WO2020238165A1 - 一种含瓦斯煤颗粒润湿特性测试装置及测试方法 - Google Patents

一种含瓦斯煤颗粒润湿特性测试装置及测试方法 Download PDF

Info

Publication number
WO2020238165A1
WO2020238165A1 PCT/CN2019/125602 CN2019125602W WO2020238165A1 WO 2020238165 A1 WO2020238165 A1 WO 2020238165A1 CN 2019125602 W CN2019125602 W CN 2019125602W WO 2020238165 A1 WO2020238165 A1 WO 2020238165A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
glass tube
pipe
wetting
gas storage
Prior art date
Application number
PCT/CN2019/125602
Other languages
English (en)
French (fr)
Inventor
刘震
王文玉
李�昊
杨文智
程卫民
王刚
周刚
杨赫
倪冠华
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2020238165A1 publication Critical patent/WO2020238165A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects

Definitions

  • the invention relates to the technical field of testing devices, in particular to a testing device for the wettability of gas-containing coal particles, and a testing method using the device.
  • coal seam water injection technology can allow high-pressure water to enter the crack-pore structure of the coal body, increase the water content of the coal body, and effectively suppress the generation of dust. Therefore, it has become the most basic One of the most effective dust reduction techniques.
  • the coal seam water injection process includes three stages: hydraulic fracturing, water seepage, and capillary wetting.
  • the capillary wetting stage refers to the three-phase process of water wetting the coal and displacing gas in the coal.
  • the wettability and liquid properties are closely related. Therefore, studying the wetting law of coal is very important to guide the on-site coal seam water injection and dust reduction technology.
  • the spontaneous infiltration experiment is a commonly used experimental method to determine the wettability of solid particles.
  • the present invention provides a A test device and test method for the wettability of gas-containing coal particles.
  • the specific technical scheme is as follows.
  • a test device for the wetting characteristics of gas-containing coal particles comprising a supporting glass tube, an air inlet valve, an air outlet valve, filter paper, a glass dish, a gas storage device, a top cap and a bottom cap; both ends of the supporting glass tube are provided with a top Cap and bottom cap; the intake valve is set at the first branch pipe on the upper part of the branched glass tube, the intake valve is a one-way intake valve; the outlet valve is set on the bottom cap; the filter paper is set between the branched glass tube and the bottom cap In the meantime, the gas storage device is connected with the second branch pipe through the connecting pipe; the glass dish is arranged directly under the branched glass pipe.
  • the wall of the main pipe with a branched glass tube is provided with a first branch pipe and a second branch pipe, and the main pipe with a branched glass tube is also provided with a millimeter scale;
  • the air inlet valve is connected to the gas injection bag, and the gas injection bag stores Gas;
  • the top cap and the bottom cap are connected by threads at both ends of a supporting glass tube.
  • the bottom cap is provided with a suction pipe, the suction pipe is provided with an air outlet valve, and the first branch pipe and the second branch pipe are provided with threads; the connecting pipe is a hose, and the filter paper is fixed by a rubber band.
  • the gas storage device is a drainage and gas collection device, including a water tank and an air storage cylinder, the cylinder diameter of the gas storage cylinder is smaller than the diameter of the water tank; the air storage cylinder is provided with a scale, the second branch pipe is connected with a hose, and the other One end extends into the air storage cylinder, and a water stop clamp is also arranged on the hose.
  • the one-way air intake valve includes a fixed panel, a spring and a baffle
  • the fixed panel is a rectangular parallelepiped
  • one end of the spring is fixedly connected to the fixed panel
  • the other end of the spring is fixedly connected to the baffle
  • the fixed panel is connected to the first branch pipe on.
  • the supporting glass tube is fixed by a lifting iron stand.
  • the lifting iron stand includes a lifting rod, a lifting clamp and a base.
  • the glass dish is placed on the base, the lifting rod is vertically arranged on the base, and the lifting clamp clamp supports the glass tube.
  • the lifting fixture moves up and down along the lifting rod.
  • a method for testing the wetting characteristics of gas-containing coal particles using the above-mentioned device for testing the wetting characteristics of gas-containing coal particles, and the specific steps include:
  • Step 1 The filter paper is fixed to the lower end of the main pipe with a supporting glass tube by rubber bands, and pulverized coal is poured from the upper end of the main pipe, and the supporting glass pipe is shaken to form a column of pulverized coal with uniform density.
  • Install top caps and bottom caps at both ends of the supporting glass tube Use a lifting fixture to vertically clamp the glass tube;
  • Step 2 Fill the water tank and the gas storage cylinder of the gas storage device with water, one end of the connecting pipe and the second branch pipe are nested and connected, the water stop clamp clamps the connection pipe, and the other end of the connection pipe extends into the gas storage cylinder;
  • Step 3 Collect gas samples and analyze the gas composition through a gas chromatograph. Use a gas injection bag containing the same gas composition to connect to the first branch pipe, and connect the suction cylinder to the gas outlet valve;
  • Step 4 Open the air outlet valve and slowly pull the suction tube to extract air from the branched glass tube.
  • the gas in the air injection bag enters the branched glass tube under the action of the pressure difference.
  • the air outlet valve is closed, and the suction tube and gas injection are disassembled bag;
  • Step 5 Pour the wetting fluid into the glass dish, adjust the height of the supporting glass tube through the lifting clamp, and slowly remove the bottom cap when the bottom cap at the lower end of the supporting glass tube drops to the level of the wetting liquid in the glass dish.
  • Contact the filter paper with the wetting fluid remove the water stop clip on the connecting pipe, record the drop height of the liquid level in the gas storage cylinder, and calculate the displacement gas volume based on the cross-sectional area of the gas storage cylinder.
  • a test device for the wetting characteristics of gas-containing coal particles A first branch pipe is installed on the upper part of the branched glass tube, so that after the gas enters the branched glass tube from the first branch pipe through the intake valve, the gas density is less than that of air.
  • the upper part is filled with a branched glass tube, and the denser air is naturally discharged from the bottom cap to complete the gas exchange in the tube; in addition, an intake valve is set at the position of the first branch, and the intake valve is a one-way intake valve to ensure Therefore, the gas can only flow in one direction, ensuring that the gas in the branched glass tube will not flow out from the first branch tube.
  • first branch pipe and the second branch pipe are provided with threads to facilitate the connection and ensure the sealing performance of the device;
  • the bottom cap is provided with an air outlet valve, and the air pump is used to facilitate gas exchange; the use of the gas storage device
  • the drainage and gas collection device can accurately measure the volume of the displaced gas, and use filter paper to absorb the wetting fluid, thus facilitating the wetting fluid to enter the branched glass tube to drive the gas.
  • the method for testing the wetting characteristics of gas-containing coal particles is to form a uniform pulverized coal column in the branched glass tube, and replace the gas in the branched glass tube through the inlet valve and the outlet valve, and use specific gas components to simulate Finally, the gas is displaced by the wetting fluid, and the gas is discharged from the second branch pipe.
  • the collected gas volume is directly read through the gas storage device.
  • This method can simulate the wetting process of the coal seam with a specific gas content in a specific mine, and it can also be directly read. Taking the volume of the wetting and displacing methane is simple and easy to operate. The device and the method of use can effectively improve the accuracy of the experimental study on the coal wetting law.
  • the invention also has the advantages of simple steps, quick installation, convenient use, good sealing performance and the like.
  • Figure 1 is a schematic diagram of the structure of the test device for the wettability of gas-containing coal particles
  • Figure 2 is a schematic diagram of the one-way intake valve structure
  • Figure 3 is a cross-sectional view of the one-way intake valve
  • the present invention provides a test device and test method for the wettability of gas-containing coal particles.
  • the specific implementation is as follows.
  • a test device for the wetting characteristics of gas-containing coal particles which specifically includes a branched glass tube 1, an air inlet valve 2, an air outlet valve 3, a filter paper 4, a glass dish 5, a gas storage device 6, a top cap 7 and a bottom cap 8. .
  • a top cap 7 and a bottom cap 8 are arranged at both ends of the supporting glass tube 1, and the air inlet valve 2 is arranged at the first branch 11 on the upper part of the supporting glass tube 1, and the air inlet valve 2 is a one-way air inlet valve.
  • the valve 3 is provided on the bottom cap 8.
  • the filter paper is arranged between the supporting glass tube 1 and the bottom cap 8, the gas storage device 6 is connected to the second branch tube 12 through the connecting tube 61, and the glass dish 5 is arranged directly below the supporting glass tube 1 for holding and wetting liquid.
  • the wall of the main pipe with the branched glass tube 1 is provided with a first branch pipe 11 and a second branch pipe 12, and the main pipe with a branched glass tube 1 is also provided with a millimeter scale for observing the length of the coal powder column and the wetting height.
  • the gas inlet valve 2 is connected to the gas injection bag 24.
  • the gas injection bag 24 stores gas so that different gas environments can be simulated according to the composition of the gas.
  • the top cap 7 and the bottom cap 8 are connected by threads at both ends of the supporting glass tube 1.
  • the bottom cap 8 is provided with a suction pipe 31, and the suction pipe is provided with an outlet valve 3, and the suction cylinder 32 is connected to the suction pipe.
  • the first branch pipe 11 and the second branch pipe 12 are provided with threads, and the connecting pipe 61 can use a hose to facilitate air collection.
  • the filter paper is fixed by rubber bands to facilitate fixing and disassembly.
  • the test device for the wetting characteristics of gas-containing coal particles is provided with a first branch pipe 11 on the upper part of the branched glass tube 1, so that after the gas enters the branched glass tube 1 from the first branch pipe 11 through the inlet valve, the gas density is less than that of air.
  • an inlet valve 2 is set at the position of the first branch, and the inlet valve 2 is a one-way inlet The valve 2 ensures that the gas can only flow in one direction, and the gas in the branched glass tube 1 will not flow out from the first branch tube 11.
  • the gas storage device 6 is a drainage and gas collection device, including a water tank 62 and a gas storage cylinder 63.
  • the cylinder diameter of the gas storage cylinder 63 is smaller than the diameter of the water tank 62.
  • the gas storage cylinder 63 is inverted in the water tank 62.
  • the gas storage cylinder 63 is provided with a scale.
  • a hose is connected to the two branch pipes 12, the other end of the hose extends into the gas storage cylinder, and a water stop clamp is arranged on the hose, and the hose guides the gas in the branch glass tube into the gas storage cylinder.
  • the one-way intake valve includes a fixed panel 21, a spring 22 and a baffle 23.
  • the fixed panel 21 is a rectangular parallelepiped.
  • One end of the spring 22 is fixedly connected to the fixed panel, and the other end of the spring 22 is fixedly connected to the baffle 23.
  • the fixed panel 21 is connected to The first branch pipe 11 ensures that the gas can only flow in one direction and the gas in the branched glass tube 1 will not flow out from the first branch pipe 11.
  • the supporting glass tube 1 is fixed by a lifting iron stand 9.
  • the lifting iron stand 9 includes a lifting rod 91, a lifting clamp 92 and a base 93.
  • the glass dish 5 is placed on the base 93, the lifting rod 91 is vertically arranged on the base 93, and the lifting clamp 92
  • the clamping device supports the glass tube 1, and the lifting clamp 92 moves up and down along the lifting rod 91 to control the distance between the bottom of the glass tube and the glass dish 5.
  • a method for testing the wetting characteristics of gas-containing coal particles using the above-mentioned device for testing the wetting characteristics of gas-containing coal particles, and the specific steps include:
  • Step 1 The filter paper is fixed to the lower end of the main pipe with the supporting glass tube by rubber bands, and pulverized coal is poured from the upper end of the main pipe, and the supporting glass pipe is oscillated to form a pulverized coal column with uniform density.
  • the lifting iron frame can also be placed on the vibrating table. The vibration keeps the pulverized coal column uniform. Install the top cap and bottom cap on both ends of the supporting glass tube, and use the lifting clamp to clamp the supporting glass tube vertically.
  • Step 2 Fill the water tank and the gas storage cylinder of the gas storage device with water.
  • One end of the connecting pipe is nested and connected with the second branch pipe.
  • the water stop clamp clamps the connection pipe to prevent the water in the gas storage cylinder from being sucked into the branched glass tube.
  • the other end of the connecting pipe extends into the air reservoir.
  • Step 3 Collect gas samples and analyze the gas composition by gas chromatograph. Use a gas injection bag containing the same gas composition to connect to the first branch pipe, and connect the suction cylinder to the gas outlet valve.
  • Step 4 Open the air outlet valve and slowly pull the suction tube to extract air from the branched glass tube.
  • the gas in the air injection bag enters the branched glass tube under the action of the pressure difference.
  • the air outlet valve is closed, and the suction tube and gas injection are disassembled bag.
  • Step 5 pour the wetting liquid into the glass dish, adjust the height of the supporting glass tube through the lifting clamp, and slowly remove the bottom cap when the bottom cap at the lower end of the supporting glass tube drops to the height of the wetting liquid level in the glass dish. Make the filter paper contact the wetting fluid, remove the water stop clip on the connecting pipe, record the drop height of the liquid level in the gas storage cylinder, and calculate the displacement gas volume based on the cross-sectional area of the gas storage cylinder.
  • the test method for the wetting characteristics of gas-containing coal particles is to form a uniform pulverized coal column in a branched glass tube, and replace the gas in the branched glass tube through an inlet valve and an outlet valve, and simulate with a specific gas composition, and finally pass The wetting fluid displaces the gas, and the gas is discharged from the second branch pipe.
  • the collected gas volume is directly read through the gas storage device.
  • This method can simulate the wetting and purging process of a coal seam with a specific gas content in a specific mine, and directly read the wetting It can displace the volume of methane and is easy to operate.
  • the device and the method of use can effectively improve the accuracy of the experimental study on coal wetting law.
  • Example 1 On the basis of Example 1, this example provides a specific test method for the wettability of gas-containing coal particles, and studies the wetting law of coal particles considering the gas factor.
  • Step 1 The filter paper is fixed to the lower end of the main pipe with a supporting glass tube by rubber bands.
  • the diameter of the main pipe is 15mm.
  • the length of the pulverized coal section is 45mm.
  • Step 2 Fill the water tank and the gas storage cylinder of the gas storage device with water.
  • One end of the connecting pipe is nested and connected with the second branch pipe.
  • the water stop clamp clamps the connection pipe to prevent the water in the gas storage cylinder from being sucked into the branch glass tube.
  • the other end of the connecting pipe extends into the air reservoir.
  • Step 3 Collect gas samples in the mine site environment, and analyze the gas composition by gas chromatograph, including methane, nitrogen, carbon dioxide, etc., use a gas injection bag containing the same gas composition to connect to the first branch pipe, and connect the suction cylinder and the gas outlet valve Connected.
  • gas chromatograph including methane, nitrogen, carbon dioxide, etc.
  • Step 4 Open the air outlet valve and slowly pull the suction tube to extract air from the branched glass tube.
  • the gas in the air injection bag enters the branched glass tube under the action of the pressure difference.
  • the air outlet valve is closed, and the suction tube and gas injection are disassembled bag.
  • Step 5 Pour the wetting fluid into the glass dish, adjust the height of the supporting glass tube through the lifting clamp, and slowly remove the bottom cap when the bottom cap at the lower end of the supporting glass tube drops to the level of the wetting liquid in the glass dish.
  • Contact the filter paper with the wetting fluid remove the water stop clip on the connecting pipe, record the drop height of the liquid level in the gas storage cylinder, and calculate the displacement gas volume based on the cross-sectional area of the gas storage cylinder.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

一种含瓦斯煤颗粒润湿特性测试装置及测试方法,涉及测试装置技术领域,测试装置包括具支玻璃管(1)、进气阀(2)、出气阀(3)、滤纸(4)、玻璃皿(5)、储气装置(6)、顶帽(7)和底帽(8),具支玻璃管(1)的两端设置有顶帽(7)和底帽(8),进气阀(2)和出气阀(3)设置在其上部和下部,滤纸(4)设置在具支玻璃管(1)和底帽(8)之间,储气装置(6)和具支玻璃管(1)上的第二支管(12)相连,玻璃皿(5)设置在具支玻璃管(1)下方;测试含瓦斯煤颗粒润湿特性时,首先在具支玻璃管(1)的主管内形成煤粉柱,连接储气装置(6),通过和出气阀(3)连接的抽气装置抽气,随后进气阀(2)和出气阀(3)关闭,具支玻璃管(1)下降,使滤纸(4)和玻璃皿(5)内的润湿液接触,记录储气装置(6)储气的体积。其解决了模拟润湿液-煤体-瓦斯三相耦合的毛细润湿过程的技术问题,还具有操作简便、准确性高等优点。

Description

一种含瓦斯煤颗粒润湿特性测试装置及测试方法 技术领域
本发明涉及测试装置技术领域,尤其是一种含瓦斯煤颗粒润湿特性的测试装置,以及利用该装置进行测试的方法。
背景技术
矿井粉尘是威胁煤矿安全生产的危险因素,而煤层注水技术可使高压水进入煤体裂-孔隙结构,增加煤体含水量,有效抑制粉尘的产生,因而成为中国煤矿综采工作面最基本、最有效的减尘技术手段之一。煤层注水过程包括水力压裂-水渗流-毛细润湿三个阶段,其中毛细润湿阶段是指水润湿煤体同时驱替煤层中瓦斯气体的三相作用过程,润湿效果与煤体润湿特性及液体性质密切相关,因此研究煤体润湿规律对指导现场煤层注水减尘技术十分重要,而自发渗吸实验是常用的测定固体颗粒润湿特性实验手段。目前自发渗吸实验通常使用两端开口、带刻度的直玻璃管,因其开放性,该实验目前只局限于润湿液与煤样的“固-液”两相作用,无法模拟真实煤层赋存环境下润湿液-煤体-瓦斯三相耦合的毛细润湿过程。因此,需要一种含瓦斯煤颗粒润湿特性测试装置,模拟不同瓦斯含量煤层的毛细润湿过程,为研究考虑瓦斯因素的煤颗粒润湿规律提供一种可行的实验手段。
发明概述
技术问题
问题的解决方案
技术解决方案
为解决模拟润湿液-煤体-瓦斯三相耦合的毛细润湿过程,直接读取润湿驱替甲烷的体积,提高瓦斯煤颗粒润湿特性测试准确性的技术问题,本发明提供了一种含瓦斯煤颗粒润湿特性测试装置及测试方法,具体技术方案如下。
一种含瓦斯煤颗粒润湿特性测试装置,包括具支玻璃管、进气阀、出气阀、滤纸、玻璃皿、储气装置、顶帽和底帽;具支玻璃管的两端设置有顶帽和底帽; 进气阀设置在具支玻璃管上部的第一支管处,进气阀为单向进气阀;出气阀设置在底帽上;滤纸设置在具支玻璃管和底帽之间,储气装置通过连接管和第二支管相连;玻璃皿设置在具支玻璃管的正下方。
优选的是,具支玻璃管主管的管壁上设置有第一支管和第二支管,具支玻璃管主管上还设置有毫米刻度;进气阀和注气袋相连,注气袋内储存有气体;顶帽和底帽通过具支玻璃管两端的螺纹连接。
进一步优选的是,底帽上设置有抽气管,抽气管上设置有出气阀,第一支管和第二支管上设置有螺纹;连接管为软管,滤纸通过皮筋固定。
还优选的是,储气装置为排水集气装置,包括水槽和储气筒,储气筒的筒径小于水槽的直径;储气筒上设置有刻度,第二支管上连接有软管,软管的另一端伸入储气筒内,软管上还设置有止水夹。
还优选的是,单向进气阀包括固定面板、弹簧和挡板,固定面板呈长方体,弹簧的一端与固定面板固定连接,弹簧的另一端和挡板固定连接,固定面板连接在第一支管上。
还优选的是,具支玻璃管通过升降铁架台固定,升降铁架台包括升降杆、升降夹具和底座,玻璃皿放置在底座上,升降杆垂直设置在底座上,升降夹具夹紧具支玻璃管,升降夹具沿升降杆上下移动。
一种含瓦斯煤颗粒润湿特性测试方法,利用上述的一种含瓦斯煤颗粒润湿特性测试装置,具体步骤包括:
步骤一.滤纸通过皮筋固定在具支玻璃管的主管下端,从主管上端倒入煤粉,震荡具支玻璃管形成密度均匀的煤粉柱,在具支玻璃管两端安装顶帽和底帽,使用升降夹具竖直夹紧具支玻璃管;
步骤二.将储气装置的水槽和储气筒内装满水,连接管的一端和第二支管嵌套连接,止水夹夹紧连接管,连接管的另一端伸入储气筒内;
步骤三.收集气体样本,并通过气相色谱仪分析气体成分,使用含相同气体成分的注气袋和第一支管相连,将抽气筒和出气阀相连;
步骤四.打开出气阀,缓慢拉动抽气筒从具支玻璃管内抽取空气,在压差作用下注气袋内的气体进入具支玻璃管内,换气结束后关闭出气阀,拆卸抽气筒和 注气袋;
步骤五.在玻璃皿内倒入润湿液,通过升降夹具调节具支玻璃管的高度,具支玻璃管下端的底帽降至玻璃皿内润湿液面高度时,缓慢取下底帽,使滤纸接触润湿液,取下连接管上的止水夹,记录储气筒内液面的下降高度,根据储气筒的截面面积计算驱替瓦斯体积。
发明的有益效果
有益效果
本发明的有益效果包括:
(1)含瓦斯煤颗粒润湿特性测试装置,在具支玻璃管的上部设置第一支管,从而气体通过进气阀从第一支管进入具支玻璃管后,由于瓦斯气体密度小于空气因此从上部充满具支玻璃管,并使密度较大的空气自然从底帽排出,完成管内的气体交换;另外在第一支管的位置设置进气阀,进气阀为单向进气阀,从而保证了气体只能单向流动,确保具支玻璃管内的气体不会从第一支管流出。
(2)另外,第一支管和第二支管上设置有螺纹从而可以方便连接,并保证装置的密封性能;底帽上设置有出气阀,并且通过抽气筒从而方便了气体交换;储气装置使用排水集气装置,从而可以准确的测量驱替瓦斯的体积,使用滤纸吸收润湿液,从而方便了润湿液进入具支玻璃管驱替瓦斯。
(3)含瓦斯煤颗粒润湿特性测试方法,通过在具支玻璃管内形成均匀的煤粉柱,并通过进气阀和出气阀对具支玻璃管内的气体进行替换,使用特定气体成分进行模拟,最后通过润湿液驱替气体,气体从第二支管排出,通过储气装置直接读取收集气体体积,该方法既可模拟特定矿井特定瓦斯含量煤层的润湿驱气过程,又能直接读取润湿驱替甲烷的体积,操作简便,该装置及使用方法可有效提高煤体润湿规律实验研究的准确性。
另外本发明还具有步骤简单,安装快速,使用便捷,密封性好等优点。
对附图的简要说明
附图说明
图1是含瓦斯煤颗粒润湿特性测试装置结构示意图;
图2是单向进气阀结构示意图;
图3是单向进气阀的剖视图;
图中:1-具支玻璃管;11-第一支管;12-第二支管;2-进气阀;21-固定面板;22-弹簧;23-挡板;24-注气袋;3-出气阀;31-抽气管;32-抽气筒;4-滤纸;5-玻璃皿;6-储气装置;61-连接管;62-水槽;63-储气筒;7-顶帽;8-底帽;9-升降铁架台;91-升降杆;92-升降夹具;93-底座。
发明实施例
本发明的实施方式
结合图1至图3所示,本发明提供的一种含瓦斯煤颗粒润湿特性测试装置及测试方法,具体实施方式如下。
一种含瓦斯煤颗粒润湿特性测试装置,其结构具体包括具支玻璃管1、进气阀2、出气阀3、滤纸4、玻璃皿5、储气装置6、顶帽7和底帽8。其中具支玻璃管1的两端设置有顶帽7和底帽8,进气阀2设置在具支玻璃管1上部的第一支管处11,进气阀2为单向进气阀,出气阀3设置在底帽8上。滤纸设置在具支玻璃管1和底帽8之间,储气装置6通过连接管61和第二支管12相连,玻璃皿5设置在具支玻璃管1的正下方,用于盛放润湿液。
具支玻璃管1主管的管壁上设置有第一支管11和第二支管12,具支玻璃管1主管上还设置有毫米刻度,用于观测煤粉柱的长度,以及润湿高度。进气阀2和注气袋24相连,注气袋24内储存有气体,从而可以根据气体的成分模拟不同的气体环境,顶帽7和底帽8通过具支玻璃管1两端的螺纹连接。底帽8上设置有抽气管31,抽气管上设置有出气阀3,抽气筒32连接该抽气管。第一支管11和第二支管12上设置有螺纹,连接管61可以使用软管,从而方便集气,滤纸通过皮筋固定,从而便于固定和拆装。含瓦斯煤颗粒润湿特性测试装置,在具支玻璃管1的上部设置第一支管11,从而气体通过进气阀从第一支管11进入具支玻璃管1后,由于瓦斯气体密度小于空气因此从上部充满具支玻璃管,并使密度较大的空气自然从底帽8排出,完成管内的气体交换;另外在第一支管的位置设置进气阀2,进气阀2为单向进气阀2,从而保证了气体只能单向流动,具支玻璃管1内的气体不会从第一支管11流出。
其中,储气装置6为排水集气装置,包括水槽62和储气筒63,储气筒63的筒径 小于水槽62的直径,储气筒63倒置在水槽62内,储气筒63上设置有刻度,第二支管12上连接有软管,软管的另一端伸入储气筒内,软管上还设置有止水夹,软管将具支玻璃管内的气体导入储气筒。
单向进气阀包括固定面板21、弹簧22和挡板23,固定面板21呈长方体,弹簧22的一端与固定面板固定连接,弹簧22的另一端和挡板23固定连接,固定面板21连接在第一支管11上,从而保证了气体只能单向流动,确保具支玻璃管1内的气体不会从第一支管11流出。
具支玻璃管1通过升降铁架台9固定,升降铁架台9包括升降杆91、升降夹具92和底座93,玻璃皿5放置在底座93上,升降杆91垂直设置在底座93上,升降夹具92夹紧具支玻璃管1,升降夹具92沿升降杆91上下移动,控制具支玻璃管底部和玻璃皿5之间的距离。
一种含瓦斯煤颗粒润湿特性测试方法,利用上述的一种含瓦斯煤颗粒润湿特性测试装置,具体步骤包括:
步骤一.滤纸通过皮筋固定在具支玻璃管的主管下端,从主管上端倒入煤粉,震荡具支玻璃管形成密度均匀的煤粉柱,也可以将升降铁架放置在振动台上,通过振动使煤粉柱保持均匀。在具支玻璃管两端安装顶帽和底帽,使用升降夹具竖直夹紧具支玻璃管。
步骤二.将储气装置的水槽和储气筒内装满水,连接管的一端和第二支管嵌套连接,止水夹夹紧连接管,防止储气筒内水倒吸进入具支玻璃管,连接管的另一端伸入储气筒内。
步骤三.收集气体样本,并通过气相色谱仪分析气体成分,使用含相同气体成分的注气袋和第一支管相连,将抽气筒和出气阀相连。
步骤四.打开出气阀,缓慢拉动抽气筒从具支玻璃管内抽取空气,在压差作用下注气袋内的气体进入具支玻璃管内,换气结束后关闭出气阀,拆卸抽气筒和注气袋。
步骤五.在玻璃皿内倒入润湿液,通过升降夹具调节具支玻璃管的高度,具支玻璃管下端的底帽降至玻璃皿内润湿液面高度时,缓慢取下底帽,使滤纸接触润湿液,取下连接管上的止水夹,记录储气筒内液面的下降高度,根据储气筒 的截面面积计算驱替瓦斯体积。
含瓦斯煤颗粒润湿特性测试方法,通过在具支玻璃管内形成均匀的煤粉柱,并通过进气阀和出气阀对具支玻璃管内的气体进行替换,使用特定气体成分进行模拟,最后通过润湿液驱替气体,气体从第二支管排出,通过储气装置直接读取收集气体体积,该方法既可模拟特定矿井特定瓦斯含量煤层的润湿驱气过程,又能直接读取润湿驱替甲烷的体积,操作简便,该装置及使用方法可有效提高煤体润湿规律实验研究的准确性。
实施例2
在实施例1的基础上,本实施例提供了一种具体的含瓦斯煤颗粒润湿特性测试方法,研究了考虑瓦斯因素的煤颗粒润湿规律。
步骤一.滤纸通过皮筋固定在具支玻璃管的主管下端,主管的直径为15mm,从主管上端倒入煤粉,煤粉段长度为45mm刻度处,将升降铁架放置在振动台上,通过振动使煤粉柱保持均匀。在具支玻璃管两端安装顶帽和底帽,使用升降夹具竖直夹紧具支玻璃管。
步骤二.将储气装置的水槽和储气筒内装满水,连接管的一端和第二支管嵌套连接,止水夹夹紧连接管,防止储气筒内水倒吸进入具支玻璃管,连接管的另一端伸入储气筒内。
步骤三.在矿井现场环境中收集气体样本,并通过气相色谱仪分析气体成分,包括甲烷、氮气、二氧化碳等,使用含相同气体成分的注气袋和第一支管相连,将抽气筒和出气阀相连。
步骤四.打开出气阀,缓慢拉动抽气筒从具支玻璃管内抽取空气,在压差作用下注气袋内的气体进入具支玻璃管内,换气结束后关闭出气阀,拆卸抽气筒和注气袋。
步骤五.在玻璃皿内倒入润湿液,通过升降夹具调节具支玻璃管的高度,具支玻璃管下端的底帽降至玻璃皿内润湿液面高度时,缓慢取下底帽,使滤纸接触润湿液,取下连接管上的止水夹,记录储气筒内液面的下降高度,根据储气筒的截面面积计算驱替瓦斯体积。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技 术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (7)

  1. 一种含瓦斯煤颗粒润湿特性测试装置,其特征在于,包括具支玻璃管、进气阀、出气阀、滤纸、玻璃皿、储气装置、顶帽和底帽;所述具支玻璃管的两端设置有顶帽和底帽;所述进气阀设置在具支玻璃管上部的第一支管处,进气阀为单向进气阀;所述出气阀设置在底帽上;所述滤纸设置在具支玻璃管和底帽之间,所述储气装置通过连接管和第二支管相连;所述玻璃皿设置在具支玻璃管的正下方。
  2. 根据权利要求1所述的一种含瓦斯煤颗粒润湿特性测试装置,其特征在于,所述具支玻璃管主管的管壁上设置有第一支管和第二支管,具支玻璃管主管上还设置有毫米刻度;所述进气阀和注气袋相连,注气袋内储存有气体;所述顶帽和底帽通过具支玻璃管两端的螺纹连接。
  3. 根据权利要求2所述的一种含瓦斯煤颗粒润湿特性测试装置,其特征在于,所述底帽上设置有抽气管,所述抽气管上设置有出气阀,所述第一支管和第二支管上设置有螺纹;所述连接管为软管;所述滤纸通过皮筋固定。
  4. 根据权利要求1所述的一种含瓦斯煤颗粒润湿特性测试装置,其特征在于,所述储气装置为排水集气装置,包括水槽和储气筒,储气筒的筒径小于水槽的直径;所述储气筒上设置有刻度,所述第二支管上连接有软管,软管的另一端伸入储气筒内,所述软管上还设置有止水夹。
  5. 根据权利要求1所述的一种含瓦斯煤颗粒润湿特性测试装置,其特征在于,所述单向进气阀包括固定面板、弹簧和挡板,所述固定面板呈长方体,所述弹簧的一端与固定面板固定连接,弹簧的另一端和挡板固定连接,所述固定面板连接在第一支管上。
  6. 根据权利要求1所述的一种含瓦斯煤颗粒润湿特性测试装置,其特征在于,所述具支玻璃管通过升降铁架台固定,升降铁架台包括 升降杆、升降夹具和底座,所述玻璃皿放置在底座上,升降杆垂直设置在底座上,所述升降夹具夹紧具支玻璃管,升降夹具沿升降杆上下移动。
  7. 一种含瓦斯煤颗粒润湿特性测试方法,利用权利要求1至6任一项所述的一种含瓦斯煤颗粒润湿特性测试装置,具体步骤包括:
    步骤一.滤纸通过皮筋固定在具支玻璃管的主管下端,从主管上端倒入煤粉,震荡具支玻璃管形成密度均匀的煤粉柱,在具支玻璃管两端安装顶帽和底帽,使用升降夹具竖直夹紧具支玻璃管;
    步骤二.将储气装置的水槽和储气筒内装满水,连接管的一端和第二支管嵌套连接,止水夹夹紧连接管,连接管的另一端伸入储气筒内;
    步骤三.收集气体样本,并通过气相色谱仪分析气体成分,使用含相同气体成分的注气袋和第一支管相连,将抽气筒和出气阀相连;
    步骤四.打开出气阀,缓慢拉动抽气筒从具支玻璃管内抽取空气,在压差作用下注气袋内的气体进入具支玻璃管内,换气结束后关闭出气阀,拆卸抽气筒和注气袋;
    步骤五.在玻璃皿内倒入润湿液,通过升降夹具调节具支玻璃管的高度,具支玻璃管下端的底帽降至玻璃皿内润湿液面高度时,缓慢取下底帽,使滤纸接触润湿液,取下连接管上的止水夹,记录储气筒内液面的下降高度,根据储气筒的截面面积计算驱替瓦斯体积。
PCT/CN2019/125602 2019-05-31 2019-12-16 一种含瓦斯煤颗粒润湿特性测试装置及测试方法 WO2020238165A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910465927.5A CN110243726B (zh) 2019-05-31 2019-05-31 一种含瓦斯煤颗粒润湿特性测试装置及测试方法
CN201910465927.5 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020238165A1 true WO2020238165A1 (zh) 2020-12-03

Family

ID=67885640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125602 WO2020238165A1 (zh) 2019-05-31 2019-12-16 一种含瓦斯煤颗粒润湿特性测试装置及测试方法

Country Status (2)

Country Link
CN (1) CN110243726B (zh)
WO (1) WO2020238165A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243726B (zh) * 2019-05-31 2020-06-16 山东科技大学 一种含瓦斯煤颗粒润湿特性测试装置及测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB683318A (en) * 1948-09-16 1952-11-26 Texaco Development Corp Improvements in or relating to process for disintegrating solid materials
CN102706769A (zh) * 2012-06-12 2012-10-03 中国矿业大学 注水煤样瓦斯放散初速度测定仪及测定方法
CN105784962A (zh) * 2016-03-23 2016-07-20 安徽理工大学 一种抽出式水与瓦斯吸附煤体变形测试装置及方法
CN107102113A (zh) * 2017-04-17 2017-08-29 龙岩学院 外液侵入条件下瓦斯解吸特性的测试装置及其使用方法
CN109060590A (zh) * 2018-10-19 2018-12-21 河南理工大学 煤层硫化氢气体含量测定系统及测定方法
CN110243726A (zh) * 2019-05-31 2019-09-17 山东科技大学 一种含瓦斯煤颗粒润湿特性测试装置及测试方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972562B1 (en) * 2004-09-22 2005-12-06 The United States Of America As Represented By The United States Department Of Energy Near-field magneto-optical microscope
CN101398365A (zh) * 2007-09-29 2009-04-01 深圳市比克电池有限公司 一种测量粉体材料润湿接触角的方法
CN202330221U (zh) * 2011-11-30 2012-07-11 中国石油天然气股份有限公司 油藏条件下具有释放功能的岩心夹持装置及岩心润湿性测量装置
CN103822856B (zh) * 2014-03-14 2016-08-31 中国矿业大学(北京) 不同应力约束条件下煤体瓦斯吸附解吸扩散模拟实验装置
CN104977234B (zh) * 2015-06-23 2018-02-27 安徽理工大学 承压岩石破坏失稳过程与动态渗透特性试验装置及方法
CN207096051U (zh) * 2017-08-17 2018-03-13 华能澜沧江水电股份有限公司 一种量测堆石材料在不同压力条件下吸水量的试验装置
CN108536197B (zh) * 2018-02-11 2020-04-28 中国水利水电科学研究院 一种多孔进气马氏瓶及使用方法
CN108279199B (zh) * 2018-04-18 2024-02-27 中国科学院武汉岩土力学研究所 一种高应力渗压仪装置
CN208366774U (zh) * 2018-07-12 2019-01-11 中国石油化工股份有限公司 一种用于油藏岩石润湿性测试的自吸玻璃器具
CN109164017B (zh) * 2018-10-15 2020-10-23 中国矿业大学 一种气液固三相泡沫强制排液试验装置及试验方法
CN109900599A (zh) * 2019-04-16 2019-06-18 盾构及掘进技术国家重点实验室 一种泥浆渗透成膜实验装置及其测量泥浆渗透性能的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB683318A (en) * 1948-09-16 1952-11-26 Texaco Development Corp Improvements in or relating to process for disintegrating solid materials
CN102706769A (zh) * 2012-06-12 2012-10-03 中国矿业大学 注水煤样瓦斯放散初速度测定仪及测定方法
CN105784962A (zh) * 2016-03-23 2016-07-20 安徽理工大学 一种抽出式水与瓦斯吸附煤体变形测试装置及方法
CN107102113A (zh) * 2017-04-17 2017-08-29 龙岩学院 外液侵入条件下瓦斯解吸特性的测试装置及其使用方法
CN109060590A (zh) * 2018-10-19 2018-12-21 河南理工大学 煤层硫化氢气体含量测定系统及测定方法
CN110243726A (zh) * 2019-05-31 2019-09-17 山东科技大学 一种含瓦斯煤颗粒润湿特性测试装置及测试方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, JINSHENG ET AL.: "Experimental Study for The Coal Gas Desorption Regularity in The Process of Moistening", JOURNAL OF SAFETY AND ENVIRONMENT, vol. 17, no. 4, 31 August 2017 (2017-08-31), pages 1309 - 1313, XP055763380, ISSN: 1009-6094 *

Also Published As

Publication number Publication date
CN110243726A (zh) 2019-09-17
CN110243726B (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
CN103776979B (zh) 一种煤层注水抑制瓦斯解吸效应的模拟测试方法及装置
CN104729948A (zh) 含瓦斯煤水气两相渗流实验系统和方法
CN103558137B (zh) 一种测量多孔介质气水两相相对渗透率的装置
CN108169460B (zh) 一种盆地水溶气运移模拟试验方法
WO2020238165A1 (zh) 一种含瓦斯煤颗粒润湿特性测试装置及测试方法
CN115653554A (zh) 一种基于微流控的注气解除反凝析伤害微观实验方法
CN106644605B (zh) 一种地热水中气泡气体的收集装置及其收集方法
CN109883889A (zh) 模拟co2在致密基质-裂缝扩散的实验装置及前缘预测方法
CN104215699A (zh) 一种岩石中气态烃酸解气同位素分析的在线脱气系统
CN107165609A (zh) 一种可视化煤层气逸散模拟装置及其使用方法
CN209400386U (zh) 一种混凝土试样饱和渗透系数测试装置
CN207248869U (zh) 一种致密岩心抽真空饱和装置
CN108490149B (zh) 一种盆地水溶气运移模拟装置
CN108798655A (zh) 一种煤层气逸散的三气合采实验装置
CN112547151A (zh) 一种用于化学实验过程中的试剂定量抽取装置
CN207048751U (zh) 一种可视化煤层气逸散模拟装置
CN210090237U (zh) 一种便携式煤层气、页岩气含气量测定仪
CN211553692U (zh) 一种用于多孔介质的孔隙度测量装置
CN204514911U (zh) 一种污泥比阻测量装置
CN209624289U (zh) 液体黏度检测装置
CN206281693U (zh) 真空饱和煤样装置
CN207066936U (zh) 一种移动式并联岩心渗透模拟装置
CN206891930U (zh) 一种岩气勘探用岩芯溶蚀实验装置
CN206095891U (zh) 一种测试装置
CN219810600U (zh) 一种化学驱防剪切高压便携取样器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930545

Country of ref document: EP

Kind code of ref document: A1