th-generation, 5G) Radio network controller (RNC), node B (node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (e.g., home evolved node B, Or home node B, HNB, baseband unit (BBU), transmitting and receiving point (TRP), transmitting point (TP), mobile switching center, etc.
  • RNC Radio network controller
  • node B node B
  • BSC base station controller
  • BTS base transceiver station
  • BTS base transceiver station
  • home base station e.g., home evolved node B, Or home node B, HNB, baseband unit (BBU), transmitting and receiving point (TRP), transmitting point (TP), mobile switching center, etc.
  • TRP transmitting and
  • the network device can also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario, or the network device can These are relay stations, access points, in-vehicle equipment, terminal equipment, wearable devices, and network equipment in future mobile communications or network equipment in the future evolved PLMN.
  • the network device may also be a device with a wireless communication function for terminal devices, such as a chip system.
  • the chip system may include a chip, and may also include other discrete devices.
  • the terminal device and the network device communicate through a communication interface.
  • the communication interface between the terminal device and the network device may be a universal UE to network interface (universal UE to network interface, Uu air interface).
  • Uu air interface universal UE to network interface
  • the communication between the terminal device and the network device can also be referred to as Uu air interface communication.
  • Time unit The time unit in the embodiment of the present application may refer to a period of time in the time domain.
  • one time unit in the embodiment of the present application may include one or more basic time units.
  • communications such as side-by-side communications or Uu air interface communications are based on basic time units.
  • the basic time unit may be a radio frame, a subframe, a slot, a micro-slot, a mini-slot, or a symbol.
  • the basic time unit is a subframe, and one time unit may include one or more subframes; for another example, the basic time unit is a symbol, and one time unit may include one or more symbols.
  • the duration of one radio frame may be 10 milliseconds (ms).
  • One radio frame may include one or more subframes. For example, if the duration of one subframe is 1 ms, then one radio frame may include 10 subframes.
  • One subframe may include one or more time slots. Among them, the duration of a time slot is related to the size of the subcarrier interval, and the duration of the time slot corresponding to the subcarrier interval of different sizes is different. For example, when the subcarrier interval is 15kHz, the duration of one time slot can be 1ms; when the subcarrier interval is 30kHz, the duration of one time slot can be 0.5ms. For example, one time slot in this embodiment of the present application may include one or more symbols.
  • a time slot may include 14 symbols; under an extended (extended) CP, a time slot may include 12 symbols.
  • the symbols in the embodiments of the present application may also be referred to as time-domain symbols.
  • the symbols may be orthogonal frequency division multiplexing (OFDM) symbols, or may also be orthogonal frequency division multiplexing (OFDM) symbols based on discrete Fourier transform extension. Frequency division multiplexing (discrete fourier transform spread orthogonal frequency division multiplexing, DFT-s-OFDM) symbols, etc.
  • the mini-slot (or mini-slot) in the embodiment of the present application may be a unit smaller than the time slot, and a mini-slot may include one or more symbols.
  • a mini-slot (or mini-slot) may include 2 symbols, 4 symbols, or 7 symbols.
  • One subframe may include one or more mini-slots.
  • One time slot may include one or more mini time slots (or mini time slots).
  • the structure of a radio frame in the embodiment of the present application may be as shown in FIG. 1, and the radio frame has a duration of 10 ms and includes 10 subframes.
  • the duration of each subframe is 1ms.
  • each subframe includes 14 symbols.
  • mini slot 1 includes symbol 0, symbol 1, symbol 2, and symbol 3.
  • mini-slot 2 includes symbol 2 and symbol 3.
  • mini-slot 3 includes symbol 7, symbol 8, symbol 9, symbol 10, symbol 11, and symbol 12.
  • BWP bandwidth part
  • the bandwidth part of the carrier in the embodiments of this application may be referred to as bandwidth part (BWP) for short, which refers to a segment of continuous or discontinuous frequency domain resources on a carrier, where the bandwidth of this segment of continuous or discontinuous frequency domain resources Do not exceed the bandwidth capability of the terminal device, that is, the bandwidth of the BWP is less than or equal to the maximum bandwidth supported by the terminal device.
  • BWP can be a group of continuous resource blocks (resource block, RB) on the carrier, or BWP is a group of continuous subcarriers on the carrier, or BWP is a group of continuous subcarriers on the carrier.
  • RBG Group Consecutive resource block group
  • one RBG includes at least one RB, such as 1, 2, 4, 6, or 8, etc.
  • one RB may include at least one subcarrier, such as 12, etc.
  • the BWP used for communication between the terminal device and the network device in the embodiment of the present application is configured by the network device.
  • the network device can configure one or more BWPs in a carrier for the terminal device.
  • a network device configures a BWP in a carrier for the terminal device.
  • the bandwidth of the BWP does not exceed the bandwidth capability of the terminal device, and the bandwidth of the BWP does not exceed the carrier bandwidth.
  • the network device configures two BWPs for the terminal device in one carrier, namely BWP1 and BWP2, where BWP1 and BWP2 overlap.
  • the network device configures two BWPs in one carrier for the terminal device, namely BWP1 and BWP2, where BWP1 and BWP2 do not overlap at all.
  • the number of BWPs configured by the network device for the terminal device in the embodiment of the present application is not unlimited. Taking NR version 15 (release 15, Rel-15) as an example, a network device can be configured with a maximum of 4 BWPs as a terminal device.
  • the network device may configure 4 BWPs for the uplink and downlink communication of the terminal device.
  • the network device may configure 4 BWPs for the uplink and downlink communication of the terminal device respectively, for example, the center bands of the BWPs with the same number are aligned.
  • the network device can configure system parameters for the terminal device for each BWP.
  • System parameters can be referred to as configuration parameters (numerology).
  • the system parameters may include sub-carrier spacing, and/or CP type, etc.
  • the CP type may include extended CP and normal CP.
  • the system parameters corresponding to different BWPs may be the same or different.
  • the system parameters corresponding to BWP1 and the system parameters corresponding to BWP2 can be the same or different.
  • the network device does not limit other configurations (for example, the location of the BWP) where each BWP is a terminal device.
  • BWP is defined on a given carrier, that is, a BWP is located in a carrier.
  • this application does not limit other definitions of BWP, or other BWP activation schemes.
  • the resources in the embodiments of the present application may also be referred to as time-frequency resources, which are used for transmission of various signals or data, and may be represented by a resource grid.
  • Figure 3 shows an example of the resource grid.
  • a resource element (resource element, RE) is a resource unit used for data transmission, or a resource unit used for resource mapping of data to be sent.
  • One RE corresponds to one symbol in the time domain, such as an OFDM symbol or a DFT-s-OFDM symbol, and the frequency domain corresponds to one subcarrier.
  • One RE can be used to map a complex symbol, for example, a complex symbol obtained through modulation, or a complex symbol obtained through precoding, which is not limited in this application.
  • RBs may be defined in the resource grid, and one RB in the frequency domain may include a positive integer number of subcarriers, for example, 12 subcarriers. Further, the definition of RB can also be extended to the time domain. For example, one RB includes positive integer subcarriers and the time domain includes positive integer symbols. For example, one RB is a time frequency with 12 subcarriers in the frequency domain and 7 symbols in the time domain. Resource block. A positive integer number of RBs may be included in the resource grid.
  • a slot can be defined in the resource grid or the time domain of the time-frequency resource. As described above, a slot can include a positive integer number of symbols, for example, 14 symbols.
  • the frequency domain resource in the embodiment of the present application refers to a region or range in the frequency domain, and is the embodiment of the resource in the frequency domain dimension.
  • one RB in the frequency domain may include a positive integer number of subcarriers, such as 12.
  • the frequency domain resource may also be called a carrier, a frequency domain region, a frequency band, or a frequency band, and so on.
  • the frequency domain resource may specifically be 5 MHz, 10 MHz, 50 MHz, and so on.
  • Table 1 and Table 2 respectively show some available frequency bands in the current LTE communication system and NR communication system:
  • the spectrum sharing of the LTE communication system and the NR communication system is supported in bands 1, 3, and 5, which means that the LTE communication system and the NR communication system can be deployed overlapped in these frequency bands.
  • the carrier of the NR communication system must not only make full use of the unused resources of the LTE communication system, but also avoid interference to the transmission on the carrier of the LTE communication system.
  • the physical downlink control channel (PDCCH) of the LTE communication system is mapped on symbols 0 and 1, then the NR communication system
  • the physical downlink shared channel (PDSCH) can be mapped from symbol 2, as shown in the gray grid in FIG. 4, on which the PDSCH of the NR communication system is mapped. This avoids interference to the PDCCH of the LTE communication system.
  • the NR communication system in order to avoid interference to the cell-specific reference signal (CRS) transmitted in the LTE communication system, the NR communication system also supports rate matching on the resources mapped to the CRS of the LTE communication system, that is, as As shown in FIG. 4, assuming that the horizontal striped grid represents the resources mapped to the CRS of the LTE communication system, the NR communication system will not map the PDSCH of the NR communication system on these resources.
  • CRS cell-specific reference signal
  • the quality-related information may be channel state information (CSI).
  • CSI includes but is not limited to channel quality indicator (CQI), precoding matrix indicator (precoding matrix indicator, PMI), and precoding type Indication (precoding type indicator, PTI) and rank indication (rank indication, RI).
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • precoding type indicator precoding type indicator
  • rank indication rank indication, RI
  • the terminal device may measure the channel state information reference signal (channel state information-reference signal, CSI-RS) sent by the network device to obtain CSI.
  • CSI-RS channel state information reference signal
  • the resource location mapped by the CSI-RS sent by the network device is related to the number of CSI-RS ports and the CSI-RS configuration.
  • the number of ports is 1 or 2 (for example, CSI-RS is sent through port 15 and/or 16)
  • there are 32 possible resource locations for CSI-RS mapping corresponding to the gray and numerically numbered REs.
  • the number in RE ranges from 0 to 31; as shown in Figure 5b, when the number of ports is 4 (for example, CSI-RS is sent through ports 15, 16, 17 and 18), there are 16 possible CSI-RS mapping positions.
  • Ports 15 and 16 correspond to gray shades and there is a number è RE, and ports 17 and 18 correspond to slash shades but there is a number RE.
  • the number in RE includes 0-9 and 20-25; as shown in Figure 5c, when the number of ports is 8 (for example, CSI-RS is sent through ports 15, 16, 17, 18, 19, 20, 21, 22), There are 8 possibilities for the location of CSI-RS mapping.
  • Ports 15 and 16 correspond to gray shaded REs with numbers
  • ports 17 and 18 correspond to diagonal shaded but digital REs
  • ports 19 and 20 correspond to vertical line shades with numbers.
  • ports 21 and 22 correspond to the cross-hatched RE with numbers.
  • the numbers in the RE include 0-5 and 20-22. Here, it is assumed that one port maps only one RE on one RB.
  • the resource position of the CSI-RS mapping in the LTE communication system is based on one subframe as the minimum repetition unit.
  • Fig. 5a (Fig. 5b or Fig. 5c) all the digitized parts constitute a CSI-RS candidate resource set.
  • the network device can indicate the actual mapping position of the CSI-RS through signaling.
  • the resource location of the CSI-RS mapping is more flexible than that of the LTE communication system, and there may be multiple mapping patterns. For example, as shown in Figure 6a, it is set to pattern 1, which means that the RE numbers to which the CSI-RS sent through one port is mapped on one symbol are #0, #4, and #8. Of course, the CSI-RS sent through this port can also be mapped to the RE numbers on one symbol as #1, #5, #9, or #2, #6, #10, or #3, #7, #11, It should also be noted that in a subframe, the symbol may be any one of symbols #0 to #13.
  • Figure 6b it is set to pattern 2, which means that the RE number to which the CSI-RS sent through one port is mapped on one symbol is #0. Of course, the CSI-RS sent through this port can also be on one symbol. Map to any of RE#1 to #11.
  • Figures 6c to 6r can be deduced by analogy. It should be noted that the number at the bottom of each drawing in Figures 6a to 6r represents the number of ports, the number at the top of each drawing represents the pattern number, and a grid represents An RE also corresponds to a symbol in the time domain and a subcarrier in the frequency domain.
  • the RE enclosed by a box (the three boxes shown in Figure 6a are regarded as a whole) are the basic units for indicating to the terminal equipment.
  • All the filled REs in a pattern are indicated to The same terminal equipment.
  • the REs filled in the same way belong to the same code division multiplexing (CDM) group, and the REs filled in different ways belong to different CDM groups.
  • At least two symbol positions need to be configured in patterns 13, 14, 16, 17, and the position of the first symbol (symbol 1) in the first two consecutive symbols can be used to indicate the time domain of the first two consecutive symbols.
  • Position, using the position of the first symbol (symbol 2) in the second consecutive two-symbol totality indicates the time domain position of the second consecutive two-symbol totality.
  • the minimum repetition unit of the resource location mapped by the CSI-RS in the NR communication system is 1 symbol, 2 symbols, or 4 symbols.
  • One or more of the patterns in 18 in Fig. 6a to Fig. 6r can form a CSI-RS resource set of the terminal device.
  • the CSI-RS of the NR communication system and the PDSCH of the LTE communication system can be mapped on the same resource, when the spectrum efficiency of the PDSCH of the LTE communication system is not high, part of the resources, the PDSCH of the LTE communication system is affected by the NR communication system
  • the terminal equipment of the LTE communication system can still correctly demodulate the content in the PDSCH; but because the CSI-RS of the NR communication system is interfered by the PDSCH of the LTE communication system, it will cause the terminal equipment of the NR communication system
  • the reported CSI situation is worse than the actual CSI situation, making the scheduling decision of the base station of the NR communication system conservative, resulting in a decrease in the throughput of the terminal equipment of the NR communication system, and thus the efficiency of the entire NR communication system.
  • an embodiment of the present application proposes an information reporting method, which can be applied to a scenario where two different communication systems perform spectrum sharing, and as shown in FIG. 7:
  • Step 701 The terminal device receives first configuration information from the network device, where the first configuration information is used by the terminal device to determine the coincidence of the first frequency domain resource of the first communication system with the second frequency domain resource of the second communication system area.
  • Step 702 The terminal device reports the channel state information CSI of the first communication system on the first frequency domain resource to the network device.
  • the CSI reporting method includes: reporting that the terminal is based on the first frequency domain resource. In a frequency domain resource, except for the CSI obtained by the coincidence area and the CSI obtained by the terminal based on the coincidence area, report the CSI obtained by the terminal based on the first frequency domain resource and the terminal based on the coincidence area The obtained CSI, or the CSI obtained by reporting the terminal based on the first frequency domain resource excluding the overlapping area.
  • the terminal device in the embodiment of the present application is a terminal device located in the first communication system, and the network device is a network device supporting the first communication system.
  • the terminal device can access the first communication system through the network device and obtain the service provided by the first communication system.
  • the network architecture of the first communication system is included.
  • the first communication system and the second communication system described in the embodiment of the present application may be respectively an NR communication system and an LTE communication system.
  • the embodiment of FIG. 7 uses the first communication system and the second communication system
  • the second communication system can be described as an NR communication system and an LTE communication system respectively, but it should be noted that the first communication system and the second communication system can be any of the aforementioned communication systems, or any communication systems that are subsequently evolved. As long as the first communication system and the second communication system are not the same communication system, this application does not make any restrictions.
  • the first configuration information described in step 701 may specifically include the configuration information of the LTE communication system carrier.
  • the configuration information of the LTE communication system carrier may include the subcarrier position of the LTE system carrier center, One or more.
  • the terminal device can obtain the location information of the second frequency domain resource in the LTE communication system.
  • the terminal device can obtain the bandwidth and/or location of the activated BWP in the NR communication system through the network device, that is, in the communication system to which it is connected, so that the terminal device can obtain the first in the NR communication system. Location information of a frequency domain resource.
  • the first frequency domain resource of the first communication system can be understood as the activated BWP of the NR communication system;
  • the second frequency domain resource of the second communication system can be understood as the carrier of the LTE communication system.
  • the terminal device can determine the overlap area of the NR communication system and the LTE communication system in the frequency domain.
  • the bandwidth of the activated BWP of the NR communication system is a continuous frequency domain range and is 50MHz, and the bandwidth of the carrier of the LTE communication system is 20MHz.
  • Figure 9a, Figure 9b or Figure 9c are examples of the two overlapping methods.
  • the coincidence bandwidth of Fig. 9a and Fig. 9b is 20 MHz
  • Fig. 9c is less than 20 MHz.
  • the terminal device can also know that in the current communication, the NR communication system and the LTE communication system are in a spectrum sharing scenario.
  • the embodiment of the application modifies the reporting method of the CSI of the first frequency domain resource of the first communication system.
  • the terminal device will be based on the entire first frequency domain resource, that is, the activated BWP of the NR communication system.
  • the obtained CSI is reported as the CSI on the activated bandwidth of the NR communication system.
  • the terminal device will obtain the CSI based on one of the following methods to report as the CSI on the activated BWP of the NR communication system:
  • Manner 1 Report the CSI obtained by the terminal device based on the first frequency domain resource except for the overlap area.
  • Fig. 9a the overlap area is the 20MHz bandwidth as shown in the figure, then the terminal equipment on the 50MHz NR communication system's activated BWP (that is, the first frequency domain resource) will only be directed to the area except the overlap
  • the CSI-RS resource on the 30MHz bandwidth (that is, the part of the first frequency domain resource excluding the overlap area) is measured, and the CSI obtained based on the area measurement is reported to the network device.
  • This reporting method avoids the influence of possibly inaccurate measurement in the coincidence area on the measurement result on the activated BWP of the entire NR communication system, and the channel quality information obtained by the network device is more accurate.
  • Manner 2 Report the CSI obtained by the terminal device based on the overlapped area in the first frequency domain resource and the CSI obtained by the terminal device based on the overlapped area.
  • Figure 9a can still be used as an example.
  • the difference between mode two and mode one is that the terminal device not only needs to target the 30MHz bandwidth except the overlap area on the activated BWP (that is, the first frequency domain resource) of the 50MHz NR communication system ( That is, to measure the CSI-RS resources of the first frequency domain resource except for the overlap area), it is also necessary to measure the CSI-RS resources on the 20 MHz bandwidth of the overlap area. Among them, these two measurements are independent of each other. The terminal equipment will report to the network equipment based on the CSI obtained in these two areas respectively.
  • the network device obtains the CSI based on the overlap area and the overlap area based on the first frequency domain resource. Compared with the first method, the network device further obtains the CSI of the overlap area as For reference, in this way, the CSI in the first frequency domain resource range is more comprehensive, and the network equipment can optimize the way of scheduling the terminal equipment based on this, such as selecting a more reliable MCS, better transmission resources, etc., to improve the terminal equipment The throughput and efficiency of the entire communication system.
  • Manner 3 Report the CSI obtained by the terminal device based on the first frequency domain resource and the CSI obtained by the terminal device based on the overlap area.
  • Figure 9a can still be taken as an example.
  • the terminal device needs to be on the activated BWP (that is, the first frequency domain resource) of the 50MHz NR communication system.
  • BWP that is, the first frequency domain resource
  • To measure CSI-RS resources it is also necessary to measure the CSI-RS mapped in the CSI-RS resources on the 20 MHz bandwidth of the overlap area. Among them, these two measurements are independent of each other.
  • the terminal device will report to the network device based on the CSI obtained in the two areas respectively.
  • the network device obtains the CSI based on the first frequency domain resource and the overlapped area, so the channel quality-related information obtained by the network device is also comprehensive, and the network device can optimize and schedule the terminal device based on this Ways, such as selecting a more reliable MCS, better transmission resources, etc., to improve the throughput of the terminal device and the efficiency of the entire communication system.
  • the network device may send second configuration information to the terminal device, and the second configuration information may be CSI configuration information, which is used by the terminal device to determine a CSI report format.
  • the reporting format includes wideband reporting (wideband reporting) or subband reporting (subband reporting).
  • wideband reporting wideband reporting
  • subband reporting subband reporting
  • broadband reporting it means that CSI is obtained by measuring the entire frequency domain resource configured for the terminal device; when the subband reporting is configured, it is measured based on the subregion (subband) of the frequency domain resource configured for the terminal device To obtain CSI, the number of CSI obtained is multiple.
  • reporting format is broadband reporting, all the three reporting methods described above can be applied.
  • reporting format is subband reporting, only the second method can be applied.
  • the network device may send the first indication information to the terminal device, which indicates that the first indication information plays an enabling role and indicates whether the terminal device uses one of the above three methods to report CSI .
  • this first indication information may be included in downlink control information (downlink control information, DCI), which is indicated by one bit.
  • DCI downlink control information
  • the DCI may be a terminal equipment level (UE level) DCI, or a group (group) level DCI.
  • the network equipment and the terminal equipment can be agreed by agreement, in the case that the NR communication system and the LTE communication system have overlapping areas, which of the above three reporting methods is used by the terminal equipment to report.
  • the network device may also instruct the terminal device to use which of the above three reporting methods to report through the second indication information.
  • the second indication information may also be carried in the DCI. This dynamic indication method is more flexible than the agreed method.
  • the CSI includes at least one of CQI, PMI, PTI, and RI.
  • the CSI may be carried on a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH).
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the technical solution of the first embodiment of the present application adopts one of the three newly designed CSI reporting methods, which can more accurately reflect the CSI reporting method based on the entire first frequency domain resource in the prior art.
  • the channel quality condition in the first communication system avoids the loss of throughput and communication efficiency in the first communication system.
  • the embodiment of the present application also proposes another information reporting method, as shown in FIG. 10, which can also overcome the above-mentioned technical problems, and its application scenario is similar to the first embodiment of the network architecture.
  • Step 1001 The terminal device receives first configuration information from the network device, where the first configuration information is used by the terminal device to determine that the first frequency domain resource of the first communication system overlaps with the second frequency domain resource of the second communication system area;
  • Step 1002 The terminal device reports the channel state information of the first communication system on the first frequency domain resource to the network device by measuring the CSI-RS resource set on the first frequency domain resource CSI, wherein, in the first frequency domain resource, the CSI-RS resource set of the first communication system is a subset of the CSI-RS candidate resource set of the second communication system.
  • the terminal device in the embodiment of the present application is a terminal device located in the first communication system, and the network device is a network device supporting the first communication system.
  • the terminal device can access the first communication system through the network device and obtain the service provided by the first communication system. Refer to Figure 8 for its network architecture.
  • first communication system and the second communication system may be respectively an NR communication system and an LTE communication system as an example, but it does not mean that there are any restrictions on the first communication system and the second communication system.
  • the specific content of the first configuration information in step 1001 may be the same or similar to the first configuration information in step 701 in the first embodiment, and details are not described herein again.
  • the terminal device can obtain the bandwidth and/or location of the activated BWP in the NR communication system through the network device, that is, in the communication system it accesses.
  • the first frequency domain resource of the first communication system can be understood as the activated BWP of the NR communication system;
  • the second frequency domain resource of the second communication system can be understood as the carrier of the LTE communication system.
  • the terminal device can determine that the carrier of the NR communication system to activate the BWP and the LTE communication system has an overlapping area in the frequency domain. That is, the terminal device can know that in the current communication, the NR communication system and the LTE communication system are in a spectrum sharing scenario.
  • the terminal device may further determine the overlap area of the NR communication system and the LTE communication system based on the first configuration information. For the specific determination method, see also the specific description of step 701.
  • this embodiment is from the perspective of CSI-RS resources by specifying the CSI-RS resources in the NR communication system. Position to avoid possible interference caused by PDSCH in LTE communication system to CSI measurement in NR communication system.
  • the terminal device can still report in the same reporting manner as in the prior art.
  • the reporting format can be broadband reporting or narrowband reporting.
  • the CSI-RS resource set of the NR communication system is a subset of the CSI-RS candidate resource set of the LTE communication system.
  • the CSI-RS candidate resource set in the LTE communication system can be understood as consisting of REs with numbers in FIG. 5a (or 5b, or 5c).
  • the CSI-RS resource set in the NR communication system is more flexible as described above, and there are multiple mapping patterns. That is, the second embodiment requires that the CSI-RS resource set corresponding to the mapping pattern of the NR communication system that the terminal device expects to receive needs to overlap with the CSI-RS candidate resource set in the LTE communication system, or the CSI-RS candidate resource set Partially overlapped.
  • the terminal device when the terminal device expects (for example, the terminal device can be instructed by the network device) to obtain the time domain position of the CSI-RS resource of the NR communication system is at least one of the symbols 5, 6, 12, and 13, its corresponding The frequency domain position of is at least one of subcarriers 2, 3, 8, and 9; or the time domain position at which the terminal expects to receive CSI-RS resources of the NR communication system is at least one of symbol 8, symbol 8, or symbol 10.
  • a pattern that meets the above requirements from the mapping pattern in the NR communication system such as pattern 2, 3, 5, 7 or 8, that is, Figure 6b, Figure 6c, Figure 6e, Figure 6g or Figure 6h can all meet the requirements Claim.
  • the CSI-RS resource set of the NR communication system is a subset of the CSI-RS candidate resource set of the LTE communication system is that the CSI-RS candidate resource set will not be mapped
  • the zero-power CSI-RS configuration of the LTE communication system can be enabled to avoid interference to the CSI-RS measurement of the NR communication system, so that the CSI on the activated BWP of the NR communication system obtained based on this is More accurate.
  • the network device may send second configuration information to the terminal device, and the second configuration information may be CSI configuration information, which is used by the terminal device to determine a CSI report format.
  • the reporting format includes wideband reporting (wideband reporting) or subband reporting (subband reporting).
  • wideband reporting wideband reporting
  • subband reporting subband reporting
  • the network device may send the first indication information to the terminal device, which is used to indicate the time domain position of the CSI-RS resource set of the NR communication system and the CSI-RS mapping pattern of the NR communication system.
  • this first indication information may be included in downlink control information (downlink control information, DCI), which is indicated by bits.
  • DCI downlink control information
  • the DCI can be a terminal equipment level (UE level) DCI or a group level DCI.
  • the network device and the terminal device may also agree on the CSI-RS mapping pattern of the NR communication system through a protocol, and then use the second indication information to indicate the time domain position of the CSI-RS resource set of the NR communication system.
  • the former is more flexible, while the latter can save signaling overhead.
  • the CSI includes at least one of CQI, PMI, PTI, and RI.
  • the CSI may be carried on a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH).
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the technical solution of the second embodiment of the present application by specifying that in the first frequency domain resource, the CSI-RS resource set of the first communication system is a subset of the CSI-RS candidate resource set of the second communication system, it is more capable
  • the channel quality condition in the first communication system is accurately reflected, and the loss of throughput and communication efficiency in the first communication system is avoided.
  • the communication method provided in the embodiments of the present application is introduced from the perspective of including a terminal device as an execution subject.
  • the terminal device may include a hardware structure and/or software module, and realize the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether a certain function of the above-mentioned functions is executed in a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • an embodiment of the present application further provides an apparatus 1100, and the apparatus 1100 includes a transceiver module 1101 and a processing module 1102.
  • the apparatus 1100 is used to implement the function of the terminal device in the foregoing method.
  • the device can be a terminal device or a device in the first terminal device.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the processing module 1101 is configured to control the transceiver module 1102 to receive first configuration information from a network device, and the first configuration information is used by the terminal device to determine the first frequency domain resource of the first communication system and the second communication system.
  • the processing module 1101 and the transceiver module 1102 please refer to the record in the above method embodiment.
  • the division of modules in the embodiments of this application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the apparatus 1100 is used to implement the function of the network device in the above method.
  • the device can be a network device or a device in a network device.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the processing module 1101 is configured to control the transceiver module 1102 to send first configuration information to the terminal device, and the first configuration information is used by the terminal device to determine the first frequency domain resource of the first communication system and the second communication system.
  • the overlapping area of the second frequency domain resource; and controlling the transceiver module 1102 to receive the channel state information CSI of the first communication system on the first frequency domain resource reported by the terminal equipment includes: the network equipment receives The CSI reported by the terminal device based on the first frequency domain resource divided by the coincidence area and the CSI obtained based on the coincidence area, the network device receives the CSI reported by the terminal device based on the first frequency domain CSI obtained by the resource and CSI obtained based on the coincidence area, or the network device receives the CSI obtained by dividing the coincidence area from the first frequency domain resource and reported by the terminal device.
  • the processing module 1101 and the transceiver module 1102 please refer to the record in the above method embodiment.
  • the division of modules in the embodiments of the present application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • an embodiment of the present application further provides an apparatus 1200.
  • the device 1200 is used to implement the function of the terminal device in the above method, and the device may be a terminal device or a device in a terminal device.
  • the apparatus 1200 includes at least one processor 1201, configured to implement the function of the terminal device in the foregoing method. For details, please refer to the detailed description in the method, which will not be explained here.
  • the apparatus 1200 may further include at least one memory 1202 for storing program instructions and/or data.
  • the memory 1202 is coupled with the processor 1201.
  • the coupling in the embodiments of the present application is an interval coupling or a communication connection between devices, units, or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the memory 1202 may also be located outside the apparatus 1200.
  • the processor 1201 may operate in cooperation with the memory 1202.
  • the processor 1201 may execute program instructions stored in the memory 1202 to implement the method in the foregoing embodiment of the present application. At least one of the at least one memory may be included in the processor.
  • the apparatus 1200 may further include a communication interface 1203 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 1200 can communicate with other devices.
  • the communication interface 1203 may be a transceiver, a circuit, a bus, a module, or another type of communication interface, and the other device may be a network device.
  • the processor 1201 uses the communication interface 1203 to send and receive data, and is used to implement the method in the foregoing embodiment.
  • the device 1200 is used to implement the function of the network device in the above method.
  • the device may be a network device or a device in a network device.
  • the apparatus 1200 has at least one processor 1201, configured to implement the function of the network device in the above method.
  • processor 1201 configured to implement the function of the network device in the above method.
  • the apparatus 1200 may further include at least one memory 1202 for storing program instructions and/or data.
  • the memory 1202 is coupled with the processor 1201.
  • the coupling in the embodiments of the present application is an interval coupling or a communication connection between devices, units or modules, which can be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the memory 1202 may also be located outside the apparatus 1200.
  • the processor 1201 may operate in cooperation with the memory 1202.
  • the processor 1201 may execute program instructions stored in the memory 1202. At least one of the at least one memory may be included in the processor.
  • the apparatus 1200 may further include a communication interface 1203 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 1200 can communicate with other devices.
  • the communication interface 1203 may be a transceiver, circuit, bus, module, or other type of communication interface, and the other device may be a terminal device.
  • the processor 1201 uses the communication interface 1203 to send and receive data, and is used to implement the method in the foregoing embodiment.
  • the embodiment of the present application does not limit the connection medium between the foregoing communication interface 1203, the processor 1201, and the memory 1202.
  • the memory 1202, the processor 1201, and the communication interface 1203 may be connected by a bus, and the bus may be divided into an address bus, a data bus, and a control bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function, for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息上报的方法及装置,涉及通信技术领域。其中,该方法包括:终端设备从网络设备接收第一配置信息,所述第一配置信息用于所述终端设备确定第一通信系统的第一频域资源与第二通信系统的第二频域资源的重合区域。所述终端设备向所述网络设备上报所述第一通信系统在所述第一频域资源上的信道状态信息CSI,所述CSI的上报方式包括:上报所述终端设备基于所述第一频域资源中除所述重合区域获得的CSI和所述终端设备基于所述重合区域获得的CSI、上报所述终端设备基于所述第一频域资源获得的CSI和所述终端设备基于所述重合区域获得的CSI、或者上报所述终端设备基于所述第一频域资源中除所述重合区域获得的CSI。这种技术方案有效提高了上报CSI的准确性。

Description

一种信息上报的方法及装置 技术领域
本申请涉及通信技术领域,特别涉及一种信息上报的方法及装置。
背景技术
不同通信系统间的频谱共享是解决传统频谱使用方式带来的资源供需矛盾的有效授权,使得频谱资源被充分利用。例如,新无线电(new radio,NR)通信系统和长期演进(long term evolution,LTE)通信系统之间可以实现频谱共享,举例来说,NR和LTE都可以部署在2.1千兆赫(GHz)(频段(band)1)、1.8GHz(band 3)、800兆赫兹(MHz)(band 3)、2.6GHz(band 38)等频域资源上。
为了适应无线信道的变化,终端需要上报信道状态信息以供网络设备参考。在不同通信系统频谱共享的场景下,如何上报准确的信道状态信息,是亟需解决的问题。
发明内容
本申请提供一种信息上报的方法和装置,有助于更准确地反馈信道质量状况,避免通信系统中的吞吐量和通信效率的损失。
第一方面本申请实施例的一种信息上报的方法,包括:
终端设备从网络设备接收第一配置信息,所述第一配置信息用于所述终端设备确定第一通信系统的第一频域资源与第二通信系统的第二频域资源的重合区域。所述终端设备向所述网络设备上报所述第一通信系统在所述第一频域资源上的信道状态信息CSI,所述CSI的上报方式包括:上报所述终端设备基于所述第一频域资源中除所述重合区域获得的CSI和所述终端设备基于所述重合区域获得的CSI、上报所述终端设备基于所述第一频域资源获得的CSI和所述终端设备基于所述重合区域获得的CSI、或者上报所述终端设备基于所述第一频域资源中除所述重合区域获得的CSI。
本申请的实施例中,通过采取新设计的三种CSI上报方式中的一种,相对于现有技术中单独上报基于整个第一频域资源的CSI的上报方式,更能准确地反映第一通信系统中的信道质量状况,避免了造成第一通信系统中的吞吐量和通信效率的损失。
在一种可能的设计中,所述终端设备从所述网络设备接收第二配置信息,所述第二配置信息用于指示所述CSI的上报格式为宽带上报。当上报格式为宽带上报时,如上所述的三种上报方式都可以适用。
在一种可能的设计中,所述终端设备从所述网络设备接收第三配置信息,所述第三配置信息用于指示所述所述CSI的上报格式为子带上报;此时,所述CSI的上报方式为:上报所述终端基于所述第一频域资源中除所述重合区域获得的CSI和所述终端基于所述重合区域获得的CSI。
在一种可能的设计中,所述终端设备从所述网络设备接收第一指示信息,所述第一指示信息用于指示所述终端设备所述CSI的上报方式。该指示信息可以位于下行控制信息DCI中。当然,所述网络设备和终端设备也可以通过协议约定,采用如上三种上报方式中的何 种方式进行上报。动态的指示方式相对于协议约定的方式,更为灵活。
在一种可能的设计中,所述终端设备从所述网络设备接收第二指示信息,所述第二指示信息用于指示所述终端设备是否采用如上三种方式中的一种进行CSI的上报。第二指示信息可以包含在DCI中,通过一个比特位进行指示。该DCI可以是终端设备级(UE级)的DCI,还可以是组(group)级的DCI。
在一种可能的设计中,所述CSI包括信道质量指示CQI,或者预编码矩阵指示PMI。
在一种可能的设计中,所述第一通信系统为NR通信系统,所述第二通信系统为LTE通信系统。
在一种可能的设计中,该CSI可以承载在物理上行共享信道(physical uplink shared channel,PUSCH)或者物理上行控制信道(physical uplink control channel,PUCCH)上。
第二方面,本申请实施例提供一种接收信息上报的方法,包括:
网络设备向终端设备发送第一配置信息,所述第一配置信息用于所述终端设备确定第一通信系统的第一频域资源与第二通信系统的第二频域资源的重合区域。所述网络设备接收所述终端设备上报的所述第一通信系统在所述第一频域资源上的信道状态信息CSI,包括:所述网络设备接收所述终端设备上报的基于所述第一频域资源中除所述重合区域获得的CSI和基于所述重合区域获得的CSI、所述网络设备接收所述终端设备上报的基于所述第一频域资源获得的CSI和基于所述重合区域获得的CSI、或者所述网络设备接收所述终端设备上报的基于所述第一频域资源中除所述重合区域获得的CSI。
本申请的实施例中,通过采取新设计的三种CSI上报方式中的一种,相对于现有技术中单独上报基于整个第一频域资源的CSI的上报方式,更能准确地反映第一通信系统中的信道质量状况,避免了造成第一通信系统中的吞吐量和通信效率的损失。
在一种可能的设计中,所述网络设备向所述终端设备发送第二配置信息,所述第二配置信息用于指示所述CSI的上报格式为宽带上报。
在一种可能的设计中,所述网络设备向所述终端设备发送第三配置信息,所述第三配置信息用于指示所述CSI的上报格式为子带上报;所述网络设备接收所述终端设备上报的所述第一通信系统在所述第一频域资源上的信道状态信息CSI,具体包括:所述网络设备接收所述终端设备上报的基于所述第一频域资源中除所述重合区域获得的CSI和基于所述重合区域获得的CSI。
在一种可能的设计中,所述网络设备向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备所述CSI的上报方式。该上报方式对应网络设备接收所述终端设备上报的所述第一通信系统在所述第一频域资源上的信道状态信息CSI的上述三种情况。该指示信息可以位于下行控制信息DCI中。当然,所述网络设备和终端设备也可以通过协议约定,采用如上三种上报方式中的何种方式进行上报。动态的指示方式相对于协议约定的方式,更为灵活。
在一种可能的设计中,所述网络设备向终端设备发送第二指示信息,所述第二指示信息用于指示所述终端设备是否采用如上三种方式中的一种进行CSI的上报。第二指示信息可以包含在DCI中,通过一个比特位进行指示。该DCI可以是终端设备级(UE级)的DCI,还可以是组(group)级的DCI。
在一种可能的设计中,所述CSI包括信道质量指示CQI,或者预编码矩阵指示PMI。
在一种可能的设计中,所述第一通信系统为新无线电NR通信系统,所述第二通信系统为长期演进LTE通信系统。
在一种可能的设计中,该CSI可以承载在物理上行共享信道(physical uplink shared channel,PUSCH)或者物理上行控制信道(physical uplink control channel,PUCCH)上。
第三方面,本申请实施例提供一种信息上报的方法,包括:
终端设备从网络设备接收第一配置信息,所述第一配置信息用于所述终端设备确定第一通信系统的第一频域资源与第二通信系统的第二频域资源存在重合区域。所述终端设备通过对所述第一频域资源上信道状态信息参考信号CSI-RS资源集合的测量,向所述网络设备上报所述第一通信系统在所述第一频域资源上的信道状态信息CSI,其中,在所述第一频域资源,第一通信系统的CSI-RS资源集合为所述第二通信系统的CSI-RS候选资源集合的子集。
通过规定在所述第一频域资源,第一通信系统的CSI-RS资源集合为所述第二通信系统的CSI-RS候选资源集合的子集,更能准确地反映第一通信系统中的信道质量状况,避免了造成第一通信系统中的吞吐量和通信效率的损失。
在一种可能的设计中,所述终端设备从所述网络设备接收第二配置信息。所述第二配置信息可以是CSI配置信息,用于所述终端设备确定CSI的上报格式。该上报格式包括宽带上报或者子带上报。
在一种可能的设计中,所述终端设备从所述网络设备接收指示信息,所述指示信息用于指示第一通信系统的CSI-RS资源集合的时域位置和配置给所述终端设备的所述第一通信系统的CSI-RS图样。所述指示信息可以包含在下DCI中,通过比特位进行指示。该DCI可以是终端设备级(UE级)的DCI,还可以是组(group)级的DCI。可选的,网络设备和终端设备还可以通过协议约定第一通信系统的CSI-RS的映射pattern,再通过第二指示信息,指示第一通信系统的CSI-RS资源集合的时域位置。这两种实现方式,前者更为灵活,后者则可以节约信令开销。
在一种可能的设计中,该CSI包括CQI、PMI、PTI和RI中的至少一种。
在一种可能的设计中,该CSI可以承载在PUSCH或者物PUCCH上。
在一种可能的设计中,所述第一通信系统为新无线电NR通信系统,所述第二通信系统为长期演进LTE通信系统。
第四方面,本申请实施例提供接收上报的信息的方法,包括:
网络设备向终端设备发送第一配置信息,所述第一配置信息用于所述终端设备确定第一通信系统的第一频域资源与第二通信系统的第二频域资源存在重合区域。所述网络设备接收所述终端设备上报的所述第一通信系统在所述第一频域资源上的信道状态信息CSI,其中,在所述第一频域资源,第一通信系统的信道状态信息参考信号CSI-RS资源集合为所述第二通信系统的CSI-RS候选资源集合的子集。
通过规定在所述第一频域资源,第一通信系统的CSI-RS资源集合为所述第二通信系统的CSI-RS候选资源集合的子集,更能准确地反映第一通信系统中的信道质量状况,避免了造成第一通信系统中的吞吐量和通信效率的损失。
在一种可能的设计中,所述网络设备向所述终端设备发送第二配置信息,所述第二配置信息可以是CSI配置信息,用于所述终端设备确定CSI的上报格式。该上报格式包括宽带上报或者子带上报。
在一种可能的设计中,所述网络设备向所述终端设备发送指示信息,所述指示信息用于指示第一通信系统的CSI-RS资源集合的时域位置和配置给所述终端设备的所述第一通信系统的CSI-RS图样。所述指示信息可以包含在下DCI中,通过比特位进行指示。该DCI可以是终端设备级(UE级)的DCI,还可以是组(group)级的DCI。可选的,网络设备和终端设备还可以通过协议约定NR通信系统的CSI-RS的映射pattern,再通过第二指示信息,指示NR通信系统的CSI-RS资源集合的时域位置。这两种实现方式,前者更为灵活,后者则可以节约信令开销。
在一种可能的设计中,该CSI包括CQI、PMI、PTI和RI中的至少一种。
在一种可能的设计中,该CSI可以承载在PUSCH或者物PUCCH上。
在一种可能的设计中,所述第一通信系统为新无线电NR通信系统,所述第二通信系统为长期演进LTE通信系统。
第五方面,本申请提供一种装置,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置,该装置可以包括处理模块和收发模块,且处理模块和收发模块可以执行上述第一方面以及第一方面任一种设计的方法和/或第三方面以及第三方面任一种设计的方法中的相应功能。
第六方面,本申请提供一种装置,该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置,该装置可以包括处理模块和收发模块,且处理模块和收发模块可以执行上述第二方面及第二方面任一种设计的方法和/或第四方面以及第四方面任一种设计的方法中的相应功能。
第七方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第一方面及第一方面任一种可能的设计的方法和/或第三方面以及第三方面任一种设计的方法描述的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的程序指令时,可以实现上述第一方面及第一方面任一种可能的设计的方法和/或第三方面以及第三方面任一种设计的方法描述的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备等。
第八方面,本申请实施例提供一种装置,所述装置包括处理器,用于实现上述第二方面及第二方面任一种可能的设计的方法和/或第四方面以及第四方面任一种可能的设计的方法描述的方法。所述装置还可以包括存储器,用于存储指令和数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的程序指令时,可以实现上述第二方面描述及第二方面任一种可能的设计的方法和/或第四方面以及第四方面任一种可能的设计的方法的方法。所述装置还可以包括通信接口,所述通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备等。
第九方面,本申请实施例还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面以及第一方面任一种可能的设计的方法、第二方面以及第二方面任意一种可能的设计的方法、第三方面以及第二方面任意一种可能的设计的方法、或者第四方面以及第四方面任意一种可能的设计的方法。
第十方面,本申请实施例还提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第一方面以及第一方面任一种可能的设计的方法、第二方面以及第二方面任意一种可能的设计的方法、第三方面以及第二方面任意一种可能的设计的方法、或者第四方面以及第四方面任意一种可能的设计的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行第一方面以及第一方面任一种可能的设计的方法、第二方面以及第二方面任意一种可能的设计的方法、第三方面以及第二方面任意一种可能的设计的方法、或者第四方面以及第四方面任意一种可能的设计的方法。
第十二方面,本申请实施例中还提供一种通信系统,包括第五方面的装置和第六方面的装置。或者包括第七方面的装置和第八方面的装置。
另外,第五方面至第十一方面中任一种可能设计方式所带来的技术效果可参见方法部分中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请一实施例的无线帧的结构示意图;
图2为本申请一实施例的的载波带宽部分和载波之间的带宽关系示意图;
图3为本申请一实施例的资源栅格的示例图;
图4为本申请一实施例的信息映射图;
图5a-图5c为本申请一实施例的LTE通信系统CSI-RS资源映射图;
图6a-图6r为本申请一实施例的NR通信系统CSI-RS资源映射图样;
图7为本申请一实施例的一种信息上报方法流程图;
图8为本申请一实施例的网络架构示意图;
图9a-图9c为本申请一实施例的重合方式示意图;
图10为本申请另一实施例的一种信息上报方法流程图;
图11为本申请一实施例的装置的结构示意图;
图12为本申请另一实施例的装置的结构示意图。
具体实施方式
本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一(项)个”或其类似表达,是指的这 些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a、b、c中的每一个本身可以是元素,也可以是包含一个或多个元素的集合。
在本申请实施例中,“示例的”“在一些实施例中”“在另一实施例中”“作为一种实现方式”等用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中通信、传输有时可以混用,应当指出的是,在不强调区别时,其所表达的含义是一致的。例如传输可以包括发送和/或接收,可以为名词,也可以是动词。
需要指出的是,本申请实施例中涉及的“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。本申请实施例中涉及的等于可以与大于连用,适用于大于时所采用的技术方案,也可以与小于连用,适用于与小于时所采用的技术方案,需要说明的是,当等于与大于连用时,不与小于连用;当等于与小于连用时,不与大于连用。
以下对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1、终端设备。本申请实施例中终端设备是一种具有无线收发功能的设备,可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端设备、车载终端设备、工业控制终端设备、UE单元、UE站、移动站、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备可以是固定的或者移动的。需要说明的是,终端设备可以支持至少一种无线通信技术,例如LTE、NR、宽带码分多址(wideband code division multiple access,WCDMA)等。例如,终端设备可以是手机(mobile phone)、平板电脑(pad)、台式机、笔记本电脑、一体机、车载终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备、未来移动通信网络中的终端设备或者未来演进的公共移动陆地网络(public land mobile network,PLMN)中的终端设备等。在本申请的一些实施例中,终端还可以是具有收发功能的装置,例如芯片系统。其中,芯片系统可以包括芯片,还可以包括其它分立器件。
2、网络设备。本申请实施例中网络设备是一种为终端设备提供无线通信功能的设备,也可称之为接入网设备、无线接入网(radio access network,RAN)设备等。其中,网络设备可以支持至少一种无线通信技术,例如LTE、NR、WCDMA等。示例的,网络设备包括但不限于:第五代移动通信系统(5th-generation,5G)中的下一代基站(generation nodeB, gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved node B、或home node B,HNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)、和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、接入点、车载设备、终端设备、可穿戴设备以及未来移动通信中的网络设备或者未来演进的PLMN中的网络设备等。在一些实施例中,网络设备还可以为具有为终端设备提供无线通信功能的装置,例如芯片系统。示例的,芯片系统可以包括芯片,还可以包括其它分立器件。
3、终端设备与网络设备之间的通信。本申请实施例中终端设备和网络设备是通过通信接口进行通信的。例如,终端设备与网络设备之间的通信接口可以为通用的UE和网络之间的接口(universal UE to network interface,Uu空口)。当终端设备与网络设备之间的通信接口为Uu空口时,终端设备与网络设备之间的通信又可以称之为Uu空口通信。
4、时间单元。本申请实施例中时间单元可以指在时域上的一段时间。其中,本申请实施例中一个时间单元可以包括一个或多个基本时间单元。具体的,本申请实施例中通信例如旁链路通信或者Uu空口通信等是以基本时间单元为单位的。示例的,基本时间单元可以为无线帧(radio frame)、子帧(subframe)、时隙(slot)、微时隙(micro-slot)、迷你时隙(mini-slot)、或者符号等。例如,基本时间单元为子帧,一个时间单元可以包括一个或多个子帧;再例如,基本时间单元为符号,一个时间单元可以包括一个或多个符号。在一些实施例中,一个无线帧的时长可以是10毫秒(ms)。一个无线帧可以包括一个或多个子帧。比如,一个子帧的时长是1ms,则一个无线帧可以包括10个子帧。一个子帧可以包括一个或者多个时隙。其中,一个时隙的时长与子载波间隔的大小相关,不同大小的子载波间隔对应的时隙的时长是不同的。例如,子载波间隔为15kHz时,一个时隙的时长可以为1ms;子载波间隔为30kHz时,一个时隙的时长可以为0.5ms。示例的,本申请实施例中一个时隙可以包括一个或多个符号。比如,正常(normal)循环前缀(cyclic prefix,CP)下,一个时隙可以包括14个符号;扩展(extended)CP下,一个时隙可以包括12个符号。应理解,本申请实施例中符号又可以称之为时域符号,例如,符号可以为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以为基于离散傅立叶变换扩展的正交频分复用(discrete fourier transform spread orthogonal frequency division multiplexing,DFT-s-OFDM)符号等。本申请实施例中微时隙(或迷你时隙)可以是比时隙更小的单位,一个微时隙可以包括一个或多个符号。比如一个微时隙(或迷你时隙)可以包括2个符号,4个符号或7个符号等。一个子帧可以包括一个或多个微时隙。一个时隙可以包括一个或多个微时隙(或迷你时隙)。
以子载波间隔为15kHz为例,本申请实施例中一个无线帧的结构可以如图1所示,无线帧的时长为10ms,包括10个子帧。每个子帧的时长为1ms。其中,每个子帧包括14个符号。例如,迷你时隙1包括符号0、符号1、符号2和符号3。再例如,迷你时隙2包括符号2和符号3。又例如,迷你时隙3包括符号7、符号8、符号9、符号10、符号11、和 符号12。
5、载波带宽部分。本申请实施例中的载波带宽部分可以简称为带宽部分(bandwidth part,BWP),指的是载波上一段连续或非连续的频域资源,其中,这段连续或非连续的频域资源的带宽不超过终端设备的带宽能力,即BWP的带宽小于或等于终端设备支持的最大带宽。以BWP为载波上一段连续的频域资源为例,BWP可以是载波上一组连续的资源块(resource block,RB),或者BWP是载波上一组连续的子载波,或者BWP是载波上一组连续的资源块组(resource block group,RBG)等。其中,一个RBG中包括至少一个RB,例如1个、2个、4个、6个或8个等,一个RB可以包括至少一个子载波,例如12个等。本申请实施例中终端设备与网络设备通信所使用的BWP,是网络设备配置的。对于一个终端设备来说,网络设备可以为终端设备在一个载波内配置一个或多个BWP。例如,如图2中的a所示,网络设备为终端设备在一个载波内配置了一个BWP。其中,BWP的带宽不超过终端设备的带宽能力,且BWP的带宽不大于载波带宽。再例如,如图2中的b所示,网络设备为终端设备在一个载波内配置了两个BWP,分别为BWP1和BWP2,其中,BWP1与BWP2存在重叠。又例如,如图2中的c所示,网络设备为终端设备在一个载波内配置了两个BWP,分别为BWP1和BWP2,其中BWP1和BWP2完全不重叠。需要说明的是,本申请实施例中网络设备为终端设备配置的BWP的个数不是无限制的。以NR的版本15(release 15,Rel-15)为例,网络设备为终端设备最多可以配置4个BWP。再例如,在频分双工(frequency division duplexing,FDD)的场景下,网络设备可以为终端设备的上、下行通信分别配置4个BWP。又例如,在时分双工(time division duplexing,TDD)的场景下,网络设备可以为终端设备的上、下行通信分别配置4个BWP,比如相同编号的BWP的中心频段对齐。此外,网络设备可以针对每个BWP,为终端设备配置系统参数。系统参数可以称之为配置参数(numerology)。示例的,系统参数可以包括子载波间隔、和/或CP类型等。其中,CP类型可以包括扩展CP和正常CP。本申请实施例中,不同的BWP对应的系统参数可以相同,也可以不同。以图2b为例,BWP1对应的系统参数和BWP2对应的系统参数可以相同,也可以不同。在另一些实施例中,网络设备针对每个BWP为终端设备的其它配置(例如BWP的位置)也不做限定。在实际通信中,终端设备当接入一个小区后,可以通过激活一个BWP,实现与网络设备之间的通信。通常,BWP是定义在一个给定的载波上的,即一个BWP位于一个载波内。当然,本申请并不限定其他对于BWP的定义,或其他BWP的激活方案等。
6、资源。本申请实施例中资源又可以被称为时频资源,用于进行各种信号或者数据的传输,可以通过资源栅格表示。图3所示为资源栅格的示例图。资源栅格中,资源元素(resource element,RE)是用于进行数据传输的资源单位,或者用于对待发送数据进行资源映射的资源单位。一个RE在时域对应一个符号,例如OFDM符号或者DFT-s-OFDM符号,频域对应一个子载波。一个RE可以用于映射一个复数符号,例如经过调制得到的复数符号,或者经过预编码得到的复数符号,本申请不做限制。在频域,在资源栅格中可以定义RB,在频域一个RB中可以包括正整数个子载波,例如12个。进一步地,RB的定义还可以扩展到时域,例如一个RB包括正整数子载波且时域包括正整数个符号,例如一个RB是频域包括12个子载波且时域包括7个符号的时频资源块。资源栅格中可以包括正整数个RB。在资源栅 格或者时频资源的时域可以定义时隙(slot),如前所述一个时隙中可以包括正整数个符号,例如14个符号等。
7、频域资源。本申请实施例中频域资源指的是频域上的一段区域或者范围,是资源在频域维度的体现。例如,通过资源栅格表示时,在频域一个RB中可以包括正整数个子载波,比如12个。例如,该频域资源又可以称为载波、频域区域、频带、或者频段等等。又例如,频域资源具体地,可以为5MHz、10MHZ、50MHz等。
作为不同通信系统间频谱共享的举例,表1和表2分别示出了目前LTE通信系统和NR通信系统中的一些可用频段:
Figure PCTCN2020091931-appb-000001
表1:LTE的可用频段
Figure PCTCN2020091931-appb-000002
表2:NR在6GHz以下(sub6GHz)的可用频段
如表1和表2,在band 1、3、5等频段范围支持LTE通信系统与NR通信系统的频谱共享,也就是说在这些频段范围内LTE通信系统与NR通信系统可以重叠部署。
当NR通信系统和LTE通信系统共享频谱资源时,NR通信系统的载波既要充分利用LTE通信系统的载波未使用完的资源,又要避免对LTE通信系统的载波上传输的干扰。示例的,如图4所示,假设在如图所示的一段资源上,LTE通信系统的物理下行控制信道(physical downlink control channel,PDCCH)映射在了符号0和1上,则NR通信系统的物理下行共享信道(physical downlink shared channel,PDSCH)可以从符号2开始映射,如图4所示的灰色格子,其上即映射NR通信系统的PDSCH。这样避免了对LTE通信系统PDCCH的干扰。同时,为了避免对LTE通信系统中传输的小区特定参考信号(cell-specific reference signal,CRS)的干扰,NR通信系统还支持在映射LTE通信系统的CRS的资源上进行速率 匹配,也即,如图4所示,假设横条纹格子代表映射LTE通信系统的CRS的资源,那么在这些资源上,NR通信系统将不会映射NR通信系统的PDSCH。
对于不同的通信系统,为了使网络侧更好的获知无线信道的变化情况,需要终端设备将与信道质量相关的信息上报给通信系统中的网络设备。如此,网络设备便可以据此为终端设备选择更可靠的调制与编码策略(modulation and coding scheme,MCS)、更优的传输资源等等。该与质量相关的信息可以是信道状态信息(channel state information,CSI),CSI包括但不限于信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、预编码类型指示(precoding type indicator,PTI)和秩指示(rank indication,RI)。作为一种实现方式,终端设备可以对网络设备发送的信道状态信息参考信号(channel state information-reference signal,CSI-RS)进行测量,以获得CSI。
在LTE通信系统中,网络设备发送的CSI-RS所映射的资源位置和CSI-RS的端口数目、CSI-RS的配置相关。如图5a所示,端口数为1或2时(例如,CSI-RS通过端口15和/或16发送),CSI-RS映射的资源位置共有32种可能,分别对应存在灰色且数字编号的RE,RE中的数字从0到31;如图5b所示,端口数为4时(例如,CSI-RS通过端口15、16、17和18发送),CSI-RS映射的位置共有16种可能,端口15和16对应灰色阴影且存在数字的RE、端口17和18对应斜线阴影但存在数字的的RE。其中RE中的数字包括0~9和20~25;如图5c所示端口数为8时(例如,CSI-RS通过端口15、16、17、18、19、20、21、22发送),CSI-RS映射的位置共有8种可能,端口15和16对应灰色阴影且存在数字的RE、端口17和18对应斜线阴影但存在数字的的RE,端口19和20对应竖线阴影且存在数字的的RE,端口21和22对应横线阴影且存在数字的的RE,RE中的数字包括0~5和20~22。这里,假设一个端口在1个RB上只映射1个RE。在时域上,LTE通信系统中的CSI-RS映射的资源位置是以一个子帧为最小重复单位。图5a(图5b或者图5c)所有带数字的部分组成了CSI-RS候选资源集合,在此基础上,网络设备可以通过信令指示CSI-RS实际映射的位置。
而在NR通信系统中,CSI-RS映射的资源位置相对于LTE通信系统来说,更为灵活,其可以存在多个映射图样(pattern)。例如,如图6a所示,设为pattern 1,表示通过1个端口发送的CSI-RS在一个符号上映射到的RE编号为#0、#4、#8。当然通过该端口发送的CSI-RS在一个符号上还可以映射到的RE编号为#1、#5、#9,或者#2、#6、#10,或者#3、#7、#11,还需要说明的是在一个子帧中,该符号,可以是符号#0至#13中的任意一个。如图6b所示,设为pattern 2,表示通过1个端口发送的CSI-RS在一个符号上映射到的RE编号为#0,当然,通过该端口发送的CSI-RS在一个符号上还可以映射到RE#1至#11中的任意一个。图6c至图6r可以依次类推,需要说明的是,图6a至图6r每个附图最下面的数字代表的是端口数目,每个附图最上方的数字代表的是pattern编号,一个格子代表一个RE,也即时域上对应一个符号,频域上对应一个子载波。一个方框所框出的RE(图6a框出的是三个方框,将其看做一个整体)是向终端设备进行指示的基本单位,一个pattern中所有被填图的RE都是指示给同一个终端设备的。而同一种方式填图的RE属于同一个码分复用(code division multiplexing,CDM)组,不同方式填图的RE则属于不同的CDM组。pattern13、14、16、17中至少需要配置2个符号位置,其中可以使用第一个连续两符号整 体中的第一个符号(符号1)的位置指示该第一个连续两符号整体的时域位置、使用第二个连续两符号整体中的第一个符号(符号2)的位置指示该第二个连续两符号整体的时域位置。在时域上,NR通信系统CSI-RS映射的资源位置的最小重复单位为1个符号、2符号、或者4个符号。如图6a-图6r的18中pattern中的一种或者多种pattern可以组成终端设备的CSI-RS资源集合。
在NR通信系统的CSI-RS和LTE通信系统的PDSCH可以映射在相同的资源上场景下,当LTE通信系统的PDSCH的频谱效率不高时,部分资源上,LTE通信系统的PDSCH受到NR通信系统的CSI-RS的干扰时,LTE通信系统的终端设备仍然能正确解调出PDSCH中的内容;但是由于NR通信系统的CSI-RS受到LTE通信系统的PDSCH干扰,会导致NR通信系统的终端设备上报的CSI情况比实际的CSI情况差,使得NR通信系统的基站的调度决策偏保守,从而造成NR通信系统的终端设备的吞吐量下降,进而整个NR通信系统的效率降低。
实施例一:
为了克服现有技术中存在的以上技术问题,本申请实施例提出了一种信息上报的方法,该方法可以应用于两个不同的通信系统进行频谱共享的场景下,并且如图7所示:
步骤701:终端设备从网络设备接收第一配置信息,所述第一配置信息用于所述终端设备确定第一通信系统的第一频域资源与第二通信系统的第二频域资源的重合区域。
步骤702:所述终端设备向所述网络设备上报所述第一通信系统在所述第一频域资源上的信道状态信息CSI,所述CSI的上报方式包括:上报所述终端基于所述第一频域资源中除所述重合区域获得的CSI和所述终端基于所述重合区域获得的CSI、上报所述终端基于所述第一频域资源获得的CSI和所述终端基于所述重合区域获得的CSI、或者上报所述终端基于所述第一频域资源中除所述重叠区域获得的CSI。
本申请实施例中的终端设备是位于第一通信系统中的终端设备,网络设备是支持第一通信系统的网络设备。示例的,该终端设备可以通过所述网络设备接入第一通信系统、获得第一通信系统提供的服务。如图8所示,包括了第一通信系统的网络架构。
如实施例开始部分所述,本申请实施例中所述的第一通信系统和第二通信系统可以分别为NR通信系统和LTE通信系统,以下,图7实施例就以第一通信系统和第二通信系统可以分别为NR通信系统和LTE通信系统为例进行表述,但是需要说明的是第一通信系统和第二通信系统可以分别前述提及的任何通信系统,或者后续演进的任何通信系统,只要第一通信系统和第二通信系统不为同一通信系统即可,本申请并不做任何限制。
步骤701中所述的第一配置信息,具体可以包括LTE通信系统载波的配置信息,所述LTE通信系统载波的配置信息可以包括LTE系统载波中心的子载波位置,LTE通信系统载波的带宽中的一个或者多个。如此终端设备便可获取LTE通信系统中第二频域资源的位置信息。作为一种实现方式,终端设备可以通过网络设备获取到NR通信系统中,也就是其接入的通信系统中,激活BWP的带宽大小和/或位置,如此终端设备便可获取NR通信系统中第一频域资源的位置信息。
基于以上假设,第一通信系统的第一频域资源可以理解为NR通信系统的激活BWP; 第二通信系统的第二频域资源可以理解为LTE通信系统的载波。
基于步骤701,终端设备就可以确定出NR通信系统和LTE通信系统在频域上的重合区域。示例地,NR通信系统的激活BWP的带宽为一段连续的频域范围,且为50MHz,LTE通信系统的载波的带宽为20MHz,图9a、图9b或图9c为两者重合方式的举例。这三种重合方式中,图9a、图9b的重合带宽为20MHz,图9c则小于20MHz。也就是说,终端设备还能够知道,当前的通信中,NR通信系统和LTE通信系统是处于频谱共享的场景。
为了克服现有技术中的技术缺陷,需要使用一种新的方法上报NR通信系统中的CSI。本申请实施例对第一通信系统的第一频域资源的CSI的上报方式做出了修正,相对于现有技术中终端设备将基于整个第一频域资源,也即NR通信系统的激活BWP,获得的CSI,作为NR通信系统在激活带宽上的CSI进行上报,步骤702中,终端设备将基于如下方式中的一种获得CSI作为NR通信系统在激活BWP上的CSI进行上报:
方式一:上报所述终端设备基于所述第一频域资源中除所述重合区域获得的CSI。
以图9a为例进一步说明:如图9a,重合区域为图示的20MHz带宽,那么终端设备在50MHz的NR通信系统的激活BWP(即第一频域资源)上,将仅针对除重合区域外的30MHz带宽(即第一频域资源中除所述重合区域的部分)上的CSI-RS资源进行测量,将基于该区域测量获得的CSI作向网络设备进行上报。
这种上报方式,避免了重合区域上可能不准确的测量对整个NR通信系统的激活BWP上的测量结果的影响,网络设备获得的信道质量信息是更准确的。
方式二:上报所述终端设备基于所述第一频域资源中除所述重合区域获得的CSI和所述终端设备基于所述重合区域获得的CSI。
仍然可以以图9a为例,方式二与方式一的区别在于,终端设备在50MHz的NR通信系统的激活BWP(即第一频域资源)上,不仅需要针对除重合区域外的30MHz带宽上(即第一频域资源中除所述重合区域的部分)的CSI-RS资源进行测量,还需要针对重合区域的20MHz带宽上的CSI-RS资源进行测量。其中,这两个测量是互相独立的。终端设备将基于这两个区域分别获得的CSI,并向网络设备进行上报。
这种上报方式,网络设备获得的是基于第一频域资源中除所述重合区域和基于所述重合区域获得的CSI,相对于第一种方式,网络设备还进一步获得了重合区域的CSI作为参考,如此在第一频域资源范围内的CSI更为全面,网络设备可以基于此优化调度该终端设备的方式,比如选择更可靠的MCS、更优的传输资源等等,以提高该终端设备的吞吐量和整个通信系统的效率。
方式三:上报所述终端设备基于所述第一频域资源获得的CSI和所述终端设备基于所述重合区域获得的CSI。
仍然可以以图9a为例,在方式三中,作为另外一种选择,终端设备在50MHz的NR通信系统的激活BWP(即第一频域资源)上,需要针对该50MHz的的激活BWP上的CSI-RS资源进行测量,还需要针对重合区域的20MHz带宽上的CSI-RS资源中映射的CSI-RS进行测量。其中,这两个测量是互相独立的。所述终端设备将基于这两个区域分别获得的CSI,并向网络设备进行上报。
这种上报方式,网络设备获得的是基于第一频域资源和基于所述重合区域获得的CSI, 如此网络设备获得的信道质量相关的信息也是全面的,网络设备可以基于此优化调度该终端设备的方式,比如选择更可靠的MCS、更优的传输资源等等,以提高该终端设备的吞吐量和整个通信系统的效率。
作为一种实现方式,该网络设备可以向终端设备发送第二配置信息,所述第二配置信息可以是CSI配置信息,用于所述终端设备确定CSI的上报格式(format)。该上报格式包括宽带上报(wideband reporting)或者子带上报(subband reporting)。当宽带上报被配置,表示是基于整个给终端设备配置的频域资源进行测量来获得CSI;当子带上报被配置,是基于给终端设备配置的频域资源的子区域(子带)进行测量来获得CSI,获得的CSI的个数为多个。
需要说明的是,当上报格式为宽带上报时,如上所述的三种上报方式都可以适用。而当上报格式为子带上报时,只有方式二能够适用。
作为一种实现方式,网络设备可以向该终端设备发送第一指示信息,该指第一示信息起到使能的作用,指示该终端设备是否采用如上三种方式中的一种进行CSI的上报。可选的,这个第一指示信息可以包含在下行控制信息(downlink control information,DCI)中,通过一个比特位进行指示。该DCI可以是终端设备级(UE级)的DCI,还可以是组(group)级的DCI。
网络设备和终端设备可以通过协议约定,在NR通信系统和LTE通信系统存在重合区域的情况下,终端设备采用如上三种上报方式中的何种方式进行上报。当然,在NR通信系统和LTE通信系统存在重合区域的情况下,网络设备亦可以通过第二指示信息指示所述终端设备采用如上三种上报方式中的何种方式进行上报。该第二指示信息亦可承载在DCI中。这种动态的指示方式相对于协议约定的方式,更为灵活。
作为一种实现方式,该CSI包括CQI、PMI、PTI和RI中的至少一种。
作为另一种实现方式,该CSI可以承载在物理上行共享信道(physical uplink shared channel,PUSCH)或者物理上行控制信道(physical uplink control channel,PUCCH)上。
本申请实施例一的技术方案,通过采取新设计的三种CSI上报方式中的一种,相对于现有技术中单独上报基于整个第一频域资源的CSI的上报方式,更能准确地反映第一通信系统中的信道质量状况,避免了造成第一通信系统中的吞吐量和通信效率的损失。
实施例二
本申请实施例还提出了另一种信息上报的方法,如图10所示,同样可以克服上述提及的技术问题,其应用场景和网络架构实施例一类似。
步骤1001:终端设备从网络设备接收第一配置信息,所述第一配置信息用于所述终端设备确定第一通信系统的第一频域资源与第二通信系统的第二频域资源存在重合区域;
步骤1002:所述终端设备通过对所述第一频域资源上CSI-RS资源集合的测量,向所述网络设备上报所述第一通信系统在所述第一频域资源上的信道状态信息CSI,其中,在所述第一频域资源,第一通信系统的CSI-RS资源集合为所述第二通信系统的CSI-RS候选资源集合的子集。
与实施例一类似的,本申请实施例中的终端设备是位于第一通信系统中的终端设备,网络设备是支持第一通信系统的网络设备。示例的,该终端设备可以通过所述网络设备接入第一通信系统、获得第一通信系统提供的服务。其网络架构可以参照图8。
同样,以第一通信系统和第二通信系统可以分别为NR通信系统和LTE通信系统为例进行表述,但是并不表示对对第一通信系统和第二通信系统存在任何限制。
步骤1001中的第一配置信息,具体内容可以与实施例一步骤701中的第一配置信息相同或者相类似,这里不再赘述。
作为一种实现方式,终端设备可以通过网络设备获取到NR通信系统中,也就是其接入的通信系统中,激活BWP的带宽大小和/或位置。
基于以上假设,第一通信系统的第一频域资源可以理解为NR通信系统的激活BWP;第二通信系统的第二频域资源可以理解为LTE通信系统的载波。
基于该第一配置信息,终端设备可以确定NR通信系统激活BWP和LTE通信系统的载波在频域上存在重合区域。也即,终端设备能够知道,当前的通信中,NR通信系统和LTE通信系统是处于频谱共享的场景。
可选的,终端设备还可以基于该第一配置信息进一步确定出NR通信系统和LTE通信系统的重合区域。具体的确定方式,也可以参见对步骤701的具体说明。
在上报NR通信系统的激活BWP上的CSI时,相对于实施例一中采用对上报方式进行修正的技术方案,本实施例从CSI-RS资源角度,通过规定NR通信系统中CSI-RS资源的位置来避免LTE通信系统中的PDSCH对NR通信系统中CSI测量可能造成的干扰。
在步骤1002中,针对NR通信系统的激活BWP上的CSI,终端设备仍可以采用与现有技术中相同的上报方式进行上报。其上报的格式可以为宽带上报或者窄带上报。与现有技术不同的是,这里规定:在NR通信系统的激活BWP上,NR通信系统的CSI-RS资源集合为LTE通信系统的CSI-RS候选资源集合的子集。
具体来说,LTE通信系统中的CSI-RS候选资源集合可以理解为由图5a(或者5b、或者5c)中带有数字的RE组成。而NR通信系统中CSI-RS资源集合如前所述,更为灵活,存在多个映射pattern。也就是说,实施例二要求终端设备期望接收到的NR通信系统的映射pattern对应的CSI-RS资源集合需要与LTE通信系统中的CSI-RS候选资源集合重叠、或者CSI-RS候选资源集合的部分重叠。举例来说,当终端设备期望(例如可以通过网络设备给终端设备进行指示)获得NR通信系统CSI-RS资源的时域位置为符号5、6、12、13中的至少一个时,其所对应的频域位置为子载波2、3、8、9中的至少一个;或当终端期望接收到NR通信系统CSI-RS资源的时域位置为符号8、符号8或符号10中的至少一个。此时,需要从NR通信系统中的映射pattern中找出符合以上要求的pattern,例如pattern2、3、5、7或者8,即图6b、图6c、图6e、图6g或者图6h都可以满足要求。
规定在NR通信系统的激活BWP上,NR通信系统的CSI-RS资源集合为LTE通信系统的CSI-RS候选资源集合的子集的原因是,在CSI-RS候选资源集合上,将不会映射有LTE通信系统的PDSCH资源,可以通过使能LTE通信系统的零功率CSI-RS配置,避免对NR通信系统CSI-RS测量的干扰,从而基于此获得的NR通信系统的激活BWP上的CSI是更为准确的。
作为一种实现方式,该网络设备可以向终端设备发送第二配置信息,所述第二配置信息可以是CSI配置信息,用于所述终端设备确定CSI的上报格式(format)。该上报格式包括宽带上报(wideband reporting)或者子带上报(subband reporting)。当宽带上报被配置,表示是基于整个给终端设备配置的带宽进行测量来获得CSI;当子带上报被配置,表示是基于给终端设备配置的带宽的子带进行测量来获得CSI,获得的CSI的个数为多个。
作为一种实现方式,该网络设备可以向该终端设备发送第一指示信息,用于指示NR通信系统的CSI-RS资源集合的时域位置和NR通信系统的CSI-RS的映射pattern。可选的,这个第一指示信息可以包含在下行控制信息(downlink control information,DCI)中,通过比特位进行指示。该DCI可以是终端设备级(UE级)的DCI,还可以是组(group)级的DCI。可选的,网络设备和终端设备还可以通过协议约定NR通信系统的CSI-RS的映射pattern,再通过第二指示信息,指示NR通信系统的CSI-RS资源集合的时域位置。这两种实现方式,前者更为灵活,后者则可以节约信令开销。
作为一种实现方式,该CSI包括CQI、PMI、PTI和RI中的至少一种。
作为另一中实现方式,该CSI可以承载在物理上行共享信道(physical uplink shared channel,PUSCH)或者物理上行控制信道(physical uplink control channel,PUCCH)上。
本申请实施例二的技术方案,通过规定在所述第一频域资源,第一通信系统的CSI-RS资源集合为所述第二通信系统的CSI-RS候选资源集合的子集,更能准确地反映第一通信系统中的信道质量状况,避免了造成第一通信系统中的吞吐量和通信效率的损失。
本申请中的各个实施例可以单独使用,也可以相互结合使用,以达到不同的技术效果。
上述本申请提供的实施例中,包括了终端设备作为执行主体的角度对本申请实施例提供的通信方法进行了介绍。为了实现上述本申请实施例提供的通信方法中的各功能,终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
与上述构思相同,如图11所示,本申请实施例还提供一种装置1100,该装置1100包括收发模块1101和处理模块1102。
一示例中,装置1100用于实现上述方法中终端设备的功能。该装置可以是终端设备,也可以是第一终端设备中的装置。其中,该装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
其中,处理模块1101,用于控制收发模块1102从网络设备接收第一配置信息,所述第一配置信息用于所述终端设备确定第一通信系统的第一频域资源与第二通信系统的第二频域资源的重合区域;以及控制收发模块1102向所述网络设备上报所述第一通信系统在所述第一频域资源上的信道状态信息CSI,所述CSI的上报方式包括:上报所述终端设备基于所述第一频域资源中除所述重合区域获得的CSI和所述终端设备基于所述重合区域获得的CSI、上报所述终端设备基于所述第一频域资源获得的CSI和所述终端设备基于所述重合区域获得的CSI、或者上报所述终端设备基于所述第一频域资源中除所述重合区域获得的CSI。
关于处理模块1101、收发模块1102的具体执行过程,可参见上方法实施例中的记载。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
一示例中,装置1100用于实现上述方法中网络设备的功能。该装置可以是网络设备,也可以是网络设备中的装置。其中,该装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
其中,处理模块1101,用于控制收发模块1102向终端设备发送第一配置信息,所述第一配置信息用于所述终端设备确定第一通信系统的第一频域资源与第二通信系统的第二频域资源的重合区域;以及控制收发模块1102接收所述终端设备上报的所述第一通信系统在所述第一频域资源上的信道状态信息CSI,包括:所述网络设备接收所述终端设备上报的基于所述第一频域资源中除所述重合区域获得的CSI和基于所述重合区域获得的CSI、所述网络设备接收所述终端设备上报的基于所述第一频域资源获得的CSI和基于所述重合区域获得的CSI、或者所述网络设备接收所述终端设备上报的基于所述第一频域资源中除所述重合区域获得的CSI。
关于处理模块1101、收发模块1102的具体执行过程,可参见上方法实施例中的记载。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图12所示,本申请实施例还提供一种装置1200。
一示例中,该装置1200用于实现上述方法中终端设备的功能,该装置可以是终端设备,也可以是终端设备中的装置。装置1200包括至少一个处理器1201,用于实现上述方法中终端设备的功能。具体参见方法中的详细描述,此处不再说明。
在一些实施例中,装置1200还可以包括至少一个存储器1202,用于存储程序指令和/或数据。存储器1202和处理器1201耦合。本申请实施例中的耦合是装置、单元或模块之间的间隔耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。作为另一种实现,存储器1202还可以位于装置1200之外。处理器1201可以和存储器1202协同操作。处理器1201可能执行存储器1202中存储的程序指令,用于实现本申请上述实施例中的方法。所述至少一个存储器中的至少一个可以包括于处理器中。
在一些实施例中,装置1200还可以包括通信接口1203,用于通过传输介质和其它设备进行通信,从而用于装置1200中的装置可以和其它设备进行通信。示例性地,通信接口1203可以是收发器、电路、总线、模块或其它类型的通信接口,该其它设备可以是网络设备。处理器1201利用通信接口1203收发数据,并用于实现上述实施例中的方法。
一示例中,该装置1200用于实现上述方法中网络设备的功能,该装置可以是网络设备,也可以是网络设备中的装置。装置1200至少一个处理器1201,用于实现上述方法中网络 设备的功能。具体参见方法中的详细描述,此处不再说明。
在一些实施例中,装置1200还可以包括至少一个存储器1202,用于存储程序指令和/或数据。存储器1202和处理器1201耦合。本申请实施例中的耦合是装置、单元或模块之间的间隔耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。作为另一种实现,存储器1202还可以位于装置1200之外。处理器1201可以和存储器1202协同操作。处理器1201可能执行存储器1202中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
在一些实施例中,装置1200还可以包括通信接口1203,用于通过传输介质和其它设备进行通信,从而用于装置1200中的装置可以和其它设备进行通信。示例性地,通信接口1203可以是收发器、电路、总线、模块或其它类型的通信接口,该其它设备可以是终端设备。处理器1201利用通信接口1203收发数据,并用于实现上述实施例中的方法。
本申请实施例中不限定上述通信接口1203、处理器1201以及存储器1202之间的连接介质。例如,本申请实施例在图12中以存储器1202、处理器1201以及通信接口1203之间可以通过总线连接,所述总线可以分为地址总线、数据总线、控制总线等。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (20)

  1. 一种信息上报的方法,其特征在于,包括:
    终端设备从网络设备接收第一配置信息,所述第一配置信息用于所述终端设备确定第一通信系统的第一频域资源与第二通信系统的第二频域资源的重合区域;
    所述终端设备向所述网络设备上报所述第一通信系统在所述第一频域资源上的信道状态信息CSI,所述CSI的上报方式包括:上报所述终端设备基于所述第一频域资源中除所述重合区域获得的CSI和所述终端设备基于所述重合区域获得的CSI、上报所述终端设备基于所述第一频域资源获得的CSI和所述终端设备基于所述重合区域获得的CSI、或者上报所述终端设备基于所述第一频域资源中除所述重合区域获得的CSI。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述网络设备接收第二配置信息,所述第二配置信息用于指示所述CSI的上报格式为宽带上报。
  3. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述网络设备接收第三配置信息,所述第三配置信息用于指示所述所述CSI的上报格式为子带上报;
    所述CSI的上报方式为:上报所述终端基于所述第一频域资源中除所述重合区域获得的CSI和所述终端基于所述重合区域获得的CSI。
  4. 如权利要求1-3任一所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述网络设备接收指示信息,所述指示信息用于指示所述终端设备所述CSI的上报方式。
  5. 如权利要求4所述的方法,其特征在于,所述指示信息位于下行控制信息DCI中。
  6. 如权利要求1-5任一所述的方法,其特征在于,所述CSI包括信道质量指示CQI,或者预编码矩阵指示PMI。
  7. 如权利要求1-6任一所述的方法,其特征在于,所述第一通信系统为新无线电NR通信系统,所述第二通信系统为长期演进LTE通信系统。
  8. 一种接收上报的信息的方法,其特征在于,包括:
    网络设备向终端设备发送第一配置信息,所述第一配置信息用于所述终端设备确定第一通信系统的第一频域资源与第二通信系统的第二频域资源的重合区域;
    所述网络设备接收所述终端设备上报的所述第一通信系统在所述第一频域资源上的信道状态信息CSI,包括:所述网络设备接收所述终端设备上报的基于所述第一频域资源中除所述重合区域获得的CSI和基于所述重合区域获得的CSI、所述网络设备接收所述终端设备上报的基于所述第一频域资源获得的CSI和基于所述重合区域获得的CSI、或者所述网络设备接收所述终端设备上报的基于所述第一频域资源中除所述重合区域获得的CSI。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二配置信息,所述第二配置信息用于指示所述CSI的上报格式为宽带上报。
  10. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第三配置信息,所述第三配置信息用于指示所述CSI 的上报格式为子带上报;
    所述网络设备接收所述终端设备上报的所述第一通信系统在所述第一频域资源上的信道状态信息CSI,具体包括:所述网络设备接收所述终端设备上报的基于所述第一频域资源中除所述重合区域获得的CSI和基于所述重合区域获得的CSI。
  11. 如权利要求8-10所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备所述CSI的上报方式。
  12. 如权利要求11所述的方法,其特征在于,所述指示信息位于下行控制信息DCI中。
  13. 如权利要求8-12任一所述的方法,其特征在于,所述CSI包括信道质量指示CQI,或者预编码矩阵指示PMI。
  14. 如权利要求8-13任一所述的方法,其特征在于,所述第一通信系统为新无线电NR通信系统,所述第二通信系统为长期演进LTE通信系统。
  15. 一种通信装置,其特征在于,包括用于实现如权利要求1-7任一方法的单元或者模块。
  16. 一种通信装置,其特征在于,包括用于实现如权利要求8-14任一方法的单元或者模块。
  17. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器中存储有指令,所述处理器执行所述指令时,使得所述装置执行权利要求1-7任一项所述的方法。
  18. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器中存储有指令,所述处理器执行所述指令时,使得所述装置执行权利要求8-14任一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令在计算机上运行时,使得计算机执行权利要求1-14任一项所述的方法。
  20. 一种通信系统,其特征在于,包括如权利要求15的权利要求16所述的通信装置。
PCT/CN2020/091931 2019-05-24 2020-05-22 一种信息上报的方法及装置 WO2020238808A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910437323.XA CN111988852B (zh) 2019-05-24 2019-05-24 一种信息上报的方法及装置
CN201910437323.X 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020238808A1 true WO2020238808A1 (zh) 2020-12-03

Family

ID=73436882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091931 WO2020238808A1 (zh) 2019-05-24 2020-05-22 一种信息上报的方法及装置

Country Status (2)

Country Link
CN (1) CN111988852B (zh)
WO (1) WO2020238808A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116391333A (zh) * 2021-03-10 2023-07-04 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN115280833A (zh) * 2022-06-16 2022-11-01 北京小米移动软件有限公司 信道状态信息的处理方法、装置及通信设备
CN115428511A (zh) * 2022-07-26 2022-12-02 北京小米移动软件有限公司 测量结果上报、接收方法和装置、通信装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108366375A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种共享下行频谱的方法和装置
WO2018200196A1 (en) * 2017-04-28 2018-11-01 Qualcomm Incorporated Reusing long-term evolution (lte) reference signals for nested system operations
CN108964856A (zh) * 2017-05-27 2018-12-07 中兴通讯股份有限公司 一种参考信号配置信息的应用方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108366375A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种共享下行频谱的方法和装置
WO2018200196A1 (en) * 2017-04-28 2018-11-01 Qualcomm Incorporated Reusing long-term evolution (lte) reference signals for nested system operations
CN108964856A (zh) * 2017-05-27 2018-12-07 中兴通讯股份有限公司 一种参考信号配置信息的应用方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON;: "Partial band CSI reporting;", 3GPP TSG-RAN WG1 NR AD HOC #3 R1-1716360;, 21 September 2017 (2017-09-21), XP051339815, DOI: 20200811201601X *

Also Published As

Publication number Publication date
CN111988852B (zh) 2023-04-18
CN111988852A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
EP3692675B1 (en) Ordering of csi in uci
US10785010B2 (en) Wireless communications method and apparatus
CN107409267B (zh) 用于辅助授权接入的系统及方法
WO2020134944A1 (zh) 干扰测量的方法和通信装置
US11146370B2 (en) Wireless communication method and wireless communications apparatus
EP2606617B1 (en) Transmission of reference signals
US10284314B2 (en) Measurements in a wireless system
US10390337B2 (en) Aperiodic channel state information (CSI) reporting for carrier aggregation
WO2020238808A1 (zh) 一种信息上报的方法及装置
WO2019062998A1 (zh) 功率控制方法及装置
JP7152418B2 (ja) リソース指示方法および装置
WO2021017949A1 (zh) 一种数据传输方法、装置及系统
CN111865515B (zh) 通信方法和通信装置
US20190028164A1 (en) Method for antenna port indication and apparatus
JP2018535604A (ja) キャリアアグリゲーションにおけるダウンリンク割当てインデックス(dai)管理のための技法
WO2022027308A1 (en) Enhanced configured grants
CN111727642B (zh) 通信方法、通信装置和系统
WO2020057375A1 (zh) 一种资源配置方法及通信装置
CN109996339B (zh) 一种通信方法及装置
WO2022082775A1 (zh) 一种信道状态信息上报方法及装置
WO2022077352A1 (en) Technologies for reliable physical data channel reception in wireless communications
US20220304042A1 (en) Enhanced Configured Grants
TW202231116A (zh) 信號傳輸方法、裝置、終端設備、網路設備及存儲介質
JP7284303B2 (ja) アップリンク伝送方法、装置、端末装置、アクセスネットワーク装置及びシステム
WO2022099611A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813872

Country of ref document: EP

Kind code of ref document: A1