WO2020238433A1 - Construction of orthogonal aminoacyl-trna synthetase/trna system by using chimeric design method - Google Patents

Construction of orthogonal aminoacyl-trna synthetase/trna system by using chimeric design method Download PDF

Info

Publication number
WO2020238433A1
WO2020238433A1 PCT/CN2020/084079 CN2020084079W WO2020238433A1 WO 2020238433 A1 WO2020238433 A1 WO 2020238433A1 CN 2020084079 W CN2020084079 W CN 2020084079W WO 2020238433 A1 WO2020238433 A1 WO 2020238433A1
Authority
WO
WIPO (PCT)
Prior art keywords
trna
chimeric
trna synthetase
aminoacyl
synthetase
Prior art date
Application number
PCT/CN2020/084079
Other languages
French (fr)
Chinese (zh)
Inventor
林世贤
柳光龙
丁文龙
赵红霞
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2020238433A1 publication Critical patent/WO2020238433A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)

Definitions

  • Protein is the main substance that functions in the organism. 20 amino acids encoded by 61 codons are synthesized in the ribosome. Although the 20 kinds of amino acids endow proteins with the characteristics of participating in various physiological and biochemical activities, only a few active groups such as sulfhydryl and hydroxyl groups can be chemically manipulated. In order to better study the physiological functions of proteins, the genetic code expansion technology that can introduce other unnatural amino acids with active groups came into being.
  • the genetic code expansion technology uses an orthogonalized aminoacyl tRNA synthetase/tRNA system to identify unnatural amino acids with different functions and decode unallocated codons (stop codons, quadruple codons, etc.) to achieve site-directed insertion of unnatural amino acids. So far, this system has achieved the insertion of more than 150 unnatural amino acids with different active groups, performing different functions, such as biological tracking and imaging, regulation of protein functions in the body, research on post-translational modifications, and proteomics Analysis and biological treatment.
  • S5 For the low-efficiency chimeric system, select the acceptor arm of the chimeric tRNA and construct a mutation library for screening.
  • S7 Construction of chimeric aminoacyl-tRNA synthetase vector.
  • S12 Synthesize connecting peptides of different lengths and types and load them between the two parts of the chimeric aminoacyl-tRNA synthetase.
  • Types of connecting peptides GS-rich, helix, P-rich, the sequence is shown in Table 3-1.
  • Figure 9 shows the chimeric histidine system.
  • A Coomassie brilliant blue staining analysis of purified GFP protein with histidine inserted
  • B Mass spectrometry analysis to confirm the insertion of histidine in GFP
  • C LC-MS/MS Analysis confirms the insertion of histidine in GFP
  • D non-denaturing polyacrylamide gel electrophoresis analysis of histidine insertion of GFP protein
  • E chimeric histidyl-tRNA/tRNA system with different histidines at 22°C or 30°C Amber suppression efficiency of acid concentration.
  • Figure 11 shows the optimization of chimeric histidine tRNA synthetase.
  • Figure A Overview of chHisRS linked peptides of different lengths; B: GFP reporter method and native gel fluorescence analysis of chHisRS amber inhibitory activity of different lengths; C: The GFP reporter method analyzes the amber inhibitory activity of chHisRS carrying different types of connecting peptides.
  • GS rich means that the connecting peptides are rich in Gly and Ser
  • Pro rich means that the connecting peptides are rich in Pro
  • the helix means that the connecting peptide is a helical structure.
  • the lysate was centrifuged at 12,000 rpm and 4°C for 60 minutes, and the supernatant obtained was loaded to the nickel affinity chromatography chelating chromatography that was equilibrated with NTA-0 buffer in advance, and then washed with 6 times volume of NTA-0 buffer containing 50 mM imidazole . Finally, the protein was eluted with NTA-0 buffer added with 500 mM imidazole. The purified protein was analyzed by SDS-PAGE and LC-MS.
  • the purified protein was analyzed on an LCQ Deca XP MAX mass spectrometer (Thermo Fisher Science) equipped with an electrospray ionization (ESI) source and an Agilent 1200 HPLC. Separation and desalination were carried out on Agilent 300SB-C18 column (300 ⁇ 2.1, 150mm, 5 ⁇ m).
  • the mobile phase A was set to an aqueous solution containing 0.1% formic acid, and the mobile phase B contained 0.1% formic acid in acetonitrile, and the flow rate was set to 0.200 ml/min.
  • Use XCalbur-Quar browser software to analyze the data.
  • the chimeric seryl-tRNA synthetase/tRNA system constructed by the above examples has low activity.
  • the receptor arm region of the chimeric serine tRNA is modified, and the specific steps are as follows:
  • Example 8 Analysis of amber inhibition efficiency of chimeric histidyl-tRNA synthetase/tRNA system in mammalian cells

Abstract

Provided is construction of an orthogonal aminoacyl-tRNA synthetase/tRNA system by using a chimeric design method. The system transplants the universal orthogonality of eukaryotes and prokaryotes of a pyrrolysyl-tRNA synthetase/tRNA system by means of rational chimeric design, includes several chimeric tRNA synthetase/tRNA systems, such as histidine, phenylalanine, alanine and serine systems, and can be applied to prokaryotes and eukaryotes, as well as orthogonal transformation of other aminoacyl-tRNA synthetase/tRNA pairs.

Description

一种利用嵌合设计方法构建正交的氨酰-tRNA合成酶/tRNA体系A chimeric design method to construct an orthogonal aminoacyl-tRNA synthetase/tRNA system 技术领域Technical field
本发明属于化学生物学技术领域,具体涉及一种利用嵌合设计方法构建正交的氨酰-tRNA合成酶/tRNA体系。The invention belongs to the technical field of chemical biology, and specifically relates to a chimeric design method to construct an orthogonal aminoacyl-tRNA synthetase/tRNA system.
背景技术Background technique
蛋白质是生物体内行使功能的主要物质,由61种密码子编码的20种氨基酸在核糖体中合成。20种氨基酸虽然赋予了蛋白质参与各种生理生化活动的特性,但是20种氨基酸中只有巯基、羟基等很少的活性基团可以进行化学操控。为了更好的研究蛋白质的生理功能,可以引入其他带有活性基团的非天然氨基酸的遗传密码扩展技术应运而生。遗传密码扩展技术利用正交化的氨酰tRNA合成酶/tRNA系统识别不同功能的非天然氨基酸解码未分配的密码子(终止密码子,4联密码子等)从而实现非天然氨基酸的定点插入。到现在为止这个系统已经实现了超过150种带有不同活性基团的非天然氨基酸的插入,行使不同的功能,如生物示踪和成像,体内蛋白质功能的调控,研究翻译后修饰,蛋白质组学分析以及生物治疗。Protein is the main substance that functions in the organism. 20 amino acids encoded by 61 codons are synthesized in the ribosome. Although the 20 kinds of amino acids endow proteins with the characteristics of participating in various physiological and biochemical activities, only a few active groups such as sulfhydryl and hydroxyl groups can be chemically manipulated. In order to better study the physiological functions of proteins, the genetic code expansion technology that can introduce other unnatural amino acids with active groups came into being. The genetic code expansion technology uses an orthogonalized aminoacyl tRNA synthetase/tRNA system to identify unnatural amino acids with different functions and decode unallocated codons (stop codons, quadruple codons, etc.) to achieve site-directed insertion of unnatural amino acids. So far, this system has achieved the insertion of more than 150 unnatural amino acids with different active groups, performing different functions, such as biological tracking and imaging, regulation of protein functions in the body, research on post-translational modifications, and proteomics Analysis and biological treatment.
在遗传密码子扩增技术中,核心是需要正交化的氨酰tRNA合成酶/tRNA,不与细胞内内源的氨酰tRNA合成酶和tRNA相互识别,不影响细胞内正常生理活动下实现特异性非天然氨基酸的插入。现在为止常用的氨酰tRNA和tRNA的正交对主要有4种,但是只有来源于甲烷古菌Methanosarcina mazei或Methanosarcina barkeri的pyrrolysyl-tRNA合成酶(PylRS)/tRNA CUA正交对可以普适的应用在细菌、真核细胞和个体中。 In genetic code amplification technology, the core is the need for orthogonalization of aminoacyl tRNA synthetase/tRNA, which does not recognize each other with the endogenous aminoacyl tRNA synthetase and tRNA in the cell, and does not affect the normal physiological activities in the cell. Insertion of specific unnatural amino acids. There are four main orthogonal pairs of aminoacyl tRNA and tRNA commonly used so far, but only the pyrrolysyl-tRNA synthetase (PylRS)/tRNA CUA orthogonal pair derived from Methanosarcina mazei or Methanosarcina barkeri can be universally applied. In bacteria, eukaryotic cells and individuals.
Pyrrolysyl—tRNA合成酶(PylRS)/tRNA CUA正交系统虽然已经将约100种非 天然氨基酸成功的引入到了细菌和真核细胞中,但是它存在着以下几个问题:1,对某些非天然氨基酸的活性很低,从而导致实验成本高,信噪比低;2,这些引入的非天然氨基酸是赖氨酸和苯丙氨酸的衍生物,对于带有其它化学结构的氨基酸引入较为困难。我们虽然可以利用自然存在的其它20种氨酰tRNA合成酶,通过进化引入新颖的非天然氨基酸。但是种方式也存在着诸多问题:1,对其它氨酰tRNA合成酶/tRNA系统需要对氨酰tRNA合成酶的anticodon-binding结构域定向进化,使其可以识别未分配的密码子(终止密码子,稀有密码子以及4联密码子);2,这种系统不具备普适的正交性,来源与细菌的可以用在真核细胞,来源于真核生物的可以利用在细菌中,这就给我们应用增加了诸多限制。 Although Pyrrolysyl-tRNA synthetase (PylRS)/tRNA CUA orthogonal system has successfully introduced about 100 unnatural amino acids into bacteria and eukaryotic cells, it has the following problems: 1. For some unnatural amino acids The activity of amino acids is very low, which leads to high experimental cost and low signal-to-noise ratio; 2. These introduced unnatural amino acids are derivatives of lysine and phenylalanine, and it is difficult to introduce amino acids with other chemical structures. We can use the other 20 aminoacyl tRNA synthetases that naturally exist to introduce novel unnatural amino acids through evolution. However, there are many problems in this method: 1. For other aminoacyl tRNA synthetase/tRNA systems, the anticodon-binding domain of aminoacyl tRNA synthetase needs to be directed to evolve so that it can recognize unassigned codons (stop codons). , Rare codons and 4-linked codons); 2. This system does not have universal orthogonality. Those derived from bacteria can be used in eukaryotic cells, and those derived from eukaryotes can be used in bacteria. Added many restrictions to our application.
为了克服上述问题,研究者想出了不同的应对方法。为了提高Pyrrolysyl—tRNA合成酶(PylRS)/tRNA CUA正交系统的活性,Diter Soll和David R Liu构建了Mm和Mb两个物种嵌合体的Pyrrolysyl-tRNA合成酶,并通过PACE(噬菌体辅助的连续进化)的方法对这个嵌合蛋白进行了改造,提高活性。还有一些研究者从tRNA的角度出发,分别对反密码子环、反密码子臂、T环进行了相应的诱变提高了这个系统的插入非天然氨基酸的效率。对于其它氨酰tRNA合成酶/tRNA系统不普适正交的问题,研究者通过改造大肠杆菌,将大肠杆菌基因组中的TrpRS/tRNA替换为酵母中的TrpRS/tRNA,这样就可以使大肠杆菌TrpRS/tRNA系统在改造的这个大肠杆菌菌株和真核生物中正交,方便非天然氨基酸的筛选。以上的解决办法虽然在一定程度上克服了遗传密码子扩展领域存在的问题,但是并没有从根本上解决天然氨基酸氨酰tRNA合成酶存在的不广泛正交的问题。 In order to overcome the above-mentioned problems, researchers have come up with different solutions. In order to improve the activity of Pyrrolysyl-tRNA synthetase (PylRS)/tRNA CUA orthogonal system, Diter Soll and David R Liu constructed the Pyrrolysyl-tRNA synthetase of Mm and Mb two species chimeras, and used PACE (phage assisted continuous The method of evolution) modified this chimeric protein to increase its activity. From the perspective of tRNA, some researchers have performed corresponding mutagenesis on the anticodon loop, anticodon arm, and T loop to improve the efficiency of the system's insertion of unnatural amino acids. For the problem that other aminoacyl tRNA synthetase/tRNA systems are not universally orthogonal, the researchers modified E. coli to replace the TrpRS/tRNA in the E. coli genome with the TrpRS/tRNA in yeast, so that the E. coli TrpRS The /tRNA system is orthogonal to this modified E. coli strain and eukaryotes, which facilitates the selection of unnatural amino acids. Although the above solutions overcome the problems in the field of genetic code expansion to a certain extent, they do not fundamentally solve the problem of not extensive orthogonality in the natural amino acid aminoacyl tRNA synthetase.
发明内容Summary of the invention
针对现有技术存在的问题,本发明的目的在于提出一种利用嵌合设计方法构建正交的氨酰-tRNA合成酶/tRNA体系的技术方案,不限于构建的嵌合组氨酰-tRNA合成酶/tRNA对(chHisRS/chHisT)、嵌合苯丙氨酰-tRNA合成酶/tRNA对 (chHmPheRS/chHmPheT)、嵌合丝氨酰-tRNA合成酶/tRNA对(chSerRS/chSerT)、嵌合丙氨酰-tRNA合成酶/tRNA对(chAlaRS/chAlaT)四种系统,所述嵌合组氨酰-tRNA合成酶的基因序列如SEQ ID No.3所示,所述嵌合苯丙氨酰-tRNA合成酶的基因序列如SEQ ID No.4所示,所述嵌合丝氨酰-tRNA合成酶的基因序列如SEQ ID No.5所示,所述嵌合丙氨酰-tRNA合成酶的基因序列的基因序列如SEQ ID No.6所示。更为具体的我们不以一个特定的嵌合系统示例,但是所有的嵌合系统的构建都是遵照以下方法。同时在本发明中大肠杆菌表达系统利用pNEG和pBK载体,动物细胞表达系统利用pcDNA3.1载体为示例,但并不限于这三种载体。这三种载体的图谱见图1。In view of the problems existing in the prior art, the purpose of the present invention is to propose a technical solution for constructing an orthogonal aminoacyl-tRNA synthetase/tRNA system using a chimeric design method, which is not limited to the constructed chimeric histidyl-tRNA synthesis Enzyme/tRNA pair (chHisRS/chHisT), chimeric phenylalanyl-tRNA synthetase/tRNA pair (chHmPheRS/chHmPheT), chimeric seryl-tRNA synthetase/tRNA pair (chSerRS/chSerT), chimeric C Four systems of aminoacyl-tRNA synthetase/tRNA pairs (chAlaRS/chAlaT), the gene sequence of the chimeric histidyl-tRNA synthetase is shown in SEQ ID No. 3, and the chimeric phenylalanyl- The gene sequence of tRNA synthetase is shown in SEQ ID No. 4, the gene sequence of the chimeric seryl-tRNA synthetase is shown in SEQ ID No. 5, and the gene sequence of the chimeric alanyl-tRNA synthetase The gene sequence of the gene sequence is shown in SEQ ID No. 6. To be more specific, we will not use a specific mosaic system as an example, but all the mosaic systems are constructed in accordance with the following methods. At the same time, in the present invention, the E. coli expression system uses the pNEG and pBK vectors, and the animal cell expression system uses the pcDNA3.1 vector as an example, but it is not limited to these three vectors. The maps of these three vectors are shown in Figure 1.
在所述的一种利用嵌合设计方法构建正交的氨酰tRNA合成酶/tRNA/体系,我们提供了具体的方法构建和优化嵌合系统,步骤如下:In the described method for constructing an orthogonal aminoacyl tRNA synthetase/tRNA/system using a chimeric design method, we provide a specific method to construct and optimize a chimeric system. The steps are as follows:
S1:嵌合氨酰-tRNA合成酶/tRNA载体的构建;S1: Construction of chimeric aminoacyl-tRNA synthetase/tRNA vector;
S2:在大肠杆菌中利用GFP琥珀抑制效率评价嵌合氨酰-tRNA合成酶/tRNA的活性;S2: Evaluation of chimeric aminoacyl-tRNA synthetase/tRNA activity using GFP amber inhibition efficiency in E. coli;
S3:氨基酸插入的确认,包括GFP表达,LC-MS和LC-MS/MS的的鉴定;S3: Confirmation of amino acid insertion, including GFP expression, LC-MS and LC-MS/MS identification;
S4:嵌合系统在哺乳动物细胞表达体系琥珀抑制效率测试;S4: Amber inhibition efficiency test of chimeric system in mammalian cell expression system;
S5:对效率偏低的嵌合系统,选择嵌合tRNA的受体臂,构建突变文库进行筛选。S5: For the low-efficiency chimeric system, select the acceptor arm of the chimeric tRNA and construct a mutation library for screening.
所述嵌合氨酰-tRNA合成酶/tRNA载体的构建通过以下步骤:The construction of the chimeric aminoacyl-tRNA synthetase/tRNA vector involves the following steps:
S6:嵌合tRNA载体构建;S6: Construction of chimeric tRNA vector;
S7:嵌合氨酰-tRNA合成酶载体构建。S7: Construction of chimeric aminoacyl-tRNA synthetase vector.
所述嵌合tRNA载体构建通过以下步骤:The chimeric tRNA vector is constructed through the following steps:
S8:嵌合tRNA的设计合成;S8: Design and synthesis of chimeric tRNA;
S9:报告基因GFP190TAG-His6的合成,序列如SEQ ID No.1所示;S9: Synthesis of the reporter gene GFP190TAG-His6, the sequence is shown in SEQ ID No.1;
S10:将嵌合tRNA和GFP190TAG-His6连接到pNEG载体,分别在glns和pBAD启动子控制下。S10: Link the chimeric tRNA and GFP190TAG-His6 to the pNEG vector, under the control of glns and pBAD promoters, respectively.
所述嵌合氨酰-tRNA合成酶的构建通过以下步骤:The construction of the chimeric aminoacyl-tRNA synthetase is through the following steps:
S11:嵌合氨酰-tRNA合成酶中来自吡咯赖氨酰-tRNA合成酶tRNA结合结构域的选择,氨酰-tRNA合成酶催化结构域的选择;分别连接到pBK载体。本发明中利用的吡咯赖氨酰-tRNA合成酶tRNA结合结构域的完整序列如SEQ ID No.2所示;S11: Selection of tRNA binding domain from pyrrolysyl-tRNA synthetase in chimeric aminoacyl-tRNA synthetase, selection of catalytic domain of aminoacyl-tRNA synthetase; respectively connected to pBK vector. The complete sequence of the pyrrolysyl-tRNA synthetase tRNA binding domain used in the present invention is shown in SEQ ID No. 2;
S12:合成不同的长度和类型的连接肽并装载到嵌合氨酰-tRNA合成酶中两个部分之间。连接肽种类:GS-rich、helix、P-rich,序列见表3-1所示。S12: Synthesize connecting peptides of different lengths and types and load them between the two parts of the chimeric aminoacyl-tRNA synthetase. Types of connecting peptides: GS-rich, helix, P-rich, the sequence is shown in Table 3-1.
S13:合成glns启动子、pBAD启动子、oxb20启动子、trp启动子插入pBK载体上控制嵌合氨酰tRNA合成酶的表达,序列见表4-1所示。S13: Synthesize glns promoter, pBAD promoter, oxb20 promoter, trp promoter and insert it into pBK vector to control the expression of chimeric aminoacyl tRNA synthetase. The sequence is shown in Table 4-1.
同时我们提供一个在大肠杆菌中利用GFP琥珀抑制效率评价嵌合氨酰-tRNA合成酶/tRNA的活性的方法,具体如下:At the same time, we provide a method to evaluate the activity of chimeric aminoacyl-tRNA synthetase/tRNA in E. coli using the inhibition efficiency of GFP amber, as follows:
S14:携带GFP190TAG-His6基因和嵌合tRNA的pNEG载体和携带的嵌合氨酰-tRNA合成酶的pBK载体共转化转入DH10B感受态细胞;S14: The pNEG vector carrying the GFP190TAG-His6 gene and chimeric tRNA and the pBK vector carrying the chimeric aminoacyl-tRNA synthetase were co-transformed into DH10B competent cells;
S15:挑单克隆到液体培养基中,阿拉伯糖诱导基因表达;S15: Pick a single clone into the liquid medium, and arabinose induces gene expression;
S17:裂解表达后的细胞;S17: Lyse the expressed cells;
S18:测定裂解后细胞上清液GFP的荧光,并计算嵌合系统GFP琥珀抑制效率(图4)。S18: Measure the fluorescence of GFP in the cell supernatant after lysis, and calculate the GFP amber inhibition efficiency of the chimeric system (Figure 4).
对于构建的嵌合氨酰-tRNA合成酶/tRNA体系,我们还提供了一个鉴定氨基酸正确插入的方法,具体如下:For the constructed chimeric aminoacyl-tRNA synthetase/tRNA system, we also provide a method to identify the correct insertion of amino acids, as follows:
S19:S14中的大肠杆菌大量培养,阿拉伯糖诱导蛋白质表达;S19: Mass cultivation of E. coli in S14, arabinose induces protein expression;
S20:收集表达后的大肠杆菌,超声破碎,亲和层析纯化;S20: Collect the expressed Escherichia coli, ultrasonically disrupt, and purify by affinity chromatography;
S21:纯化蛋白质的Western-bloting,LC-MS和LC-MS/MS的鉴定。S21: Western-bloting, LC-MS and LC-MS/MS identification of purified protein.
在大肠杆菌中正交可用的嵌合系统,转入到哺乳动物细胞内效率的分析以及正交性的确认,具体如下:The chimeric system available for orthogonalization in E. coli, the analysis of transfer efficiency into mammalian cells and the confirmation of orthogonality are as follows:
S22:嵌合氨酰tRNA合成酶基因和嵌合tNRA基因转入pcDNA3.1载体中;S22: The chimeric aminoacyl tRNA synthetase gene and the chimeric tNRA gene are transferred into the pcDNA3.1 vector;
S23:S22的质粒与pEGFP-EGFP-191TAG-Histag共转染HEK 293T细胞;S23: S22 plasmid and pEGFP-EGFP-191TAG-Histag co-transfect HEK 293T cells;
S24:GFP荧光和Western-blotting衡量嵌合系统在哺乳动物细胞中的效率。S24: GFP fluorescence and Western-blotting measure the efficiency of the chimeric system in mammalian cells.
对于初始构建中活性和正交性低的嵌合系统,我们提供了一个基于嵌合tRNA受体臂区域文库筛选体系,具体如下:For chimeric systems with low activity and orthogonality in the initial construction, we provide a library screening system based on chimeric tRNA receptor arm regions, as follows:
S25:构建嵌合tRNA文库,并克隆到pNEG载体中;S25: Construct a chimeric tRNA library and clone it into the pNEG vector;
S26:制备含有嵌合氨酰-tRNA合成酶质粒的DH10B感受态细胞;S26: Preparation of DH10B competent cells containing chimeric aminoacyl-tRNA synthetase plasmid;
S27:将文库电转化到制备好的感受态细胞中,并涂布含有阿拉伯糖的平板;S27: Electrotransform the library into the prepared competent cells, and coat a plate containing arabinose;
S28:筛选有荧光的克隆;S28: Screen the clones with fluorescence;
S29:嵌合tRNA正交性的确认;S29: Confirmation of the orthogonality of chimeric tRNA;
S30:嵌合tRNA测序。S30: Chimeric tRNA sequencing.
嵌合系统遗传了吡咯赖氨酰-tRNA合成酶/tRNA系统的灵活性,不仅可以利用密码子UAG还可以利用UAA和UGA密码子实现氨基酸的高效的位点特异性引入,具体如下:The chimeric system inherits the flexibility of the pyrrolysyl-tRNA synthetase/tRNA system. It can not only use the codon UAG, but also use the UAA and UGA codons to achieve efficient site-specific introduction of amino acids, as follows:
S31:UAA系统和UGA系统载体的构建;S31: Construction of UAA system and UGA system carrier;
S32:三种系统引入氨基酸的效率比较。S32: Comparison of the efficiency of introducing amino acids in three systems.
本发明的体系通过合理的嵌合设计移植了吡咯赖氨酰-tRNA合成酶/tRNA系统的真核生物和原核生物普适正交性,包括几个嵌合的tRNA合成酶/tRNA体系,包括但不限于组氨酸、苯丙氨酸、丙氨酸和丝氨酸系统,所述体系不仅具有高效性,而且具有吡咯赖氨酰-tRNA合成酶/tRNA Pyl系统的灵活性,可应用到原核生物和真核生物中。所述方法毫无疑问的可以应用到其他氨酰-tRNA合成酶/tRNA对的正交性改造。 The system of the present invention transplants the universal orthogonality of eukaryotes and prokaryotes of the pyrrolysyl-tRNA synthetase/tRNA system through rational chimeric design, including several chimeric tRNA synthetase/tRNA systems, including But not limited to histidine, phenylalanine, alanine and serine systems, the system not only has high efficiency, but also has the flexibility of the pyrrolysyl-tRNA synthetase/tRNA Pyl system and can be applied to prokaryotes And eukaryotes. The method can undoubtedly be applied to the orthogonal transformation of other aminoacyl-tRNA synthetase/tRNA pairs.
附图说明Description of the drawings
如图1为本发明中用到质粒图谱,图中A:pBK质粒图谱,B:pNEG质粒图谱,C:pcDNA3.1质粒图谱,D:pEGFP-EGFP-191TAG-Histag质粒图谱。Figure 1 shows the plasmid map used in the present invention. In the figure, A: pBK plasmid map, B: pNEG plasmid map, C: pcDNA3.1 plasmid map, D: pEGFP-EGFP-191TAG-Histag plasmid map.
如图2为嵌合设计方法构建正交的氨酰-tRNA合成酶/tRNA体系原理图,图中A:吡咯赖氨酰-tRNA合成酶/RNA Pyl正交对的结构(左侧)和传统的氨酰-tRNA合成酶/tRNA对结构(右侧),吡咯赖氨酰-tRNA合成酶的tRNA结合结构域与传统的氨酰-tRNA合成酶的催化结构域融合形成的嵌合氨酰tRNA合成酶(chRS),嵌合的tRNA(chT)通过将pylT受体臂替换为特定的tRNA受体臂产生(中间);B:本研究中氨基酸结构。 Figure 2 shows the principle diagram of the orthogonal aminoacyl-tRNA synthetase/tRNA system constructed by the chimeric design method. In the figure A: the structure of the pyrrolysyl-tRNA synthetase/RNA Pyl orthogonal pair (left) and the traditional The structure of the aminoacyl-tRNA synthetase/tRNA pair (right), the chimeric aminoacyl tRNA formed by fusion of the tRNA binding domain of pyrrolysyl-tRNA synthetase and the catalytic domain of traditional aminoacyl-tRNA synthetase Synthetase (chRS), chimeric tRNA (chT) is produced by replacing the pylT acceptor arm with a specific tRNA acceptor arm (middle); B: amino acid structure in this study.
如图3为嵌合组氨酸tRNA的构建及效率测定图,图中A:具有G-1结构的组氨酸tRNA和吡咯赖氨酸tRNA的三叶草结构;B:chHisT的嵌合体的三叶草结构由pyl T的序列和his T的序列组成;C:chHisRS-1的嵌合体结构由pylRS NTD(1-149aa)和hisRS CD(1-326aa)融合组成;D:GFP荧光强度法检测琥珀抑制效率。Figure 3 shows the construction and efficiency determination of chimeric histidine tRNA. In the figure, A: clover structure of histidine tRNA and pyrrolysine tRNA with G-1 structure; B: clover structure of chHisT chimera It is composed of pyl T sequence and his T sequence; C: chHisRS-1 chimera structure is composed of pylRS NTD (1-149aa) and hisRS CD (1-326aa) fusion; D: GFP fluorescence intensity method to detect amber suppression efficiency .
如图4为嵌合组氨酰-tRNA合成酶的构建及相应效率和特异性的测定,A:chHisRS嵌合体由pylRS序列和hisRS序列组成,pylRS NTD突变携带IPYE突变;B:用GFP报告法分析chHisRSs的琥珀抑制效率;C:在22℃和30℃下,用GFP荧光分析在2mM Boc-L-赖氨酸的条件下pylRSs的琥珀抑制效率,值得一提的是,在30℃时pylRS的活性比在22℃时高,而在22℃或30℃时chHisRS的活性相似;D:质谱法确认通过嵌合组氨酰-tRNA合成酶/tRNA在GFP的特定位点引入了组氨酸;E:通过GFP信号和非变性聚丙酰胺凝胶分析不同启动子条件下的chHisRS的琥珀抑制效率;F:将组氨酰-tRNA合成酶/tRNA复合物通过tRNA为重叠对象与吡咯赖氨酰-tRNA合成酶/tRNA复合体结构叠加。Figure 4 shows the construction of chimeric histidyl-tRNA synthetase and the determination of corresponding efficiency and specificity. A: chHisRS chimera consists of pylRS sequence and hisRS sequence, pylRS NTD mutation carries IPYE mutation; B: GFP reporter method Analyze the amber inhibition efficiency of chHisRSs; C: Use GFP fluorescence to analyze the amber inhibition efficiency of pylRSs under the condition of 2mM Boc-L-lysine at 22℃ and 30℃. It is worth mentioning that pylRS at 30℃ The activity of chHisRS is higher than that at 22°C, while the activity of chHisRS is similar at 22°C or 30°C; D: Mass spectrometry confirmed that histidine was introduced at a specific site of GFP by chimeric histidyl-tRNA synthetase/tRNA ; E: Analyze the amber inhibition efficiency of chHisRS under different promoter conditions by GFP signal and non-denaturing polyacrylamide gel; F: use the histidyl-tRNA synthetase/tRNA complex to overlap with pyrrolysyl through tRNA -The structure of tRNA synthetase/tRNA complex is superimposed.
如图5为嵌合组氨酰-tRNA合成酶/tRNA系统在细胞中活性和正交性的测试 图,图中A:通过western检测全长GFP的表达水平,测定哺乳动物细胞中琥珀的抑制效率。在本实验中,两种质粒共转染HEK 293T细胞:一种质粒携带嵌合氨酰tRNA合成酶和嵌合tRNA基因,其中tRNA分为有末端CCA序列和没有,另一种质粒携带GFP-190TAG-His 6基因。然后通过抗His 6抗体进行western分析(A)或通过荧光显微镜(B)对转染的细胞进行分析。未携带嵌合aaRS基因的质粒作为阴性对照。C:用GFP报告法分析chHisRS在不同tRNA条件下琥珀抑制活性。 Figure 5 shows the test diagram of the activity and orthogonality of the chimeric histidyl-tRNA synthetase/tRNA system in cells. Figure A: The expression level of full-length GFP was detected by western to determine the inhibition of amber in mammalian cells. effectiveness. In this experiment, two plasmids were co-transfected into HEK 293T cells: one plasmid carries chimeric aminoacyl tRNA synthetase and chimeric tRNA gene, in which tRNA is divided into terminal CCA sequence and none, and the other plasmid carries GFP- 190TAG-His 6 gene. The transfected cells were then analyzed by western analysis (A) by anti-His 6 antibody or by fluorescence microscope (B). A plasmid that does not carry the chimeric aaRS gene served as a negative control. C: The amber inhibitory activity of chHisRS under different tRNA conditions was analyzed by the GFP reporter method.
如图6利用嵌合设计构建的其它嵌合系统图,图中A:用GFP为报告基因分析产生的嵌合氨酰-tRNA合成酶对相应嵌合tRNAs的琥珀抑制活性。在这个图中,EC代表大肠杆菌,H代表人类,H-MT代表人类线粒体;B:用GFP报告基因分析chPheRSs的琥珀抑制活性;C:质谱法确认通过嵌合苯丙氨酰-tRNA合成酶/tRNA在GFP的特定位点引入了苯丙氨酸;D:用GFP报告基因分析chAlaRSs的琥珀抑制活性E:质谱法确认通过嵌合丙氨酰-tRNA合成酶/tRNA在GFP的特定位点引入了丙氨酸。Figure 6 shows a diagram of other chimeric systems constructed using chimeric design. Figure A: Using GFP as the reporter gene to analyze the amber inhibitory activity of chimeric aminoacyl-tRNA synthetase on corresponding chimeric tRNAs. In this figure, EC stands for Escherichia coli, H stands for humans, and H-MT stands for human mitochondria; B: GFP reporter gene analysis of the amber inhibitory activity of chPheRSs; C: mass spectrometry confirms the use of chimeric phenylalanyl-tRNA synthetase /tRNA introduces phenylalanine at a specific site of GFP; D: Use GFP reporter gene to analyze the amber inhibitory activity of chAlaRSs E: Mass spectrometry confirms that chimeric alanyl-tRNA synthetase/tRNA is at a specific site of GFP Alanine is introduced.
如图7为嵌合丝氨酰tRNA的分子进化图,图中A:嵌合体tRNA受体臂进化的一般两步法是tRNA随机化和tRNA选择的结合;B:GFP报告法分析在chSerRS条件下chSerTs的琥珀抑制效率C:质谱分析丝氨酸的GFP保真度。Figure 7 shows the molecular evolution diagram of chimeric seryl tRNA. Figure A: The general two-step method of chimeric tRNA receptor arm evolution is the combination of tRNA randomization and tRNA selection; B: GFP reporter analysis under chSerRS conditions Lower chSerTs amber suppression efficiency C: mass spectrometry analysis of serine GFP fidelity.
如图8为本发明中tRNA的三叶草结构,图中A:本发明中pylT和hisT的结构,pylT有U25C突变,提高吡咯烷的效率,hisT具有G -1的结构;B:Histidyl-tRNA-1到-6的嵌合结构,包括pylT和hisT;C:Histidyl-tRNA嵌合结构在E.coli和人类中CUA反密码子;D:本发明中其他的tRNAs的嵌合结构,chPheT,chAlaT,chAlaT(G-U)有一个不常用的G-U对突变成AU对;E:嵌合丝氨酸tRNA从原始的-1到筛选后的-2,-3,具有高琥珀抑制效率的ChSerT-2被命名为chSerT。 Figure 8 shows the clover structure of tRNA in the present invention. Figure A: The structures of pylT and hisT in the present invention. pylT has a U25C mutation to improve the efficiency of pyrrolidine. HisT has a structure of G -1 ; B: Histidyl-tRNA- Chimeric structures from 1 to -6, including pylT and hisT; C: Histidyl-tRNA chimeric structure in E.coli and human CUA anticodon; D: chimeric structure of other tRNAs in the present invention, chPheT, chAlaT , ChAlaT (GU) has an uncommon GU pair mutated into an AU pair; E: Chimeric serine tRNA ranges from the original -1 to the selected -2,-3, and ChSerT-2 with high amber suppression efficiency is named For chSerT.
如图9为嵌合组氨酸系统,图中A:考马斯亮蓝染色分析纯化的插入组氨酸 的GFP蛋白;B:质谱分析确认GFP中组氨酸的插入;C:LC-MS/MS分析确认GFP中组氨酸的插入;D:非变性聚丙酰胺凝胶电泳分析GFP蛋白组氨酸的插入;E:嵌合组氨酰-tRNA/tRNA系统在22℃或30℃条件不同组氨酸浓度的琥珀抑制效率。Figure 9 shows the chimeric histidine system. In the figure, A: Coomassie brilliant blue staining analysis of purified GFP protein with histidine inserted; B: Mass spectrometry analysis to confirm the insertion of histidine in GFP; C: LC-MS/MS Analysis confirms the insertion of histidine in GFP; D: non-denaturing polyacrylamide gel electrophoresis analysis of histidine insertion of GFP protein; E: chimeric histidyl-tRNA/tRNA system with different histidines at 22℃ or 30℃ Amber suppression efficiency of acid concentration.
如图10为嵌合组氨酰-tRNA合成酶的结构。蛋白复合物通过tRNA重叠进行拟合。Figure 10 shows the structure of chimeric histidyl-tRNA synthetase. The protein complexes are fitted by tRNA overlap.
如图11为嵌合组氨酸tRNA合成酶的优化,图中A:不同长度连接肽的chHisRS的概览图;B:GFP报告法和native凝胶荧光分析不同长度的chHisRS琥珀抑制活性;C:GFP报告法分析携带不同类型连接肽的chHisRS琥珀抑制活性,在图中,GS丰富表示含有Gly和Ser丰富的连接肽,Pro丰富表示连接肽含有丰富的Pro,螺旋表示连接肽是螺旋结构。Figure 11 shows the optimization of chimeric histidine tRNA synthetase. Figure A: Overview of chHisRS linked peptides of different lengths; B: GFP reporter method and native gel fluorescence analysis of chHisRS amber inhibitory activity of different lengths; C: The GFP reporter method analyzes the amber inhibitory activity of chHisRS carrying different types of connecting peptides. In the figure, GS rich means that the connecting peptides are rich in Gly and Ser, Pro rich means that the connecting peptides are rich in Pro, and the helix means that the connecting peptide is a helical structure.
如图12为嵌合组氨酸体系的无义密码抑制效率,分析携带三个终止密码子(ochre,opal和amber codon)的GFP基因的抑制效率。Figure 12 shows the nonsense codon suppression efficiency of the chimeric histidine system. The suppression efficiency of the GFP gene carrying three stop codons (ochre, opal and amber codon) is analyzed.
如图13为嵌合组氨酸系统在哺乳动物细胞中正交性的测试,图中A&B、在图5中显示了完整的Western印迹凝胶,主要文本中的区域被虚线框突出,D:GFP法分析chHisRS对内源性hisTs琥珀抑制活性。Figure 13 shows the orthogonality test of the chimeric histidine system in mammalian cells. Figures A&B and Figure 5 show the complete Western blot gel. The main text area is highlighted by a dashed box, D: GFP method was used to analyze the inhibitory activity of chHisRS on endogenous hisTs amber.
如图14为嵌合苯丙氨酰-tRNA合成酶/tRNA系统,图中A:GFP法分析chPheRSs的琥珀抑制活性;B:Figure 5B中完整的Western印迹凝胶,Figure 5B中被虚线框突出;C:考马斯亮蓝染色分析纯化的GFP蛋白;D:质谱的原始数据,确认通过嵌合苯丙氨酰-tRNA合成酶/tRNA在GFP的特定位点引入了苯丙氨酸;E:在22℃或30℃下苯丙氨酸嵌合体系的琥珀抑制效率。Figure 14 shows the chimeric phenylalanyl-tRNA synthetase/tRNA system. Figure A: GFP method to analyze the amber inhibitory activity of chPheRSs; B: Complete Western blot gel in Figure 5B, highlighted by a dashed box in Figure 5B ; C: Coomassie brilliant blue staining analysis of purified GFP protein; D: raw data of mass spectrometry, confirming that phenylalanine was introduced at a specific site of GFP by chimeric phenylalanyl-tRNA synthetase/tRNA; E: in Amber inhibition efficiency of the phenylalanine chimeric system at 22°C or 30°C.
如图15为嵌合丙氨酰-tRNA合成酶/tRNA系统,图中A:丙氨酸-tRNA合成酶(chAlaRS)的结构含有pylRS序列和alaRS序列,pylRS的tRNA结合结构域携带IPYE突变;B:GFP法分析chAlaRSs与chAlaT(G-U)的琥珀抑制活性;C:GFP法分析chAlaRSs与chAlaT(A-U)的琥珀抑制活性。D:在Figure 5D中显示 了完整的Western印迹凝胶,主要文本中的区域被虚线框突出;E:考马斯亮蓝染色分析纯化的GFP蛋白;F:G质谱法确认通过嵌合丙氨酰-tRNA合成酶/tRNA在GFP的特定位点引入了丙氨酸的原始数据。Figure 15 shows the chimeric alanyl-tRNA synthetase/tRNA system. Figure A: The structure of alanine-tRNA synthetase (chAlaRS) contains pylRS sequence and alaRS sequence, and the tRNA binding domain of pylRS carries IPYE mutation; B: GFP method to analyze the amber inhibitory activity of chAlaRSs and chAlaT (GU); C: GFP method to analyze the amber inhibitory activity of chAlaRSs and chAlaT (AU). D: Figure 5D shows the complete Western blot gel, the main text area is highlighted by the dashed box; E: Coomassie brilliant blue staining analysis of the purified GFP protein; F: G mass spectrometry confirmed by chimeric alanyl- tRNA synthetase/tRNA introduces the raw data of alanine at a specific site of GFP.
具体实施方式Detailed ways
以下结合具体实施案例对本发明做进一步详细说明,以下实施案例是对本发明的解释,本发明并不局限于以下实施案例。The present invention will be further described in detail below with reference to specific implementation cases. The following implementation cases are an explanation of the present invention, and the present invention is not limited to the following implementation cases.
下面以嵌合组氨酸tRNA合成酶/tRNA系统和嵌合丝氨酸tRNA的分子进化为例对本发明进一步说明。Hereinafter, the present invention will be further illustrated by taking the chimeric histidine tRNA synthetase/tRNA system and the molecular evolution of chimeric serine tRNA as an example.
实施例1:嵌合组氨酸tRNA的构建Example 1: Construction of chimeric histidine tRNA
在本发明中嵌合tRNA和报告基因GFP190TAG-His6是构建在同一个质粒上,分别在lpp启动子和pBAD启动子控制。具体的构建方法如下:In the present invention, the chimeric tRNA and the reporter gene GFP190TAG-His6 are constructed on the same plasmid and controlled by the lpp promoter and the pBAD promoter respectively. The specific construction method is as follows:
(1)将GFP190TAG-His6构建到pNEG载体上(1) Construct GFP190TAG-His6 on pNEG vector
GFP190TAG-His6的序列如SEQ ID No.1所示,设计引物pNEG-gfp-F和pNEG-gfp-R利用现有的含有这个基因的质粒为模板扩增,同时设计合成pNEG-gfp-v-F和pNEG-gfp-v-R,以之前pNEG为模板扩增载体。琼脂糖凝胶回收后利用Gibson组装,转化DH10B感受态细胞,挑选单克隆测序得到质粒pNEG-GFP190TAG-His6;The sequence of GFP190TAG-His6 is shown in SEQ ID No. 1. The primers pNEG-gfp-F and pNEG-gfp-R are amplified using the existing plasmid containing this gene as a template, and pNEG-gfp-vF and pNEG-gfp-vF are designed and synthesized. pNEG-gfp-vR, using the previous pNEG as template amplification vector. The agarose gel was recovered and assembled by Gibson, transformed into DH10B competent cells, and selected a single clone for sequencing to obtain the plasmid pNEG-GFP190TAG-His6;
(2)设计嵌合组氨酸tRNA并克隆到pNEG-GFP190TAG-His6载体(2) Design chimeric histidine tRNA and clone it into pNEG-GFP190TAG-His6 vector
嵌合组氨酸tRNA需要将组氨酸tRNA的受体臂区移植到吡咯赖氨酸tRNA上,为了获得最优的嵌合组氨酸tRNA,我们设计了移植组氨酸tRNA受体臂区不同区域的嵌合组氨酸tRNA,分别命名为chHisT-1,2,3,4,5和6,模型图和详细序列见图3和8。设计相应的引物扩增克隆到前一步构建pNEG-GFP190TAG-His6载体上。相应的引物见表1-1。Chimeric histidine tRNA needs to transplant the histidine tRNA acceptor arm region to pyrrolysine tRNA. In order to obtain the optimal chimeric histidine tRNA, we designed the transplanted histidine tRNA acceptor arm region The chimeric histidine tRNAs in different regions are named chHisT-1, 2, 3, 4, 5 and 6, respectively. The model diagram and detailed sequence are shown in Figures 3 and 8. Design the corresponding primers to amplify and clone into the pNEG-GFP190TAG-His6 vector constructed in the previous step. The corresponding primers are shown in Table 1-1.
表1-1.构建嵌合tRNA所需引物Table 1-1. Primers needed to construct chimeric tRNA
NameName SequenceSequence
GFP190TAG-FGFP190TAG-F TTTAAGAAGGAGATATACATATGGGTAAAGGAGAAGAACTTTTCTTTAAGAAGGAGATATACATATGGGTAAAGGAGAAGAACTTTTC
GFP190TAG-RGFP190TAG-R CCGCAAGGAATGGTGCATGCTCAATGGTGATGGTGATGATGGGGCCCCCGCAAGGAATGGTGCATGCTCAATGGTGATGGTGATGATGGGGCCC
ChHisT-1-FChHisT-1-F ATCCGTTCAGCCGGGTTAGATTCCCGGGGTTTCCCCCACTGCAGATCCTTAGCGAAAGCATCCGTTCAGCCGGGTTAGATTCCCGGGGTTTCCCCCACTGCAGATCCTTAGCGAAAGC
ChHisT-1-RChHisT-1-R TTAGAGTCCATTCGATCTACATGATCAGGTTTCCCGAATTCAGCGTTACAAGTATTACACTTAGAGTCCATTCGATCTACATGATCAGGTTTCCCGAATTCAGCGTTACAAGTATTACAC
ChHisT-2-FChHisT-2-F ATCCGTTCAGCCGGGTTAGATTCCCGGGGTTTACCCCACTGCAGATCCTTAGCGAAAGCATCCGTTCAGCCGGGTTAGATTCCCGGGGTTTACCCCACTGCAGATCCTTAGCGAAAGC
ChHisT-2-RChHisT-2-R TTAGAGTCCATTCGATCTACATGATCAGGTTTACCGAATTCAGCGTTACAAGTATTACACTTAGAGTCCATTCGATCTACATGATCAGGTTTACCGAATTCAGCGTTACAAGTATTACAC
ChHisT-3-FChHisT-3-F ATCCGTTCAGCCGGGTTAGATTCCCGGGGTCCACCCCACTGCAGATCCTTAGCGAAAGCATCCGTTCAGCCGGGTTAGATTCCCGGGGTCCACCCCACTGCAGATCCTTAGCGAAAGC
ChHisT-3-RChHisT-3-R TTAGAGTCCATTCGATCTACATGATCAGGTCCACCGAATTCAGCGTTACAAGTATTACACTTAGAGTCCATTCGATCTACATGATCAGGTCCACCGAATTCAGCGTTACAAGTATTACAC
ChHisT-4-FChHisT-4-F TTAGAGTCCGTTCGATCTACATGATCATAGCCACCGAATTCAGCGTTACAAGTATTACACTTAGAGTCCGTTCGATCTACATGATCATAGCCACCGAATTCAGCGTTACAAGTATTACAC
ChHisT-4-RChHisT-4-R ATCCGTTCAGCCGGGTTAGATTCCCGGTAGCCACCCCACTGCAGATCCTTAGCGAAAGCATCCGTTCAGCCGGGTTAGATTCCCGGTAGCCACCCCACTGCAGATCCTTAGCGAAAGC
ChHisT-5-FChHisT-5-F GAATTCAGCGTTACAAGTATTACACAGAATTCAGCGTTACAAGTATTACACA
ChHisT-5-RChHisT-5-R GTGGCTATGATCATGTAGATCGAACGGGTGGCTATGATCATGTAGATCGAACGG
ChHisT-6-FChHisT-6-F AAGAGTCCGTTCGATCTACATGAAGAGTCCGTTCGATCTACATG
ChHisT-6-RChHisT-6-R AATCCGTTCAGCCGGGTTAGATTCAATCCGTTCAGCCGGGTTAGATTC
实施例2:嵌合组氨酰-tRNA合成酶的构建Example 2: Construction of chimeric histidyl-tRNA synthetase
嵌合组氨酰-tRNA合成酶由两部分构成,一部分是吡咯赖氨酰-tRNA合成酶tRNA结合结构域,另一部分是组氨酰-tRNA合成酶的催化结构域,设计见图2和3C。The chimeric histidyl-tRNA synthetase is composed of two parts, one part is the tRNA binding domain of pyrrolysyl-tRNA synthetase, and the other part is the catalytic domain of histidyl-tRNA synthetase. The design is shown in Figures 2 and 3C. .
嵌合组氨酰-tRNA合成酶的构建就包括吡咯赖氨酰-tRNA合成酶tRNA结合结构域的选择,组氨酰-tRNA合成酶催化结构域的选择,以及二者融合方式的选择。The construction of chimeric histidyl-tRNA synthetase includes the choice of pyrrolysyl-tRNA synthetase tRNA binding domain, the choice of histidyl-tRNA synthetase catalytic domain, and the choice of the fusion mode of the two.
(1)吡咯赖氨酰-tRNA合成酶tRNA结合结构域的分析以及选择(1) Analysis and selection of pyrrolysyl-tRNA synthetase tRNA binding domain
本发明中需要先克隆吡咯赖氨酰-tRNA合成酶tRNA结合结构域到pBK载体上,这个tRNA结合结构域又可分为两个亚结构域,N端1-149识别对应tRNA的可变区和T环,185-240这段识别对应tRNA的D-stem区,而且文献报道 V31I,T56P,H62Y,A100E(简称IPYE)的突变可以提高系统的活性。因此我们选择四种tRNA结合结构域部分,分别是N149、N149+185-240(N240)、N149-IPYE、N149+185-240-IPYE,设计引物构建到pBK载体上(图4A)。In the present invention, it is necessary to clone the pyrrolysyl-tRNA synthetase tRNA binding domain to the pBK vector. This tRNA binding domain can be divided into two subdomains. The N-terminal 1-149 recognizes the variable region of the corresponding tRNA And T loop, the segment 185-240 recognizes the corresponding tRNA D-stem region, and it is reported in the literature that mutations of V31I, T56P, H62Y, A100E (IPYE for short) can improve the activity of the system. Therefore, we selected four tRNA binding domain parts, namely N149, N149+185-240 (N240), N149-IPYE, N149+185-240-IPYE, and designed primers to be constructed on the pBK vector (Figure 4A).
(2)组氨酰-tRNA合成酶催化结构域的的选择(2) Selection of the catalytic domain of histidyl-tRNA synthetase
接着本发明对组氨酰-tRNA合成酶的结构进行分析(图3F、4A和10),选择N端326个氨基酸(1-326)作为嵌合设计的催化结构域部分。Next, the present invention analyzes the structure of histidyl-tRNA synthetase (Figures 3F, 4A and 10), and selects the N-terminal 326 amino acids (1-326) as the catalytic domain part of the chimeric design.
(3)不同融合方式嵌合组氨酰-tRNA合成酶的构建(3) Construction of chimeric histidyl-tRNA synthetase with different fusion methods
设计引物扩增组氨酰-tRNA合成酶1-326,连接到吡咯赖氨酰-tRNA合成酶tRNA结合结构域的N端或C端,从而构建chHis-1、2、3、4和5,并克隆到pBK载体上。相应的引物见表2-1.Design primers to amplify histidyl-tRNA synthetase 1-326 and connect to the N-terminus or C-terminus of the pyrrolysyl-tRNA synthetase tRNA binding domain to construct chHis-1, 2, 3, 4, and 5. And cloned into pBK vector. The corresponding primers are shown in Table 2-1.
表2-1.构建嵌合组氨酰-tRNA合成酶引物列表Table 2-1. List of primers for constructing chimeric histidyl-tRNA synthetase
NameName SequenceSequence
Pyl-N149-FPyl-N149-F TACGCTTTGAGGAATCCCATATGGATAAGAAGCCGCTGGATGTACGCTTTGAGGAATCCCATATGGATAAGAAGCCGCTGGATG
Pyl-N149-RPyl-N149-R GTCAGAGCTGGGGCGCTTGCAGAGGTCGGAACCGGAGAGTTCGTCAGAGCTGGGGCGCTTGCAGAGGTCGGAACCGGAGAGTTC
Pyl-N205-RPyl-N205-R GCCGCCGCTTCCGCCACCCTCGCGTTCCTCAGCGCCGCCGCTTCCGCCACCCTCGCGTTCCTCAGC
ChHisRS-1-FChHisRS-1-F GTGGCGGAAGCGGCGGCATGGCAAAAAACATTCAAGCGTGGCGGAAGCGGCGGCATGGCAAAAAACATTCAAGC
ChHisRS-1-RChHisRS-1-R TAGCGTTTGAAACTGCAGTTACGGATTAACGGCCTGTACTAACAATACAAGACGTTCTAGCGTTTGAAACTGCAGTTACGGATTAACGGCCTGTACTAACAATACAAGACGTTC
ChHisRS-3-FChHisRS-3-F CGCTTTGAGGAATCCCATATGGCAAAAAACATTCAAGCCCGCTTTGAGGAATCCCATATGGCAAAAAACATTCAAGCC
ChHisRS-3-RChHisRS-3-R TTCCGCCGCCGCTTCCGCCACCTATATCGACAACAGGATCGGCTTTCCGCCGCCGCTTCCGCCACCTATATCGACAACAGGATCGGCT
实施例3:嵌合组氨酰-tRNA合成酶连接肽的优化Example 3: Optimization of Chimeric Histidyl-tRNA Synthetase Linking Peptide
在嵌合蛋白质的构建中,两个嵌合片段之间的连接肽对嵌合分子的活性至关重要,在本发明中我们对连接肽的长度和连接肽的种类进行了测试(图11)。In the construction of the chimeric protein, the connecting peptide between the two chimeric fragments is very important to the activity of the chimeric molecule. In the present invention, we tested the length of the connecting peptide and the type of the connecting peptide (Figure 11) .
(1)连接肽长度的优化(1) Optimization of connecting peptide length
设计柔性连接肽的长度(GS-type)0,6,12,18和24个氨基酸,分别命 名为chHisRS4-2、-3、-4、-5和-6,相应连接肽的核苷酸序列见表3-1所示。同时在0个氨基酸连接肽基础上缺失组氨酸-tRNA合成酶的N端15个氨基酸,,命名为chHisRS4-1.设计引物通过Q5位点定向突变试剂盒(NEB)构建到载体上,相应的引物见表3-2。Design the length of the flexible connecting peptide (GS-type) 0, 6, 12, 18 and 24 amino acids, named chHisRS 4-2, -3, -4, -5 and -6 respectively, and the nucleotide sequence of the corresponding connecting peptide See Table 3-1. At the same time, the N-terminal 15 amino acids of histidine-tRNA synthetase were deleted on the basis of 0 amino acid connecting peptide, named chHisRS4-1. The primers were designed and constructed on the carrier by the Q5 site directed mutation kit (NEB), corresponding The primers are shown in Table 3-2.
(2)不同连接肽种类嵌合组氨酰-tRNA合成酶的构建(2) Construction of chimeric histidyl-tRNA synthetase with different connecting peptide types
除了柔性连接肽(GS-type)以外,在本发明中还选择了脯氨酸丰富的连接肽(APAPAPAPAPAPAPAPAPAP)和α螺旋类型连接肽(AEAAAAAAKA),相应的核苷酸序列见表3-1。设计引物通过Q5位点定向突变试剂盒(NEB)构建到载体上,相应的引物见表3-2。In addition to the flexible connecting peptide (GS-type), the proline-rich connecting peptide (APAPAPAPAPAPAPAPAPAP) and the α-helix type connecting peptide (AEAAAAAAKA) are also selected in the present invention. The corresponding nucleotide sequences are shown in Table 3-1. The designed primers were constructed on the vector by the Q5 site-directed mutation kit (NEB). The corresponding primers are shown in Table 3-2.
表3-1.不同连接肽的核苷酸序列Table 3-1. Nucleotide sequences of different connecting peptides
Figure PCTCN2020084079-appb-000001
Figure PCTCN2020084079-appb-000001
表3-2.连接肽构建所用引物Table 3-2. Primers used in the construction of connecting peptides
NameName SequenceSequence
12aa-GS-linker-F12aa-GS-linker-F TCTGGTGGCATGGCAAAAAACATTCAAGCCTCTGGTGGCATGGCAAAAAACATTCAAGCC
18aa-GS-linker-F18aa-GS-linker-F TCTGGTGGCGGTGGCGGAAGCGGCGGTATGGCAAAAAACATTCAAGCCTCTGGTGGCGGTGGCGGAAGCGGCGGTATGGCAAAAAACATTCAAGCC
24aa-GS-linker-R24aa-GS-linker-R ACCGCCACCAGACCCACCGCCGCCGCCGCTTCCGCCACCCTCGCGTTCCTCAGACCGCCACCAGACCCACCGCCGCCGCCGCTTCCGCCACCCTCGCGTTCCTCAG
24aa-GS-linker-F24aa-GS-linker-F GGCGGAAGCGGCGGTGGCGGTGGCAGCGGGGGTATGGCAAAAAACATTCAAGCCGGCGGAAGCGGCGGTGGCGGTGGCAGCGGGGGTATGGCAAAAAACATTCAAGCC
P-rich-linker-RP-rich-linker-R GAGCAGGGGCCGGCGCTGGCGCGGGGGCCTCGCGTTCCTCAGCGTAGATGAGCAGGGGCCGGCGCTGGCGCGGGGGCCTCGCGTTCCTCAGCGTAGAT
P-rich-linker-FP-rich-linker-F CAGCGCCTGCCCCGGCACCCGCCCCCATGGCAAAAAACATTCAAGCCACAGCGCCTGCCCCGGCACCCGCCCCCATGGCAAAAAACATTCAAGCCA
α-helix-linker-Fα-helix-linker-F GCTGCAAAGGAAGCTGCAGCGAAGGCTATGGCAAAAAACATTCAAGCCAGCTGCAAAGGAAGCTGCAGCGAAGGCTATGGCAAAAAACATTCAAGCCA
α-helix-linker-Rα-helix-linker-R GGCCTCTTTTGCAGCCGCTTCGGCCTCGCGTTCCTCAGCGTAGAGGCCTCTTTTGCAGCCGCTTCGGCCTCGCGTTCCTCAGCGTAGA
实施例4:控制嵌合组氨酰-tRNA合成酶启动子的优化Example 4: Control optimization of chimeric histidyl-tRNA synthetase promoter
在大肠杆菌表达体系中,启动子对酶活性有很大的影响。为了获得最优氨基酸插入效率,选择glns启动子、pBAD启动子、oxb20启动子、trp启动子启动子,启动子的核苷酸序列见表4-1.设计引物利用Gibson组装插入到pBK载体中,从而控制嵌合组氨酰-tRNA合成酶的表达。相应的引物见表4-2.In E. coli expression system, the promoter has a great influence on enzyme activity. In order to obtain the best amino acid insertion efficiency, select glns promoter, pBAD promoter, oxb20 promoter, trp promoter promoter, the nucleotide sequence of the promoter is shown in Table 4-1. Design primers and use Gibson to assemble and insert into pBK vector , Thereby controlling the expression of chimeric histidyl-tRNA synthetase. The corresponding primers are shown in Table 4-2.
表4-1.不同启动子的核苷酸序列Table 4-1. Nucleotide sequences of different promoters
Figure PCTCN2020084079-appb-000002
Figure PCTCN2020084079-appb-000002
表4-2.构建启动子所需引物Table 4-2. Primers needed to construct the promoter
NameName SequenceSequence
pBAD-FpBAD-F TTTGCTGAGTTGAAGGTTATGACAACTTGACGGCTACATTTTGCTGAGTTGAAGGTTATGACAACTTGACGGCTACAT
pBAD-RpBAD-R CCAGCGGCTTCTTATCCATGGTTAATTCCTCCTGTTAGCCCAGCGGCTTCTTATCCATGGTTAATTCCTCCTGTTAGC
Trp-FTrp-F GTGTGGAAGCGGTCGCTTTCATAAGGAGGTCGCAAATGGATAAGAAGCCGCTGGATGGTGTGGAAGCGGTCGCTTTCATAAGGAGGTCGCAAATGGATAAGAAGCCGCTGGATG
Trp-RTrp-R ATTAAACTAGTTCGATGATTAATTGTCAACAGCCCGAGGATCCTTCAACTCAGCAATTAAACTAGTTCGATGATTAATTGTCAACAGCCCGAGGATCCTTCAACTCAGCA
Oxb20-FOxb20-F TCCCGCTTATAAAAGCTGTTGTGACCGCTTGCTCTAGCCAGCTCCCGCTTATAAAAGCTGTTGTGACCGCTTGCTCTAGCCAGC
Oxb20-ROxb20-R TATAACGGCGGCCGGGTAATACCGGATAGTCAATATGTTCTGTATAACGGCGGCCGGGTAATACCGGATAGTCAATATGTTCTG
实施例5:在大肠杆菌中利用GFP琥珀抑制效率评价构建的不同类型嵌合组氨酰-tRNA合成酶/tRNA的活性,获得最优的嵌合组氨酰-tRNA合成酶/tRNA系统Example 5: Evaluation of the activity of different types of chimeric histidyl-tRNA synthetase/tRNA constructed by using GFP amber inhibition efficiency in E. coli to obtain the optimal chimeric histidyl-tRNA synthetase/tRNA system
在本实施案例中,将上述实施例中构建的嵌合组氨酰-tRNA合成酶质粒和嵌合组氨酸tRNA质粒共转化进入DH10B感受态细胞。转化细胞在2xYT培养基中于37℃振荡培养1h,涂布到含50μg/ml卡那霉素(kan)、100μg/ml氨苄青霉素(AMP)的LB琼脂平板上,37℃培养12h,同时用携带GFP-190(TAG)和嵌合tRNA的pNEG质粒单独转化的细胞作阴性对照。分别从每个平板上挑取3个点到2XYT培养基中,在37℃条件下,振荡培养到OD600=0.8,加入终浓度为0.2%的阿拉伯糖,在22℃下诱导培养14h使蛋白表达。表达结束后,取1ml细胞培养物离心,去掉培养基并用150μl BugBuster蛋白提取试剂(Millipore)裂解。裂解结束后,12000rpm离心1min,取100μl上清液至96孔培养板中(COSTAR)。用Bio Tek Synergy NEO2记录上清的GFP信号,并归一化。将测定的数据进行统计学处理,求取平均值和误差。通过以上测试,我们得到了以下几点结论:In this embodiment, the chimeric histidine-tRNA synthetase plasmid and the chimeric histidine tRNA plasmid constructed in the above embodiment are co-transformed into DH10B competent cells. Transformed cells were cultured in 2xYT medium with shaking at 37°C for 1 hour, and spread on LB agar plates containing 50μg/ml kanamycin (kan) and 100μg/ml ampicillin (AMP), and cultured at 37°C for 12 hours. Cells transformed with pNEG plasmid carrying GFP-190 (TAG) and chimeric tRNA were used as negative controls. Pick 3 points from each plate to 2XYT medium, culture at 37℃ with shaking to OD600=0.8, add arabinose with a final concentration of 0.2%, induce culture at 22℃ for 14h to express protein . After the expression is over, take 1ml of the cell culture and centrifuge, remove the medium and lyse with 150μl BugBuster protein extraction reagent (Millipore). After lysis, centrifuge at 12000 rpm for 1 min, and transfer 100 μl of supernatant to 96-well culture plate (COSTAR). Use BioTek Synergy NEO2 to record the supernatant GFP signal and normalize it. Perform statistical processing on the measured data to obtain the average value and error. Through the above test, we got the following conclusions:
(1)嵌合组氨酸tRNA需要组氨酸tRNA受体臂的完整移植(图3);(1) Chimeric histidine tRNA requires a complete transplantation of histidine tRNA receptor arm (Figure 3);
(2)吡咯赖氨酰-tRNA合成酶的tRNA结合结构域在嵌合蛋白的N端比在C端好(图4A和B);(2) The tRNA binding domain of pyrrolysyl-tRNA synthetase is better at the N-terminus of the chimeric protein than at the C-terminus (Figure 4A and B);
(3)吡咯赖氨酰-tRNA合成酶的tRNA结合结构域越完整,嵌合分子的活性越高,IPYE突变的引入可以显著的提高嵌合分子活性(图4A和B);(3) The more complete the tRNA binding domain of pyrrolysyl-tRNA synthetase, the higher the activity of the chimeric molecule. The introduction of IPYE mutations can significantly improve the activity of the chimeric molecule (Figure 4A and B);
(4)连接肽的种类对活性影响不大,18个氨基酸的连接肽最好(图11B和C);(4) The type of connecting peptide has little effect on the activity, and the connecting peptide of 18 amino acids is the best (Figure 11B and C);
(5)oxb20启动子在大肠杆菌表达体系中最好(图4E)。(5) The oxb20 promoter is the best in the E. coli expression system (Figure 4E).
实施例6:组氨酸插入到GFP蛋白质特定位点的确认Example 6: Confirmation of histidine insertion into a specific site of GFP protein
我们获得嵌合组氨酰-tRNA合成酶/tRNA对,还需要验证其引入氨基酸的准确性,需要纯化蛋白质,通过LC-MS和LC-MS/MS确认。We have obtained the chimeric histidyl-tRNA synthetase/tRNA pair. We also need to verify the accuracy of the amino acid introduced, and the protein needs to be purified, which is confirmed by LC-MS and LC-MS/MS.
在本实施案例中,为了表达和纯化蛋白质,过夜培养的DH10B细胞按照 1:100的接种量接种到100ml新鲜LB培养基中并添加所需的抗生素,然后生长到OD600达到0.8。添加L-阿拉伯糖,终浓度为0.2%,诱导GFP(22℃,220rpm,14h)的表达。诱导结束的细胞在4℃4000rpm离心5分钟,所得细胞沉淀用预冷的NTA-0缓冲液(25mM Tris,250mM NaCl,pH 8.0)重悬,超声裂解。裂解液12000rpm 4℃离心60分钟,所得上清液经上样到提前用NTA-0缓冲液平衡的镍亲和层析螯合色谱,然后用6倍体积含有50mM咪唑的NTA-0缓冲液洗涤。最终用添加500mM咪唑的NTA-0缓冲液洗脱蛋白质。纯化蛋白进行SDS-PAGE和LC-MS分析。In this example, in order to express and purify the protein, DH10B cells cultured overnight were inoculated into 100 ml of fresh LB medium at a 1:100 inoculum and added with the required antibiotics, and then grown until the OD600 reached 0.8. Adding L-arabinose to a final concentration of 0.2% induces the expression of GFP (22° C., 220 rpm, 14 h). The induced cells were centrifuged at 4000 rpm at 4°C for 5 minutes, and the resulting cell pellet was resuspended in pre-cooled NTA-0 buffer (25mM Tris, 250mM NaCl, pH 8.0) and lysed by ultrasound. The lysate was centrifuged at 12,000 rpm and 4°C for 60 minutes, and the supernatant obtained was loaded to the nickel affinity chromatography chelating chromatography that was equilibrated with NTA-0 buffer in advance, and then washed with 6 times volume of NTA-0 buffer containing 50 mM imidazole . Finally, the protein was eluted with NTA-0 buffer added with 500 mM imidazole. The purified protein was analyzed by SDS-PAGE and LC-MS.
对于LC-MS分析,纯化的蛋白质在配备有电喷雾电离(ESI)源和安捷伦1200HPLC的LCQ Deca XP MAX质谱仪(Thermo Fisher Science)上进行分析。在安捷伦300SB-C18柱上(300×2.1,150mm,5μm)进行分离脱盐。流动相A设置为含有0.1%甲酸的水溶液,流动相B含0.1%甲酸的乙腈,并设定流量为0.200毫升/分钟。使用XCalbur-Quar浏览器软件对数据进行分析。在UniDec软件(版本2.6.8,牛津大学)中,使用核心贝叶斯反卷积算法进行质谱反卷积。使用ExPASy Compute pI/Mw工具(https://web.expasy.org/compute_pi/)预测了蛋白质的理论分子量。For LC-MS analysis, the purified protein was analyzed on an LCQ Deca XP MAX mass spectrometer (Thermo Fisher Science) equipped with an electrospray ionization (ESI) source and an Agilent 1200 HPLC. Separation and desalination were carried out on Agilent 300SB-C18 column (300×2.1, 150mm, 5μm). The mobile phase A was set to an aqueous solution containing 0.1% formic acid, and the mobile phase B contained 0.1% formic acid in acetonitrile, and the flow rate was set to 0.200 ml/min. Use XCalbur-Quar browser software to analyze the data. In UniDec software (version 2.6.8, University of Oxford), the core Bayesian deconvolution algorithm is used for mass deconvolution. Use ExPASy Compute pI/Mw tool (https://web.expasy.org/compute_pi/) to predict the theoretical molecular weight of the protein.
在LC-MS/MS分析中,将蛋白条带从凝胶中切下,并用胰蛋白酶隔夜消化。将消化产物上样到结合Proxeon Easy-nLC II HPLC(Thermo Fisher Science)和Proxeon nanospray源的Q Exactive Orbitrap(Thermo Fisher)质谱仪。使用MASCOT引擎(Matrix Science,London,UK;version 2.2)搜索MS/MS光谱,并用pLabel软件(version 2.4,University of Florida Herbarium)进一步处理。处理结果显示组氨酸插入到了GFP的190位点,见图4D和图9。In the LC-MS/MS analysis, the protein band was cut from the gel and digested with trypsin overnight. The digested product is loaded onto the Q Exactive Orbitrap (Thermo Fisher) mass spectrometer that combines Proxeon Easy-nLC II HPLC (Thermo Fisher Science) and Proxeon nanospray sources. Use MASCOT engine (Matrix Science, London, UK; version 2.2) to search for MS/MS spectrum, and use pLabel software (version 2.4, University of Florida Herbarium) for further processing. The processing results showed that histidine was inserted into the 190 position of GFP, as shown in Figure 4D and Figure 9.
实施例7:嵌合丝氨酸tRNA的分子进化Example 7: Molecular evolution of chimeric serine tRNA
通过以上实施例构建的嵌合丝氨酰-tRNA合成酶/tRNA系统活性较低,接下来对嵌合丝氨酸tRNA的受体臂区进行改造,具体步骤如下:The chimeric seryl-tRNA synthetase/tRNA system constructed by the above examples has low activity. Next, the receptor arm region of the chimeric serine tRNA is modified, and the specific steps are as follows:
S25:构建嵌合tRNA文库,并克隆到pNEG载体中;S25: Construct a chimeric tRNA library and clone it into the pNEG vector;
S26:制备含有嵌合氨酰-tRNA合成酶质粒的DH10B感受态细胞;S26: Preparation of DH10B competent cells containing chimeric aminoacyl-tRNA synthetase plasmid;
S27:将文库电转化到制备好的感受态细胞中,并涂布含有阿拉伯糖的平板;S27: Electrotransform the library into the prepared competent cells, and coat a plate containing arabinose;
S28:筛选有荧光的克隆;S28: Screen the clones with fluorescence;
S29:嵌合tRNA正交性的确认;S29: Confirmation of the orthogonality of chimeric tRNA;
S30:嵌合tRNA测序;S30: Chimeric tRNA sequencing;
更为具体的,为了建立chSerT文库,选择G2:C71、U3:A70、G4:C69、A5:U68、G6:C67、G7:C666个碱基对,设计引物chSerT-lib-F和chSerT-lib-R PCR随机文库片段,同时设计引物chSerT-v-F和chSerT-v-R扩增pNEG载体,载体和片段通过胶回收试剂盒回收后Gibson组装。将组装好的文库质粒利用电穿孔的方法转化到含有pBK-oxb20-chSerRS的DH10B感受态细胞中。转化的细胞加入0.9ml SOC培养基37℃复苏1h,然后涂布到含50μg/ml卡那霉素、100μg/ml氨苄青霉素和0.2%L-阿拉伯糖的LB琼脂平板上。37℃下培养12h,随后在22℃下培养48h用Azure Bio.C400在Cy2通道上从平板上挑选出具有荧光的克隆,接种到96孔培养板上。37℃,220rpm下培养10小时,然后用0.2%的阿拉伯糖诱导22h。用Bio Tek Synergy NEO2记录OD600和GFP荧光(λex=490/10nm,λem=510/10nm)。挑取GFP/OD600比值最高的细胞接种于100μg/ml氨苄青霉素的2xYT培养基中,用质粒小量试剂盒提取质粒。用BglII限制性内切酶消化提取的DNA,去除pBK-oxb20-chSerRS质粒,转化到大肠杆菌DH10B活性细胞。提取含有chSerT变体的pNEG质粒,并测序。筛选到的tRNA和相应活性比较见图7。具体引物如下表。More specifically, in order to build a chSerT library, select G2:C71, U3:A70, G4:C69, A5:U68, G6:C67, G7:C666 base pairs, and design primers chSerT-lib-F and chSerT-lib -R PCR random library fragments, and design primers chSerT-vF and chSerT-vR to amplify the pNEG vector. The vector and fragments are recovered by the gel recovery kit and assembled by Gibson. The assembled library plasmid was transformed into DH10B competent cells containing pBK-oxb20-chSerRS by electroporation. The transformed cells were resuscitated by adding 0.9ml SOC medium at 37°C for 1h, and then spread on LB agar plates containing 50μg/ml kanamycin, 100μg/ml ampicillin and 0.2% L-arabinose. Incubate at 37°C for 12 hours, and then at 22°C for 48 hours. Use Azure Bio.C400 to select fluorescent clones from the plate on the Cy2 channel and inoculate them on 96-well culture plates. Incubate at 37°C and 220 rpm for 10 hours, and then induce with 0.2% arabinose for 22 hours. Use BioTek Synergy NEO2 to record OD600 and GFP fluorescence (λex=490/10nm, λem=510/10nm). Pick the cells with the highest GFP/OD600 ratio and inoculate them in 2xYT medium with 100μg/ml ampicillin, and extract the plasmid with a plasmid kit. The extracted DNA was digested with BglII restriction endonuclease, the pBK-oxb20-chSerRS plasmid was removed and transformed into E. coli DH10B active cells. The pNEG plasmid containing the chSerT variant was extracted and sequenced. The comparison of the selected tRNA and the corresponding activity is shown in Figure 7. The specific primers are as follows.
表7-1.嵌合丝氨酸tRNA文库构建引物列表Table 7-1. List of primers for chimeric serine tRNA library construction
NameName SequenceSequence
chSerT-lib-FchSerT-lib-F TTCGCTAAGGATCTGCAGTGGCGGNNNNNCCGGGAATCTAACCCGTTCGCTAAGGATCTGCAGTGGCGGNNNNNCCGGGAATCTAACCCG
chSerT-lib-RchSerT-lib-R ATACTTGTAACGCTGAATTCGGNNNNNTGATCATGTAGATCGAACATACTTGTAACGCTGAATTCGGNNNNNTGATCATGTAGATCGAAC
chSerT-v-FchSerT-v-F GAATTCAGCGTTACAAGTATTACACAAAGTTTTTTATGGAATTCAGCGTTACAAGTATTACACAAAGTTTTTTATG
chSerT-v-RchSerT-v-R CCACTGCAGATCCTTAGCGAAAGCTAAGGATTTTTTTTAAGCCACTGCAGATCCTTAGCGAAAGCTAAGGATTTTTTTTAAG
实施例8:嵌合组氨酰-tRNA合成酶/tRNA系统在哺乳动物细胞琥珀抑制效率分析Example 8: Analysis of amber inhibition efficiency of chimeric histidyl-tRNA synthetase/tRNA system in mammalian cells
(1)嵌合组氨酰-tRNA合成酶/tRNA哺乳动物表达载体构建(1) Construction of chimeric histidyl-tRNA synthetase/tRNA mammalian expression vector
设计引物将扩增嵌合组氨酰-tRNA合成酶和嵌合组氨酸tRNA,克隆到pcDNA3.1载体上,分别在CMV和U6启动子控制下空载体图谱见图1。嵌合组氨酸tRNA分别保留受体臂的CCA和不保留两种。引物见表8-1。Design primers to amplify chimeric histidyl-tRNA synthetase and chimeric histidine tRNA and clone them into pcDNA3.1 vector. The empty vector map under the control of CMV and U6 promoters is shown in Figure 1. The chimeric histidine tRNA retains the CCA of the acceptor arm and does not retain both. The primers are shown in Table 8-1.
(2)嵌合系统转染HEK 293T细胞(2) Transfection of HEK 293T cells with chimeric system
用PEI试剂将上述构建的质粒与pEGFP-EGFP190TAG-His 6按照1∶1(G∶G)的比例共转染到HEK 293T细胞中。 The plasmid constructed above and pEGFP-EGFP190TAG-His 6 were co-transfected into HEK 293T cells at a ratio of 1:1 (G:G) with PEI reagent.
(3)细胞荧光和WB分析转染及抑制效率(3) Cell fluorescence and WB analysis of transfection and inhibition efficiency
转染48h后先用GE DV Elite Applied Precision DeltaVision system进行荧光成像分析,然后再Western印迹分析。嵌合组氨酸tRNA末端连有CCA的效率显著高于没有的(图5和13)。After 48 hours of transfection, the GE DV Elite Applied Precision DeltaVision system was used for fluorescence imaging analysis, and then Western blot analysis. The efficiency of the chimeric histidine tRNA with CCA attached to the end was significantly higher than without (Figures 5 and 13).
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above are only the preferred embodiments of the present invention, and do not limit the scope of the present invention. Any equivalent structure or equivalent process transformation made by using the contents of the description and drawings of the present invention, or directly or indirectly applied to other related technical fields , The same reason is included in the scope of patent protection of the present invention.

Claims (10)

  1. 一种利用嵌合设计方法构建正交的氨酰-tRNA合成酶/tRNA体系,其特征在于移植吡咯赖氨酰-tRNA合成酶/tRNA对在真核细胞和原核细胞的广泛正交性。A chimeric design method is used to construct an orthogonal aminoacyl-tRNA synthetase/tRNA system, which is characterized by the extensive orthogonality of transplanted pyrrolysyl-tRNA synthetase/tRNA pairs in eukaryotic cells and prokaryotic cells.
  2. 如权利要求1所述的一种利用嵌合设计方法构建正交的氨酰-tRNA合成酶/tRNA体系,其特征在于正交的嵌合体系包括嵌合组氨酰-tRNA合成酶/tRNA对、嵌合苯丙氨酰-tRNA合成酶/tRNA对、嵌合丝氨酰-tRNA合成酶/tRNA对、嵌合丙氨酰-tRNA合成酶/tRNA对,但不限于这4种嵌合系统,所述嵌合组氨酰-tRNA合成酶的基因序列如SEQ ID No.3所示,所述嵌合苯丙氨酰-tRNA合成酶的基因序列如SEQ ID No.4所示,所述嵌合丝氨酰-tRNA合成酶的基因序列如SEQ ID No.5所示,所述嵌合丙氨酰-tRNA合成酶的基因序列的基因序列如SEQ ID No.6所示。As claimed in claim 1, a chimeric design method is used to construct an orthogonal aminoacyl-tRNA synthetase/tRNA system, wherein the orthogonal chimeric system includes a chimeric histidyl-tRNA synthetase/tRNA pair , Chimeric phenylalanyl-tRNA synthetase/tRNA pair, chimeric seryl-tRNA synthetase/tRNA pair, chimeric alanyl-tRNA synthetase/tRNA pair, but not limited to these 4 chimeric systems The gene sequence of the chimeric histidyl-tRNA synthetase is shown in SEQ ID No. 3, and the gene sequence of the chimeric phenylalanyl-tRNA synthetase is shown in SEQ ID No. 4. The gene sequence of the chimeric seryl-tRNA synthetase is shown in SEQ ID No. 5, and the gene sequence of the chimeric alanyl-tRNA synthetase gene sequence is shown in SEQ ID No. 6.
  3. 如权利要求1或2所述的一种利用嵌合设计方法构建正交的氨酰-tRNA合成酶/tRNA体系,其特征在于所述正交的氨酰-tRNA合成酶/tRNA体系嵌合通过以下步骤实现:As claimed in claim 1 or 2, a chimeric design method is used to construct an orthogonal aminoacyl-tRNA synthetase/tRNA system, wherein the orthogonal aminoacyl-tRNA synthetase/tRNA system is chimeric through The following steps are implemented:
    S1:嵌合氨酰-tRNA合成酶/tRNA载体的构建;S1: Construction of chimeric aminoacyl-tRNA synthetase/tRNA vector;
    S2:在大肠杆菌中利用GFP琥珀抑制效率评价嵌合氨酰-tRNA合成酶/tRNA的活性;S2: Evaluation of chimeric aminoacyl-tRNA synthetase/tRNA activity using GFP amber inhibition efficiency in E. coli;
    S3:氨基酸插入的确认,包括GFP表达,LC-MS和LC-MS/MS的鉴定;S3: Confirmation of amino acid insertion, including GFP expression, LC-MS and LC-MS/MS identification;
    S4:嵌合系统在哺乳动物细胞表达体系琥珀抑制效率测试;S4: Amber inhibition efficiency test of chimeric system in mammalian cell expression system;
    S5:对效率偏低的嵌合系统,选择嵌合tRNA的受体臂,构建突变文库进行筛选。S5: For the low-efficiency chimeric system, select the acceptor arm of the chimeric tRNA and construct a mutation library for screening.
  4. 如权利要求3所述的一种利用嵌合设计方法构建正交的氨酰tRNA合成酶/tRNA/体系,其特征在于所述S1中嵌合氨酰-tRNA合成酶/tRNA载体的构建具 体包括:As claimed in claim 3, a chimeric design method is used to construct an orthogonal aminoacyl tRNA synthetase/tRNA/system, wherein the construction of the chimeric aminoacyl-tRNA synthetase/tRNA vector in S1 specifically includes :
    S6:嵌合tRNA载体构建;S6: Construction of chimeric tRNA vector;
    S7:嵌合氨酰-tRNA合成酶载体构建。S7: Construction of chimeric aminoacyl-tRNA synthetase vector.
  5. 如权利要求4所述的一种利用嵌合设计方法构建正交的氨酰tRNA合成酶/tRNA体系,其特征在于所述S6中嵌合tRNA载体构建具体包括:According to claim 4, a chimeric design method is used to construct an orthogonal aminoacyl tRNA synthetase/tRNA system, wherein the chimeric tRNA vector construction in S6 specifically includes:
    S8:嵌合tRNA的设计合成;S8: Design and synthesis of chimeric tRNA;
    S9:报告基因GFP190TAG-His6的合成;S9: Synthesis of the reporter gene GFP190TAG-His6;
    S10:将嵌合tRNA和GFP190TAG-His6连接到pNEG载体,分别在glns和pBAD启动子控制下。S10: Link the chimeric tRNA and GFP190TAG-His6 to the pNEG vector, under the control of glns and pBAD promoters, respectively.
  6. 如权利要求4所述的一种利用嵌合设计方法构建正交的氨酰tRNA合成酶/tRNA/体系,其特征在于S7中嵌合氨酰-tRNA合成酶的构建具体包括:As claimed in claim 4, a chimeric design method is used to construct an orthogonal aminoacyl tRNA synthetase/tRNA/system, wherein the construction of the chimeric aminoacyl-tRNA synthetase in S7 specifically includes:
    S11:嵌合氨酰-tRNA合成酶中来自吡咯赖氨酰-tRNA合成酶tRNA结合结构域的选择,氨酰-tRNA合成酶催化结构域的选择;分别连接到pBK载体上;S11: Selection of tRNA binding domain from pyrrolysyl-tRNA synthetase in chimeric aminoacyl-tRNA synthetase, selection of catalytic domain of aminoacyl-tRNA synthetase; respectively connected to pBK vector;
    S12:合成不同的长度和类型的连接肽并装载到嵌合氨酰-tRNA合成酶中两个部分之间,连接肽种类:GS-rich、helix、P-rich;S12: Synthesize connecting peptides of different lengths and types and load them between the two parts of the chimeric aminoacyl-tRNA synthetase. The types of connecting peptides: GS-rich, helix, P-rich;
    S13:合成glns启动子、pBAD启动子、oxb20启动子、trp启动子插入pBK载体上控制嵌合氨酰tRNA合成酶的表达。S13: Synthesize glns promoter, pBAD promoter, oxb20 promoter, trp promoter and insert into pBK vector to control the expression of chimeric aminoacyl tRNA synthetase.
  7. 如权利要求3所述的一种利用嵌合设计方法构建正交的氨酰-tRNA合成酶/tRNA体系,其特征在于所述S2中在大肠杆菌中利用GFP琥珀抑制效率评价嵌合氨酰-tRNA合成酶/tRNA的活性具体包括:As claimed in claim 3, a chimeric design method is used to construct an orthogonal aminoacyl-tRNA synthetase/tRNA system, wherein the S2 uses GFP amber inhibition efficiency to evaluate the chimeric aminoacyl-tRNA synthetase in Escherichia coli. The activities of tRNA synthetase/tRNA specifically include:
    S14:携带GFP190TAG-His6基因和嵌合tRNA的pNEG载体和携带的嵌合氨酰-tRNA合成酶的pBK载体共转化转入DH10B感受态细胞;S14: The pNEG vector carrying the GFP190TAG-His6 gene and chimeric tRNA and the pBK vector carrying the chimeric aminoacyl-tRNA synthetase were co-transformed into DH10B competent cells;
    S15:挑单克隆到液体培养基中,阿拉伯糖诱导基因表达;S15: Pick a single clone into the liquid medium, and arabinose induces gene expression;
    S17:裂解表达后的细胞;S17: Lyse the expressed cells;
    S18:测定裂解后细胞上清液GFP的荧光,并计算嵌合系统GFP琥珀抑制效率。S18: Measure the GFP fluorescence of the cell supernatant after lysis, and calculate the GFP amber suppression efficiency of the chimeric system.
  8. 如权利要求3所述的一种利用嵌合设计方法构建正交的氨酰-tRNA合成酶/tRNA体系,其特征在于所述S3中氨基酸插入的确认具体包括:As claimed in claim 3, a chimeric design method is used to construct an orthogonal aminoacyl-tRNA synthetase/tRNA system, wherein the confirmation of the amino acid insertion in S3 specifically includes:
    S19:S14中的大肠杆菌大量培养,阿拉伯糖诱导蛋白质表达;S19: Mass cultivation of E. coli in S14, arabinose induces protein expression;
    S20:收集表达后的大肠杆菌,超声破碎,亲和层析纯化;S20: Collect the expressed Escherichia coli, ultrasonically disrupt, and purify by affinity chromatography;
    S21:纯化蛋白质的Western-bloting,LC-MS和LC-MS/MS的鉴定。S21: Western-bloting, LC-MS and LC-MS/MS identification of purified protein.
  9. 如权利要求3所述的一种利用嵌合设计方法构建正交的氨酰-tRNA合成酶/tRNA体系,其特征在于S4中嵌合系统在哺乳动物细胞内效率测试具体包括:As claimed in claim 3, a chimeric design method is used to construct an orthogonal aminoacyl-tRNA synthetase/tRNA system, wherein the efficiency test of the chimeric system in mammalian cells in S4 specifically includes:
    S22:嵌合氨酰tRNA合成酶基因和嵌合tNRA基因转入pcDNA3.1载体中;S22: The chimeric aminoacyl tRNA synthetase gene and the chimeric tNRA gene are transferred into the pcDNA3.1 vector;
    S23:S22得到的质粒与pEGFP-EGFP-191TAG-Histag共转染HEK 293T细胞;S23: The plasmid obtained from S22 and pEGFP-EGFP-191TAG-Histag were co-transfected into HEK 293T cells;
    S24:GFP荧光和Western-blotting衡量嵌合系统在哺乳动物细胞中的效率。S24: GFP fluorescence and Western-blotting measure the efficiency of the chimeric system in mammalian cells.
  10. 如权利要求3所述的一种利用嵌合设计方法构建正交的氨酰-tRNA合成酶/tRNA体系,其特征在于S5中嵌合tRNA受体臂区域文库筛选体系具体包括:As claimed in claim 3, a chimeric design method to construct an orthogonal aminoacyl-tRNA synthetase/tRNA system, characterized in that the chimeric tRNA receptor arm region library screening system in S5 specifically includes:
    S25:构建嵌合tRNA文库,并克隆到pNEG载体中;S25: Construct a chimeric tRNA library and clone it into the pNEG vector;
    S26:制备含有嵌合氨酰-tRNA合成酶质粒的DH10B感受态细胞;S26: Preparation of DH10B competent cells containing chimeric aminoacyl-tRNA synthetase plasmid;
    S27:将文库电转化到制备好的感受态细胞中,并涂布含有阿拉伯糖的平板;S27: Electrotransform the library into the prepared competent cells, and coat a plate containing arabinose;
    S28:筛选有荧光的克隆;S28: Screen the clones with fluorescence;
    S29:嵌合tRNA正交性的确认;S29: Confirmation of the orthogonality of chimeric tRNA;
    S30:嵌合tRNA测序。S30: Chimeric tRNA sequencing.
PCT/CN2020/084079 2019-05-24 2020-04-10 Construction of orthogonal aminoacyl-trna synthetase/trna system by using chimeric design method WO2020238433A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910440254.8 2019-05-24
CN201910440254.8A CN110172467B (en) 2019-05-24 2019-05-24 Construction of orthogonal aminoacyl-tRNA synthetase/tRNA system by chimeric design method

Publications (1)

Publication Number Publication Date
WO2020238433A1 true WO2020238433A1 (en) 2020-12-03

Family

ID=67695664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084079 WO2020238433A1 (en) 2019-05-24 2020-04-10 Construction of orthogonal aminoacyl-trna synthetase/trna system by using chimeric design method

Country Status (2)

Country Link
CN (1) CN110172467B (en)
WO (1) WO2020238433A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110172467B (en) * 2019-05-24 2021-03-16 浙江大学 Construction of orthogonal aminoacyl-tRNA synthetase/tRNA system by chimeric design method
KR20220024847A (en) * 2019-06-21 2022-03-03 트러스티스 오브 보스톤 칼리지 Enhanced Platform for Incorporation of Unnatural Amino Acids in Mammalian Cells
CN111118048B (en) * 2019-11-11 2022-06-10 浙江大学 Use of chimeric phenylalanyl-tRNA synthetases/tRNAs
CN114250243B (en) * 2020-09-24 2024-05-03 深圳华大生命科学研究院 System and method for detecting aminoacyl-tRNA synthetase and tRNA activity in extreme halophilic organisms
CN114134141B (en) * 2021-11-03 2024-01-30 杭州嵌化合生医药科技有限公司 Chimeric phenylalanine translation system with introduced unnatural amino acid and construction method thereof
CN114940979B (en) * 2022-02-16 2024-01-23 杭州嵌化合生医药科技有限公司 Method for improving cation-pi interaction by utilizing genetic code expansion and application
CN114657156A (en) * 2022-03-11 2022-06-24 南京中医药大学 Pyrrolysine aminoacyl-tRNA synthetase mutant and screening system and application thereof
CN114908066B (en) * 2022-05-17 2024-01-23 杭州嵌化合生医药科技有限公司 Orthogonal translation system and application thereof in redistribution codon recovery of functional protein expression in PTC disease

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101076598A (en) * 2003-07-07 2007-11-21 斯克利普斯研究院 Compositions of orthogonal glutamyl-tRNA and aminoacyl tRNA synthetase pairs and uses thereof
CN101849002A (en) * 2007-07-13 2010-09-29 独立行政法人海洋研究开发机构 Method for maintaining foreign gene in cell stably
CN103215227A (en) * 2003-04-17 2013-07-24 斯克利普斯研究院 Expanding the eukaryotic genetic code
CN107012121A (en) * 2016-01-27 2017-08-04 北京大学 Carry the structure of the stable cell lines of orthogonal tRNA/ aminoacyl tRNA synthetases
CN110172467A (en) * 2019-05-24 2019-08-27 浙江大学 It is a kind of to construct orthogonal aminoacyl-tRNA synthetase/tRNA system using chimeric design method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585904B2 (en) * 2008-02-08 2014-09-10 独立行政法人理化学研究所 Polypeptide having aminoacyl-tRNA synthetase activity and use thereof
CN106146663B (en) * 2015-04-10 2019-11-08 北京大学 Novel antibodies-drug conjugates of unnatural amino acid label and its preparation
CN107099546B (en) * 2017-06-07 2019-11-19 胜武(北京)生物科技有限公司 A method of regulation Chimeric antigen receptor expression

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103215227A (en) * 2003-04-17 2013-07-24 斯克利普斯研究院 Expanding the eukaryotic genetic code
CN101076598A (en) * 2003-07-07 2007-11-21 斯克利普斯研究院 Compositions of orthogonal glutamyl-tRNA and aminoacyl tRNA synthetase pairs and uses thereof
CN101849002A (en) * 2007-07-13 2010-09-29 独立行政法人海洋研究开发机构 Method for maintaining foreign gene in cell stably
CN107012121A (en) * 2016-01-27 2017-08-04 北京大学 Carry the structure of the stable cell lines of orthogonal tRNA/ aminoacyl tRNA synthetases
CN110172467A (en) * 2019-05-24 2019-08-27 浙江大学 It is a kind of to construct orthogonal aminoacyl-tRNA synthetase/tRNA system using chimeric design method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AMBROGELLY A. ET AL.: "Pyrrolysine is not hardwired for cotranslational insertion at UAG codons", PNAS, vol. 104, no. 9, 27 February 2007 (2007-02-27), XP009127996, ISSN: 0027-8424, DOI: 20200707075659A *
MEINEKE B. ET AL.: "Methanomethylophilus alvus Mx1201 Provides Basis for Mutual Orthogonal Pyrrolysyl tRNA/Aminoacyl-tRNA Synthetase Pairs in Mammalian Cells", ACS CHEMICAL BIOLOGY, vol. 13, no. 11,, 16 November 2018 (2018-11-16), XP055728191, ISSN: 1554-8929, DOI: 20200707075445Y *

Also Published As

Publication number Publication date
CN110172467A (en) 2019-08-27
CN110172467B (en) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2020238433A1 (en) Construction of orthogonal aminoacyl-trna synthetase/trna system by using chimeric design method
Chapman-Smith et al. Expression, biotinylation and purification of a biotin-domain peptide from the biotin carboxy carrier protein of Escherichia coli acetyl-CoA carboxylase
Southworth et al. Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein
US7354756B1 (en) Intein-mediated cyclization of peptides
CN113195521B (en) Mtu delta I-CM intein variants and uses thereof
Lahiry et al. Inteins as tools for tagless and traceless protein purification
CN111118048B (en) Use of chimeric phenylalanyl-tRNA synthetases/tRNAs
JP2017520261A (en) Dual cistron bacterial expression system
KR101481142B1 (en) Synthetic Promoter for Expressing Corynebacteria
US20220411764A1 (en) Thioredoxin mutant, preparation method thereof, and application thereof in production of recombinant fusion protein
CN111132996A (en) Fusion tag for recombinant protein expression
US10358461B2 (en) Precipitable peptides
KR102014826B1 (en) Novel peptide for enhancing expression efficiency and fusion protein including the same
EP3116993A1 (en) Cyclopropene amino acids and methods
Rogé et al. Use of pIVEX plasmids for protein overproduction in Escherichia coli
CN111019928A (en) Coding gene, vector and recombinant cell of D-psicose 3-epimerase and application thereof
Brocca et al. Defining structural domains of an intrinsically disordered protein: Sic1, the cyclin-dependent kinase inhibitor of Saccharomyces cerevisiae
Rodríguez et al. Production of cell-penetrating peptides in Escherichia coli using an intein-mediated system
CN114057861B (en) bio-PROTAC artificial protein targeting UBE2C
WO2020067550A1 (en) Compound library and method for producing compound library
CN112694527A (en) Purification and renaturation method of recombinant human interferon-kappa inclusion body
Zhang et al. A flexible, scalable method for preparation of homogeneous aminoacylated tRNAs
RU2798545C1 (en) Recombinant plasmid dna psmt3_hcrg21 encoding a hybrid protein smt3-hcrg21, bacterial strain escherichia coli bl21(de3)/psmt3_hcrg21 - producer of hcrg21 analgesic peptide and method of producing recombinant hcrg21 analgesic peptide
CN112391429B (en) Enzyme-catalyzed C-terminal selective hydrazide modification method for protein
US11591630B2 (en) Peptide for enhancing expression efficiency of target protein, and fusion protein comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20815076

Country of ref document: EP

Kind code of ref document: A1