WO2020237985A1 - 一种磁浮列车牵引系统位置控制环的精度校正方法及系统 - Google Patents

一种磁浮列车牵引系统位置控制环的精度校正方法及系统 Download PDF

Info

Publication number
WO2020237985A1
WO2020237985A1 PCT/CN2019/112468 CN2019112468W WO2020237985A1 WO 2020237985 A1 WO2020237985 A1 WO 2020237985A1 CN 2019112468 W CN2019112468 W CN 2019112468W WO 2020237985 A1 WO2020237985 A1 WO 2020237985A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
wireless communication
traction
related information
traction system
Prior art date
Application number
PCT/CN2019/112468
Other languages
English (en)
French (fr)
Inventor
李晓春
李林
黄小丽
宋丽伟
杨颖�
佟来生
罗华军
Original Assignee
中车株洲电力机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车有限公司 filed Critical 中车株洲电力机车有限公司
Priority to US17/608,877 priority Critical patent/US20220315073A1/en
Priority to EP19931230.7A priority patent/EP3939857A4/en
Publication of WO2020237985A1 publication Critical patent/WO2020237985A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • B61L25/021Measuring and recording of train speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or vehicle train for signalling purposes ; On-board control or communication systems
    • B61L15/0018Communication with or on the vehicle or vehicle train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or vehicle trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or vehicle trains
    • B61L25/026Relative localisation, e.g. using odometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or vehicle train for signalling purposes ; On-board control or communication systems
    • B61L15/0018Communication with or on the vehicle or vehicle train
    • B61L15/0027Radio-based, e.g. using GSM-R
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2210/00Vehicle systems
    • B61L2210/04Magnetic elevation vehicles (maglev)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the invention belongs to the technical field of maglev train speed measurement and positioning, and in particular relates to a method and system for correcting the accuracy of a position control loop of a maglev train traction system.
  • the maglev type high-speed maglev train (hereinafter referred to as the high-speed maglev train) that meets the requirements of "constant magnetic attraction” adopts linear synchronous motor for traction.
  • the mover of the synchronous motor and the suspension electromagnet are integrated, and the stator is installed under the track Three-phase winding. According to the working principle of the synchronous motor, only when the winding magnetic field of the long stator and the excitation magnetic field are synchronized, can a constant traction force be produced. Therefore, the position detection of high-speed maglev trains is the key to traction control.
  • the traction system of the high-speed maglev train is installed in the ground traction control room, and the actual position is obtained by the position detection system installed on the car, and is transmitted to the on-board wireless communication system through the synchronous RS485 communication channel according to the update cycle of 20ms and the transmission cycle of 512kps , And then transmitted to the ground wireless communication system via 38G and other wireless communication, and finally transmitted to the traction system via the synchronous RS485 communication channel to achieve closed-loop control of the train position.
  • the purpose of the present invention is to provide a method and system for correcting the accuracy of the position control loop of the maglev train traction system in view of the above-mentioned shortcomings of the prior art, which can eliminate the time delay and is low in cost.
  • the technical solution adopted by the present invention is:
  • a method for correcting the accuracy of the position control loop of the maglev train traction system including:
  • Step A the speed measurement system collects the position-related information of the train
  • Step B The speed measurement system sends the collected position-related information to the traction system through the signal system;
  • Step C The traction system performs closed-loop control on the position of the train according to the position-related information
  • step A it also includes:
  • Step A1 time-check the speed measurement system, signal system and traction system and add time stamp information.
  • the signal system includes a vehicle-mounted wireless communication system and a ground wireless communication system.
  • the speed measurement system is connected with the vehicle-mounted wireless communication system
  • the traction system is connected with the ground wireless communication system
  • the vehicle-mounted wireless communication system is connected through the 4G-LTE wireless communication network. Connect with the ground wireless communication system;
  • the location-related information is sequentially sent to the traction system through the vehicle-mounted wireless communication system, 4G-LTE wireless communication network, and ground wireless communication system.
  • the position-related information includes train speed, magnetic pole phase angle, and absolute train position.
  • the closed-loop control process includes:
  • the Beidou system and/or GPS system are used to synchronize the time of the speed measurement system, signal system and traction system.
  • the present invention also provides a precision correction method for the position control loop of the maglev train traction system, including:
  • Speed measurement system used to collect train location related information
  • Signal system used to receive the position-related information sent by the speed measurement system, and send the position-related information to the traction system:
  • Traction system used for closed-loop control of the train's position based on position-related information
  • Time synchronization system used to synchronize the time of the speed measurement system, signal system and traction system, and add time stamp information.
  • the signal system includes a vehicle-mounted wireless communication system and a ground wireless communication system
  • the speed measurement system is connected with the vehicle-mounted wireless communication system
  • the traction system is connected with the ground wireless communication system
  • the vehicle-mounted wireless communication system is connected through the 4G-LTE wireless communication network. Connect with the ground wireless communication system.
  • the position-related information collected by the speed measurement system includes train speed, magnetic pole phase angle, and absolute train position.
  • the closed-loop control process of the traction system includes:
  • the time synchronization system uses Beidou system and/or GPS system to synchronize the time of the speed measurement system, the signal system and the traction system.
  • the present invention has the following beneficial effects:
  • a method for correcting the accuracy of the position control loop of the maglev train traction system including:
  • Step A1 Use the Beidou system and/or GPS system to perform time synchronization on the speed measurement system, signal system and traction system, and add time stamp information. Eliminate the influence of position positioning information from transmission cycle delay and jitter, and meet the traction needs of medium and high speed maglev trains.
  • Step A the speed measurement system collects the position-related information of the train.
  • the position-related information includes train speed, magnetic pole phase angle, and absolute train position.
  • Step B The speed measurement system sends the collected position-related information to the traction system through the signal system.
  • Step C The traction system performs closed-loop control on the position of the train according to the position-related information.
  • the closed-loop control process includes:
  • Main reference 1) According to the line information, the coil cycle length is 516mm, and the position sensor resolution is 3°, which is 4.3mm; 2) According to the collected train speed, magnetic pole angle, train absolute position information, and time information, perform least square fitting , Estimate the train position information at this time; 3) Combine simulation to calculate the delay jitter of the magnetic pole phase angle, calculate the compensation amount, and use the compensation amount to correct the precise rotor magnetic pole phase angle position.
  • the speed is very small, the precise magnetic pole accuracy, effective traction for the train, and superior dynamic performance. When the speed exceeds 3.3m/s, the speed measurement resolution often does not meet the control requirements.
  • the back EMF generated by the magnetic poles must be used to estimate the current speed and the phase relationship between the magnetic poles and the stator maglev.
  • the signal system includes a vehicle-mounted wireless communication system and a ground wireless communication system.
  • the speed measurement system is connected with the vehicle-mounted wireless communication system.
  • the traction system is connected with the ground wireless communication system.
  • the vehicle-mounted wireless communication system is connected to the ground wireless through a mature and cheap 4G-LTE wireless communication network.
  • the communication system is connected; the position-related information is sent to the traction system through the vehicle-mounted wireless communication system, 4G-LTE wireless communication network, and ground wireless communication system in turn.
  • the invention also provides a method for correcting the accuracy of the position control loop of the maglev train traction system, including:
  • Speed measurement system used to collect train location related information
  • Signal system used to receive the position-related information sent by the speed measurement system, and send the position-related information to the traction system:
  • Traction system used for closed-loop control of the train's position based on position-related information
  • Time synchronization system used to synchronize the speed measurement system, signal system and traction system with Beidou system and/or GPS system, and add time stamp information.
  • the signal system includes a vehicle-mounted wireless communication system and a ground wireless communication system.
  • the speed measurement system is connected with the vehicle-mounted wireless communication system
  • the traction system is connected with the ground wireless communication system
  • the vehicle-mounted wireless communication system is connected with the ground wireless communication system through the 4G-LTE wireless communication network. .
  • the position-related information collected by the speed measurement system includes train speed, magnetic pole phase angle, and absolute train position.
  • the closed-loop control process of the traction system includes:
  • stator current in order to realize decoupling control, the stator current must be strictly controlled.
  • To achieve the vertical control of the stator current vector and the rotor vector it includes three closed-loop control of position, speed and current. By comparing the actual position of the train with a given position, the speed and current are calculated. It is necessary to detect or observe the position of the rotor pole angle in real time during the control process.
  • Main reference 1) According to the line information, that is, the coil period length is 516mm, and the resolution of the position sensor is 3°, which is 4.3mm; 2) According to the collected train speed, magnetic pole angle, train absolute position information, and time information, perform least squares fitting , Estimate the position information of the train at this time; 3) Calculate the delay jitter of the magnetic pole phase angle with simulation, calculate the compensation amount, and use the compensation amount to correct the precise rotor magnetic pole phase angle position.
  • the speed is very low, the precise magnetic pole accuracy, effective traction for the train and superior dynamic performance. When the speed exceeds 3.3m/s, the speed measurement resolution often does not meet the control requirements.
  • the back EMF generated by the magnetic poles must be used to estimate the current speed and the phase relationship between the magnetic poles and the stator maglev.

Abstract

一种磁浮列车牵引系统位置控制环的精度校正方法及系统,其中精度校正方法包括:步骤A,测速系统采集列车的位置相关信息;步骤B,将位置相关信息通过信号系统发送至牵引系统;步骤C,牵引系统根据位置相关信息,对列车的位置进行闭环控制;在步骤A之前还包括步骤A1,对测速系统、信号系统和牵引系统进行对时,增加时间戳信息。该校正方法和系统对测速系统、信号系统和牵引系统进行对时,增加时间戳信息,克服延时与周期随机抖动的影响,满足中高速磁浮列车牵引控制的需求;采用成熟廉价的4G‑LTE无线通讯,具备高带宽、低时延、广覆盖、QOS保证和高速移动特性;提供一种简单实用的提升中高速磁浮磁极相角精度的方法,有很好的工程应用前景。

Description

一种磁浮列车牵引系统位置控制环的精度校正方法及系统 技术领域
本发明属于磁浮列车测速定位技术领域,特别涉及一种磁浮列车牵引系统位置控制环的精度校正方法及系统。
背景技术
目前,满足“常导磁吸”磁浮式高速磁浮列车(以下简称高速磁浮列车)采用直线同步电机进行牵引,同步电机的动子与悬浮电磁铁是一体的,而定子则是安装于轨道下的三相绕组。根据同步电机的工作原理,只有当长定子的绕组磁场与励磁磁场两者同步时,才能产生恒定的牵引力。因此,高速磁浮列车的位置检测是牵引控制的关键。
高速磁浮列车的牵引系统安装在地面牵引控制室内,而实际位置是由安装于车上的位置检测系统获得,并按照20ms的更新周期、512kps的传输周期通过同步RS485通讯信道传输给车载无线通讯系统,再经38G等无线通讯传到地面无线通讯系统,最后经同步RS485通讯信道传递给牵引系统,实现对列车位置闭环控制。
在实际控制过程中,从位置检测、信息处理打包,到将检测的位置信息传递给牵引系统,均存在一定延时,具体的延时时间与传感器及信号处理、信号传输方式有关。此外,目前国内外的38G无线网络属于专有的无线通讯技术,产品在成熟的轨道交通领域中应用较少,价格昂贵。
发明内容
本发明的目的在于,针对上述现有技术的不足,提供一种磁浮列车牵引系统位置控制环的精度校正方法及系统,能够消除延时,且成本低廉。
为解决上述技术问题,本发明所采用的技术方案是:
一种磁浮列车牵引系统位置控制环的精度校正方法,包括:
步骤A,测速系统采集列车的位置相关信息;
步骤B,测速系统将采集到的位置相关信息通过信号系统发送至牵引系统;
步骤C,牵引系统根据位置相关信息,对列车的位置进行闭环控制;
其特点是在步骤A之前,还包括:
步骤A1,对测速系统、信号系统和牵引系统进行对时,增加时 间戳信息。
作为一种优选方式,所述信号系统包括车载无线通讯系统和地面无线通讯系统,测速系统与车载无线通讯系统相连,牵引系统与地面无线通讯系统相连,车载无线通讯系统通过4G-LTE无线通讯网络与地面无线通讯系统相连;
位置相关信息依次通过车载无线通讯系统、4G-LTE无线通讯网络、地面无线通讯系统发送至牵引系统。
作为一种优选方式,所述位置相关信息包括列车速度、磁极相角、列车绝对位置。
作为一种优选方式,所述步骤C中,闭环控制过程包括:
利用列车动力学方程,直线电机数学公式、电机参数建立模型,采取按转子磁场定向的矢量控制,实现转矩和磁链的动态解耦,实现连续控制;
依据采集的列车速度、磁极相角、列车绝对位置信息、时间信息进行最小二乘法拟合,预估此时列车位置信息;
结合仿真计算磁极相角的延时抖动,计算补偿量,利用补偿量修正转子磁极相角的位置。
作为一种优选方式,利用北斗系统和/或GPS系统对测速系统、信号系统和牵引系统进行对时。
基于同一个发明构思,本发明还提供了一种磁浮列车牵引系统位置控制环的精度校正方法,包括:
测速系统:用于采集列车的位置相关信息;
信号系统:用于接收测速系统发送的位置相关信息,并将位置相关信息发送至牵引系统:
牵引系统:用于根据位置相关信息,对列车的位置进行闭环控制;
其特征在于,还包括:
对时系统:用于对测速系统、信号系统和牵引系统进行对时,并增加时间戳信息。
作为一种优选方式,所述信号系统包括车载无线通讯系统和地面无线通讯系统,测速系统与车载无线通讯系统相连,牵引系统与地面无线通讯系统相连,车载无线通讯系统通过4G-LTE无线通讯网络与地面无线通讯系统相连。
作为一种优选方式,测速系统采集到的位置相关信息包括列车速度、磁极相角、列车绝对位置。
作为一种优选方式,牵引系统的闭环控制过程包括:
利用列车动力学方程,直线电机数学公式、电机参数建立模型,采取按转子磁场定向的矢量控制,实现转矩和磁链的动态解耦,实现连续控制;
依据采集的列车速度、磁极相角、列车绝对位置信息、时间信息进行最小二乘法拟合,预估此时列车位置信息;
结合仿真计算磁极相角的延时抖动,计算补偿量,利用补偿量修正转子磁极相角的位置。
作为一种优选方式,所述对时系统利用北斗系统和/或GPS系统对测速系统、信号系统和牵引系统进行对时。
与现有技术相比,本发明具有以下有益效果:
(1)对测速系统、信号系统和牵引系统进行对时,增加时间戳信息,克服磁极相角及位置、速度的信息在无线传输过程中的延时与周期随机抖动的影响,满足中高速磁浮列车牵引控制的需求。
(2)采用成熟廉价的4G-LTE无线通讯,具备高带宽、低时延、广覆盖、QOS保证和高速移动特性的技术优势。
(3)提供一种简单实用的提升中高速磁浮磁极相角精度的方法,有很好的工程应用前景。
具体实施方式
一种磁浮列车牵引系统位置控制环的精度校正方法,包括:
步骤A1,利用北斗系统和/或GPS系统对测速系统、信号系统和牵引系统进行对时,增加时间戳信息。消除位置定位信息受传输周期延时、抖动的影响,满足中高速磁浮列车牵引的需求。
步骤A,测速系统采集列车的位置相关信息。所述位置相关信息包括列车速度、磁极相角、列车绝对位置。
步骤B,测速系统将采集到的位置相关信息通过信号系统发送至牵引系统。
步骤C,牵引系统根据位置相关信息,对列车的位置进行闭环控制。闭环控制过程包括:
利用列车动力学方程,直线电机数学公式、电机参数建立模型,采取按转子磁场定向的矢量控制,实现转矩和磁链的动态解耦,实现连续控制。依据磁浮定向控制理论,为实现解耦控制,必须严格控制定子电流。要实现定子电流矢量与转子矢量垂直控制,包括位置、速度和电流三个控制闭环。通过把列车的实际位置与给定位置的比较, 推算出速度、电流。必须控制过程中实时检测或观测估计出转子磁极角的位置。主要参考:1)依据线路信息即线圈周期长度516mm,位置传感器分辨率3°,即4.3mm;2)依据采集的列车速度、磁极相角、列车绝对位置信息、时间信息进行最小二乘法拟合,预估此时列车位置信息;3)结合仿真计算磁极相角的延时抖动,计算补偿量,利用补偿量修正精准的转子磁极相角的位置。列车在启动过程中,速度很小,精准的磁极精度,对列车有效牵引、动态性能优越。当超过3.3m/s后,测速分辨率往往不满足控制要求,必须采用磁极产生的反电动势来估计当前的速度以及磁极与定子磁浮的相位关系。
所述信号系统包括车载无线通讯系统和地面无线通讯系统,测速系统与车载无线通讯系统相连,牵引系统与地面无线通讯系统相连,车载无线通讯系统通过成熟廉价的4G-LTE无线通讯网络与地面无线通讯系统相连;位置相关信息依次通过车载无线通讯系统、4G-LTE无线通讯网络、地面无线通讯系统发送至牵引系统。
本发明还提供了一种磁浮列车牵引系统位置控制环的精度校正方法,包括:
测速系统:用于采集列车的位置相关信息;
信号系统:用于接收测速系统发送的位置相关信息,并将位置相关信息发送至牵引系统:
牵引系统:用于根据位置相关信息,对列车的位置进行闭环控制;
还包括:
对时系统:用于利用北斗系统和/或GPS系统对测速系统、信号系统和牵引系统进行对时,并增加时间戳信息。
所述信号系统包括车载无线通讯系统和地面无线通讯系统,测速系统与车载无线通讯系统相连,牵引系统与地面无线通讯系统相连,车载无线通讯系统通过4G-LTE无线通讯网络与地面无线通讯系统相连。
测速系统采集到的位置相关信息包括列车速度、磁极相角、列车绝对位置。
牵引系统的闭环控制过程包括:
利用列车动力学方程,直线电机数学公式、电机参数建立模型,采取按转子磁场定向的矢量控制,实现转矩和磁链的动态解耦,实现连续控制。依据磁浮定向控制理论,为实现解耦控制,必须严格控制定子电流。要实现定子电流矢量与转子矢量垂直控制,包括位置、速 度和电流三个控制闭环。通过把列车的实际位置与给定位置的比较,推算出速度、电流。必须控制过程中实时检测或观测估计出转子磁极角的位置。主要参考:1)依据线路信息即线圈周期长度516mm,位置传感器分辨率3°,即4.3mm;2)依据采集的列车速度、磁极相角、列车绝对位置信息、时间信息进行最小二乘法拟合,预估此时列车位置信息;3)结合仿真计算磁极相角的延时抖动,计算补偿量,利用补偿量修正精准的转子磁极相角的位置。列车在启动过程中,速度很小,精准的磁极精度,对列车有效牵引、动态性能优越。当超过3.3m/s后,测速分辨率往往不满足控制要求,必须采用磁极产生的反电动势来估计当前的速度以及磁极与定子磁浮的相位关系。
上面对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是局限性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护范围之内。

Claims (10)

  1. 一种磁浮列车牵引系统位置控制环的精度校正方法,包括:
    步骤A,测速系统采集列车的位置相关信息;
    步骤B,测速系统将采集到的位置相关信息通过信号系统发送至牵引系统;
    步骤C,牵引系统根据位置相关信息,对列车的位置进行闭环控制;
    其特征在于,在步骤A之前,还包括:
    步骤A1,对测速系统、信号系统和牵引系统进行对时,增加时间戳信息。
  2. 如权利要求1所述的磁浮列车牵引系统位置控制环的精度校正方法,其特征在于,所述信号系统包括车载无线通讯系统和地面无线通讯系统,测速系统与车载无线通讯系统相连,牵引系统与地面无线通讯系统相连,车载无线通讯系统通过4G-LTE无线通讯网络与地面无线通讯系统相连;
    位置相关信息依次通过车载无线通讯系统、4G-LTE无线通讯网络、地面无线通讯系统发送至牵引系统。
  3. 如权利要求1所述的磁浮列车牵引系统位置控制环的精度校正方法,其特征在于,所述位置相关信息包括列车速度、磁极相角、列车绝对位置。
  4. 如权利要求3所述的磁浮列车牵引系统位置控制环的精度校正方法,其特征在于,所述步骤C中,闭环控制过程包括:
    利用列车动力学方程,直线电机数学公式、电机参数建立模型,采取按转子磁场定向的矢量控制,实现转矩和磁链的动态解耦,实现连续控制;
    依据采集的列车速度、磁极相角、列车绝对位置信息、时间信息进行最小二乘法拟合,预估此时列车位置信息;
    结合仿真计算磁极相角的延时抖动,计算补偿量,利用补偿量修正转子磁极相角的位置。
  5. 如权利要求1所述的磁浮列车牵引系统位置控制环的精度校正方法,其特征在于,利用北斗系统和/或GPS系统对测速系统、信号系统和牵引系统进行对时。
  6. 一种磁浮列车牵引系统位置控制环的精度校正方法,包括:
    测速系统:用于采集列车的位置相关信息;
    信号系统:用于接收测速系统发送的位置相关信息,并将位置相关信息发送至牵引系统:
    牵引系统:用于根据位置相关信息,对列车的位置进行闭环控制;
    其特征在于,还包括:
    对时系统:用于对测速系统、信号系统和牵引系统进行对时,并增加时间戳信息。
  7. 如权利要求6所述的磁浮列车牵引系统位置控制环的精度校正系统,其特征在于,所述信号系统包括车载无线通讯系统和地面无线通讯系统,测速系统与车载无线通讯系统相连,牵引系统与地面无线通讯系统相连,车载无线通讯系统通过4G-LTE无线通讯网络与地面无线通讯系统相连。
  8. 如权利要求6所述的磁浮列车牵引系统位置控制环的精度校正系统,其特征在于,测速系统采集到的位置相关信息包括列车速度、磁极相角、列车绝对位置。
  9. 如权利要求8所述的磁浮列车牵引系统位置控制环的精度校正系统,其特征在于,牵引系统的闭环控制过程包括:
    利用列车动力学方程,直线电机数学公式、电机参数建立模型,采取按转子磁场定向的矢量控制,实现转矩和磁链的动态解耦,实现连续控制;
    依据采集的列车速度、磁极相角、列车绝对位置信息、时间信息进行最小二乘法拟合,预估此时列车位置信息;
    结合仿真计算磁极相角的延时抖动,计算补偿量,利用补偿量修正转子磁极相角的位置。
  10. 如权利要求6所述的磁浮列车牵引系统位置控制环的精度校正系统,其特征在于,所述对时系统利用北斗系统和/或GPS系统对测速系统、信号系统和牵引系统进行对时。
PCT/CN2019/112468 2019-05-31 2019-10-22 一种磁浮列车牵引系统位置控制环的精度校正方法及系统 WO2020237985A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/608,877 US20220315073A1 (en) 2019-05-31 2019-10-22 Method and system for correcting precision of magnetic levitation train traction system position control ring
EP19931230.7A EP3939857A4 (en) 2019-05-31 2019-10-22 METHOD AND SYSTEM FOR CORRECTING THE ACCURACY OF A MAGNETIC LEVITATION TRAIN TRACTION SYSTEM POSITION ADJUSTING RING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910466150.4A CN110155125B (zh) 2019-05-31 2019-05-31 一种磁浮列车牵引系统位置控制环的精度校正方法及系统
CN201910466150.4 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020237985A1 true WO2020237985A1 (zh) 2020-12-03

Family

ID=67630296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112468 WO2020237985A1 (zh) 2019-05-31 2019-10-22 一种磁浮列车牵引系统位置控制环的精度校正方法及系统

Country Status (4)

Country Link
US (1) US20220315073A1 (zh)
EP (1) EP3939857A4 (zh)
CN (1) CN110155125B (zh)
WO (1) WO2020237985A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110155125B (zh) * 2019-05-31 2020-12-11 中车株洲电力机车有限公司 一种磁浮列车牵引系统位置控制环的精度校正方法及系统
CN110531682B (zh) * 2019-09-19 2020-09-29 中车青岛四方车辆研究所有限公司 轨道车辆通用牵引控制平台及方法
CN111162855B (zh) * 2020-01-02 2022-02-01 中车青岛四方机车车辆股份有限公司 一种定位信号的生成和传输的模拟方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100023190A1 (en) * 2006-03-20 2010-01-28 General Electric Company Trip optimizer method, system and computer software code for operating a railroad train to minimize wheel and track wear
CN107745654A (zh) * 2017-10-12 2018-03-02 中国人民解放军国防科技大学 一种磁浮列车相对定位传感器信号处理方法和装置
US20180290675A1 (en) * 2014-12-19 2018-10-11 Eighty Eight Oil, LLC Railroad car tracking system
CN109080665A (zh) * 2018-06-27 2018-12-25 北京全路通信信号研究设计院集团有限公司 基于交叉感应环线交叉点信息的列车定位方法
CN109305046A (zh) * 2018-09-30 2019-02-05 湖南中车时代通信信号有限公司 列车牵引定位数据的传输控制系统及方法
CN110155125A (zh) * 2019-05-31 2019-08-23 中车株洲电力机车有限公司 一种磁浮列车牵引系统位置控制环的精度校正方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105905135B (zh) * 2016-04-20 2018-05-22 中国人民解放军国防科学技术大学 一种磁浮列车定位测速系统及方法、磁浮列车
AT518733B1 (de) * 2016-05-31 2018-05-15 B & R Ind Automation Gmbh Verfahren zum Betreiben eines Langstatorlinearmotors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100023190A1 (en) * 2006-03-20 2010-01-28 General Electric Company Trip optimizer method, system and computer software code for operating a railroad train to minimize wheel and track wear
US20180290675A1 (en) * 2014-12-19 2018-10-11 Eighty Eight Oil, LLC Railroad car tracking system
CN107745654A (zh) * 2017-10-12 2018-03-02 中国人民解放军国防科技大学 一种磁浮列车相对定位传感器信号处理方法和装置
CN109080665A (zh) * 2018-06-27 2018-12-25 北京全路通信信号研究设计院集团有限公司 基于交叉感应环线交叉点信息的列车定位方法
CN109305046A (zh) * 2018-09-30 2019-02-05 湖南中车时代通信信号有限公司 列车牵引定位数据的传输控制系统及方法
CN110155125A (zh) * 2019-05-31 2019-08-23 中车株洲电力机车有限公司 一种磁浮列车牵引系统位置控制环的精度校正方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3939857A4 *
YU JIAXUNG: "Research on control Ling system of linear synchronous motor of high speed maglev train", CHINESE MASTERS THESES FULL-TEXT DATABASE, pages 22 - 37, 46, 47 *

Also Published As

Publication number Publication date
CN110155125B (zh) 2020-12-11
EP3939857A1 (en) 2022-01-19
US20220315073A1 (en) 2022-10-06
CN110155125A (zh) 2019-08-23
EP3939857A4 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
WO2020237985A1 (zh) 一种磁浮列车牵引系统位置控制环的精度校正方法及系统
JP6198933B2 (ja) 自動列車運行システム及びブレーキ制御装置
CN103219933B (zh) 一种永磁同步电机起动平滑切换方法
EP2548784A3 (en) Train control system
CN101357644B (zh) 一种基于卫星定位的机车轮径自动校准系统及其方法
CN109305046A (zh) 列车牵引定位数据的传输控制系统及方法
CN102955884B (zh) 一种高速列车跟驰运行全速域安全车距标定方法
CN103332211B (zh) 一种列车运行控制系统性能的同步方法
CN105738918A (zh) 基于卫星导航信息融合的输电线路位移监测系统及方法
CN110071677A (zh) 高速磁悬浮列车长定子直线同步电机牵引控制方法
CN107592623A (zh) 基于uwb和dgps技术的悬挂轨道无人驾驶车辆精准定位与测距的方法
CN103991463A (zh) 一种基于双传感器的低速磁浮轨道不平顺检测方法
CN107489430B (zh) 一种管片自动识别定位装置及方法
CN112706802B (zh) 一种磁浮列车安全防护的方法及装置
CN109131447B (zh) 基于双环通信网的磁浮列车定位方法
CN109946648A (zh) 一种车路协同下基于超宽带的车辆高精度定位方法
CN115824223A (zh) 一种基于多源融合的室内外无缝定位方法
CN107102282B (zh) 霍尔信号延时校准方法
CN102412878A (zh) 一种高速环境下的多普勒频率估计方法
KR101329363B1 (ko) Ls-lsm 기반 자기부상열차의 추진인버터 위상제어를 위한 차량위치 추정장치
CN101746676A (zh) 一种轮胎吊防跑偏控制器
CN110658543B (zh) 一种基于非接触式测量的高速铁路轨道几何参数检测方法
Renxian et al. Investigation of air pressure pulse when two high-speed trains passing by each other in tunnel
CN107749842B (zh) 一种列车无线车次号校核信息数据分析系统及方法
CN207020313U (zh) 一种动态补偿的卫星导航定位增强系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019931230

Country of ref document: EP

Effective date: 20211011

NENP Non-entry into the national phase

Ref country code: DE