WO2020237916A1 - 一种无线能量传输系统 - Google Patents

一种无线能量传输系统 Download PDF

Info

Publication number
WO2020237916A1
WO2020237916A1 PCT/CN2019/106381 CN2019106381W WO2020237916A1 WO 2020237916 A1 WO2020237916 A1 WO 2020237916A1 CN 2019106381 W CN2019106381 W CN 2019106381W WO 2020237916 A1 WO2020237916 A1 WO 2020237916A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance matching
energy transmission
wireless energy
transmission system
receiving
Prior art date
Application number
PCT/CN2019/106381
Other languages
English (en)
French (fr)
Inventor
杨恒旭
Original Assignee
中科新声(苏州)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科新声(苏州)科技有限公司 filed Critical 中科新声(苏州)科技有限公司
Publication of WO2020237916A1 publication Critical patent/WO2020237916A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/15Circuit arrangements or systems for wireless supply or distribution of electric power using ultrasonic waves

Definitions

  • the invention relates to wireless energy transmission technology, and more precisely, to a system for wireless transmission of ultrasonic waves to a closed metal container.
  • Wireless energy transmission technologies generally use electromagnetic waves, alternating magnetic fields or electric fields as energy carriers. When it is necessary to transmit information and energy through the shell of a sealed metal cabin, these technologies fail due to the shielding effect of the shell. These occasions (such as hyperbaric oxygen chambers, spacecraft, submersibles, etc.) have to use wires to transmit electrical energy after drilling holes in the shell, which destroys the structural integrity of the metal shell, affects the service life of the metal shell, and increases maintenance cost. Ultrasound, as a mechanical wave, is not limited by the electromagnetic shielding effect and can travel through metal objects. Therefore, in the above occasions, ultrasonic waves can be used as energy carriers to eliminate the need to punch holes in the metal shell and maintain the metal shell. Its structural integrity improves its life and reduces maintenance costs.
  • An object of the present invention is to provide a wireless energy transmission system to solve many shortcomings of the existing ultrasonic wireless energy transmission system, improve the ultrasonic wireless energy transmission technology, and improve the practicability of the ultrasonic wireless energy transmission system.
  • the present invention provides a wireless energy transmission system, including a continuous wave signal source, a radio frequency power amplifier, a transmitting impedance matching network, an acoustic-electric channel, a receiving impedance matching network, and a radio frequency AC-DC conversion that are electrically connected in sequence And load circuit.
  • the acoustic-electric channel includes a transmitting transducer, a receiving transducer and a metal wall, and the transmitting transducer and the receiving transducer are fixed on both sides of the metal wall.
  • the acoustic-electric channel further includes an adhesive, and the transmitting transducer and the receiving transducer are fixed on both sides of the metal wall by the adhesive.
  • the material of the adhesive is epoxy resin.
  • the transmitting impedance matching network and/or the receiving impedance matching network and the transmitting transducer and/or the receiving transducer form a network topology structure.
  • the network topology structure is a first-order network structure
  • the transmitting impedance matching network and/or the receiving impedance matching network is a reactance element network
  • the transmitting transducer and/or the receiving transducer Make a series connection.
  • the network topology structure is a first-order network structure
  • the transmitting impedance matching network and/or the receiving impedance matching network is a reactance element network
  • the transmitting transducer and/or the receiving transducer Connect in parallel.
  • the network topology structure is a second-order network structure, and the second-order topology structure is an L-shape.
  • the radio frequency AC-DC converter includes a resonant rectifier and a DC-DC converter electrically connected, the resonant rectifier is electrically connected to the receiving impedance matching network, and the DC-DC converter is electrically connected to The load circuit is electrically connected.
  • the resonant rectifier includes four high-speed rectifier diodes D 1-4 , a filter capacitor C 5 , a resonant inductor L 1 and four resonant capacitors C 1-4 .
  • the four resonant capacitors C 1-4 and the four high-speed rectifier diodes D 1-4 are connected in parallel.
  • the output impedance of the radio frequency power amplifier, the input impedance of the transmitting impedance matching network, the output impedance of the receiving impedance matching network, and the input impedance of the radio frequency AC-DC converter are 50 ⁇ .
  • the present invention relates to an ultrasonic wireless energy transmission system, which can provide power supply for electronic devices on the side of a sealed metal cabin (or container) without continuous power supply, thereby completely eliminating the need for these cabins (or containers).
  • the metal shell is punched for wired power supply, which minimizes maintenance costs and improves safety factor.
  • an impedance matching technology and a radio frequency AC-DC converter based on a resonance rectifier are designed in the ultrasonic wireless energy transmission system of the present invention, which can efficiently output the transmitted electric energy as a regulated DC that can be used by electronic equipment. It solves many shortcomings of the existing ultrasound wireless transmission system, improves the technology of the ultrasound wireless energy transmission system, and improves the practicability of the ultrasound wireless energy transmission system.
  • Fig. 1 is a schematic diagram of the structure of the wireless energy transmission system of the present invention.
  • Figure 2 is a schematic diagram of the impedance matching network topology of the present invention.
  • Fig. 3 is a schematic diagram of the structure of the radio frequency AC-DC converter of the present invention.
  • Fig. 1 is a structural block diagram of a wireless energy transmission system provided by an embodiment of the present invention.
  • the wireless energy transmission system (100) shown in Figure 1 includes a continuous wave signal source (11), a radio frequency power amplifier (12), a transmitting impedance matching network (13), an acoustic-electrical channel, and a receiving impedance matching that are electrically connected in sequence Network (15), radio frequency AC-DC converter (16) and load circuit (17).
  • the acoustic-electrical channel includes a transmitting transducer (141), a receiving transducer (144) and a metal wall (143), the transmitting transducer (141) and the receiving transducer (144) Fixed on both sides of the metal wall (143).
  • the acoustic-electric channel further includes an adhesive (142), and the transmitting transducer (141) and the receiving transducer (144) are fixed to the adhesive (142) by the adhesive (142).
  • the acoustic impedance of the adhesive (142) is close to the transmitting/receiving transducer and the metal wall (143).
  • the material of the adhesive (142) For epoxy resin.
  • the continuous wave signal source (11) When the system is working, the continuous wave signal source (11) outputs a radio frequency sine continuous wave. After the power is amplified by the radio frequency power amplifier (12), the transmitting transducer (141) is driven.
  • the transmitting transducer (141) is Power ultrasonic waves are generated under excitation. After the ultrasonic waves penetrate the metal wall (143), they are captured by the receiving transducer (144).
  • the receiving transducer (144) then converts the ultrasonic waves into electrical signals and outputs them to the receiving impedance matching network (15). ), the RF power signal output by the impedance matching network (15) is received and converted into a constant voltage low-ripple DC by the RF AC-DC converter (16), and then the load circuit (17) is driven.
  • the wireless energy transmission system of the present invention can be realized to provide power supply for the electronic equipment on the side of the sealed metal cabin (or container) without continuous power supply, thereby completely eliminating the need to hit the metal shells of these cabins (or containers).
  • the hole is required for wired power supply, which minimizes maintenance costs and improves safety factor.
  • Fig. 2 is a network topology composed of a transmitting impedance matching network (13) and/or a receiving impedance matching network (15) and a transmitting transducer (141) and/or a receiving transducer (144) of the present invention.
  • the network topology is a first-order network structure
  • the transmitting impedance matching network (13) and/or the receiving impedance matching network (15) is a reactance element network, It is connected in series with the transmitting transducer (141) and/or the receiving transducer (144).
  • the network topology is a first-order network structure
  • the transmitting impedance matching network (13) and/or the receiving impedance matching network (15) is a reactance element network, It is connected in parallel with the transmitting transducer (141) and/or the receiving transducer (144).
  • the network topology structure is a second-order network structure, and the second-order topology structure is an L-shape.
  • transducers of different materials, sizes, and resonance frequencies can be selected.
  • the structure of the transmitting/receiving impedance matching network is selected from the four first-order or second-order networks in Figure 2 according to the scattering parameter of the acoustic-electric channel (X 1 and X 2 in the figure represent reactance elements, That is, a capacitor or an inductor, Z p represents the electrical port of the transmitting/receiving transducer), and the value of the reactance element is also calculated based on the scattering parameters of the acoustic-electric channel.
  • the transmitting impedance matching network (13) and the receiving impedance matching network (15) jointly complete the two-port conjugate impedance matching of the acoustic-electric channel, thereby reducing the electrical reflection of the input and output ports of the acoustic-electric channel to improve its power transmission efficiency .
  • Fig. 3 is a schematic diagram of the structure of the RF AC-DC converter of the present invention.
  • the radio frequency AC-DC converter (16) includes a resonant rectifier (161) and a DC-DC converter (162) that are electrically connected.
  • the resonant rectifier (161) is electrically connected to the receiving impedance matching network (15).
  • the DC-DC converter (162) is electrically connected with the load circuit (17).
  • the resonant rectifier (161) includes four high-speed rectifier diodes D 1-4 , a filter capacitor C 5 , a resonant inductor L 1 and four resonant capacitors C 1-4 , wherein the four resonant capacitors C 1- 4 is connected in parallel with the four high-speed rectifier diodes D 1-4 .
  • Inductance L 1 and capacitance C 1-4 are called resonance inductance and resonance capacitance respectively.
  • the role of resonance inductance and resonance capacitance is to extend the on-period of the resonance rectifier through current resonance, and the role of the DC-DC converter is to stabilize the resonance rectifier These two characteristics work together to achieve the input impedance matching of the RF AC-DC converter.
  • the values of resonance inductance and resonance capacitance can be calculated based on the input impedance, input frequency, input power and output voltage of the RF AC-DC converter.
  • the input impedance of the RF AC-DC converter is conjugate matched to the output impedance of the receiving impedance matching network, and the input impedance of the transmitting impedance matching network is conjugated to the output impedance of the RF power amplifier.
  • the four are generally selected as common features in the RF system Impedance, which is 50 ⁇ .
  • the radio frequency AC-DC converter (16) has an input impedance matching function, which can reduce the reflection of the output signal of the receiving impedance matching network (15), and further improve the overall power transmission efficiency of the system.
  • the impedance matching technology in the ultrasonic wireless energy transmission system and the RF AC/DC converter based on the resonance rectifier can efficiently output the transmitted electrical energy as a regulated DC that can be used by electronic equipment, which solves the existing ultrasonic wireless transmission system.
  • the many shortcomings of the ultrasonic wireless energy transmission technology improve the practicability of the ultrasonic wireless energy transmission system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

本发明公开了一种无线能量传输系统,包括依次电连接的连续波信号源、射频功率放大器、发射阻抗匹配网络、声-电信道、接收阻抗匹配网络、射频AC-DC转换器和负载电路,其中声-电信道包括发射换能器、接收换能器和金属器壁,发射换能器和接收换能器固定在金属器壁的两侧。本发明还公开了阻抗匹配技术以及基于共振型整流器的射频AC-DC转换器,该系统能够穿透密封金属舱体(或容器)的壳体传输电能,彻底免除在这些舱体(或容器)的壳体上打孔的需要,并且能够将传输的电能高效地输出为电子设备可以使用的稳压直流,解决了现有超声无线能量传输系统存在的诸多不足,完善了超声无线能量传输技术,提高超声无线能量传输系统的实用性。

Description

一种无线能量传输系统 技术领域
本发明涉及无线能量传输技术,更准确地说,涉及一种针对密闭金属容器进行超声波无线传输的系统。
背景技术
无线能量传输技术一般利用电磁波、交变磁场或电场作为能量的载体,当需要穿透密封金属舱体的壳体传输信息和能量时,这些技术就因为壳体的屏蔽效应而失效了,所以在这些场合(例如高压氧舱、航天器、潜水器等)不得不在壳体上打孔后利用导线传输电能,这样就破坏了金属壳体的结构完整性,影响金属壳体的使用寿命,增加维护成本。而超声波作为一种机械波,不受电磁屏蔽效应的限制,可以穿透金属物体传播,因此在上述场合,可以使用超声波作为能量的载体,消除在金属壳体上打孔的需要,保持金属壳体的结构完整性,提高其寿命,降低维护成本。
早在21世纪初,利用超声波进行无线能量传输的概念就被提出,后续也开展了大量的研究,但是目前针对密闭金属容器进行超声能量传输的系统设计实用性均较低,针对具体结构、技术细节等的技术研究也不完善。
发明内容
本发明的一个目的是提供一种无线能量传输系统,解决现有的超声无线能量传输系统存在的诸多不足,完善超声波无线能量传输技术,提高超声无线能量传输系统的实用性。
为了实现上述目的,本发明提供了一种无线能量传输系统,包括依次电连接的连续波信号源、射频功率放大器、发射阻抗匹配网络、声-电信道、接收阻抗匹配网络、射频AC-DC转换器和负载电路。
优选的,所述声-电信道包括发射换能器、接收换能器和金属器壁, 所述发射换能器和所述接收换能器固定在所述金属器壁的两侧表面。
优选的,所述声-电信道还包括粘接剂,所述发射换能器和所述接收换能器通过所述粘接剂固定在所述金属器壁的两侧。
优选的,所述粘接剂的材料为环氧树脂。
优选的,所述发射阻抗匹配网络和/或所述接收阻抗匹配网络与所述发射换能器和/或所述接收换能器组成网络拓扑结构。
优选的,所述网络拓扑结构为一阶网络结构,所述发射阻抗匹配网络和/或所述接收阻抗匹配网络为电抗元件网络,与所述发射换能器和/或所述接收换能器进行串联连接。
优选的,所述网络拓扑结构为一阶网络结构,所述发射阻抗匹配网络和/或所述接收阻抗匹配网络为电抗元件网络,与所述发射换能器和/或所述接收换能器进行并联连接。
优选的,所述网络拓扑结构为二阶网络结构,所述二阶拓扑结构为L型。
优选的,所述射频AC-DC转换器包括进行电连接的共振型整流器和DC-DC转换器,所述共振型整流器与所述接收阻抗匹配网络进行电连接,所述DC-DC转换器与所述负载电路进行电连接。
优选的,所述共振型整流器包括四个高速整流二极管D 1-4、一个滤波电容C 5、一个共振电感L 1和四个共振电容C 1-4。其中所述四个共振电容C 1-4与所述四个高速整流二极管D 1-4进行并联连接。
优选的,所述射频功率放大器的输出阻抗、所述发射阻抗匹配网络的输入阻抗、所述接收阻抗匹配网络的输出阻抗和所述射频AC-DC转换器的输入阻抗为50Ω。
本发明涉及了一种超声无线能量传输系统,该系统能够实现为密封金属舱体(或容器)没有持续电源供应的一侧的电子设备提供电源供应,从而彻底免除在这些舱体(或容器)的金属壳体上打孔进行有线供电的需要,最大限度的降低维护成本,提高安全系数。
同时,本发明超声无线能量传输系统中设计了一种阻抗匹配技术,以 及一种基于共振型整流器的射频AC-DC转换器,能够将传输的电能高效地输出为电子设备可以使用的稳压直流,解决了现有超声无线传输系统存在的诸多不足,完善了超声无线能量传输系统的技术,提高了超声无线能量传输系统的实用性。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是本发明无线能量传输系统结构的示意图。
图2是本发明阻抗匹配网络拓扑结构的示意图。
图3是本发明射频AC-DC转换器的结构示意图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
图1为本发明实施例提供的一种无线能量传输系统的结构框图。如图 1所示的无线能量传输系统(100),包括依次电连接的连续波信号源(11)、射频功率放大器(12)、发射阻抗匹配网络(13)、声-电信道、接收阻抗匹配网络(15)、射频AC-DC转换器(16)和负载电路(17)。
其中所述声-电信道包括发射换能器(141)、接收换能器(144)和金属器壁(143),所述发射换能器(141)和所述接收换能器(144)固定在所述金属器壁(143)的两侧。优选的,所述声-电信道还包括粘接剂(142),所述发射换能器(141)和所述接收换能器(144)通过所述粘接剂(142)固定在所述金属器壁(143)的两侧,所述粘接剂(142)的声阻抗与发射/接收换能器、金属器壁(143)接近,优选的,所述粘接剂(142)的材料为环氧树脂。
当系统工作时,连续波信号源(11)输出射频正弦连续波,经射频功率放大器(12)放大功率后,驱动发射换能器(141),发射换能器(141)在功率正弦信号的激励下产生功率超声波,超声波穿透金属器壁(143)后,由接收换能器(144)俘获,接收换能器(144)再将超声波转换为电信号并输出给接收阻抗匹配网络(15),接收阻抗匹配网络(15)再输出的射频功率信号经射频AC-DC转换器(16)转换为电压恒定的低纹波直流,然后驱动负载电路(17)。
本发明的无线能量传输系统,能够实现为密封金属舱体(或容器)没有持续电源供应的一侧的电子设备提供电源供应,从而彻底免除在这些舱体(或容器)的金属壳体上打孔进行有线供电的需要,最大限度的降低维护成本,提高安全系数。
参考图2,图2是本发明发射阻抗匹配网络(13)和/或接收阻抗匹配网络(15)与发射换能器(141)和/或接收换能器(144)组成网络拓扑结构。
优选的,如图2的(a)所示,所述网络拓扑结构为一阶网络结构,所述发射阻抗匹配网络(13)和/或所述接收阻抗匹配网络(15)为电抗元件网络,与所述发射换能器(141)和/或所述接收换能器(144)进行串联 连接。
优选的,如图2的(b)所示,所述网络拓扑结构为一阶网络结构,所述发射阻抗匹配网络(13)和/或所述接收阻抗匹配网络(15)为电抗元件网络,与所述发射换能器(141)和/或所述接收换能器(144)进行并联连接。
优选的,如图2的(c)、(d)所示,所述网络拓扑结构为二阶网络结构,所述二阶拓扑结构为L型。
根据金属器壁的材质、厚度以及系统所需传输的功率等级,可以选择不同材质、尺寸以及谐振频率的换能器。发射/接收阻抗匹配网络的结构根据声—电信道的散射参量(Scattering parameter)的不同,从图2中的四种一阶或二阶网络中选择(图中X 1和X 2代表电抗元件,即电容器或者电感器,Z p代表发射/接收换能器的电端口),电抗元件的值也根据声-电信道的散射参量计算得出。
发射阻抗匹配网络(13)、接收阻抗匹配网络(15)共同完成声-电信道的双端口共轭阻抗匹配,从而减小声-电信道输入和输出端口的电反射,以提高其功率传输效率。
参考图3,图3是本发明射频交流直流转换器的结构示意图。射频AC-DC转换器(16)包括进行电连接的共振型整流器(161)和DC-DC转换器(162),所述共振型整流器(161)与所述接收阻抗匹配网络(15)进行电连接,所述DC-DC转换器(162)与所述负载电路(17)进行电连接。所述共振型整流器(161)包括四个高速整流二极管D 1-4、一个滤波电容C 5、一个共振电感L 1和四个共振电容C 1-4,其中所述四个共振电容C 1-4与所述四个高速整流二极管D 1-4进行并联连接。
电感L 1和电容C 1-4分别称为共振电感和共振电容,共振电感与共振电容的作用是通过电流共振扩展共振型整流器的导通周期,DC-DC转换器的作用是稳定共振型整流器的工作点,这两个特性共同实现射频AC-DC转换器的输入阻抗匹配。共振电感和共振电容的值可以根据射频AC-DC转换器的输入阻抗、输入频率、输入功率以及输出电压计算得出。射频AC-DC转换器的输入阻抗与接收阻抗匹配网络的输出阻抗共轭匹配,发射阻抗匹配 网络的输入阻抗与射频功率放大器的输出阻抗共轭匹配,四者一般选取为射频系统中的常用特征阻抗,即50Ω。
射频交直流转换器(16)具备输入阻抗匹配功能,从而可以降低对接收阻抗匹配网络(15)输出信号的反射,进一步提高系统总体的功率传输效率。
超声无线能量传输系统中的阻抗匹配技术,以及基于共振型整流器的射频交直流转换器,能够将传输的电能高效地输出为电子设备可以使用的稳压直流,解决了现有超声无线传输系统存在的诸多不足,完善了超声无线能量传输技术,提高了超声无线能量传输系统的实用性。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种无线能量传输系统,其特征在于:包括依次电连接的连续波信号源(11)、射频功率放大器(12)、发射阻抗匹配网络(13)、声-电信道、接收阻抗匹配网络(15)、射频AC-DC转换器(16)和负载电路(17);
    其中所述声-电信道包括发射换能器(141)、接收换能器(144)和金属器壁(143),所述发射换能器(141)和所述接收换能器(144)固定在所述金属器壁(143)的两侧。
  2. 根据权利要求1所述的无线能量传输系统,其特征在于:所述声-电信道还包括粘接剂(142),所述发射换能器(141)和所述接收换能器(144)通过所述粘接剂(142)固定在所述金属器壁(143)的两侧。
  3. 根据权利要求2所述的无线能量传输系统,其特征在于:所述粘接剂(142)的材料为环氧树脂。
  4. 根据权利要求1所述的无线能量传输系统,其特征在于:所述发射阻抗匹配网络(13)和/或所述接收阻抗匹配网络(15)与所述发射换能器(141)和/或所述接收换能器(144)组成网络拓扑结构。
  5. 根据权利要求4所述的无线能量传输系统,其特征在于:所述网络拓扑结构为一阶网络结构,所述发射阻抗匹配网络(13)和/或所述接收阻抗匹配网络(15)为电抗元件网络,与所述发射换能器(141)和/或所述接收换能器(144)进行串联连接。
  6. 根据权利要求4所述的无线能量传输系统,其特征在于:所述网络拓扑结构为一阶网络结构,所述发射阻抗匹配网络(13)和/或所述接收阻抗匹配网络(15)为电抗元件网络,与所述发射换能器(141)和/或所述接收换能器(144)进行并联连接。
  7. 根据权利要求4所述的无线能量传输系统,其特征在于:所述网络拓扑结构为二阶网络结构,所述二阶拓扑结构为L型。
  8. 根据权利要求1所述的无线能量传输系统,其特征在于:所述射频AC-DC转换器(16)包括进行电连接的共振型整流器(161)和DC-DC转 换器(162),所述共振型整流器(161)与所述接收阻抗匹配网络(15)进行电连接,所述DC-DC转换器(162)与所述负载电路(17)进行电连接。
  9. 根据权利要求8所述的无线能量传输系统,其特征在于:所述共振型整流器(161)包括四个高速整流二极管D 1-4、一个滤波电容C 5、一个共振电感L 1和四个共振电容C 1-4。其中所述四个共振电容C 1-4与所述四个高速整流二极管D 1-4进行并联连接。
  10. 根据权利要求1至9任一权利要求所述的无线能量传输系统,其特征在于:所述射频功率放大器(12)的输出阻抗、所述发射阻抗匹配网络(13)的输入阻抗、所述接收阻抗匹配网络(15)的输出阻抗和所述射频交直流转换器(16)的输入阻抗为50Ω。
PCT/CN2019/106381 2019-05-28 2019-09-18 一种无线能量传输系统 WO2020237916A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910450644.3A CN110098668A (zh) 2019-05-28 2019-05-28 一种无线能量传输系统
CN201910450644.3 2019-05-28

Publications (1)

Publication Number Publication Date
WO2020237916A1 true WO2020237916A1 (zh) 2020-12-03

Family

ID=67449426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106381 WO2020237916A1 (zh) 2019-05-28 2019-09-18 一种无线能量传输系统

Country Status (2)

Country Link
CN (1) CN110098668A (zh)
WO (1) WO2020237916A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098668A (zh) * 2019-05-28 2019-08-06 中科新声(苏州)科技有限公司 一种无线能量传输系统
CN111030319A (zh) * 2019-11-26 2020-04-17 吕舒晗 一种基于超声波的水下非接触式无线能量传输系统
CN112543065B (zh) * 2020-12-03 2023-03-03 中北大学 面向密封金属容器的无线功率传输与通信装置及通信方法
CN113114055B (zh) * 2021-03-05 2021-11-09 中国科学院声学研究所 一种用于声载波无线传输的自适应ac-dc转换装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218805A (ja) * 2002-01-25 2003-07-31 Tama Tlo Kk 超音波を利用した電力および信号伝送装置
WO2007146223A2 (en) * 2006-06-08 2007-12-21 Flextronics Ap, Llc Contactless energy transmission converter
CN104734204A (zh) * 2015-03-19 2015-06-24 大连理工大学 一种基于超声波的穿透金属板无线电能传输装置
CN110098668A (zh) * 2019-05-28 2019-08-06 中科新声(苏州)科技有限公司 一种无线能量传输系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6947297B2 (en) * 2003-10-04 2005-09-20 Delta Electronics, Inc. Active resonant snubber for DC-DC converter
KR20110133856A (ko) * 2010-06-07 2011-12-14 삼성전기주식회사 무선전력전송 시스템의 정류 회로
CN107528390A (zh) * 2016-06-20 2017-12-29 中国科学院声学研究所 一种用于密闭金属容器内置设备充电的装置
CN206908518U (zh) * 2017-03-27 2018-01-19 杜金昌 叠加式电场感应取电装置
CN106981934B (zh) * 2017-05-02 2019-11-29 中国科学院声学研究所 一种针对密闭金属容器进行无线输能的系统及方法
CN109004764B (zh) * 2018-07-26 2021-06-04 中国科学院声学研究所 一种针对密闭金属容器进行超声供电系统及方法
CN109639152A (zh) * 2019-02-19 2019-04-16 哈尔滨工业大学(深圳) 一种高变比谐振功率变换器
CN210380392U (zh) * 2019-05-28 2020-04-21 中科新声(苏州)科技有限公司 一种无线能量传输系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218805A (ja) * 2002-01-25 2003-07-31 Tama Tlo Kk 超音波を利用した電力および信号伝送装置
WO2007146223A2 (en) * 2006-06-08 2007-12-21 Flextronics Ap, Llc Contactless energy transmission converter
CN104734204A (zh) * 2015-03-19 2015-06-24 大连理工大学 一种基于超声波的穿透金属板无线电能传输装置
CN110098668A (zh) * 2019-05-28 2019-08-06 中科新声(苏州)科技有限公司 一种无线能量传输系统

Also Published As

Publication number Publication date
CN110098668A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
WO2020237916A1 (zh) 一种无线能量传输系统
CN103595145B (zh) 一种基于公共电感耦合实现高速通讯和无线能量传输的系统
US10027377B2 (en) Wireless power supply apparatus
US10158254B2 (en) Resonant coupling power transmission system, resonance type power transmission device, and resonance type power reception device
Yang et al. Bidirectional undersea capacitive wireless power transfer system
CN104734204B (zh) 一种基于超声波的穿透金属板无线电能传输装置
CN106981934A (zh) 一种针对密闭金属容器进行无线输能的系统及方法
CN210380392U (zh) 一种无线能量传输系统
CN105247762B (zh) 具有可调整功率输出的共振无线供电驱动器
Vu et al. Wireless power transfer through metal using inductive link
KR20170058383A (ko) 공진형 전력 전송 장치
CN106487105B (zh) 一种变线圈结构的磁耦合谐振式无线电能传输装置
CN210092970U (zh) 基于pt对称原理的多发射线圈并联供电的无线供电系统
CN109004764B (zh) 一种针对密闭金属容器进行超声供电系统及方法
CN209109537U (zh) 数字式大功率超声波发生器及超声波清洗机
Wu et al. Ultrasonic based contactless power transfer for gate driver supplies of full bridge module
Badawi et al. Resonant circuit response for contactless energy transfer under variable PWM
Akuzawa et al. A 95% efficient inverter with 300-W power output for 6.78-MHz magnetic resonant wireless power transfer system
Jamal et al. A Development of Class E Converter Circuit for Loosely Coupled Inductive Power Transfer System
Oh et al. Low-power rf energy harvester circuit design for wearable medical applications
TWI490519B (zh) 諧波雷達射頻標籤
Nataraj et al. Design of simple DC-to-DC Wireless Power Transfer via inductive coupling
CN110943547A (zh) 一种并联型自治分数阶电路电场耦合无线电能传输系统
CN110957928A (zh) 基于阻抗补偿方法的交流大电流源电路及其阻抗补偿方法
Vu et al. Wireless power and data transfer through carbon composite using a common inductive link

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930458

Country of ref document: EP

Kind code of ref document: A1