WO2020237723A1 - 一种海上风电用交直流混合海缆 - Google Patents

一种海上风电用交直流混合海缆 Download PDF

Info

Publication number
WO2020237723A1
WO2020237723A1 PCT/CN2019/090683 CN2019090683W WO2020237723A1 WO 2020237723 A1 WO2020237723 A1 WO 2020237723A1 CN 2019090683 W CN2019090683 W CN 2019090683W WO 2020237723 A1 WO2020237723 A1 WO 2020237723A1
Authority
WO
WIPO (PCT)
Prior art keywords
submarine cable
layer
hybrid
current
wind power
Prior art date
Application number
PCT/CN2019/090683
Other languages
English (en)
French (fr)
Inventor
梅文杰
潘文林
李战龙
艾斯卡尔·艾斯卡尔
张涛
潘文
Original Assignee
江苏亨通高压海缆有限公司
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通高压海缆有限公司, 新疆金风科技股份有限公司 filed Critical 江苏亨通高压海缆有限公司
Priority to DE212019000504.7U priority Critical patent/DE212019000504U1/de
Publication of WO2020237723A1 publication Critical patent/WO2020237723A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/14Submarine cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/282Preventing penetration of fluid, e.g. water or humidity, into conductor or cable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Definitions

  • the utility model relates to the field of offshore wind power, in particular to an AC-DC hybrid submarine cable for offshore wind power.
  • AC submarine cables array cables
  • high voltage AC submarine cables are generally used to collect electric energy from wind turbines, and then through booster stations, medium and high voltage AC power is converted into high voltage AC power, and high voltage AC submarine cables are used to output electric energy, and then pass The converter station converts high-voltage alternating current into high-voltage direct current, and finally outputs electrical energy through a direct current submarine cable.
  • This method of outgoing power transmission requires the establishment of multiple submarine cable AC converter stations, which requires a long construction period, high costs, and cumbersome maintenance and high maintenance costs.
  • a scheme was developed to take power directly from the wind turbine. This scheme eliminates the need for AC power exchange and directly uses DC submarine cables to transmit power, saving the cost of AC converter stations.
  • the main technical problem solved by the utility model is to provide an AC/DC hybrid submarine cable for offshore wind power, which can solve the above-mentioned problems in the development of the existing wind power from offshore to open sea.
  • a technical solution adopted by the present utility model is to provide an AC/DC hybrid submarine cable for offshore wind power, including an AC submarine cable, two DC submarine cables, a filling layer, an inner lining layer, an armor layer and Outer layer; wherein the AC submarine cable and two of the DC submarine cables are twisted into a cable to form a three-core structure; the filling layer, the inner lining layer, the armor layer and the outer layer are sequentially wrapped in the The outer periphery of AC submarine cable and DC submarine cable.
  • the diameter of the AC submarine cable is the same as the diameter of the DC submarine cable.
  • the AC submarine cable is a three-core AC submarine cable.
  • the structure of the three-core AC submarine cable includes in order from the inside to the outside: a first conductor, a first conductor shielding layer, a first insulating layer, a first insulating shielding layer, and a first metal The shielding layer and the first outer sheath layer.
  • the first metal shielding layer includes a semi-conductive resistance hose and a lead alloy sheath, and the lead alloy sheath covers the outer circumference of the semi-conductive resistance hose.
  • the first insulating shielding layer is made of water-resistant tree-type insulating material
  • the first metal shielding layer includes a copper tape/copper wire shielding layer and an aluminum-plastic composite tape;
  • the aluminum-plastic composite tape is wrapped around the outer periphery of the copper tape/copper wire shielding layer.
  • the structure of the direct current submarine cable includes in order from the inside to the outside: a second conductor, a second conductor shielding layer, a second insulating layer, a second insulating shielding layer, a water blocking tape, and a second conductor.
  • a second conductor in order from the inside to the outside: a second conductor, a second conductor shielding layer, a second insulating layer, a second insulating shielding layer, a water blocking tape, and a second conductor.
  • Two metal shielding layer and second outer sheath Two metal shielding layer and second outer sheath.
  • the AC-DC hybrid submarine cable further includes an optical cable, and the optical cable is built in the filling layer.
  • the AC-DC hybrid submarine cable further includes a rubberized cloth layer, and the rubberized cloth layer covers the outer circumference of the filling layer.
  • the AC-DC hybrid submarine cable further includes a non-woven fabric layer, and the non-woven fabric layer is wrapped around the outer circumference of the rubberized fabric layer.
  • the utility model is an AC and DC hybrid submarine cable for offshore wind power.
  • the wind turbine is started and the DC power is taken and transmitted through One submarine cable is completed.
  • the number of submarine cable installations is reduced from multiple times to one time, which can effectively reduce the laying cost;
  • no AC submarine cable booster station is required, which saves the cost of the booster station.
  • the hybrid submarine cable has a round structure, which is convenient for production and laying, and reduces the difficulty of laying.
  • Fig. 1 is a schematic diagram of a three-dimensional structure of a preferred embodiment of an AC-DC hybrid submarine cable for offshore wind power according to the present invention
  • the components in the drawings are marked as follows: 1. The first conductor, 2. The first conductor shielding layer, 3. The first insulating layer, 4. The first insulating shielding layer, 5. The first metal shielding layer, 6. The first Outer sheath layer, 7. second conductor, 8. second conductor shielding layer, 9. second insulating layer, 10. second insulating shielding layer, 11. water blocking tape, 12. second metal shielding layer, 13. The second outer sheath, 14. Optical fiber, 15. Filling layer, 16. Adhesive cloth layer, 17. Non-woven fabric layer, 18. Inner lining layer, 19. Armor layer, 20. Outer layer.
  • the embodiments of the present invention include:
  • the utility model discloses an AC-DC hybrid submarine cable for offshore wind power, comprising an AC submarine cable and two DC submarine cables; the AC submarine cable and the two DC submarine cables are twisted into a cable to form a three-core structure.
  • the outer circumference of the submarine cable and the direct current submarine cable is provided with a filling layer 15, and the outer circumference of the filling layer 15 is sequentially covered with a rubberized cloth layer 16, a non-woven fabric layer 17, an inner lining layer 18, an armor layer 19, and an outer cover layer 20 .
  • the rubberized fabric layer 16 and the non-woven fabric layer 17 bind the AC submarine cable and the DC submarine cable together to form a cable.
  • the diameter of the AC submarine cable is the same as the diameter of the DC submarine cable, so that the cabled AC-DC hybrid submarine cable forms a round structure to meet the requirements of submarine cable transportation and laying.
  • the AC submarine cable is a three-core AC submarine cable, and its structure includes in order from the inside to the outside: a first conductor 1, a first conductor shielding layer 2, a first insulating layer 3, a first insulating shielding layer 4, a first The metal shield layer 5 and the first outer sheath layer 6.
  • the AC submarine cable is a submarine cable with a small voltage level, such as a voltage level of 35kV, and the specification of the first conductor 1 is 50 mm 2 or 70 mm 2 for starting the wind turbine.
  • the first metal shielding layer 5 is also different according to the depth of the water area of the use area and the complexity of the laying environment. Specifically, in the area where the water area is relatively shallow and the laying environment is not complicated, the first metal shielding layer 5 uses a copper tape/copper wire shielding layer and an aluminum-plastic composite tape; wherein the aluminum-plastic composite tape is wrapped On the outer periphery of the copper tape/copper wire shielding layer, and the first insulating layer 3 is made of water-resistant tree-type insulating material. Among them, the water-resistant tree insulating material has an excellent water-blocking effect, and it works with copper wire/copper tape to improve the anti-aging performance of the insulating material after contact with water.
  • the first metal shielding layer 5 uses a semi-conductive resistance hose and a lead alloy sheath, and the lead alloy sheath is wrapped in the semi-conductive resistance water The outer circumference of the band.
  • the structure of the direct current submarine cable includes in order from the inside to the outside: a second conductor 7, a second conductor shielding layer 8, a second insulating layer 9, a second insulating shielding layer 10, a water blocking tape 11, a second metal shielding layer 12, and The second outer sheath 13.
  • the second conductive shielding layer 8 is a semi-conductive banded water blocking tape
  • the water blocking tape 11 is a semi-conductive resistance water tape
  • the second metal shielding layer 12 is a lead alloy sheath.
  • the DC submarine cable is a medium voltage DC submarine cable, which generally adopts voltage levels of 100kV, 80kV, and 60kV.
  • the specifications of the second conductor 7 are 800mm 2 , 1000mm 2 , 1200mm 2 , 1400mm 2 and other large-scale structures. To take power directly from the fan and transmit it.
  • the AC/DC hybrid submarine cable further includes an optical cable 14 built in the filling layer 15.
  • optical cables are added to manufacture transaction DC hybrid composite optical fiber submarine cables to further improve the functions of AC and DC hybrid submarine cables.
  • AC submarine cables and DC submarine cables of appropriate specifications can be selected, and the difference between the diameter of the AC submarine cable and the DC submarine cable is controlled within the error range of 5mm.
  • the utility model directly obtains DC power from the wind turbine, saves the use of independent AC submarine cables, saves offshore AC booster stations, and reduces the overall cost of offshore wind power; uses AC and DC hybrid submarine cables to transmit electric energy, reducing AC submarine cables and DC sea cables.
  • the number of cable laying alone reduces the laying cost and improves the overall economics of the project.
  • the AC-DC hybrid submarine cable for offshore wind power of the utility model twists the AC submarine cable and two direct-current submarine cables into a hybrid submarine cable, so that the start of the wind turbine and the DC power acquisition and transmission are completed through one submarine cable.
  • the number of submarine cable laying times is reduced from multiple times to one time, which can effectively reduce the cost of laying; on the other hand, no AC submarine cable booster station is required, which saves the cost of the booster station, and the AC/DC hybrid submarine cable has a round structure. Convenient production and laying, reducing the difficulty of laying.

Landscapes

  • Insulated Conductors (AREA)
  • Communication Cables (AREA)

Abstract

本实用新型公开了一种海上风电用交直流混合海缆,包括交流海缆、两根直流海缆、填充层、内衬层、铠装层和外被层;其中,所述交流海缆和两根所述直流海缆绞合成缆,构成三芯结构;所述填充层、内衬层、铠装层和外被层依次包覆在所述交流海缆和直流海缆的外周。本实用新型一种海上风电用交直流混合海缆,通过将交流海缆与两根直流海缆绞合成一根混合海缆,使风机启动与直流取电输电通过一根海缆完成,一方面使海缆敷设次数由多次降低为一次,可有效降低敷设成本;另一方面交直流混合海缆为圆整的结构,生产及敷设方便,降低敷设的难度。

Description

一种海上风电用交直流混合海缆 技术领域
本实用新型涉及海上风电领域,特别是涉及一种海上风电用交直流混合海缆。
背景技术
随着海上风电由近海向远海发展,一般采用交流海缆(阵列缆)从风机上采集电能,然后通过升压站,把中高压交流电转换成高压交流电,采用高压交流海缆输出电能,再通过换流站,把高压交流电转换成高压直流电,最后通过直流海缆输出电能。这种去电输电方式,需要建立多个海缆交流换流站,施工工期长,成本高,后期维护繁琐,维护成本高。后来又发展出直接从风机直流取电的方案,该方案省去了交流换电环节,直接采用直流海缆传输电能,节约了交流换流站成本,但需要单独敷设交流海缆和两根直流海缆,一方面两次敷设费用依然很高,另一方面两根直流海缆敷设,两根海缆之间不能形成圆整的外形结构,敷设技术难度大。
实用新型内容
本实用新型主要解决的技术问题是提供一种海上风电用交直流混合海缆,能够解决现有风电由近海向远海发展存在的上述问题。
为解决上述技术问题,本实用新型采用的一个技术方案是:提供一种海上风电用交直流混合海缆,包括交流海缆、两根直流海缆、填充层、内衬层、铠装层和外被层;其中,所述交流海缆和两根所述直流海缆绞合成缆,构成三芯结构;所述填充层、内衬层、铠装层和外被层依次包覆在所述交流海缆和直流海缆的外周。
在本实用新型一个较佳实施例中,所述交流海缆的直径与所述直流海缆的直径相同。
在本实用新型一个较佳实施例中,所述交流海缆为三芯交流海缆。
在本实用新型一个较佳实施例中,所述三芯交流海缆的结构自内向外依次包括:第一导体、第一导体屏蔽层、第一绝缘层、第一绝缘屏蔽层、第一金属屏蔽层和第一外护套层。
在本实用新型一个较佳实施例中,所述第一金属屏蔽层包括半导电阻水带和铅合金护套,所述铅合金护套包覆在所述半导电阻水带的外周。
在本实用新型一个较佳实施例中,所述第一绝缘屏蔽层为抗水树型绝缘材料,所述第一金属屏蔽层包括铜带/铜丝屏蔽层和铝塑复合带;其中,所述铝塑复合带包覆在所述铜带/铜丝屏蔽层的外周。
在本实用新型一个较佳实施例中,所述直流海缆的结构自内向外依次包括:第二导体、第二导体屏蔽层、第二绝缘层、第二绝缘屏蔽层、阻水带、第二金属屏蔽层和第二外护套。
在本实用新型一个较佳实施例中,所述交直流混合海缆还包括光缆,所述光缆内置在所述填充层中。
在本实用新型一个较佳实施例中,所述交直流混合海缆还包括涂胶布层,所述涂胶布层包覆在所述填充层的外周。
在本实用新型一个较佳实施例中,所述交直流混合海缆还包括无纺布层,所述无纺布层包覆在所述涂胶布层的外周。
本实用新型的有益效果是:本实用新型一种海上风电用交直流混合海缆,通过将交流海缆与两根直流海缆绞合成一根混合海缆,使风机启动与直流取电 输电通过一根海缆完成,一方面使海缆敷设次数由多次降低为一次,可有效降低敷设成本;另一方面不需要交流海缆升压站,进而节省了升压站的成本,且交直流混合海缆为圆整的结构,生产及敷设方便,降低敷设的难度。
附图说明
图1是本实用新型一种海上风电用交直流混合海缆一较佳实施例的立体结构示意图;
附图中各部件的标记如下:1.第一导体,2.第一导体屏蔽层,3.第一绝缘层,4.第一绝缘屏蔽层,5.第一金属屏蔽层,6.第一外护套层,7.第二导体,8.第二导体屏蔽层,9.第二绝缘层,10.第二绝缘屏蔽层,11.阻水带,12.第二金属屏蔽层,13.第二外护套,14.光纤,15.填充层,16.涂胶布层,17.无纺布层,18.内衬层,19.铠装层,20.外被层。
具体实施方式
下面结合附图对本实用新型的较佳实施例进行详细阐述,以使本实用新型的优点和特征能更易于被本领域技术人员理解,从而对本实用新型的保护范围做出更为清楚明确的界定。
请参阅图1,本实用新型实施例包括:
实施例1
本实用新型揭示了一种海上风电用交直流混合海缆,包括交流海缆和两根直流海缆;所述交流海缆和两根直流海缆绞合成缆,构成三芯结构,所述交流海缆和直流海缆的外设置有填充层15,所述填充层15的外周依次包覆有涂胶布层16、无纺布层17、内衬层18、铠装层19和外被层20。所述涂胶布层16和无纺布层17把交流海缆与直流海缆绑在一起,以成缆。
其中,所述交流海缆的直径与所述直流海缆的直径相同,使成缆后的交直 流混合海缆形成圆整的结构,满足海缆运输及敷设的要求。
具体地,所述交流海缆为三芯交流海缆,其结构自内向外依次包括:第一导体1、第一导体屏蔽层2、第一绝缘层3、第一绝缘屏蔽层4、第一金属屏蔽层5和第一外护套层6。
所述交流海缆为小规格电压等级的海缆,如35kV电压等级,其第一导体1的规格选用50mm 2或70mm 2等,用于风机的启动。
其中,根据使用地区的水域深度和敷设环境的复杂程度不同,所述第一金属屏蔽层5也不同。具体地,在使用地区的水域相对浅,敷设环境不复杂的区域,第一金属屏蔽层5使用的是铜带/铜丝屏蔽层和铝塑复合带;其中,所述铝塑复合带包覆在所述铜带/铜丝屏蔽层的外周,且第一绝缘层3为抗水树型绝缘材料。其中,抗水树型绝缘材料具有优异的阻水效果,其与铜丝/铜带共同作用,提高绝缘材料在接触水后的抗老化性能。
在使用地区的水域相对深,敷设环境复杂的区域,第一金属屏蔽层5使用的是半导电阻水带和铅合金护套,且所述铅合金护套包覆在所述半导电阻水带的外周。
所述直流海缆的结构自内向外依次包括:第二导体7、第二导体屏蔽层8、第二绝缘层9、第二绝缘屏蔽层10、阻水带11、第二金属屏蔽层12和第二外护套13。其中,所述第二导体屏蔽层8为半导电绑扎阻水带,所述阻水带11为半导电阻水带,所述第二金属屏蔽层12为铅合金护套。
所述直流海缆为中等电压等级的直流海缆,一般采用100kV、80kV、60kV的电压等级,第二导体7的规格为800mm 2、1000mm 2、1200mm 2、1400mm 2等大规格的结构,用于从风机上直接取电并传输。
优选地,所述交直流混合海缆还包括光缆14,所述光缆14内置在所述填充层15中。在交流海缆与直流海缆成缆过程中加入光缆,制造成交直流混合复合光纤海底电缆,进一步提高交直流混合海缆的功能。
另外,根据海上风场资源的不同,可以选择合适规格的交流海缆和直流海缆,交流海缆和直流海缆的直径之间的差值控制在5mm的误差范围内。
本实用新型直接从风机上取直流电,省去独立的交流海缆的使用,省去海上交流升压站,降低海上风电整体费用;采用交直流混合海缆输送电能,减少交流海缆、直流海缆单独敷设次数,降低敷设费用,提高项目整体经济性。
本实用新型的海上风电用交直流混合海缆,通过将交流海缆与两根直流海缆绞合成一根混合海缆,使风机启动与直流取电输电通过一根海缆完成,一方面使海缆敷设次数由多次降低为一次,可有效降低敷设成本;另一方面不需要交流海缆升压站,进而节省了升压站的成本,且交直流混合海缆为圆整的结构,生产及敷设方便,降低敷设的难度。
在本实用新型的描述中,需要说明的是,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该实用新型产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。以上所述仅为本实用新型的优选实施例而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (10)

  1. 一种海上风电用交直流混合海缆,其特征在于,包括交流海缆、两根直流海缆、填充层、内衬层、铠装层和外被层;其中,所述交流海缆和两根所述直流海缆绞合成缆,构成三芯结构;所述填充层、内衬层、铠装层和外被层依次包覆在所述交流海缆和直流海缆的外周。
  2. 根据权利要求1所述的海上风电用交直流混合海缆,其特征在于,所述交流海缆的直径与所述直流海缆的直径相同。
  3. 根据权利要求2所述的海上风电用交直流混合海缆,其特征在于,所述交流海缆为三芯交流海缆。
  4. 根据权利要求3所述的海上风电用交直流混合海缆,其特征在于,所述三芯交流海缆的结构自内向外依次包括:第一导体、第一导体屏蔽层、第一绝缘层、第一绝缘屏蔽层、第一金属屏蔽层和第一外护套层。
  5. 根据权利要求4所述的海上风电用交直流混合海缆,其特征在于,所述第一金属屏蔽层包括半导电阻水带和铅合金护套,所述铅合金护套包覆在所述半导电阻水带的外周。
  6. 根据权利要求4所述的海上风电用交直流混合海缆,其特征在于,所述第一绝缘屏蔽层为抗水树型绝缘材料,所述第一金属屏蔽层包括铜带/铜丝屏蔽层和铝塑复合带;其中,所述铝塑复合带包覆在所述铜带/铜丝屏蔽层的外周。
  7. 根据权利要求2所述的海上风电用交直流混合海缆,其特征在于,所述直流海缆的结构自内向外依次包括:第二导体、第二导体屏蔽层、第二绝缘层、第二绝缘屏蔽层、阻水带、第二金属屏蔽层和第二外护套。
  8. 根据权利要求2所述的海上风电用交直流混合海缆,其特征在于,所述交直流混合海缆还包括光缆,所述光缆内置在所述填充层中。
  9. 根据权利要求8所述的海上风电用交直流混合海缆,其特征在于,所述交直流混合海缆还包括涂胶布层,所述涂胶布层包覆在所述填充层的外周。
  10. 根据权利要求9所述的海上风电用交直流混合海缆,其特征在于,所述交直流混合海缆还包括无纺布层,所述无纺布层包覆在所述涂胶布层的外周。
PCT/CN2019/090683 2019-05-27 2019-06-11 一种海上风电用交直流混合海缆 WO2020237723A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212019000504.7U DE212019000504U1 (de) 2019-05-27 2019-06-11 Ein AC/DC-Hybrid-Seekabel für Offshore-Windkraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920771809.2U CN210271846U (zh) 2019-05-27 2019-05-27 一种海上风电用交直流混合海缆
CN201920771809.2 2019-05-27

Publications (1)

Publication Number Publication Date
WO2020237723A1 true WO2020237723A1 (zh) 2020-12-03

Family

ID=70038623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090683 WO2020237723A1 (zh) 2019-05-27 2019-06-11 一种海上风电用交直流混合海缆

Country Status (3)

Country Link
CN (1) CN210271846U (zh)
DE (1) DE212019000504U1 (zh)
WO (1) WO2020237723A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110136874A (zh) * 2019-05-27 2019-08-16 江苏亨通高压海缆有限公司 一种海上风电用交直流混合海缆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200783A (ja) * 2006-01-27 2007-08-09 Sumitomo Electric Ind Ltd 多心超電導ケーブル
CN202394580U (zh) * 2011-11-16 2012-08-22 江苏亨通高压电缆有限公司 一种分相铅包海底电缆
CN202771828U (zh) * 2012-09-27 2013-03-06 无锡市长城电线电缆有限公司 一种多芯高、低压复合海底电缆
CN203165553U (zh) * 2013-02-27 2013-08-28 宁波东方电缆股份有限公司 柔性输电用直流海底电缆
CN106653183A (zh) * 2017-01-06 2017-05-10 江苏亨通高压海缆有限公司 一种超大容量交联聚乙烯绝缘光电复合海底电缆
CN106796827A (zh) * 2014-09-05 2017-05-31 普睿司曼股份公司 水下电缆和水下电缆操作方法
CN110136874A (zh) * 2019-05-27 2019-08-16 江苏亨通高压海缆有限公司 一种海上风电用交直流混合海缆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200783A (ja) * 2006-01-27 2007-08-09 Sumitomo Electric Ind Ltd 多心超電導ケーブル
CN202394580U (zh) * 2011-11-16 2012-08-22 江苏亨通高压电缆有限公司 一种分相铅包海底电缆
CN202771828U (zh) * 2012-09-27 2013-03-06 无锡市长城电线电缆有限公司 一种多芯高、低压复合海底电缆
CN203165553U (zh) * 2013-02-27 2013-08-28 宁波东方电缆股份有限公司 柔性输电用直流海底电缆
CN106796827A (zh) * 2014-09-05 2017-05-31 普睿司曼股份公司 水下电缆和水下电缆操作方法
CN106653183A (zh) * 2017-01-06 2017-05-10 江苏亨通高压海缆有限公司 一种超大容量交联聚乙烯绝缘光电复合海底电缆
CN110136874A (zh) * 2019-05-27 2019-08-16 江苏亨通高压海缆有限公司 一种海上风电用交直流混合海缆

Also Published As

Publication number Publication date
CN210271846U (zh) 2020-04-07
DE212019000504U1 (de) 2022-01-07

Similar Documents

Publication Publication Date Title
CN101562064A (zh) 额定电压35kv及以下浅海风力发电场光电传输复合电缆
CN104361945B (zh) 一种无卤阻燃耐低温中压风能电缆的制备方法
CN103178482A (zh) 一种电缆绕包式接头及其制作方法
CN110136874A (zh) 一种海上风电用交直流混合海缆
WO2020237723A1 (zh) 一种海上风电用交直流混合海缆
CN201436664U (zh) 额定电压35kv及以下浅海风力发电场光电传输复合电缆
CN104078876B (zh) 一种基于rtv涂料的中压电缆附件缺陷处理方法
CN203180478U (zh) 一种电缆绕包式接头
CN213483458U (zh) 铝芯交联聚乙烯绝缘铝塑复合带光电复合电力电缆
CN209785574U (zh) 一种核能保护系统用防泄线
CN207833970U (zh) 一种海上核电站用电缆
CN203588747U (zh) 中压变频电缆
CN109065236A (zh) 一种防冻电缆及其生产方法
CN204857237U (zh) 光伏发电用抗紫外线耐老化电缆
CN201210415Y (zh) 新型同心导体分支电缆
CN204178762U (zh) 一种自控温加热电缆
CN213660044U (zh) 一种无感应电压的三芯海缆专用的光缆单元结构
CN207781251U (zh) 一种电网专用高柔性铜包铝线
CN209674940U (zh) 一种非屏蔽通讯电缆
CN207441337U (zh) 一种中压电力控制复合电缆
CN216388789U (zh) 一种阻水型光伏系统用分支电缆组件
CN201829217U (zh) 一种耐高温防水电缆
CN203746552U (zh) 一种发电机用电缆
CN202549474U (zh) 一种变频器专用电力电缆
CN203351271U (zh) 阻水型乙丙橡皮绝缘电力电缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930398

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19930398

Country of ref document: EP

Kind code of ref document: A1