WO2020235687A1 - Dope for manufacturing film, and film - Google Patents
Dope for manufacturing film, and film Download PDFInfo
- Publication number
- WO2020235687A1 WO2020235687A1 PCT/JP2020/020420 JP2020020420W WO2020235687A1 WO 2020235687 A1 WO2020235687 A1 WO 2020235687A1 JP 2020020420 W JP2020020420 W JP 2020020420W WO 2020235687 A1 WO2020235687 A1 WO 2020235687A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- dope
- acrylic resin
- resin
- organic solvent
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/02—Halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/14—Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
Definitions
- the present invention relates to a dope for producing a film containing a (meth) acrylic resin, a polyvinyl acetal resin, and an organic solvent containing a chlorine-based organic solvent, and a film produced from the dope.
- Patent Document 1 proposes an acrylic thermoplastic resin composition containing a methacrylic resin and a polyvinyl acetal resin having a specific structure.
- Patent Document 2 proposes an optical film obtained by stretching an acrylic thermoplastic resin composition containing a methacrylic resin and a specific polyvinyl acetal resin as a film having low birefringence.
- Patent Document 3 proposes a dope for film production by a solution casting method containing a thermoplastic acrylic resin, a graft copolymer, and a solvent.
- Patent Documents 1 and 2 have a problem that fisheye defects and gel-like defects occur when a film is produced for a long period of time because it is produced at a high temperature.
- Patent Document 3 since the graft copolymer which is a rubber particle is contained in the dope for film production, the particles appear on the surface when the film is produced, causing haze, bending, and molding. There was a problem that a problem of whitening occurred when processed.
- the solution casting method as in Patent Document 3 since it is considered that the state of the doping used affects the physical properties and properties of the obtained film, it is suitable for, for example, optical applications by suppressing the haze value of the doping to some extent. It is considered that a film having excellent transparency can be obtained.
- the acrylic graft copolymer aggregates or the belt is contaminated by the emulsifier when the film is formed by the solution casting method of Patent Document 3.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a dope for producing a film suitable for producing a highly transparent film and a film produced from the dope.
- the present inventors have focused on polyvinyl acetal resin as a toughness-developing material for acrylic films, and have prepared a dope for producing a film containing a (meth) acrylic resin, a polyvinyl acetal resin, and an organic solvent containing a chlorine-based organic solvent. , I found that the above problem can be solved.
- the present invention provides the following [1] to [13].
- the mass ratio [S / T] of the chlorine-based organic solvent (S) and the organic solvent (T) other than the chlorine-based organic solvent in the organic solvent (C) is 50/50 to 99/1.
- the mass ratio [(A) / (B)] of the (meth) acrylic resin (A) to the polyvinyl acetal resin (B) is 98/2 to 50/50.
- the polyvinyl acetal resin (B) is a resin obtained by acetalizing a polyvinyl alcohol resin with an aldehyde having 3 or less carbon atoms and optionally an aldehyde having 4 or more carbon atoms, and has a total acetalization degree of 50 to 50 to.
- a method for producing an acrylic resin film by a solution casting method which comprises a step of casting the dope according to any one of [1] to [6] above on the surface of a support and then evaporating the solvent. , Film manufacturing method.
- the present invention it is possible to provide a dope for producing a film suitable for producing a highly transparent film and a film produced from the dope.
- (meth) acrylic means "acrylic or methacrylic".
- a resin film formed from a dope containing a (meth) acrylic resin may be referred to as an "acrylic resin film”.
- the dope of the present invention is a dope for producing a film containing a (meth) acrylic resin (A), a polyvinyl acetal resin (B), and an organic solvent (C) containing a chlorine-based organic solvent.
- A a (meth) acrylic resin
- B a polyvinyl acetal resin
- C an organic solvent containing a chlorine-based organic solvent.
- the present inventors consider that the obtained film can be used as an optical film or the like, and in order to exhibit a low haze value, the polyvinyl acetal resin is used. It has been found that an appropriate haze range for doping can be defined by optimizing the acetalization rate, the composition ratio of each resin, and the selection of the co-solvent.
- the dope is sealed in a cell having a thickness of 1 cm, and the haze value measured in accordance with JIS 7136: 2000 is preferably 98% or less, more preferably 80% or less, and more preferably 70% or less. It is even more preferably 50% or less, even more preferably 20% or less, and particularly preferably 2% or less.
- the haze value is 98% or less, for example, whitening of the obtained film can be suppressed, and a highly transparent film can be easily obtained.
- the haze value can be measured by the method described in Examples.
- Examples of the (meth) acrylic resin (A) used in the present invention include those mainly composed of structural units derived from methyl methacrylate (methyl methacrylate structural units).
- the content of the methyl methacrylate structural unit in the (meth) acrylic resin (A) is preferably 50% by mass or more, more preferably 80% by mass or more, and 90% by mass or more. Is more preferable, and 95% by mass or more is particularly preferable, and all structural units may be methyl methacrylate structural units.
- the (meth) acrylic resin (A) may contain a structural unit derived from a monomer other than methyl methacrylate.
- the other monomer is not particularly limited as long as it can be copolymerized with methyl methacrylate, and for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, and acrylic.
- Vinyl compounds; acrylamide, methacrylicamide, acrylonitrile, methacrylic nitrile, vinyl acetate, vinylpyridine, vinyl ketone, vinyl chloride, vinylidene chloride, vinylidene fluoride and the like can be mentioned.
- the weight average molecular weight (Mw) of the (meth) acrylic resin (A) is preferably 40,000 to 2,000,000, more preferably 50,000 to 1,000,000, and even more preferably 60. It is 000 to 200,000, and even more preferably 70,000 to 150,000.
- Mw is 40,000 or more, the toughness of the film can be exhibited, and when it is 2,000,000 or less, good solubility in an organic solvent can be exhibited.
- the molecular weight distribution (Mw / Mn) of the (meth) acrylic resin (A) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 1.00 to 4.00. It is more preferably 1.01 to 3.50, still more preferably 1.03 to 3.00, and even more preferably 1.70 to 2.50.
- Mw / Mn molecular weight distribution within such a range
- the above Mw and Mw / Mn can adjust the polymerization method of the (meth) acrylic resin (A), the type and amount of the polymerization initiator and the chain transfer agent used at the time of production, the polymerization temperature, and have different molecular weights (meth). It can be adjusted by mixing the acrylic resin (A) or the like.
- Mw and Mn are values obtained by converting chromatograms measured by gel permeation chromatography (GPC) into molecular weights of standard polystyrene. Mw and Mw / Mn in the present invention can be measured by the method described in Examples.
- the (meth) acrylic resin (A) two or more kinds of (meth) acrylic resins (A) having different molecular weights may be used in combination.
- the glass transition temperature of the (meth) acrylic resin (A) (hereinafter, may be referred to as Tg) is preferably 100 ° C. or higher, more preferably 105 ° C. or higher, still more preferably 110 ° C. or higher. Yes, and even more preferably 115 ° C. or higher.
- the upper limit of Tg of the (meth) acrylic resin (A) is usually 150 ° C.
- the glass transition temperature in the present invention can be measured by the method described in Examples.
- the method for producing the (meth) acrylic resin (A) is not particularly limited, and it can be produced by a massive polymerization method, a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, or the like. Of these, any of a massive polymerization method, a solution polymerization method, and a suspension polymerization method is preferable. Of these, the massive polymerization method or the suspension polymerization method is more preferable.
- the polyvinyl acetal resin (B) used in the present invention is a vinyl alcohol unit (formula (I)), a vinyl ester unit (formula (II)) and a vinyl acetal unit (two vinyl alcohol units are acetalized with an aldehyde).
- a resin having the formula (III)) In the formula below, l is the molar ratio of vinyl alcohol units, m is the molar ratio of vinyl ester units, k / 2 is the molar ratio of vinyl acetal units, and k is the vinyl alcohol acetalized with aldehyde.
- R a is R a in the aldehyde used for acetalization (R a -CHO).
- l and / or m may be zero.
- k + l + m 1.
- the units are not particularly limited by the arrangement order, and may be arranged randomly, may be arranged in a block shape, or may be arranged in a tapered shape. Further, the connection between the repeating units may be Head-to-Tail or Head-to-Head.
- the polyvinyl acetal resin (B) can be obtained by acetalizing a polyvinyl alcohol resin (hereinafter, may be referred to as PVA) with an aldehyde.
- PVA polyvinyl alcohol resin
- the polyvinyl alcohol resin may be a homopolymer composed of only vinyl alcohol units, or a copolymer composed of vinyl alcohol and a monomer copolymerizable therewith (hereinafter, may be referred to as PVA copolymer). May be good. Further, it may be a modified polyvinyl alcohol resin in which a functional group such as a carboxyl group is introduced into the middle, the end, or the side chain of the molecular chain. These polyvinyl alcohol resins can be used alone or in combination of two or more.
- the polyvinyl alcohol resin is not particularly limited depending on the production method, and for example, one obtained by saponifying a vinyl ester-based polymer such as polyvinyl acetate can be used.
- a vinyl ester-based polymer such as polyvinyl acetate
- examples of the vinyl ester monomer for forming the vinyl ester unit include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, and the like.
- Examples include vinyl versatic acid.
- vinyl acetate is preferable because a polyvinyl alcohol resin can be obtained with good productivity.
- Examples of the monomer copolymerizable with vinyl alcohol constituting the PVA copolymer include ⁇ -olefins such as ethylene, propylene, 1-butene, isobutene and 1-hexene; acrylic acid and salts thereof; methyl acrylate and acrylic.
- Acrylic acid esters such as ethyl acid, n-propyl acrylate, i-propyl acrylate; methacrylic acid and salts thereof; methacrylic acid such as methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate.
- esters such as acrylamide, N-methylacrylamide, N-ethylacrylamide; methacrylicamide derivatives such as methacrylamide, N-methylmethacrylate, N-ethylmethacrylate; methylvinyl ether, ethylvinyl ether, n-propylvinyl ether, Vinyl ethers such as i-propyl vinyl ether and n-butyl vinyl ether; hydroxy group-containing vinyl ethers such as ethylene glycol vinyl ether, 1,3-propanediol vinyl ether and 1,4-butanediol vinyl ether; allyl acetate, propyl allyl ether and butyl Allyl ethers such as allyl ether and hexyl allyl ether; monomers having an oxyalkylene group such as polyoxyethylene group, polyoxypropylene group and polyoxybutylene group; vinylsilanes such as vinyltrimethoxysi
- Monomer having a sulfonic acid group vinyloxyethyltrimethylammonium chloride, vinyloxybutyltrimethylammonium chloride, vinyloxyethyldimethylamine, vinyloxymethyldiethyla
- the body is mentioned.
- the content of a monomer unit copolymerizable with vinyl alcohol (hereinafter, may be referred to as a comonomer unit) is preferably 20 in 100 mol parts of all the monomer units constituting the PVA copolymer. It is not more than a molar part, and more preferably 10 parts or less. Further, in order to exert the merit of being copolymerized, it is preferable that 0.01 mol part or more is a comonomer unit.
- Examples of the polymerization method used in the production of the vinyl ester-based polymer include known methods such as a massive polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. Among them, a bulk polymerization method or a solution polymerization method, which is a method of polymerizing without a solvent or in a solvent such as alcohol, is preferable.
- a solvent in the solution polymerization method lower alcohols such as methanol, ethanol and propanol are usually used.
- polymerization initiator examples include ⁇ , ⁇ '-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethyl-valeronitrile), and 2,2'-azobis (2-methylpropionitrile).
- azo compound examples include benzoyl peroxide, and peroxides such as n-propylperoxycarbonate.
- the polymerization temperature is not particularly limited, but is usually 0 to 200 ° C.
- an alkaline substance is usually used as a catalyst.
- the alkaline substance include potassium hydroxide and sodium hydroxide.
- the molar ratio of the alkaline substance used in the saponification catalyst is preferably 0.004 to 0.5, more preferably 0.005 to 0.05 with respect to the vinyl ester unit in the vinyl ester polymer. is there.
- the alkaline substance as a saponification catalyst may be added all at once at the beginning of the saponification reaction, or may be additionally added during the saponification reaction.
- the solvent that can be used during the saponification reaction include methanol, methyl acetate, dimethyl sulfoxide, dimethylformamide and the like.
- the solvent used is preferably one having an adjusted water content.
- the water content of the solvent is preferably 0.001 to 1% by mass, more preferably 0.003 to 0.9% by mass, and further preferably 0.005 to 0.8% by mass.
- the saponification degree of the polyvinyl alcohol resin is preferably more than 80 mol%, more preferably 95 mol% or more, and further preferably 98 mol% or more.
- the PVA produced is washed.
- the cleaning liquid examples include methanol, acetone, methyl acetate, ethyl acetate, hexane, water and the like. Among these, methanol, methyl acetate, water, or a mixture thereof is preferable.
- the amount of the cleaning liquid used is preferably set so as to satisfy the content of the alkali metal or alkaline earth metal described later, and is usually preferably 300 to 10,000 parts by mass with respect to 100 parts by mass of PVA. , 500 to 5,000 parts by mass, more preferably.
- the cleaning temperature is preferably 5 to 80 ° C, more preferably 20 to 70 ° C.
- the washing time is preferably 20 minutes to 100 hours, more preferably 1 to 50 hours.
- the content of the alkali metal or alkaline earth metal in PVA used in the present invention is preferably 0.00001 to 1 part by mass with respect to 100 parts by mass of PVA.
- PVA having an alkali metal or alkaline earth metal content of less than 0.00001 parts by mass is industrially difficult to produce.
- the content of the alkali metal or alkaline earth metal is 1 part by mass or less, it is possible to suppress the formation of gel at a high temperature and suppress the generation of unnecessary salts and the like.
- the content of the alkali metal or alkaline earth metal can be determined by atomic absorption spectroscopy.
- the polyvinyl alcohol resin used for producing the polyvinyl acetal resin (B) has a viscosity average degree of polymerization of preferably 200 to 3,000, more preferably 400 to 2,500, still more preferably 600 to 2,000, and further. It is preferably 800 to 1,300.
- the viscosity average degree of polymerization of the polyvinyl alcohol resin is 200 or more, the mechanical properties of the obtained polyvinyl acetal resin (B) are improved, and when it is 3,000 or less, good solubility in an organic solvent is obtained. Can be shown.
- the viscosity average degree of polymerization (P) of the polyvinyl alcohol resin can be measured by the method described in Examples according to JIS K6726: 1994. That is, after the polyvinyl alcohol resin is completely remineralized and purified, the ultimate viscosity [ ⁇ ] (dL / g) is measured in water at 30 ° C., and the value is calculated by the following formula (i).
- the polyvinyl acetal resin (B) is an aldehyde having 3 or less carbon atoms and optionally 4 or more carbon atoms from the viewpoint of compatibility with the (meth) acrylic resin (A) and heat resistance.
- a resin obtained by acetalizing with an aldehyde is preferable.
- aldehyde having 3 or less carbon atoms used in the production of the polyvinyl acetal resin (B) examples include formaldehyde (including paraformaldehyde), acetaldehyde (including paraacetaldehyde), propionaldehyde, and glyoxal. These aldehydes having 3 or less carbon atoms can be used alone or in combination of two or more. Among these aldehydes having 3 or less carbon atoms, those mainly composed of acetaldehyde and formaldehyde are preferable, and acetaldehyde is more preferable, from the viewpoint of ease of production.
- aldehyde having 4 or more carbon atoms optionally used in the production of the polyvinyl acetal resin (B) include butyl aldehyde, isobutyl aldehyde, n-octyl aldehyde, amyl aldehyde, hexyl aldehyde, heptyl aldehyde, 2-ethylhexyl aldehyde, cyclohexyl aldehyde, and the like.
- Examples thereof include furfural, glutaaldehyde, benzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, p-hydroxybenzaldehyde, m-hydroxybenzaldehyde, phenylacetaldehyde, ⁇ -phenylpropionaldehyde and the like.
- These aldehydes having 4 or more carbon atoms can be used alone or in combination of two or more.
- these aldehydes having 4 or more carbon atoms those containing butyraldehyde as a main component are preferable, and butyraldehyde is particularly preferable, from the viewpoint of ease of production.
- the reaction between the polyvinyl alcohol resin and the aldehyde can be carried out by a known method.
- a method in which a polyvinyl alcohol resin is dissolved in water and reacted with aldehyde in the presence of an acid catalyst to precipitate resin particles water medium method
- the polyvinyl alcohol resin is dispersed in an organic solvent and in the presence of an acid catalyst.
- examples thereof include a method of reacting with aldehyde and adding the obtained reaction solution to a poor solvent such as water to precipitate resin particles (solvent method).
- the water medium method is preferable.
- the aldehydes used for acetalization may be charged all at the same time, or one type may be charged separately.
- the randomness of the vinyl acetal unit in the polyvinyl acetal resin (B) can be changed.
- the acid catalyst used in the acetalization reaction is not particularly limited, and is, for example, organic acids such as acetic acid and p-toluenesulfonic acid; inorganic acids such as nitric acid, sulfuric acid and hydrochloric acid; and shows acidity when made into an aqueous solution such as carbon dioxide gas.
- organic acids such as acetic acid and p-toluenesulfonic acid
- inorganic acids such as nitric acid, sulfuric acid and hydrochloric acid
- shows acidity when made into an aqueous solution such as carbon dioxide gas.
- gas, cation exchangers and solid acid catalysts such as metal oxides.
- acetalized vinyl alcohols for the respective aldehydes (1), (2), ..., And (n) are used.
- the molar ratio of the unit can be calculated.
- the degree of acetalization (mol%) due to the aldehyde (n) can be obtained by the formula: k (n) / ⁇ k (1) + k (2) + ... + k (n) + l + m ⁇ ⁇ 100. it can.
- k (1), k (2), ..., And k (n) are vinyl alcohol units acetalized with aldehydes (1), (2), ..., And (n), respectively. Is the molar ratio of.
- the molar proportion of vinyl alcohol units acetalized with butyraldehyde is particularly referred to as the degree of butyraldehyde.
- the molar ratio of vinyl alcohol units acetalized with acetaldehyde is particularly called the degree of acetaldehyde conversion.
- the molar proportion of vinyl alcohol units acetalized with formaldehyde is called the degree of formalization.
- a polyvinyl acetal resin obtained by acetalizing a polyvinyl alcohol resin with butylaldehyde, acetaldehyde and formaldehyde the molar ratio of vinyl alcohol units acetalized with butylaldehyde is k (BA)
- vinyl acetalized with acetaldehyde The molar ratio of alcohol units is k (AA)
- the molar ratio of vinyl alcohol units acetalized with formaldehyde is k (FA)
- the molar ratio of non-acetalized vinyl alcohol units is l
- the molar ratio of vinyl acetate units the molar ratio of vinyl acetate units.
- the degree of butyralization is calculated by the formula: k (BA) / ⁇ k (BA) + k (AA) + k (FA) + l + m ⁇ ⁇ 100.
- the degree of acetoacetalization is calculated by the formula: k (AA) / ⁇ k (BA) + k (AA) + k (FA) + l + m ⁇ ⁇ 100.
- the degree of formalization is calculated by the formula: k (FA) / ⁇ k (BA) + k (AA) + k (FA) + l + m ⁇ ⁇ 100.
- the polyvinyl acetal resin (B) is a resin obtained by acetalizing a polyvinyl alcohol resin with an aldehyde having 3 or less carbon atoms and optionally an aldehyde having 4 or more carbon atoms
- the total acetalization degree of the polyvinyl acetal resin (B). Is preferably 50 to 90 mol%, more preferably 60 to 87 mol%, still more preferably 70 to 85 mol%.
- the polyvinyl acetal resin (B) can be finely dispersed in the (meth) acrylic resin (A), and the toughness of the film is exhibited. Can be done.
- the polyvinyl acetal resin (B) is a resin obtained by acetalizing a polyvinyl alcohol resin with an aldehyde having 3 or less carbon atoms and optionally an aldehyde having 4 or more carbon atoms
- the polyvinyl acetal resin (B) is (meth).
- the molar ratio of the vinyl alcohol unit acetalized with an aldehyde having 3 or less carbon atoms / the vinyl alcohol unit acetalized with an aldehyde having 4 or more carbon atoms is preferably 10. It is / 90 to 100/0, more preferably 20/80 to 100/0, further preferably 40/60 to 100/0, and even more preferably 40/60 to 60/40.
- the amount of the vinyl ester unit constituting the polyvinyl acetal resin (B) is preferably less than 20 mol%, more preferably 5 mol% or less. When the amount of the vinyl ester unit is less than 20 mol%, the heat resistance can be improved and the continuous productivity can be enhanced.
- the degree of polymerization of the polyvinyl alcohol resin and the polyvinyl acetal resin (B) obtained by acetalizing the polyvinyl alcohol resin is the same, and the polyvinyl acetal resin ( The degree of polymerization of B) is preferably 200 to 3,000.
- the degree of polymerization of B) is 200 or more, the toughness of the film can be exhibited, and when it is 3,000 or less, good solubility in an organic solvent can be exhibited. ..
- the slurry produced by the water medium method, the solvent method, etc. is usually acidic due to the acid catalyst, it is preferable to remove the acid catalyst.
- a method for removing the acid catalyst a method of repeating washing with water until the pH of the slurry is preferably 5 to 9, more preferably 6 to 9, and even more preferably 6 to 8, a neutralizing agent is added to the slurry, and the pH is increased. Is preferably 5 to 9, more preferably 6 to 9, still more preferably 6 to 8, and a method of adding alkylene oxides or the like can be mentioned.
- Examples of the neutralizing agent used for removing the acid catalyst include alkali metal compounds such as sodium hydroxide, potassium hydroxide, sodium acetate, sodium carbonate, sodium hydrogencarbonate and potassium carbonate; alkaline earth such as calcium hydroxide. Metal compounds; examples include ammonia and aqueous ammonia.
- Examples of the alkylene oxides used for removing the acid catalyst include ethylene oxide and propylene oxide; glycidyl ethers such as ethylene glycol diglycidyl ether.
- the polyvinyl acetal resin is purified by removing the catalyst residue, the neutralizing agent residue, the salt produced by the neutralization, the unreacted aldehyde, the alkali metal, the alkaline earth metal, the by-products and the like.
- the purification method is not particularly limited, and a method such as repeating liquid removal and washing is usually used.
- the liquid removal and washing are preferably performed twice or more.
- Examples of the liquid used for purification include water and a mixed liquid of water and alcohol (methanol, ethanol, etc.).
- the pH is preferably 5 to 9, more preferably 6 to 9, and even more preferably 6 to 8 in a mixed solution of water and alcohol (methanol, ethanol, etc.).
- a method of repeating deliquefaction and washing is preferable in that alkali metals or alkaline earth metals can be efficiently reduced and a polyvinyl acetal resin can be stably produced.
- the mixing ratio of water / alcohol is preferably 50/50 to 95/5, more preferably 60/40 to 90/10 by mass ratio. If the proportion of water is too small, the elution of the polyvinyl acetal resin into the mixed solution tends to increase. If the proportion of water is too high, the efficiency of removing alkali metals or alkaline earth metals tends to decrease.
- the amount of the alkali metal or alkaline earth metal contained in the polyvinyl acetal resin (B) is preferably 100 ppm or less, more preferably 70 ppm or less, and further preferably 50 ppm or less. When it is 100 ppm or less, the generation of gel at a high temperature is suppressed, and the continuous productivity can be enhanced. If the content of the alkali metal or alkaline earth metal is 0.1 ppm or more, it does not require long-term cleaning to obtain it, the manufacturing cost is reduced, and industrial production is facilitated. ..
- the water-containing polyvinyl acetal resin (B) from which residues and the like have been removed is dried as necessary, processed into powder, granules or pellets as necessary, and used as a molding material.
- processing into powder, granules or pellets it is preferable to reduce the reaction residue and water content of the aldehyde by degassing under reduced pressure.
- the mass ratio [(A) / (B)] of the (meth) acrylic resin (A) and the polyvinyl acetal resin (B) constituting the dope of the present invention is preferably 98/2 to 50/50, and more. It is preferably 95/5 to 60/40, more preferably 92/8 to 65/35, and even more preferably 91/9 to 85/15.
- the mass ratio [(A) / (B)] is 98/2 or less, the toughness of the film can be exhibited, and when it is 50/50 or more, it has a high surface hardness (pencil hardness). Can be done.
- the total content of the (meth) acrylic resin (A) and the polyvinyl acetal resin (B) constituting the dope of the present invention is preferably 3 to 70% by mass, more preferably 3 to 70% by mass, based on 100% by mass of the dope. It is 3 to 50% by mass, more preferably 4 to 40% by mass.
- the total content of the (meth) acrylic resin (A) and the polyvinyl acetal resin (B) is 3% by mass or more, the amount of residual solvent in the film can be suppressed and the deterioration of dimensional stability is avoided. be able to.
- it when it is 70% by mass or less, it exhibits good solubility in an organic solvent and facilitates production of a film having a uniform thickness.
- Organic solvent (C) In the solution casting method, in order to suppress fisheye defects and gel-like defects in the film, it is considered that it is one of the effective means to suppress the precipitate and the undissolved residue in the doping. However, since the solvent solubility of the (meth) acrylic resin (A) and the polyvinyl acetal resin (B) is different, the (meth) acrylic resin (A) and / or the polyvinyl acetal resin (B) may be used depending on the type of the organic solvent (C). Precipitation, undissolved residue, etc. may occur due to the fact that B) is not sufficiently dissolved.
- the organic solvent (C) used in the present invention contains a chlorine-based organic solvent from the viewpoint of solubility of the (meth) acrylic resin (A) and the polyvinyl acetal resin (B).
- the chlorine-based organic solvent include chloromethane (methane chloride), dichloromethane (methylene chloride), trichloromethane (chloroform), tetrachloromethane (carbon tetrachloride), trichloroethylene, tetrachloroethylene and the like.
- chloromethane methane chloride
- dichloromethane methylene chloride
- trichloromethane chloroform
- tetrachloromethane carbon tetrachloride
- trichloroethylene tetrachloroethylene and the like.
- methylene chloride is preferable from the viewpoint of ensuring solubility and having a low boiling point. These can be used alone or in combination of two or more.
- the organic solvent (C) is an alcohol such as methanol, ethanol, propanol, n-butanol, etc. as another organic solvent that can be used in combination with the chlorine-based organic solvent.
- Alcohol ester having 3 to 12 carbon atoms, ketone, ether: carbon number. May contain 1-7 halogenated hydrocarbons :.
- Esters, ketones and ethers may have a cyclic structure. Compounds having two or more of the functional groups of esters, ketones and ethers (ie, -O-, -CO- and -COO-) can also be used as solvents and other compounds such as alcoholic hydroxyl groups. It may have a functional group.
- the number of carbon atoms may be within the specified range of the compound having any of the functional groups. It may also be a saturated aliphatic hydrocarbon such as cyclohexanone. These may be used alone or in combination of two or more. Of these, methanol and ethanol are preferable.
- the mass ratio (S / S) of the chlorine-based organic solvent (S) and the organic solvent (T) other than the chlorine-based organic solvent T) is preferably 50/50 to 99/1, more preferably 60/40 to 95/5. It is preferable that the mass ratio (S / T) is within the above range from the viewpoint of more effectively suppressing fisheye defects and gel-like defects.
- the content of the organic solvent (C) is preferably 30 to 97% by mass, more preferably 50 to 97% by mass, and further preferably 60 to 96% by mass with respect to 100% by mass of the dope.
- the content of the organic solvent (C) is 30% by mass or more, the resin can be satisfactorily dissolved in the organic solvent, and when it is 97% by mass or less, the amount of residual solvent in the film can be suppressed. It is possible to avoid deterioration of dimensional stability.
- the dope of the present invention contains, if necessary, a light stabilizer, an ultraviolet absorber, a heat stabilizer, a matting agent, a light diffuser, a colorant, a dye, a pigment, and deterioration prevention, as long as the effect of the present invention is not impaired.
- It may contain known additives such as agents, release agents, optical modifiers, antistatic agents, heat ray reflectors, lubricants, plasticizers, fillers and the like.
- the above additives can be used alone or in combination of two or more.
- rubber particles such as a core-shell type graft copolymer are not contained from the viewpoint of increasing the haze of the doping and the haze of the film.
- the dope of the present invention is an acrylic elastomer such as acrylic multilayer structure particles and acrylic rubber; styrene elastomer; styrene resin; carbonate resin; cellulose acylate resin; fluororesin, as long as the effect of the present invention is not impaired. It may contain other resins such as silicone resin; olefin resin; ethylene terephthalate resin; butylene terephthalate resin. The above resins can be used alone or in combination of two or more.
- the state (property) of the doping used is considered to affect the physical properties and properties of the obtained film. Therefore, especially in the production of optical films and the like. For example, it is preferable to keep the haze value of the doping low to some extent.
- the average particle size measured by the light scattering method of the phase containing the polyvinyl acetal resin in the doping is preferably 1.0 ⁇ m or less, more preferably 0.7 ⁇ m or less, from the viewpoint of uniform dispersibility and transparency at the time of film. 0.5 ⁇ m or less is particularly preferable.
- the lower limit of the average particle size is preferably 0.05 ⁇ m, more preferably 0.10 ⁇ m, and even more preferably 0.15 ⁇ m.
- the average particle size of the phase containing the polyvinyl acetal resin in the doping is analyzed at 25 ° C. using, for example, a laser diffraction / scattering type particle size distribution measuring device (manufactured by Horiba Seisakusho Co., Ltd., device name “LA-950V2”). can do. Since the solution casting method is a method of forming a dope film on the support and evaporating the solvent in the dope film to obtain a film, heating on the support depends on the type of solvent and the properties of the dope itself. It may be necessary to lengthen the time or raise the temperature of the support (heating temperature). However, lengthening the heating time or raising the heating temperature may cause deterioration of the resin, leading to fisheye defects and gel-like defects.
- the dope of the present invention comprises a (meth) acrylic resin (A), a polyvinyl acetal resin (B), an organic solvent (C) containing a chlorine-based organic solvent, additives to be blended as necessary, and other resins. It can be prepared by uniformly dispersing and mixing a fixed amount of the mixture.
- the preparation method is not particularly limited, and examples thereof include a method in which a predetermined amount of each of the above components is blended and sufficiently stirred (mixed) with a mixer or the like.
- the stirring time depends on the specific method of dispersion mixing, but is preferably, for example, 8 hours or more, more preferably 14 hours or more, and further preferably 20 hours or more. From the viewpoint of production efficiency and the like, the stirring time is usually preferably 48 hours or less, and more preferably 36 hours or less.
- the doping may be adjusted at room temperature (1 to 30 ° C.), while cooling or warming, and further, a combination thereof may be used. If it dissolves above the boiling point, heat it under pressure.
- the pressurization may be performed by a method of press-fitting an inert gas such as nitrogen gas or by increasing the vapor pressure of the solvent by heating. The heating is preferably performed from the outside, and for example, the jacket type is preferable because the temperature can be easily controlled.
- the time for dispersion and mixing is preferably 1 minute to 24 hours, more preferably 2 minutes to 5 hours, and even more preferably 3 minutes to 1 hour.
- the temperature is preferably 5 to 40 ° C., more preferably 10 to 35 ° C. under atmospheric pressure. Under pressure, the temperature is preferably above the boiling point of the solvent used and within the range in which the solvent does not boil, and is preferably set to, for example, 60 ° C. or higher, more preferably 70 to 110 ° C. In addition, the pressure is adjusted at the set temperature so that the solvent does not boil. By dissolving in these temperature ranges, it is possible to prevent the generation of massive undissolved substances called gels and maco.
- the (meth) acrylic resin (A) and the polyvinyl acetal resin (B) are dissolved, swollen, or dispersed in the organic solvent (C) containing a chlorine-based organic solvent, respectively, and are visually observed. It is desirable that no residual resin is seen.
- the method for producing a film of the present invention is a method for producing an acrylic resin film by a solution casting method, which comprises a step of casting the above-mentioned dope on the surface of a support and then evaporating the solvent.
- dope is performed using the above (meth) acrylic resin (A), polyvinyl acetal resin (B), organic solvent (C) containing a chlorine-based organic solvent, additives to be blended as necessary, and other resins.
- A acrylic resin
- B polyvinyl acetal resin
- C organic solvent
- additives to be blended as necessary and other resins.
- the resulting dope may be filtered or defoamed.
- the dope is then cast on the surface of the support to form a dope film.
- the casting method for example, the T-die method, the doctor blade method, the bar coater method, the roll coater method, the lip coater method and the like are used, and industrially, the dope is transferred from the die to a belt-shaped or drum-shaped support.
- a method of continuously extruding is generally used.
- the support include a glass substrate, a metal substrate, a plastic substrate such as polyimide and polyethylene terephthalate, and the like.
- a metal substrate having a mirror-finished surface is preferably used as a support for industrially continuous film formation of a substrate having highly excellent surface properties and optical characteristics.
- the formed dope film is heated on the support to evaporate the solvent to form an acrylic resin film (cast film).
- the heating temperature is preferably 0 to 120 ° C, more preferably 5 to 100 ° C.
- the heating time is preferably 20 seconds to 2 hours, more preferably 30 seconds to 1 hour.
- the acrylic resin film thus obtained is peeled off from the surface of the support. After that, the obtained acrylic resin film may be appropriately subjected to a drying step, a heating step, a stretching step and the like.
- the stretching process is performed to increase the heat resistance and mechanical strength of the film.
- the stretching method in the stretching step is not particularly limited, and examples thereof include a sequential biaxial stretching method, a simultaneous biaxial stretching method, and a tuber stretching method.
- the stretching treatment is composed of a preheating step, a stretching step, and a heat fixing step, and a relaxation step may be performed after the heat fixing step.
- the stretching speed may be the same or different in each stretching direction.
- the stretching speed is preferably 100 to 5000% / min, and more preferably 100 to 3000% / min.
- the stretching speed is preferably 50 to 5000% / min, and 100 to 3000% / min. Is more preferable.
- the stretching temperature is preferably Tg to (Tg + 30 ° C.), more preferably (Tg + 5 ° C.) to (Tg + 25 ° C.) in both the sequential / simultaneous biaxial stretching method based on the Tg of the acrylic resin film. is there. In such a range, thickness unevenness tends to be suppressed.
- the stretching temperature is Tg or more of the acrylic resin film, film breakage can be suppressed, and when the stretching temperature is Tg + 30 ° C. or less of the acrylic resin film, the thermal properties can be improved.
- the draw ratio in each axial direction is preferably 1.01 to 12.25 times, more preferably 1.10 to 9 times.
- the mechanical strength of the film can be improved.
- the acrylic resin film of the present invention includes the above-mentioned unstretched and stretched ones.
- the acrylic resin film of the present invention is formed by a solution casting method (solution casting method) using the above-mentioned dope, and the haze value measured in accordance with JIS K7136: 2000 is preferably 2% or less. It is more preferably 1% or less, further preferably 0.7% or less, and even more preferably 0.4% or less. Since the haze value of the acrylic resin film is 2% or less, it is suitable for optical applications.
- the polyvinyl acetal resin (B) is dispersed in the acrylic resin (A).
- the average particle size of the polyvinyl acetal resin (B) in the film is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, still more preferably 1.2 ⁇ m or less, still more preferably 0, from the viewpoint of toughness and the like. It is 0.8 ⁇ m or less, particularly preferably 0.6 ⁇ m or less, and preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, still more preferably 0.07 ⁇ m or more.
- the average particle size of the polyvinyl acetal resin (B) (particles) can be calculated by evaluating the particle size from a transmission electron microscope (TEM) observation image of the particles and obtaining the average value thereof. Can be obtained by the method described in Examples.
- TEM transmission electron microscope
- the thickness of the acrylic resin film of the present invention is preferably 10 to 500 ⁇ m, more preferably 15 to 200 ⁇ m, still more preferably 20 to 100 ⁇ m, and even more preferably 40 to 80 ⁇ m.
- the thickness of the acrylic resin film is 10 ⁇ m or more, it is possible to suppress film breakage during picking up, and when it is 500 ⁇ m or less, secondary processability such as laminateability, handleability, cutability, punching property, etc. Is improved.
- the acrylic resin film of the present invention is an optical film such as a polarizer protective film, a viewing angle adjusting film, a retardation film, and a brightness improving film, a liquid crystal protective film, a surface material of a portable information terminal, and a portable information terminal. It is suitable for a display window protective film, a light guide film, a transparent conductive film having silver nanowires or carbon nanotubes coated on its surface, a front film of various displays, and the like, and is particularly suitable for a polarizer protective film and the like.
- the acrylic resin film of the present invention can be used for front films of various displays, diffusion films, glass shatterproof films, liquid crystal ASF films, transparent conductive films, heat shield films, various barrier films and other optical base films. It is suitable.
- the acrylic resin film of the present invention may be used alone, as an inner layer of a laminate or a part thereof, or as an outermost layer of a laminate.
- the other resin used for laminating is preferably a transparent resin such as a methacrylic resin from the viewpoint of film design.
- the film forming the outermost layer is preferably one having high surface hardness and weather resistance, and is preferably the acrylic resin film of the present invention.
- the polarizing plate of the present invention is formed by laminating the acrylic resin film of the present invention and a polarizer. More specifically, the polarizing plate of the present invention comprises a polarizer, a polarizer protective film laminated on at least one surface of the polarizer, and a viewing angle adjustment laminated on the other surface of the polarizer as needed. It has at least one kind of optical film selected from the group consisting of a film, a retardation film, and a brightness improving film. Lamination can be done via an adhesive layer, if desired.
- the polarizing plate of the above aspect can be used for a display device.
- the display device include a self-luminous display device such as an (organic) electroluminescence display (ELD), a plasma display (PD), and a field emission display (FED: Field Emission Display); a liquid crystal display device (LCD) and the like. ..
- the LCD has a liquid crystal cell and a polarizing plate arranged on at least one side thereof.
- the temperature of the column oven was set to 40 ° C., the eluent flow rate was 0.35 mL / min, 20 ⁇ L of the sample solution was injected into the apparatus, and the chromatogram was measured.
- the chromatogram is a chart in which the electric signal value (intensity Y) derived from the difference in refractive index between the sample solution and the reference solution is plotted against the retention time X.
- GPC measurement was performed using 10 standard polystyrenes having a molecular weight in the range of 400 to 500000, and a calibration curve showing the relationship between the retention time and the molecular weight was prepared. Based on this calibration curve, Mw and Mw / Mn of the resin to be measured were determined.
- the chromatogram baseline is the point where the slope of the peak on the high molecular weight side of the GPC chart changes from zero to positive when viewed from the side with the earlier retention time, and the slope of the peak on the low molecular weight side has the earlier retention time. It is a line connecting the points that change from minus to zero when viewed from. If the chromatogram shows multiple peaks, the line connecting the point where the slope of the peak on the highest molecular weight side changes from zero to plus and the point where the slope of the peak on the lowest molecular weight side changes from minus to zero It was the baseline.
- the glass transition temperature was measured according to JIS K7121: 2012. Using a differential scanning calorimetry device (“DSC-50” manufactured by Shimadzu Corporation), once the sample is heated to 230 ° C. and cooled to 30 ° C or lower, it is again 10 ° C / from 30 ° C to 230 ° C. The DSC curve was measured under the condition that the temperature was raised at the rate of temperature rise of 1 minute. The intermediate point glass transition temperature obtained from the obtained DSC curve was defined as the glass transition temperature.
- DSC-50 differential scanning calorimetry device manufactured by Shimadzu Corporation
- composition of polyvinyl acetal resin (B) (degree of acetalization)
- the composition of the polyvinyl acetal resin (B) was acetalized with an aldehyde having 3 or less carbon atoms in mol% with respect to all repeating units of vinyl alcohol units acetalized with an aldehyde having 4 or more carbon atoms by measuring 13C-NMR.
- the mol% for all repeating units of vinyl alcohol units, the mol% for all repeating units of non-acetalized vinyl alcohol units, and the mol% for all repeating units of vinyl acetate units were calculated.
- the polyvinyl acetal resin (B) is carbonized in a platinum crucible and a hot plate, then carbonized in an electric furnace, and the residue is dissolved in acid to obtain an atomic absorption spectrophotometer (manufactured by Hitachi High-Technologies Corporation, model number: Z-2000). Measured using.
- Average particle size A 0.1 mm ⁇ 0.1 mm sample piece was cut out from the obtained film, an ultrathin section was prepared using an ultramicrotome (Reichert ULTRACUT-S manufactured by RICA), stained with ruthenium tetroxide, and the section was permeated. Observation was performed using a type electron microscope (H-800NA manufactured by Hitachi, Ltd.). The particle size of 50 particles in the observation image was evaluated, and the average particle size was calculated from the average value of these particles.
- the obtained copolymer dispersion was washed with an appropriate amount of ion-exchanged water, the beaded copolymer was taken out by a bucket centrifuge, dried in a hot air dryer at 80 ° C. for 12 hours, and beaded (meth).
- Acrylic resin (A) was obtained.
- the obtained (meth) acrylic resin (A) has a content of methyl methacrylate monomer unit of 99% by mass, a content of methyl acrylate monomer unit of 1% by mass, and a weight average molecular weight.
- Mw was 95,000, Mw / Mn was 2.0, and the glass transition temperature was 120 ° C.
- a polyvinyl acetal resin (B) having a butyl acetal unit of 30 mol%, an acetal acetal unit of 51 mol%, a vinyl alcohol unit of 18 mol%, and a vinyl acetate unit of 1 mol%. ) was obtained.
- the alkali metal content was 40 ppm.
- Example 1 3.15 g of pellets of (meth) acrylic resin (A), 0.35 g of powder of polyvinyl acetal resin (B) and 66.5 g of methylene chloride as organic solvent (C) were put into a screw tube, and a stirrer was further added to room temperature. The mixture was stirred at (23 ° C.) for 24 hours to prepare a dope. The dissolved state of the resin was visually observed every hour, and the time during which the dissolution was confirmed was measured. In addition, haze measurement was performed using the solution after stirring for 24 hours. The dissolution time was 1 hour and the haze value was 0.4%.
- Example 2 The dope obtained in Example 1 was dropped onto a polyimide film substrate to form a dope film with a film applicator. This film was dried in a dryer at 150 ° C. for 60 minutes and then peeled off from the polyimide film to obtain an acrylic resin film. The thickness of this film was 70 ⁇ m, and the haze value was 0.2%. Further, as a result of TEM observation, it was a film in which polyvinyl acetal resin particles having an average particle diameter of 0.5 ⁇ m were present.
- Example 2 Except that the organic solvent (C) used was changed to chloroform, and the pellets of (meth) acrylic resin (A), the powder of polyvinyl acetal resin (B) and chloroform were changed to the contents shown in Table 1, respectively. Dope preparation was performed in the same manner as in Example 1. The dissolution time was 4 hours and the haze value was 0.5%.
- a film having a thickness of 70 ⁇ m was prepared by the same method as in Example 1, and the haze was measured and found to be 0.3%.
- Example 3 The organic solvent (C) used was changed to a mixed solution of methylene chloride and methanol, and pellets of (meth) acrylic resin (A), powder of polyvinyl acetal resin (B) and mixed solution of methylene chloride and methanol were used, respectively. Dope preparation was carried out in the same manner as in Example 1 except that the content was changed to the content shown in Table 1. The dissolution time was 1 hour and the haze value was 0.5%.
- a film having a thickness of 70 ⁇ m was prepared by the same method as in Example 1, and the haze was measured and found to be 0.2%.
- Example 4 Dope production was carried out in the same manner as in Example 1 except that the pellets of the (meth) acrylic resin (A) and the powder of the polyvinyl acetal resin (B) were changed to the contents shown in Table 1, respectively.
- the dissolution time was 3 hours and the haze value was 1.0%.
- a film having a thickness of 70 ⁇ m was prepared by the same method as in Example 1, and the haze was measured and found to be 0.6%.
- a film having a thickness of 70 ⁇ m was prepared by the same method as in Example 1, and the haze was measured and found to be 34.5%.
- a film having a thickness of 70 ⁇ m was prepared by the same method as in Example 1, and the haze was measured and found to be 40.5%.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polarising Elements (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
The present invention provides a dope for manufacturing a film, the dope including a (meth)acrylic resin (A), a polyvinyl acetal resin (B), and an organic solvent (C) that contains a chlorinated organic solvent.
Description
本発明は、(メタ)アクリル樹脂と、ポリビニルアセタール樹脂と、塩素系有機溶剤を含有する有機溶剤とを含むフィルム製造用のドープ、および当該ドープから製造されるフィルムに関する。
The present invention relates to a dope for producing a film containing a (meth) acrylic resin, a polyvinyl acetal resin, and an organic solvent containing a chlorine-based organic solvent, and a film produced from the dope.
(メタ)アクリル系樹脂は透明性が高い、耐候性が高い、表面硬度が高い、加工性に優れるなどの特性を有していることから、様々な分野で使用されている。ところが、このアクリル系樹脂は用途によっては、機械的特性、特に耐衝撃性や靭性が不足することがあり、その改善が求められている。その改善を図るために、特許文献1には、メタクリル系樹脂と特定構造を有するポリビニルアセタール樹脂とを含有するアクリル系熱可塑性樹脂組成物が提案されている。また、特許文献2には、低複屈折性もあわせ持つフィルムとして、メタアクリル系樹脂と特定のポリビニルアセタール樹脂とを含有するアクリル系熱可塑性樹脂組成物を延伸して得られる光学フィルムが提案されている。
また、特許文献3には、熱可塑性アクリル系樹脂、グラフト共重合体、及び溶剤を含む溶液流延法によるフィルム製造用ドープが提案されている。 (Meta) Acrylic resins are used in various fields because they have properties such as high transparency, high weather resistance, high surface hardness, and excellent workability. However, depending on the application, this acrylic resin may lack mechanical properties, particularly impact resistance and toughness, and improvement thereof is required. In order to improve this, Patent Document 1 proposes an acrylic thermoplastic resin composition containing a methacrylic resin and a polyvinyl acetal resin having a specific structure. Further, Patent Document 2 proposes an optical film obtained by stretching an acrylic thermoplastic resin composition containing a methacrylic resin and a specific polyvinyl acetal resin as a film having low birefringence. ing.
Further, Patent Document 3 proposes a dope for film production by a solution casting method containing a thermoplastic acrylic resin, a graft copolymer, and a solvent.
また、特許文献3には、熱可塑性アクリル系樹脂、グラフト共重合体、及び溶剤を含む溶液流延法によるフィルム製造用ドープが提案されている。 (Meta) Acrylic resins are used in various fields because they have properties such as high transparency, high weather resistance, high surface hardness, and excellent workability. However, depending on the application, this acrylic resin may lack mechanical properties, particularly impact resistance and toughness, and improvement thereof is required. In order to improve this, Patent Document 1 proposes an acrylic thermoplastic resin composition containing a methacrylic resin and a polyvinyl acetal resin having a specific structure. Further, Patent Document 2 proposes an optical film obtained by stretching an acrylic thermoplastic resin composition containing a methacrylic resin and a specific polyvinyl acetal resin as a film having low birefringence. ing.
Further, Patent Document 3 proposes a dope for film production by a solution casting method containing a thermoplastic acrylic resin, a graft copolymer, and a solvent.
特許文献1、2に記載の溶融押出法では、高温での製造となるためフィルムを長期間製造しようとするとフィッシュアイ欠点、ゲル状欠点が発生するという問題があった。一方で特許文献3では、フィルム製造用ドープ中にゴム粒子であるグラフト共重合体が含有されているため、フィルムを製造した場合に上記粒子が表面に現れ、ヘイズが発生したり、折り曲げ、成形加工した際に白化するという問題が生じるという課題があった。
特許文献3のような溶液流延法においては、使用するドープの状態が得られるフィルムの物性や性状に影響すると考えられることから、ドープのヘイズ値をある程度低く抑えるなどによって、例えば光学用途に適した透明性に優れたフィルムを得ることができると考えられる。しかし、特許文献3の溶液流延法によるフィルム製膜時に、アクリル系グラフト共重合体が凝集する、または乳化剤によりベルトが汚れるといった問題を有していた。 The melt extrusion methods described in Patent Documents 1 and 2 have a problem that fisheye defects and gel-like defects occur when a film is produced for a long period of time because it is produced at a high temperature. On the other hand, in Patent Document 3, since the graft copolymer which is a rubber particle is contained in the dope for film production, the particles appear on the surface when the film is produced, causing haze, bending, and molding. There was a problem that a problem of whitening occurred when processed.
In the solution casting method as in Patent Document 3, since it is considered that the state of the doping used affects the physical properties and properties of the obtained film, it is suitable for, for example, optical applications by suppressing the haze value of the doping to some extent. It is considered that a film having excellent transparency can be obtained. However, there is a problem that the acrylic graft copolymer aggregates or the belt is contaminated by the emulsifier when the film is formed by the solution casting method of Patent Document 3.
特許文献3のような溶液流延法においては、使用するドープの状態が得られるフィルムの物性や性状に影響すると考えられることから、ドープのヘイズ値をある程度低く抑えるなどによって、例えば光学用途に適した透明性に優れたフィルムを得ることができると考えられる。しかし、特許文献3の溶液流延法によるフィルム製膜時に、アクリル系グラフト共重合体が凝集する、または乳化剤によりベルトが汚れるといった問題を有していた。 The melt extrusion methods described in Patent Documents 1 and 2 have a problem that fisheye defects and gel-like defects occur when a film is produced for a long period of time because it is produced at a high temperature. On the other hand, in Patent Document 3, since the graft copolymer which is a rubber particle is contained in the dope for film production, the particles appear on the surface when the film is produced, causing haze, bending, and molding. There was a problem that a problem of whitening occurred when processed.
In the solution casting method as in Patent Document 3, since it is considered that the state of the doping used affects the physical properties and properties of the obtained film, it is suitable for, for example, optical applications by suppressing the haze value of the doping to some extent. It is considered that a film having excellent transparency can be obtained. However, there is a problem that the acrylic graft copolymer aggregates or the belt is contaminated by the emulsifier when the film is formed by the solution casting method of Patent Document 3.
本発明は、このような実情に鑑みてなされたものであり、透明性の高いフィルムの製造に適したフィルム製造用のドープおよび当該ドープから製造されるフィルムを提供することを目的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a dope for producing a film suitable for producing a highly transparent film and a film produced from the dope.
本発明者らは、アクリルフィルムの靭性発現材料としてポリビニルアセタール樹脂に着目し、(メタ)アクリル樹脂と、ポリビニルアセタール樹脂と、塩素系有機溶剤を含有する有機溶剤とを含むフィルム製造用のドープが、上記課題を解決できることを見出した。
The present inventors have focused on polyvinyl acetal resin as a toughness-developing material for acrylic films, and have prepared a dope for producing a film containing a (meth) acrylic resin, a polyvinyl acetal resin, and an organic solvent containing a chlorine-based organic solvent. , I found that the above problem can be solved.
すなわち、本発明は、次の[1]~[13]を提供するものである。
[1](メタ)アクリル樹脂(A)と、ポリビニルアセタール樹脂(B)と、塩素系有機溶剤を含有する有機溶剤(C)とを含むフィルム製造用のドープ。
[2]前記ドープ100質量%に対して、前記有機溶剤(C)の含有量が30~97質量%である上記[1]に記載のドープ。
[3]前記有機溶剤(C)における、塩素系有機溶剤(S)と塩素系有機溶剤以外の他の有機溶剤(T)の質量比[S/T]が50/50~99/1である、上記[1]または[2]に記載のドープ。
[4]前記(メタ)アクリル樹脂(A)と前記ポリビニルアセタール樹脂(B)との質量比[(A)/(B)]が、98/2~50/50である上記[1]~[3]のいずれかに記載のドープ。
[5]前記(メタ)アクリル樹脂(A)中のメタクリル酸メチル構造単位の含有量が、50質量%以上である上記[1]~[4]のいずれかに記載のドープ。
[6]前記ポリビニルアセタール樹脂(B)は、ポリビニルアルコール樹脂を炭素数3以下のアルデヒドと任意で炭素数4以上のアルデヒドとでアセタール化して得られる樹脂で
あり、かつ総アセタール化度が50~90モル%である上記[1]~[5]のいずれかに記載のドープ。
[7]溶液流延法によるアクリル系樹脂フィルムの製造方法あって、上記[1]~[6]のいずれかに記載のドープを支持体表面に流延した後、溶剤を蒸発させる工程を有する、フィルムの製造方法。
[8]上記[1]~[6]のいずれかに記載のドープから形成されてなり、JIS 7136:2000に準拠して測定したヘイズ値が2%以下であるアクリル系樹脂フィルム。
[9]厚みが10~500μmである上記[8]に記載のアクリル系樹脂フィルム。
[10]光学用フィルムである上記[8]または[9]に記載のアクリル系樹脂フィルム。
[11]前記光学用フィルムが偏光子保護フィルムである上記[10]に記載のアクリル系樹脂フィルム。
[12]上記[11]に記載のアクリル系樹脂フィルムと偏光子とが積層された偏光板。
[13]上記[12]に記載の偏光板を含む、ディスプレイ装置。 That is, the present invention provides the following [1] to [13].
[1] A dope for producing a film containing a (meth) acrylic resin (A), a polyvinyl acetal resin (B), and an organic solvent (C) containing a chlorine-based organic solvent.
[2] The dope according to the above [1], wherein the content of the organic solvent (C) is 30 to 97% by mass with respect to 100% by mass of the dope.
[3] The mass ratio [S / T] of the chlorine-based organic solvent (S) and the organic solvent (T) other than the chlorine-based organic solvent in the organic solvent (C) is 50/50 to 99/1. , The dope according to the above [1] or [2].
[4] The mass ratio [(A) / (B)] of the (meth) acrylic resin (A) to the polyvinyl acetal resin (B) is 98/2 to 50/50. 3] The dope according to any one of.
[5] The dope according to any one of [1] to [4] above, wherein the content of the methyl methacrylate structural unit in the (meth) acrylic resin (A) is 50% by mass or more.
[6] The polyvinyl acetal resin (B) is a resin obtained by acetalizing a polyvinyl alcohol resin with an aldehyde having 3 or less carbon atoms and optionally an aldehyde having 4 or more carbon atoms, and has a total acetalization degree of 50 to 50 to. The dope according to any one of the above [1] to [5], which is 90 mol%.
[7] A method for producing an acrylic resin film by a solution casting method, which comprises a step of casting the dope according to any one of [1] to [6] above on the surface of a support and then evaporating the solvent. , Film manufacturing method.
[8] An acrylic resin film formed from the dope according to any one of the above [1] to [6] and having a haze value of 2% or less measured in accordance with JIS 7136: 2000.
[9] The acrylic resin film according to the above [8], which has a thickness of 10 to 500 μm.
[10] The acrylic resin film according to the above [8] or [9], which is an optical film.
[11] The acrylic resin film according to the above [10], wherein the optical film is a polarizer protective film.
[12] A polarizing plate in which the acrylic resin film according to the above [11] and a polarizer are laminated.
[13] A display device including the polarizing plate according to the above [12].
[1](メタ)アクリル樹脂(A)と、ポリビニルアセタール樹脂(B)と、塩素系有機溶剤を含有する有機溶剤(C)とを含むフィルム製造用のドープ。
[2]前記ドープ100質量%に対して、前記有機溶剤(C)の含有量が30~97質量%である上記[1]に記載のドープ。
[3]前記有機溶剤(C)における、塩素系有機溶剤(S)と塩素系有機溶剤以外の他の有機溶剤(T)の質量比[S/T]が50/50~99/1である、上記[1]または[2]に記載のドープ。
[4]前記(メタ)アクリル樹脂(A)と前記ポリビニルアセタール樹脂(B)との質量比[(A)/(B)]が、98/2~50/50である上記[1]~[3]のいずれかに記載のドープ。
[5]前記(メタ)アクリル樹脂(A)中のメタクリル酸メチル構造単位の含有量が、50質量%以上である上記[1]~[4]のいずれかに記載のドープ。
[6]前記ポリビニルアセタール樹脂(B)は、ポリビニルアルコール樹脂を炭素数3以下のアルデヒドと任意で炭素数4以上のアルデヒドとでアセタール化して得られる樹脂で
あり、かつ総アセタール化度が50~90モル%である上記[1]~[5]のいずれかに記載のドープ。
[7]溶液流延法によるアクリル系樹脂フィルムの製造方法あって、上記[1]~[6]のいずれかに記載のドープを支持体表面に流延した後、溶剤を蒸発させる工程を有する、フィルムの製造方法。
[8]上記[1]~[6]のいずれかに記載のドープから形成されてなり、JIS 7136:2000に準拠して測定したヘイズ値が2%以下であるアクリル系樹脂フィルム。
[9]厚みが10~500μmである上記[8]に記載のアクリル系樹脂フィルム。
[10]光学用フィルムである上記[8]または[9]に記載のアクリル系樹脂フィルム。
[11]前記光学用フィルムが偏光子保護フィルムである上記[10]に記載のアクリル系樹脂フィルム。
[12]上記[11]に記載のアクリル系樹脂フィルムと偏光子とが積層された偏光板。
[13]上記[12]に記載の偏光板を含む、ディスプレイ装置。 That is, the present invention provides the following [1] to [13].
[1] A dope for producing a film containing a (meth) acrylic resin (A), a polyvinyl acetal resin (B), and an organic solvent (C) containing a chlorine-based organic solvent.
[2] The dope according to the above [1], wherein the content of the organic solvent (C) is 30 to 97% by mass with respect to 100% by mass of the dope.
[3] The mass ratio [S / T] of the chlorine-based organic solvent (S) and the organic solvent (T) other than the chlorine-based organic solvent in the organic solvent (C) is 50/50 to 99/1. , The dope according to the above [1] or [2].
[4] The mass ratio [(A) / (B)] of the (meth) acrylic resin (A) to the polyvinyl acetal resin (B) is 98/2 to 50/50. 3] The dope according to any one of.
[5] The dope according to any one of [1] to [4] above, wherein the content of the methyl methacrylate structural unit in the (meth) acrylic resin (A) is 50% by mass or more.
[6] The polyvinyl acetal resin (B) is a resin obtained by acetalizing a polyvinyl alcohol resin with an aldehyde having 3 or less carbon atoms and optionally an aldehyde having 4 or more carbon atoms, and has a total acetalization degree of 50 to 50 to. The dope according to any one of the above [1] to [5], which is 90 mol%.
[7] A method for producing an acrylic resin film by a solution casting method, which comprises a step of casting the dope according to any one of [1] to [6] above on the surface of a support and then evaporating the solvent. , Film manufacturing method.
[8] An acrylic resin film formed from the dope according to any one of the above [1] to [6] and having a haze value of 2% or less measured in accordance with JIS 7136: 2000.
[9] The acrylic resin film according to the above [8], which has a thickness of 10 to 500 μm.
[10] The acrylic resin film according to the above [8] or [9], which is an optical film.
[11] The acrylic resin film according to the above [10], wherein the optical film is a polarizer protective film.
[12] A polarizing plate in which the acrylic resin film according to the above [11] and a polarizer are laminated.
[13] A display device including the polarizing plate according to the above [12].
本発明によれば、透明性の高いフィルムの製造に適したフィルム製造用のドープおよび当該ドープから製造されるフィルムを提供することができる。
According to the present invention, it is possible to provide a dope for producing a film suitable for producing a highly transparent film and a film produced from the dope.
以下、本発明を適用した実施形態の一例について説明する。本明細書において特定する数値は、実施形態又は実施例に開示した方法により求められる値である。なお、本発明の趣旨に合致する限り、他の実施形態も本発明の範疇に含まれる。本明細書において「(メタ)アクリル」とは、「アクリル又はメタクリル」を意味する。また、(メタ)アクリル系樹脂を含むドープから形成されてなる樹脂フィルムを「アクリル系樹脂フィルム」と称することがある。
Hereinafter, an example of an embodiment to which the present invention is applied will be described. The numerical value specified in the present specification is a value obtained by the method disclosed in the embodiment or the embodiment. Other embodiments are also included in the scope of the present invention as long as they are consistent with the gist of the present invention. As used herein, the term "(meth) acrylic" means "acrylic or methacrylic". Further, a resin film formed from a dope containing a (meth) acrylic resin may be referred to as an "acrylic resin film".
<ドープ>
本発明のドープは、(メタ)アクリル樹脂(A)と、ポリビニルアセタール樹脂(B)と、塩素系有機溶剤を含有する有機溶剤(C)とを含むフィルム製造用のドープである。
本発明者らは、ポリビニルアセタール樹脂とアクリル樹脂とを溶液流延法により製膜する場合、得られるフィルムを光学フィルムなどに使用すべく、低いヘイズ値を発現するためには、ポリビニルアセタール樹脂のアセタール化率、各々の樹脂組成比、及び共溶媒の選定を最適化することにより、ドープの適切なヘイズ範囲を規定することができることを見出した。
上記ドープを1cm厚のセルに封入し、JIS 7136:2000に準拠して測定したヘイズ値は98%以下であることが好ましく、80%以下であることがより好ましく、70%以下であることがさらに好ましく、50%以下であることがよりさらに好ましく、20%以下であることがよりさらに好ましく、2%以下であることが特に好ましい。前記ヘイズ値が98%以下であると、たとえば、得られるフィルムの白化を抑制することができ、透明性の高いフィルムが得られやすくなる。
ヘイズ値は、実施例に記載の方法により測定することができる。 <Dope>
The dope of the present invention is a dope for producing a film containing a (meth) acrylic resin (A), a polyvinyl acetal resin (B), and an organic solvent (C) containing a chlorine-based organic solvent.
When the polyvinyl acetal resin and the acrylic resin are formed by the solution casting method, the present inventors consider that the obtained film can be used as an optical film or the like, and in order to exhibit a low haze value, the polyvinyl acetal resin is used. It has been found that an appropriate haze range for doping can be defined by optimizing the acetalization rate, the composition ratio of each resin, and the selection of the co-solvent.
The dope is sealed in a cell having a thickness of 1 cm, and the haze value measured in accordance with JIS 7136: 2000 is preferably 98% or less, more preferably 80% or less, and more preferably 70% or less. It is even more preferably 50% or less, even more preferably 20% or less, and particularly preferably 2% or less. When the haze value is 98% or less, for example, whitening of the obtained film can be suppressed, and a highly transparent film can be easily obtained.
The haze value can be measured by the method described in Examples.
本発明のドープは、(メタ)アクリル樹脂(A)と、ポリビニルアセタール樹脂(B)と、塩素系有機溶剤を含有する有機溶剤(C)とを含むフィルム製造用のドープである。
本発明者らは、ポリビニルアセタール樹脂とアクリル樹脂とを溶液流延法により製膜する場合、得られるフィルムを光学フィルムなどに使用すべく、低いヘイズ値を発現するためには、ポリビニルアセタール樹脂のアセタール化率、各々の樹脂組成比、及び共溶媒の選定を最適化することにより、ドープの適切なヘイズ範囲を規定することができることを見出した。
上記ドープを1cm厚のセルに封入し、JIS 7136:2000に準拠して測定したヘイズ値は98%以下であることが好ましく、80%以下であることがより好ましく、70%以下であることがさらに好ましく、50%以下であることがよりさらに好ましく、20%以下であることがよりさらに好ましく、2%以下であることが特に好ましい。前記ヘイズ値が98%以下であると、たとえば、得られるフィルムの白化を抑制することができ、透明性の高いフィルムが得られやすくなる。
ヘイズ値は、実施例に記載の方法により測定することができる。 <Dope>
The dope of the present invention is a dope for producing a film containing a (meth) acrylic resin (A), a polyvinyl acetal resin (B), and an organic solvent (C) containing a chlorine-based organic solvent.
When the polyvinyl acetal resin and the acrylic resin are formed by the solution casting method, the present inventors consider that the obtained film can be used as an optical film or the like, and in order to exhibit a low haze value, the polyvinyl acetal resin is used. It has been found that an appropriate haze range for doping can be defined by optimizing the acetalization rate, the composition ratio of each resin, and the selection of the co-solvent.
The dope is sealed in a cell having a thickness of 1 cm, and the haze value measured in accordance with JIS 7136: 2000 is preferably 98% or less, more preferably 80% or less, and more preferably 70% or less. It is even more preferably 50% or less, even more preferably 20% or less, and particularly preferably 2% or less. When the haze value is 98% or less, for example, whitening of the obtained film can be suppressed, and a highly transparent film can be easily obtained.
The haze value can be measured by the method described in Examples.
〔(メタ)アクリル樹脂(A)〕
本発明で用いられる(メタ)アクリル樹脂(A)としては、例えばメタクリル酸メチルに由来する構造単位(メタクリル酸メチル構造単位)から主としてなるものを挙げることができる。(メタ)アクリル樹脂(A)におけるメタクリル酸メチル構造単位の含有量は、耐熱性の観点から、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましく、全ての構造単位がメタクリル酸メチル構造単位であってもよい。 [(Meta) acrylic resin (A)]
Examples of the (meth) acrylic resin (A) used in the present invention include those mainly composed of structural units derived from methyl methacrylate (methyl methacrylate structural units). From the viewpoint of heat resistance, the content of the methyl methacrylate structural unit in the (meth) acrylic resin (A) is preferably 50% by mass or more, more preferably 80% by mass or more, and 90% by mass or more. Is more preferable, and 95% by mass or more is particularly preferable, and all structural units may be methyl methacrylate structural units.
本発明で用いられる(メタ)アクリル樹脂(A)としては、例えばメタクリル酸メチルに由来する構造単位(メタクリル酸メチル構造単位)から主としてなるものを挙げることができる。(メタ)アクリル樹脂(A)におけるメタクリル酸メチル構造単位の含有量は、耐熱性の観点から、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましく、全ての構造単位がメタクリル酸メチル構造単位であってもよい。 [(Meta) acrylic resin (A)]
Examples of the (meth) acrylic resin (A) used in the present invention include those mainly composed of structural units derived from methyl methacrylate (methyl methacrylate structural units). From the viewpoint of heat resistance, the content of the methyl methacrylate structural unit in the (meth) acrylic resin (A) is preferably 50% by mass or more, more preferably 80% by mass or more, and 90% by mass or more. Is more preferable, and 95% by mass or more is particularly preferable, and all structural units may be methyl methacrylate structural units.
(メタ)アクリル樹脂(A)は、メタクリル酸メチル以外の他の単量体に由来する構造単位を含んでいてもよい。他の単量体としては、メタクリル酸メチルと共重合可能であれば特に制限はなく、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸アミル、アクリル酸イソアミル、アクリル酸n-へキシル、アクリル酸2-エチルへキシル、アクリル酸ペンタデシル、アクリル酸ドデシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸フェノキシエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-エトキシエチル、アクリル酸グリシジル、アクリル酸アリル、アクリル酸シクロへキシル、アクリル酸ノルボルニル、アクリル酸イソボルニル等のアクリル酸エステル;メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸sec-ブチル、メタクリル酸tert-ブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸n-へキシル、メタクリル酸2-エチルへキシル、メタクリル酸ペンタデシル、メタクリル酸ドデシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸フェノキシエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-エトキシエチル、メタクリル酸グリシジル、メタクリル酸アリル、メタクリル酸シクロへキシル、メタクリル酸ノルボルニル、メタクリル酸イソボルニル等のメタクリル酸メチル以外のメタクリル酸エステル;アクリル酸、メタクリル酸、無水マレイン酸、マレイン酸、イタコン酸等の不飽和カルボン酸又はその酸無水物;エチレン、プロピレン、1-ブテン、イソブチレン、1-オクテン等のオレフィン;ブタジエン、イソプレン、ミルセン等の共役ジエン;スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレン等の芳香族ビニル化合物;アクリルアミド、メタクリルアミド、アクリロニトリル、メタクリロニトリル、酢酸ビニル、ビニルピリジン、ビニルケトン、塩化ビニル、塩化ビニリデン、フッ化ビニリデンなどが挙げられる。
The (meth) acrylic resin (A) may contain a structural unit derived from a monomer other than methyl methacrylate. The other monomer is not particularly limited as long as it can be copolymerized with methyl methacrylate, and for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, and acrylic. Isobutyl acid, sec-butyl acrylate, tert-butyl acrylate, amyl acrylate, isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, pentadecyl acrylate, dodecyl acrylate, phenyl acrylate, Acrylic acid esters such as benzyl acrylate, phenoxyethyl acrylate, 2-hydroxyethyl acrylate, 2-ethoxyethyl acrylate, glycidyl acrylate, allyl acrylate, cyclohexyl acrylate, norbornyl acrylate, isobornyl acrylate; Ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, tert-butyl methacrylate, amyl methacrylate, isoamyl methacrylate, n-hexyl methacrylate , 2-ethylhexyl methacrylate, pentadecyl methacrylate, dodecyl methacrylate, phenyl methacrylate, benzyl methacrylate, phenoxyethyl methacrylate, 2-hydroxyethyl methacrylate, 2-ethoxyethyl methacrylate, glycidyl methacrylate, methacrylic acid Methacrylic acid esters other than methyl methacrylate such as allyl, cyclohexyl methacrylate, norbornyl methacrylate, isobornyl methacrylate; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic anhydride, maleic acid, and itaconic acid or their acids. Anhydrous; olefins such as ethylene, propylene, 1-butene, isobutylene and 1-octene; conjugated diene such as butadiene, isoprene and milsen; aromatics such as styrene, α-methylstyrene, p-methylstyrene and m-methylstyrene. Vinyl compounds; acrylamide, methacrylicamide, acrylonitrile, methacrylic nitrile, vinyl acetate, vinylpyridine, vinyl ketone, vinyl chloride, vinylidene chloride, vinylidene fluoride and the like can be mentioned.
(メタ)アクリル樹脂(A)の重量平均分子量(Mw)は、好ましくは40,000~2,000,000であり、より好ましくは50,000~1,000,000であり、さらに好ましくは60,000~200,000であり、よりさらに好ましくは70,000~150,000である。Mwが40,000以上であることで、フィルムの靭性を発現することができ、2,000,000以下であることで、有機溶剤に対して良好な溶解性を示すことができる。
The weight average molecular weight (Mw) of the (meth) acrylic resin (A) is preferably 40,000 to 2,000,000, more preferably 50,000 to 1,000,000, and even more preferably 60. It is 000 to 200,000, and even more preferably 70,000 to 150,000. When Mw is 40,000 or more, the toughness of the film can be exhibited, and when it is 2,000,000 or less, good solubility in an organic solvent can be exhibited.
(メタ)アクリル樹脂(A)の、重量平均分子量(Mw)と数平均分子量(Mn)の比で表される分子量分布(Mw/Mn)は、好ましくは1.00~4.00であり、より好ましくは1.01~3.50であり、さらに好ましくは1.03~3.00であり、よりさらに好ましくは1.70~2.50である。分子量分布(Mw/Mn)がかかる範囲内にある(メタ)アクリル樹脂(A)を用いると、成形加工性と、フィルムのクリープ特性を両立させることができる。
上記MwおよびMw/Mnは、(メタ)アクリル樹脂(A)の重合方法や、製造時に使用する重合開始剤や連鎖移動剤の種類や量、重合温度を調整したり、分子量の異なる(メタ)アクリル樹脂(A)を混合すること等によって調整することができる。本明細書において、MwおよびMnは、ゲルパーミエーションクロマトグラフィ(GPC)で測定したクロマトグラムを標準ポリスチレンの分子量に換算した値である。本発明におけるMwおよびMw/Mnは、実施例に記載の方法で測定することができる。
(メタ)アクリル樹脂(A)は、分子量の異なる2種以上の(メタ)アクリル樹脂(A)を組み合わせて用いてもよい。 The molecular weight distribution (Mw / Mn) of the (meth) acrylic resin (A) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 1.00 to 4.00. It is more preferably 1.01 to 3.50, still more preferably 1.03 to 3.00, and even more preferably 1.70 to 2.50. When the (meth) acrylic resin (A) having a molecular weight distribution (Mw / Mn) within such a range is used, both molding processability and creep characteristics of the film can be achieved at the same time.
The above Mw and Mw / Mn can adjust the polymerization method of the (meth) acrylic resin (A), the type and amount of the polymerization initiator and the chain transfer agent used at the time of production, the polymerization temperature, and have different molecular weights (meth). It can be adjusted by mixing the acrylic resin (A) or the like. In the present specification, Mw and Mn are values obtained by converting chromatograms measured by gel permeation chromatography (GPC) into molecular weights of standard polystyrene. Mw and Mw / Mn in the present invention can be measured by the method described in Examples.
As the (meth) acrylic resin (A), two or more kinds of (meth) acrylic resins (A) having different molecular weights may be used in combination.
上記MwおよびMw/Mnは、(メタ)アクリル樹脂(A)の重合方法や、製造時に使用する重合開始剤や連鎖移動剤の種類や量、重合温度を調整したり、分子量の異なる(メタ)アクリル樹脂(A)を混合すること等によって調整することができる。本明細書において、MwおよびMnは、ゲルパーミエーションクロマトグラフィ(GPC)で測定したクロマトグラムを標準ポリスチレンの分子量に換算した値である。本発明におけるMwおよびMw/Mnは、実施例に記載の方法で測定することができる。
(メタ)アクリル樹脂(A)は、分子量の異なる2種以上の(メタ)アクリル樹脂(A)を組み合わせて用いてもよい。 The molecular weight distribution (Mw / Mn) of the (meth) acrylic resin (A) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 1.00 to 4.00. It is more preferably 1.01 to 3.50, still more preferably 1.03 to 3.00, and even more preferably 1.70 to 2.50. When the (meth) acrylic resin (A) having a molecular weight distribution (Mw / Mn) within such a range is used, both molding processability and creep characteristics of the film can be achieved at the same time.
The above Mw and Mw / Mn can adjust the polymerization method of the (meth) acrylic resin (A), the type and amount of the polymerization initiator and the chain transfer agent used at the time of production, the polymerization temperature, and have different molecular weights (meth). It can be adjusted by mixing the acrylic resin (A) or the like. In the present specification, Mw and Mn are values obtained by converting chromatograms measured by gel permeation chromatography (GPC) into molecular weights of standard polystyrene. Mw and Mw / Mn in the present invention can be measured by the method described in Examples.
As the (meth) acrylic resin (A), two or more kinds of (meth) acrylic resins (A) having different molecular weights may be used in combination.
(メタ)アクリル樹脂(A)のガラス転移温度(以下、Tgと記載することがある。)は、好ましくは100℃以上であり、より好ましくは105℃以上であり、さらに好ましくは110℃以上であり、よりさらに好ましくは115℃以上である。(メタ)アクリル樹脂(A)のTgの上限は、通常150℃である。
本発明におけるガラス転移温度は、実施例に記載の方法で測定することができる。 The glass transition temperature of the (meth) acrylic resin (A) (hereinafter, may be referred to as Tg) is preferably 100 ° C. or higher, more preferably 105 ° C. or higher, still more preferably 110 ° C. or higher. Yes, and even more preferably 115 ° C. or higher. The upper limit of Tg of the (meth) acrylic resin (A) is usually 150 ° C.
The glass transition temperature in the present invention can be measured by the method described in Examples.
本発明におけるガラス転移温度は、実施例に記載の方法で測定することができる。 The glass transition temperature of the (meth) acrylic resin (A) (hereinafter, may be referred to as Tg) is preferably 100 ° C. or higher, more preferably 105 ° C. or higher, still more preferably 110 ° C. or higher. Yes, and even more preferably 115 ° C. or higher. The upper limit of Tg of the (meth) acrylic resin (A) is usually 150 ° C.
The glass transition temperature in the present invention can be measured by the method described in Examples.
(メタ)アクリル樹脂(A)の製造方法に特に制限はなく、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等により製造できる。この中でも塊状重合法、溶液重合法、懸濁重合法のいずれかが好ましい。中でも塊状重合法、または懸濁重合法がより好ましい。
The method for producing the (meth) acrylic resin (A) is not particularly limited, and it can be produced by a massive polymerization method, a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, or the like. Of these, any of a massive polymerization method, a solution polymerization method, and a suspension polymerization method is preferable. Of these, the massive polymerization method or the suspension polymerization method is more preferable.
〔ポリビニルアセタール樹脂(B)〕
本発明で用いるポリビニルアセタール樹脂(B)は、ビニルアルコール単位(式(I))、ビニルエステル単位(式(II))およびビニルアセタール単位(2個のビニルアルコール単位がアルデヒドでアセタール化されたもの:式(III))を有する樹脂である。下記の式において、lはビニルアルコール単位のモル比であり、mはビニルエステル単位のモル比であり、k/2はビニルアセタール単位のモル比であり、kはアルデヒドでアセタール化されたビニルアルコール単位のモル比であり、Raはアセタール化に用いたアルデヒド(Ra-CHO)中のRaである。Rbはビニルエステル(RbCOOCH=CH2)中のRbである。ただし、lおよび/またはmはゼロであってもよい。ビニルアルコール単位、ビニルエステル単位およびビニルアセタール単位のみからなるポリビニルアセタール樹脂(B)においては、k+l+m=1である。各単位は、配列順序によって特に制限されず、ランダムに配列されていてもよいし、ブロック状に配列されていてもよいし、テーパー状に配列されていてもよい。また、繰り返し単位間の結合は、Head-to-Tailであってもよいし、Head-to-Headであってもよい。 [Polyvinyl acetal resin (B)]
The polyvinyl acetal resin (B) used in the present invention is a vinyl alcohol unit (formula (I)), a vinyl ester unit (formula (II)) and a vinyl acetal unit (two vinyl alcohol units are acetalized with an aldehyde). : A resin having the formula (III)). In the formula below, l is the molar ratio of vinyl alcohol units, m is the molar ratio of vinyl ester units, k / 2 is the molar ratio of vinyl acetal units, and k is the vinyl alcohol acetalized with aldehyde. the molar ratio of the units, R a is R a in the aldehyde used for acetalization (R a -CHO). R b is R b in the vinyl ester (R b COOCH = CH 2) . However, l and / or m may be zero. In the polyvinyl acetal resin (B) consisting of only vinyl alcohol units, vinyl ester units and vinyl acetal units, k + l + m = 1. The units are not particularly limited by the arrangement order, and may be arranged randomly, may be arranged in a block shape, or may be arranged in a tapered shape. Further, the connection between the repeating units may be Head-to-Tail or Head-to-Head.
本発明で用いるポリビニルアセタール樹脂(B)は、ビニルアルコール単位(式(I))、ビニルエステル単位(式(II))およびビニルアセタール単位(2個のビニルアルコール単位がアルデヒドでアセタール化されたもの:式(III))を有する樹脂である。下記の式において、lはビニルアルコール単位のモル比であり、mはビニルエステル単位のモル比であり、k/2はビニルアセタール単位のモル比であり、kはアルデヒドでアセタール化されたビニルアルコール単位のモル比であり、Raはアセタール化に用いたアルデヒド(Ra-CHO)中のRaである。Rbはビニルエステル(RbCOOCH=CH2)中のRbである。ただし、lおよび/またはmはゼロであってもよい。ビニルアルコール単位、ビニルエステル単位およびビニルアセタール単位のみからなるポリビニルアセタール樹脂(B)においては、k+l+m=1である。各単位は、配列順序によって特に制限されず、ランダムに配列されていてもよいし、ブロック状に配列されていてもよいし、テーパー状に配列されていてもよい。また、繰り返し単位間の結合は、Head-to-Tailであってもよいし、Head-to-Headであってもよい。 [Polyvinyl acetal resin (B)]
The polyvinyl acetal resin (B) used in the present invention is a vinyl alcohol unit (formula (I)), a vinyl ester unit (formula (II)) and a vinyl acetal unit (two vinyl alcohol units are acetalized with an aldehyde). : A resin having the formula (III)). In the formula below, l is the molar ratio of vinyl alcohol units, m is the molar ratio of vinyl ester units, k / 2 is the molar ratio of vinyl acetal units, and k is the vinyl alcohol acetalized with aldehyde. the molar ratio of the units, R a is R a in the aldehyde used for acetalization (R a -CHO). R b is R b in the vinyl ester (R b COOCH = CH 2) . However, l and / or m may be zero. In the polyvinyl acetal resin (B) consisting of only vinyl alcohol units, vinyl ester units and vinyl acetal units, k + l + m = 1. The units are not particularly limited by the arrangement order, and may be arranged randomly, may be arranged in a block shape, or may be arranged in a tapered shape. Further, the connection between the repeating units may be Head-to-Tail or Head-to-Head.
ポリビニルアセタール樹脂(B)は、ポリビニルアルコール樹脂(以下、PVAと表記することがある。)をアルデヒドでアセタール化することによって得ることができる。
The polyvinyl acetal resin (B) can be obtained by acetalizing a polyvinyl alcohol resin (hereinafter, may be referred to as PVA) with an aldehyde.
ポリビニルアルコール樹脂は、ビニルアルコール単位のみからなるホモポリマーであってもよいし、ビニルアルコールとこれに共重合可能なモノマーとからなるコポリマー(以下、PVAコポリマーと表記することがある。)であってもよい。さらに、分子鎖の途中、末端、または側鎖にカルボキシル基などの官能基が導入された変性ポリビニルアルコール樹脂であってもよい。これらポリビニルアルコール樹脂は、1種単独でまたは2種以上を組み合わせて用いることができる。
The polyvinyl alcohol resin may be a homopolymer composed of only vinyl alcohol units, or a copolymer composed of vinyl alcohol and a monomer copolymerizable therewith (hereinafter, may be referred to as PVA copolymer). May be good. Further, it may be a modified polyvinyl alcohol resin in which a functional group such as a carboxyl group is introduced into the middle, the end, or the side chain of the molecular chain. These polyvinyl alcohol resins can be used alone or in combination of two or more.
ポリビニルアルコール樹脂は、その製法によって特に限定されず、例えば、ポリ酢酸ビニルなどのビニルエステル系重合体をけん化することによって得られるものを用いることができる。ビニルエステル単位を形成するためのビニルエステル単量体としては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル、バーサティック酸ビニルなどが挙げられる。これらの中でもポリビニルアルコール樹脂を良好な生産性で得ることができる点で酢酸ビニルが好ましい。
The polyvinyl alcohol resin is not particularly limited depending on the production method, and for example, one obtained by saponifying a vinyl ester-based polymer such as polyvinyl acetate can be used. Examples of the vinyl ester monomer for forming the vinyl ester unit include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, and the like. Examples include vinyl versatic acid. Among these, vinyl acetate is preferable because a polyvinyl alcohol resin can be obtained with good productivity.
PVAコポリマーを構成する、ビニルアルコールと共重合可能なモノマーとしては、例えば、エチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセンなどのα-オレフィン類;アクリル酸およびその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピルなどのアクリル酸エステル類;メタクリル酸およびその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピルなどのメタクリル酸エステル類;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミドなどのアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミドなどのメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテルなどのビニルエーテル類;エチレングリコールビニルエーテル、1,3-プロパンジオールビニルエーテル、1,4-ブタンジオールビニルエーテルなどのヒドロキシ基含有のビニルエーテル類;アリルアセテート、プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテルなどのアリルエーテル類;ポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシブチレン基などのオキシアルキレン基を有する単量体;ビニルトリメトキシシランなどのビニルシラン類;酢酸イソプロペニル、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、7-オクテン-1-オール、9-デセン-1-オール、3-メチル-3-ブテン-1-オールなどのヒドロキシ基含有のα-オレフィン類またはそのエステル化物;N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドンなどのN-ビニルアミド類;フマール酸、マレイン酸、イタコン酸、無水マレイン酸、無水フタル酸、無水トリメリット酸または無水イタコン酸などに由来するカルボキシル基を有する単量体;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸などに由来するスルホン酸基を有する単量体;ビニロキシエチルトリメチルアンモニウムクロライド、ビニロキシブチルトリメチルアンモニウムクロライド、ビニロキシエチルジメチルアミン、ビニロキシメチルジエチルアミン、N-アクリルアミドメチルトリメチルアンモニウムクロライド、N-アクリルアミドエチルトリメチルアンモニウムクロライド、N-アクリルアミドジメチルアミン、アリルトリメチルアンモニウムクロライド、メタアリルトリメチルアンモニウムクロライド、ジメチルアリルアミン、アリルエチルアミンなどに由来するカチオン基を有する単量体が挙げられる。
Examples of the monomer copolymerizable with vinyl alcohol constituting the PVA copolymer include α-olefins such as ethylene, propylene, 1-butene, isobutene and 1-hexene; acrylic acid and salts thereof; methyl acrylate and acrylic. Acrylic acid esters such as ethyl acid, n-propyl acrylate, i-propyl acrylate; methacrylic acid and salts thereof; methacrylic acid such as methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate. Esters; acrylamide derivatives such as acrylamide, N-methylacrylamide, N-ethylacrylamide; methacrylicamide derivatives such as methacrylamide, N-methylmethacrylate, N-ethylmethacrylate; methylvinyl ether, ethylvinyl ether, n-propylvinyl ether, Vinyl ethers such as i-propyl vinyl ether and n-butyl vinyl ether; hydroxy group-containing vinyl ethers such as ethylene glycol vinyl ether, 1,3-propanediol vinyl ether and 1,4-butanediol vinyl ether; allyl acetate, propyl allyl ether and butyl Allyl ethers such as allyl ether and hexyl allyl ether; monomers having an oxyalkylene group such as polyoxyethylene group, polyoxypropylene group and polyoxybutylene group; vinylsilanes such as vinyltrimethoxysilane; isopropenyl acetate, 3-Buten-1-ol, 4-Penten-1-ol, 5-Hexen-1-ol, 7-octen-1-ol, 9-decene-1-ol, 3-methyl-3-buten-1- Hydroxy group-containing α-olefins such as oar or esterified products thereof; N-vinylamides such as N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone; fumaric acid, maleic acid, itaconic acid, maleic anhydride, Monomer having a carboxyl group derived from phthalic anhydride, trimellitic anhydride, itaconic anhydride, etc .; derived from ethylene sulfonic acid, allylsulfonic acid, metaallylsulfonic acid, 2-acrylamide-2-methylpropanesulfonic acid, etc. Monomer having a sulfonic acid group; vinyloxyethyltrimethylammonium chloride, vinyloxybutyltrimethylammonium chloride, vinyloxyethyldimethylamine, vinyloxymethyldiethyla A single amount having a cation group derived from min, N-acrylamide methyltrimethylammonium chloride, N-acrylamide ethyltrimethylammonium chloride, N-acrylamide dimethylamine, allyltrimethylammonium chloride, metaallyltrimethylammonium chloride, dimethylallylamine, allylethylamine, etc. The body is mentioned.
ビニルアルコールと共重合可能な単量体の単位(以下、コモノマー単位と表記することがある。)の含有量は、PVAコポリマーを構成する全単量体単位100モル部の中で、好ましくは20モル部以下であり、より好ましくは10モル部以下である。また、共重合されていることのメリットを発揮するためには、0.01モル部以上がコモノマー単位であることが好ましい。
The content of a monomer unit copolymerizable with vinyl alcohol (hereinafter, may be referred to as a comonomer unit) is preferably 20 in 100 mol parts of all the monomer units constituting the PVA copolymer. It is not more than a molar part, and more preferably 10 parts or less. Further, in order to exert the merit of being copolymerized, it is preferable that 0.01 mol part or more is a comonomer unit.
ビニルエステル系重合体の製造において使用される重合法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法などの公知の方法が挙げられる。その中でも、無溶媒あるいはアルコールなどの溶媒中で重合する方法である、塊状重合法や溶液重合法が好ましい。溶液重合法において使用される溶媒としてのアルコールには、メタノール、エタノール、プロパノールなどの低級アルコールが通常用いられる。重合開始剤としては、α,α’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチル-バレロニトリル)、2,2’-アゾビス(2-メチルプロピオニトリル)などのアゾ化合物や、過酸化ベンゾイル、n-プロピルパーオキシカーボネートなどの過酸化物などが挙げられる。重合温度については特に制限はないが、通常、0~200℃である。
Examples of the polymerization method used in the production of the vinyl ester-based polymer include known methods such as a massive polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. Among them, a bulk polymerization method or a solution polymerization method, which is a method of polymerizing without a solvent or in a solvent such as alcohol, is preferable. As the alcohol used as the solvent in the solution polymerization method, lower alcohols such as methanol, ethanol and propanol are usually used. Examples of the polymerization initiator include α, α'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethyl-valeronitrile), and 2,2'-azobis (2-methylpropionitrile). Examples of the azo compound, benzoyl peroxide, and peroxides such as n-propylperoxycarbonate. The polymerization temperature is not particularly limited, but is usually 0 to 200 ° C.
ビニルエステル系重合体をけん化する際には、通常、触媒としてアルカリ性物質が使用される。アルカリ性物質としては、水酸化カリウム、水酸化ナトリウムなどが挙げられる。けん化触媒に使用されるアルカリ性物質のモル比は、ビニルエステル系重合体中のビニルエステル単位に対して、好ましくは0.004~0.5であり、より好ましくは0.005~0.05である。けん化触媒としてのアルカリ性物質は、けん化反応の初期に一括添加してもよいし、けん化反応の途中で追加添加してもよい。
けん化反応時に使用可能な溶媒としては、メタノール、酢酸メチル、ジメチルスルホキシド、ジメチルホルムアミドなどが挙げられる。これらの溶媒の中でもメタノールが好ましい。使用される溶媒は含水率を調整されたものが好ましい。溶媒の含水率は、好ましくは0.001~1質量%であり、より好ましくは0.003~0.9質量%であり、さらに好ましくは0.005~0.8質量%である。 When saponifying a vinyl ester polymer, an alkaline substance is usually used as a catalyst. Examples of the alkaline substance include potassium hydroxide and sodium hydroxide. The molar ratio of the alkaline substance used in the saponification catalyst is preferably 0.004 to 0.5, more preferably 0.005 to 0.05 with respect to the vinyl ester unit in the vinyl ester polymer. is there. The alkaline substance as a saponification catalyst may be added all at once at the beginning of the saponification reaction, or may be additionally added during the saponification reaction.
Examples of the solvent that can be used during the saponification reaction include methanol, methyl acetate, dimethyl sulfoxide, dimethylformamide and the like. Among these solvents, methanol is preferable. The solvent used is preferably one having an adjusted water content. The water content of the solvent is preferably 0.001 to 1% by mass, more preferably 0.003 to 0.9% by mass, and further preferably 0.005 to 0.8% by mass.
けん化反応時に使用可能な溶媒としては、メタノール、酢酸メチル、ジメチルスルホキシド、ジメチルホルムアミドなどが挙げられる。これらの溶媒の中でもメタノールが好ましい。使用される溶媒は含水率を調整されたものが好ましい。溶媒の含水率は、好ましくは0.001~1質量%であり、より好ましくは0.003~0.9質量%であり、さらに好ましくは0.005~0.8質量%である。 When saponifying a vinyl ester polymer, an alkaline substance is usually used as a catalyst. Examples of the alkaline substance include potassium hydroxide and sodium hydroxide. The molar ratio of the alkaline substance used in the saponification catalyst is preferably 0.004 to 0.5, more preferably 0.005 to 0.05 with respect to the vinyl ester unit in the vinyl ester polymer. is there. The alkaline substance as a saponification catalyst may be added all at once at the beginning of the saponification reaction, or may be additionally added during the saponification reaction.
Examples of the solvent that can be used during the saponification reaction include methanol, methyl acetate, dimethyl sulfoxide, dimethylformamide and the like. Among these solvents, methanol is preferable. The solvent used is preferably one having an adjusted water content. The water content of the solvent is preferably 0.001 to 1% by mass, more preferably 0.003 to 0.9% by mass, and further preferably 0.005 to 0.8% by mass.
ポリビニルアルコール樹脂のけん化度は、耐熱性の観点から、好ましくは80モル%超であることが好ましく、95モル%以上であることがより好ましく、98モル%以上であることがさらに好ましい。
From the viewpoint of heat resistance, the saponification degree of the polyvinyl alcohol resin is preferably more than 80 mol%, more preferably 95 mol% or more, and further preferably 98 mol% or more.
けん化反応の後、生成したPVAを洗浄する。洗浄液としては、メタノール、アセトン、酢酸メチル、酢酸エチル、ヘキサン、水などが挙げられる。これらの中でも、メタノール、酢酸メチル、水、もしくはこれらの混合液が好ましい。
洗浄液の使用量は、後述するアルカリ金属またはアルカリ土類金属の含有量を満足するように設定するのが好ましく、通常、PVA100質量部に対して、300~10,000質量部であることが好ましく、500~5,000質量部であることがより好ましい。洗浄温度としては、5~80℃が好ましく、20~70℃がより好ましい。洗浄時間としては20分間~100時間が好ましく、1~50時間がより好ましい。 After the saponification reaction, the PVA produced is washed. Examples of the cleaning liquid include methanol, acetone, methyl acetate, ethyl acetate, hexane, water and the like. Among these, methanol, methyl acetate, water, or a mixture thereof is preferable.
The amount of the cleaning liquid used is preferably set so as to satisfy the content of the alkali metal or alkaline earth metal described later, and is usually preferably 300 to 10,000 parts by mass with respect to 100 parts by mass of PVA. , 500 to 5,000 parts by mass, more preferably. The cleaning temperature is preferably 5 to 80 ° C, more preferably 20 to 70 ° C. The washing time is preferably 20 minutes to 100 hours, more preferably 1 to 50 hours.
洗浄液の使用量は、後述するアルカリ金属またはアルカリ土類金属の含有量を満足するように設定するのが好ましく、通常、PVA100質量部に対して、300~10,000質量部であることが好ましく、500~5,000質量部であることがより好ましい。洗浄温度としては、5~80℃が好ましく、20~70℃がより好ましい。洗浄時間としては20分間~100時間が好ましく、1~50時間がより好ましい。 After the saponification reaction, the PVA produced is washed. Examples of the cleaning liquid include methanol, acetone, methyl acetate, ethyl acetate, hexane, water and the like. Among these, methanol, methyl acetate, water, or a mixture thereof is preferable.
The amount of the cleaning liquid used is preferably set so as to satisfy the content of the alkali metal or alkaline earth metal described later, and is usually preferably 300 to 10,000 parts by mass with respect to 100 parts by mass of PVA. , 500 to 5,000 parts by mass, more preferably. The cleaning temperature is preferably 5 to 80 ° C, more preferably 20 to 70 ° C. The washing time is preferably 20 minutes to 100 hours, more preferably 1 to 50 hours.
本発明で使用するPVAにおけるアルカリ金属またはアルカリ土類金属の含有量は、PVA100質量部に対して、好ましくは0.00001~1質量部である。アルカリ金属またはアルカリ土類金属の含有量が0.00001質量部未満のPVAは工業的に製造が困難である。アルカリ金属またはアルカリ土類金属の含有量が1質量部以下であることで、高温下でのゲルの生成を抑制し、不要な塩などの発生を抑制することができる。
上記アルカリ金属またはアルカリ土類金属の含有量は、原子吸光法で求めることができる。 The content of the alkali metal or alkaline earth metal in PVA used in the present invention is preferably 0.00001 to 1 part by mass with respect to 100 parts by mass of PVA. PVA having an alkali metal or alkaline earth metal content of less than 0.00001 parts by mass is industrially difficult to produce. When the content of the alkali metal or alkaline earth metal is 1 part by mass or less, it is possible to suppress the formation of gel at a high temperature and suppress the generation of unnecessary salts and the like.
The content of the alkali metal or alkaline earth metal can be determined by atomic absorption spectroscopy.
上記アルカリ金属またはアルカリ土類金属の含有量は、原子吸光法で求めることができる。 The content of the alkali metal or alkaline earth metal in PVA used in the present invention is preferably 0.00001 to 1 part by mass with respect to 100 parts by mass of PVA. PVA having an alkali metal or alkaline earth metal content of less than 0.00001 parts by mass is industrially difficult to produce. When the content of the alkali metal or alkaline earth metal is 1 part by mass or less, it is possible to suppress the formation of gel at a high temperature and suppress the generation of unnecessary salts and the like.
The content of the alkali metal or alkaline earth metal can be determined by atomic absorption spectroscopy.
ポリビニルアセタール樹脂(B)の製造に用いられるポリビニルアルコール樹脂は、粘度平均重合度が、好ましくは200~3,000、より好ましくは400~2,500、さらに好ましくは600~2,000、よりさらに好ましくは800~1,300である。ポリビニルアルコール樹脂の粘度平均重合度が200以上であることで、得られるポリビニルアセタール樹脂(B)の力学物性が向上し、3,000以下であることで、有機溶剤に対し、良好な溶解性を示すことができる。なお、ポリビニルアルコール樹脂の粘度平均重合度(P)は、JIS K6726:1994に準じて実施例に記載の方法で測定することができる。すなわち、ポリビニルアルコール樹脂を完全に再けん化し、精製した後、30℃の水中で極限粘度[η](dL/g)を測定し、その値から下記式(i)によって算出される。
The polyvinyl alcohol resin used for producing the polyvinyl acetal resin (B) has a viscosity average degree of polymerization of preferably 200 to 3,000, more preferably 400 to 2,500, still more preferably 600 to 2,000, and further. It is preferably 800 to 1,300. When the viscosity average degree of polymerization of the polyvinyl alcohol resin is 200 or more, the mechanical properties of the obtained polyvinyl acetal resin (B) are improved, and when it is 3,000 or less, good solubility in an organic solvent is obtained. Can be shown. The viscosity average degree of polymerization (P) of the polyvinyl alcohol resin can be measured by the method described in Examples according to JIS K6726: 1994. That is, after the polyvinyl alcohol resin is completely remineralized and purified, the ultimate viscosity [η] (dL / g) is measured in water at 30 ° C., and the value is calculated by the following formula (i).
ポリビニルアセタール樹脂(B)は、(メタ)アクリル樹脂(A)との相容性の観点および耐熱性の観点から、ポリビニルアルコール樹脂を炭素数3以下のアルデヒド、および、任意で炭素数4以上のアルデヒドを用いてアセタール化して得られる樹脂が好ましい。
The polyvinyl acetal resin (B) is an aldehyde having 3 or less carbon atoms and optionally 4 or more carbon atoms from the viewpoint of compatibility with the (meth) acrylic resin (A) and heat resistance. A resin obtained by acetalizing with an aldehyde is preferable.
ポリビニルアセタール樹脂(B)の製造に用いられる炭素数3以下のアルデヒドとしては、例えば、ホルムアルデヒド(パラホルムアルデヒドを含む)、アセトアルデヒド(パラアセトアルデヒドを含む)、プロピオンアルデヒド、グリオキザールが挙げられる。これら炭素数3以下のアルデヒドは1種単独で若しくは2種以上を組み合わせて用いることができる。これら炭素数3以下のアルデヒドのうち、製造の容易さの観点から、アセトアルデヒドおよびホルムアルデヒドを主体とするものが好ましく、アセトアルデヒドがより好ましい。
Examples of the aldehyde having 3 or less carbon atoms used in the production of the polyvinyl acetal resin (B) include formaldehyde (including paraformaldehyde), acetaldehyde (including paraacetaldehyde), propionaldehyde, and glyoxal. These aldehydes having 3 or less carbon atoms can be used alone or in combination of two or more. Among these aldehydes having 3 or less carbon atoms, those mainly composed of acetaldehyde and formaldehyde are preferable, and acetaldehyde is more preferable, from the viewpoint of ease of production.
ポリビニルアセタール樹脂(B)の製造に任意で用いられる炭素数4以上のアルデヒドとしては、ブチルアルデヒド、イソブチルアルデヒド、n-オクチルアルデヒド、アミルアルデヒド、ヘキシルアルデヒド、ヘプチルアルデヒド、2-エチルヘキシルアルデヒド、シクロヘキシルアルデヒド、フルフラール、グルタルアルデヒド、ベンズアルデヒド、2-メチルベンズアルデヒド、3-メチルベンズアルデヒド、4-メチルベンズアルデヒド、p-ヒドロキシベンズアルデヒド、m-ヒドロキシベンズアルデヒド、フェニルアセトアルデヒド、β-フェニルプロピオンアルデヒド等が挙げられる。これら炭素数4以上のアルデヒドは1種単独で若しくは2種以上を組み合わせて用いることができる。これら炭素数4以上のアルデヒドのうち、製造の容易さの観点から、ブチルアルデヒドを主体とするものが好ましく、ブチルアルデヒドが特に好ましい。
Examples of the aldehyde having 4 or more carbon atoms optionally used in the production of the polyvinyl acetal resin (B) include butyl aldehyde, isobutyl aldehyde, n-octyl aldehyde, amyl aldehyde, hexyl aldehyde, heptyl aldehyde, 2-ethylhexyl aldehyde, cyclohexyl aldehyde, and the like. Examples thereof include furfural, glutaaldehyde, benzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, p-hydroxybenzaldehyde, m-hydroxybenzaldehyde, phenylacetaldehyde, β-phenylpropionaldehyde and the like. These aldehydes having 4 or more carbon atoms can be used alone or in combination of two or more. Among these aldehydes having 4 or more carbon atoms, those containing butyraldehyde as a main component are preferable, and butyraldehyde is particularly preferable, from the viewpoint of ease of production.
ポリビニルアルコール樹脂とアルデヒドとの反応、すなわちアセタール化反応は、公知の方法で行うことができる。例えば、ポリビニルアルコール樹脂を水に溶解させ、酸触媒の存在下にアルデヒドと反応させて樹脂粒子を析出させる方法(水媒法);ポリビニルアルコール樹脂を有機溶媒に分散させ、酸触媒の存在下にアルデヒドと反応させ、得られた反応液を水などの貧溶媒に添加して樹脂粒子を析出させる方法(溶媒法)などが挙げられる。これらのうち水媒法が好ましい。
The reaction between the polyvinyl alcohol resin and the aldehyde, that is, the acetalization reaction can be carried out by a known method. For example, a method in which a polyvinyl alcohol resin is dissolved in water and reacted with aldehyde in the presence of an acid catalyst to precipitate resin particles (water medium method); the polyvinyl alcohol resin is dispersed in an organic solvent and in the presence of an acid catalyst. Examples thereof include a method of reacting with aldehyde and adding the obtained reaction solution to a poor solvent such as water to precipitate resin particles (solvent method). Of these, the water medium method is preferable.
アセタール化に用いられるアルデヒドは、すべてを同時に仕込んでもよいし、1種類ずつを別々に仕込んでもよい。アルデヒドの添加順序および酸触媒の添加順序を変えることで、ポリビニルアセタール樹脂(B)中のビニルアセタール単位のランダム性を変化させることができる。
The aldehydes used for acetalization may be charged all at the same time, or one type may be charged separately. By changing the order of adding the aldehyde and the order of adding the acid catalyst, the randomness of the vinyl acetal unit in the polyvinyl acetal resin (B) can be changed.
アセタール化反応に用いられる酸触媒は特に限定されず、例えば、酢酸、p-トルエンスルホン酸などの有機酸類;硝酸、硫酸、塩酸などの無機酸類;炭酸ガスなどの水溶液にした際に酸性を示す気体、陽イオン交換体や金属酸化物などの固体酸触媒などが挙げられる。
The acid catalyst used in the acetalization reaction is not particularly limited, and is, for example, organic acids such as acetic acid and p-toluenesulfonic acid; inorganic acids such as nitric acid, sulfuric acid and hydrochloric acid; and shows acidity when made into an aqueous solution such as carbon dioxide gas. Examples thereof include gas, cation exchangers and solid acid catalysts such as metal oxides.
ポリビニルアセタール樹脂(B)の総アセタール化度は、JIS K6728:1977に記載の方法に則って、アセタール化されていないビニルアルコール単位の質量割合(l0)および酢酸ビニル単位の質量割合(m0)を滴定によって求め、アセタール化されたビニルアルコール単位の質量割合(k0)をk0=1-l0-m0によって求め、これからアセタール化されていないビニルアルコール単位のモル割合(l)および酢酸ビニル単位のモル割合(m)を計算し、k=1-l-mの計算式によりアセタール化されたビニルアルコール単位のモル割合(k)を計算し、総アセタール化度(モル%)=k/{k+l+m}×100によって求めてもよいし、ポリビニルアセタール樹脂を重水素化ジメチルスルホキシドに溶解し、1H-NMR、または13C-NMRを測定して算出してもよい。
The total acetalization degree of the polyvinyl acetal resin (B) is determined by the mass ratio of non-acetalized vinyl alcohol units (l 0 ) and the mass ratio of vinyl acetate units (m 0 ) according to the method described in JIS K 6728: 1977. ) Is determined by titration, and the mass ratio (k 0 ) of the acetalized vinyl alcohol unit is determined by k 0 = 1-l 0- m 0 , and the molar ratio (l) of the non-acetalized vinyl alcohol unit is determined from this. Calculate the molar ratio (m) of vinyl acetate units, calculate the molar ratio (k) of vinyl alcohol units acetalized by the formula of k = 1-lm, and total acetalization degree (mol%) = It may be determined by k / {k + l + m} × 100, or it may be calculated by dissolving a polyvinyl acetal resin in decarburized dimethylsulfoxide and measuring 1 H-NMR or 13 C-NMR.
また、1H-NMR、または13C-NMRを測定して算出する方法を用いることにより、それぞれのアルデヒド(1)、(2)、・・・、および(n)に対するアセタール化されたビニルアルコール単位のモル割合を算出できる。そして、例えば、アルデヒド(n)によるアセタール化度(モル%)は、式: k(n)/{k(1)+k(2)+・・・+k(n)+l+m}×100 によって求めることができる。なお、k(1)、k(2)、・・・、およびk(n)は、それぞれ、アルデヒド(1)、(2)、・・・、および(n)でアセタール化されたビニルアルコール単位のモル割合である。
Further, by using a method of measuring and calculating 1 H-NMR or 13 C-NMR, acetalized vinyl alcohols for the respective aldehydes (1), (2), ..., And (n) are used. The molar ratio of the unit can be calculated. Then, for example, the degree of acetalization (mol%) due to the aldehyde (n) can be obtained by the formula: k (n) / {k (1) + k (2) + ... + k (n) + l + m} × 100. it can. In addition, k (1), k (2), ..., And k (n) are vinyl alcohol units acetalized with aldehydes (1), (2), ..., And (n), respectively. Is the molar ratio of.
ブチルアルデヒドでアセタール化されたビニルアルコール単位のモル割合は特にブチラール化度と呼ばれる。また、アセトアルデヒドでアセタール化されたビニルアルコール単位のモル割合は特にアセトアセタール化度と呼ばれる。さらに、ホルムアルデヒドでアセタール化されたビニルアルコール単位のモル割合はホルマール化度と呼ばれる。
例えば、ポリビニルアルコール樹脂をブチルアルデヒド、アセトアルデヒドおよびホルムアルデヒドでアセタール化して得られたポリビニルアセタール樹脂において、ブチルアルデヒドでアセタール化されたビニルアルコール単位のモル割合をk(BA)、アセトアルデヒドでアセタール化されたビニルアルコール単位のモル割合をk(AA)、ホルムアルデヒドでアセタール化されたビニルアルコール単位のモル割合をk(FA)、アセタール化されていないビニルアルコール単位のモル割合をl、および酢酸ビニル単位のモル割合をmであるとしたとき、ブチラール化度(モル%)は、式:k(BA)/{k(BA)+k(AA)+k(FA)+l+m}×100 で求められる。アセトアセタール化度(モル%)は、式:k(AA)/{k(BA)+k(AA)+k(FA)+l+m}×100 で求められる。ホルマール化度(モル%)は、式:k(FA)/{k(BA)+k(AA)+k(FA)+l+m}×100 で求められる。 The molar proportion of vinyl alcohol units acetalized with butyraldehyde is particularly referred to as the degree of butyraldehyde. The molar ratio of vinyl alcohol units acetalized with acetaldehyde is particularly called the degree of acetaldehyde conversion. Furthermore, the molar proportion of vinyl alcohol units acetalized with formaldehyde is called the degree of formalization.
For example, in a polyvinyl acetal resin obtained by acetalizing a polyvinyl alcohol resin with butylaldehyde, acetaldehyde and formaldehyde, the molar ratio of vinyl alcohol units acetalized with butylaldehyde is k (BA) , and vinyl acetalized with acetaldehyde. The molar ratio of alcohol units is k (AA) , the molar ratio of vinyl alcohol units acetalized with formaldehyde is k (FA) , the molar ratio of non-acetalized vinyl alcohol units is l, and the molar ratio of vinyl acetate units. When m is, the degree of butyralization (mol%) is calculated by the formula: k (BA) / {k (BA) + k (AA) + k (FA) + l + m} × 100. The degree of acetoacetalization (mol%) is calculated by the formula: k (AA) / {k (BA) + k (AA) + k (FA) + l + m} × 100. The degree of formalization (mol%) is calculated by the formula: k (FA) / {k (BA) + k (AA) + k (FA) + l + m} × 100.
例えば、ポリビニルアルコール樹脂をブチルアルデヒド、アセトアルデヒドおよびホルムアルデヒドでアセタール化して得られたポリビニルアセタール樹脂において、ブチルアルデヒドでアセタール化されたビニルアルコール単位のモル割合をk(BA)、アセトアルデヒドでアセタール化されたビニルアルコール単位のモル割合をk(AA)、ホルムアルデヒドでアセタール化されたビニルアルコール単位のモル割合をk(FA)、アセタール化されていないビニルアルコール単位のモル割合をl、および酢酸ビニル単位のモル割合をmであるとしたとき、ブチラール化度(モル%)は、式:k(BA)/{k(BA)+k(AA)+k(FA)+l+m}×100 で求められる。アセトアセタール化度(モル%)は、式:k(AA)/{k(BA)+k(AA)+k(FA)+l+m}×100 で求められる。ホルマール化度(モル%)は、式:k(FA)/{k(BA)+k(AA)+k(FA)+l+m}×100 で求められる。 The molar proportion of vinyl alcohol units acetalized with butyraldehyde is particularly referred to as the degree of butyraldehyde. The molar ratio of vinyl alcohol units acetalized with acetaldehyde is particularly called the degree of acetaldehyde conversion. Furthermore, the molar proportion of vinyl alcohol units acetalized with formaldehyde is called the degree of formalization.
For example, in a polyvinyl acetal resin obtained by acetalizing a polyvinyl alcohol resin with butylaldehyde, acetaldehyde and formaldehyde, the molar ratio of vinyl alcohol units acetalized with butylaldehyde is k (BA) , and vinyl acetalized with acetaldehyde. The molar ratio of alcohol units is k (AA) , the molar ratio of vinyl alcohol units acetalized with formaldehyde is k (FA) , the molar ratio of non-acetalized vinyl alcohol units is l, and the molar ratio of vinyl acetate units. When m is, the degree of butyralization (mol%) is calculated by the formula: k (BA) / {k (BA) + k (AA) + k (FA) + l + m} × 100. The degree of acetoacetalization (mol%) is calculated by the formula: k (AA) / {k (BA) + k (AA) + k (FA) + l + m} × 100. The degree of formalization (mol%) is calculated by the formula: k (FA) / {k (BA) + k (AA) + k (FA) + l + m} × 100.
ポリビニルアセタール樹脂(B)が、ポリビニルアルコール樹脂を炭素数3以下のアルデヒドと任意で炭素数4以上のアルデヒドとでアセタール化して得られる樹脂である場合、ポリビニルアセタール樹脂(B)の総アセタール化度は、好ましくは50~90モル%であり、より好ましくは60~87モル%であり、さらに好ましくは70~85モル%である。ポリビニルアセタール樹脂(B)の総アセタール化度がかかる範囲にあることで、(メタ)アクリル樹脂(A)中にポリビニルアセタール樹脂(B)を微分散することができ、フィルムの靭性を発現することができる。
When the polyvinyl acetal resin (B) is a resin obtained by acetalizing a polyvinyl alcohol resin with an aldehyde having 3 or less carbon atoms and optionally an aldehyde having 4 or more carbon atoms, the total acetalization degree of the polyvinyl acetal resin (B). Is preferably 50 to 90 mol%, more preferably 60 to 87 mol%, still more preferably 70 to 85 mol%. When the total acetalization degree of the polyvinyl acetal resin (B) is within such a range, the polyvinyl acetal resin (B) can be finely dispersed in the (meth) acrylic resin (A), and the toughness of the film is exhibited. Can be done.
ポリビニルアセタール樹脂(B)が、ポリビニルアルコール樹脂を炭素数3以下のアルデヒドと任意で炭素数4以上のアルデヒドとでアセタール化して得られる樹脂である場合、ポリビニルアセタール樹脂(B)は、(メタ)アクリル樹脂(A)との相容性の観点から、炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位/炭素数4以上のアルデヒドでアセタール化されたビニルアルコール単位のモル比が、好ましく10/90~100/0であり、より好ましくは20/80~100/0であり、さらに好ましくは40/60~100/0であり、よりさらに好ましくは40/60~60/40である。
When the polyvinyl acetal resin (B) is a resin obtained by acetalizing a polyvinyl alcohol resin with an aldehyde having 3 or less carbon atoms and optionally an aldehyde having 4 or more carbon atoms, the polyvinyl acetal resin (B) is (meth). From the viewpoint of compatibility with the acrylic resin (A), the molar ratio of the vinyl alcohol unit acetalized with an aldehyde having 3 or less carbon atoms / the vinyl alcohol unit acetalized with an aldehyde having 4 or more carbon atoms is preferably 10. It is / 90 to 100/0, more preferably 20/80 to 100/0, further preferably 40/60 to 100/0, and even more preferably 40/60 to 60/40.
ポリビニルアセタール樹脂(B)を構成するビニルエステル単位の量は、好ましくは20モル%未満であり、より好ましくは5モル%以下である。ビニルエステル単位の量が20モル%未満であることで、耐熱性が向上し、連続生産性を高めることができる。
The amount of the vinyl ester unit constituting the polyvinyl acetal resin (B) is preferably less than 20 mol%, more preferably 5 mol% or less. When the amount of the vinyl ester unit is less than 20 mol%, the heat resistance can be improved and the continuous productivity can be enhanced.
なお、アセタール化することによって重合度が変化することはないため、ポリビニルアルコール樹脂と、そのポリビニルアルコール樹脂をアセタール化して得られるポリビニルアセタール樹脂(B)の重合度は同じであり、ポリビニルアセタール樹脂(B)の重合度は、好ましくは200~3,000である。ポリビニルアセタール樹脂(B)の重合度が200以上であることで、フィルムの靭性を発現することができ、3,000以下であることで、有機溶剤に対し、良好な溶解性を示すことができる。
Since the degree of polymerization does not change due to acetalization, the degree of polymerization of the polyvinyl alcohol resin and the polyvinyl acetal resin (B) obtained by acetalizing the polyvinyl alcohol resin is the same, and the polyvinyl acetal resin ( The degree of polymerization of B) is preferably 200 to 3,000. When the degree of polymerization of the polyvinyl acetal resin (B) is 200 or more, the toughness of the film can be exhibited, and when it is 3,000 or less, good solubility in an organic solvent can be exhibited. ..
水媒法及び溶媒法などにおいて生成したスラリーは、通常、酸触媒のために酸性を呈しているので、酸触媒を除去することが好ましい。酸触媒の除去方法として、スラリーのpHが、好ましくは5~9、より好ましくは6~9、さらに好ましくは6~8になるまで水洗を繰り返す方法、スラリーに中和剤を添加して、pHを好ましくは5~9、より好ましくは6~9、さらに好ましくは6~8にする方法や、アルキレンオキサイド類などを添加する方法が挙げられる。
Since the slurry produced by the water medium method, the solvent method, etc. is usually acidic due to the acid catalyst, it is preferable to remove the acid catalyst. As a method for removing the acid catalyst, a method of repeating washing with water until the pH of the slurry is preferably 5 to 9, more preferably 6 to 9, and even more preferably 6 to 8, a neutralizing agent is added to the slurry, and the pH is increased. Is preferably 5 to 9, more preferably 6 to 9, still more preferably 6 to 8, and a method of adding alkylene oxides or the like can be mentioned.
酸触媒除去のために用いられる中和剤としては、例えば、水酸化ナトリウム、水酸化カリウム、酢酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウムなどのアルカリ金属化合物;水酸化カルシウムなどのアルカリ土類金属化合物;アンモニア、アンモニア水溶液が挙げられる。酸触媒除去のために用いられるアルキレンオキサイド類としては、エチレンオキサイド、プロピレンオキサイド;エチレングリコールジグリシジルエーテルなどのグリシジルエーテル類が挙げられる。
Examples of the neutralizing agent used for removing the acid catalyst include alkali metal compounds such as sodium hydroxide, potassium hydroxide, sodium acetate, sodium carbonate, sodium hydrogencarbonate and potassium carbonate; alkaline earth such as calcium hydroxide. Metal compounds; examples include ammonia and aqueous ammonia. Examples of the alkylene oxides used for removing the acid catalyst include ethylene oxide and propylene oxide; glycidyl ethers such as ethylene glycol diglycidyl ether.
次に、触媒残渣、中和剤残渣、中和により生成した塩、未反応のアルデヒド、アルカリ金属、アルカリ土類金属、副生物などを除去して、ポリビニルアセタール樹脂を精製する。
精製方法は特に制限されず、脱液と洗浄を繰り返すなどの方法が通常用いられる。脱液と洗浄は、2回以上行うことが好ましい。精製に用いられる液としては、水や、水とアルコール(メタノール、エタノールなど)との混合液などが挙げられる。中でも、ポリビニルアセタール樹脂を中和した後に、水とアルコール(メタノール、エタノールなど)との混合液で、pHが好ましくは5~9、より好ましくは6~9、さらに好ましくは6~8になるまで、脱液と洗浄を繰り返す方法が、アルカリ金属又はアルカリ土類金属を効率よく低減でき、ポリビニルアセタール樹脂を安定に製造することができる点で好ましい。水/アルコールの混合比率は、質量比で50/50~95/5であることが好ましく、60/40~90/10であることがより好ましい。水の割合が少なすぎると、ポリビニルアセタール樹脂の混合液中への溶出が多くなる傾向がある。水の割合が多すぎると、アルカリ金属又はアルカリ土類金属の除去効率が低下する傾向がある。 Next, the polyvinyl acetal resin is purified by removing the catalyst residue, the neutralizing agent residue, the salt produced by the neutralization, the unreacted aldehyde, the alkali metal, the alkaline earth metal, the by-products and the like.
The purification method is not particularly limited, and a method such as repeating liquid removal and washing is usually used. The liquid removal and washing are preferably performed twice or more. Examples of the liquid used for purification include water and a mixed liquid of water and alcohol (methanol, ethanol, etc.). Above all, after neutralizing the polyvinyl acetal resin, the pH is preferably 5 to 9, more preferably 6 to 9, and even more preferably 6 to 8 in a mixed solution of water and alcohol (methanol, ethanol, etc.). A method of repeating deliquefaction and washing is preferable in that alkali metals or alkaline earth metals can be efficiently reduced and a polyvinyl acetal resin can be stably produced. The mixing ratio of water / alcohol is preferably 50/50 to 95/5, more preferably 60/40 to 90/10 by mass ratio. If the proportion of water is too small, the elution of the polyvinyl acetal resin into the mixed solution tends to increase. If the proportion of water is too high, the efficiency of removing alkali metals or alkaline earth metals tends to decrease.
精製方法は特に制限されず、脱液と洗浄を繰り返すなどの方法が通常用いられる。脱液と洗浄は、2回以上行うことが好ましい。精製に用いられる液としては、水や、水とアルコール(メタノール、エタノールなど)との混合液などが挙げられる。中でも、ポリビニルアセタール樹脂を中和した後に、水とアルコール(メタノール、エタノールなど)との混合液で、pHが好ましくは5~9、より好ましくは6~9、さらに好ましくは6~8になるまで、脱液と洗浄を繰り返す方法が、アルカリ金属又はアルカリ土類金属を効率よく低減でき、ポリビニルアセタール樹脂を安定に製造することができる点で好ましい。水/アルコールの混合比率は、質量比で50/50~95/5であることが好ましく、60/40~90/10であることがより好ましい。水の割合が少なすぎると、ポリビニルアセタール樹脂の混合液中への溶出が多くなる傾向がある。水の割合が多すぎると、アルカリ金属又はアルカリ土類金属の除去効率が低下する傾向がある。 Next, the polyvinyl acetal resin is purified by removing the catalyst residue, the neutralizing agent residue, the salt produced by the neutralization, the unreacted aldehyde, the alkali metal, the alkaline earth metal, the by-products and the like.
The purification method is not particularly limited, and a method such as repeating liquid removal and washing is usually used. The liquid removal and washing are preferably performed twice or more. Examples of the liquid used for purification include water and a mixed liquid of water and alcohol (methanol, ethanol, etc.). Above all, after neutralizing the polyvinyl acetal resin, the pH is preferably 5 to 9, more preferably 6 to 9, and even more preferably 6 to 8 in a mixed solution of water and alcohol (methanol, ethanol, etc.). A method of repeating deliquefaction and washing is preferable in that alkali metals or alkaline earth metals can be efficiently reduced and a polyvinyl acetal resin can be stably produced. The mixing ratio of water / alcohol is preferably 50/50 to 95/5, more preferably 60/40 to 90/10 by mass ratio. If the proportion of water is too small, the elution of the polyvinyl acetal resin into the mixed solution tends to increase. If the proportion of water is too high, the efficiency of removing alkali metals or alkaline earth metals tends to decrease.
ポリビニルアセタール樹脂(B)に含有されるアルカリ金属またはアルカリ土類金属の量は、好ましくは100ppm以下であり、より好ましくは70ppm以下であり、さらに好ましくは50ppm以下である。100ppm以下であることで、高温下におけるゲルの発生が抑えられ、連続生産性を高めることができる。なお、アルカリ金属またはアルカリ土類金属の含有量が0.1ppm以上のものであれば、それを得るために長時間の洗浄を要せず製造コストが安くなり、工業的な生産がしやすくなる。
The amount of the alkali metal or alkaline earth metal contained in the polyvinyl acetal resin (B) is preferably 100 ppm or less, more preferably 70 ppm or less, and further preferably 50 ppm or less. When it is 100 ppm or less, the generation of gel at a high temperature is suppressed, and the continuous productivity can be enhanced. If the content of the alkali metal or alkaline earth metal is 0.1 ppm or more, it does not require long-term cleaning to obtain it, the manufacturing cost is reduced, and industrial production is facilitated. ..
残渣などが除去された含水状態のポリビニルアセタール樹脂(B)は、必要に応じて乾燥され、必要に応じてパウダー状、顆粒状またはペレット状に加工され、成形材料として供される。パウダー状、顆粒状またはペレット状に加工する際に、減圧状態で脱気することによりアルデヒドの反応残渣や水分などを低減しておくことが好ましい。
The water-containing polyvinyl acetal resin (B) from which residues and the like have been removed is dried as necessary, processed into powder, granules or pellets as necessary, and used as a molding material. When processing into powder, granules or pellets, it is preferable to reduce the reaction residue and water content of the aldehyde by degassing under reduced pressure.
本発明のドープを構成する(メタ)アクリル樹脂(A)とポリビニルアセタール樹脂(B)との質量比[(A)/(B)]は、好ましくは98/2~50/50であり、より好ましくは95/5~60/40であり、さらに好ましくは92/8~65/35であり、よりさらに好ましくは91/9~85/15である。質量比[(A)/(B)]が98/2以下であることで、フィルムの靭性を発現することができ、50/50以上であることで、高い表面硬度(鉛筆硬度)を有することができる。
The mass ratio [(A) / (B)] of the (meth) acrylic resin (A) and the polyvinyl acetal resin (B) constituting the dope of the present invention is preferably 98/2 to 50/50, and more. It is preferably 95/5 to 60/40, more preferably 92/8 to 65/35, and even more preferably 91/9 to 85/15. When the mass ratio [(A) / (B)] is 98/2 or less, the toughness of the film can be exhibited, and when it is 50/50 or more, it has a high surface hardness (pencil hardness). Can be done.
本発明のドープを構成する(メタ)アクリル樹脂(A)とポリビニルアセタール樹脂(B)との合計含有量は、ドープ100質量%に対して、好ましくは3~70質量%であり、より好ましくは3~50質量%であり、さらに好ましくは4~40質量%である。(メタ)アクリル樹脂(A)とポリビニルアセタール樹脂(B)との合計含有量が3質量%以上であることで、フィルム中の残溶媒量を抑制することができ、寸法安定性の低下を避けることができる。一方、70質量%以下であることで、有機溶剤に対して良好な溶解性を示し、均一な厚みのフィルム製造が容易となる。
The total content of the (meth) acrylic resin (A) and the polyvinyl acetal resin (B) constituting the dope of the present invention is preferably 3 to 70% by mass, more preferably 3 to 70% by mass, based on 100% by mass of the dope. It is 3 to 50% by mass, more preferably 4 to 40% by mass. When the total content of the (meth) acrylic resin (A) and the polyvinyl acetal resin (B) is 3% by mass or more, the amount of residual solvent in the film can be suppressed and the deterioration of dimensional stability is avoided. be able to. On the other hand, when it is 70% by mass or less, it exhibits good solubility in an organic solvent and facilitates production of a film having a uniform thickness.
〔有機溶剤(C)〕
溶液流延法において、フィルム中のフィッシュアイ欠点、ゲル状欠点を抑えるためには、ドープ中の沈殿物、溶け残りを抑えることが有効な手段のひとつであると考えられる。しかしながら、(メタ)アクリル樹脂(A)とポリビニルアセタール樹脂(B)との溶剤溶解性は異なるため、有機溶剤(C)の種類によっては(メタ)アクリル樹脂(A)および/またはポリビニルアセタール樹脂(B)が十分溶解していないなどの原因で、沈殿物、溶け残りなどが生じたりするおそれがある。 [Organic solvent (C)]
In the solution casting method, in order to suppress fisheye defects and gel-like defects in the film, it is considered that it is one of the effective means to suppress the precipitate and the undissolved residue in the doping. However, since the solvent solubility of the (meth) acrylic resin (A) and the polyvinyl acetal resin (B) is different, the (meth) acrylic resin (A) and / or the polyvinyl acetal resin (B) may be used depending on the type of the organic solvent (C). Precipitation, undissolved residue, etc. may occur due to the fact that B) is not sufficiently dissolved.
溶液流延法において、フィルム中のフィッシュアイ欠点、ゲル状欠点を抑えるためには、ドープ中の沈殿物、溶け残りを抑えることが有効な手段のひとつであると考えられる。しかしながら、(メタ)アクリル樹脂(A)とポリビニルアセタール樹脂(B)との溶剤溶解性は異なるため、有機溶剤(C)の種類によっては(メタ)アクリル樹脂(A)および/またはポリビニルアセタール樹脂(B)が十分溶解していないなどの原因で、沈殿物、溶け残りなどが生じたりするおそれがある。 [Organic solvent (C)]
In the solution casting method, in order to suppress fisheye defects and gel-like defects in the film, it is considered that it is one of the effective means to suppress the precipitate and the undissolved residue in the doping. However, since the solvent solubility of the (meth) acrylic resin (A) and the polyvinyl acetal resin (B) is different, the (meth) acrylic resin (A) and / or the polyvinyl acetal resin (B) may be used depending on the type of the organic solvent (C). Precipitation, undissolved residue, etc. may occur due to the fact that B) is not sufficiently dissolved.
本発明で用いる有機溶剤(C)は、(メタ)アクリル樹脂(A)およびポリビニルアセタール樹脂(B)の溶解性の観点から、塩素系有機溶剤を含んでいることが重要である。塩素系有機溶剤としては、例えば、クロロメタン(塩化メタン)、ジクロロメタン(塩化メチレン)、トリクロロメタン(クロロホルム)、テトラクロロメタン(四塩化炭素)、トリクロロエチレン、テトラクロロエチレン等が挙げられる。中でも、溶解性を担保でき、かつ低沸点であるという観点から、塩化メチレンが好ましい。これらは、1種単独でまたは2種以上を組み合わせて用いることができる。
It is important that the organic solvent (C) used in the present invention contains a chlorine-based organic solvent from the viewpoint of solubility of the (meth) acrylic resin (A) and the polyvinyl acetal resin (B). Examples of the chlorine-based organic solvent include chloromethane (methane chloride), dichloromethane (methylene chloride), trichloromethane (chloroform), tetrachloromethane (carbon tetrachloride), trichloroethylene, tetrachloroethylene and the like. Of these, methylene chloride is preferable from the viewpoint of ensuring solubility and having a low boiling point. These can be used alone or in combination of two or more.
有機溶剤(C)は、塩素系有機溶剤以外に併用可能な他の有機溶剤として、メタノール、エタノール、プロパノール、n-ブタノール等のアルコール:炭素数が3~12のエステル、ケトン、エーテル:炭素数が1~7のハロゲン化炭化水素:を含んでいてもよい。エステル、ケトン及びエーテルは、環状構造を有していてもよい。エステル、ケトン及びエーテルの官能基(すなわち、-O-、-CO-及び-COO-)のいずれかを2つ以上有する化合物も、溶剤として用いることができ、例えばアルコール性水酸基のような他の官能基を有していてもよい。2種類以上の官能基を有する溶剤の場合、その炭素数はいずれかの官能基を有する化合物の規定範囲内であればよい。また、シクロヘキサノンのような飽和脂肪族炭化水素であってもよい。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。中でも、メタノール、エタノールが好ましい。
The organic solvent (C) is an alcohol such as methanol, ethanol, propanol, n-butanol, etc. as another organic solvent that can be used in combination with the chlorine-based organic solvent. Alcohol: ester having 3 to 12 carbon atoms, ketone, ether: carbon number. May contain 1-7 halogenated hydrocarbons :. Esters, ketones and ethers may have a cyclic structure. Compounds having two or more of the functional groups of esters, ketones and ethers (ie, -O-, -CO- and -COO-) can also be used as solvents and other compounds such as alcoholic hydroxyl groups. It may have a functional group. In the case of a solvent having two or more kinds of functional groups, the number of carbon atoms may be within the specified range of the compound having any of the functional groups. It may also be a saturated aliphatic hydrocarbon such as cyclohexanone. These may be used alone or in combination of two or more. Of these, methanol and ethanol are preferable.
塩素系有機溶剤と、塩素系有機溶剤以外の他の有機溶剤とを併用する場合、塩素系有機溶剤(S)と塩素系有機溶剤以外の他の有機溶剤(T)との質量比(S/T)は、好ましくは50/50~99/1であり、より好ましくは60/40~95/5である。質量比(S/T)が上記範囲内であることが、フィッシュアイ欠点やゲル状欠点をさらに効果的に抑制する点から好ましい。
When the chlorine-based organic solvent is used in combination with an organic solvent other than the chlorine-based organic solvent, the mass ratio (S / S) of the chlorine-based organic solvent (S) and the organic solvent (T) other than the chlorine-based organic solvent T) is preferably 50/50 to 99/1, more preferably 60/40 to 95/5. It is preferable that the mass ratio (S / T) is within the above range from the viewpoint of more effectively suppressing fisheye defects and gel-like defects.
有機溶剤(C)の含有量は、ドープ100質量%に対して、好ましくは30~97質量%であり、より好ましくは50~97質量%であり、さらに好ましくは60~96質量%である。有機溶剤(C)の含有量が30質量%以上であることで、樹脂を有機溶剤に良好に溶解させることができ、97質量%以下であることで、フィルム中の残溶媒量を抑制することができ寸法安定性の低下を避けることができる。
The content of the organic solvent (C) is preferably 30 to 97% by mass, more preferably 50 to 97% by mass, and further preferably 60 to 96% by mass with respect to 100% by mass of the dope. When the content of the organic solvent (C) is 30% by mass or more, the resin can be satisfactorily dissolved in the organic solvent, and when it is 97% by mass or less, the amount of residual solvent in the film can be suppressed. It is possible to avoid deterioration of dimensional stability.
本発明のドープは、本発明の効果を損なわない範囲で、必要に応じて、光安定剤、紫外線吸収剤、熱安定剤、艶消し剤、光拡散剤、着色剤、染料、顔料、劣化防止剤、剥離剤、光学調整剤、帯電防止剤、熱線反射材、滑剤、可塑剤、フィラー等の公知の添加剤等を含有してもよい。上記添加剤は、1種単独でまたは2種以上を組み合わせて用いることができる。一方で、コアシェル型グラフト共重合体等のゴム粒子は、ドープのヘイズ、さらにフィルムのヘイズを増加させる観点から含有しないことが好ましい。
The dope of the present invention contains, if necessary, a light stabilizer, an ultraviolet absorber, a heat stabilizer, a matting agent, a light diffuser, a colorant, a dye, a pigment, and deterioration prevention, as long as the effect of the present invention is not impaired. It may contain known additives such as agents, release agents, optical modifiers, antistatic agents, heat ray reflectors, lubricants, plasticizers, fillers and the like. The above additives can be used alone or in combination of two or more. On the other hand, it is preferable that rubber particles such as a core-shell type graft copolymer are not contained from the viewpoint of increasing the haze of the doping and the haze of the film.
本発明のドープは、本発明の効果を損なわない範囲で、アクリル系多層構造粒子、アクリル系ゴムなどのアクリル系エラストマー;スチレン系エラストマー;スチレン系樹脂;カーボネート樹脂;セルロースアシレート樹脂;フッ素系樹脂;シリコーン系樹脂;オレフィン系樹脂;エチレンテレフタレート樹脂;ブチレンテレフタレート樹脂等、その他の樹脂を含有してもよい。上記樹脂は、1種単独でまたは2種以上を組み合わせて用いることができる。
The dope of the present invention is an acrylic elastomer such as acrylic multilayer structure particles and acrylic rubber; styrene elastomer; styrene resin; carbonate resin; cellulose acylate resin; fluororesin, as long as the effect of the present invention is not impaired. It may contain other resins such as silicone resin; olefin resin; ethylene terephthalate resin; butylene terephthalate resin. The above resins can be used alone or in combination of two or more.
上記のとおり、溶液流延法によってフィルムを製造する場合、使用するドープの状態(性状)が、得られるフィルムの物性や性状に影響すると考えられることから、特に光学用フィルム等の製造においては、例えばドープのヘイズ値をある程度低く抑えることが好ましい。
ドープ中のポリビニルアセタール樹脂を含む相の光散乱法で測定される平均粒子径は、均一分散性やフィルム時の透明性の観点から、1.0μm以下が好ましく、0.7μm以下がさらに好ましく、0.5μm以下が特に好ましい。一方、前記平均粒子径の下限値は、好ましくは0.05μm、より好ましくは0.10μm、さらに好ましくは0.15μmである。
なお、ドープ中におけるポリビニルアセタール樹脂を含む相の平均粒子径は、例えば、レーザー回折散乱式粒子径分布測定装置(株式会社堀場製作所製、装置名「LA-950V2」)を用いて25℃で分析することができる。
溶液流延法は、支持体上にドープ膜を形成し、ドープ膜中の溶剤を蒸発させてフィルムを得る方法であるため、溶剤の種類やドープそのものの性状によっては、支持体上での加熱時間を長くしたり、支持体の温度(加熱温度)を高くしたりする必要が生じる場合がある。しかしながら、加熱時間を長くしたり、加熱温度を高くすることは、樹脂の劣化を引き起こし、フィッシュアイ欠点やゲル状欠点につながるおそれがある。 As described above, when a film is produced by the solution casting method, the state (property) of the doping used is considered to affect the physical properties and properties of the obtained film. Therefore, especially in the production of optical films and the like. For example, it is preferable to keep the haze value of the doping low to some extent.
The average particle size measured by the light scattering method of the phase containing the polyvinyl acetal resin in the doping is preferably 1.0 μm or less, more preferably 0.7 μm or less, from the viewpoint of uniform dispersibility and transparency at the time of film. 0.5 μm or less is particularly preferable. On the other hand, the lower limit of the average particle size is preferably 0.05 μm, more preferably 0.10 μm, and even more preferably 0.15 μm.
The average particle size of the phase containing the polyvinyl acetal resin in the doping is analyzed at 25 ° C. using, for example, a laser diffraction / scattering type particle size distribution measuring device (manufactured by Horiba Seisakusho Co., Ltd., device name “LA-950V2”). can do.
Since the solution casting method is a method of forming a dope film on the support and evaporating the solvent in the dope film to obtain a film, heating on the support depends on the type of solvent and the properties of the dope itself. It may be necessary to lengthen the time or raise the temperature of the support (heating temperature). However, lengthening the heating time or raising the heating temperature may cause deterioration of the resin, leading to fisheye defects and gel-like defects.
ドープ中のポリビニルアセタール樹脂を含む相の光散乱法で測定される平均粒子径は、均一分散性やフィルム時の透明性の観点から、1.0μm以下が好ましく、0.7μm以下がさらに好ましく、0.5μm以下が特に好ましい。一方、前記平均粒子径の下限値は、好ましくは0.05μm、より好ましくは0.10μm、さらに好ましくは0.15μmである。
なお、ドープ中におけるポリビニルアセタール樹脂を含む相の平均粒子径は、例えば、レーザー回折散乱式粒子径分布測定装置(株式会社堀場製作所製、装置名「LA-950V2」)を用いて25℃で分析することができる。
溶液流延法は、支持体上にドープ膜を形成し、ドープ膜中の溶剤を蒸発させてフィルムを得る方法であるため、溶剤の種類やドープそのものの性状によっては、支持体上での加熱時間を長くしたり、支持体の温度(加熱温度)を高くしたりする必要が生じる場合がある。しかしながら、加熱時間を長くしたり、加熱温度を高くすることは、樹脂の劣化を引き起こし、フィッシュアイ欠点やゲル状欠点につながるおそれがある。 As described above, when a film is produced by the solution casting method, the state (property) of the doping used is considered to affect the physical properties and properties of the obtained film. Therefore, especially in the production of optical films and the like. For example, it is preferable to keep the haze value of the doping low to some extent.
The average particle size measured by the light scattering method of the phase containing the polyvinyl acetal resin in the doping is preferably 1.0 μm or less, more preferably 0.7 μm or less, from the viewpoint of uniform dispersibility and transparency at the time of film. 0.5 μm or less is particularly preferable. On the other hand, the lower limit of the average particle size is preferably 0.05 μm, more preferably 0.10 μm, and even more preferably 0.15 μm.
The average particle size of the phase containing the polyvinyl acetal resin in the doping is analyzed at 25 ° C. using, for example, a laser diffraction / scattering type particle size distribution measuring device (manufactured by Horiba Seisakusho Co., Ltd., device name “LA-950V2”). can do.
Since the solution casting method is a method of forming a dope film on the support and evaporating the solvent in the dope film to obtain a film, heating on the support depends on the type of solvent and the properties of the dope itself. It may be necessary to lengthen the time or raise the temperature of the support (heating temperature). However, lengthening the heating time or raising the heating temperature may cause deterioration of the resin, leading to fisheye defects and gel-like defects.
本発明のドープは、(メタ)アクリル樹脂(A)、ポリビニルアセタール樹脂(B)、塩素系有機溶剤を含有する有機溶剤(C)および必要に応じて配合される添加剤、その他の樹脂を所定量配合したものを均一に分散混合することにより調製することができる。調製方法は、特に限定されないが、例えば上記各成分を所定量配合したものをミキサー等で十分に撹拌(混合)する方法等を挙げることができる。
The dope of the present invention comprises a (meth) acrylic resin (A), a polyvinyl acetal resin (B), an organic solvent (C) containing a chlorine-based organic solvent, additives to be blended as necessary, and other resins. It can be prepared by uniformly dispersing and mixing a fixed amount of the mixture. The preparation method is not particularly limited, and examples thereof include a method in which a predetermined amount of each of the above components is blended and sufficiently stirred (mixed) with a mixer or the like.
撹拌時間は、分散混合の具体的な方法にもよるが、例えば、8時間以上であることが好ましく、14時間以上であることがより好ましく、20時間以上であることがさらに好ましい。生産効率等の観点から、撹拌時間は通常48時間以下であることが好ましく、36時間以下であることがより好ましい。
ドープの調整は、室温(1~30℃)で行ってもよく、冷却しながら又は加温しながらでもよく、さらにはこれらの組み合わせで実施されてもよい。なお沸点以上で溶解する場合は、加圧状態で加温する。加圧は窒素ガスなどの不活性気体を圧入する方法や、加熱による溶剤の蒸気圧の上昇によって行ってもよい。加熱は外部から行うことが好ましく、例えば、ジャケットタイプのものは温度コントロールが容易で好ましい。 The stirring time depends on the specific method of dispersion mixing, but is preferably, for example, 8 hours or more, more preferably 14 hours or more, and further preferably 20 hours or more. From the viewpoint of production efficiency and the like, the stirring time is usually preferably 48 hours or less, and more preferably 36 hours or less.
The doping may be adjusted at room temperature (1 to 30 ° C.), while cooling or warming, and further, a combination thereof may be used. If it dissolves above the boiling point, heat it under pressure. The pressurization may be performed by a method of press-fitting an inert gas such as nitrogen gas or by increasing the vapor pressure of the solvent by heating. The heating is preferably performed from the outside, and for example, the jacket type is preferable because the temperature can be easily controlled.
ドープの調整は、室温(1~30℃)で行ってもよく、冷却しながら又は加温しながらでもよく、さらにはこれらの組み合わせで実施されてもよい。なお沸点以上で溶解する場合は、加圧状態で加温する。加圧は窒素ガスなどの不活性気体を圧入する方法や、加熱による溶剤の蒸気圧の上昇によって行ってもよい。加熱は外部から行うことが好ましく、例えば、ジャケットタイプのものは温度コントロールが容易で好ましい。 The stirring time depends on the specific method of dispersion mixing, but is preferably, for example, 8 hours or more, more preferably 14 hours or more, and further preferably 20 hours or more. From the viewpoint of production efficiency and the like, the stirring time is usually preferably 48 hours or less, and more preferably 36 hours or less.
The doping may be adjusted at room temperature (1 to 30 ° C.), while cooling or warming, and further, a combination thereof may be used. If it dissolves above the boiling point, heat it under pressure. The pressurization may be performed by a method of press-fitting an inert gas such as nitrogen gas or by increasing the vapor pressure of the solvent by heating. The heating is preferably performed from the outside, and for example, the jacket type is preferable because the temperature can be easily controlled.
分散混合する時間は、1分~24時間であることが好ましく、2分~5時間であることがより好ましく、3分~1時間であることがさらに好ましい。また、温度は、大気圧下、5~40℃であることが好ましく、10~35℃であることがより好ましい。また加圧下では、使用溶剤の沸点以上で、かつ該溶剤が沸騰しない範囲の温度が好ましく、例えば60℃以上、より好ましくは70~110℃の範囲に設定するのが好適である。また、圧力は設定温度で、溶剤が沸騰しないように調整される。これらの温度範囲で溶解させることにより、ゲルやママコと呼ばれる塊状未溶解物の発生を防止することができる。
The time for dispersion and mixing is preferably 1 minute to 24 hours, more preferably 2 minutes to 5 hours, and even more preferably 3 minutes to 1 hour. The temperature is preferably 5 to 40 ° C., more preferably 10 to 35 ° C. under atmospheric pressure. Under pressure, the temperature is preferably above the boiling point of the solvent used and within the range in which the solvent does not boil, and is preferably set to, for example, 60 ° C. or higher, more preferably 70 to 110 ° C. In addition, the pressure is adjusted at the set temperature so that the solvent does not boil. By dissolving in these temperature ranges, it is possible to prevent the generation of massive undissolved substances called gels and mamaco.
本発明のドープは、塩素系有機溶剤を含有する有機溶剤(C)中に(メタ)アクリル樹脂(A)およびポリビニルアセタール樹脂(B)がそれぞれ溶解、膨潤、または分散しており、目視での残存樹脂が見られないことが望ましい。
In the dope of the present invention, the (meth) acrylic resin (A) and the polyvinyl acetal resin (B) are dissolved, swollen, or dispersed in the organic solvent (C) containing a chlorine-based organic solvent, respectively, and are visually observed. It is desirable that no residual resin is seen.
<フィルムの製造方法>
本発明のフィルムの製造方法は、溶液流延法によるアクリル系樹脂フィルムの製造方法あって、上記ドープを支持体表面に流延した後、溶剤を蒸発させる工程を有することを特徴とする。 <Film manufacturing method>
The method for producing a film of the present invention is a method for producing an acrylic resin film by a solution casting method, which comprises a step of casting the above-mentioned dope on the surface of a support and then evaporating the solvent.
本発明のフィルムの製造方法は、溶液流延法によるアクリル系樹脂フィルムの製造方法あって、上記ドープを支持体表面に流延した後、溶剤を蒸発させる工程を有することを特徴とする。 <Film manufacturing method>
The method for producing a film of the present invention is a method for producing an acrylic resin film by a solution casting method, which comprises a step of casting the above-mentioned dope on the surface of a support and then evaporating the solvent.
本発明における溶液流延法の実施態様を以下に説明するが、これに限定されるものではない。まず、上記(メタ)アクリル樹脂(A)、ポリビニルアセタール樹脂(B)、塩素系有機溶剤を含有する有機溶剤(C)および必要に応じて配合される添加剤、その他の樹脂を用いてドープを調製する。得られたドープをろ過したり、脱泡してもよい。
An embodiment of the solution casting method in the present invention will be described below, but the present invention is not limited thereto. First, dope is performed using the above (meth) acrylic resin (A), polyvinyl acetal resin (B), organic solvent (C) containing a chlorine-based organic solvent, additives to be blended as necessary, and other resins. Prepare. The resulting dope may be filtered or defoamed.
次いで、上記ドープを支持体表面に流延して、ドープ膜を形成する。
流延方法としては、例えば、Tダイ法、ドクターブレード法、バーコーター法、ロールコーター法、リップコーター法等が用いられ、工業的には、ダイからドープをベルト状またはドラム状の支持体に連続的に押し出す方法が一般的に用いられている。
上記支持体としては、例えば、ガラス基板、金属基板、ポリイミド、ポリエチレンテレフタレート等のプラスチック基板などが挙げられる。高度に表面性、光学特性に優れた基板を工業的に連続製膜するには、支持体として表面を鏡面仕上げした金属基板が好ましく用いられる。 The dope is then cast on the surface of the support to form a dope film.
As the casting method, for example, the T-die method, the doctor blade method, the bar coater method, the roll coater method, the lip coater method and the like are used, and industrially, the dope is transferred from the die to a belt-shaped or drum-shaped support. A method of continuously extruding is generally used.
Examples of the support include a glass substrate, a metal substrate, a plastic substrate such as polyimide and polyethylene terephthalate, and the like. A metal substrate having a mirror-finished surface is preferably used as a support for industrially continuous film formation of a substrate having highly excellent surface properties and optical characteristics.
流延方法としては、例えば、Tダイ法、ドクターブレード法、バーコーター法、ロールコーター法、リップコーター法等が用いられ、工業的には、ダイからドープをベルト状またはドラム状の支持体に連続的に押し出す方法が一般的に用いられている。
上記支持体としては、例えば、ガラス基板、金属基板、ポリイミド、ポリエチレンテレフタレート等のプラスチック基板などが挙げられる。高度に表面性、光学特性に優れた基板を工業的に連続製膜するには、支持体として表面を鏡面仕上げした金属基板が好ましく用いられる。 The dope is then cast on the surface of the support to form a dope film.
As the casting method, for example, the T-die method, the doctor blade method, the bar coater method, the roll coater method, the lip coater method and the like are used, and industrially, the dope is transferred from the die to a belt-shaped or drum-shaped support. A method of continuously extruding is generally used.
Examples of the support include a glass substrate, a metal substrate, a plastic substrate such as polyimide and polyethylene terephthalate, and the like. A metal substrate having a mirror-finished surface is preferably used as a support for industrially continuous film formation of a substrate having highly excellent surface properties and optical characteristics.
形成されたドープ膜を上記支持体上で加熱し、溶剤を蒸発させてアクリル系樹脂フィルム(キャストフィルム)を形成する。加熱温度は、好ましくは0~120℃であり、より好ましくは5~100℃である。また、加熱時間は、好ましくは20秒~2時間であり、より好ましくは30秒~1時間である。このようにして得られたアクリル系樹脂フィルムは支持体表面から剥離される。その後、得られたアクリル系樹脂フィルムに、適宜、乾燥工程、加熱工程、延伸工程等を実施してもよい。
The formed dope film is heated on the support to evaporate the solvent to form an acrylic resin film (cast film). The heating temperature is preferably 0 to 120 ° C, more preferably 5 to 100 ° C. The heating time is preferably 20 seconds to 2 hours, more preferably 30 seconds to 1 hour. The acrylic resin film thus obtained is peeled off from the surface of the support. After that, the obtained acrylic resin film may be appropriately subjected to a drying step, a heating step, a stretching step and the like.
延伸工程は、フィルムの耐熱性や機械的強度等を高めるために行われる。延伸工程における延伸方法は特に制限なく、逐次二軸延伸法、同時二軸延伸法、チュブラー延伸法等が挙げられる。延伸処理は、予熱工程、延伸工程、熱固定工程から構成され、熱固定工程後に弛緩工程を実施してもよい。
The stretching process is performed to increase the heat resistance and mechanical strength of the film. The stretching method in the stretching step is not particularly limited, and examples thereof include a sequential biaxial stretching method, a simultaneous biaxial stretching method, and a tuber stretching method. The stretching treatment is composed of a preheating step, a stretching step, and a heat fixing step, and a relaxation step may be performed after the heat fixing step.
逐次二軸延伸法の場合、延伸速度は各延伸方向で同じであってもよく、異なっていてもよい。また、その延伸速度は、好ましくは100~5000%/分であり、より好ましくは100~3000%/分である。また、同時二軸延伸法の場合、延伸速度を大きくすると破れが発生しやすく生産性が著しく低下するため、その延伸速度は50~5000%/分であることが好ましく、100~3000%/分であることがより好ましい。
In the case of the sequential biaxial stretching method, the stretching speed may be the same or different in each stretching direction. The stretching speed is preferably 100 to 5000% / min, and more preferably 100 to 3000% / min. Further, in the case of the simultaneous biaxial stretching method, if the stretching speed is increased, tearing is likely to occur and the productivity is significantly reduced. Therefore, the stretching speed is preferably 50 to 5000% / min, and 100 to 3000% / min. Is more preferable.
延伸温度は、アクリル系樹脂フィルムのTgを基準として、逐次/同時二軸延伸法のいずれにおいても、好ましくはTg~(Tg+30℃)であり、より好ましくは(Tg+5℃)~(Tg+25℃)である。かかる範囲では、厚みムラが抑制される傾向にある。延伸温度がアクリル系樹脂フィルムのTg以上であることでフィルム破断を抑制することができ、アクリル系樹脂フィルムのTg+30℃以下であることで熱物性を向上させることができる。
The stretching temperature is preferably Tg to (Tg + 30 ° C.), more preferably (Tg + 5 ° C.) to (Tg + 25 ° C.) in both the sequential / simultaneous biaxial stretching method based on the Tg of the acrylic resin film. is there. In such a range, thickness unevenness tends to be suppressed. When the stretching temperature is Tg or more of the acrylic resin film, film breakage can be suppressed, and when the stretching temperature is Tg + 30 ° C. or less of the acrylic resin film, the thermal properties can be improved.
各軸方向の延伸倍率(未延伸フィルムに対する延伸フィルムの面積倍率)は、好ましくは1.01~12.25倍であり、より好ましくは1.10~9倍である。延伸倍率が上記範囲内であることでフィルムの機械的強度を向上させることができる。
The draw ratio in each axial direction (area ratio of the stretched film with respect to the unstretched film) is preferably 1.01 to 12.25 times, more preferably 1.10 to 9 times. When the draw ratio is within the above range, the mechanical strength of the film can be improved.
<アクリル系樹脂フィルム>
本発明のアクリル系樹脂フィルムは、上記の未延伸および延伸後のものを含む。
本発明のアクリル系樹脂フィルムは、前述したドープを用いて溶液流延法(溶液キャスト法)によって形成され、JIS K7136:2000に準拠して測定したヘイズ値が2%以下であることが好ましく、1%以下であることがより好ましく、0.7%以下がさらに好ましく、0.4%以下がよりさらに好ましい。アクリル系樹脂フィルムのヘイズ値が2%以下であることで光学用途に適する。 <Acrylic resin film>
The acrylic resin film of the present invention includes the above-mentioned unstretched and stretched ones.
The acrylic resin film of the present invention is formed by a solution casting method (solution casting method) using the above-mentioned dope, and the haze value measured in accordance with JIS K7136: 2000 is preferably 2% or less. It is more preferably 1% or less, further preferably 0.7% or less, and even more preferably 0.4% or less. Since the haze value of the acrylic resin film is 2% or less, it is suitable for optical applications.
本発明のアクリル系樹脂フィルムは、上記の未延伸および延伸後のものを含む。
本発明のアクリル系樹脂フィルムは、前述したドープを用いて溶液流延法(溶液キャスト法)によって形成され、JIS K7136:2000に準拠して測定したヘイズ値が2%以下であることが好ましく、1%以下であることがより好ましく、0.7%以下がさらに好ましく、0.4%以下がよりさらに好ましい。アクリル系樹脂フィルムのヘイズ値が2%以下であることで光学用途に適する。 <Acrylic resin film>
The acrylic resin film of the present invention includes the above-mentioned unstretched and stretched ones.
The acrylic resin film of the present invention is formed by a solution casting method (solution casting method) using the above-mentioned dope, and the haze value measured in accordance with JIS K7136: 2000 is preferably 2% or less. It is more preferably 1% or less, further preferably 0.7% or less, and even more preferably 0.4% or less. Since the haze value of the acrylic resin film is 2% or less, it is suitable for optical applications.
また、本発明のアクリル系樹脂フィルムは、上記アクリル樹脂(A)中で上記ポリビニルアセタール樹脂(B)が分散されてなる。フィルム中のポリビニルアセタール樹脂(B)の平均粒子径は、靭性等の観点から好ましくは5μm以下であり、より好ましくは3μm以下であり、さらに好ましくは1.2μm以下であり、よりさらに好ましくは0.8μm以下であり、特に好ましくは0.6μm以下であり、そして、好ましくは0.01μm以上であり、より好ましくは0.05μm以上であり、さらに好ましくは0.07μm以上である。上記ポリビニルアセタール樹脂(B)(粒子)の平均粒子径は、粒子の透過型電子顕微鏡(TEM)観察像から粒径を評価し、これらの平均値を求めることにより算出することができ、具体的には実施例に記載の方法で求めることができる。
Further, in the acrylic resin film of the present invention, the polyvinyl acetal resin (B) is dispersed in the acrylic resin (A). The average particle size of the polyvinyl acetal resin (B) in the film is preferably 5 μm or less, more preferably 3 μm or less, still more preferably 1.2 μm or less, still more preferably 0, from the viewpoint of toughness and the like. It is 0.8 μm or less, particularly preferably 0.6 μm or less, and preferably 0.01 μm or more, more preferably 0.05 μm or more, still more preferably 0.07 μm or more. The average particle size of the polyvinyl acetal resin (B) (particles) can be calculated by evaluating the particle size from a transmission electron microscope (TEM) observation image of the particles and obtaining the average value thereof. Can be obtained by the method described in Examples.
本発明のアクリル系樹脂フィルムの厚みは、好ましくは10~500μmであり、より好ましくは15~200μmであり、さらに好ましくは20~100μmであり、よりさらに好ましくは40~80μmである。アクリル系樹脂フィルムの厚みが10μm以上であることで、引取時のフィルム破断を抑制することができ、500μm以下であることで、ラミネート性、ハンドリング性、切断性、打抜き性などの二次加工性が向上する。
The thickness of the acrylic resin film of the present invention is preferably 10 to 500 μm, more preferably 15 to 200 μm, still more preferably 20 to 100 μm, and even more preferably 40 to 80 μm. When the thickness of the acrylic resin film is 10 μm or more, it is possible to suppress film breakage during picking up, and when it is 500 μm or less, secondary processability such as laminateability, handleability, cutability, punching property, etc. Is improved.
本発明のアクリル系樹脂フィルムは、偏光子保護フィルム、視野角調整フィルム、位相差フィルム、および輝度向上フィルム等の光学用フィルム、液晶保護フィルム、携帯型情報端末の表面材、携帯型情報端末の表示窓保護フィルム、導光フィルム、銀ナノワイヤまたはカーボンナノチューブを表面に塗布した透明導電フィルム、および各種ディスプレイの前面フィルム等に好適であり、偏光子保護フィルム等に特に好適である。
その他、本発明のアクリル系樹脂フィルムは、各種ディスプレイの前面フィルム、拡散フィルム、ガラス飛散防止フィルム、液晶ASFフィルム、透明導電フィルム、遮熱フィルム、各種バリアーフィルム等の光学関係の基材フィルムなどに好適である。 The acrylic resin film of the present invention is an optical film such as a polarizer protective film, a viewing angle adjusting film, a retardation film, and a brightness improving film, a liquid crystal protective film, a surface material of a portable information terminal, and a portable information terminal. It is suitable for a display window protective film, a light guide film, a transparent conductive film having silver nanowires or carbon nanotubes coated on its surface, a front film of various displays, and the like, and is particularly suitable for a polarizer protective film and the like.
In addition, the acrylic resin film of the present invention can be used for front films of various displays, diffusion films, glass shatterproof films, liquid crystal ASF films, transparent conductive films, heat shield films, various barrier films and other optical base films. It is suitable.
その他、本発明のアクリル系樹脂フィルムは、各種ディスプレイの前面フィルム、拡散フィルム、ガラス飛散防止フィルム、液晶ASFフィルム、透明導電フィルム、遮熱フィルム、各種バリアーフィルム等の光学関係の基材フィルムなどに好適である。 The acrylic resin film of the present invention is an optical film such as a polarizer protective film, a viewing angle adjusting film, a retardation film, and a brightness improving film, a liquid crystal protective film, a surface material of a portable information terminal, and a portable information terminal. It is suitable for a display window protective film, a light guide film, a transparent conductive film having silver nanowires or carbon nanotubes coated on its surface, a front film of various displays, and the like, and is particularly suitable for a polarizer protective film and the like.
In addition, the acrylic resin film of the present invention can be used for front films of various displays, diffusion films, glass shatterproof films, liquid crystal ASF films, transparent conductive films, heat shield films, various barrier films and other optical base films. It is suitable.
本発明のアクリル系樹脂フィルムは、単独で用いてもよいし、積層体の内層又はその一部として用いてもよいし、積層体の最外層として用いてもよい。積層に用いられる他の樹脂は、フィルムの意匠性の観点から、メタクリル系樹脂などの透明な樹脂であることが好ましい。フィルムに傷がつきにくく、意匠性が長く持続する観点から、最外層を形成するフィルムは、表面硬度及び耐候性が高いものが好ましく、本発明のアクリル系樹脂フィルムであることが好ましい。
The acrylic resin film of the present invention may be used alone, as an inner layer of a laminate or a part thereof, or as an outermost layer of a laminate. The other resin used for laminating is preferably a transparent resin such as a methacrylic resin from the viewpoint of film design. From the viewpoint that the film is not easily scratched and the design is long-lasting, the film forming the outermost layer is preferably one having high surface hardness and weather resistance, and is preferably the acrylic resin film of the present invention.
本発明の偏光板は、本発明のアクリル系樹脂フィルムと、偏光子とが積層されてなる。より具体的には、本発明の偏光板は、偏光子と、その少なくとも一方の表面に積層された偏光子保護フィルムと、当該偏光子の他方の表面に必要に応じて積層された視野角調整フィルム、位相差フィルム、及び輝度向上フィルムからなる群より選ばれる少なくとも1種の光学用フィルムとを有する。積層は必要に応じて、接着剤層を介して行うことができる。
The polarizing plate of the present invention is formed by laminating the acrylic resin film of the present invention and a polarizer. More specifically, the polarizing plate of the present invention comprises a polarizer, a polarizer protective film laminated on at least one surface of the polarizer, and a viewing angle adjustment laminated on the other surface of the polarizer as needed. It has at least one kind of optical film selected from the group consisting of a film, a retardation film, and a brightness improving film. Lamination can be done via an adhesive layer, if desired.
上記態様の偏光板は、ディスプレイ装置に使用することができる。ディスプレイ装置としては、(有機)エレクトロルミネッセンスディスプレイ(ELD)、プラズマディスプレイ(PD)、および電界放出ディスプレイ(FED:Field Emission Display)等の自発光型表示装置;液晶表示装置(LCD)等が挙げられる。LCDは、液晶セルと、その少なくとも片側に配置された偏光板とを有する。
The polarizing plate of the above aspect can be used for a display device. Examples of the display device include a self-luminous display device such as an (organic) electroluminescence display (ELD), a plasma display (PD), and a field emission display (FED: Field Emission Display); a liquid crystal display device (LCD) and the like. .. The LCD has a liquid crystal cell and a polarizing plate arranged on at least one side thereof.
以下に実施例および比較例を示して本発明をより具体的に説明する。なお、本発明は以下の実施例によって制限されるものではない。また、本発明は、上記特性値、形態、製法、用途などの技術的特徴を表す事項を、任意に組み合わせてなる全ての態様を包含する。なお、実施例および比較例における物性値の測定等は以下の方法によって実施した。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples. In addition, the present invention includes all aspects in which items representing technical features such as the above characteristic values, forms, manufacturing methods, and uses are arbitrarily combined. The physical property values in the examples and comparative examples were measured by the following methods.
〔重量平均分子量(Mw)、分子量分布(Mw/Mn)〕
測定対象樹脂4mgをテトラヒドロフラン(THF)5mLに溶解させ、孔径0.1μmのフィルタでろ過したものを、試料溶液とした。GPC装置として、示差屈折率検出器(RI検出器)を備えた東ソー(株)製「HLC-8320」を使用した。カラムとして、東ソー(株)製の「TSKgel Super Multipore HZM-M」2本と「Super HZ4000」とを直列に繋いだものを用いた。溶離剤としてテトラヒドロフラン(THF)を用いた。カラムオーブンの温度を40℃に設定し、溶離液流量0.35mL/分で、試料溶液20μLを装置内に注入して、クロマトグラムを測定した。クロマトグラムは、試料溶液と参照溶液との屈折率差に由来する電気信号値(強度Y)をリテンションタイムXに対してプロットしたチャートである。
分子量が400~5000000の範囲の標準ポリスチレン10点を用いてGPC測定し、リテンションタイムと分子量との関係を示す検量線を作成した。この検量線に基づいて、測定対象樹脂のMwおよびMw/Mnを決定した。なお、クロマトグラムのベースラインは、GPCチャートの高分子量側のピークの傾きが保持時間の早い方から見てゼロからプラスに変化する点と、低分子量側のピークの傾きが保持時間の早い方から見てマイナスからゼロに変化する点を結んだ線とした。クロマトグラムが複数のピークを示す場合は、最も高分子量側のピークの傾きがゼロからプラスに変化する点と、最も低分子量側のピークの傾きがマイナスからゼロに変化する点を結んだ線をベースラインとした。 [Weight average molecular weight (Mw), molecular weight distribution (Mw / Mn)]
A sample solution was prepared by dissolving 4 mg of the resin to be measured in 5 mL of tetrahydrofuran (THF) and filtering with a filter having a pore size of 0.1 μm. As the GPC apparatus, "HLC-8320" manufactured by Tosoh Corporation equipped with a differential refractive index detector (RI detector) was used. As the column, two "TSKgel Super Multipore HZM-M" manufactured by Tosoh Corporation and "Super HZ4000" were connected in series. Tetrahydrofuran (THF) was used as the eluent. The temperature of the column oven was set to 40 ° C., the eluent flow rate was 0.35 mL / min, 20 μL of the sample solution was injected into the apparatus, and the chromatogram was measured. The chromatogram is a chart in which the electric signal value (intensity Y) derived from the difference in refractive index between the sample solution and the reference solution is plotted against the retention time X.
GPC measurement was performed using 10 standard polystyrenes having a molecular weight in the range of 400 to 500000, and a calibration curve showing the relationship between the retention time and the molecular weight was prepared. Based on this calibration curve, Mw and Mw / Mn of the resin to be measured were determined. The chromatogram baseline is the point where the slope of the peak on the high molecular weight side of the GPC chart changes from zero to positive when viewed from the side with the earlier retention time, and the slope of the peak on the low molecular weight side has the earlier retention time. It is a line connecting the points that change from minus to zero when viewed from. If the chromatogram shows multiple peaks, the line connecting the point where the slope of the peak on the highest molecular weight side changes from zero to plus and the point where the slope of the peak on the lowest molecular weight side changes from minus to zero It was the baseline.
測定対象樹脂4mgをテトラヒドロフラン(THF)5mLに溶解させ、孔径0.1μmのフィルタでろ過したものを、試料溶液とした。GPC装置として、示差屈折率検出器(RI検出器)を備えた東ソー(株)製「HLC-8320」を使用した。カラムとして、東ソー(株)製の「TSKgel Super Multipore HZM-M」2本と「Super HZ4000」とを直列に繋いだものを用いた。溶離剤としてテトラヒドロフラン(THF)を用いた。カラムオーブンの温度を40℃に設定し、溶離液流量0.35mL/分で、試料溶液20μLを装置内に注入して、クロマトグラムを測定した。クロマトグラムは、試料溶液と参照溶液との屈折率差に由来する電気信号値(強度Y)をリテンションタイムXに対してプロットしたチャートである。
分子量が400~5000000の範囲の標準ポリスチレン10点を用いてGPC測定し、リテンションタイムと分子量との関係を示す検量線を作成した。この検量線に基づいて、測定対象樹脂のMwおよびMw/Mnを決定した。なお、クロマトグラムのベースラインは、GPCチャートの高分子量側のピークの傾きが保持時間の早い方から見てゼロからプラスに変化する点と、低分子量側のピークの傾きが保持時間の早い方から見てマイナスからゼロに変化する点を結んだ線とした。クロマトグラムが複数のピークを示す場合は、最も高分子量側のピークの傾きがゼロからプラスに変化する点と、最も低分子量側のピークの傾きがマイナスからゼロに変化する点を結んだ線をベースラインとした。 [Weight average molecular weight (Mw), molecular weight distribution (Mw / Mn)]
A sample solution was prepared by dissolving 4 mg of the resin to be measured in 5 mL of tetrahydrofuran (THF) and filtering with a filter having a pore size of 0.1 μm. As the GPC apparatus, "HLC-8320" manufactured by Tosoh Corporation equipped with a differential refractive index detector (RI detector) was used. As the column, two "TSKgel Super Multipore HZM-M" manufactured by Tosoh Corporation and "Super HZ4000" were connected in series. Tetrahydrofuran (THF) was used as the eluent. The temperature of the column oven was set to 40 ° C., the eluent flow rate was 0.35 mL / min, 20 μL of the sample solution was injected into the apparatus, and the chromatogram was measured. The chromatogram is a chart in which the electric signal value (intensity Y) derived from the difference in refractive index between the sample solution and the reference solution is plotted against the retention time X.
GPC measurement was performed using 10 standard polystyrenes having a molecular weight in the range of 400 to 500000, and a calibration curve showing the relationship between the retention time and the molecular weight was prepared. Based on this calibration curve, Mw and Mw / Mn of the resin to be measured were determined. The chromatogram baseline is the point where the slope of the peak on the high molecular weight side of the GPC chart changes from zero to positive when viewed from the side with the earlier retention time, and the slope of the peak on the low molecular weight side has the earlier retention time. It is a line connecting the points that change from minus to zero when viewed from. If the chromatogram shows multiple peaks, the line connecting the point where the slope of the peak on the highest molecular weight side changes from zero to plus and the point where the slope of the peak on the lowest molecular weight side changes from minus to zero It was the baseline.
〔ガラス転移温度〕
JIS K7121:2012に準拠して、ガラス転移温度を測定した。示差走査熱量測定装置((株)島津製作所製「DSC-50」)を用い、いったん試料を230℃まで昇温して30℃以下まで冷却した後、再度、30℃から230℃まで10℃/分の昇温速度で昇温させる条件にてDSC曲線を測定した。得られたDSC曲線から求められる中間点ガラス転移温度をガラス転移温度とした。 〔Glass-transition temperature〕
The glass transition temperature was measured according to JIS K7121: 2012. Using a differential scanning calorimetry device (“DSC-50” manufactured by Shimadzu Corporation), once the sample is heated to 230 ° C. and cooled to 30 ° C or lower, it is again 10 ° C / from 30 ° C to 230 ° C. The DSC curve was measured under the condition that the temperature was raised at the rate of temperature rise of 1 minute. The intermediate point glass transition temperature obtained from the obtained DSC curve was defined as the glass transition temperature.
JIS K7121:2012に準拠して、ガラス転移温度を測定した。示差走査熱量測定装置((株)島津製作所製「DSC-50」)を用い、いったん試料を230℃まで昇温して30℃以下まで冷却した後、再度、30℃から230℃まで10℃/分の昇温速度で昇温させる条件にてDSC曲線を測定した。得られたDSC曲線から求められる中間点ガラス転移温度をガラス転移温度とした。 〔Glass-transition temperature〕
The glass transition temperature was measured according to JIS K7121: 2012. Using a differential scanning calorimetry device (“DSC-50” manufactured by Shimadzu Corporation), once the sample is heated to 230 ° C. and cooled to 30 ° C or lower, it is again 10 ° C / from 30 ° C to 230 ° C. The DSC curve was measured under the condition that the temperature was raised at the rate of temperature rise of 1 minute. The intermediate point glass transition temperature obtained from the obtained DSC curve was defined as the glass transition temperature.
〔ポリビニルアセタール樹脂(B)の組成(アセタール化度)〕
ポリビニルアセタール樹脂(B)の組成は、13C-NMRを測定することで、炭素数4以上のアルデヒドでアセタール化されたビニルアルコール単位の全繰返し単位に対するモル%、炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位の全繰返し単位に対するモル%、アセタール化されていないビニルアルコール単位の全繰返し単位に対するモル%、そして酢酸ビニル単位の全繰返し単位に対するモル%を算出した。 [Composition of polyvinyl acetal resin (B) (degree of acetalization)]
The composition of the polyvinyl acetal resin (B) was acetalized with an aldehyde having 3 or less carbon atoms in mol% with respect to all repeating units of vinyl alcohol units acetalized with an aldehyde having 4 or more carbon atoms by measuring 13C-NMR. The mol% for all repeating units of vinyl alcohol units, the mol% for all repeating units of non-acetalized vinyl alcohol units, and the mol% for all repeating units of vinyl acetate units were calculated.
ポリビニルアセタール樹脂(B)の組成は、13C-NMRを測定することで、炭素数4以上のアルデヒドでアセタール化されたビニルアルコール単位の全繰返し単位に対するモル%、炭素数3以下のアルデヒドでアセタール化されたビニルアルコール単位の全繰返し単位に対するモル%、アセタール化されていないビニルアルコール単位の全繰返し単位に対するモル%、そして酢酸ビニル単位の全繰返し単位に対するモル%を算出した。 [Composition of polyvinyl acetal resin (B) (degree of acetalization)]
The composition of the polyvinyl acetal resin (B) was acetalized with an aldehyde having 3 or less carbon atoms in mol% with respect to all repeating units of vinyl alcohol units acetalized with an aldehyde having 4 or more carbon atoms by measuring 13C-NMR. The mol% for all repeating units of vinyl alcohol units, the mol% for all repeating units of non-acetalized vinyl alcohol units, and the mol% for all repeating units of vinyl acetate units were calculated.
〔アルカリ金属またはアルカリ土類金属の含有量〕
ポリビニルアセタール樹脂(B)を、白金るつぼ及びホットプレートで炭化し、次いで電気炉で炭化し、残渣を酸に溶解して、原子吸光光度計(日立ハイテクノロジーズ社製、型番:Z-2000)を用いて測定した。 [Content of alkali metal or alkaline earth metal]
The polyvinyl acetal resin (B) is carbonized in a platinum crucible and a hot plate, then carbonized in an electric furnace, and the residue is dissolved in acid to obtain an atomic absorption spectrophotometer (manufactured by Hitachi High-Technologies Corporation, model number: Z-2000). Measured using.
ポリビニルアセタール樹脂(B)を、白金るつぼ及びホットプレートで炭化し、次いで電気炉で炭化し、残渣を酸に溶解して、原子吸光光度計(日立ハイテクノロジーズ社製、型番:Z-2000)を用いて測定した。 [Content of alkali metal or alkaline earth metal]
The polyvinyl acetal resin (B) is carbonized in a platinum crucible and a hot plate, then carbonized in an electric furnace, and the residue is dissolved in acid to obtain an atomic absorption spectrophotometer (manufactured by Hitachi High-Technologies Corporation, model number: Z-2000). Measured using.
〔平均粒子径〕
得られたフィルムから0.1mm×0.1mmの試料片を切り出し、ウルトラミクロトーム(RICA社製Reichert ULTRACUT-S)を用いて超薄切片を作製した後、四酸化ルテニウムで染色、その切片を透過型電子顕微鏡(株式会社日立製作所製 H-800NA)を用いて観察した。観察像中にある粒子50点の粒径を評価し、これらの平均値から平均粒子径は算出した。 [Average particle size]
A 0.1 mm × 0.1 mm sample piece was cut out from the obtained film, an ultrathin section was prepared using an ultramicrotome (Reichert ULTRACUT-S manufactured by RICA), stained with ruthenium tetroxide, and the section was permeated. Observation was performed using a type electron microscope (H-800NA manufactured by Hitachi, Ltd.). The particle size of 50 particles in the observation image was evaluated, and the average particle size was calculated from the average value of these particles.
得られたフィルムから0.1mm×0.1mmの試料片を切り出し、ウルトラミクロトーム(RICA社製Reichert ULTRACUT-S)を用いて超薄切片を作製した後、四酸化ルテニウムで染色、その切片を透過型電子顕微鏡(株式会社日立製作所製 H-800NA)を用いて観察した。観察像中にある粒子50点の粒径を評価し、これらの平均値から平均粒子径は算出した。 [Average particle size]
A 0.1 mm × 0.1 mm sample piece was cut out from the obtained film, an ultrathin section was prepared using an ultramicrotome (Reichert ULTRACUT-S manufactured by RICA), stained with ruthenium tetroxide, and the section was permeated. Observation was performed using a type electron microscope (H-800NA manufactured by Hitachi, Ltd.). The particle size of 50 particles in the observation image was evaluated, and the average particle size was calculated from the average value of these particles.
〔ヘイズ(ドープ、フィルム)〕
ドープの原料を、23℃、大気圧下、の条件下で、24時間撹拌した後、当該ドープを1cm厚のセルに封入し、JIS K7136:2000に準拠して、ヘイズメータ((株)村上色彩研究所製、HM-150)を用いて測定した。
得られたフィルムから50mm×50mmの試験片を切り出し、JIS K7136:2000に準拠し、ヘイズメータ(村上色彩研究所製、HM-150)を用いて測定した。 [Haze (dope, film)]
The dope material is stirred under the conditions of 23 ° C. and atmospheric pressure for 24 hours, and then the dope is sealed in a 1 cm thick cell, and the haze meter (Murakami Color Co., Ltd.) conforms to JIS K7136: 2000. It was measured using HM-150) manufactured by the laboratory.
A 50 mm × 50 mm test piece was cut out from the obtained film and measured using a haze meter (HM-150, manufactured by Murakami Color Research Institute) in accordance with JIS K7136: 2000.
ドープの原料を、23℃、大気圧下、の条件下で、24時間撹拌した後、当該ドープを1cm厚のセルに封入し、JIS K7136:2000に準拠して、ヘイズメータ((株)村上色彩研究所製、HM-150)を用いて測定した。
得られたフィルムから50mm×50mmの試験片を切り出し、JIS K7136:2000に準拠し、ヘイズメータ(村上色彩研究所製、HM-150)を用いて測定した。 [Haze (dope, film)]
The dope material is stirred under the conditions of 23 ° C. and atmospheric pressure for 24 hours, and then the dope is sealed in a 1 cm thick cell, and the haze meter (Murakami Color Co., Ltd.) conforms to JIS K7136: 2000. It was measured using HM-150) manufactured by the laboratory.
A 50 mm × 50 mm test piece was cut out from the obtained film and measured using a haze meter (HM-150, manufactured by Murakami Color Research Institute) in accordance with JIS K7136: 2000.
[製造例1](メタ)アクリル樹脂(A)の製造
メタクリル酸メチル99質量部およびアクリル酸メチル1質量部に、重合開始剤(2,2’-アゾビス(2-メチルプロピオニトリル)、水素引抜能:1%、1時間半減期温度:83℃)0.1質量部および連鎖移動剤(n-オクチルメルカプタン)0.24質量部を加え、溶解させて原料液を得た。
イオン交換水100質量部、硫酸ナトリウム0.03質量部および懸濁分散剤0.45質量部を混ぜ合わせて混合液を得た。耐圧重合槽に、当該混合液420質量部と上記原料液210質量部とを仕込み、窒素雰囲気下で撹拌しながら、温度を70℃にして重合反応を開始させた。重合反応開始後、3時間経過時に、温度を90℃に上げ、撹拌を引き続き1時間行って、ビーズ状共重合体が分散した液を得た。なお、重合槽壁面あるいは撹拌翼にポリマーが若干付着したが、泡立ちもなく、円滑に重合反応が進んだ。
得られた共重合体分散液を適量のイオン交換水で洗浄し、バケット式遠心分離機により、ビーズ状共重合体を取り出し、80℃の熱風乾燥機で12時間乾燥し、ビーズ状の(メタ)アクリル樹脂(A)を得た。
得られた(メタ)アクリル樹脂(A)は、メタクリル酸メチル単量体単位の含有量が99質量%であり、アクリル酸メチル単量体単位の含有量が1質量%であり、重量平均分子量(Mw)が95,000、Mw/Mnが2.0、ガラス転移温度が120℃であった。 [Production Example 1] Production of (meth) acrylic resin (A) A polymerization initiator (2,2'-azobis (2-methylpropionitrile), hydrogen) is added to 99 parts by mass of methyl methacrylate and 1 part by mass of methyl acrylate. Extraction capacity: 1%, 1 hour half-life temperature: 83 ° C.) 0.1 parts by mass and 0.24 parts by mass of a chain transfer agent (n-octyl mercaptan) were added and dissolved to obtain a raw material solution.
A mixed solution was obtained by mixing 100 parts by mass of ion-exchanged water, 0.03 parts by mass of sodium sulfate and 0.45 parts by mass of a suspension dispersant. 420 parts by mass of the mixed solution and 210 parts by mass of the raw material solution were charged into the pressure-resistant polymerization tank, and the polymerization reaction was started at a temperature of 70 ° C. while stirring in a nitrogen atmosphere. After 3 hours from the start of the polymerization reaction, the temperature was raised to 90 ° C. and stirring was continued for 1 hour to obtain a liquid in which the bead-like copolymer was dispersed. Although some polymer adhered to the wall surface of the polymerization tank or the stirring blade, the polymerization reaction proceeded smoothly without foaming.
The obtained copolymer dispersion was washed with an appropriate amount of ion-exchanged water, the beaded copolymer was taken out by a bucket centrifuge, dried in a hot air dryer at 80 ° C. for 12 hours, and beaded (meth). ) Acrylic resin (A) was obtained.
The obtained (meth) acrylic resin (A) has a content of methyl methacrylate monomer unit of 99% by mass, a content of methyl acrylate monomer unit of 1% by mass, and a weight average molecular weight. (Mw) was 95,000, Mw / Mn was 2.0, and the glass transition temperature was 120 ° C.
メタクリル酸メチル99質量部およびアクリル酸メチル1質量部に、重合開始剤(2,2’-アゾビス(2-メチルプロピオニトリル)、水素引抜能:1%、1時間半減期温度:83℃)0.1質量部および連鎖移動剤(n-オクチルメルカプタン)0.24質量部を加え、溶解させて原料液を得た。
イオン交換水100質量部、硫酸ナトリウム0.03質量部および懸濁分散剤0.45質量部を混ぜ合わせて混合液を得た。耐圧重合槽に、当該混合液420質量部と上記原料液210質量部とを仕込み、窒素雰囲気下で撹拌しながら、温度を70℃にして重合反応を開始させた。重合反応開始後、3時間経過時に、温度を90℃に上げ、撹拌を引き続き1時間行って、ビーズ状共重合体が分散した液を得た。なお、重合槽壁面あるいは撹拌翼にポリマーが若干付着したが、泡立ちもなく、円滑に重合反応が進んだ。
得られた共重合体分散液を適量のイオン交換水で洗浄し、バケット式遠心分離機により、ビーズ状共重合体を取り出し、80℃の熱風乾燥機で12時間乾燥し、ビーズ状の(メタ)アクリル樹脂(A)を得た。
得られた(メタ)アクリル樹脂(A)は、メタクリル酸メチル単量体単位の含有量が99質量%であり、アクリル酸メチル単量体単位の含有量が1質量%であり、重量平均分子量(Mw)が95,000、Mw/Mnが2.0、ガラス転移温度が120℃であった。 [Production Example 1] Production of (meth) acrylic resin (A) A polymerization initiator (2,2'-azobis (2-methylpropionitrile), hydrogen) is added to 99 parts by mass of methyl methacrylate and 1 part by mass of methyl acrylate. Extraction capacity: 1%, 1 hour half-life temperature: 83 ° C.) 0.1 parts by mass and 0.24 parts by mass of a chain transfer agent (n-octyl mercaptan) were added and dissolved to obtain a raw material solution.
A mixed solution was obtained by mixing 100 parts by mass of ion-exchanged water, 0.03 parts by mass of sodium sulfate and 0.45 parts by mass of a suspension dispersant. 420 parts by mass of the mixed solution and 210 parts by mass of the raw material solution were charged into the pressure-resistant polymerization tank, and the polymerization reaction was started at a temperature of 70 ° C. while stirring in a nitrogen atmosphere. After 3 hours from the start of the polymerization reaction, the temperature was raised to 90 ° C. and stirring was continued for 1 hour to obtain a liquid in which the bead-like copolymer was dispersed. Although some polymer adhered to the wall surface of the polymerization tank or the stirring blade, the polymerization reaction proceeded smoothly without foaming.
The obtained copolymer dispersion was washed with an appropriate amount of ion-exchanged water, the beaded copolymer was taken out by a bucket centrifuge, dried in a hot air dryer at 80 ° C. for 12 hours, and beaded (meth). ) Acrylic resin (A) was obtained.
The obtained (meth) acrylic resin (A) has a content of methyl methacrylate monomer unit of 99% by mass, a content of methyl acrylate monomer unit of 1% by mass, and a weight average molecular weight. (Mw) was 95,000, Mw / Mn was 2.0, and the glass transition temperature was 120 ° C.
[製造例2]ポリビニルアセタール樹脂(B)の製造
粘度平均重合度1000、けん化度99モル%のポリビニルアルコール樹脂の水溶液を調整し、ブチルアルデヒド/アセトアルデヒド=50/50モル比のアルデヒドと、酸触媒としての塩酸を添加し、撹拌することによってアセタール化反応を行った。当該反応の進行に伴って樹脂が析出した。公知の方法に従ってpH=6になるまでスラリーを洗浄し、次いでアルカリ性にした水性媒体中に懸濁させて撹拌し、次いでpH=7になるまで洗浄した。その後、揮発分が1.0%になるまで乾燥することによって、ブチルアセタール単位30モル%、アセトアセタール単位51モル%、ビニルアルコール単位18モル%、ビニルアセテート単位1モル%のポリビニルアセタール樹脂(B)を得た。アルカリ金属の含有量は40ppmであった。 [Production Example 2] Production of polyvinyl acetal resin (B) An aqueous solution of a polyvinyl alcohol resin having a viscosity average degree of polymerization of 1000 and a saponification degree of 99 mol% is prepared, and an aldehyde having a butyraldehyde / acetaldehyde = 50/50 mol ratio and an acid catalyst are prepared. The acetalization reaction was carried out by adding hydrochloric acid as the above and stirring. As the reaction proceeded, the resin was precipitated. The slurry was washed according to a known method until pH = 6, then suspended in an alkaline aqueous medium and stirred, and then washed until pH = 7. Then, by drying until the volatile content becomes 1.0%, a polyvinyl acetal resin (B) having a butyl acetal unit of 30 mol%, an acetal acetal unit of 51 mol%, a vinyl alcohol unit of 18 mol%, and a vinyl acetate unit of 1 mol%. ) Was obtained. The alkali metal content was 40 ppm.
粘度平均重合度1000、けん化度99モル%のポリビニルアルコール樹脂の水溶液を調整し、ブチルアルデヒド/アセトアルデヒド=50/50モル比のアルデヒドと、酸触媒としての塩酸を添加し、撹拌することによってアセタール化反応を行った。当該反応の進行に伴って樹脂が析出した。公知の方法に従ってpH=6になるまでスラリーを洗浄し、次いでアルカリ性にした水性媒体中に懸濁させて撹拌し、次いでpH=7になるまで洗浄した。その後、揮発分が1.0%になるまで乾燥することによって、ブチルアセタール単位30モル%、アセトアセタール単位51モル%、ビニルアルコール単位18モル%、ビニルアセテート単位1モル%のポリビニルアセタール樹脂(B)を得た。アルカリ金属の含有量は40ppmであった。 [Production Example 2] Production of polyvinyl acetal resin (B) An aqueous solution of a polyvinyl alcohol resin having a viscosity average degree of polymerization of 1000 and a saponification degree of 99 mol% is prepared, and an aldehyde having a butyraldehyde / acetaldehyde = 50/50 mol ratio and an acid catalyst are prepared. The acetalization reaction was carried out by adding hydrochloric acid as the above and stirring. As the reaction proceeded, the resin was precipitated. The slurry was washed according to a known method until pH = 6, then suspended in an alkaline aqueous medium and stirred, and then washed until pH = 7. Then, by drying until the volatile content becomes 1.0%, a polyvinyl acetal resin (B) having a butyl acetal unit of 30 mol%, an acetal acetal unit of 51 mol%, a vinyl alcohol unit of 18 mol%, and a vinyl acetate unit of 1 mol%. ) Was obtained. The alkali metal content was 40 ppm.
[実施例1]
(メタ)アクリル樹脂(A)のペレット3.15g、ポリビニルアセタール樹脂(B)のパウダー0.35gおよび有機溶剤(C)として塩化メチレン66.5gをスクリュー管に投入し、さらにスターラーを入れて室温(23℃)で24時間撹拌し、ドープ作製を行った。1時間毎に樹脂の溶解状態を目視観察し、溶解が確認できた時間を測定した。また、24時間撹拌後の溶液を用いて、ヘイズ測定を行った。溶解時間は1時間で、ヘイズ値は0.4%であった。 [Example 1]
3.15 g of pellets of (meth) acrylic resin (A), 0.35 g of powder of polyvinyl acetal resin (B) and 66.5 g of methylene chloride as organic solvent (C) were put into a screw tube, and a stirrer was further added to room temperature. The mixture was stirred at (23 ° C.) for 24 hours to prepare a dope. The dissolved state of the resin was visually observed every hour, and the time during which the dissolution was confirmed was measured. In addition, haze measurement was performed using the solution after stirring for 24 hours. The dissolution time was 1 hour and the haze value was 0.4%.
(メタ)アクリル樹脂(A)のペレット3.15g、ポリビニルアセタール樹脂(B)のパウダー0.35gおよび有機溶剤(C)として塩化メチレン66.5gをスクリュー管に投入し、さらにスターラーを入れて室温(23℃)で24時間撹拌し、ドープ作製を行った。1時間毎に樹脂の溶解状態を目視観察し、溶解が確認できた時間を測定した。また、24時間撹拌後の溶液を用いて、ヘイズ測定を行った。溶解時間は1時間で、ヘイズ値は0.4%であった。 [Example 1]
3.15 g of pellets of (meth) acrylic resin (A), 0.35 g of powder of polyvinyl acetal resin (B) and 66.5 g of methylene chloride as organic solvent (C) were put into a screw tube, and a stirrer was further added to room temperature. The mixture was stirred at (23 ° C.) for 24 hours to prepare a dope. The dissolved state of the resin was visually observed every hour, and the time during which the dissolution was confirmed was measured. In addition, haze measurement was performed using the solution after stirring for 24 hours. The dissolution time was 1 hour and the haze value was 0.4%.
実施例1で得たドープをポリイミドフィルム基板上に滴下し、フィルムアプリケーターでドープ膜を形成した。このフィルムを乾燥機で、150℃で60分間乾燥した後、ポリイミドフィルムから剥離することでアクリル系樹脂フィルムを得た。このフィルムの厚みは、70μmであり、ヘイズ値は0.2%であった。また、TEM観察したところ、平均粒子径0.5μmのポリビニルアセタール樹脂粒子が存在するフィルムであった。
The dope obtained in Example 1 was dropped onto a polyimide film substrate to form a dope film with a film applicator. This film was dried in a dryer at 150 ° C. for 60 minutes and then peeled off from the polyimide film to obtain an acrylic resin film. The thickness of this film was 70 μm, and the haze value was 0.2%. Further, as a result of TEM observation, it was a film in which polyvinyl acetal resin particles having an average particle diameter of 0.5 μm were present.
[実施例2]
使用する有機溶剤(C)をクロロホルムに変更し、(メタ)アクリル樹脂(A)のペレット、ポリビニルアセタール樹脂(B)のパウダーおよびクロロホルムをそれぞれ表1に記載の含有量に変更したこと以外は、実施例1と同じ方法でドープ作製を行った。溶解時間は4時間で、ヘイズ値は0.5%であった。 [Example 2]
Except that the organic solvent (C) used was changed to chloroform, and the pellets of (meth) acrylic resin (A), the powder of polyvinyl acetal resin (B) and chloroform were changed to the contents shown in Table 1, respectively. Dope preparation was performed in the same manner as in Example 1. The dissolution time was 4 hours and the haze value was 0.5%.
使用する有機溶剤(C)をクロロホルムに変更し、(メタ)アクリル樹脂(A)のペレット、ポリビニルアセタール樹脂(B)のパウダーおよびクロロホルムをそれぞれ表1に記載の含有量に変更したこと以外は、実施例1と同じ方法でドープ作製を行った。溶解時間は4時間で、ヘイズ値は0.5%であった。 [Example 2]
Except that the organic solvent (C) used was changed to chloroform, and the pellets of (meth) acrylic resin (A), the powder of polyvinyl acetal resin (B) and chloroform were changed to the contents shown in Table 1, respectively. Dope preparation was performed in the same manner as in Example 1. The dissolution time was 4 hours and the haze value was 0.5%.
実施例1と同様の方法で厚み70μmのフィルムを作製し、ヘイズを測定した結果、0.3%であった。
A film having a thickness of 70 μm was prepared by the same method as in Example 1, and the haze was measured and found to be 0.3%.
[実施例3]
使用する有機溶剤(C)を塩化メチレンとメタノールとの混合溶液に変更し、(メタ)アクリル樹脂(A)のペレット、ポリビニルアセタール樹脂(B)のパウダーおよび塩化メチレンとメタノールとの混合溶液をそれぞれ表1に記載の含有量に変更したこと以外は、実施例1と同じ方法でドープ作製を行った。溶解時間は1時間で、ヘイズ値は0.5%であった。 [Example 3]
The organic solvent (C) used was changed to a mixed solution of methylene chloride and methanol, and pellets of (meth) acrylic resin (A), powder of polyvinyl acetal resin (B) and mixed solution of methylene chloride and methanol were used, respectively. Dope preparation was carried out in the same manner as in Example 1 except that the content was changed to the content shown in Table 1. The dissolution time was 1 hour and the haze value was 0.5%.
使用する有機溶剤(C)を塩化メチレンとメタノールとの混合溶液に変更し、(メタ)アクリル樹脂(A)のペレット、ポリビニルアセタール樹脂(B)のパウダーおよび塩化メチレンとメタノールとの混合溶液をそれぞれ表1に記載の含有量に変更したこと以外は、実施例1と同じ方法でドープ作製を行った。溶解時間は1時間で、ヘイズ値は0.5%であった。 [Example 3]
The organic solvent (C) used was changed to a mixed solution of methylene chloride and methanol, and pellets of (meth) acrylic resin (A), powder of polyvinyl acetal resin (B) and mixed solution of methylene chloride and methanol were used, respectively. Dope preparation was carried out in the same manner as in Example 1 except that the content was changed to the content shown in Table 1. The dissolution time was 1 hour and the haze value was 0.5%.
実施例1と同様の方法で厚み70μmのフィルムを作製し、ヘイズを測定した結果、0.2%であった。
A film having a thickness of 70 μm was prepared by the same method as in Example 1, and the haze was measured and found to be 0.2%.
[実施例4]
(メタ)アクリル樹脂(A)のペレット、およびポリビニルアセタール樹脂(B)のパウダーをそれぞれ表1に記載の含有量に変更したこと以外は、実施例1と同じ方法でドープ作製を行った。溶解時間は3時間で、ヘイズ値は1.0%であった。 [Example 4]
Dope production was carried out in the same manner as in Example 1 except that the pellets of the (meth) acrylic resin (A) and the powder of the polyvinyl acetal resin (B) were changed to the contents shown in Table 1, respectively. The dissolution time was 3 hours and the haze value was 1.0%.
(メタ)アクリル樹脂(A)のペレット、およびポリビニルアセタール樹脂(B)のパウダーをそれぞれ表1に記載の含有量に変更したこと以外は、実施例1と同じ方法でドープ作製を行った。溶解時間は3時間で、ヘイズ値は1.0%であった。 [Example 4]
Dope production was carried out in the same manner as in Example 1 except that the pellets of the (meth) acrylic resin (A) and the powder of the polyvinyl acetal resin (B) were changed to the contents shown in Table 1, respectively. The dissolution time was 3 hours and the haze value was 1.0%.
実施例1と同様の方法で厚み70μmのフィルムを作製し、ヘイズを測定した結果、0.6%であった。
A film having a thickness of 70 μm was prepared by the same method as in Example 1, and the haze was measured and found to be 0.6%.
[比較例1]
使用する有機溶剤を塩化メチレンからトルエンに変更し、(メタ)アクリル樹脂(A)のペレット、ポリビニルアセタール樹脂(B)のパウダーおよびトルエンをそれぞれ表1に記載の含有量に変更したこと以外は、実施例1と同じ方法でドープ作製を行った。24時間では溶解せず残存樹脂が目視で観察できる状態であった。 [Comparative Example 1]
Except that the organic solvent used was changed from methylene chloride to toluene, and the contents of the pellet of (meth) acrylic resin (A), the powder of polyvinyl acetal resin (B) and toluene were changed to the contents shown in Table 1, respectively. Dope preparation was performed in the same manner as in Example 1. It did not dissolve in 24 hours and the residual resin was in a state where it could be visually observed.
使用する有機溶剤を塩化メチレンからトルエンに変更し、(メタ)アクリル樹脂(A)のペレット、ポリビニルアセタール樹脂(B)のパウダーおよびトルエンをそれぞれ表1に記載の含有量に変更したこと以外は、実施例1と同じ方法でドープ作製を行った。24時間では溶解せず残存樹脂が目視で観察できる状態であった。 [Comparative Example 1]
Except that the organic solvent used was changed from methylene chloride to toluene, and the contents of the pellet of (meth) acrylic resin (A), the powder of polyvinyl acetal resin (B) and toluene were changed to the contents shown in Table 1, respectively. Dope preparation was performed in the same manner as in Example 1. It did not dissolve in 24 hours and the residual resin was in a state where it could be visually observed.
実施例1と同様の方法で厚み70μmのフィルムを作製し、ヘイズを測定した結果、34.5%であった。
A film having a thickness of 70 μm was prepared by the same method as in Example 1, and the haze was measured and found to be 34.5%.
[比較例2]
使用する有機溶剤を塩化メチレンからアセトンに変更し、(メタ)アクリル樹脂(A)のペレット、ポリビニルアセタール樹脂(B)のパウダーおよびアセトンをそれぞれ表1に記載の含有量に変更したこと以外は、実施例1と同じ方法でドープ作製を行った。24時間では溶解せず残存樹脂が目視で観察できる状態であった。 [Comparative Example 2]
Except that the organic solvent used was changed from methylene chloride to acetone, and the contents of (meth) acrylic resin (A) pellets, polyvinyl acetal resin (B) powder and acetone were changed to the contents shown in Table 1, respectively. Dope preparation was performed in the same manner as in Example 1. It did not dissolve in 24 hours and the residual resin was in a state where it could be visually observed.
使用する有機溶剤を塩化メチレンからアセトンに変更し、(メタ)アクリル樹脂(A)のペレット、ポリビニルアセタール樹脂(B)のパウダーおよびアセトンをそれぞれ表1に記載の含有量に変更したこと以外は、実施例1と同じ方法でドープ作製を行った。24時間では溶解せず残存樹脂が目視で観察できる状態であった。 [Comparative Example 2]
Except that the organic solvent used was changed from methylene chloride to acetone, and the contents of (meth) acrylic resin (A) pellets, polyvinyl acetal resin (B) powder and acetone were changed to the contents shown in Table 1, respectively. Dope preparation was performed in the same manner as in Example 1. It did not dissolve in 24 hours and the residual resin was in a state where it could be visually observed.
実施例1と同様の方法で厚み70μmのフィルムを作製し、ヘイズを測定した結果、40.5%であった。
A film having a thickness of 70 μm was prepared by the same method as in Example 1, and the haze was measured and found to be 40.5%.
Claims (13)
- (メタ)アクリル樹脂(A)と、ポリビニルアセタール樹脂(B)と、塩素系有機溶剤を含有する有機溶剤(C)とを含むフィルム製造用のドープ。 A dope for producing a film containing a (meth) acrylic resin (A), a polyvinyl acetal resin (B), and an organic solvent (C) containing a chlorine-based organic solvent.
- 前記ドープ100質量%に対して、前記有機溶剤(C)の含有量が30~97質量%である請求項1に記載のドープ。 The dope according to claim 1, wherein the content of the organic solvent (C) is 30 to 97% by mass with respect to 100% by mass of the dope.
- 前記有機溶剤(C)における、塩素系有機溶剤(S)と塩素系有機溶剤以外の他の有機溶剤(T)の質量比[S/T]が50/50~99/1である、請求項1または2に記載のドープ。 The claim that the mass ratio [S / T] of the chlorine-based organic solvent (S) and the organic solvent (T) other than the chlorine-based organic solvent in the organic solvent (C) is 50/50 to 99/1. The dope according to 1 or 2.
- 前記(メタ)アクリル樹脂(A)と前記ポリビニルアセタール樹脂(B)との質量比[(A)/(B)]が、98/2~50/50である請求項1~3のいずれか1項に記載のドープ。 Any one of claims 1 to 3 in which the mass ratio [(A) / (B)] of the (meth) acrylic resin (A) to the polyvinyl acetal resin (B) is 98/2 to 50/50. Dope according to section.
- 前記(メタ)アクリル樹脂(A)中のメタクリル酸メチル構造単位の含有量が、50質量%以上である請求項1~4のいずれか1項に記載のドープ。 The dope according to any one of claims 1 to 4, wherein the content of the methyl methacrylate structural unit in the (meth) acrylic resin (A) is 50% by mass or more.
- 前記ポリビニルアセタール樹脂(B)は、ポリビニルアルコール樹脂を炭素数3以下のアルデヒドと任意で炭素数4以上のアルデヒドとでアセタール化して得られる樹脂であり、かつ総アセタール化度が50~90モル%である請求項1~5のいずれか1項に記載のドープ。 The polyvinyl acetal resin (B) is a resin obtained by acetalizing a polyvinyl alcohol resin with an aldehyde having 3 or less carbon atoms and optionally an aldehyde having 4 or more carbon atoms, and has a total acetalization degree of 50 to 90 mol%. The dope according to any one of claims 1 to 5.
- 溶液流延法によるアクリル系樹脂フィルムの製造方法あって、請求項1~6のいずれか1項に記載のドープを支持体表面に流延した後、溶剤を蒸発させる工程を有する、フィルムの製造方法。 A method for producing an acrylic resin film by a solution casting method, which comprises a step of casting the dope according to any one of claims 1 to 6 on the surface of a support and then evaporating the solvent. Method.
- 請求項1~6のいずれか1項に記載のドープから形成されてなり、JIS 7136:2000に準拠して測定したヘイズ値が2%以下であるアクリル系樹脂フィルム。 An acrylic resin film formed from the dope according to any one of claims 1 to 6 and having a haze value of 2% or less measured in accordance with JIS 7136: 2000.
- 厚みが10~500μmである請求項8に記載のアクリル系樹脂フィルム。 The acrylic resin film according to claim 8, which has a thickness of 10 to 500 μm.
- 光学用フィルムである請求項8または9に記載のアクリル系樹脂フィルム。 The acrylic resin film according to claim 8 or 9, which is an optical film.
- 前記光学用フィルムが偏光子保護フィルムである請求項10に記載のアクリル系樹脂フィルム。 The acrylic resin film according to claim 10, wherein the optical film is a polarizer protective film.
- 請求項11に記載のアクリル系樹脂フィルムと偏光子とが積層された偏光板。 A polarizing plate in which the acrylic resin film according to claim 11 and a polarizer are laminated.
- 請求項12に記載の偏光板を含む、ディスプレイ装置。
A display device comprising the polarizing plate according to claim 12.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021520882A JP7428705B2 (en) | 2019-05-22 | 2020-05-22 | Dope and film for film production |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019096225 | 2019-05-22 | ||
JP2019-096225 | 2019-05-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020235687A1 true WO2020235687A1 (en) | 2020-11-26 |
Family
ID=73458849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/020420 WO2020235687A1 (en) | 2019-05-22 | 2020-05-22 | Dope for manufacturing film, and film |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7428705B2 (en) |
WO (1) | WO2020235687A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01315750A (en) * | 1988-06-15 | 1989-12-20 | Konica Corp | Photosensitive body |
JPH02210352A (en) * | 1988-01-29 | 1990-08-21 | Oriental Photo Ind Co Ltd | Photosensitive body, photosensitive material and image forming method |
JP2013028670A (en) * | 2011-07-27 | 2013-02-07 | Kuraray Co Ltd | Methacrylic thermoplastic resin composition |
JP2016094537A (en) * | 2014-11-14 | 2016-05-26 | 株式会社クラレ | Thermoplastic resin composition and manufacturing method therefor, molded body and thermoplastic resin film |
CN108587290A (en) * | 2018-01-24 | 2018-09-28 | 合肥尚强电气科技有限公司 | Wire enamel with stable performance, weather resistance and high insulating property and preparation method thereof |
-
2020
- 2020-05-22 JP JP2021520882A patent/JP7428705B2/en active Active
- 2020-05-22 WO PCT/JP2020/020420 patent/WO2020235687A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02210352A (en) * | 1988-01-29 | 1990-08-21 | Oriental Photo Ind Co Ltd | Photosensitive body, photosensitive material and image forming method |
JPH01315750A (en) * | 1988-06-15 | 1989-12-20 | Konica Corp | Photosensitive body |
JP2013028670A (en) * | 2011-07-27 | 2013-02-07 | Kuraray Co Ltd | Methacrylic thermoplastic resin composition |
JP2016094537A (en) * | 2014-11-14 | 2016-05-26 | 株式会社クラレ | Thermoplastic resin composition and manufacturing method therefor, molded body and thermoplastic resin film |
CN108587290A (en) * | 2018-01-24 | 2018-09-28 | 合肥尚强电气科技有限公司 | Wire enamel with stable performance, weather resistance and high insulating property and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020235687A1 (en) | 2020-11-26 |
JP7428705B2 (en) | 2024-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3088429B1 (en) | Modified polyvinyl alcohol and water-soluble film containing same | |
JP5940301B2 (en) | Polyvinyl acetal resin for thermoforming | |
JP4800269B2 (en) | Polyvinyl alcohol film for polarizing film, polarizing film, and polarizing plate | |
WO2015182567A1 (en) | Dispersion stabilizer for suspension polymerization, method for producing vinyl polymer, and vinyl chloride resin | |
ES2377389T3 (en) | Dispersion stabilizer for the suspension polymerization of a vinyl compound, and method for the production of a polymer of vinyl compound | |
JP6790837B2 (en) | Ethylene-vinyl alcohol-based copolymer and method for producing the ethylene-vinyl alcohol-based copolymer | |
TW201241077A (en) | Polyoxyalkylene modified vinyl acetal polymer and composition comprising the same | |
TW201920305A (en) | Dispersion stabilizer for suspension polymerization and method for producing vinyl polymer using same | |
CN113544163A (en) | Polyvinyl alcohol resin, method for producing polyvinyl alcohol resin, dispersant, and dispersant for suspension polymerization | |
TW201835119A (en) | Polyvinyl alcohol-based resin, dispersing agent, and dispersing agent for suspension polymerization | |
EP0495495B1 (en) | Process for producing ethylene-vinyl ester copolymers, process for producing ethylene-vinyl alcohol copolymers and process for producing shaped articles | |
JP6297984B2 (en) | Optical film | |
JP5667536B2 (en) | Acrylic thermoplastic resin composition | |
JP7428705B2 (en) | Dope and film for film production | |
JP5667535B2 (en) | Methacrylic thermoplastic resin composition | |
WO2020203660A1 (en) | Poly(vinyl alcohol)-based resin, method for producing poly(vinyl alcohol)-based resin, dispersant, and dispersant for suspension polymerization | |
JP6203038B2 (en) | Molded product and manufacturing method thereof | |
CN114981319A (en) | Polyvinyl alcohol resin, method for producing polyvinyl alcohol resin, dispersant, and dispersant for suspension polymerization | |
JP2661654B2 (en) | Method for producing ethylene-vinyl ester copolymer | |
EP3992214A1 (en) | Vinyl alcohol-based block copolymer and method for producing same | |
WO2018235532A1 (en) | Raw material film, stretched optical film manufacturing method, and stretched optical film | |
JP2916440B2 (en) | Method for producing molded article of ethylene-vinyl alcohol copolymer | |
JP2019066533A (en) | Raw material film for production of optical film and production method of optical film using the same | |
JP2001261745A (en) | Method for producing ethylene-vinyl alcohol copolymer | |
JP6705671B2 (en) | Vinyl chloride resin composition and vinyl chloride resin molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20810365 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021520882 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20810365 Country of ref document: EP Kind code of ref document: A1 |