WO2020237609A1 - 可移动平台的控制方法、控制终端及可移动平台 - Google Patents

可移动平台的控制方法、控制终端及可移动平台 Download PDF

Info

Publication number
WO2020237609A1
WO2020237609A1 PCT/CN2019/089419 CN2019089419W WO2020237609A1 WO 2020237609 A1 WO2020237609 A1 WO 2020237609A1 CN 2019089419 W CN2019089419 W CN 2019089419W WO 2020237609 A1 WO2020237609 A1 WO 2020237609A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable platform
distance
trajectory
movement
subspace
Prior art date
Application number
PCT/CN2019/089419
Other languages
English (en)
French (fr)
Inventor
覃政科
周游
林毅
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/089419 priority Critical patent/WO2020237609A1/zh
Priority to CN201980007813.4A priority patent/CN111656294A/zh
Publication of WO2020237609A1 publication Critical patent/WO2020237609A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours

Definitions

  • the present invention relates to the field of control technology, in particular to a control method of a movable platform, a control terminal and a movable platform.
  • the movable platform usually needs to be moved in the process of performing task operations, but some unexpected situations may occur during the movement of the movable platform, such as obstacles on the moving path of the movable platform, etc., these unexpected situations It will affect the safety of the movable platform during the movement. Therefore, how to improve the safety of the movable platform during the movement is a problem to be solved.
  • the embodiment of the invention discloses a control method of a movable platform, a control terminal and a movable platform, which are beneficial to improve the accuracy of obstacle avoidance during the movement of the movable platform, thereby improving the mobile safety of the movable platform.
  • the first aspect of the embodiments of the present invention discloses a method for controlling a movable platform, the method including:
  • the target space area corresponding to the predicted trajectory channel is a three-dimensional structure, and the space area occupied by the movable platform in the process of moving along the movement trajectory corresponding to the trajectory parameter is within the target space area;
  • the cross-sectional area of the space region whose distance from the current position point of the movable platform is the first distance in the target space region is smaller than that of the space region whose distance from the current position point of the movable platform is the second distance
  • the cross-sectional area, the first distance is smaller than the second distance.
  • a control terminal has a communication connection with a movable platform.
  • the control terminal includes a memory, a communication interface, and a processor,
  • the memory is used to store program instructions
  • the communication interface is controlled by the processor for sending and receiving information
  • the processor is configured to execute program instructions stored in the memory, and when the program instructions are executed, the processor is configured to:
  • the target space area corresponding to the predicted trajectory channel is a three-dimensional structure, and the space area occupied by the movable platform in the process of moving along the movement trajectory corresponding to the trajectory parameter is within the target space area;
  • the cross-sectional area of the space region whose distance from the current position point of the movable platform is the first distance in the target space region is smaller than that of the space region whose distance from the current position point of the movable platform is the second distance
  • the cross-sectional area, the first distance is smaller than the second distance.
  • the third aspect of the embodiments of the present invention discloses a movable platform, which includes a memory and a processor,
  • the memory is used to store program instructions
  • the processor is configured to execute program instructions stored in the memory, and when the program instructions are executed, the processor is configured to:
  • the target space area corresponding to the predicted trajectory channel is a three-dimensional structure, and the space area occupied by the movable platform in the process of moving along the movement trajectory corresponding to the trajectory parameter is within the target space area;
  • the cross-sectional area of the space region whose distance from the current position point of the movable platform is the first distance in the target space region is smaller than that of the space region whose distance from the current position point of the movable platform is the second distance
  • the cross-sectional area, the first distance is smaller than the second distance.
  • the fourth aspect of the embodiments of the present invention discloses a computer-readable storage medium in which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in the first aspect are implemented. .
  • the embodiment of the present invention predicts the trajectory parameters of the movable platform according to the movement parameters, and determines the predicted trajectory channel of the movable platform according to the trajectory parameters, so as to control the movable platform to move in the target space region corresponding to the predicted trajectory channel.
  • the cross-sectional area of the space area close to the movable platform is smaller than the cross-sectional area of the space area far away from the movable platform, which is beneficial to improve the accuracy of obstacle avoidance during the movement of the movable platform, thereby improving the safety of the movable platform .
  • FIG. 1 is a schematic flowchart of a method for controlling a movable platform according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of a track channel provided by an embodiment of the present invention.
  • Figure 3 is a schematic plan view of using a rectangular parallelepiped instead of a trapezoid
  • Figure 4 is a three-dimensional schematic diagram of replacing a trapezoid with a rectangular parallelepiped
  • Fig. 5 is a schematic diagram of another trajectory channel provided by an embodiment of the present invention.
  • Figure 6 is an analysis diagram of the speed and acceleration of the movable platform
  • Fig. 7 is a schematic diagram of the mapping relationship between the width and height of the cuboid and the distance
  • Figure 8 is a schematic diagram of the relationship between offset distance and radius value and distance
  • FIG. 9 is a schematic flowchart of another method for controlling a movable platform according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a control terminal provided by an embodiment of the present invention.
  • Fig. 11 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention.
  • the movable platform may be a movable device such as an unmanned aerial vehicle (UAV), an unmanned vehicle (or a movable car), an unmanned ship, and a mobile robot.
  • UAV unmanned aerial vehicle
  • the movement parameters of the movable platform are acquired, and the trajectory parameters of the movement trajectory of the movable platform are predicted according to the movement parameters; then the predicted trajectory channel of the movable platform is determined according to the trajectory parameters to control the movable platform
  • the mobile platform moves in the target space area corresponding to the predicted trajectory channel.
  • the target space area corresponding to the predicted trajectory channel is a three-dimensional structure, and the space area occupied by the movable platform in the process of moving along the movement trajectory corresponding to the trajectory parameter is within the target space area to ensure that the movable platform can be Normal movement within the target space area corresponding to the predicted trajectory channel; in addition, the cross-sectional area of the space area whose distance from the current position point of the movable platform is the first distance in the target space area is smaller than the current position point of the movable platform The distance between the two is the cross-sectional area of the space area at the second distance, and the first distance is smaller than the second distance, so as to have both situations where the movable platform moves along a linear track or moves along a curved track.
  • the trajectory channel of the movable platform can be predicted during the movement of the movable platform, so that the predicted trajectory only needs to be detected when the movable platform is subsequently detected whether there is an object that hinders the movement of the movable platform. Whether there is an object in the channel that hinders the movement of the movable platform, it can not only effectively improve the efficiency of obstacle detection, but also reduce the probability that nearby objects are misjudged as obstacles, thereby effectively improving the accuracy of obstacle detection. It is beneficial to improve the accuracy of obstacle avoidance during the movement of the movable platform, thereby improving the mobile safety of the movable platform.
  • FIG. 1 is a schematic flowchart of a method for controlling a movable platform according to a first embodiment of the present invention.
  • the control method of the movable platform described in the embodiment of the present invention can be applied to the movable platform itself, and can also be applied to a control terminal that establishes a communication connection with the movable platform.
  • the control method of the movable platform may include:
  • the movement parameter includes the speed parameter, the acceleration parameter and the current control amount of the movable platform.
  • the speed parameter includes the speed of the movable platform in the first direction and the speed in the second direction
  • the acceleration parameter includes the acceleration of the movable platform in the first direction and the acceleration in the second direction;
  • the first direction and The second direction is vertical, the first direction is the direction in which the movable platform moves forward and backward, and the second direction is the direction in which the movable platform moves left and right.
  • the current control quantity includes the control quantity input by the user and/or the control quantity triggered by the external object, and the control quantity input by the user and/or the control quantity triggered by the external object can adjust the speed and/or acceleration of the movable platform.
  • the external object is, for example, wind.
  • the combined acceleration in the direction and the second direction predicts the trajectory parameters of the movement trajectory of the movable platform.
  • the movable platform moves along a curved movement trajectory;
  • the predicted trajectory parameters include curved movement The radius value of the trajectory, which is not zero.
  • the target space area corresponding to the predicted trajectory channel may be a regular three-dimensional structure, and the regular three-dimensional structure may be a rectangular parallelepiped structure, a ladder structure, or a truncated truncated structure, etc.; the target space corresponding to the predicted trajectory channel The area may also be an irregular three-dimensional structure; the target space area corresponding to the predicted trajectory channel may also be composed of multiple sub-space areas with a regular three-dimensional structure.
  • the target space region corresponding to the predicted trajectory channel is composed of at least two subspace regions, and each subspace region of the at least two subspace regions is a three-dimensional structure.
  • the method of determining the predicted trajectory channel of the movable platform according to the trajectory parameter may be as follows: firstly obtain the size data of each subspace area in the at least two subspace areas; the size data includes the corresponding parameters of each subspace area along the trajectory The span value of the movement trajectory, the span value is the distance between the frontmost section and the rearmost section in each subspace area, that is, the distance between each subspace area in the forward and backward movement direction of the movable platform Value; the size data also includes at least one of the height value, width value and radius value of each subspace area.
  • the trajectory parameter and the span value included in the size data determine the target offset distance between each subspace area and the current position point of the movable platform; then determine the target offset distance and the size data according to the target offset distance and the size data.
  • the trajectory channel parameter of the predicted trajectory channel of the mobile platform, and the predicted trajectory channel of the movable platform is obtained according to the trajectory channel parameter.
  • the method of determining the target offset distance between each subspace area and the current position point of the movable platform may be as follows: first, according to the size data, Determine the first offset distance between each subspace area in the first direction and the current position point of the movable platform; and then determine each subspace area according to the trajectory parameter and the first offset distance The second offset distance from the current position of the movable platform in the second direction, and the second offset distance is taken as the target offset distance.
  • the first direction is perpendicular to the second direction, the first direction is the direction in which the movable platform moves back and forth, and the second direction is the direction in which the movable platform moves left and right;
  • the second offset distance may be zero or not;
  • the second offset distance of each subspace area from the current position point of the movable platform in the second direction may be equal or unequal.
  • the offset distance between the center point of the first subspace region in the second direction and the current position point of the movable platform in the at least two subspace regions is less than the center point of the second subspace region.
  • the offset distance between the second direction and the current position of the movable platform; the distance between the first subspace area in the first direction and the current position of the movable platform is smaller than the second subspace area in the first direction.
  • the distance between upward and the current position of the movable platform; the cross-sectional area of the first subspace region in the first direction is smaller than the cross-sectional area of the second subspace region in the first direction.
  • the span value of each subspace region in the at least two subspace regions is the same, and the height value, width value, and radius value of each subspace region have a linear relationship with the first offset distance value.
  • the three-dimensional structure to which each sub-space region of the at least two sub-space regions belongs is the same and is a regular three-dimensional structure; the three-dimensional structure may be a rectangular parallelepiped structure, a ladder structure, or a truncated cone structure, etc., that is In other words, the cross-section of the three-dimensional structure can be rectangular, trapezoidal or circular.
  • the target space area corresponding to the predicted trajectory channel has the movement trajectory corresponding to the trajectory parameter as the central axis.
  • FIG. 2 is a schematic diagram of a trajectory channel provided by an embodiment of the present invention.
  • 201 represents a movable platform, and the figure takes the movable platform as a drone as an example;
  • v represents the speed of the movable platform in the first direction, that is, forward and backward along the movable platform Velocity in the moving direction;
  • a represents the acceleration of the movable platform in the second direction, and the second direction is the direction in which the movable platform moves left and right.
  • the movable platform will move along the linear movement track indicated by track 1 in the figure. If the acceleration a of the movable platform in the second direction is not 0, and v is not 0, the movable platform will move along the curved movement track indicated by track 2 in the figure.
  • the acceleration a generated by the movable platform in the second direction may be caused by external force factors; the external force factors may be wind blowing, the controller of the movable platform does not operate properly (for example, the stick is not straight).
  • the cross-sectional area of the track channel in the first direction can be set equal, and the cross-sectional area of the track channel in the first direction cannot The setting is too small to ensure that the movable platform moves normally in the track channel.
  • the cross-sectional area of the trajectory channel in the first direction is set to be equal, then in order to ensure the normal movement of the movable platform in the trajectory channel, it is necessary to set the trajectory channel in the first direction.
  • the cross-sectional area is set relatively large, so the spatial area corresponding to the trajectory channel will be relatively large.
  • the larger space area corresponding to the trajectory channel increases the number of objects that may collide, which will increase the probability that nearby objects will be misjudged as obstacles, reduce the efficiency and accuracy of obstacle detection, and reduce the movable platform
  • the accuracy of obstacle avoidance during the movement reduces the mobile safety of the movable platform.
  • the cross-sectional area of the trajectory channel in the first direction is set to be unequal, and the longer the distance is, the larger the cross-sectional area is. .
  • the embodiment of the present invention can set the trajectory channel of the movable platform as a trapezoid structure. As shown by 202 in the left image of FIG.
  • the planar structure of the top view of the trapezoid channel is shown; as shown in the right image of FIG. 2, the three-dimensional structure of the trapezoid channel is shown, and the spatial area shown in 2022
  • the cross-sectional area is greater than the cross-sectional area of the space area shown in 2021, and the distance between the space area shown in 2022 and the current position point of the movable platform is greater than the distance between 2021 and the current position point of the movable platform.
  • FIG. 3 is a schematic plan view of using a small rectangular parallelepiped instead of a trapezoid
  • FIG. 4 is a three-dimensional schematic view of using a small rectangular parallelepiped instead of a trapezoid. As shown in Figure 3 and Figure 4, each small cuboid actually fits a small segment of trapezoid.
  • each small rectangular parallelepiped includes three dimensions of span, height and width.
  • the span is the length of the small rectangular parallelepiped in the X-axis direction (or the first direction), and the width is the small rectangular parallelepiped in Y
  • the length in the axis direction (or the second direction), height is the length of the small rectangular parallelepiped in the Z-axis direction (or the third direction);
  • the X-axis direction is the direction in which the movable platform moves forward and backward, and the Y-axis
  • the direction is the direction in which the movable platform moves left and right, and the Z-axis direction is also the direction in which the movable platform moves up and down.
  • FIG. 5 is a schematic diagram of the cuboid offset along the movable platform offset direction. As shown in Figure 5, each small cuboid that forms the track channel has a certain offset in the movable platform offset direction.
  • the trajectory channel composed of multiple cuboids can also take the movement trajectory of the movable platform as the central axis, that is, the center points of the multiple cuboids constituting the trajectory channel are all located on the movement trajectory of the movable platform on.
  • the trajectory channel includes but is not limited to a trapezoid structure, and the one used to replace the trapezoid includes but is not limited to a rectangular parallelepiped.
  • 601 represents the current position of the movable platform
  • v x represents the speed of the movable platform in the X-axis direction
  • v y represents the speed of the movable platform in the Y-axis direction
  • a x represents the movable platform
  • a y represents the acceleration of the movable platform in the Y axis direction
  • 602 represents the direction of the centripetal acceleration of the movable platform in circular motion.
  • a x and a y can be generated by the movable platform under the current control amount, and a x and a y can also be the acceleration generated by the movable platform under the current control amount and the original acceleration of the movable platform The resultant acceleration.
  • the radius value of the curved movement trajectory of the movable platform is predicted.
  • a n -a x sin( ⁇ )+a y cos( ⁇ )
  • the angular velocity ⁇ of the curve movement track can be further calculated:
  • the curved movement trajectory under the (fly level) coordinate system of the flying horizontal plane can be obtained as:
  • 603 in FIG. 6 represents a part of the curved movement trajectory of the movable platform determined according to the aforementioned speed parameters v x , v y and acceleration parameters a x , a y .
  • the mathematical expression of the curved movement trajectory can also be obtained according to the radius value to realize the curve of the movable platform Prediction of movement trajectory.
  • the size data of each subspace area (or rectangular parallelepiped) constituting the trajectory channel of the movable platform is calculated.
  • the size data includes span, height, and width. Assuming that the maximum observation distance is X max , the total number of cuboids forming the trajectory channel of the movable platform is preset to N, and the span of each cuboid is the same; then the span of each cuboid is:
  • FIG. 7 shows the mapping relationship between the width and height of the cuboid and the distance.
  • FIG. 7 shows the mapping relationship between the width and distance of the cuboid; as shown in the right figure in FIG. 7, it is a schematic diagram of the mapping relationship between the height and the distance of the cuboid.
  • the slopes of the two mapping relationships in the d 1 to d N segments can be obtained:
  • width w i and height h i of the i-th slice are respectively:
  • Figure 8 shows the relationship between the offset distance and the radius value and distance.
  • the left picture in Figure 8 is a schematic diagram of using a rectangular parallelepiped to construct the trajectory channel of the movable platform.
  • the small dot in the figure represents the center point of the rectangular parallelepiped, and the curve represents the curved movement trajectory of the movable platform;
  • the trajectory channel of the mobile platform takes the curved movement trajectory as the central axis, that is, the center points of the multiple cuboids used to construct the trajectory channel are located on the curved movement trajectory.
  • the point 801 indicates the current position of the movable platform
  • 802 represents the center point of the i-th rectangular parallelepiped
  • R & lt radius value is calculated trajectories of the movable platform
  • D i is the i th
  • the distance between the center point 802 of the cuboid and the current position point 801 of the movable platform in the X-axis direction; the offset distance y between the center point 802 of the i-th cuboid and the current position point 801 of the movable platform in the Y-axis direction c (i) is:
  • the boundary range of each cuboid in the three-dimensional space is calculated, and the boundary range of the i-th cuboid in the three-dimensional space can be obtained as:
  • the predicted trajectory channel of the movable platform can be determined to control the movable platform to move in the target space area corresponding to the predicted trajectory channel.
  • the three-dimensional structure of the sub-space area constituting the trajectory channel includes but is not limited to a rectangular parallelepiped, which can be selected according to the actual structure of the trajectory channel.
  • step S101 to step is triggered S103.
  • the movement parameters of the movable platform are re-acquired; then it is detected whether the movement parameters of the movable platform have changed, and if so, it is re-predicted based on the re-acquired movement parameters
  • the trajectory parameters of the movement trajectory of the movable platform and then re-determine the predicted trajectory channel of the movable platform according to the newly acquired trajectory parameters to control the movable platform to move in the target space area corresponding to the newly determined predicted trajectory channel.
  • the movement state satisfies the preset conditions including the movement time of the movable platform reaches the preset time length, the movement distance of the movable platform reaches the preset distance, and the new control value input for the movable platform changes the movement parameters of the movable platform One or more of.
  • it is detected whether the number of frames of the data frame transmitted by the movable platform reaches the preset number of frames.
  • the data frame may be an image frame, and it is detected that the movable platform transmits When the frame number of the data frame reaches the preset frame number, the execution of step S101 to step S103 is triggered.
  • the embodiment of the present invention predicts the trajectory parameters of the movable platform according to the movement parameters, and determines the predicted trajectory channel of the movable platform according to the trajectory parameters, so as to control the movable platform to move in the target space region corresponding to the predicted trajectory channel.
  • the cross-sectional area of the space area close to the movable platform is smaller than the cross-sectional area of the space area far away from the movable platform, which is beneficial to improve the accuracy of obstacle avoidance during the movement of the movable platform, thereby improving the safety of the movable platform .
  • FIG. 9 is a schematic flowchart of a method for controlling a movable platform according to a second embodiment of the present invention.
  • the method for controlling the movable platform described in the embodiment of the present invention can be applied to the movable platform itself, and can also be applied to a control terminal that establishes a communication connection with the movable platform.
  • the movable platform is equipped with a photographing device, and the photographing device is used to collect a depth image of the environment where the movable platform is located.
  • the camera can be mounted on a pan-tilt on a movable platform; the pan-tilt provided on the movable platform can be rotatable or fixed.
  • the control method of the movable platform may include:
  • S902 Predict the trajectory parameter of the movement trajectory of the movable platform according to the movement parameter.
  • step S901 to step S903 for the specific implementation manner of step S901 to step S903, reference may be made to the related description in the foregoing embodiment, which is not repeated here.
  • S904 Obtain a depth image of the environment where the movable platform is located and collected by the camera, and detect whether there is an obstacle in the target space area corresponding to the predicted trajectory channel according to the depth image.
  • the number of 3D points in a certain spatial area corresponding to the predicted trajectory channel is determined according to the depth image.
  • the 3D points are also It is a suspected obstacle point in the target space area; if the number of 3D points in a certain part of the space area corresponding to the predicted trajectory channel is greater than the preset number threshold (for example, 10), it is determined that there is an obstacle in the target space area corresponding to the predicted trajectory channel , And perform step S105 and step S106. Otherwise, the process ends.
  • the preset number threshold for example, 10
  • the movable platform is controlled to move within the predicted trajectory channel, when detecting whether there is an object that hinders the movement of the movable platform during the movement of the movable platform, it is only necessary to detect whether there is an obstacle to the movement of the movable platform in the predicted trajectory channel This can not only effectively improve the efficiency of obstacle detection, but also reduce the probability that nearby objects are misjudged as obstacles, thereby effectively improving the accuracy of obstacle detection.
  • S906 Determine an obstacle avoidance strategy according to the position information and the distance information, and control the movable platform according to the obstacle avoidance strategy, so that the movable platform avoids the obstacle.
  • the obstacle avoidance strategy includes controlling the movable platform to change the movement track or controlling the movable platform to perform a braking operation.
  • the obstacle and the speed of the movable platform are detected according to the distance information and the speed of the movable platform. Whether the distance between the current position points of the movable platform meets the requirements of the braking distance; if so, determine the braking position point according to the distance information, the position information and the speed of the movable platform, and control the movable platform to execute at the braking position point
  • the brake is operated to stop the movable platform before hitting the obstacle.
  • the movable platform is controlled to reduce the moving speed, and a new movement track is determined according to the distance information and the position information, and the movable platform is controlled to move according to the new movement track, so that the movable platform avoids obstacles.
  • this 3D point is in the spatial region corresponding to the i-th cuboid. Traverse in turn from the cuboid closest to the movable platform to the distance. If there are enough 3D points in the space area corresponding to a cuboid, it means that there are obstacles in the space area corresponding to the cuboid; and get all the space areas corresponding to the cuboid.
  • the median value of the distance between the 3D point in the X axis direction and the current position point of the movable platform, and the median value is taken as the distance between the obstacle and the current position point of the movable platform.
  • the movable platform can also detect obstacles in the spatial area corresponding to the trajectory channel according to other visual perception devices, radar, etc.
  • the movable platform after controlling the movable platform to move within the target space area corresponding to the predicted trajectory channel, if an obstacle is detected in the target space area, the current position information of the obstacle and the obstacle and the movable platform The distance information between the location points determines the obstacle avoidance strategy, and controls the movable platform according to the obstacle avoidance strategy so that the movable platform avoids obstacles; among them, the cross section of the space area near the movable platform in the target space area The area is smaller than the cross-sectional area of the space area far from the movable platform.
  • the above method is beneficial to improve the accuracy of obstacle avoidance during the movement of the movable platform, thereby improving the safety of the movable platform.
  • FIG. 10 is a schematic structural diagram of a control terminal according to an embodiment of the present invention.
  • the control terminal described in the embodiment of the present invention includes a processor 1001, a communication interface 1002, and a memory 1003. Among them, the processor 1001, the communication interface 1002, and the memory 1003 may be connected through a bus or in other ways.
  • the embodiment of the present invention takes the connection through a bus as an example.
  • the processor 1001 may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • the processor 1001 may also be a multi-core CPU or a core used to implement communication identification binding in a multi-core NP.
  • the processor 1001 may be a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (generic array logic, GAL) or any combination thereof.
  • the communication interface 1002 can be used for the exchange of information or signaling, as well as the reception and transmission of signals.
  • the control terminal establishes a communication connection with the movable platform through the communication interface 1002.
  • the memory 1003 may mainly include a storage program area and a storage data area.
  • the storage program area can store an operating system and a storage program required by at least one function (such as a text storage function, a location storage function, etc.); the storage data area can store Data (such as image data, text data) created according to the use of the device, etc., and may include application storage programs, etc.
  • the memory 1003 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the memory 1003 is also used to store program instructions.
  • the processor 1001 is configured to execute program instructions stored in the memory 1003. When the program instructions are executed, the processor 1001 is configured to: pass the communication interface 1002 during the movement of the movable platform Obtain the movement parameters of the movable platform; predict the trajectory parameters of the movement trajectory of the movable platform according to the movement parameters; determine the predicted trajectory channel of the movable platform according to the trajectory parameters to pass the communication interface 1002 Control the movable platform to move in the target space area corresponding to the predicted trajectory channel; wherein the target space area corresponding to the predicted trajectory channel is a three-dimensional structure, and the movable platform is moving along the corresponding trajectory parameter
  • the space area occupied during the movement of the movement track is in the target space area; the cross-sectional area of the space area whose distance from the current position point of the movable platform in the target space area is the first distance is smaller than The distance from the current position point of the movable platform is the cross-sectional area of the space region of the
  • the target space region corresponding to the predicted trajectory channel is composed of at least two subspace regions, and each subspace region of the at least two subspace regions is a three-dimensional structure.
  • the processor 1001 determines the predicted trajectory channel of the movable platform according to the trajectory parameter, it is specifically configured to: obtain the size data of each subspace region of the at least two subspace regions, so The size data includes a span value along the movement track corresponding to the track parameter, the size data further includes at least one of a height value, a width value, and a radius value; according to the track parameter and the span value included in the size data Value, determine the target offset distance between the respective subspace regions and the current position point of the movable platform; determine the predicted trajectory channel of the movable platform according to the target offset distance and the size data.
  • the processor 1001 determines the target offset distance between the respective subspace regions and the current position point of the movable platform according to the trajectory parameter and the span value included in the size data Is specifically used to: determine the first offset distance between each subspace area in the first direction and the current position point of the movable platform according to the span value included in the size data; Trajectory parameters and the first offset distance, determine the second offset distance of each subspace area from the current position of the movable platform in the second direction, and use the second offset distance as The target offset distance, the first direction is perpendicular to the second direction.
  • the offset distance between the center point of the first subspace region in the second direction and the current position point of the movable platform in the at least two subspace regions is smaller than the second subspace
  • the target space area corresponding to the predicted trajectory channel has a movement trajectory corresponding to the trajectory parameter as a central axis.
  • the three-dimensional structure to which each sub-space region of the at least two sub-space regions belongs is the same, and the three-dimensional structure is a rectangular parallelepiped structure, a ladder structure or a truncated cone structure.
  • the span value of each subspace region in the at least two subspace regions is the same, and the height value, width value, and radius value of each subspace region are in a linear relationship with the first offset distance value.
  • the movement trajectory corresponding to the trajectory parameter is a curve
  • the trajectory parameter includes a radius value of the curved movement trajectory
  • the movement parameters include speed parameters, acceleration parameters, and current control variables of the movable platform;
  • the speed parameters include speeds of the movable platform in a first direction and a second direction, respectively
  • the acceleration parameter includes the acceleration of the movable platform in a first direction and a second direction, and the first direction is perpendicular to the second direction;
  • the current control amount includes a control amount input by a user and/or The amount of control triggered by an external object.
  • the processor 1001 is further configured to: during the movement of the movable platform, detect whether the movement state of the movable platform satisfies a preset condition; if the movement status of the movable platform is detected If the movement state satisfies a preset condition, the acquisition of the movement parameters of the movable platform is performed.
  • the moving state satisfies the preset condition including the moving time of the movable platform reaching the preset time, the moving distance of the movable platform reaching the preset distance, and the new input for the movable platform
  • a photographing device is configured on the movable platform, and the photographing device is used to collect a depth image of the environment in which the movable platform is located, and the processor 1001 is further used to: through the communication interface 1002 acquires a depth image of the environment in which the movable platform is located, which is collected by the camera, and detects whether there is an obstacle in the target space area corresponding to the predicted trajectory channel according to the depth image; if so, according to the The depth image acquires the position information of the obstacle and the distance information between the obstacle and the current position point of the movable platform; determines the obstacle avoidance strategy according to the position information and the distance information, and uses the communication
  • the interface 1002 controls the movable platform according to the obstacle avoidance strategy, so that the movable platform avoids the obstacle.
  • the obstacle avoidance strategy includes controlling the movable platform to change a movement trajectory or controlling the movable platform to perform a braking operation.
  • the processor 1001, the communication interface 1002, and the memory 1003 described in the embodiment of the present invention can execute the implementation described in the method for controlling a movable platform provided in the embodiment of the present invention, and will not be repeated here. .
  • FIG. 11 is a schematic structural diagram of a movable platform according to an embodiment of the present invention.
  • the control terminal described in the embodiment of the present invention includes: a processor 1101 and a memory 1102.
  • the processor 1101 and the memory 1102 may be connected through a bus or in other ways.
  • the embodiment of the present invention takes the connection through a bus as an example.
  • the memory 1102 is configured to store program instructions; the processor 1101 is configured to execute program instructions stored in the memory 1102, and when the program instructions are executed, the processor 1101 is configured to:
  • the movable platform obtains movement parameters of the movable platform; predict the trajectory parameters of the movement trajectory of the movable platform according to the movement parameters; determine the movable platform according to the trajectory parameters The predicted trajectory channel to control the movable platform to move in the target space area corresponding to the predicted trajectory channel; wherein the target space area corresponding to the predicted trajectory channel is a three-dimensional structure, and the movable platform is moving along the The space area occupied during the movement of the movement trajectory corresponding to the trajectory parameter is within the target space area; a space area in which the distance between the target space area and the current position point of the movable platform is the first distance The cross-sectional area of is smaller than the cross-sectional area of the space region whose distance from the current position point of the movable platform is the second distance, and the first distance is less than the second distance.
  • the target space region corresponding to the predicted trajectory channel is composed of at least two subspace regions, and each subspace region of the at least two subspace regions is a three-dimensional structure.
  • the processor 1101 determines the predicted trajectory channel of the movable platform according to the trajectory parameter, it is specifically configured to: obtain the size data of each of the at least two subspace regions, so The size data includes a span value along the movement track corresponding to the track parameter, and the size data further includes at least one of a height value, a width value, and a radius value; according to the track parameter and the span included in the size data Value, determine the target offset distance between the respective subspace regions and the current position point of the movable platform; determine the predicted trajectory channel of the movable platform according to the target offset distance and the size data.
  • the processor 1101 determines the target offset distance between the respective subspace regions and the current position point of the movable platform according to the trajectory parameter and the span value included in the size data Is specifically used to: determine the first offset distance between each subspace area in the first direction and the current position point of the movable platform according to the span value included in the size data; Trajectory parameters and the first offset distance, determine the second offset distance of each subspace area from the current position of the movable platform in the second direction, and use the second offset distance as The target offset distance, the first direction is perpendicular to the second direction.
  • the offset distance between the center point of the first subspace region in the second direction and the current position point of the movable platform in the at least two subspace regions is smaller than the second subspace
  • the target space area corresponding to the predicted trajectory channel has a movement trajectory corresponding to the trajectory parameter as a central axis.
  • the three-dimensional structure to which each sub-space region of the at least two sub-space regions belongs is the same, and the three-dimensional structure is a rectangular parallelepiped structure, a ladder structure or a truncated cone structure.
  • the span value of each subspace region in the at least two subspace regions is the same, and the height value, width value, and radius value of each subspace region are in a linear relationship with the first offset distance value.
  • the movement trajectory corresponding to the trajectory parameter is a curve
  • the trajectory parameter includes a radius value of the curved movement trajectory
  • the movement parameters include speed parameters, acceleration parameters, and current control variables of the movable platform;
  • the speed parameters include speeds of the movable platform in a first direction and a second direction, respectively
  • the acceleration parameter includes the acceleration of the movable platform in a first direction and a second direction, and the first direction is perpendicular to the second direction;
  • the current control amount includes a control amount input by a user and/or The amount of control triggered by an external object.
  • the processor 1101 is further configured to: during the movement of the movable platform, detect whether the movement state of the movable platform satisfies a preset condition; if the movement status of the movable platform is detected If the movement state satisfies a preset condition, the acquisition of the movement parameters of the movable platform is performed.
  • the moving state satisfies the preset condition including the moving time of the movable platform reaching the preset time, the moving distance of the movable platform reaching the preset distance, and the new input for the movable platform
  • a photographing device is configured on the movable platform, and the photographing device is used to collect a depth image of the environment in which the movable platform is located, and the processor 1101 is further used to: Collect a depth image of the environment where the movable platform is located, and detect whether there is an obstacle in the target space area corresponding to the predicted trajectory channel according to the depth image; if so, obtain the obstacle according to the depth image
  • the position information of the obstacle and the distance information between the obstacle and the current position of the movable platform; the obstacle avoidance strategy is determined according to the position information and the distance information, and the obstacle avoidance strategy is used for the obstacle avoidance strategy.
  • the mobile platform performs control so that the movable platform avoids the obstacle.
  • the obstacle avoidance strategy includes controlling the movable platform to change a movement trajectory or controlling the movable platform to perform a braking operation.
  • the processor 1101 and the memory 1102 described in the embodiment of the present invention can execute the implementation manner described in the method for controlling a movable platform provided in the embodiment of the present invention, which is not repeated here.
  • An embodiment of the present invention also provides a computer-readable storage medium, in which a computer program is stored, and when the computer program is executed by a processor, the method for controlling the movable platform described in the foregoing method embodiment is implemented .
  • the embodiment of the present invention also provides a computer program product containing instructions, which when running on a computer, causes the computer to execute the control method of the movable platform described in the above method embodiment.
  • the program can be stored in a computer-readable storage medium, and the storage medium can include: Flash disk, read-only memory (Read-Only Memory, ROM), random access device (Random Access Memory, RAM), magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Business, Economics & Management (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种可移动平台的控制方法、控制终端及可移动平台,其中,所述方法包括:在可移动平台移动的过程中,获取可移动平台的移动参数(S101);根据移动参数预测可移动平台的移动轨迹的轨迹参数(S102);根据轨迹参数确定可移动平台的预测轨迹通道,以控制可移动平台在预测轨迹通道对应的目标空间区域内移动(S103);其中,预测轨迹通道对应的目标空间区域为立体结构,目标空间区域中与可移动平台当前位置点之间的距离为第一距离的空间区域的截面面积,小于与可移动平台当前位置点之间的距离为第二距离的空间区域的截面面积,第一距离小于第二距离。通过本发明实施例有利于提高可移动平台移动过程中的避障准确性,从而可以提高可移动平台的移动安全性。

Description

可移动平台的控制方法、控制终端及可移动平台 技术领域
本发明涉及控制技术领域,尤其涉及一种可移动平台的控制方法、控制终端及可移动平台。
背景技术
随着科学技术的进步,诸如无人机、无人船、可移动小车等可移动平台的功能不断丰富,已经广泛应用于公共服务、农业、监察、航拍等领域中。可移动平台在执行任务操作的过程中,通常需要进行移动,但在可移动平台移动过程中可能会出现一些突发状况,例如在可移动平台的移动路径上出现障碍物等,这些突发状况会影响可移动平台移动过程中的安全性。因此,如何提高可移动平台移动过程中的安全性是有待解决的问题。
发明内容
本发明实施例公开了一种可移动平台的控制方法、控制终端及可移动平台,有利于提高可移动平台移动过程中的避障准确性,从而可以提高可移动平台的移动安全性。
本发明实施例第一方面公开了一种可移动平台的控制方法,所述方法包括:
在可移动平台移动的过程中,获取所述可移动平台的移动参数;
根据所述移动参数预测所述可移动平台的移动轨迹的轨迹参数;
根据所述轨迹参数确定所述可移动平台的预测轨迹通道,以控制所述可移动平台在所述预测轨迹通道对应的目标空间区域内移动;
其中,所述预测轨迹通道对应的目标空间区域为立体结构,所述可移动平台在沿所述轨迹参数对应的移动轨迹移动的过程中所占用的空间区域处于所述目标空间区域内;所述目标空间区域中与所述可移动平台当前位置点之间的距离为第一距离的空间区域的截面面积,小于与所述可移动平台当前位置点之间的距离为第二距离的空间区域的截面面积,所述第一距离小于所述第二距离。
本发明实施例第二方面公开了一种控制终端,所述控制终端与可移动平台 建立有通信连接,所述控制终端包括:存储器、通信接口和处理器,
所述存储器,用于存储程序指令;
所述通信接口受所述处理器的控制用于收发信息;
所述处理器,用于执行所述存储器存储的程序指令,当所述程序指令被执行时,所述处理器用于:
在可移动平台移动的过程中,通过所述通信接口获取所述可移动平台的移动参数;
根据所述移动参数预测所述可移动平台的移动轨迹的轨迹参数;
根据所述轨迹参数确定所述可移动平台的预测轨迹通道,以通过所述通信接口控制所述可移动平台在所述预测轨迹通道对应的目标空间区域内移动;
其中,所述预测轨迹通道对应的目标空间区域为立体结构,所述可移动平台在沿所述轨迹参数对应的移动轨迹移动的过程中所占用的空间区域处于所述目标空间区域内;所述目标空间区域中与所述可移动平台当前位置点之间的距离为第一距离的空间区域的截面面积,小于与所述可移动平台当前位置点之间的距离为第二距离的空间区域的截面面积,所述第一距离小于所述第二距离。
本发明实施例第三方面公开了一种可移动平台,包括:存储器和处理器,
所述存储器,用于存储程序指令;
所述处理器,用于执行所述存储器存储的程序指令,当所述程序指令被执行时,所述处理器用于:
在所述可移动平台移动的过程中,获取所述可移动平台的移动参数;
根据所述移动参数预测所述可移动平台的移动轨迹的轨迹参数;
根据所述轨迹参数确定所述可移动平台的预测轨迹通道,以控制所述可移动平台在所述预测轨迹通道对应的目标空间区域内移动;
其中,所述预测轨迹通道对应的目标空间区域为立体结构,所述可移动平台在沿所述轨迹参数对应的移动轨迹移动的过程中所占用的空间区域处于所述目标空间区域内;所述目标空间区域中与所述可移动平台当前位置点之间的距离为第一距离的空间区域的截面面积,小于与所述可移动平台当前位置点之间的距离为第二距离的空间区域的截面面积,所述第一距离小于所述第二距离。
本发明实施例第四方面公开了一种计算机可读存储介质,所述计算机可读 存储介质中存储有计算机程序,所述计算机程序被处理器执行时实现如上述第一方面所述方法的步骤。
本发明实施例通过根据移动参数预测可移动平台的轨迹参数,并根据轨迹参数确定可移动平台的预测轨迹通道,以控制可移动平台在预测轨迹通道对应的目标空间区域内移动,目标空间区域中距离可移动平台近的空间区域的截面面积,小于距离可移动平台远的空间区域的截面面积,有利于提高可移动平台移动过程中的避障准确性,从而可以提高可移动平台的移动安全性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种可移动平台的控制方法的流程示意图;
图2是本发明实施例提供的一种轨迹通道的示意图;
图3是利用长方体替代梯形体的平面示意图;
图4是利用长方体替代梯形体的立体示意图;
图5是本发明实施例提供的另一种轨迹通道的示意图;
图6是可移动平台的速度和加速度的分析示意图;
图7是长方体的宽和高分别与距离的映射关系示意图;
图8是偏移距离与半径值和距离的关系示意图;
图9是本发明实施例提供的另一种可移动平台的控制方法的流程示意图;
图10是本发明实施例提供的一种控制终端的结构示意图;
图11是本发明实施例提供的一种可移动平台的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明实施例中,可移动平台可以是无人机(Unmanned Aerial Vehicle, UAV)、无人车(或者可移动小车)、无人船、移动机器人等可移动设备。在可移动平台移动的过程中,获取可移动平台的移动参数,并根据该移动参数预测可移动平台的移动轨迹的轨迹参数;然后根据该轨迹参数确定可移动平台的预测轨迹通道,以控制可移动平台在该预测轨迹通道对应的目标空间区域内移动。其中,该预测轨迹通道对应的目标空间区域为立体结构,可移动平台在沿该轨迹参数对应的移动轨迹移动的过程中所占用的空间区域处于该目标空间区域内,以保证可移动平台能够在该预测轨迹通道对应的目标空间区域内正常移动;另外,该目标空间区域中与可移动平台当前位置点之间的距离为第一距离的空间区域的截面面积,小于与可移动平台当前位置点之间的距离为第二距离的空间区域的截面面积,第一距离小于第二距离,以兼具可移动平台沿直线轨迹移动或者沿曲线轨迹移动两种情况。采用上述方式,可以在可移动平台移动的过程中,预测可移动平台的轨迹通道,从而可以在后续检测可移动平台移动过程中是否有阻碍可移动平台移动的物体时,只需检测预测的轨迹通道内是否有阻碍可移动平台移动的物体即可,这样不仅可以有效提高障碍物检测的效率,还可以减少近处物体被误判为障碍物的几率,从而有效提高障碍物检测的准确性,有利于提高可移动平台移动过程中的避障准确性,从而可以提高可移动平台的移动安全性。
请参阅图1,图1为本发明第一实施例提供的一种可移动平台的控制方法的流程示意图。本发明实施例中所描述的可移动平台的控制方法可以应用于可移动平台本身,也可以应用于与可移动平台建立通信连接的控制终端,所述可移动平台的控制方法可以包括:
S101、在可移动平台移动的过程中,获取所述可移动平台的移动参数。
本发明实施例中,该移动参数包括可移动平台的速度参数、加速度参数和当前控制量。该速度参数包括可移动平台在第一方向上的速度和在第二方向上的速度,该加速度参数包括可移动平台在第一方向上的加速度和在第二方向上的加速度;第一方向与第二方向垂直,第一方向是可移动平台前后移动的方向,第二方向是可移动平台左右移动的方向。该当前控制量包括用户输入的控制量和/或外部对象触发的控制量,用户输入的控制量和/或外部对象触发的控制量可以调整可移动平台的速度和/或加速度。外部对象例如是风等。
S102、根据所述移动参数预测所述可移动平台的移动轨迹的轨迹参数。
本发明实施例中,首先根据该移动参数包括的可移动平台的速度参数、加速度参数和当前控制量,确定可移动平台在第一方向上的合速度和在第二方向上的合速度,以及确定可移动平台在第一方向上的合加速度和在第二方向上的合加速度;然后根据可移动平台分别在第一方向上和第二方向上的合速度,以及可移动平台分别在第一方向上和第二方向上的合加速度,预测可移动平台的移动轨迹的轨迹参数。其中,当可移动平台在第一方向上的合速度不为零,且在第二方向上的合加速度均不为零时,可移动平台沿曲线移动轨迹移动;预测得到的轨迹参数包括曲线移动轨迹的半径值,该半径值不为零。当可移动平台在第二方向上的合速度以及合加速度均为零,但在第一方向上的合速度或者合加速度不为零时,可移动平台沿直线移动轨迹移动;预测得到的轨迹参数包括直线移动轨迹的半径值,该半径值为零。
S103、根据所述轨迹参数确定所述可移动平台的预测轨迹通道,以控制所述可移动平台在所述预测轨迹通道对应的目标空间区域内移动;其中,所述预测轨迹通道对应的目标空间区域为立体结构,所述可移动平台在沿所述轨迹参数对应的移动轨迹移动的过程中所占用的空间区域处于所述目标空间区域内;所述目标空间区域中与所述可移动平台当前位置点之间的距离为第一距离的空间区域的截面面积,小于与所述可移动平台当前位置点之间的距离为第二距离的空间区域的截面面积,所述第一距离小于所述第二距离。
本发明实施例中,该预测轨迹通道对应的目标空间区域可以为规则的立体结构,所述规则的立体结构可以为长方体结构、梯行体结构或者圆台结构等;该预测轨迹通道对应的目标空间区域也可以为不规则的立体结构;该预测轨迹通道对应的目标空间区域还可以是由多个为规则立体结构的子空间区域构成的。采用上述方式,可以在可移动平台移动的过程中,预测可移动平台的轨迹通道,从而可以在后续检测可移动平台移动过程中是否有阻碍可移动平台移动的物体时,只需检测预测的轨迹通道内是否有阻碍可移动平台移动的物体即可,这样不仅可以有效提高障碍物检测的效率,还可以减少近处物体被误判为障碍物的几率,从而有效提高障碍物检测的准确性,有利于提高可移动平台移动过程中的避障准确性,从而可以提高可移动平台的移动安全性,提升远场安全性 以及近场灵活性。
在一实施方式中,该预测轨迹通道对应的目标空间区域由至少两个子空间区域构成,该至少两个子空间区域中的各个子空间区域均为立体结构。其中,根据该轨迹参数确定可移动平台的预测轨迹通道的方式可以为:首先获取该至少两个子空间区域中各个子空间区域的尺寸数据;该尺寸数据包括各个子空间区域沿该轨迹参数对应的移动轨迹的跨度值,跨度值也即是各个子空间区域中处于最前面的截面与处于最后面的截面之间的距离值,也即是各个子空间区域在可移动平台前后移动方向上的距离值;该尺寸数据还包括各个子空间区域的高度值、宽度值和半径值中的至少一种。进一步地,根据该轨迹参数以及该尺寸数据包括的跨度值,确定各个子空间区域分别与可移动平台当前位置点之间的目标偏移距离;然后根据该目标偏移距离以及该尺寸数据确定可移动平台的预测轨迹通道的轨迹通道参数,并根据该轨迹通道参数得到可移动平台的预测轨迹通道。
在一实施方式中,根据该轨迹参数以及该尺寸数据包括的跨度值,确定各个子空间区域分别与可移动平台当前位置点之间的目标偏移距离的方式可以为:首先根据该尺寸数据包括的跨度值,确定各个子空间区域分别在第一方向上与可移动平台当前位置点之间的第一偏移距离;然后根据该轨迹参数以及该第一偏移距离,确定各个子空间区域分别在第二方向上与可移动平台当前位置点的第二偏移距离,并将第二偏移距离作为目标偏移距离。其中,第一方向与第二方向垂直,第一方向是可移动平台前后移动的方向,第二方向是可移动平台左右移动的方向;第二偏移距离可以为零,也可以不为零;各个子空间区域分别在第二方向上与可移动平台当前位置点的第二偏移距离可以相等,也可以不相等。
在一实施方式中,该至少两个子空间区域中第一子空间区域的中心点在第二方向上与可移动平台当前位置点之间的偏移距离,小于第二子空间区域的中心点在第二方向上与可移动平台当前位置点之间的偏移距离;第一子空间区域在第一方向上与可移动平台当前位置点之间的距离,小于第二子空间区域在第一方向上与可移动平台当前位置点之间的距离;第一子空间区域在第一方向上的截面面积小于第二子空间区域在第一方向上的截面面积。在另一实施方式中, 该至少两个子空间区域中各个子空间区域的跨度值相同,各个子空间区域的高度值、宽度值、半径值分别与该第一偏移距离值呈线性关系。在又一实施方式中,该至少两个子空间区域中各个子空间区域所属的立体结构相同,并且为规则的立体结构;该立体结构可以为长方体结构、梯行体结构或者圆台结构等,也即是说,该立体结构的截面可以为矩形、梯形或者圆形等。在又一实施方式中,该预测轨迹通道对应的目标空间区域以该轨迹参数对应的移动轨迹为中心轴。
为更好地理解本发明实施例提供的可移动平台的控制方法,下面通过举例子的方式进行详细说明。首先对本发明实施例的主要思路进行说明,请一并参见图2,图2为本发明实施例提供的一种轨迹通道的示意图。如图2中的左图所示,201表示可移动平台,图中以可移动平台为无人机为例;v表示可移动平台在第一方向上的速度,也即是沿可移动平台前后移动方向上的速度;a表示可移动平台在第二方向上的加速度,第二方向也即是可移动平台左右移动的方。如果可移动平台在第二方向上的速度和加速度a均为0,且v不为0,则可移动平台会沿图中轨迹1所指示的直线移动轨迹进行移动。如果可移动平台在第二方向上的加速度a不为0,且v不为0,则可移动平台会沿图中轨迹2所指示的曲线移动轨迹进行移动。其中,可移动平台在第二方向上产生的加速度a,可以是外力因素导致的;外力因素可以是风吹、可移动平台的控制者操作不到位(例如推摇杆不直)等。对于可移动平台沿直线移动轨迹移动的情况,在设置可移动平台的轨迹通道时,可以将轨迹通道在第一方向上的截面面积设置为相等,并且轨迹通道在第一方向上的截面面积不能设置得太小,以保证可移动平台在轨迹通道内正常移动。
对于可移动平台沿曲线移动轨迹移动的情况,从图2中左图可知,可移动平台沿曲线移动轨迹移动离其当前位置点越远,则与其当前位置点在第二方向上的偏移距离则越大。如果在设置可移动平台的轨迹通道时,还是将轨迹通道在第一方向上的截面面积设置为相等,则为保证可移动平台在轨迹通道内正常移动,需要将轨迹通道在第一方向上的截面面积设置得比较大,故轨迹通道对应的空间区域则会比较大。但轨迹通道对应的空间区域大了,可能发生碰撞的物体就变多了,会增大近处物体被误判为障碍物的几率,降低障碍物检测的效 率以及准确性,从而降低可移动平台移动过程中的避障准确性,降低可移动平台的移动安全性。为解决上述问题,本发明实施例在设置可移动平台的轨迹通道时,将轨迹通道在第一方向上的截面面积设置为不相等,并且是距离越远的空间区域,截面面积设置得越大。综上所述,本发明实施例可以将可移动平台的轨迹通道设置为梯形体结构。如图2左图中的202所示,示出了梯形体通道的俯视图的平面结构;如图2中的右图所示,示出了梯形体通道的立体结构,并且2022所示空间区域的截面面积大于2021所示空间区域的截面面积,2022所示空间区域与可移动平台当前位置点的距离大于2021与可移动平台当前位置点的距离。将可移动平台的轨迹通道设置为上述梯形体结构,不仅可以兼具可移动平台沿直线轨迹移动或者沿曲线轨迹移动两种情况,还可以在保证可移动平台在轨迹通道内正常移动的同时,减小轨迹通道对应的空间区域,再加上轨迹通道的截面面积随着距离的变远而变大,这样可以减少近处物体被误判为障碍物的几率,从而可以有效提高障碍物检测的效率以及准确性,有利于提高可移动平台移动过程中的避障准确性,从而可以提高可移动平台的移动安全性,提升远场安全性以及近场灵活性。
但对于梯形体结构的轨迹通道,计算比较复杂,特别是在可移动平台发生转向的时候,曲线十分复杂,计算量大。故本发明实施例利用多个相邻的小长方体,来替代梯形体。请一并参见图3和图4,图3为利用小长方体替代梯形体的平面示意图,图4为利用小长方体来替代梯形体的立体示意图。如图3和图4所示,每个小长方体,其实拟合的是一小段的梯形体。由多个相邻的小长方体构成的轨迹通道的截面面积也是随着距离的变远而变大。如图4所示,每个小长方体均包括跨度、高和宽三个尺寸数据,跨度也即是小长方体在X轴方向(或者说第一方向)上的长度,宽即是小长方体在Y轴方向(或者说第二方向)上的长度,高也即是小长方体在Z轴方向(或者说第三方向)上的长度;X轴方向也即是可移动平台前后移动的方向,Y轴方向也即是可移动平台左右移动的方向,Z轴方向也即是可移动平台上下移动的方向。另外,由于可移动平台在沿曲线移动轨迹2移动的过程中,会在第二方向上产生一定的偏移距离,此时只需保证轨迹通道在可移动平台偏移方向上的空间区域足够大,轨迹通道在可移动平台偏移反方向上的空间区域可以较小;故可以在利用多个相邻的小长方 体来构建可移动平台的轨迹通道时,将每个小长方体在可移动平台偏移方向上设置一定的偏移。请一并参见图5,图5为长方体沿可移动平台偏移方向偏移的示意图,如图5所示,构成轨迹通道的每个小长方体在可移动平台偏移方向均有一定的偏移,且随着距离的变远偏移距离越大。在一特殊情况中,由多个长方体构成的轨迹通道还可以以可移动平台的移动轨迹为中心轴,也即是说,构成轨迹通道的多个长方体的中心点均位于可移动平台的移动轨迹上。需要说明的是,轨迹通道包括但不仅限于是梯形体结构,用于替代梯形体的包括但不仅限于是长方体。
上面详细介绍了本发明实施例的主要思路,下面举例对可移动平台沿曲线移动轨迹移动的情况进行介绍。首先根据可移动平台当前的速度、加速度以及当前控制量,来预测曲线移动轨迹的轨迹参数。通常情况下,可移动平台沿曲线移动轨迹移动时,常见的是保持偏航轴yaw方向(也即是可移动平台左右移动的方向)控制量恒定,如果不考虑切线方向的加速度,那么就可以看做是做圆周运动。请一并参见图6,图6为可移动平台的速度和加速度的分析示意图。如图6所示,601表示可移动平台的当前位置点,v x表示可移动平台在X轴方向上的速度,v y表示可移动平台在Y轴方向上的速度;a x表示可移动平台在X轴方向上的加速度,a y表示可移动平台在Y轴方向上的加速度;602表示可移动平台作圆周运动的向心加速度的方向。其中,a x和a y可以是可移动平台在当前控制量的作用下产生的,a x和a y也可以是可移动平台在当前控制量的作用下产生的加速度以及可移动平台本来的加速度的合加速度。
具体地,根据上述速度参数v x、v y和加速度参数a x、a y,预测可移动平台的曲线移动轨迹的半径值。先计算可移动平台的合速度v h的大小:
Figure PCTCN2019089419-appb-000001
然后计算合速度矢量与X轴正方向(也即是v x所在方向)之间的夹角α:
Figure PCTCN2019089419-appb-000002
接着计算圆周运动的向心加速度a n
a n=-a x sin(α)+a y cos(α)
进一步计算出曲线移动轨迹的半径R:
Figure PCTCN2019089419-appb-000003
其中,进一步可以计算出曲线移动轨迹的角速度ω:
Figure PCTCN2019089419-appb-000004
根据曲线移动轨迹的半径R和角速度ω,可以得到飞行水平面坐标系下的(fly level)下的曲线移动轨迹为:
f lx(t)=Rsin(ωt)
Figure PCTCN2019089419-appb-000005
这里从fly level到世界坐标系world的旋转关系为:
Figure PCTCN2019089419-appb-000006
所以转化为world世界坐标系下,曲线移动轨迹为:
Figure PCTCN2019089419-appb-000007
其中,图6中603表示根据上述速度参数v x、v y和加速度参数a x、a y确定出的可移动平台的曲线移动轨迹的一部分。采用上述方式,不仅可以预测得到曲线移动轨迹的半径值,以根据该半径值确定可移动平台的轨迹通道;还可以根据该半径值得到曲线移动轨迹的数学表达式,实现对可移动平台的曲线移动轨迹的预测。
进一步地,在计算得到可移动平台的移动轨迹的半径值之后,计算构成可移动平台的轨迹通道的各个子空间区域(或者说长方体)的尺寸数据,该尺寸数据包括跨度、高、宽。假设最大观测距离为X max,预先设置了构成可移动平台的轨迹通道的长方体的总数为N,并且各个长方体的跨度相同;则每个长方体的跨度为:
Figure PCTCN2019089419-appb-000008
其中,最大观测距离X max与可移动平台的的设计有关,N为正整数,假设N=20,X max=21.6m,则每个长方体的跨度为D=D i=21.6m/20=1.08m;D i表示第i个长方体的跨度,但每个长方体的跨度相同,所以也可以写为D。故第i个 长方体的中心点,与可移动平台当前位置点在X轴方向上的距离d i为:
d i=(i-0.5)·D
请一并参见图7,图7示出了长方体的宽和高分别与距离的映射关系。如图7中的左图所示,为长方体的宽与距离的映射关系的示意图;如图7中的右图所示,为长方体的高与距离的映射关系的示意图。根据图中的参数,可以得到两个映射关系分别在d 1~d N段的斜率为:
Figure PCTCN2019089419-appb-000009
故第i个切片的宽w i和高h i分别为:
Figure PCTCN2019089419-appb-000010
请一并参见图8,示出了偏移距离与半径值和距离的关系。其中,图8中左图为利用长方体构建可移动平台的轨迹通道的示意图,图中的小圆点表示长方体的中心点,曲线表示可移动平台的曲线移动轨迹;可见,利用长方体构建得到的可移动平台的轨迹通道以该曲线移动轨迹为中心轴,也即是说,用于构建轨迹通道的多个长方体的中心点位于该曲线移动轨迹上。如图8中右图所示,801表示可移动平台的当前位置点,802表示第i个长方体的中心点;R为计算得到的可移动平台的移动轨迹的半径值,d i为第i个长方体的中心点802与可移动平台的当前位置点801在X轴方向上的距离;则第i个长方体的中心点802与可移动平台的当前位置点801在Y轴方向上的偏移距离y c(i)为:
Figure PCTCN2019089419-appb-000011
进一步地,在计算得到各个长方体的尺寸数据之后,计算各个长方体在三维空间中的边界范围,可以得到第i个长方体在三维空间中的边界范围为:
x start(i)=d i-0.5D i,x end(i)=d i+0.5D i
y start(i)=y c(i)-0.5w i,y end(i)=y c(i)+0.5w i
z start(i)=-0.5h i,z end(i)=0.5h i
最后,根据计算得到的各个长方体在三维空间中的边界范围,可以确定出可移动平台的预测轨迹通道,以控制可移动平台在预测轨迹通道对应的目标空间区域内移动。需要说明的是,构成轨迹通道的子空间区域的立体结构包括但 不仅限于是长方体,可以根据轨迹通道的实际结构进行选择。
本发明实施例中,在可移动平台移动的过程中,检测可移动平台的移动状态是否满足预设条件,并在检测到可移动平台的移动状态满足预设条件时,触发执行步骤S101~步骤S103。具体地,在检测到可移动平台的移动状态满足预设条件时,重新获取可移动平台的移动参数;然后检测可移动平台的移动参数是否改变,若是,则根据重新获取到的移动参数重新预测可移动平台的移动轨迹的轨迹参数;然后根据重新获取到的轨迹参数重新确定可移动平台的预测轨迹通道,以控制可移动平台在重新确定出的预测轨迹通道对应的目标空间区域内移动。具体实现方式可参考前文描述,此处不再赘述。其中,移动状态满足预设条件包括可移动平台的移动时长达到预设时长、可移动平台的移动距离达到预设距离和针对可移动平台输入的新的控制量改变了可移动平台的移动参数中的一种或者多种。在另一实施方式中,在可移动平台移动的过程中,检测可移动平台传输的数据帧的帧数是否达到预设帧数,该数据帧可以是图像帧,并在检测到可移动平台传输的数据帧的帧数达到预设帧数时,触发执行步骤S101~步骤S103。
本发明实施例通过根据移动参数预测可移动平台的轨迹参数,并根据轨迹参数确定可移动平台的预测轨迹通道,以控制可移动平台在预测轨迹通道对应的目标空间区域内移动,目标空间区域中距离可移动平台近的空间区域的截面面积,小于距离可移动平台远的空间区域的截面面积,有利于提高可移动平台移动过程中的避障准确性,从而可以提高可移动平台的移动安全性。
请参阅图9,图9为本发明第二实施例提供的一种可移动平台的控制方法的流程示意图。本发明实施例中所描述的可移动平台的控制方法可以应用于可移动平台本身,也可以应用于与可移动平台建立通信连接的控制终端。可移动平台上配置有拍摄装置,该拍摄装置用于采集可移动平台所处环境的深度图像。该拍摄装置可以是挂载在可移动平台的云台上;可移动平台上设置的云台可以是可旋转的,也可以是固定的。所述可移动平台的控制方法可以包括:
S901、在可移动平台移动的过程中,获取所述可移动平台的移动参数。
S902、根据所述移动参数预测所述可移动平台的移动轨迹的轨迹参数。
S903、根据所述轨迹参数确定所述可移动平台的预测轨迹通道,以控制所 述可移动平台在所述预测轨迹通道对应的目标空间区域内移动;其中,所述预测轨迹通道对应的目标空间区域为立体结构,所述可移动平台在沿所述轨迹参数对应的移动轨迹移动的过程中所占用的空间区域处于所述目标空间区域内;所述目标空间区域中与所述可移动平台当前位置点之间的距离为第一距离的空间区域的截面面积,小于与所述可移动平台当前位置点之间的距离为第二距离的空间区域的截面面积,所述第一距离小于所述第二距离。
本发明实施例中,步骤S901~步骤S903的具体实现方式可参考前文实施例中的相关描述,此处不再赘述。
S904、获取所述拍摄装置采集到的所述可移动平台所处环境的深度图像,并根据所述深度图像检测所述预测轨迹通道对应的目标空间区域中是否存在障碍物。
本发明实施例中,获取到拍摄装置采集到的可移动平台所处环境的深度图像之后,根据该深度图像确定处于预测轨迹通道对应的某一部分空间区域中的3D点的数量,3D点也即是目标空间区域中的疑似障碍点;若处于预测轨迹通道对应的某一部分空间区域中的3D点的数量大于预设数量阈值(例如10),则确定预测轨迹通道对应的目标空间区域中存在障碍物,并执行步骤S105和步骤S106。反之,则结束流程。其中,由于是控制可移动平台在预测轨迹通道内移动,则在检测可移动平台移动过程中是否有阻碍可移动平台移动的物体时,只需检测预测的轨迹通道内是否有阻碍可移动平台移动的物体即可,这样不仅可以有效提高障碍物检测的效率,还可以减少近处物体被误判为障碍物的几率,从而有效提高障碍物检测的准确性。
S905、若所述预测轨迹通道对应的目标空间区域中存在障碍物,则根据所述深度图像获取所述障碍物的位置信息以及所述障碍物与所述可移动平台当前位置点之间的距离信息。
S906、根据所述位置信息以及所述距离信息确定避障策略,并按照所述避障策略对所述可移动平台进行控制,以使所述可移动平台避开所述障碍物。
本发明实施例中,该避障策略包括控制可移动平台改变移动轨迹或者控制可移动平台执行刹车操作。在一实施方式中,根据该深度图像获取到障碍物的位置信息以及障碍物与可移动平台当前位置点之间的距离信息之后,根据该距 离信息以及该可移动平台的速度,检测障碍物与可移动平台当前位置点之间的距离是否满足刹车距离要求;若是,则根据该距离信息、该位置信息以及该可移动平台的速度确定刹车位置点,并在该刹车位置点控制可移动平台执行刹车操作,以使可移动平台在撞上障碍物之前停住。反之,则控制可移动平台降低移动速度,并根据该距离信息和该位置信息确定新的移动轨迹,并控制可移动平台按照新的移动轨迹进行移动,以使可移动平台避开障碍物。
下面举例进行说明,结合前文所述的例子可知,构成可移动平台的轨迹通道的第i个长方体在三维空间中的边界范围为:
x start(i)=d i-0.5D i,x end(i)=d i+0.5D i
y start(i)=y c(i)-0.5w i,y end(i)=y c(i)+0.5w i
z start(i)=-0.5h i,z end(i)=0.5h i
当一个3D点P=[x,y,z]满足条件
Figure PCTCN2019089419-appb-000012
则可以认为这个3D点在第i个长方体对应的空间区域内。从距离可移动平台最近的长方体向远处依次遍历,某个长方体对应的空间区域内3D点数足够多,则说明此长方体对应的空间区域内有障碍物;并获取该长方体对应的空间区域内所有3D点在X轴方向与可移动平台当前位置点的距离值的中值,并将该中值作为障碍物与可移动平台当前位置点之间的距离。并且可以与之前的两帧观测做时序滤波,可以是中值滤波,或是高斯滤波,计算出更加平滑稳定的障碍物与可移动平台当前位置点之间的距离。进一步地,如果在多帧观测中均确认此长方体对应的空间区域内有障碍物,则根据障碍物与可移动平台当前位置点之间的距离、障碍物的位置信息以及该可移动平台的速度确定刹车位置点,并在该刹车位置点控制可移动平台执行刹车操作,以使可移动平台在撞上障碍物之前停住。需要说明的是,可移动平台还可以根据其他视觉感知设备、雷达等来检测轨迹通道对应空间区域内的障碍物。
本发明实施例中,在控制可移动平台在预测轨迹通道对应的目标空间区域内移动之后,若检测到目标空间区域中存在障碍物,则根据障碍物的位置信息以及障碍物与可移动平台当前位置点之间的距离信息确定避障策略,并按照避 障策略对可移动平台进行控制,以使可移动平台避开障碍物;其中,目标空间区域中距离可移动平台近的空间区域的截面面积,小于距离可移动平台远的空间区域的截面面积,上述方式有利于提高可移动平台移动过程中的避障准确性,从而可以提高可移动平台的移动安全性。
请参阅图10,图10为本发明实施例提供的一种控制终端的结构示意图。本发明实施例中所描述的控制终端包括:处理器1001、通信接口1002、存储器1003。其中,处理器1001、通信接口1002、存储器1003可通过总线或其他方式连接,本发明实施例以通过总线连接为例。
处理器1001可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP),或者CPU和NP的组合。处理器1001也可以是多核CPU、或多核NP中用于实现通信标识绑定的核。
所述处理器1001可以是硬件芯片。所述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。所述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
所述通信接口1002可用于收发信息或信令的交互,以及信号的接收和传递。所述控制终端通过所述通信接口1002与可移动平台建立通信连接。所述存储器1003可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的存储程序(比如文字存储功能、位置存储功能等);存储数据区可存储根据装置的使用所创建的数据(比如图像数据、文字数据)等,并可以包括应用存储程序等。此外,存储器1003可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
所述存储器1003还用于存储程序指令。所述处理器1001,用于执行所述存储器1003存储的程序指令,当所述程序指令被执行时,所述处理器1001用于:在可移动平台移动的过程中,通过所述通信接口1002获取所述可移动平台的移动参数;根据所述移动参数预测所述可移动平台的移动轨迹的轨迹参数;根据所述轨迹参数确定所述可移动平台的预测轨迹通道,以通过所述通信接口1002 控制所述可移动平台在所述预测轨迹通道对应的目标空间区域内移动;其中,所述预测轨迹通道对应的目标空间区域为立体结构,所述可移动平台在沿所述轨迹参数对应的移动轨迹移动的过程中所占用的空间区域处于所述目标空间区域内;所述目标空间区域中与所述可移动平台当前位置点之间的距离为第一距离的空间区域的截面面积,小于与所述可移动平台当前位置点之间的距离为第二距离的空间区域的截面面积,所述第一距离小于所述第二距离。
本发明实施例中处理器执行的方法均从处理器的角度来描述,可以理解的是,本发明实施例中处理器要执行上述方法需要其他硬件结构的配合。本发明实施例对具体的实现过程不作详细描述和限制。
在一实施方式中,所述预测轨迹通道对应的目标空间区域由至少两个子空间区域构成,所述至少两个子空间区域中的各个子空间区域均为立体结构。
在一实施方式中,所述处理器1001根据所述轨迹参数确定所述可移动平台的预测轨迹通道时,具体用于:获取所述至少两个子空间区域中各个子空间区域的尺寸数据,所述尺寸数据包括沿所述轨迹参数对应的移动轨迹的跨度值,所述尺寸数据还包括高度值、宽度值和半径值中的至少一种;根据所述轨迹参数以及所述尺寸数据包括的跨度值,确定所述各个子空间区域分别与所述可移动平台当前位置点之间的目标偏移距离;根据所述目标偏移距离以及所述尺寸数据确定所述可移动平台的预测轨迹通道。
在一实施方式中,所述处理器1001根据所述轨迹参数以及所述尺寸数据包括的跨度值,确定所述各个子空间区域分别与所述可移动平台当前位置点之间的目标偏移距离时,具体用于:根据所述尺寸数据包括的跨度值,确定所述各个子空间区域分别在第一方向上与所述可移动平台当前位置点之间的第一偏移距离;根据所述轨迹参数以及所述第一偏移距离,确定所述各个子空间区域分别在第二方向上与所述可移动平台当前位置点的第二偏移距离,并将所述第二偏移距离作为目标偏移距离,所述第一方向与所述第二方向垂直。
在一实施方式中,所述至少两个子空间区域中第一子空间区域的中心点在所述第二方向上与所述可移动平台当前位置点之间的偏移距离,小于第二子空间区域的中心点在所述第二方向上与所述可移动平台当前位置点之间的偏移距离;所述第一子空间区域在所述第一方向上与所述可移动平台当前位置点之 间的距离小于所述第二子空间区域在所述第一方向上与所述可移动平台当前位置点之间的距离;所述第一子空间区域在所述第一方向上的截面面积小于所述第二子空间区域在所述第一方向上的截面面积。
在一实施方式中,所述预测轨迹通道对应的目标空间区域以所述轨迹参数对应的移动轨迹为中心轴。
在一实施方式中,所述至少两个子空间区域中各个子空间区域所属的立体结构相同,所述立体结构为长方体结构、梯行体结构或者圆台结构。
在一实施方式中,所述至少两个子空间区域中各个子空间区域的跨度值相同,各个子空间区域的高度值、宽度值、半径值分别与所述第一偏移距离值呈线性关系。
在一实施方式中,所述轨迹参数对应的移动轨迹为曲线,所述轨迹参数包括曲线移动轨迹的半径值。
在一实施方式中,所述移动参数包括所述可移动平台的速度参数、加速度参数和当前控制量;所述速度参数包括所述可移动平台分别在第一方向和第二方向上的速度,所述加速度参数包括所述可移动平台分别在第一方向和第二方向上的加速度,所述第一方向与所述第二方向垂直;所述当前控制量包括用户输入的控制量和/或外部对象触发的控制量。
在一实施方式中,所述处理器1001还用于:在所述可移动平台移动的过程中,检测所述可移动平台的移动状态是否满足预设条件;若检测到所述可移动平台的移动状态满足预设条件,则执行所述获取所述可移动平台的移动参数。
在一实施方式中,所述移动状态满足预设条件包括所述可移动平台的移动时长达到预设时长、所述可移动平台的移动距离达到预设距离和针对所述可移动平台输入的新的控制量改变了所述可移动平台的移动参数中的一种或者多种。
在一实施方式中,所述可移动平台上配置有拍摄装置,所述拍摄装置用于采集所述可移动平台所处环境的深度图像,所述处理器1001还用于:通过所述通信接口1002获取所述拍摄装置采集到的所述可移动平台所处环境的深度图像,并根据所述深度图像检测所述预测轨迹通道对应的目标空间区域中是否存在障碍物;若是,则根据所述深度图像获取所述障碍物的位置信息以及所述障 碍物与所述可移动平台当前位置点之间的距离信息;根据所述位置信息以及所述距离信息确定避障策略,并通过所述通信接口1002按照所述避障策略对所述可移动平台进行控制,以使所述可移动平台避开所述障碍物。
在一实施方式中,所述避障策略包括控制所述可移动平台改变移动轨迹或者控制所述可移动平台执行刹车操作。
具体实现中,本发明实施例中所描述的处理器1001、通信接口1002、存储器1003可执行本发明实施例提供的一种可移动平台的控制方法中所描述的实现方式,在此不再赘述。
请参阅图11,图11为本发明实施例提供的一种可移动平台的结构示意图。本发明实施例中所描述的控制终端包括:处理器1101和存储器1102。其中,关于处理器1101和存储器1102的相关描述可参考前文描述,此处不再赘述。处理器1101和存储器1102可通过总线或其他方式连接,本发明实施例以通过总线连接为例。
所述存储器1102,用于存储程序指令;所述处理器1101,用于执行所述存储器1102存储的程序指令,当所述程序指令被执行时,所述处理器1101用于:
在所述可移动平台移动的过程中,获取所述可移动平台的移动参数;根据所述移动参数预测所述可移动平台的移动轨迹的轨迹参数;根据所述轨迹参数确定所述可移动平台的预测轨迹通道,以控制所述可移动平台在所述预测轨迹通道对应的目标空间区域内移动;其中,所述预测轨迹通道对应的目标空间区域为立体结构,所述可移动平台在沿所述轨迹参数对应的移动轨迹移动的过程中所占用的空间区域处于所述目标空间区域内;所述目标空间区域中与所述可移动平台当前位置点之间的距离为第一距离的空间区域的截面面积,小于与所述可移动平台当前位置点之间的距离为第二距离的空间区域的截面面积,所述第一距离小于所述第二距离。
在一实施方式中,所述预测轨迹通道对应的目标空间区域由至少两个子空间区域构成,所述至少两个子空间区域中的各个子空间区域均为立体结构。
在一实施方式中,所述处理器1101根据所述轨迹参数确定所述可移动平台的预测轨迹通道时,具体用于:获取所述至少两个子空间区域中各个子空间区域的尺寸数据,所述尺寸数据包括沿所述轨迹参数对应的移动轨迹的跨度值, 所述尺寸数据还包括高度值、宽度值和半径值中的至少一种;根据所述轨迹参数以及所述尺寸数据包括的跨度值,确定所述各个子空间区域分别与所述可移动平台当前位置点之间的目标偏移距离;根据所述目标偏移距离以及所述尺寸数据确定所述可移动平台的预测轨迹通道。
在一实施方式中,所述处理器1101根据所述轨迹参数以及所述尺寸数据包括的跨度值,确定所述各个子空间区域分别与所述可移动平台当前位置点之间的目标偏移距离时,具体用于:根据所述尺寸数据包括的跨度值,确定所述各个子空间区域分别在第一方向上与所述可移动平台当前位置点之间的第一偏移距离;根据所述轨迹参数以及所述第一偏移距离,确定所述各个子空间区域分别在第二方向上与所述可移动平台当前位置点的第二偏移距离,并将所述第二偏移距离作为目标偏移距离,所述第一方向与所述第二方向垂直。
在一实施方式中,所述至少两个子空间区域中第一子空间区域的中心点在所述第二方向上与所述可移动平台当前位置点之间的偏移距离,小于第二子空间区域的中心点在所述第二方向上与所述可移动平台当前位置点之间的偏移距离;所述第一子空间区域在所述第一方向上与所述可移动平台当前位置点之间的距离小于所述第二子空间区域在所述第一方向上与所述可移动平台当前位置点之间的距离;所述第一子空间区域在所述第一方向上的截面面积小于所述第二子空间区域在所述第一方向上的截面面积。
在一实施方式中,所述预测轨迹通道对应的目标空间区域以所述轨迹参数对应的移动轨迹为中心轴。
在一实施方式中,所述至少两个子空间区域中各个子空间区域所属的立体结构相同,所述立体结构为长方体结构、梯行体结构或者圆台结构。
在一实施方式中,所述至少两个子空间区域中各个子空间区域的跨度值相同,各个子空间区域的高度值、宽度值、半径值分别与所述第一偏移距离值呈线性关系。
在一实施方式中,所述轨迹参数对应的移动轨迹为曲线,所述轨迹参数包括曲线移动轨迹的半径值。
在一实施方式中,所述移动参数包括所述可移动平台的速度参数、加速度参数和当前控制量;所述速度参数包括所述可移动平台分别在第一方向和第二 方向上的速度,所述加速度参数包括所述可移动平台分别在第一方向和第二方向上的加速度,所述第一方向与所述第二方向垂直;所述当前控制量包括用户输入的控制量和/或外部对象触发的控制量。
在一实施方式中,所述处理器1101还用于:在所述可移动平台移动的过程中,检测所述可移动平台的移动状态是否满足预设条件;若检测到所述可移动平台的移动状态满足预设条件,则执行所述获取所述可移动平台的移动参数。
在一实施方式中,所述移动状态满足预设条件包括所述可移动平台的移动时长达到预设时长、所述可移动平台的移动距离达到预设距离和针对所述可移动平台输入的新的控制量改变了所述可移动平台的移动参数中的一种或者多种。
在一实施方式中,所述可移动平台上配置有拍摄装置,所述拍摄装置用于采集所述可移动平台所处环境的深度图像,所述处理器1101还用于:获取所述拍摄装置采集到的所述可移动平台所处环境的深度图像,并根据所述深度图像检测所述预测轨迹通道对应的目标空间区域中是否存在障碍物;若是,则根据所述深度图像获取所述障碍物的位置信息以及所述障碍物与所述可移动平台当前位置点之间的距离信息;根据所述位置信息以及所述距离信息确定避障策略,并按照所述避障策略对所述可移动平台进行控制,以使所述可移动平台避开所述障碍物。
在一实施方式中,所述避障策略包括控制所述可移动平台改变移动轨迹或者控制所述可移动平台执行刹车操作。
具体实现中,本发明实施例中所描述的处理器1101和存储器1102可执行本发明实施例提供的一种可移动平台的控制方法中所描述的实现方式,在此不再赘述。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时实现上述方法实施例所述的可移动平台的控制方法。
本发明实施例还提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例所述的可移动平台的控制方法。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表 述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上对本发明实施例所提供的一种可移动平台的控制方法、控制终端及可移动平台进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (43)

  1. 一种可移动平台的控制方法,其特征在于,所述方法包括:
    在可移动平台移动的过程中,获取所述可移动平台的移动参数;
    根据所述移动参数预测所述可移动平台的移动轨迹的轨迹参数;
    根据所述轨迹参数确定所述可移动平台的预测轨迹通道,以控制所述可移动平台在所述预测轨迹通道对应的目标空间区域内移动;
    其中,所述预测轨迹通道对应的目标空间区域为立体结构,所述可移动平台在沿所述轨迹参数对应的移动轨迹移动的过程中所占用的空间区域处于所述目标空间区域内;所述目标空间区域中与所述可移动平台当前位置点之间的距离为第一距离的空间区域的截面面积,小于与所述可移动平台当前位置点之间的距离为第二距离的空间区域的截面面积,所述第一距离小于所述第二距离。
  2. 根据权利要求1所述的方法,其特征在于,所述预测轨迹通道对应的目标空间区域由至少两个子空间区域构成,所述至少两个子空间区域中的各个子空间区域均为立体结构。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述轨迹参数确定所述可移动平台的预测轨迹通道,包括:
    获取所述至少两个子空间区域中各个子空间区域的尺寸数据,所述尺寸数据包括沿所述轨迹参数对应的移动轨迹的跨度值,所述尺寸数据还包括高度值、宽度值和半径值中的至少一种;
    根据所述轨迹参数以及所述尺寸数据包括的跨度值,确定所述各个子空间区域分别与所述可移动平台当前位置点之间的目标偏移距离;
    根据所述目标偏移距离以及所述尺寸数据确定所述可移动平台的预测轨迹通道。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述轨迹参数以及所述尺寸数据包括的跨度值,确定所述各个子空间区域分别与所述可移动平台当前位置点之间的目标偏移距离,包括:
    根据所述尺寸数据包括的跨度值,确定所述各个子空间区域分别在第一方向上与所述可移动平台当前位置点之间的第一偏移距离;
    根据所述轨迹参数以及所述第一偏移距离,确定所述各个子空间区域分别在第二方向上与所述可移动平台当前位置点的第二偏移距离,并将所述第二偏移距离作为目标偏移距离,所述第一方向与所述第二方向垂直。
  5. 根据权利要求4所述的方法,其特征在于,所述至少两个子空间区域中第一子空间区域的中心点在所述第二方向上与所述可移动平台当前位置点之间的偏移距离,小于第二子空间区域的中心点在所述第二方向上与所述可移动平台当前位置点之间的偏移距离;所述第一子空间区域在所述第一方向上与所述可移动平台当前位置点之间的距离小于所述第二子空间区域在所述第一方向上与所述可移动平台当前位置点之间的距离;所述第一子空间区域在所述第一方向上的截面面积小于所述第二子空间区域在所述第一方向上的截面面积。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述预测轨迹通道对应的目标空间区域以所述轨迹参数对应的移动轨迹为中心轴。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,所述至少两个子空间区域中各个子空间区域所属的立体结构相同,所述立体结构为长方体结构、梯行体结构或者圆台结构。
  8. 根据权利要求3所述的方法,其特征在于,所述至少两个子空间区域中各个子空间区域的跨度值相同,各个子空间区域的高度值、宽度值、半径值分别与所述第一偏移距离值呈线性关系。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述轨迹参数对应的移动轨迹为曲线,所述轨迹参数包括曲线移动轨迹的半径值。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述移动参数 包括所述可移动平台的速度参数、加速度参数和当前控制量;所述速度参数包括所述可移动平台分别在第一方向和第二方向上的速度,所述加速度参数包括所述可移动平台分别在第一方向和第二方向上的加速度,所述第一方向与所述第二方向垂直;所述当前控制量包括用户输入的控制量和/或外部对象触发的控制量。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    在所述可移动平台移动的过程中,检测所述可移动平台的移动状态是否满足预设条件;
    若检测到所述可移动平台的移动状态满足预设条件,则触发所述获取所述可移动平台的移动参数的步骤。
  12. 根据权利要求11所述的方法,其特征在于,所述移动状态满足预设条件包括所述可移动平台的移动时长达到预设时长、所述可移动平台的移动距离达到预设距离和针对所述可移动平台输入的新的控制量改变了所述可移动平台的移动参数中的一种或者多种。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述可移动平台上配置有拍摄装置,所述拍摄装置用于采集所述可移动平台所处环境的深度图像,所述方法还包括:
    获取所述拍摄装置采集到的所述可移动平台所处环境的深度图像,并根据所述深度图像检测所述预测轨迹通道对应的目标空间区域中是否存在障碍物;
    若是,则根据所述深度图像获取所述障碍物的位置信息以及所述障碍物与所述可移动平台当前位置点之间的距离信息;
    根据所述位置信息以及所述距离信息确定避障策略,并按照所述避障策略对所述可移动平台进行控制,以使所述可移动平台避开所述障碍物。
  14. 根据权利要求13所述的方法,其特征在于,所述避障策略包括控制所 述可移动平台改变移动轨迹或者控制所述可移动平台执行刹车操作。
  15. 一种控制终端,其特征在于,所述控制终端与可移动平台建立有通信连接,所述控制终端包括:存储器、通信接口和处理器,
    所述存储器,用于存储程序指令;
    所述通信接口受所述处理器的控制用于收发信息;
    所述处理器,用于执行所述存储器存储的程序指令,当所述程序指令被执行时,所述处理器用于:
    在可移动平台移动的过程中,通过所述通信接口获取所述可移动平台的移动参数;
    根据所述移动参数预测所述可移动平台的移动轨迹的轨迹参数;
    根据所述轨迹参数确定所述可移动平台的预测轨迹通道,以通过所述通信接口控制所述可移动平台在所述预测轨迹通道对应的目标空间区域内移动;
    其中,所述预测轨迹通道对应的目标空间区域为立体结构,所述可移动平台在沿所述轨迹参数对应的移动轨迹移动的过程中所占用的空间区域处于所述目标空间区域内;所述目标空间区域中与所述可移动平台当前位置点之间的距离为第一距离的空间区域的截面面积,小于与所述可移动平台当前位置点之间的距离为第二距离的空间区域的截面面积,所述第一距离小于所述第二距离。
  16. 根据权利要求15所述的控制终端,其特征在于,所述预测轨迹通道对应的目标空间区域由至少两个子空间区域构成,所述至少两个子空间区域中的各个子空间区域均为立体结构。
  17. 根据权利要求16所述的控制终端,其特征在于,所述处理器根据所述轨迹参数确定所述可移动平台的预测轨迹通道时,具体用于:
    获取所述至少两个子空间区域中各个子空间区域的尺寸数据,所述尺寸数据包括沿所述轨迹参数对应的移动轨迹的跨度值,所述尺寸数据还包括高度值、宽度值和半径值中的至少一种;
    根据所述轨迹参数以及所述尺寸数据包括的跨度值,确定所述各个子空间 区域分别与所述可移动平台当前位置点之间的目标偏移距离;
    根据所述目标偏移距离以及所述尺寸数据确定所述可移动平台的预测轨迹通道。
  18. 根据权利要求17所述的控制终端,其特征在于,所述处理器根据所述轨迹参数以及所述尺寸数据包括的跨度值,确定所述各个子空间区域分别与所述可移动平台当前位置点之间的目标偏移距离时,具体用于:
    根据所述尺寸数据包括的跨度值,确定所述各个子空间区域分别在第一方向上与所述可移动平台当前位置点之间的第一偏移距离;
    根据所述轨迹参数以及所述第一偏移距离,确定所述各个子空间区域分别在第二方向上与所述可移动平台当前位置点的第二偏移距离,并将所述第二偏移距离作为目标偏移距离,所述第一方向与所述第二方向垂直。
  19. 根据权利要求18所述的控制终端,其特征在于,所述至少两个子空间区域中第一子空间区域的中心点在所述第二方向上与所述可移动平台当前位置点之间的偏移距离,小于第二子空间区域的中心点在所述第二方向上与所述可移动平台当前位置点之间的偏移距离;所述第一子空间区域在所述第一方向上与所述可移动平台当前位置点之间的距离小于所述第二子空间区域在所述第一方向上与所述可移动平台当前位置点之间的距离;所述第一子空间区域在所述第一方向上的截面面积小于所述第二子空间区域在所述第一方向上的截面面积。
  20. 根据权利要求16至19中任一项所述的控制终端,其特征在于,所述预测轨迹通道对应的目标空间区域以所述轨迹参数对应的移动轨迹为中心轴。
  21. 根据权利要求16至20中任一项所述的控制终端,其特征在于,所述至少两个子空间区域中各个子空间区域所属的立体结构相同,所述立体结构为长方体结构、梯行体结构或者圆台结构。
  22. 根据权利要求17所述的控制终端,其特征在于,所述至少两个子空间区域中各个子空间区域的跨度值相同,各个子空间区域的高度值、宽度值、半径值分别与所述第一偏移距离值呈线性关系。
  23. 根据权利要求15至22中任一项所述的控制终端,其特征在于,所述轨迹参数对应的移动轨迹为曲线,所述轨迹参数包括曲线移动轨迹的半径值。
  24. 根据权利要求15至23中任一项所述的控制终端,其特征在于,所述移动参数包括所述可移动平台的速度参数、加速度参数和当前控制量;所述速度参数包括所述可移动平台分别在第一方向和第二方向上的速度,所述加速度参数包括所述可移动平台分别在第一方向和第二方向上的加速度,所述第一方向与所述第二方向垂直;所述当前控制量包括用户输入的控制量和/或外部对象触发的控制量。
  25. 根据权利要求15至24中任一项所述的控制终端,其特征在于,所述处理器还用于:
    在所述可移动平台移动的过程中,检测所述可移动平台的移动状态是否满足预设条件;
    若检测到所述可移动平台的移动状态满足预设条件,则触发所述获取所述可移动平台的移动参数的步骤。
  26. 根据权利要求25所述的控制终端,其特征在于,所述移动状态满足预设条件包括所述可移动平台的移动时长达到预设时长、所述可移动平台的移动距离达到预设距离和针对所述可移动平台输入的新的控制量改变了所述可移动平台的移动参数中的一种或者多种。
  27. 根据权利要求15至26中任一项所述的控制终端,其特征在于,所述可移动平台上配置有拍摄装置,所述拍摄装置用于采集所述可移动平台所处环境的深度图像,所述处理器还用于:
    通过所述通信接口获取所述拍摄装置采集到的所述可移动平台所处环境的深度图像,并根据所述深度图像检测所述预测轨迹通道对应的目标空间区域中是否存在障碍物;
    若是,则根据所述深度图像获取所述障碍物的位置信息以及所述障碍物与所述可移动平台当前位置点之间的距离信息;
    根据所述位置信息以及所述距离信息确定避障策略,并通过所述通信接口按照所述避障策略对所述可移动平台进行控制,以使所述可移动平台避开所述障碍物。
  28. 根据权利要求27所述的控制终端,其特征在于,所述避障策略包括控制所述可移动平台改变移动轨迹或者控制所述可移动平台执行刹车操作。
  29. 一种可移动平台,其特征在于,包括:存储器和处理器,
    所述存储器,用于存储程序指令;
    所述处理器,用于执行所述存储器存储的程序指令,当所述程序指令被执行时,所述处理器用于:
    在所述可移动平台移动的过程中,获取所述可移动平台的移动参数;
    根据所述移动参数预测所述可移动平台的移动轨迹的轨迹参数;
    根据所述轨迹参数确定所述可移动平台的预测轨迹通道,以控制所述可移动平台在所述预测轨迹通道对应的目标空间区域内移动;
    其中,所述预测轨迹通道对应的目标空间区域为立体结构,所述可移动平台在沿所述轨迹参数对应的移动轨迹移动的过程中所占用的空间区域处于所述目标空间区域内;所述目标空间区域中与所述可移动平台当前位置点之间的距离为第一距离的空间区域的截面面积,小于与所述可移动平台当前位置点之间的距离为第二距离的空间区域的截面面积,所述第一距离小于所述第二距离。
  30. 根据权利要求29所述的可移动平台,其特征在于,所述预测轨迹通道对应的目标空间区域由至少两个子空间区域构成,所述至少两个子空间区域中的各个子空间区域均为立体结构。
  31. 根据权利要求30所述的可移动平台,其特征在于,所述处理器根据所述轨迹参数确定所述可移动平台的预测轨迹通道时,具体用于:
    获取所述至少两个子空间区域中各个子空间区域的尺寸数据,所述尺寸数据包括沿所述轨迹参数对应的移动轨迹的跨度值,所述尺寸数据还包括高度值、宽度值和半径值中的至少一种;
    根据所述轨迹参数以及所述尺寸数据包括的跨度值,确定所述各个子空间区域分别与所述可移动平台当前位置点之间的目标偏移距离;
    根据所述目标偏移距离以及所述尺寸数据确定所述可移动平台的预测轨迹通道。
  32. 根据权利要求31所述的可移动平台,其特征在于,所述处理器根据所述轨迹参数以及所述尺寸数据包括的跨度值,确定所述各个子空间区域分别与所述可移动平台当前位置点之间的目标偏移距离时,具体用于:
    根据所述尺寸数据包括的跨度值,确定所述各个子空间区域分别在第一方向上与所述可移动平台当前位置点之间的第一偏移距离;
    根据所述轨迹参数以及所述第一偏移距离,确定所述各个子空间区域分别在第二方向上与所述可移动平台当前位置点的第二偏移距离,并将所述第二偏移距离作为目标偏移距离,所述第一方向与所述第二方向垂直。
  33. 根据权利要求32所述的可移动平台,其特征在于,所述至少两个子空间区域中第一子空间区域的中心点在所述第二方向上与所述可移动平台当前位置点之间的偏移距离,小于第二子空间区域的中心点在所述第二方向上与所述可移动平台当前位置点之间的偏移距离;所述第一子空间区域在所述第一方向上与所述可移动平台当前位置点之间的距离小于所述第二子空间区域在所述第一方向上与所述可移动平台当前位置点之间的距离;所述第一子空间区域在所述第一方向上的截面面积小于所述第二子空间区域在所述第一方向上的截面面积。
  34. 根据权利要求30至33中任一项所述的可移动平台,其特征在于,所述预测轨迹通道对应的目标空间区域以所述轨迹参数对应的移动轨迹为中心轴。
  35. 根据权利要求30至34中任一项所述的可移动平台,其特征在于,所述至少两个子空间区域中各个子空间区域所属的立体结构相同,所述立体结构为长方体结构、梯行体结构或者圆台结构。
  36. 根据权利要求31所述的可移动平台,其特征在于,所述至少两个子空间区域中各个子空间区域的跨度值相同,各个子空间区域的高度值、宽度值、半径值分别与所述第一偏移距离值呈线性关系。
  37. 根据权利要求29至36中任一项所述的可移动平台,其特征在于,所述轨迹参数对应的移动轨迹为曲线,所述轨迹参数包括曲线移动轨迹的半径值。
  38. 根据权利要求29至37中任一项所述的可移动平台,其特征在于,所述移动参数包括所述可移动平台的速度参数、加速度参数和当前控制量;所述速度参数包括所述可移动平台分别在第一方向和第二方向上的速度,所述加速度参数包括所述可移动平台分别在第一方向和第二方向上的加速度,所述第一方向与所述第二方向垂直;所述当前控制量包括用户输入的控制量和/或外部对象触发的控制量。
  39. 根据权利要求29至38中任一项所述的可移动平台,其特征在于,所述处理器还用于:
    在所述可移动平台移动的过程中,检测所述可移动平台的移动状态是否满足预设条件;
    若检测到所述可移动平台的移动状态满足预设条件,则触发所述获取所述可移动平台的移动参数的步骤。
  40. 根据权利要求39所述的可移动平台,其特征在于,所述移动状态满足 预设条件包括所述可移动平台的移动时长达到预设时长、所述可移动平台的移动距离达到预设距离和针对所述可移动平台输入的新的控制量改变了所述可移动平台的移动参数中的一种或者多种。
  41. 根据权利要求29至40中任一项所述的可移动平台,其特征在于,所述可移动平台上配置有拍摄装置,所述拍摄装置用于采集所述可移动平台所处环境的深度图像,所述处理器还用于:
    获取所述拍摄装置采集到的所述可移动平台所处环境的深度图像,并根据所述深度图像检测所述预测轨迹通道对应的目标空间区域中是否存在障碍物;
    若是,则根据所述深度图像获取所述障碍物的位置信息以及所述障碍物与所述可移动平台当前位置点之间的距离信息;
    根据所述位置信息以及所述距离信息确定避障策略,并按照所述避障策略对所述可移动平台进行控制,以使所述可移动平台避开所述障碍物。
  42. 根据权利要求41所述的可移动平台,其特征在于,所述避障策略包括控制所述可移动平台改变移动轨迹或者控制所述可移动平台执行刹车操作。
  43. 一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其特征在于:所述计算机程序被处理器执行时实现如权利要求1至14中任一项所述方法的步骤。
PCT/CN2019/089419 2019-05-31 2019-05-31 可移动平台的控制方法、控制终端及可移动平台 WO2020237609A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/089419 WO2020237609A1 (zh) 2019-05-31 2019-05-31 可移动平台的控制方法、控制终端及可移动平台
CN201980007813.4A CN111656294A (zh) 2019-05-31 2019-05-31 可移动平台的控制方法、控制终端及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/089419 WO2020237609A1 (zh) 2019-05-31 2019-05-31 可移动平台的控制方法、控制终端及可移动平台

Publications (1)

Publication Number Publication Date
WO2020237609A1 true WO2020237609A1 (zh) 2020-12-03

Family

ID=72345691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089419 WO2020237609A1 (zh) 2019-05-31 2019-05-31 可移动平台的控制方法、控制终端及可移动平台

Country Status (2)

Country Link
CN (1) CN111656294A (zh)
WO (1) WO2020237609A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112327848B (zh) * 2020-11-05 2024-09-20 北京京东乾石科技有限公司 机器人避障方法及装置、存储介质和电子设备
CN112284337B (zh) * 2020-11-25 2021-08-03 武汉大学 一种河工模型多参量测量装置及其行走控制方法
CN116100561B (zh) * 2023-04-10 2023-09-05 国网浙江省电力有限公司宁波供电公司 一种自动接线轨迹控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6253128B1 (en) * 1998-02-23 2001-06-26 Komatsu Ltd. Interference prediction apparatus for unmanned vehicle
CN109196556A (zh) * 2017-12-29 2019-01-11 深圳市大疆创新科技有限公司 避障方法、装置及可移动平台
CN109478070A (zh) * 2016-08-04 2019-03-15 深圳市大疆创新科技有限公司 障碍物识别和避让方法和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150350614A1 (en) * 2012-08-31 2015-12-03 Brain Corporation Apparatus and methods for tracking using aerial video
CN111762136A (zh) * 2015-05-12 2020-10-13 深圳市大疆创新科技有限公司 识别或检测障碍物的设备和方法
CN107850902B (zh) * 2015-07-08 2022-04-08 深圳市大疆创新科技有限公司 可移动物体上的相机配置
WO2017045116A1 (en) * 2015-09-15 2017-03-23 SZ DJI Technology Co., Ltd. System and method for supporting smooth target following
EP3783454B1 (en) * 2016-02-26 2024-03-20 SZ DJI Technology Co., Ltd. Systems and methods for adjusting uav trajectory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6253128B1 (en) * 1998-02-23 2001-06-26 Komatsu Ltd. Interference prediction apparatus for unmanned vehicle
CN109478070A (zh) * 2016-08-04 2019-03-15 深圳市大疆创新科技有限公司 障碍物识别和避让方法和系统
CN109196556A (zh) * 2017-12-29 2019-01-11 深圳市大疆创新科技有限公司 避障方法、装置及可移动平台

Also Published As

Publication number Publication date
CN111656294A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
WO2020237609A1 (zh) 可移动平台的控制方法、控制终端及可移动平台
CN110765894B (zh) 目标检测方法、装置、设备及计算机可读存储介质
CN106022274B (zh) 一种避障方法、避障装置及无人驾驶机器
JP2021534481A (ja) 障害物又は地面の認識及び飛行制御方法、装置、機器及び記憶媒体
US9632509B1 (en) Operating a UAV with a narrow obstacle-sensor field-of-view
WO2022001748A1 (zh) 目标跟踪方法、装置、电子设备及移动载具
JP7078665B2 (ja) 車両の回避制御方法、装置、電子機器及び記憶媒体
WO2021078003A1 (zh) 无人载具的避障方法、避障装置及无人载具
JP6959056B2 (ja) 移動ロボットの制御装置と制御方法
WO2021037071A1 (zh) 一种飞行控制方法及相关装置
US20200003898A1 (en) Information processing device, information processing method, and vehicle
EP3828661A1 (en) Gimbal and unmanned aerial vehicle control method, gimbal, and unmanned aerial vehicle
CN112379697A (zh) 轨迹规划方法、装置、轨迹规划器、无人机及存储介质
CN115879060B (zh) 基于多模态的自动驾驶感知方法、装置、设备和介质
Lim et al. Three-dimensional (3D) dynamic obstacle perception in a detect-and-avoid framework for unmanned aerial vehicles
WO2021134776A1 (en) Obtaining a navigation path
WO2020220158A1 (zh) 一种无人机的控制方法、无人机及计算机可读存储介质
CN111045433A (zh) 一种机器人的避障方法、机器人及计算机可读存储介质
WO2021238743A1 (zh) 一种无人机飞行控制方法、装置及无人机
WO2021223166A1 (zh) 状态信息确定方法、装置、系统、可移动平台和存储介质
JP2018147052A (ja) 情報処理装置、情報処理方法、情報処理プログラム、および移動体
WO2021217352A1 (zh) 一种可移动平台的控制方法、装置及可移动平台
CN112859893B (zh) 一种飞行器避障方法、装置
WO2021056144A1 (zh) 可移动平台的返航控制方法、装置及可移动平台
US10628917B2 (en) Information processing apparatus, information processing method, and computer program product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930587

Country of ref document: EP

Kind code of ref document: A1