WO2018235532A1 - Raw material film, stretched optical film manufacturing method, and stretched optical film - Google Patents

Raw material film, stretched optical film manufacturing method, and stretched optical film Download PDF

Info

Publication number
WO2018235532A1
WO2018235532A1 PCT/JP2018/020386 JP2018020386W WO2018235532A1 WO 2018235532 A1 WO2018235532 A1 WO 2018235532A1 JP 2018020386 W JP2018020386 W JP 2018020386W WO 2018235532 A1 WO2018235532 A1 WO 2018235532A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
mass
optical film
stretched optical
resin particles
Prior art date
Application number
PCT/JP2018/020386
Other languages
French (fr)
Japanese (ja)
Inventor
絵美 川崎
雅洋 川崎
亘 大橋
敦 稲富
孝徳 磯崎
久保 敬次
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN201880041581.XA priority Critical patent/CN110809725B/en
Priority to JP2019525274A priority patent/JP7093349B2/en
Priority to KR1020197038697A priority patent/KR102565518B1/en
Publication of WO2018235532A1 publication Critical patent/WO2018235532A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a raw film, a method for producing a stretched optical film, and a stretched optical film.
  • a polarizing plate having a light transmitting and shielding function is a basic component of a liquid crystal display (LCD) together with a liquid crystal that changes the polarization state of light.
  • LCD liquid crystal display
  • Many polarizing plates have a structure in which a protective film such as a cellulose triacetate (TAC) film is laminated on the surface of a polarizing film.
  • TAC cellulose triacetate
  • an iodine-based stretched film obtained by uniaxially stretching a vinyl alcohol polymer film (hereinafter sometimes referred to as "vinyl alcohol polymer” may be abbreviated as "PVA") is oriented Those in which dichroic dyes such as dyes (I 3 - and I 5 - etc.) and dichroic organic dyes are adsorbed are in the mainstream.
  • Such a polarizing film uniaxially stretches a PVA film containing a dichroic dye in advance, adsorbs a dichroic dye simultaneously with uniaxial stretching of the PVA film, or uniaxially stretches a PVA film Manufactured by, for example, adsorbing a dye.
  • LCDs are now used in a wide range of small devices such as calculators and watches, smartphones, notebook computers, LCD monitors, LCD color projectors, LCD TVs, car navigation systems, mobile phones, measuring instruments used indoors and outdoors ing.
  • mobile applications such as small notebook computers and mobile phones in particular, there has been an increasing demand for thinner polarizing plates.
  • the improvement of the durability is also required at the same time.
  • thinning of the polarizing film and the protective film can be mentioned.
  • a raw film PVA film
  • a thin original film is likely to be torn in the stretching direction in the drying step of producing a polarizing film, the step of laminating the obtained polarizing film and a protective film, and the like.
  • the polarizing film may tear in the stretching direction or may be finely cracked at the end face of the polarizing film during handling such as punching or cutting the polarizing film or the polarizing plate.
  • Patent Documents 1 and 2 As a technique for producing a thin polarizing film with a high yield, a method is known in which a thin PVA film is formed on a plastic film by a coating method, and the laminate is stretched and dried (see Patent Documents 1 and 2). In addition, in order to improve the handleability such as punching properties of the obtained polarizing film, a polarizing film is produced under specific conditions, and then a polarizing plate in which a urethane resin layer is laminated on at least one side of this polarizing film (Patent Document 3 A composition (see Patent Document 4) capable of forming a cured resin layer excellent in flexibility and flexibility is also proposed.
  • Patent Documents 1 and 2 have the following disadvantages. (1) Coating operation and subsequent drying operation are complicated. (2) Since the heat treatment for the insolubilizing treatment of the PVA film needs to be performed in the state of a laminate, the plastic film to be used is limited to one which can be stretched even after the heat treatment, resulting in an increase in cost. (3) In a laminate formed by forming a PVA film on a plastic film by a coating method, the adhesive strength between the plastic film and the PVA film is relatively high. For this reason, when such a laminate having high adhesive strength is stretched, appropriate neck-in of the PVA film is hindered, and it is difficult to obtain a polarizing film having excellent polarization performance.
  • Patent Documents 3 and 4 also have disadvantages such as an increase in cost due to an increase in the number of steps at the time of manufacturing a polarizing plate, a decrease in yield, and the like.
  • the present invention has been made based on the above circumstances, and the object of the present invention is to provide a raw film, a thin, tear-resistant stretched optical film, and a thin, tear-resistant drawn optical film that can be obtained relatively easily. And it is providing the manufacturing method of the stretched optical film which can obtain such a stretched optical film comparatively easily.
  • the present inventors have added resin particles having a relatively low glass transition temperature to the film, even when the thickness of the film is reduced.
  • the inventors have found that a stretched optical film which is not easily torn can be obtained, and further studies have been made based on these findings to complete the present invention.
  • stretching optical film provided with the process of extending
  • a raw film capable of relatively easily obtaining a thin, tear-resistant stretched optical film, a thin, tear-resistant stretched optical film, and such a stretched optical film can be obtained relatively easily.
  • the manufacturing method of a stretched optical film can be provided.
  • the raw film film which concerns on one Embodiment of this invention is a film used for manufacture of a stretched optical film. That is, the said raw film is a film used as the material of extending
  • a stretched optical film is obtained by stretching the raw film.
  • the raw film may be a single layer film or a multilayer film (laminate).
  • a form of a multilayer film the film etc. which have the PVA layer formed by the coating method etc. on the thermoplastic resin film can be mentioned, for example.
  • the raw film is preferably a single layer film from the viewpoint that the effects of the present invention are more remarkably exhibited, the complexity of laminating (coating etc.) operation, the cost of the thermoplastic resin film, and the like.
  • the upper limit of the average thickness of the raw film is 45 ⁇ m, preferably 40 ⁇ m, more preferably 35 ⁇ m, and still more preferably 30 ⁇ m.
  • a thin stretched optical film can be obtained because the average thickness of the raw film is equal to or less than the above upper limit.
  • the lower limit of the average thickness is preferably 1 ⁇ m, more preferably 3 ⁇ m, still more preferably 10 ⁇ m, and still more preferably 20 ⁇ m.
  • the tear resistance of the stretched optical film obtained can be improved more because the average thickness of the said original film is more than the said minimum.
  • PVA polyvinyl alcohol polymer
  • a main component means the component with the largest content on a mass basis (following, the same).
  • PVA is a polymer having a vinyl alcohol unit (—CH 2 —CH (OH) —) as a structural unit.
  • PVA may have vinyl ester units and other units in addition to vinyl alcohol units.
  • vinyl esters such as vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl versatate, vinyl laurate, vinyl stearate, vinyl benzoate, isopropenyl acetate and the like What is obtained by saponifying a polyvinyl ester obtained by polymerizing species or more can be used.
  • the polyvinyl ester is preferably one obtained using only one or two or more vinyl esters as a monomer, and more preferably one obtained using only one vinyl ester as a monomer. As long as the effects of the present invention are not significantly impaired, it may be a copolymer of one or more vinyl esters and other monomers copolymerizable therewith.
  • Examples of the other monomer copolymerizable with the above vinyl ester include ⁇ -olefins having 2 to 30 carbon atoms such as ethylene, propylene, 1-butene and isobutene; (Meth) acrylic acid or a salt thereof; Methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, (Meth) acrylic acid esters such as t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate; (Meth) acrylamide; N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N,
  • the polyvinyl ester can have a structural unit derived from one or more of the above monomers.
  • the upper limit of the proportion of the structural unit derived from the other monomer in the polyvinyl ester is preferably 15 mol%, more preferably 10 mol%, based on the number of moles of all structural units constituting the polyvinyl ester. 5 mol% is more preferable, and 1 mol% is still more preferable.
  • PVA those which have not been graft copolymerized can be preferably used. However, as long as the effects of the present invention are not significantly impaired, PVA may be modified with one or more graft copolymerizable monomers.
  • the graft copolymerization can be performed on at least one of a polyvinyl ester and PVA obtained by saponifying it.
  • examples of the graft copolymerizable monomer include unsaturated carboxylic acids or derivatives thereof; unsaturated sulfonic acids or derivatives thereof; and ⁇ -olefins having 2 to 30 carbon atoms.
  • the ratio of the structural unit derived from the monomer which can be graft-copolymerized in polyvinyl ester or PVA is 5 mol% or less based on the number-of-moles of all the structural units which comprise polyvinyl ester or PVA.
  • part of its hydroxy groups may be crosslinked or may not be crosslinked.
  • a part of the hydroxy group may be reacted with an aldehyde compound such as acetaldehyde or butyraldehyde to form an acetal structure, or not reacted with these compounds to form an acetal structure May be
  • the lower limit of the polymerization degree of PVA is preferably 1,000, more preferably 1,500, and still more preferably 2,000.
  • the upper limit of the degree of polymerization is preferably 10,000, more preferably 8,000, and still more preferably 5,000.
  • the lower limit of the degree of saponification of PVA is preferably 95 mol%, more preferably 98 mol%, still more preferably 99 mol%, particularly preferably 99.5 mol%, since the wet heat resistance of the stretched optical film obtained becomes good. preferable.
  • the upper limit of the degree of saponification may be substantially 100 mol%.
  • the degree of saponification of PVA is the ratio of the number of moles of vinyl alcohol units to the total number of moles of structural units (typically vinyl ester units) that can be converted to vinyl alcohol units by saponification and vinyl alcohol units (mol% Say). The degree of saponification can be measured according to the description of JIS K6726-1994.
  • the raw film contains resin particles having a glass transition temperature of 30 ° C. or less. By containing such resin particles, the raw film can obtain a stretched optical film which is thin and hardly tears. The reason why such effects occur is not clear, but when the cross section of the stretched optical film produced from the raw film was observed when the cross section was observed, it was dispersed in the film because the cross section became rough. It is presumed that the resin particles are less likely to be torn by suppressing the propagation of tears. In particular, when the glass transition temperature of the resin particles is 30 ° C. or less, that is, the general stretching treatment temperature at the time of producing a stretched optical film using a raw film, the resin particles are also stretched in the stretching step.
  • the PVA can be sufficiently oriented while maintaining the adhesion between the PVA and the resin particles. For this reason, it is assumed that the stretched optical film obtained from the raw film does not easily tear, and that optical properties such as polarization performance can be enhanced by adjusting the content of resin particles and the average particle diameter. Ru.
  • the resin particles are particles whose main component is a polymer (resin).
  • the lower limit of the content of the polymer in the resin particles is, for example, 50% by mass, preferably 80% by mass, and more preferably 95% by mass.
  • the resin particles may be formed substantially only of resin.
  • the upper limit of the glass transition temperature (Tg) of the resin particles is 30 ° C., preferably 25 ° C., more preferably 20 ° C., still more preferably 15 ° C. C. is even more preferred.
  • Tg glass transition temperature
  • the glass transition temperature is less than or equal to the above upper limit, a stretched optical film that is difficult to tear can be obtained.
  • optical characteristics, such as polarization performance can also be improved by making this glass transition temperature below the said upper limit, and adjusting content of resin particles, and an average particle diameter.
  • the lower limit of the glass transition temperature of the resin particles is not particularly limited, for example, -100 ° C. is preferable, -80 ° C. is more preferable, and -60 ° C. is more preferable.
  • the glass transition temperature of a resin particle is formed into a film using a resin particle, and is taken as a measured value by DSC (differential scanning calorimetry) performed on the obtained resin film.
  • DSC differential scanning calorimetry
  • the lower limit of the content of resin particles in the raw film is 1 part by mass, preferably 3 parts by mass, more preferably 5 parts by mass, and even more preferably 7 parts by mass with respect to 100 parts by mass of PVA.
  • the upper limit of the content is 50 parts by mass, preferably 30 parts by mass, more preferably 20 parts by mass, and still more preferably 15 parts by mass.
  • the lower limit of the average particle diameter of the resin particles in the raw film is preferably 1 nm, more preferably 5 nm, still more preferably 10 nm, still more preferably 20 nm, and still more preferably 30 nm.
  • the upper limit of the average particle size may be, for example, 500 nm, preferably 300 nm, more preferably 200 nm, and still more preferably 100 nm.
  • the average particle diameter of the resin particle in the said raw film be a measured value based on the TEM (transmission electron microscope) image of the film cut surface.
  • TEM transmission electron microscope
  • the sea-island structure is a structure in which a discontinuous part (island part) is mixed in a part (sea part) which appears continuously in a mixture consisting of two kinds of physical properties.
  • the color of the part that appears continuously is dark
  • the color of the part that appears discontinuous is light
  • the color of the part that appears continuously is light
  • the part that appears discontinuous The color becomes darker.
  • resin particles are observed as island portions.
  • the resin particles are mechanically extracted from the TEM image of the cut surface of the film using image analysis software, and the average value of the diameters of these resin particles is calculated.
  • the calculated value is taken as the average particle size of the resin particles.
  • the specific measuring method of the average particle diameter of resin particle is taken as the method as described in the Example.
  • the resin particles contain a polymer.
  • the polymer is not particularly limited as long as it has a glass transition temperature of 30 ° C. or less, and polyolefin, polyurethane, acrylic resin and the like can be mentioned, but acrylic resin is preferable.
  • An acrylic resin refers to a polymer containing a structural unit derived from (meth) acrylic acid ester.
  • (meth) acrylic ester Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate, etc.
  • (Meth) acrylic acid alkyl ester (Meth) acrylic esters having an alicyclic group such as dicyclopentanyl (meth) acrylate and isobornyl (meth) acrylate; Examples include aryl (meth) acrylates such as phenyl (meth) acrylate and the like.
  • the resin particles preferably include an acrylic resin containing a structural unit ((meth) acrylic acid alkyl ester unit) derived from a (meth) acrylic acid alkyl ester.
  • a structural unit ((meth) acrylic acid alkyl ester unit) derived from a (meth) acrylic acid alkyl ester.
  • the minimum of carbon number of the alkyl group which the (meth) acrylic acid alkyl ester has is 1, 2 is preferable, 3 is more preferable, and 4 is even more preferable.
  • the upper limit of the carbon number of this alkyl group is, for example, 10, 8 is preferable, 6 is more preferable, and 4 is more preferable.
  • it is an acrylic acid alkyl ester unit. That is, among the (meth) acrylic acid alkyl ester units, butyl acrylate units are most preferable.
  • Resin particles using an acrylic resin containing such (meth) acrylic acid alkyl ester units have a low glass transition temperature, and can further improve the tear resistance and optical properties. The reason for this is not clear, but it is speculated that the flexibility of the resin particle is increased and the resin particle is easily deformed in the drawing direction during the drawing process.
  • acrylic resins containing (meth) acrylic acid units (-CH 2 -CHCOOH- and -CH 2 -C (CH 3 ) COOH-) can also be suitably used. Resin particles using such a polymer can exhibit good dispersibility and the like in a PVA matrix.
  • block copolymers of (meth) acrylic acid units and (meth) acrylic acid alkyl ester units are preferable.
  • the acrylic resin is a block copolymer, any of a diblock copolymer, a triblock copolymer and the like may be used.
  • the resin particles may be particles formed of one type of polymer, or particles having a so-called core-shell type structure with different inner and outer materials may be used.
  • the material of the core preferably contains an acrylic resin containing (meth) acrylic acid alkyl ester units.
  • the material of the shell is preferably an acrylic resin containing an alicyclic group-containing (meth) acrylic acid ester unit or a (meth) acrylic acid unit.
  • the resin particles can be produced by a known method. Moreover, a resin particle may use a commercial item. Moreover, the method of making the said raw film film contain a resin particle is not specifically limited, either. For example, resin particles may be added to a PVA chip, or resin particles may be added to a film forming solution used for film formation.
  • the raw film can further contain a plasticizer.
  • a plasticizer include polyhydric alcohols, and specific examples include ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, trimethylolpropane and the like.
  • ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, trimethylolpropane and the like One or more of these plasticizers can be used. Among these, glycerin is preferable from the viewpoint of the effect of improving the stretchability.
  • a plasticizer in the original film As a minimum of content of a plasticizer in the original film, 2 mass parts is preferred to 100 mass parts of PVA, 3 mass parts is more preferred, 4 mass parts is still more preferred, and 6 mass parts is still more preferred. Stretchability is further improved by setting the content of the plasticizer to the above lower limit or more. On the other hand, as an upper limit of this content, 20 mass parts is preferred, 17 mass parts is more preferred, and 14 mass parts is still more preferred. By making content of a plasticizer below the said upper limit, it can suppress that a raw film becomes too soft, a plasticizer bleeds out on the surface, and a handling property falls.
  • the raw film may further include a filler, a processing stabilizer such as a copper compound, a weather resistant stabilizer, a colorant, an ultraviolet light absorber, a light stabilizer, an antioxidant, and charging.
  • a processing stabilizer such as a copper compound, a weather resistant stabilizer, a colorant, an ultraviolet light absorber, a light stabilizer, an antioxidant, and charging.
  • Other additives, such as a speed retarder can be added as appropriate.
  • an upper limit of content of additives other than PVA, a resin particle, and a plasticizer in the raw film concerned 1 mass% may be preferred, and 0.2 mass% may be more preferred.
  • the content of other additives exceeds the above upper limit, the tear strength and optical properties of the resulting stretched optical film may be affected.
  • the lower limit of the degree of swelling of the raw film is preferably 160%, more preferably 170%, and still more preferably 180%.
  • the degree of swelling is at least the above lower limit, it is possible to suppress the progress of crystallization extremely, and it is possible to stably stretch to a high magnification.
  • the upper limit of the degree of swelling is preferably 240%, more preferably 230%, and still more preferably 220%.
  • the degree of swelling of the raw film is the mass obtained by immersing the raw film in distilled water at 30 ° C for 15 minutes, and the raw film dried at 105 ° C for 16 hours after being immersed in distilled water at 30 ° C for 15 minutes. It means the percentage of the value obtained by dividing by the mass of the film.
  • the shape of the raw film is not particularly limited, but is preferably a long film because a stretched optical film can be produced continuously with high productivity.
  • the length of the long raw film is not particularly limited, and can be appropriately set depending on the application of the stretched optical film to be produced, for example, to be in the range of 5 m or more and 20,000 m or less. it can.
  • the width of the original film is not particularly limited, and the lower limit can be, for example, 50 cm. However, since a wide polarizing film is required in recent years, the lower limit is preferably 1 m, more preferably 2 m, and further 4 m. preferable.
  • the upper limit of the width of the raw film is not particularly limited, and may be, for example, 7 m. When the width is too wide, it tends to be difficult to uniformly stretch when producing a stretched optical film with a device that has been put into practical use.
  • the raw film can relatively easily produce a stretched optical film which is difficult to tear during production and handling. Therefore, it can be suitably used as a material of a stretched optical film such as a polarizing film or a retardation film.
  • the raw film is particularly preferably used as a raw film for producing a polarizing film because a polarizing film having good polarizing performance can be easily produced.
  • the method for producing the raw film of the present invention is not particularly limited, and a production method in which the thickness and width of the raw film after film formation can be made more uniform can be preferably employed.
  • one or more of the above-mentioned PVA and resin particles constituting the raw film, and, if necessary, a plasticizer, other additives, and a surfactant described later may be contained in the liquid medium. It can be obtained by forming a film using the dissolved film-forming solution. Moreover, it can manufacture also using the film forming undiluted
  • liquid medium examples include water, dimethylsulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, trimethylolpropane, ethylenediamine, diethylenetriamine and the like. It can be mentioned.
  • liquid media can be used alone or in combination of two or more. Among these, water is preferable from the viewpoint of small impact on the environment and recovery.
  • the volatilization fraction of the undiluted solution (content ratio of volatile components such as liquid medium in the undiluted solution to be removed by volatilization or evaporation during film deposition) varies depending on the film forming method, film forming conditions, etc.
  • the lower limit is preferably 50% by mass, more preferably 55% by mass, and still more preferably 60% by mass.
  • the volatilization fraction of the membrane-forming solution is at least the above lower limit, the viscosity of the membrane-forming solution does not become too high, and filtration and degassing are smoothly carried out at the time of preparation of the membrane-forming solution. The manufacture of the film is facilitated.
  • the upper limit of the volatile fraction is preferably 95% by mass, more preferably 90% by mass, and still more preferably 85% by mass.
  • the volatilization fraction of the membrane-forming solution is not more than the above-mentioned upper limit, the concentration of the membrane-forming solution does not become too low, and the industrial production of the original film becomes easy.
  • the membrane-forming solution preferably contains a surfactant.
  • a surfactant By including the surfactant, the film forming property is improved, generation of thickness unevenness of the raw film is suppressed, and peeling of the film from a metal roll or belt used for film formation becomes easy.
  • the raw film may contain a surfactant.
  • the type of surfactant is not particularly limited, but from the viewpoint of releasability from metal rolls and belts, anionic surfactants and nonionic surfactants are preferred.
  • the anionic surfactant is preferably, for example, a carboxylic acid type such as potassium laurate; a sulfuric acid ester type such as polyoxyethylene lauryl ether sulfate and octyl sulfate; and a sulfonic acid type such as dodecylbenzene sulfonate.
  • a carboxylic acid type such as potassium laurate
  • a sulfuric acid ester type such as polyoxyethylene lauryl ether sulfate and octyl sulfate
  • a sulfonic acid type such as dodecylbenzene sulfonate.
  • nonionic surfactants include alkyl ether types such as polyoxyethylene oleyl ether; alkyl phenyl ether types such as polyoxyethylene octyl phenyl ether; alkyl ester types such as polyoxyethylene laurate; polyoxyethylene lauryl amino ether Alkylamine type such as polyoxyethylene lauric acid amide; polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether; alkanolamide type such as lauric acid diethanolamide, oleic acid diethanolamide; polyoxyalkylene Preferred is an allyl phenyl ether type such as allyl phenyl ether.
  • surfactants can be used alone or in combination of two or more.
  • the lower limit of the content is preferably 0.01 parts by mass with respect to 100 parts by mass of PVA contained in the membrane-forming solution or the raw film, 0 .02 parts by mass is more preferable.
  • the content of the surfactant is the above lower limit or more, the film forming property and the releasability are further improved.
  • an upper limit of this content 0.5 mass part is preferred, 0.3 mass part is more preferred, and 0.1 mass part is still more preferred.
  • content of surfactant is below the said upper limit, it can suppress that a surfactant bleeds out on the surface of a raw film, blocking arises, and a handling property falls.
  • a film forming method at the time of forming an original film film using the film forming solution for example, a cast film forming method, an extrusion film forming method, a wet film forming method, a gel film forming method and the like can be mentioned. These film forming methods may be used alone or in combination of two or more. Among these film forming methods, the cast film forming method and the extrusion film forming method are preferable because a raw film having uniform thickness and width and good physical properties can be obtained. Drying and heat treatment can be performed on the formed raw film as required.
  • the heat treatment temperature is not limited to adjust suitably. If the heat treatment temperature is too high, discoloration or deterioration of the original film is observed. Therefore, as an upper limit of heat treatment temperature, 210 ° C is preferred, 180 ° C is more preferred, and 150 ° C is still more preferred. On the other hand, the lower limit of the heat treatment temperature is, for example, 60 ° C., preferably 90 ° C.
  • the stretched optical film according to an embodiment of the present invention is an optical film containing PVA oriented in a predetermined direction, such as a polarizing film or a retardation film.
  • the stretched optical film may be uniaxially stretched or biaxially stretched, but is preferably uniaxially stretched.
  • the stretched optical film uniaxially stretched can be suitably used as a polarizing film or the like.
  • the stretched optical film may be a monolayer film or a multilayer film, but is preferably a monolayer film.
  • the upper limit of the average thickness of the stretched optical film is 20 ⁇ m, preferably 18 ⁇ m, more preferably 16 ⁇ m, and still more preferably 14 ⁇ m.
  • the lower limit of the average thickness is preferably 5 ⁇ m, more preferably 8 ⁇ m, and still more preferably 10 ⁇ m.
  • the stretched optical film contains PVA as a main component and resin particles.
  • the upper limit of the glass transition temperature (Tg) of the resin particles contained in the stretched optical film is 30 ° C., preferably 25 ° C., more preferably 20 ° C. 15 ° C. is more preferred, and 10 ° C. is even more preferred.
  • Tg glass transition temperature
  • the stretched optical film is not easily torn and is excellent in handleability and the like.
  • optical characteristics, such as polarization performance can also be improved by making this glass transition temperature below the said upper limit, and adjusting content of resin particles, and an average particle diameter.
  • the lower limit of the glass transition temperature of the resin particles is not particularly limited, for example, -100 ° C.
  • this glass transition temperature is preferable, -80 ° C. is more preferable, and -60 ° C. is more preferable.
  • the glass transition temperature of the resin particle contained in the said stretched optical film was film-formed using the resin particle like the resin particle contained in a raw film, and it went with respect to this obtained resin film It is a measured value of DSC (differential scanning calorimetry).
  • the lower limit of the content of resin particles in the stretched optical film is 1 part by mass, preferably 3 parts by mass, more preferably 5 parts by mass, and still more preferably 7 parts by mass with respect to 100 parts by mass of PVA.
  • the upper limit of the content is 50 parts by mass, preferably 30 parts by mass, more preferably 20 parts by mass, and still more preferably 15 parts by mass.
  • the length in the stretching direction (diameter in the stretching direction) of the resin particles observed in a transmission electron microscope (TEM) image in a cut surface parallel to the stretching direction is perpendicular to the stretching direction It is preferable that the length is longer than the length in the normal direction (diameter in the direction perpendicular to the stretching direction). That is, it is preferable that the resin particle in the said extending
  • TEM transmission electron microscope
  • the stretched optical film is less likely to be torn, and that optical properties such as polarization performance can be enhanced by adjusting the content of resin particles and the average particle diameter.
  • such an elliptical resin particle may be formed by a resin particle deform
  • stretching optical film is an orientation direction of the crystal
  • the length A of the stretching direction X of the resin particle 2 (island portion) is stretched Preferably, it is longer than the length B in the direction perpendicular to the direction X.
  • the lower limit of the ratio (A / B) of the length A of the drawing direction X to the length B of the resin particle 2 in the direction perpendicular to the drawing direction X is preferably 1.2, more preferably 1.6. , 2.0 is more preferred.
  • the upper limit of this ratio (A / B) may be, for example, 3 or 2.6.
  • the lower limit of the length A in the stretching direction of the resin particles is preferably 1 nm, more preferably 10 nm, still more preferably 30 nm, still more preferably 50 nm, and still more preferably 70 nm.
  • the upper limit of the length A may be, for example, 800 nm, but 300 nm is preferable, 200 nm is more preferable, and 100 nm is more preferable.
  • the lower limit of the length B in the direction perpendicular to the stretching direction of the resin particles is preferably 1 nm, more preferably 10 nm, still more preferably 20 nm, and still more preferably 30 nm.
  • the upper limit of the length B may be, for example, 500 nm, but 200 nm is preferable, 100 nm is more preferable, and 50 nm is more preferable.
  • the length A and the length B are in the above-mentioned ranges, it is more difficult for tearing to occur, and optical properties such as polarization performance can be enhanced by adjusting the content of resin particles and the average particle diameter.
  • the length A in the stretching direction of the resin particles and the length B in the direction perpendicular to the stretching direction are measured by the following method.
  • the resin particles are mechanically extracted using image analysis software with respect to a TEM image of the film cut surface parallel to the stretching direction.
  • the average length in the long axis direction of the extracted resin particles is taken as length A
  • the average length in the short axis direction is taken as length B.
  • From the length A and the length B the ratio of lengths (A / B) is also determined.
  • Preferred forms of PVA and resin particles contained in the stretched optical film are the same as the PVA and resin particles contained in the above-described raw film.
  • the other components that may be contained in the stretched optical film are the same as the above-described raw film.
  • the stretched optical film is a polarizing film
  • the stretched optical film has a dichroic dye adsorbed on the front and back surfaces.
  • a dichroic dye an iodine based dye is common.
  • the lower limit of the degree of polarization when the transmittance is 44.0% may be, for example, 70% as the polarization performance, but it is preferably 99.0%. And 99.8% is more preferable, and 99.9% is more preferable.
  • the degree of polarization is less than the above lower limit, the contrast of the LCD may be lowered when used in a smartphone, a notebook computer, a liquid crystal television, a car navigation system, or the like.
  • this polarizing film is usually used as a polarizing plate by laminating a protective film which is optically transparent and has mechanical strength on both sides or one side thereof.
  • a protective film a cellulose triacetate (TAC) film, a cellulose acetate / butyrate (CAB) film, an acrylic film, a polyester film or the like is used.
  • TAC cellulose triacetate
  • CAB cellulose acetate / butyrate
  • an acrylic film a polyester film or the like
  • a polyester film or the like is used as an adhesive agent for bonding.
  • a PVA-type adhesive agent a PVA-type adhesive agent, an ultraviolet curable adhesive agent, etc.
  • a PVA-type adhesive agent is preferable.
  • a retardation film, a viewing angle improvement film, a brightness enhancement film, etc. may be further bonded to the polarizing plate obtained as described above.
  • the stretched optical film of this invention can also be used as said retardation film.
  • the polarizing plate can be used as a component of an LCD by bonding it to a glass substrate after being coated with an acrylic or other pressure-sensitive adhesive.
  • the stretched optical film according to an embodiment of the present invention can be obtained by the production method including the step of stretching the raw film described above. That is, the said stretched optical film can be manufactured by the method similar to the former except using the raw film mentioned above. That is, according to the manufacturing method, it is possible to relatively easily obtain a thin and tear-resistant stretched optical film without undergoing a special process.
  • stretching optical film is a polarizing film is demonstrated.
  • the raw film may be subjected to swelling treatment, dyeing treatment, uniaxial stretching treatment, and if necessary, crosslinking treatment, fixing treatment, washing treatment, drying.
  • the method include treatment and heat treatment.
  • the order of the treatments such as swelling treatment, dyeing treatment, crosslinking treatment, uniaxial stretching, and fixation treatment is not particularly limited, and two or more treatments may be performed simultaneously. Also, one or more of each treatment may be performed twice or more.
  • the swelling treatment can be carried out by immersing the raw film in water.
  • 20 ° C is preferred, 22 ° C is more preferred, and 25 ° C is still more preferred.
  • 40 ° C is preferred, 38 ° C is more preferred, and 35 ° C is still more preferred.
  • 0.1 minute is preferable, and 0.5 minute is more preferable.
  • 5 minutes are preferable and 3 minutes are more preferable.
  • the water at the time of immersing in water is not limited to a pure water, The aqueous solution which various components melt
  • the dyeing process can be carried out by contacting the original film with a dichroic dye.
  • a dichroic dye an iodine based dye is generally used.
  • staining process you may be any stage before uniaxial stretching processing, at the time of uniaxial stretching processing, and after uniaxial stretching processing.
  • the dyeing process is generally carried out by immersing the raw film as a dyeing bath in a solution containing iodine-potassium iodide (in particular, an aqueous solution).
  • the concentration of iodine in the dye bath is preferably 0.01% by mass or more and 0.5% by mass or less, and the concentration of potassium iodide is preferably 0.01% by mass or more and 10% by mass or less.
  • 20 degreeC is preferable and, as for the minimum of the temperature of a dyeing
  • 50 degreeC is preferable and, as for the upper limit of this temperature, 40 degreeC is more preferable.
  • the crosslinking treatment is preferably performed before the uniaxial stretching treatment.
  • the crosslinking treatment can be carried out by immersing the raw film in an aqueous solution containing a crosslinking agent.
  • a crosslinking agent 1 type (s) or 2 or more types of boron inorganic compounds, such as boric acid, borates, such as borax, can be used.
  • the lower limit of the concentration of the crosslinking agent in the aqueous solution containing the crosslinking agent is preferably 1% by mass, more preferably 2% by mass, and still more preferably 3% by mass.
  • the upper limit of the concentration is preferably 15% by mass, more preferably 7% by mass, and still more preferably 6% by mass.
  • concentration of the crosslinking agent is in the above range, sufficient stretchability can be maintained.
  • the aqueous solution containing the crosslinking agent may contain an auxiliary such as potassium iodide. 20 degreeC is preferable and, as for the minimum of the temperature of the aqueous solution containing a crosslinking agent, 25 degreeC is more preferable. On the other hand, 50 degreeC is preferable and, as for the upper limit of this temperature, 40 degreeC is more preferable. By setting the temperature within the above range, crosslinking can be efficiently performed.
  • the uniaxial stretching treatment may be performed by either a wet stretching method or a dry stretching method.
  • the wet stretching method it can be carried out in an aqueous solution of boric acid or in the above-mentioned dyeing bath or in a fixed treatment bath described later.
  • dry stretching uniaxial stretching may be performed at room temperature, or uniaxial stretching may be performed while heating, or uniaxial stretching in air using a raw film after water absorption. You may Among these, a wet stretching method is preferable, and uniaxial stretching in a boric acid aqueous solution is more preferable.
  • the lower limit of the boric acid concentration of the aqueous boric acid solution is preferably 0.5% by mass, more preferably 1.0% by mass, and still more preferably 1.5% by mass. On the other hand, 6.0 mass% is preferable, as for the upper limit of this boric acid concentration, 5.0 mass is more preferable, and 4.0 mass% is more preferable.
  • the boric acid aqueous solution may contain potassium iodide, and the concentration thereof is preferably 0.01% by mass or more and 10% by mass or less.
  • 30 degreeC is preferable, as for the minimum of the extending
  • the lower limit of the stretching temperature is set to 30 ° C. or higher, which is the upper limit of the glass transition temperature of the resin particles, the resin particles are favorably deformed so as to extend in the stretching direction at the time of stretching. This makes it possible to relatively easily obtain a stretched optical film which is difficult to be split and which is excellent in handleability.
  • the lower limit of the draw ratio in uniaxial stretching is preferably 5 times, more preferably 5.5 times, and still more preferably 6 times in terms of the polarization performance of the obtained polarizing film.
  • the upper limit in particular of a draw ratio is not restrict
  • the polarizing film it is preferable to carry out a fixing treatment after the uniaxial stretching treatment in order to strengthen the adsorption of the dichroic dye (iodine-based dye etc.) to the raw film.
  • a fixing process bath used for a fixing process the aqueous solution containing 1 type, or 2 or more types of boron inorganic compounds, such as a boric acid and borax, can be used.
  • an iodine compound or a metal compound may be added to the fixing treatment bath. 0.5 mass% is preferable and, as for the minimum of the density
  • the lower limit of the temperature of the fixed treatment bath is preferably 15 ° C.
  • 60 degreeC is preferable and, as for the upper limit of this temperature, 40 degreeC is more preferable.
  • the washing treatment is generally performed by immersing the raw film in water or the like.
  • water and the like used for the washing treatment contain an auxiliary agent such as potassium iodide from the viewpoint of improving the polarization performance.
  • the concentration of iodide such as potassium iodide is preferably 0.5% by mass or more and 10% by mass or less.
  • the lower limit of the temperature of water and the like used for the washing treatment is generally 5 ° C., preferably 10 ° C., and more preferably 15 ° C.
  • the upper limit of this temperature is generally 50 ° C., preferably 45 ° C., and more preferably 40 ° C. It is not preferable that the temperature of water or the like is too low from the economic point of view. On the other hand, if the temperature of water or the like is too high, the polarization performance may be degraded.
  • drying temperature As a minimum of drying temperature, 30 degreeC is preferable and 50 degreeC is more preferable. On the other hand, as an upper limit of drying temperature, 150 degreeC is preferable and 130 degreeC is more preferable. By drying at a temperature within the above range, it is easy to obtain a polarizing film having excellent dimensional stability.
  • the heat treatment is a treatment to further heat the polarizing film having a moisture content of 5% or less after the drying treatment to improve the dimensional stability of the polarizing film.
  • the conditions in particular of heat processing are not restrict
  • the heat treatment is performed at a temperature lower than 60 ° C., the dimensional stabilization effect by the heat treatment is insufficient.
  • the heat treatment is performed at a temperature higher than 150 ° C., yellowing may be intensely generated in the polarizing film.
  • the raw film, the stretched optical film, and the method for producing the stretched optical film of the present invention are not limited to the above embodiment.
  • a stretched optical film and a method for producing the same have been described focusing on the case where the stretched optical film is a polarizing film
  • the stretched optical film is not limited to a polarizing film.
  • a stretched optical film other than a polarizing film such as a retardation film is also within the scope of the present invention, and can be produced by a production method comprising the step of stretching the raw film of the present invention.
  • the manufacturing method of the retardation film as one Embodiment of this invention can be performed using a conventionally well-known method except extending
  • the cut surface was observed using a transmission electron microscope ("transmission electron microscope HT7000" manufactured by Hitachi High-Technologies Corporation) to obtain a TEM image.
  • the acceleration voltage was set to 100 kV
  • the emission current was set to 10 ⁇ A
  • the electron gun used a LaB6 filament.
  • the average particle diameter of the resin particles in the raw film was measured by the following method using the TEM image obtained by the above method.
  • a TEM image is opened using an image analysis software "Image-Pro Plus 7.0J" (manufactured by Media Cybernetics), then converted to an 8-bit scale by “conversion” and flattened by "filter processing” I did the processing.
  • set the contrast value to 80 in "Contrast Enhance”, select “Average Particle Size” on the measurement item setting page in "Count / Size”, and then automatically extract bright colored objects.
  • the resin particles were extracted, and the average particle diameter of the resin particles in the raw film was calculated.
  • the particle size smaller than 1/10 of the maximum diameter in the TEM image was removed as noise.
  • the dark particle is automatically extracted to calculate the average particle diameter of the resin particle in the raw film.
  • a TEM image is opened using an image analysis software "Image-Pro Plus 7.0J" (manufactured by Media Cybernetics), then converted to an 8-bit scale by “conversion” and flattened by "filter processing” I did the processing.
  • set the contrast value to 80 in “Contrast enhancement”, select “Elliptical major axis / minor axis ratio” on the measurement item setting page in "Count / Size”, and then automatically extract bright colored objects
  • the resin particles are extracted mechanically, and the length A (length in the stretching direction) of the resin particles in the polarizing film in the major axis direction and the length B in the minor axis direction (the direction perpendicular to the stretching direction) The lengths) and their length ratios (A / B) were calculated.
  • each length of the resin particle in the polarizing film was calculated by automatically extracting a dark-colored object.
  • the polarizing film is attached to a tensile test apparatus ("Autograph AGS-H" manufactured by Shimadzu Corporation), and the stretching direction of the polarizing film and the long side of a minus driver (contact area with polarizing film: 1 mm x 5 mm)
  • a flathead screwdriver was attached to the upper chuck so that was parallel, and the flathead screwdriver was pressed against the polarizing film at a speed of 1 mm / min. Then, the maximum load when the minus driver penetrated the polarizing film was taken as the piercing strength, and the piercing property was evaluated based on the following criteria.
  • a and B can be used without a problem in practical use, it was determined to be good, and C was determined to be defective.
  • C piercing strength less than 3 N
  • Ts1 and Ts2 were averaged using the following calculation formula (1) to obtain the transmittance Ts (%) of the polarizing film.
  • Ts (Ts1 + Ts2) / 2 (1)
  • the staining processing conditions were adjusted to prepare a sample so that the transmittance Ts was 44.0%, and the following measurement of the degree of polarization V was performed.
  • the mixture was added continuously at a rate of 1.0 ml / min. Thereafter, when it is confirmed that the conversion of each monomer calculated by the method to be described later exceeds 95% by mass, 5.6 g of the decyclopentadilated dicyclopentanyl methacrylate is 1.0 ml / min. Added continuously at speed. After the addition, it is confirmed that the monomer conversion rate calculated by the above method exceeds 95% by mass, the polymerization tank is heated to 100 ° C. for polymerization, and the residual monomer is detected by gas chromatography The polymerization was carried out until the limit was reached.
  • the emulsion solution (resin content 17 mass%) containing the resin particle A.
  • the polymerization time required for cooling from the polymerization start to 25 ° C. was 8 hours.
  • the obtained resin particles are core-shell type particles in which the core is n-butyl polyacrylate and the shell is dicyclopentanyl polymethacrylate. (Monomer conversion rate)
  • the coated polymer particles or the weight are dropped by dropping the emulsion (0.100 g) sampled every hour from the polymerization start into a solution of tetrahydrofuran (10.0 g, 0.1 mass% 4-tert-butyl catechol added).
  • a solution of coalesced particles in tetrahydrofuran was prepared. This solution was analyzed by gas chromatography (Shimadzu GC-14A, column UAWAX-20EX-1.0F), and the monomer conversion rate was determined from the detected amount of monomer and the addition amount of monomer at the time of initiation of the emulsion polymerization. (%) was calculated.
  • a methacrylic anhydride-n-butyl acrylate copolymer 1 was obtained. This was pulverized to 20 mm 3 or less and immersed in hot water at 80 ° C. for 24 hours to convert the acid anhydride to a carboxy group to obtain methacrylic acid-acrylic acid n-butyl-methacrylic acid triblock copolymer. . Thereafter, the copolymer was taken out by filtration, dried and dissolved in methanol so as to have a solid content concentration of 10% by mass. Thereafter, water of the same mass as methanol is added dropwise to obtain a dispersion solution, and the resulting solution is treated under reduced pressure at 60 ° C.
  • Resin particle C "AE986B” from E-tech (particles made of acrylic resin)
  • Resin particle D "UC-143" (made of acrylic resin) made by Siden Chemical Co., Ltd.
  • Resin particle E "QE-1042” from Starlight PMC
  • Resin particle F "KE-1062” from Starlight PMC
  • Resin particles G E-Tech's "N 827 (A) -1" (particles made of acrylic resin)
  • Example 1 (Production of raw film) PVA (saponified product of homopolymer of vinyl acetate, polymerization degree is 2,400, saponification degree is 99.95 mol%), glycerin (12 parts by mass with respect to 100 parts by mass of PVA) and surfactant (0.03 mass parts with respect to 100 mass parts of PVA) and water were mixed, and the PVA aqueous solution was obtained by melt
  • the original film was drawn at a stretching rate of 24 cm / min. Uniaxial stretching (second stage stretching) in the lengthwise direction up to 3.3 times the length of. Then, while immersing in a boric acid / potassium iodide aqueous solution at a temperature of 30 ° C. containing about 3% by weight of boric acid and 3% by weight of potassium iodide, at a drawing speed of 24 cm / min. The film was uniaxially stretched (third-stage stretching) in the lengthwise direction up to 3.6 times the original length.
  • Examples 2 to 6, Comparative Examples 1 to 4 Each original film and polarizing film of Examples 2 to 6 and Comparative Examples 1 to 4 in the same manner as Example 1 except that the type and amount of the resin particles added to the PVA aqueous solution are as shown in Table 1. I got In Comparative Example 1, no resin particles were added.
  • Comparative Example 5 A raw film and a polarizing film of Comparative Example 5 were obtained in the same manner as in Comparative Example 1 except that the average thickness of the raw film was 60 ⁇ m. The average thickness of the obtained polarizing film was 26 ⁇ m.
  • the glass transition temperature of the resin particles, the degree of swelling of the raw film, and the average particle size of the resin particles in the raw film were measured using the obtained raw films by the method described above. Further, using the obtained polarizing film, the length A (length in the stretching direction), the length B (length in the direction perpendicular to the stretching direction), and the length of the resin particles in the polarizing film The measurement of the power ratio (A / B) and the evaluation of the piercing property, cutting property, punching property, and polarization performance were performed. The results are shown in Table 1.
  • the polarizing films obtained in Examples 1 to 6 have the evaluations of piercing property, cutting property and punching property of A or B, and although thin, they are not easily torn, and they are easy to handle and produce. It turns out that it is excellent in the nature. In addition, it is understood that Examples 1 to 6 can be carried out without complicated steps, and the polarizing film can be relatively easily manufactured. Furthermore, in the polarizing films of Examples 1 to 4, it is understood that the polarization performance is particularly good.
  • the polarizing films obtained in Comparative Examples 1 to 4 have low evaluations of piercing property, cutting property and punching property and are easy to tear. Moreover, in the comparative example 5, although the obtained polarizing film had tear resistance, the thin polarizing film was not obtained.
  • Stretched optical film 2 Resin particles X: Stretching direction A: Stretching direction length B: Length in the direction perpendicular to the stretching direction
  • the raw film of the present invention can be suitably used as a material such as a polarizing film which is a constituent material of LCD.
  • stretching optical film can be used suitably as a polarizing film or its manufacturing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a raw material film with which a stretched optical film that is thin and not easily torn can be relatively easily obtained, the stretched optical film that is thin and not easily torn, and a stretched optical film manufacturing method by which this stretched optical film can be relatively easily obtained. The present invention is a raw material film for manufacturing a stretched optical film, the raw material film having an average thickness of 45 μm or less, and containing a vinyl alcohol-based polymer as a main component, and resin particles with a glass transition temperature of 30°C or lower, wherein the content of the resin particles relative to 100 parts by mass of the vinyl alcohol-based polymer is 1-50 parts by mass inclusive.

Description

原反フィルム、延伸光学フィルムの製造方法、及び延伸光学フィルムOriginal film, method of producing stretched optical film, and stretched optical film
 本発明は、原反フィルム、延伸光学フィルムの製造方法、及び延伸光学フィルムに関する。 The present invention relates to a raw film, a method for producing a stretched optical film, and a stretched optical film.
 光の透過及び遮蔽機能を有する偏光板は、光の偏光状態を変化させる液晶と共に液晶ディスプレイ(LCD)の基本的な構成要素である。多くの偏光板は、偏光フィルムの表面に三酢酸セルロース(TAC)フィルムなどの保護フィルムが貼り合わされた構造を有している。偏光板を構成する偏光フィルムとしては、ビニルアルコール系重合体フィルム(以下、「ビニルアルコール系重合体」を「PVA」と略記することがある)を一軸延伸して配向させた延伸フィルムにヨウ素系色素(I やI 等)や二色性有機染料といった二色性色素が吸着しているものが主流となっている。このような偏光フィルムは、二色性色素を予め含有させたPVAフィルムを一軸延伸したり、PVAフィルムの一軸延伸と同時に二色性色素を吸着させたり、PVAフィルムを一軸延伸した後に二色性色素を吸着させたりするなどして製造される。 A polarizing plate having a light transmitting and shielding function is a basic component of a liquid crystal display (LCD) together with a liquid crystal that changes the polarization state of light. Many polarizing plates have a structure in which a protective film such as a cellulose triacetate (TAC) film is laminated on the surface of a polarizing film. As a polarizing film constituting a polarizing plate, an iodine-based stretched film obtained by uniaxially stretching a vinyl alcohol polymer film (hereinafter sometimes referred to as "vinyl alcohol polymer" may be abbreviated as "PVA") is oriented Those in which dichroic dyes such as dyes (I 3 - and I 5 - etc.) and dichroic organic dyes are adsorbed are in the mainstream. Such a polarizing film uniaxially stretches a PVA film containing a dichroic dye in advance, adsorbs a dichroic dye simultaneously with uniaxial stretching of the PVA film, or uniaxially stretches a PVA film Manufactured by, for example, adsorbing a dye.
 LCDは、電卓及び腕時計などの小型機器、スマートフォン、ノートパソコン、液晶モニター、液晶カラープロジェクター、液晶テレビ、車載用ナビゲーションシステム、携帯電話、屋内外で用いられる計測機器などの広範囲において用いられるようになっている。近年、特に小型のノートパソコンや携帯電話などのモバイル用途への展開などに伴い、偏光板への薄型化の要求が強くなっている。また、携帯化により使用場所が広範囲に渡ることから、同時に耐久性の向上も求められている。 LCDs are now used in a wide range of small devices such as calculators and watches, smartphones, notebook computers, LCD monitors, LCD color projectors, LCD TVs, car navigation systems, mobile phones, measuring instruments used indoors and outdoors ing. In recent years, with the development of mobile applications such as small notebook computers and mobile phones in particular, there has been an increasing demand for thinner polarizing plates. In addition, since the use place is widely used by portability, the improvement of the durability is also required at the same time.
 偏光板を薄型化する手法の1つとして、偏光フィルムや保護フィルムを薄型化することが挙げられる。このためには、偏光フィルムの原料となる原反フィルム(PVAフィルム)を薄型化する必要がある。しかし、薄い原反フィルムは、偏光フィルムを製造する際の乾燥工程や、得られた偏光フィルムと保護フィルムとを貼り合わせる工程などで、延伸方向に裂けやすい。また、偏光フィルムが薄い場合、偏光フィルムや偏光板を打ち抜いたりカットしたりする際などの取り扱い時に、偏光フィルムが延伸方向に裂けたり、偏光フィルムの端面に微細なクラックが入りやすい。このため、薄い原反フィルムを用いた場合、偏光板やLCDの生産性や収率が低下し、コスト高につながりやすい。このように、原反フィルムや偏光フィルムの薄型化は、生産性や収率が低下し、コスト高につながりやすい。また、位相差フィルム等、偏光フィルム以外の延伸光学フィルムにおいても、薄型化が期待されているが、同様に裂け等が生じやすくなるという不都合を有する。 As one of the methods for thinning the polarizing plate, thinning of the polarizing film and the protective film can be mentioned. For this purpose, it is necessary to reduce the thickness of a raw film (PVA film) as a raw material of a polarizing film. However, a thin original film is likely to be torn in the stretching direction in the drying step of producing a polarizing film, the step of laminating the obtained polarizing film and a protective film, and the like. In addition, when the polarizing film is thin, the polarizing film may tear in the stretching direction or may be finely cracked at the end face of the polarizing film during handling such as punching or cutting the polarizing film or the polarizing plate. For this reason, when a thin raw film is used, the productivity and yield of the polarizing plate and the LCD are reduced, which tends to lead to high cost. As described above, the reduction in thickness of the raw film and the polarizing film tends to lower the productivity and yield, leading to an increase in cost. Moreover, although thickness reduction is anticipated also in extending | stretching optical films other than a polarizing film, such as retardation film, it has a disadvantage that it becomes easy to produce a tear etc. similarly.
 薄い偏光フィルムを収率良く製造する技術として、プラスチックフィルム上にコート法によって薄いPVA膜を形成し、その積層体を延伸及び乾燥する方法が知られている(特許文献1及び2参照)。また、得られる偏光フィルムの打ち抜き性などの取扱性を改善するために、特定の条件で偏光フィルムを製造した上で、この偏光フィルムの少なくとも片面にウレタン樹脂層を積層した偏光板(特許文献3参照)、及び柔軟性にすぐれた硬化樹脂層を形成することのできる組成物(特許文献4参照)も提案されている。 As a technique for producing a thin polarizing film with a high yield, a method is known in which a thin PVA film is formed on a plastic film by a coating method, and the laminate is stretched and dried (see Patent Documents 1 and 2). In addition, in order to improve the handleability such as punching properties of the obtained polarizing film, a polarizing film is produced under specific conditions, and then a polarizing plate in which a urethane resin layer is laminated on at least one side of this polarizing film (Patent Document 3 A composition (see Patent Document 4) capable of forming a cured resin layer excellent in flexibility and flexibility is also proposed.
特許第4804588号公報Patent No. 4804588 特許第4815544号公報Patent No. 4815544 特許第3315914号公報Patent No. 3315914 gazette 特開2014-115538号公報JP 2014-115538 A
 しかしながら、特許文献1及び2に記載されている方法には、以下のような不都合がある。
(1)コート作業やその後の乾燥作業が煩雑である。
(2)PVA膜の不溶化処理のための熱処理を積層体の状態で行う必要があるため、使用されるプラスチックフィルムが熱処理後も延伸可能なものに限定され、コスト高になる。
(3)プラスチックフィルム上にコート法によってPVA膜を形成してなる積層体においては、プラスチックフィルムとPVA膜との間の接着強度が比較的高い。このため、このような接着強度の高い積層体を延伸すると、PVA膜の適度なネックインが妨げられて、偏光性能に優れる偏光フィルムが得られにくい。
However, the methods described in Patent Documents 1 and 2 have the following disadvantages.
(1) Coating operation and subsequent drying operation are complicated.
(2) Since the heat treatment for the insolubilizing treatment of the PVA film needs to be performed in the state of a laminate, the plastic film to be used is limited to one which can be stretched even after the heat treatment, resulting in an increase in cost.
(3) In a laminate formed by forming a PVA film on a plastic film by a coating method, the adhesive strength between the plastic film and the PVA film is relatively high. For this reason, when such a laminate having high adhesive strength is stretched, appropriate neck-in of the PVA film is hindered, and it is difficult to obtain a polarizing film having excellent polarization performance.
 また、特許文献3及び4に記載された方法でも、偏光板製造時の工程が増加することによるコストの増加、歩留まりの低下等の不都合が生じる。 Further, the methods described in Patent Documents 3 and 4 also have disadvantages such as an increase in cost due to an increase in the number of steps at the time of manufacturing a polarizing plate, a decrease in yield, and the like.
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、薄型で裂けにくい延伸光学フィルムを比較的容易に得ることができる原反フィルム、薄型で裂けにくい延伸光学フィルム、及びこのような延伸光学フィルムを比較的容易に得ることができる延伸光学フィルムの製造方法を提供することである。 The present invention has been made based on the above circumstances, and the object of the present invention is to provide a raw film, a thin, tear-resistant stretched optical film, and a thin, tear-resistant drawn optical film that can be obtained relatively easily. And it is providing the manufacturing method of the stretched optical film which can obtain such a stretched optical film comparatively easily.
 本発明者らは上記の目的を達成すべく鋭意検討を重ねた結果、フィルムの厚さを薄くした場合であっても、フィルムに比較的低いガラス転移温度を有する樹脂粒子を添加しておくことで、裂けにくい延伸光学フィルムが得られることを見出し、これらの知見に基づいてさらに検討を重ねて本発明を完成させた。 As a result of intensive studies to achieve the above object, the present inventors have added resin particles having a relatively low glass transition temperature to the film, even when the thickness of the film is reduced. Thus, the inventors have found that a stretched optical film which is not easily torn can be obtained, and further studies have been made based on these findings to complete the present invention.
 すなわち、上記課題を解決するためになされた本発明は、以下の通りである。
[1]平均厚みが45μm以下であり、主成分であるビニルアルコール系重合体と、ガラス転移温度が30℃以下の樹脂粒子とを含有し、上記ビニルアルコール系重合体100質量部に対する上記樹脂粒子の含有量が、1質量部以上50質量部以下である延伸光学フィルム製造用の原反フィルム。
[2]上記樹脂粒子の平均粒径が、1nm以上300nm以下である[1]の原反フィルム。
[3][1]又は[2]の原反フィルムを延伸する工程を備える延伸光学フィルムの製造方法。
[4]平均厚みが20μm以下であり、主成分であるビニルアルコール系重合体と、ガラス転移温度が30℃以下の樹脂粒子とを含有し、上記ビニルアルコール系重合体100質量部に対する上記樹脂粒子の含有量が、1質量部以上50質量部以下である延伸光学フィルム。
[5]延伸方向に平行な切断面における透過型電子顕微鏡画像にて観測される上記樹脂粒子の上記延伸方向の長さが、上記延伸方向に垂直な方向の長さよりも長い[4]の延伸光学フィルム。
That is, the present invention made to solve the above problems is as follows.
[1] The resin particle having an average thickness of 45 μm or less and containing a vinyl alcohol polymer as a main component and a resin particle having a glass transition temperature of 30 ° C. or less, relative to 100 parts by mass of the vinyl alcohol polymer A raw film film for producing a stretched optical film, which has a content of 1 part by mass or more and 50 parts by mass or less.
[2] The raw film film of [1], wherein the average particle diameter of the resin particles is 1 nm or more and 300 nm or less.
The manufacturing method of the extending | stretching optical film provided with the process of extending | stretching the original film of [3] [1] or [2].
[4] The resin particles having an average thickness of 20 μm or less and containing a vinyl alcohol polymer as a main component and a resin particle having a glass transition temperature of 30 ° C. or less, relative to 100 parts by mass of the vinyl alcohol polymer A stretched optical film having a content of 1 parts by mass or more and 50 parts by mass or less.
[5] The drawing of [4], wherein the length of the resin particle in the drawing direction observed in a transmission electron microscope image in a cut surface parallel to the drawing direction is longer than the length in the direction perpendicular to the drawing direction Optical film.
 本発明によれば、薄型で裂けにくい延伸光学フィルムを比較的容易に得ることができる原反フィルム、薄型で裂けにくい延伸光学フィルム、及びこのような延伸光学フィルムを比較的容易に得ることができる延伸光学フィルムの製造方法を提供することができる。 According to the present invention, a raw film capable of relatively easily obtaining a thin, tear-resistant stretched optical film, a thin, tear-resistant stretched optical film, and such a stretched optical film can be obtained relatively easily. The manufacturing method of a stretched optical film can be provided.
本発明の一実施形態に係る延伸光学フィルムにおける延伸方向に平行な切断面を示す模式図である。It is a schematic diagram which shows the cut surface parallel to the extending | stretching direction in the extending | stretching optical film which concerns on one Embodiment of this invention.
<原反フィルム>
 本発明の一実施形態に係る原反フィルムは、延伸光学フィルムの製造に用いられるフィルムである。すなわち、当該原反フィルムは、偏光フィルムや位相差フィルム等の延伸光学フィルムの材料となるフィルムである。当該原反フィルムを延伸することにより、延伸光学フィルムが得られる。
<Raw film>
The raw film film which concerns on one Embodiment of this invention is a film used for manufacture of a stretched optical film. That is, the said raw film is a film used as the material of extending | stretching optical films, such as a polarizing film and retardation film. A stretched optical film is obtained by stretching the raw film.
 当該原反フィルムは、単層フィルムであってもよく、多層フィルム(積層体)であってもよい。多層フィルムの形態としては、例えば熱可塑性樹脂フィルム上にコート法などによって形成されたPVA層を有するフィルムなどを挙げることができる。本発明の効果がより一層顕著に奏される点、積層(コート等)作業の煩雑さ、熱可塑性樹脂フィルムのコストなどの観点から、当該原反フィルムは単層フィルムであることが好ましい。 The raw film may be a single layer film or a multilayer film (laminate). As a form of a multilayer film, the film etc. which have the PVA layer formed by the coating method etc. on the thermoplastic resin film can be mentioned, for example. The raw film is preferably a single layer film from the viewpoint that the effects of the present invention are more remarkably exhibited, the complexity of laminating (coating etc.) operation, the cost of the thermoplastic resin film, and the like.
(平均厚み)
 当該原反フィルムの平均厚みの上限は、45μmであり、40μmが好ましく、35μmがより好ましく、30μmがさらに好ましい。当該原反フィルムの平均厚みが上記上限以下であることで、薄型の延伸光学フィルムを得ることができる。一方、この平均厚みの下限としては、1μmが好ましく、3μmがより好ましく、10μmがさらに好ましく、20μmがよりさらに好ましい。当該原反フィルムの平均厚みが上記下限以上であることで、得られる延伸光学フィルムの耐裂け性をより高めることができる。
(Average thickness)
The upper limit of the average thickness of the raw film is 45 μm, preferably 40 μm, more preferably 35 μm, and still more preferably 30 μm. A thin stretched optical film can be obtained because the average thickness of the raw film is equal to or less than the above upper limit. On the other hand, the lower limit of the average thickness is preferably 1 μm, more preferably 3 μm, still more preferably 10 μm, and still more preferably 20 μm. The tear resistance of the stretched optical film obtained can be improved more because the average thickness of the said original film is more than the said minimum.
(PVA)
 当該原反フィルムは、主成分としてPVA(ビニルアルコール系重合体)を含有する。なお、主成分とは、質量基準で最も含有量の大きい成分をいう(以下、同様である。)。PVAは、ビニルアルコール単位(-CH-CH(OH)-)を構造単位として有する重合体である。PVAは、ビニルアルコール単位の他、ビニルエステル単位やその他の単位を有していてもよい。
(PVA)
The raw film contains PVA (vinyl alcohol polymer) as a main component. In addition, a main component means the component with the largest content on a mass basis (following, the same). PVA is a polymer having a vinyl alcohol unit (—CH 2 —CH (OH) —) as a structural unit. PVA may have vinyl ester units and other units in addition to vinyl alcohol units.
 PVAとしては、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、酢酸イソプロペニル等のビニルエステルの1種又は2種以上を重合して得られるポリビニルエステルをけん化することにより得られるものを使用することができる。上記のビニルエステルの中でも、PVAの製造の容易性、入手の容易性、コスト等の点から、分子中にビニルオキシカルボニル基(HC=CH-O-CO-)を有する化合物が好ましく、酢酸ビニルがより好ましい。 As PVA, one or two kinds of vinyl esters such as vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl versatate, vinyl laurate, vinyl stearate, vinyl benzoate, isopropenyl acetate and the like What is obtained by saponifying a polyvinyl ester obtained by polymerizing species or more can be used. Among the above vinyl esters, compounds having a vinyloxycarbonyl group (H 2 C = CH—O—CO—) in the molecule are preferable in terms of easiness of production of PVA, easiness of availability, cost and the like, Vinyl acetate is more preferred.
 上記ポリビニルエステルは、単量体として1種又は2種以上のビニルエステルのみを用いて得られたものが好ましく、単量体として1種のビニルエステルのみを用いて得られたものがより好ましいが、本発明の効果を大きく損なわない範囲内であれば、1種又は2種以上のビニルエステルと、これと共重合可能な他の単量体との共重合体であってもよい。 The polyvinyl ester is preferably one obtained using only one or two or more vinyl esters as a monomer, and more preferably one obtained using only one vinyl ester as a monomer. As long as the effects of the present invention are not significantly impaired, it may be a copolymer of one or more vinyl esters and other monomers copolymerizable therewith.
 上記ビニルエステルと共重合可能な他の単量体としては、例えば
エチレン、プロピレン、1-ブテン、イソブテン等の炭素数2~30のα-オレフィン;
(メタ)アクリル酸又はその塩;
(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルへキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル等の(メタ)アクリル酸エステル;
(メタ)アクリルアミド;
N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、(メタ)アクリルアミドプロパンスルホン酸又はその塩、(メタ)アクリルアミドプロピルジメチルアミン又はその塩、N-メチロール(メタ)アクリルアミド又はその誘導体等の(メタ)アクリルアミド誘導体;
N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドン等のN-ビニルアミド;
メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル;
(メタ)アクリロニトリル等のシアン化ビニル;
塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル;酢酸アリル、塩化アリル等のアリル化合物;
マレイン酸、又はその塩、エステル若しくは酸無水物;
イタコン酸、又はその塩、エステル若しくは酸無水物;
ビニルトリメトキシシラン等のビニルシリル化合物;
不飽和スルホン酸又はその塩などを挙げることができる。
Examples of the other monomer copolymerizable with the above vinyl ester include α-olefins having 2 to 30 carbon atoms such as ethylene, propylene, 1-butene and isobutene;
(Meth) acrylic acid or a salt thereof;
Methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, (Meth) acrylic acid esters such as t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate;
(Meth) acrylamide;
N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N, N- dimethyl (meth) acrylamide, diacetone (meth) acrylamide, (meth) acrylamidopropane sulfonic acid or a salt thereof, (meth) acrylamido propyl dimethyl amine Or (meth) acrylamide derivatives such as salts thereof, N-methylol (meth) acrylamide or derivatives thereof;
N-vinylamides such as N-vinylformamide, N-vinylacetamide, N-vinylpyrrolidone and the like;
Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether and the like;
Vinyl cyanides such as (meth) acrylonitrile;
Vinyl halides such as vinyl chloride, vinylidene chloride, vinyl fluoride and vinylidene fluoride; allyl compounds such as allyl acetate and allyl chloride;
Maleic acid, or a salt, ester or acid anhydride thereof;
Itaconic acid, or a salt, ester or acid anhydride thereof;
Vinyl silyl compounds such as vinyl trimethoxysilane;
Unsaturated sulfonic acid or its salt etc. can be mentioned.
 上記ポリビニルエステルは、上記単量体の1種又は2種以上に由来する構造単位を有することができる。 The polyvinyl ester can have a structural unit derived from one or more of the above monomers.
 上記ポリビニルエステルに占める上記他の単量体に由来する構造単位の割合の上限は、ポリビニルエステルを構成する全構造単位のモル数に基づいて、15モル%が好ましく、10モル%がより好ましく、5モル%がさらに好ましく、1モル%がよりさらに好ましい。 The upper limit of the proportion of the structural unit derived from the other monomer in the polyvinyl ester is preferably 15 mol%, more preferably 10 mol%, based on the number of moles of all structural units constituting the polyvinyl ester. 5 mol% is more preferable, and 1 mol% is still more preferable.
 PVAとしてはグラフト共重合がされていないものを好ましく使用することができる。但し、本発明の効果を大きく損なわない範囲内であれば、PVAは1種又は2種以上のグラフト共重合可能な単量体によって変性されたものであってもよい。グラフト共重合は、ポリビニルエステル及びそれをけん化することにより得られるPVAのうちの少なくとも一方に対して行うことができる。上記グラフト共重合可能な単量体としては、例えば、不飽和カルボン酸又はその誘導体;不飽和スルホン酸又はその誘導体;炭素数2~30のα-オレフィンなどが挙げられる。ポリビニルエステル又はPVAにおけるグラフト共重合可能な単量体に由来する構造単位の割合は、ポリビニルエステル又はPVAを構成する全構造単位のモル数に基づいて、5モル%以下であることが好ましい。 As PVA, those which have not been graft copolymerized can be preferably used. However, as long as the effects of the present invention are not significantly impaired, PVA may be modified with one or more graft copolymerizable monomers. The graft copolymerization can be performed on at least one of a polyvinyl ester and PVA obtained by saponifying it. Examples of the graft copolymerizable monomer include unsaturated carboxylic acids or derivatives thereof; unsaturated sulfonic acids or derivatives thereof; and α-olefins having 2 to 30 carbon atoms. It is preferable that the ratio of the structural unit derived from the monomer which can be graft-copolymerized in polyvinyl ester or PVA is 5 mol% or less based on the number-of-moles of all the structural units which comprise polyvinyl ester or PVA.
 上記PVAはそのヒドロキシ基の一部が架橋されていてもよいし、架橋されていなくてもよい。また、上記PVAはそのヒドロキシ基の一部がアセトアルデヒド、ブチルアルデヒド等のアルデヒド化合物などと反応してアセタール構造を形成していてもよいし、これらの化合物と反応せずアセタール構造を形成していなくてもよい。 In the above PVA, part of its hydroxy groups may be crosslinked or may not be crosslinked. In the above PVA, a part of the hydroxy group may be reacted with an aldehyde compound such as acetaldehyde or butyraldehyde to form an acetal structure, or not reacted with these compounds to form an acetal structure May be
 上記PVAの重合度の下限としては、1,000が好ましく、1,500がより好ましく、2,000がさらに好ましい。PVAの重合度が上記下限以上であることにより、得られる延伸光学フィルムの光学特性を向上させることができる。一方、この重合度の上限としては、10,000が好ましく、8,000がより好ましく、5,000がさらに好ましい。PVAの重合度を上記上限以下とすることで、PVAの製造コストの上昇や製膜時における不良発生を抑制することができる。なお、PVAの重合度は、JIS K6726-1994の記載に準じて測定した平均重合度を意味する。 The lower limit of the polymerization degree of PVA is preferably 1,000, more preferably 1,500, and still more preferably 2,000. By the polymerization degree of PVA being more than the said lower limit, the optical characteristic of the stretched optical film obtained can be improved. On the other hand, the upper limit of the degree of polymerization is preferably 10,000, more preferably 8,000, and still more preferably 5,000. By making the polymerization degree of PVA below the said upper limit, the raise of the manufacturing cost of PVA and the defect generation | occurrence | production at the time of film forming can be suppressed. The degree of polymerization of PVA means an average degree of polymerization measured according to the description of JIS K 6726-1994.
 PVAのけん化度の下限は、得られる延伸光学フィルムの耐湿熱性が良好になることから、95モル%が好ましく、98モル%がより好ましく、99モル%がさらに好ましく、99.5モル%が特に好ましい。一方、このけん化度の上限は、実質的に100モル%であってよい。なお、PVAのけん化度とは、けん化によってビニルアルコール単位に変換され得る構造単位(典型的にはビニルエステル単位)とビニルアルコール単位との合計モル数に対するビニルアルコール単位のモル数の割合(モル%)をいう。けん化度は、JIS K6726-1994の記載に準じて測定することができる。 The lower limit of the degree of saponification of PVA is preferably 95 mol%, more preferably 98 mol%, still more preferably 99 mol%, particularly preferably 99.5 mol%, since the wet heat resistance of the stretched optical film obtained becomes good. preferable. On the other hand, the upper limit of the degree of saponification may be substantially 100 mol%. The degree of saponification of PVA is the ratio of the number of moles of vinyl alcohol units to the total number of moles of structural units (typically vinyl ester units) that can be converted to vinyl alcohol units by saponification and vinyl alcohol units (mol% Say). The degree of saponification can be measured according to the description of JIS K6726-1994.
 当該原反フィルムにおけるPVAの含有量の下限としては、60質量%が好ましく、70質量%がより好ましく、75質量%がさらに好ましい。PVAの含有量を上記下限以上とすることで、得られる延伸光学フィルムにおいて、偏光性能等の光学特性がより良好に発現される。一方、この含有量の上限としては、95質量%が好ましく、90質量%がより好ましい場合があり、85質量%がさらに好ましい場合もある。PVAの含有量を上記上限以下とすることで、得られる延伸光学フィルムがより裂けにくくなる。 As a minimum of content of PVA in the original film concerned, 60 mass% is preferred, 70 mass% is more preferred, and 75 mass% is still more preferred. By making content of PVA more than the said lower limit, in the stretched optical film obtained, optical characteristics, such as polarization performance, are expressed more favorably. On the other hand, 95 mass% is preferable as an upper limit of this content, 90 mass% may be more preferable, and 85 mass% may be further preferable. By making content of PVA below the said upper limit, the obtained stretched optical film becomes more difficult to tear.
(樹脂粒子)
 当該原反フィルムは、ガラス転移温度が30℃以下の樹脂粒子を含有する。当該原反フィルムは、このような樹脂粒子を含有することにより、薄型でありながら裂けにくい延伸光学フィルムを得ることができる。このような効果が生じる理由は定かでは無いが、当該原反フィルムから製造した延伸光学フィルムが裂けた場所の断面を観察したところ、断面が荒くなっていたことから、フィルム中に分散している樹脂粒子が裂けの伝播を抑制することで、裂けにくくなったものと推測される。特に、樹脂粒子のガラス転移温度が30℃以下、すなわち原反フィルムを用いて延伸光学フィルムを製造する際の一般的な延伸処理温度以下であることで、延伸工程の際に樹脂粒子も延伸方向に変形できる。これによって、PVAと樹脂粒子との密着性を保ったまま、PVAが十分に配向することができる。このため、当該原反フィルムから得られる延伸光学フィルムは、裂けが生じにくくなり、樹脂粒子の含有量や平均粒径を調整することで、偏光性能等の光学特性も高めることができると推測される。
(Resin particles)
The raw film contains resin particles having a glass transition temperature of 30 ° C. or less. By containing such resin particles, the raw film can obtain a stretched optical film which is thin and hardly tears. The reason why such effects occur is not clear, but when the cross section of the stretched optical film produced from the raw film was observed when the cross section was observed, it was dispersed in the film because the cross section became rough. It is presumed that the resin particles are less likely to be torn by suppressing the propagation of tears. In particular, when the glass transition temperature of the resin particles is 30 ° C. or less, that is, the general stretching treatment temperature at the time of producing a stretched optical film using a raw film, the resin particles are also stretched in the stretching step. Can be transformed into Thereby, the PVA can be sufficiently oriented while maintaining the adhesion between the PVA and the resin particles. For this reason, it is assumed that the stretched optical film obtained from the raw film does not easily tear, and that optical properties such as polarization performance can be enhanced by adjusting the content of resin particles and the average particle diameter. Ru.
 樹脂粒子とは、主成分が重合体(樹脂)である粒子である。樹脂粒子中の重合体の含有量の下限としては、例えば50質量%であり、80質量%が好ましく、95質量%がより好ましい。樹脂粒子は、実質的に樹脂のみから形成されていてよい。 The resin particles are particles whose main component is a polymer (resin). The lower limit of the content of the polymer in the resin particles is, for example, 50% by mass, preferably 80% by mass, and more preferably 95% by mass. The resin particles may be formed substantially only of resin.
 樹脂粒子のガラス転移温度(Tg)(樹脂粒子の主成分である重合体のTg)の上限は、30℃であるが、25℃が好ましく、20℃がより好ましく、15℃がさらに好ましく、10℃がよりさらに好ましい。このガラス転移温度が上記上限以下であることで、裂けにくい延伸光学フィルムを得ることができる。また、このガラス転移温度を上記上限以下とし、かつ樹脂粒子の含有量や平均粒径を調整することで、偏光性能等の光学特性も高めることができる。 The upper limit of the glass transition temperature (Tg) of the resin particles (Tg of the polymer which is the main component of the resin particles) is 30 ° C., preferably 25 ° C., more preferably 20 ° C., still more preferably 15 ° C. C. is even more preferred. When the glass transition temperature is less than or equal to the above upper limit, a stretched optical film that is difficult to tear can be obtained. Moreover, optical characteristics, such as polarization performance, can also be improved by making this glass transition temperature below the said upper limit, and adjusting content of resin particles, and an average particle diameter.
 樹脂粒子のガラス転移温度の下限は特に制限はないが、例えば-100℃が好ましく、-80℃がより好ましく、-60℃がさらに好ましい。このガラス転移温度を上記下限以上とすることで、原反フィルムを作製する製膜工程における加温の際の樹脂粒子の凝集が抑制され、得られる原反フィルム及び延伸光学フィルムの白濁を抑制することができる。また、得られる延伸光学フィルムの光学特性を高めることができる。 Although the lower limit of the glass transition temperature of the resin particles is not particularly limited, for example, -100 ° C. is preferable, -80 ° C. is more preferable, and -60 ° C. is more preferable. By making this glass transition temperature more than the said minimum, aggregation of the resin particle at the time of the heating in the film forming process which produces an original film is suppressed, and the white turbidity of the obtained original film and a stretched optical film is suppressed. be able to. Moreover, the optical characteristic of the stretched optical film obtained can be improved.
 なお、樹脂粒子のガラス転移温度は、樹脂粒子を用いて製膜し、この得られた樹脂膜に対して行ったDSC(示差走査熱量測定)による測定値とする。樹脂粒子が、異なる複数の樹脂を含む場合、最も低いガラス転移温度を有する樹脂のガラス転移温度を、この樹脂粒子のガラス転移温度とする。 In addition, the glass transition temperature of a resin particle is formed into a film using a resin particle, and is taken as a measured value by DSC (differential scanning calorimetry) performed on the obtained resin film. When resin particles contain a plurality of different resins, the glass transition temperature of the resin having the lowest glass transition temperature is taken as the glass transition temperature of the resin particles.
 当該原反フィルムにおける樹脂粒子の含有量の下限は、PVA100質量部に対して、1質量部であり、3質量部が好ましく、5質量部がより好ましく、7質量部がさらに好ましいこともある。樹脂粒子の含有量を上記下限以上とすることで、得られる延伸光学フィルムを裂けにくくすることができ、取扱性などが向上する。一方、この含有量の上限は、50質量部であり、30質量部が好ましく、20質量部がより好ましく、15質量部がさらに好ましい。樹脂粒子の含有量を上記上限以下とすることで、得られる延伸光学フィルムの光透過性を良好な状態とすることができ、また、偏光性能等の光学特性を高めることができる。 The lower limit of the content of resin particles in the raw film is 1 part by mass, preferably 3 parts by mass, more preferably 5 parts by mass, and even more preferably 7 parts by mass with respect to 100 parts by mass of PVA. By making content of a resin particle more than the said lower limit, the obtained stretched optical film can be made hard to tear and handling property etc. improve. On the other hand, the upper limit of the content is 50 parts by mass, preferably 30 parts by mass, more preferably 20 parts by mass, and still more preferably 15 parts by mass. By making content of a resin particle below into the said upper limit, the light transmittance of the stretched optical film obtained can be made into a favorable state, and optical characteristics, such as polarization performance, can be improved.
 当該原反フィルム中の樹脂粒子の平均粒径の下限としては、1nmが好ましく、5nmがより好ましく、10nmがさらに好ましく、20nmがよりさらに好ましく、30nmがよりさらに好ましい。樹脂粒子の平均粒径を上記下限以上とすることで、得られる延伸光学フィルムがより裂けにくくなり、取扱性などが向上する。一方、この平均粒径の上限としては、例えば500nmであってもよいが、300nmが好ましく、200nmがより好ましく、100nmがさらに好ましい。樹脂粒子の平均粒径を上記上限以下、特に300nm以下とすることで、得られる延伸光学フィルムの光透過性を良好な状態とすることができ、偏光性能等の光学特性を高めることができる。 The lower limit of the average particle diameter of the resin particles in the raw film is preferably 1 nm, more preferably 5 nm, still more preferably 10 nm, still more preferably 20 nm, and still more preferably 30 nm. By setting the average particle diameter of the resin particles to the above lower limit or more, the stretched optical film obtained is more difficult to be torn, and the handling property and the like are improved. On the other hand, the upper limit of the average particle size may be, for example, 500 nm, preferably 300 nm, more preferably 200 nm, and still more preferably 100 nm. By setting the average particle diameter of the resin particles to the upper limit or less, particularly 300 nm or less, the light transmittance of the obtained stretched optical film can be brought into a good state, and optical characteristics such as polarization performance can be enhanced.
 なお、当該原反フィルム中の樹脂粒子の平均粒径は、フィルム切断面のTEM(透過型電子顕微鏡)画像に基づく測定値とする。当該原反フィルムの面内方向に対して垂直な切断面のTEMを測定することで、樹脂粒子の有無や分散状態が、海島構造として観察できる。なお、海島構造とは、2種類の物性からなる混合物において、連続的に見える部分(海部)の中に、不連続な部分(島部)が混在している状態の構造のことである。樹脂粒子とPVAとの染色性が異なるため、連続的に見える部分の色が濃く、不連続に見える部分の色が淡くなったり、連続的に見える部分の色が淡く、不連続に見える部分の色が濃くなったりする。このTEM画像においては、樹脂粒子が島部となって観測される。フィルム切断面のTEM画像に対して、画像解析ソフトを用い、機械的に樹脂粒子を抽出し、これらの樹脂粒子の径の平均値を算出する。この算出された値を樹脂粒子の平均粒径とする。樹脂粒子の平均粒径の具体的な測定方法は、実施例に記載の方法とする。 In addition, let the average particle diameter of the resin particle in the said raw film be a measured value based on the TEM (transmission electron microscope) image of the film cut surface. By measuring the TEM of the cut surface perpendicular to the in-plane direction of the raw film, the presence or absence of the resin particles and the dispersed state can be observed as a sea-island structure. The sea-island structure is a structure in which a discontinuous part (island part) is mixed in a part (sea part) which appears continuously in a mixture consisting of two kinds of physical properties. Because the dyeability of the resin particle and PVA is different, the color of the part that appears continuously is dark, the color of the part that appears discontinuous is light, the color of the part that appears continuously is light, and the part that appears discontinuous The color becomes darker. In the TEM image, resin particles are observed as island portions. The resin particles are mechanically extracted from the TEM image of the cut surface of the film using image analysis software, and the average value of the diameters of these resin particles is calculated. The calculated value is taken as the average particle size of the resin particles. The specific measuring method of the average particle diameter of resin particle is taken as the method as described in the Example.
 樹脂粒子は、重合体を含有する。この重合体としては、ガラス転移温度が30℃以下のものであれば特に限定されず、ポリオレフィン、ポリウレタン、アクリル樹脂等を挙げることができるが、アクリル樹脂が好ましい。アクリル樹脂とは、(メタ)アクリル酸エステルに由来する構造単位を含む重合体をいう。 The resin particles contain a polymer. The polymer is not particularly limited as long as it has a glass transition temperature of 30 ° C. or less, and polyolefin, polyurethane, acrylic resin and the like can be mentioned, but acrylic resin is preferable. An acrylic resin refers to a polymer containing a structural unit derived from (meth) acrylic acid ester.
 (メタ)アクリルエステルとしては、
(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸へキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル等の(メタ)アクリル酸アルキルエステル;
(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸イソボルニル等の脂環式基を有する(メタ)アクリル酸エステル;
(メタ)アクリル酸フェニル等の(メタ)アクリル酸アリールエステル等を挙げることができる。
As (meth) acrylic ester,
Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate, etc. (Meth) acrylic acid alkyl ester;
(Meth) acrylic esters having an alicyclic group such as dicyclopentanyl (meth) acrylate and isobornyl (meth) acrylate;
Examples include aryl (meth) acrylates such as phenyl (meth) acrylate and the like.
 樹脂粒子は、アクリル樹脂の中でも、(メタ)アクリル酸アルキルエステルに由来する構造単位((メタ)アクリル酸アルキルエステル単位)を含むアクリル樹脂を含むことが好ましい。上記(メタ)アクリル酸アルキルエステルが有するアルキル基の炭素数の下限は1であるが、2が好ましく、3がより好ましく、4がさらに好ましい。一方、このアルキル基の炭素数の上限としては、例えば10であり、8が好ましく、6がより好ましく、4がさらに好ましい。また、アクリル酸アルキルエステル単位であることも好ましい。すなわち、(メタ)アクリル酸アルキルエステル単位の中でも、アクリル酸ブチル単位が最も好ましい。このような(メタ)アクリル酸アルキルエステル単位を含むアクリル樹脂を用いた樹脂粒子は、ガラス転移点が低く、裂けにくさ及び光学特性をより高めることができる。この理由は定かでは無いが、樹脂粒子の柔軟性が高まり、延伸処理の際に樹脂粒子が延伸方向に変形しやすくなることなどが推測される。 Among the acrylic resins, the resin particles preferably include an acrylic resin containing a structural unit ((meth) acrylic acid alkyl ester unit) derived from a (meth) acrylic acid alkyl ester. Although the minimum of carbon number of the alkyl group which the (meth) acrylic acid alkyl ester has is 1, 2 is preferable, 3 is more preferable, and 4 is even more preferable. On the other hand, the upper limit of the carbon number of this alkyl group is, for example, 10, 8 is preferable, 6 is more preferable, and 4 is more preferable. It is also preferable that it is an acrylic acid alkyl ester unit. That is, among the (meth) acrylic acid alkyl ester units, butyl acrylate units are most preferable. Resin particles using an acrylic resin containing such (meth) acrylic acid alkyl ester units have a low glass transition temperature, and can further improve the tear resistance and optical properties. The reason for this is not clear, but it is speculated that the flexibility of the resin particle is increased and the resin particle is easily deformed in the drawing direction during the drawing process.
 また、アクリル樹脂としては、(メタ)アクリル酸単位(-CH-CHCOOH-及び-CH-C(CH)COOH-)を含むアクリル樹脂も好適に用いることができる。このような重合体を用いた樹脂粒子は、PVAマトリックス中で良好な分散性等を発揮することができる。この場合、例えば(メタ)アクリル酸単位と(メタ)アクリル酸アルキルエステル単位とのブロック共重合体が好ましい。なお、アクリル樹脂がブロック共重合体である場合、ジブロック共重合体、トリブロック共重合体等のいずれであってもよい。 Further, as the acrylic resin, acrylic resins containing (meth) acrylic acid units (-CH 2 -CHCOOH- and -CH 2 -C (CH 3 ) COOH-) can also be suitably used. Resin particles using such a polymer can exhibit good dispersibility and the like in a PVA matrix. In this case, for example, block copolymers of (meth) acrylic acid units and (meth) acrylic acid alkyl ester units are preferable. When the acrylic resin is a block copolymer, any of a diblock copolymer, a triblock copolymer and the like may be used.
 樹脂粒子は、一種の重合体から形成される粒子を用いてもよく、内側と外側の材質が異なる、いわゆるコアシェル型の構造を有する粒子を用いてもよい。コアシェル型の粒子を用いる場合、コアの材料が、(メタ)アクリル酸アルキルエステル単位を含むアクリル樹脂を含むことが好ましい。また、コアシェル型の粒子を用いる場合、シェルの材料が、脂環式基含有(メタ)アクリル酸エステル単位や、(メタ)アクリル酸単位を含むアクリル樹脂であることが好ましい。 The resin particles may be particles formed of one type of polymer, or particles having a so-called core-shell type structure with different inner and outer materials may be used. When core-shell type particles are used, the material of the core preferably contains an acrylic resin containing (meth) acrylic acid alkyl ester units. When core-shell type particles are used, the material of the shell is preferably an acrylic resin containing an alicyclic group-containing (meth) acrylic acid ester unit or a (meth) acrylic acid unit.
 樹脂粒子は、公知の方法により製造することができる。また、樹脂粒子は、市販品を用いてもよい。また、当該原反フィルムに樹脂粒子を含有させる方法も、特に限定されない。例えばPVAチップに樹脂粒子を添加してもよいし、製膜時に用いる製膜原液に樹脂粒子を添加しても良い。 The resin particles can be produced by a known method. Moreover, a resin particle may use a commercial item. Moreover, the method of making the said raw film film contain a resin particle is not specifically limited, either. For example, resin particles may be added to a PVA chip, or resin particles may be added to a film forming solution used for film formation.
(可塑剤)
 当該原反フィルムは、可塑剤をさらに含むことができる。当該原反フィルムが可塑剤を含むことにより、取扱性や延伸性の向上等を図ることができる。好ましい可塑剤としては、多価アルコールが挙げられ、具体例としては、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、ジグリセリン、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパンなどが挙げられる。これらの可塑剤は、1種又は2種以上を用いることができる。これらの中でも、延伸性の向上効果の点からグリセリンが好ましい。
(Plasticizer)
The raw film can further contain a plasticizer. When the said raw film film contains a plasticizer, the handling property, the improvement of a stretchability, etc. can be aimed at. Preferred plasticizers include polyhydric alcohols, and specific examples include ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, trimethylolpropane and the like. One or more of these plasticizers can be used. Among these, glycerin is preferable from the viewpoint of the effect of improving the stretchability.
 当該原反フィルムにおける可塑剤の含有量の下限としては、PVA100質量部に対して2質量部が好ましく、3質量部がより好ましく、4質量部がさらに好ましく、6質量部がよりさらに好ましい。可塑剤の含有量を上記下限以上とすることで、延伸性がより向上する。一方、この含有量の上限としては、20質量部が好ましく、17質量部がより好ましく、14質量部がさらに好ましい。可塑剤の含有量を上記上限以下とすることで、原反フィルムが柔軟になりすぎたり、表面に可塑剤がブリードアウトしたりして、取扱性が低下するのを抑制することができる。 As a minimum of content of a plasticizer in the original film, 2 mass parts is preferred to 100 mass parts of PVA, 3 mass parts is more preferred, 4 mass parts is still more preferred, and 6 mass parts is still more preferred. Stretchability is further improved by setting the content of the plasticizer to the above lower limit or more. On the other hand, as an upper limit of this content, 20 mass parts is preferred, 17 mass parts is more preferred, and 14 mass parts is still more preferred. By making content of a plasticizer below the said upper limit, it can suppress that a raw film becomes too soft, a plasticizer bleeds out on the surface, and a handling property falls.
(他の添加剤等)
 当該原反フィルムには、PVA、樹脂粒子及び可塑剤以外に、さらに充填剤、銅化合物などの加工安定剤、耐候性安定剤、着色剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、難燃剤、他の熱可塑性樹脂、潤滑剤、香料、消泡剤、消臭剤、増量剤、剥離剤、離型剤、補強剤、架橋剤、防かび剤、防腐剤、結晶化速度遅延剤などの他の添加剤を、必要に応じて適宜配合できる。
(Other additives etc.)
In addition to PVA, resin particles, and plasticizers, the raw film may further include a filler, a processing stabilizer such as a copper compound, a weather resistant stabilizer, a colorant, an ultraviolet light absorber, a light stabilizer, an antioxidant, and charging. Inhibitors, flame retardants, other thermoplastic resins, lubricants, fragrances, antifoams, deodorants, extenders, release agents, mold release agents, reinforcing agents, crosslinking agents, fungicides, preservatives, crystallization Other additives, such as a speed retarder, can be added as appropriate.
 但し、当該原反フィルムにおけるPVA、樹脂粒子及び可塑剤以外の他の添加剤の含有量の上限としては、1質量%が好ましいことがあり、0.2質量%がより好ましいことがある。他の添加剤の含有量が上記上限を超える場合、得られる延伸光学フィルムの裂け強度や光学特性に影響を与える場合がある。 However, as an upper limit of content of additives other than PVA, a resin particle, and a plasticizer in the raw film concerned, 1 mass% may be preferred, and 0.2 mass% may be more preferred. When the content of other additives exceeds the above upper limit, the tear strength and optical properties of the resulting stretched optical film may be affected.
 当該原反フィルムの膨潤度の下限としては、160%が好ましく、170%がより好ましく、180%がさらに好ましい。膨潤度が上記下限以上であることにより、極度に結晶化が進行するのを抑制することができ、安定して高倍率まで延伸することができる。一方、この膨潤度の上限としては、240%が好ましく、230%がより好ましく、220%がさらに好ましい。膨潤度が上記上限以下であることにより、延伸時の溶解が抑制され、より高温の条件下でも延伸することが可能となる。なお、原反フィルムの膨潤度とは、原反フィルムを30℃の蒸留水中に15分間浸漬した際の質量を、30℃の蒸留水に15分間浸漬した後に105℃で16時間乾燥した原反フィルムの質量で除して得られる値の百分率を意味する。 The lower limit of the degree of swelling of the raw film is preferably 160%, more preferably 170%, and still more preferably 180%. When the degree of swelling is at least the above lower limit, it is possible to suppress the progress of crystallization extremely, and it is possible to stably stretch to a high magnification. On the other hand, the upper limit of the degree of swelling is preferably 240%, more preferably 230%, and still more preferably 220%. When the degree of swelling is not more than the above upper limit, dissolution at the time of stretching is suppressed, and it becomes possible to stretch even under higher temperature conditions. The degree of swelling of the raw film is the mass obtained by immersing the raw film in distilled water at 30 ° C for 15 minutes, and the raw film dried at 105 ° C for 16 hours after being immersed in distilled water at 30 ° C for 15 minutes. It means the percentage of the value obtained by dividing by the mass of the film.
 当該原反フィルムの形状に特に制限はないが、延伸光学フィルムを生産性良く連続的に製造することができることから、長尺のフィルムであることが好ましい。当該長尺の原反フィルムの長さは特に制限されず、製造される延伸光学フィルムの用途などに応じて適宜設定することができ、例えば、5m以上20,000m以下の範囲内にすることができる。当該原反フィルムの幅に特に制限はなく、例えば下限を50cmとすることができるが、近年幅広の偏光フィルムが求められていることから、下限は1mが好ましく、2mがより好ましく、4mがさらに好ましい。当該原反フィルムの幅の上限に特に制限はないが、例えば7mとすることができる。幅があまりに広すぎると、実用化されている装置で延伸光学フィルムを製造する場合に、均一に延伸することが困難になる傾向がある。 The shape of the raw film is not particularly limited, but is preferably a long film because a stretched optical film can be produced continuously with high productivity. The length of the long raw film is not particularly limited, and can be appropriately set depending on the application of the stretched optical film to be produced, for example, to be in the range of 5 m or more and 20,000 m or less. it can. The width of the original film is not particularly limited, and the lower limit can be, for example, 50 cm. However, since a wide polarizing film is required in recent years, the lower limit is preferably 1 m, more preferably 2 m, and further 4 m. preferable. The upper limit of the width of the raw film is not particularly limited, and may be, for example, 7 m. When the width is too wide, it tends to be difficult to uniformly stretch when producing a stretched optical film with a device that has been put into practical use.
 当該原反フィルムは、製造時や取り扱い時に裂けにくい延伸光学フィルムを比較的容易に製造できる。従って、偏光フィルムや位相差フィルム等の延伸光学フィルムの材料として好適に用いることができる。なかでも、当該原反フィルムは、良好な偏光性能を有する偏光フィルムを容易に製造することができることから、偏光フィルムを製造するための原反フィルムとして用いることが特に好ましい。 The raw film can relatively easily produce a stretched optical film which is difficult to tear during production and handling. Therefore, it can be suitably used as a material of a stretched optical film such as a polarizing film or a retardation film. Among them, the raw film is particularly preferably used as a raw film for producing a polarizing film because a polarizing film having good polarizing performance can be easily produced.
(原反フィルムの製造方法)
 本発明の原反フィルムの製造方法は特に限定されず、製膜後の原反フィルムの厚み及び幅がより均一になる製造方法を好ましく採用することができる。例えば、原反フィルムを構成する上記PVA及び樹脂粒子、並びに必要に応じてさらに、可塑剤、その他の添加剤、及び後述する界面活性剤等のうちの1種又は2種以上が液体媒体中に溶解した製膜原液を用いて、製膜することにより得ることができる。また、必要に応じて、PVAを溶融した製膜原液を用いても製造することができる。製膜原液において、樹脂粒子は均一に混合されていることが好ましい。また、製膜原液が、可塑剤、その他の添加剤及び界面活性剤の少なくとも1種を含有する場合には、それらの成分が均一に混合されていることが好ましい。
(Production method of raw film)
The method for producing the raw film of the present invention is not particularly limited, and a production method in which the thickness and width of the raw film after film formation can be made more uniform can be preferably employed. For example, one or more of the above-mentioned PVA and resin particles constituting the raw film, and, if necessary, a plasticizer, other additives, and a surfactant described later may be contained in the liquid medium. It can be obtained by forming a film using the dissolved film-forming solution. Moreover, it can manufacture also using the film forming undiluted | stock solution which melt | dissolved PVA as needed. In the membrane-forming solution, the resin particles are preferably uniformly mixed. Moreover, when a film forming undiluted | stock solution contains at least 1 sort (s) of a plasticizer, another additive, and surfactant, it is preferable that those components are mixed uniformly.
 上記液体媒体としては、例えば水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパン、エチレンジアミン、ジエチレントリアミンなどを挙げることができる。これらの液体媒体は、1種又は2種以上を使用することができる。これらの中でも、環境に与える負荷が小さいことや回収性の点から水が好ましい。 Examples of the liquid medium include water, dimethylsulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, trimethylolpropane, ethylenediamine, diethylenetriamine and the like. It can be mentioned. These liquid media can be used alone or in combination of two or more. Among these, water is preferable from the viewpoint of small impact on the environment and recovery.
 製膜原液の揮発分率(製膜原液中における、製膜時に揮発や蒸発によって除去される液体媒体などの揮発性成分の含有割合)は、製膜方法、製膜条件などによっても異なるが、一般的には、下限として50質量%が好ましく、55質量%がより好ましく、60質量%がさらに好ましい。製膜原液の揮発分率が上記下限以上であることにより、製膜原液の粘度が高くなり過ぎず、製膜原液調製時のろ過や脱泡が円滑に行われ、異物や欠点の少ない原反フィルムの製造が容易になる。一方、この揮発分率の上限としては、95質量%が好ましく、90質量%がより好ましく、85質量%がさらに好ましい。製膜原液の揮発分率が上記上限以下であることにより、製膜原液の濃度が低くなり過ぎず、工業的な原反フィルムの製造が容易になる。 The volatilization fraction of the undiluted solution (content ratio of volatile components such as liquid medium in the undiluted solution to be removed by volatilization or evaporation during film deposition) varies depending on the film forming method, film forming conditions, etc. In general, the lower limit is preferably 50% by mass, more preferably 55% by mass, and still more preferably 60% by mass. When the volatilization fraction of the membrane-forming solution is at least the above lower limit, the viscosity of the membrane-forming solution does not become too high, and filtration and degassing are smoothly carried out at the time of preparation of the membrane-forming solution. The manufacture of the film is facilitated. On the other hand, the upper limit of the volatile fraction is preferably 95% by mass, more preferably 90% by mass, and still more preferably 85% by mass. When the volatilization fraction of the membrane-forming solution is not more than the above-mentioned upper limit, the concentration of the membrane-forming solution does not become too low, and the industrial production of the original film becomes easy.
 製膜原液は界面活性剤を含むことが好ましい。界面活性剤を含むことにより、製膜性が向上して原反フィルムの厚み斑の発生が抑制されると共に、製膜に使用する金属ロールやベルトからのフィルムの剥離が容易になる。界面活性剤を含む製膜原液から原反フィルムを製造した場合には、当該原反フィルム中には界面活性剤が含有され得る。上記界面活性剤の種類は特に限定されないが、金属ロールやベルトからの剥離性の観点などから、アニオン性界面活性剤及びノニオン性界面活性剤が好ましい。 The membrane-forming solution preferably contains a surfactant. By including the surfactant, the film forming property is improved, generation of thickness unevenness of the raw film is suppressed, and peeling of the film from a metal roll or belt used for film formation becomes easy. When a raw film is produced from a film-forming stock solution containing a surfactant, the raw film may contain a surfactant. The type of surfactant is not particularly limited, but from the viewpoint of releasability from metal rolls and belts, anionic surfactants and nonionic surfactants are preferred.
 アニオン性界面活性剤としては、例えばラウリン酸カリウム等のカルボン酸型;ポリオキシエチレンラウリルエーテル硫酸塩、オクチルサルフェート等の硫酸エステル型;ドデシルベンゼンスルホネート等のスルホン酸型等が好ましい。 The anionic surfactant is preferably, for example, a carboxylic acid type such as potassium laurate; a sulfuric acid ester type such as polyoxyethylene lauryl ether sulfate and octyl sulfate; and a sulfonic acid type such as dodecylbenzene sulfonate.
 ノニオン性界面活性剤としては、例えばポリオキシエチレンオレイルエーテル等のアルキルエーテル型;ポリオキシエチレンオクチルフェニルエーテル等のアルキルフェニルエーテル型;ポリオキシエチレンラウレート等のアルキルエステル型;ポリオキシエチレンラウリルアミノエーテル等のアルキルアミン型;ポリオキシエチレンラウリン酸アミド等のアルキルアミド型;ポリオキシエチレンポリオキシプロピレンエーテル等のポリプロピレングリコールエーテル型;ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド等のアルカノールアミド型;ポリオキシアルキレンアリルフェニルエーテル等のアリルフェニルエーテル型などが好ましい。 Examples of nonionic surfactants include alkyl ether types such as polyoxyethylene oleyl ether; alkyl phenyl ether types such as polyoxyethylene octyl phenyl ether; alkyl ester types such as polyoxyethylene laurate; polyoxyethylene lauryl amino ether Alkylamine type such as polyoxyethylene lauric acid amide; polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether; alkanolamide type such as lauric acid diethanolamide, oleic acid diethanolamide; polyoxyalkylene Preferred is an allyl phenyl ether type such as allyl phenyl ether.
 これらの界面活性剤は、1種を単独で又は2種以上を組み合わせて使用することができる。 These surfactants can be used alone or in combination of two or more.
 製膜原液又は得られる原反フィルムが界面活性剤を含む場合、その含有量の下限は、製膜原液又は原反フィルムに含まれるPVA100質量部に対して、0.01質量部が好ましく、0.02質量部がより好ましい。界面活性剤の含有量が上記下限以上であることにより、製膜性及び剥離性がより向上する。一方、この含有量の上限としては、0.5質量部が好ましく、0.3質量部がより好ましく、0.1質量部がさらに好ましい。界面活性剤の含有量が上記上限以下であることにより、界面活性剤が原反フィルムの表面にブリードアウトしてブロッキングが生じて取り扱い性が低下することを抑制することができる。 When the membrane-forming solution or the resulting raw film contains a surfactant, the lower limit of the content is preferably 0.01 parts by mass with respect to 100 parts by mass of PVA contained in the membrane-forming solution or the raw film, 0 .02 parts by mass is more preferable. When the content of the surfactant is the above lower limit or more, the film forming property and the releasability are further improved. On the other hand, as an upper limit of this content, 0.5 mass part is preferred, 0.3 mass part is more preferred, and 0.1 mass part is still more preferred. When content of surfactant is below the said upper limit, it can suppress that a surfactant bleeds out on the surface of a raw film, blocking arises, and a handling property falls.
 上記製膜原液を用いて原反フィルムを製膜する際の製膜方法としては、例えばキャスト製膜法、押出製膜法、湿式製膜法、ゲル製膜法などが挙げられる。これらの製膜方法は1種のみを採用しても2種以上を組み合わせて採用してもよい。これらの製膜方法の中でもキャスト製膜法及び押出製膜法が、厚み及び幅が均一で物性の良好な原反フィルムが得られることから好ましい。製膜された原反フィルムには必要に応じて乾燥や熱処理を行うことができる。 As a film forming method at the time of forming an original film film using the film forming solution, for example, a cast film forming method, an extrusion film forming method, a wet film forming method, a gel film forming method and the like can be mentioned. These film forming methods may be used alone or in combination of two or more. Among these film forming methods, the cast film forming method and the extrusion film forming method are preferable because a raw film having uniform thickness and width and good physical properties can be obtained. Drying and heat treatment can be performed on the formed raw film as required.
 熱処理温度に特に制限はなく、適宜調整すればよい。熱処理温度は、あまりに高いと原反フィルムの変色や劣化がみられる。従って、熱処理温度の上限としては、210℃が好ましく、180℃がより好ましく、150℃がさらに好ましい。一方、熱処理温度の下限としては、例えば60℃であり、90℃が好ましい。 There is no restriction | limiting in particular in the heat processing temperature, What is necessary is just to adjust suitably. If the heat treatment temperature is too high, discoloration or deterioration of the original film is observed. Therefore, as an upper limit of heat treatment temperature, 210 ° C is preferred, 180 ° C is more preferred, and 150 ° C is still more preferred. On the other hand, the lower limit of the heat treatment temperature is, for example, 60 ° C., preferably 90 ° C.
 熱処理時間に特に制限はなく、適宜調整すればよいが、原反フィルムを効率よく製造する観点から、上限としては、30分が好ましく、15分がより好ましい。一方、この下限としては、例えば1分が好ましく、3分がより好ましい。 There is no restriction | limiting in particular in heat processing time, Although it may adjust suitably, As a viewpoint which manufactures an original film efficiently, as an upper limit, 30 minutes are preferable and 15 minutes are more preferable. On the other hand, as the lower limit, for example, one minute is preferable, and three minutes is more preferable.
<延伸光学フィルム>
 本発明の一実施形態に係る延伸光学フィルムは、偏光フィルムや位相差フィルム等、所定方向に配向したPVAを含む光学フィルムである。当該延伸光学フィルムは、一軸延伸されていてもよく、二軸延伸されていてもよいが、一軸延伸されていることが好ましい。一軸延伸された当該延伸光学フィルムは、偏光フィルム等として好適に用いることができる。当該延伸光学フィルムは、単層フィルムであっても、多層フィルムであってもよいが、単層フィルムであることが好ましい。
<Stretch optical film>
The stretched optical film according to an embodiment of the present invention is an optical film containing PVA oriented in a predetermined direction, such as a polarizing film or a retardation film. The stretched optical film may be uniaxially stretched or biaxially stretched, but is preferably uniaxially stretched. The stretched optical film uniaxially stretched can be suitably used as a polarizing film or the like. The stretched optical film may be a monolayer film or a multilayer film, but is preferably a monolayer film.
(平均厚み)
 当該延伸光学フィルムの平均厚みの上限は、20μmであり、18μmが好ましく、16μmがより好ましく、14μmがさらに好ましい。当該延伸光学フィルムの平均厚みが上記上限以下であることで、十分な薄型化を図ることができる。一方、この平均厚みの下限としては、5μmが好ましく、8μmがより好ましく、10μmがさらに好ましい。当該延伸光学フィルムの平均厚みが上記下限以上であることで、より裂けにくくし、取扱性などを高めることができる。
(Average thickness)
The upper limit of the average thickness of the stretched optical film is 20 μm, preferably 18 μm, more preferably 16 μm, and still more preferably 14 μm. By the average thickness of the said stretched optical film being below the said upper limit, sufficient thickness reduction can be achieved. On the other hand, the lower limit of the average thickness is preferably 5 μm, more preferably 8 μm, and still more preferably 10 μm. When the average thickness of the stretched optical film is equal to or more than the above lower limit, it is possible to make it more difficult to tear and to improve the handling property and the like.
(成分等)
 当該延伸光学フィルムは、主成分であるPVAと樹脂粒子とを含有する。
(Component etc)
The stretched optical film contains PVA as a main component and resin particles.
 当該延伸光学フィルムに含有される樹脂粒子のガラス転移温度(Tg)(樹脂粒子の主成分である重合体のTg)の上限は、30℃であるが、25℃が好ましく、20℃がより好ましく、15℃がさらに好ましく、10℃がよりさらに好ましい。このガラス転移温度が上記上限以下であることで、当該延伸光学フィルムは、裂けにくく、取扱性等に優れる。また、このガラス転移温度を上記上限以下とし、かつ樹脂粒子の含有量や平均粒径を調整することで、偏光性能等の光学特性も高めることができる。樹脂粒子のガラス転移温度の下限は特に制限はないが、例えば-100℃が好ましく、-80℃がより好ましく、-60℃がさらに好ましい。このガラス転移温度を上記下限以上とすることで、樹脂粒子の凝集が抑制され、延伸光学フィルムの白濁を抑制することができる。また、延伸光学フィルムの光学特性を高めることができる。 The upper limit of the glass transition temperature (Tg) of the resin particles contained in the stretched optical film (Tg of the polymer which is the main component of the resin particles) is 30 ° C., preferably 25 ° C., more preferably 20 ° C. 15 ° C. is more preferred, and 10 ° C. is even more preferred. When the glass transition temperature is less than or equal to the above upper limit, the stretched optical film is not easily torn and is excellent in handleability and the like. Moreover, optical characteristics, such as polarization performance, can also be improved by making this glass transition temperature below the said upper limit, and adjusting content of resin particles, and an average particle diameter. Although the lower limit of the glass transition temperature of the resin particles is not particularly limited, for example, -100 ° C. is preferable, -80 ° C. is more preferable, and -60 ° C. is more preferable. By making this glass transition temperature more than the said minimum, aggregation of a resin particle is suppressed and the cloudiness of a stretched optical film can be suppressed. Also, the optical properties of the stretched optical film can be enhanced.
 なお、当該延伸光学フィルムに含有される樹脂粒子のガラス転移温度は、原反フィルムに含有される樹脂粒子と同様、樹脂粒子を用いて製膜し、この得られた樹脂膜に対して行ったDSC(示差走査熱量測定)の測定値とする。 In addition, the glass transition temperature of the resin particle contained in the said stretched optical film was film-formed using the resin particle like the resin particle contained in a raw film, and it went with respect to this obtained resin film It is a measured value of DSC (differential scanning calorimetry).
 当該延伸光学フィルムにおける樹脂粒子の含有量の下限は、PVA100質量部に対して、1質量部であり、3質量部が好ましく、5質量部がより好ましく、7質量部がさらに好ましいこともある。樹脂粒子の含有量を上記下限以上とすることで、延伸光学フィルムを裂けにくくすることができ、取扱性などが向上する。一方、この含有量の上限は、50質量部であり、30質量部が好ましく、20質量部がより好ましく、15質量部がさらに好ましい。樹脂粒子の含有量を上記上限以下とすることで、延伸光学フィルムの光透過性を良好な状態とすることができ、また、偏光性能等の光学特性を高めることができる。 The lower limit of the content of resin particles in the stretched optical film is 1 part by mass, preferably 3 parts by mass, more preferably 5 parts by mass, and still more preferably 7 parts by mass with respect to 100 parts by mass of PVA. By making content of a resin particle more than the said lower limit, a stretched optical film can be made hard to tear and handling property etc. improve. On the other hand, the upper limit of the content is 50 parts by mass, preferably 30 parts by mass, more preferably 20 parts by mass, and still more preferably 15 parts by mass. By making content of a resin particle below the said upper limit, the light transmittance of a stretched optical film can be made into a favorable state, and optical characteristics, such as polarization performance, can be improved.
 当該延伸光学フィルムにおいては、延伸方向に平行な切断面における透過型電子顕微鏡(TEM)画像にて観測される樹脂粒子の上記延伸方向の長さ(延伸方向の径)が、上記延伸方向に垂直な方向の長さ(延伸方向に垂直な方向の径)よりも長いことが好ましい。すなわち、当該延伸光学フィルム中の樹脂粒子は、延伸方向に沿った長軸を有する楕円形であることが好ましい。このような場合、PVAと樹脂粒子との密着性を保ったまま、PVAが十分な配向状態を形成することができる。このため、当該延伸光学フィルムは、裂けが生じにくくなり、樹脂粒子の含有量や平均粒径を調整することで、偏光性能等の光学特性も高めることができると推測される。なお、このような楕円形の樹脂粒子は、ガラス転移温度が30℃以下の樹脂粒子を含む原反フィルムを延伸処理する際、樹脂粒子が延伸方向に沿って変形することで形成され得る。なお、延伸光学フィルムにおける延伸方向は、通常、PVAの結晶の配向方向である。 In the stretched optical film, the length in the stretching direction (diameter in the stretching direction) of the resin particles observed in a transmission electron microscope (TEM) image in a cut surface parallel to the stretching direction is perpendicular to the stretching direction It is preferable that the length is longer than the length in the normal direction (diameter in the direction perpendicular to the stretching direction). That is, it is preferable that the resin particle in the said extending | stretching optical film is an ellipse which has a long axis along the extending | stretching direction. In such a case, the PVA can form a sufficiently oriented state while maintaining the adhesion between the PVA and the resin particles. For this reason, it is assumed that the stretched optical film is less likely to be torn, and that optical properties such as polarization performance can be enhanced by adjusting the content of resin particles and the average particle diameter. In addition, such an elliptical resin particle may be formed by a resin particle deform | transforming along an extending | stretching direction, when extending | stretching the raw film containing the resin particle whose glass transition temperature is 30 degrees C or less. In addition, the extending | stretching direction in a extending | stretching optical film is an orientation direction of the crystal | crystallization of PVA normally.
 具体的には、図1に示されるように、当該延伸光学フィルム1の延伸方向Xに平行な切断面におけるTEM画像において、樹脂粒子2(島部)の延伸方向Xの長さAが、延伸方向Xに垂直な方向の長さBよりも長いことが好ましい。さらに、この樹脂粒子2における延伸方向Xに垂直な方向の長さBに対する延伸方向Xの長さAの比(A/B)の下限としては、1.2が好ましく、1.6がより好ましく、2.0がさらに好ましい。なお、この比(A/B)の上限としては、例えば3であってよく、2.6であってもよい。 Specifically, as shown in FIG. 1, in the TEM image of the cut surface parallel to the stretching direction X of the stretched optical film 1, the length A of the stretching direction X of the resin particle 2 (island portion) is stretched Preferably, it is longer than the length B in the direction perpendicular to the direction X. Further, the lower limit of the ratio (A / B) of the length A of the drawing direction X to the length B of the resin particle 2 in the direction perpendicular to the drawing direction X is preferably 1.2, more preferably 1.6. , 2.0 is more preferred. The upper limit of this ratio (A / B) may be, for example, 3 or 2.6.
 樹脂粒子の延伸方向の長さAの下限としては、1nmが好ましく、10nmがより好ましく、30nmがさらに好ましく、50nmがよりさらに好ましく、70nmがよりさらに好ましい。一方、この長さAの上限としては、例えば800nmであってもよいが、300nmが好ましく、200nmがより好ましく、100nmがさらに好ましい。また、樹脂粒子の延伸方向に垂直な方向の長さBの下限としては、1nmが好ましく、10nmがより好ましく、20nmがさらに好ましく、30nmがよりさらに好ましい。一方、この長さBの上限としては、例えば500nmであってもよいが、200nmが好ましく、100nmがより好ましく、50nmがさらに好ましい。長さA及び長さBが上記範囲であることで、裂けがより生じにくくなり、樹脂粒子の含有量や平均粒径を調整することで、偏光性能等の光学特性も高めることができる。 The lower limit of the length A in the stretching direction of the resin particles is preferably 1 nm, more preferably 10 nm, still more preferably 30 nm, still more preferably 50 nm, and still more preferably 70 nm. On the other hand, the upper limit of the length A may be, for example, 800 nm, but 300 nm is preferable, 200 nm is more preferable, and 100 nm is more preferable. The lower limit of the length B in the direction perpendicular to the stretching direction of the resin particles is preferably 1 nm, more preferably 10 nm, still more preferably 20 nm, and still more preferably 30 nm. On the other hand, the upper limit of the length B may be, for example, 500 nm, but 200 nm is preferable, 100 nm is more preferable, and 50 nm is more preferable. When the length A and the length B are in the above-mentioned ranges, it is more difficult for tearing to occur, and optical properties such as polarization performance can be enhanced by adjusting the content of resin particles and the average particle diameter.
 なお、上記樹脂粒子の延伸方向の長さAと、延伸方向に垂直な方向の長さBとは、以下の方法によって測定される。延伸方向に平行なフィルム切断面のTEM画像に対して、画像解析ソフトを用い、機械的に樹脂粒子を抽出する。抽出された樹脂粒子の長軸方向の平均長さを長さAとし、短軸方向の平均長さを長さBとして算出する。この長さA及び長さBから、長さの比(A/B)も求められる。これらの具体的な測定方法は、実施例に記載の方法とする。 The length A in the stretching direction of the resin particles and the length B in the direction perpendicular to the stretching direction are measured by the following method. The resin particles are mechanically extracted using image analysis software with respect to a TEM image of the film cut surface parallel to the stretching direction. The average length in the long axis direction of the extracted resin particles is taken as length A, and the average length in the short axis direction is taken as length B. From the length A and the length B, the ratio of lengths (A / B) is also determined. These specific measurement methods are the methods described in the examples.
 当該延伸光学フィルムに含有されるPVA及び樹脂粒子の好ましい形態は、上述した原反フィルムに含有されるPVA及び樹脂粒子と同様である。当該延伸光学フィルムに含まれていてもよいその他の成分についても、上述した原反フィルムと同様である。当該延伸光学フィルムが偏光フィルムである場合、当該延伸光学フィルムは、表裏面に吸着された二色性色素を有する。二色性色素としては、ヨウ素系色素が一般的である。 Preferred forms of PVA and resin particles contained in the stretched optical film are the same as the PVA and resin particles contained in the above-described raw film. The other components that may be contained in the stretched optical film are the same as the above-described raw film. When the stretched optical film is a polarizing film, the stretched optical film has a dichroic dye adsorbed on the front and back surfaces. As a dichroic dye, an iodine based dye is common.
 当該延伸光学フィルムが偏光フィルムの場合、その偏光性能としては、透過率44.0%のときの偏光度の下限として、例えば70%であってもよいが、99.0%であることが好ましく、99.8%であることがより好ましく、99.9%であることがさらに好ましい。偏光度が上記下限未満の場合は、スマートフォン、ノートパソコン、液晶テレビ、車載用ナビゲーションシステムなどに用いると、LCDのコントラストが低下することがある。 When the stretched optical film is a polarizing film, the lower limit of the degree of polarization when the transmittance is 44.0% may be, for example, 70% as the polarization performance, but it is preferably 99.0%. And 99.8% is more preferable, and 99.9% is more preferable. When the degree of polarization is less than the above lower limit, the contrast of the LCD may be lowered when used in a smartphone, a notebook computer, a liquid crystal television, a car navigation system, or the like.
 当該延伸光学フィルムが偏光フィルムの場合、この偏光フィルムは、通常、その両面又は片面に、光学的に透明で且つ機械的強度を有する保護膜を貼り合わせて偏光板にして使用される。保護膜としては、三酢酸セルロース(TAC)フィルム、酢酸・酪酸セルロース(CAB)フィルム、アクリル系フィルム、ポリエステル系フィルム等が使用される。また、貼り合わせのための接着剤としては、PVA系接着剤や紫外線硬化型接着剤などを挙げることができ、PVA系接着剤が好ましい。 When the stretched optical film is a polarizing film, this polarizing film is usually used as a polarizing plate by laminating a protective film which is optically transparent and has mechanical strength on both sides or one side thereof. As the protective film, a cellulose triacetate (TAC) film, a cellulose acetate / butyrate (CAB) film, an acrylic film, a polyester film or the like is used. Moreover, as an adhesive agent for bonding, a PVA-type adhesive agent, an ultraviolet curable adhesive agent, etc. can be mentioned, A PVA-type adhesive agent is preferable.
 上記のようにして得られた偏光板は、さらに位相差フィルム、視野角向上フィルム、輝度向上フィルム等が貼り合わせられていてもよい。なお、上記位相差フィルムとして、本発明の延伸光学フィルムを用いることもできる。偏光板は、アクリル系等の粘着剤をコートした後、ガラス基板に貼り合わせてLCDの部品として使用することができる。 A retardation film, a viewing angle improvement film, a brightness enhancement film, etc. may be further bonded to the polarizing plate obtained as described above. In addition, the stretched optical film of this invention can also be used as said retardation film. The polarizing plate can be used as a component of an LCD by bonding it to a glass substrate after being coated with an acrylic or other pressure-sensitive adhesive.
<延伸光学フィルムの製造方法>
 本発明の一実施形態に係る延伸光学フィルムは、上述した当該原反フィルムを延伸する工程を備える製造方法によって得ることができる。すなわち、当該延伸光学フィルムは、上述した原反フィルムを用いること以外は、従来と同様の方法により製造することができる。すなわち、当該製造方法によれば、特殊な工程を経ることなく、薄型で裂けにくい延伸光学フィルムを比較的容易に得ることができる。以下、当該延伸光学フィルムが偏光フィルムである場合の具体的な製造方法について説明する。
<Production method of stretched optical film>
The stretched optical film according to an embodiment of the present invention can be obtained by the production method including the step of stretching the raw film described above. That is, the said stretched optical film can be manufactured by the method similar to the former except using the raw film mentioned above. That is, according to the manufacturing method, it is possible to relatively easily obtain a thin and tear-resistant stretched optical film without undergoing a special process. Hereinafter, the specific manufacturing method in case the said extending | stretching optical film is a polarizing film is demonstrated.
 当該偏光フィルムを製造するための具体的な方法としては、当該原反フィルムに対して、膨潤処理、染色処理、一軸延伸処理、及び必要に応じてさらに、架橋処理、固定処理、洗浄処理、乾燥処理、熱処理などを施す方法が挙げられる。この場合、膨潤処理、染色処理、架橋処理、一軸延伸、固定処理などの各処理の順序は特に制限されず、また、2つ以上の処理を同時に行うこともできる。また、各処理の1つ又は2つ以上を2回又はそれ以上行うこともできる。 As a specific method for producing the polarizing film, the raw film may be subjected to swelling treatment, dyeing treatment, uniaxial stretching treatment, and if necessary, crosslinking treatment, fixing treatment, washing treatment, drying. Examples of the method include treatment and heat treatment. In this case, the order of the treatments such as swelling treatment, dyeing treatment, crosslinking treatment, uniaxial stretching, and fixation treatment is not particularly limited, and two or more treatments may be performed simultaneously. Also, one or more of each treatment may be performed twice or more.
 膨潤処理は、原反フィルムを水に浸漬することにより行うことができる。水に浸漬する際の水の温度の下限としては、20℃が好ましく、22℃がより好ましく、25℃がさらに好ましい。一方、この温度の上限としては、40℃が好ましく、38℃がより好ましく、35℃がさらに好ましい。また、水に浸漬する時間の下限としては、0.1分が好ましく、0.5分がより好ましい。一方、この時間の上限としては、5分が好ましく、3分がより好ましい。なお、水に浸漬する際の水は純水に限定されず、各種成分が溶解した水溶液であってもよいし、水と水性媒体との混合物であってもよい。 The swelling treatment can be carried out by immersing the raw film in water. As a minimum of temperature of water at the time of immersing in water, 20 ° C is preferred, 22 ° C is more preferred, and 25 ° C is still more preferred. On the other hand, as an upper limit of this temperature, 40 ° C is preferred, 38 ° C is more preferred, and 35 ° C is still more preferred. Moreover, as a minimum of time to immerse in water, 0.1 minute is preferable, and 0.5 minute is more preferable. On the other hand, as an upper limit of this time, 5 minutes are preferable and 3 minutes are more preferable. In addition, the water at the time of immersing in water is not limited to a pure water, The aqueous solution which various components melt | dissolved may be sufficient, and the mixture of water and an aqueous medium may be sufficient.
 染色処理は、原反フィルムに対して二色性色素を接触させることにより行うことができる。二色性色素としては、ヨウ素系色素を用いるのが一般的である。染色処理の時期としては、一軸延伸処理前、一軸延伸処理時及び一軸延伸処理後のいずれの段階であってもよい。染色処理は、原反フィルムを染色浴としてヨウ素-ヨウ化カリウムを含有する溶液(特に水溶液)中に浸漬させることにより行うのが一般的である。染色浴におけるヨウ素の濃度は0.01質量%以上0.5質量%以下であることが好ましく、ヨウ化カリウムの濃度は0.01質量%以上10質量%以下であることが好ましい。また、染色浴の温度の下限は、20℃が好ましく、25℃がより好ましい。一方、この温度の上限は、50℃が好ましく、40℃がより好ましい。 The dyeing process can be carried out by contacting the original film with a dichroic dye. As a dichroic dye, an iodine based dye is generally used. As a time of a dyeing | staining process, you may be any stage before uniaxial stretching processing, at the time of uniaxial stretching processing, and after uniaxial stretching processing. The dyeing process is generally carried out by immersing the raw film as a dyeing bath in a solution containing iodine-potassium iodide (in particular, an aqueous solution). The concentration of iodine in the dye bath is preferably 0.01% by mass or more and 0.5% by mass or less, and the concentration of potassium iodide is preferably 0.01% by mass or more and 10% by mass or less. Moreover, 20 degreeC is preferable and, as for the minimum of the temperature of a dyeing | staining bath, 25 degreeC is more preferable. On the other hand, 50 degreeC is preferable and, as for the upper limit of this temperature, 40 degreeC is more preferable.
 原反フィルムに対して架橋処理を施すことで、高温で湿式延伸する際に、PVAが水へ溶出することを効果的に防止することができる。この観点から架橋処理は一軸延伸処理の前に行うことが好ましい。架橋処理は、架橋剤を含む水溶液に原反フィルムを浸漬することにより行うことができる。上記架橋剤としては、ホウ酸、ホウ砂等のホウ酸塩などのホウ素無機化合物の1種又は2種以上を使用することができる。架橋剤を含む水溶液における架橋剤の濃度の下限は1質量%が好ましく、2質量%がより好ましく、3質量%がさらに好ましい。一方、この濃度の上限は、15質量%が好ましく、7質量%がより好ましく、6質量%がさらに好ましい。架橋剤の濃度が上記範囲内にあることで十分な延伸性を維持することができる。架橋剤を含む水溶液はヨウ化カリウム等の助剤を含有してもよい。架橋剤を含む水溶液の温度の下限は、20℃が好ましく、25℃がより好ましい。一方、この温度の上限は、50℃が好ましく、40℃がより好ましい。この温度を上記範囲内とすることで効率良く架橋することができる。 By subjecting the raw film to a crosslinking treatment, elution of PVA into water can be effectively prevented when wet stretching at high temperature. From this point of view, the crosslinking treatment is preferably performed before the uniaxial stretching treatment. The crosslinking treatment can be carried out by immersing the raw film in an aqueous solution containing a crosslinking agent. As said crosslinking agent, 1 type (s) or 2 or more types of boron inorganic compounds, such as boric acid, borates, such as borax, can be used. The lower limit of the concentration of the crosslinking agent in the aqueous solution containing the crosslinking agent is preferably 1% by mass, more preferably 2% by mass, and still more preferably 3% by mass. On the other hand, the upper limit of the concentration is preferably 15% by mass, more preferably 7% by mass, and still more preferably 6% by mass. When the concentration of the crosslinking agent is in the above range, sufficient stretchability can be maintained. The aqueous solution containing the crosslinking agent may contain an auxiliary such as potassium iodide. 20 degreeC is preferable and, as for the minimum of the temperature of the aqueous solution containing a crosslinking agent, 25 degreeC is more preferable. On the other hand, 50 degreeC is preferable and, as for the upper limit of this temperature, 40 degreeC is more preferable. By setting the temperature within the above range, crosslinking can be efficiently performed.
 一軸延伸処理は、湿式延伸法及び乾式延伸法のいずれで行ってもよい。湿式延伸法の場合は、ホウ酸水溶液中で行うこともできるし、上述した染色浴中や後述する固定処理浴中で行うこともできる。また、乾式延伸法の場合は、室温のまま一軸延伸処理を行ってもよいし、加熱しながら一軸延伸処理を行ってもよいし、吸水後の原反フィルムを用いて空気中で一軸延伸処理を行ってもよい。これらの中でも、湿式延伸法が好ましく、ホウ酸水溶液中で一軸延伸処理を行うことがより好ましい。ホウ酸水溶液のホウ酸濃度の下限は0.5質量%が好ましく、1.0質量%がより好ましく、1.5質量%がさらに好ましい。一方、このホウ酸濃度の上限は、6.0質量%が好ましく、5.0質量がより好ましく、4.0質量%がさらに好ましい。また、ホウ酸水溶液はヨウ化カリウムを含有してもよく、その濃度は0.01質量%以上10質量%以下とすることが好ましい。 The uniaxial stretching treatment may be performed by either a wet stretching method or a dry stretching method. In the case of the wet stretching method, it can be carried out in an aqueous solution of boric acid or in the above-mentioned dyeing bath or in a fixed treatment bath described later. In the case of dry stretching, uniaxial stretching may be performed at room temperature, or uniaxial stretching may be performed while heating, or uniaxial stretching in air using a raw film after water absorption. You may Among these, a wet stretching method is preferable, and uniaxial stretching in a boric acid aqueous solution is more preferable. The lower limit of the boric acid concentration of the aqueous boric acid solution is preferably 0.5% by mass, more preferably 1.0% by mass, and still more preferably 1.5% by mass. On the other hand, 6.0 mass% is preferable, as for the upper limit of this boric acid concentration, 5.0 mass is more preferable, and 4.0 mass% is more preferable. The boric acid aqueous solution may contain potassium iodide, and the concentration thereof is preferably 0.01% by mass or more and 10% by mass or less.
 一軸延伸処理における延伸温度の下限は、30℃が好ましく、40℃がより好ましく、50℃がさらに好ましい。延伸温度の下限を樹脂粒子のガラス転移温度の上限である30℃以上とすることで、延伸の際に樹脂粒子が延伸方向に延びるように良好に変形される。これによって、裂けにくく、取扱性に優れる延伸光学フィルムを比較的容易に得ることができる。 30 degreeC is preferable, as for the minimum of the extending | stretching temperature in uniaxial stretching process, 40 degreeC is more preferable, and 50 degreeC is further more preferable. By setting the lower limit of the stretching temperature to 30 ° C. or higher, which is the upper limit of the glass transition temperature of the resin particles, the resin particles are favorably deformed so as to extend in the stretching direction at the time of stretching. This makes it possible to relatively easily obtain a stretched optical film which is difficult to be split and which is excellent in handleability.
 一軸延伸処理における延伸倍率の下限は、得られる偏光フィルムの偏光性能の点から5倍が好ましく、5.5倍がより好ましく、6倍がさらに好ましい。延伸倍率の上限は特に制限されないが、例えば10倍が好ましく、8倍がより好ましいこともある。 The lower limit of the draw ratio in uniaxial stretching is preferably 5 times, more preferably 5.5 times, and still more preferably 6 times in terms of the polarization performance of the obtained polarizing film. Although the upper limit in particular of a draw ratio is not restrict | limited, For example, 10 times are preferable and 8 times may be more preferable.
 偏光フィルムの製造にあたっては、原反フィルムへの二色性色素(ヨウ素系色素等)の吸着を強固にするために一軸延伸処理の後に固定処理を行うことが好ましい。固定処理に使用する固定処理浴としては、ホウ酸、硼砂等のホウ素無機化合物の1種又は2種以上を含む水溶液を使用することができる。また、必要に応じて、固定処理浴中にヨウ素化合物や金属化合物を添加してもよい。固定処理浴におけるホウ素無機化合物の濃度の下限は、0.5質量%が好ましく、1質量%がより好ましい。一方、この濃度の上限は、15質量%が好ましく、10質量%がより好ましい。この濃度を上記範囲内にすることで二色性色素の吸着をより強固にすることができる。固定処理浴の温度の下限は、15℃が好ましい。一方、この温度の上限は、60℃が好ましく、40℃がより好ましい。 In the production of the polarizing film, it is preferable to carry out a fixing treatment after the uniaxial stretching treatment in order to strengthen the adsorption of the dichroic dye (iodine-based dye etc.) to the raw film. As a fixing process bath used for a fixing process, the aqueous solution containing 1 type, or 2 or more types of boron inorganic compounds, such as a boric acid and borax, can be used. In addition, if necessary, an iodine compound or a metal compound may be added to the fixing treatment bath. 0.5 mass% is preferable and, as for the minimum of the density | concentration of the boron inorganic compound in a fixed process bath, 1 mass% is more preferable. On the other hand, 15 mass% is preferable and 10 mass% of the upper limit of this concentration is more preferable. By setting this concentration within the above range, the adsorption of the dichroic dye can be made stronger. The lower limit of the temperature of the fixed treatment bath is preferably 15 ° C. On the other hand, 60 degreeC is preferable and, as for the upper limit of this temperature, 40 degreeC is more preferable.
 洗浄処理は、水等に原反フィルムを浸漬して行われることが一般的である。このとき、偏光性能向上の点から洗浄処理に用いる水等はヨウ化カリウム等の助剤を含有することが好ましい。このとき、ヨウ化カリウム等のヨウ化物の濃度は0.5質量%以上10質量%以下とすることが好ましい。また、洗浄処理に用いる水等の温度の下限は、一般的に5℃であり、10℃が好ましく、15℃がより好ましい。一方、この温度の上限は、一般的に50℃であり、45℃が好ましく、40℃がより好ましい。経済的な観点から水等の温度が低すぎることは好ましくない。一方、水等の温度が高すぎると偏光性能が低下することがある。 The washing treatment is generally performed by immersing the raw film in water or the like. At this time, it is preferable that water and the like used for the washing treatment contain an auxiliary agent such as potassium iodide from the viewpoint of improving the polarization performance. At this time, the concentration of iodide such as potassium iodide is preferably 0.5% by mass or more and 10% by mass or less. The lower limit of the temperature of water and the like used for the washing treatment is generally 5 ° C., preferably 10 ° C., and more preferably 15 ° C. On the other hand, the upper limit of this temperature is generally 50 ° C., preferably 45 ° C., and more preferably 40 ° C. It is not preferable that the temperature of water or the like is too low from the economic point of view. On the other hand, if the temperature of water or the like is too high, the polarization performance may be degraded.
 乾燥処理の条件は特に制限されないが、乾燥温度の下限としては、30℃が好ましく、50℃がより好ましい。一方、乾燥温度の上限としては、150℃が好ましく、130℃がより好ましい。上記範囲内の温度で乾燥することで、寸法安定性に優れる偏光フィルムが得られやすい。 Although the conditions in particular of a drying process are not restrict | limited, As a minimum of drying temperature, 30 degreeC is preferable and 50 degreeC is more preferable. On the other hand, as an upper limit of drying temperature, 150 degreeC is preferable and 130 degreeC is more preferable. By drying at a temperature within the above range, it is easy to obtain a polarizing film having excellent dimensional stability.
 乾燥処理の後に熱処理を行うことで、さらに寸法安定性に優れた偏光フィルムを得ることができる。ここで熱処理とは、乾燥処理後の水分率が5%以下の偏光フィルムをさらに加熱し、偏光フィルムの寸法安定性を向上させる処理のことである。熱処理の条件は特に制限されないが、60℃以上150℃以下の範囲内で熱処理することが好ましい。60℃よりも低温で熱処理を行うと熱処理による寸法安定化効果が不十分である。一方、150℃よりも高温で熱処理を行うと、偏光フィルムに黄変が激しく生じることがある。 By performing heat treatment after the drying treatment, a polarizing film further excellent in dimensional stability can be obtained. Here, the heat treatment is a treatment to further heat the polarizing film having a moisture content of 5% or less after the drying treatment to improve the dimensional stability of the polarizing film. Although the conditions in particular of heat processing are not restrict | limited, It is preferable to heat-process within the range of 60 degreeC or more and 150 degrees C or less. When the heat treatment is performed at a temperature lower than 60 ° C., the dimensional stabilization effect by the heat treatment is insufficient. On the other hand, when the heat treatment is performed at a temperature higher than 150 ° C., yellowing may be intensely generated in the polarizing film.
<その他の実施形態>
 本発明の原反フィルム、延伸光学フィルム、及び延伸光学フィルムの製造方法は、上記実施の形態に限定されるものではない。例えば、延伸光学フィルム及びその製造方法としては、延伸光学フィルムが偏光フィルムである場合を中心に説明したが、延伸光学フィルムは偏光フィルムに限定されるものではない。例えば、位相差フィルム等の偏光フィルム以外の延伸光学フィルムも、本発明の範囲内であり、本発明の原反フィルムを延伸する工程を備える製造方法によって製造することができる。本発明の一実施形態としての位相差フィルムの製造方法は、本発明の原反フィルムを延伸すること以外は、従来公知の方法を用いて行うことができる。
<Other Embodiments>
The raw film, the stretched optical film, and the method for producing the stretched optical film of the present invention are not limited to the above embodiment. For example, although a stretched optical film and a method for producing the same have been described focusing on the case where the stretched optical film is a polarizing film, the stretched optical film is not limited to a polarizing film. For example, a stretched optical film other than a polarizing film such as a retardation film is also within the scope of the present invention, and can be produced by a production method comprising the step of stretching the raw film of the present invention. The manufacturing method of the retardation film as one Embodiment of this invention can be performed using a conventionally well-known method except extending | stretching the raw film of this invention.
 本発明を以下の実施例により具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、以下の実施例及び比較例において採用された各評価方法を以下に示す。 The present invention is specifically described by the following examples, but the present invention is not limited by these examples. In addition, each evaluation method employ | adopted in the following Example and a comparative example is shown below.
[樹脂粒子のガラス転移温度]
 以下の各実施例又は比較例で得られた原反フィルムを水に溶解後、樹脂粒子を捕集可能なフィルター(メルク社の「MF-ミリポアメンブレンフィルターVSWP」孔径0.025μm)でろ過し、捕集物(樹脂粒子)を乾燥した。その後、樹脂粒子を100℃で熱処理することで、樹脂粒子のみから成形した樹脂膜を採取した。DSC(TA Instruments社の「Q2000」)を用いて、樹脂膜のガラス転移温度を求めた。これを樹脂粒子のガラス転移温度とした。
[Glass transition temperature of resin particles]
After dissolving the raw film obtained in each of the following Examples or Comparative Examples in water, the resin particles are filtered with a filter (“MF-Millipore Membrane Filter VSWP with a pore size of 0.025 μm, available from Merck”), The collected matter (resin particles) was dried. Thereafter, the resin particles were heat-treated at 100 ° C. to collect a resin film formed only from the resin particles. The glass transition temperature of the resin film was determined using DSC (“Q2000” from TA Instruments). This was taken as the glass transition temperature of the resin particles.
[原反フィルムの膨潤度]
 以下の各実施例又は比較例で得られた原反フィルムを約1.5g採取した。これを約2mm×10cmに裁断した後、100メッシュ(NBCメッシュテック社の「N-N0110S 115」)に包み、30℃の蒸留水中に15分間浸漬した。その後、3,000rpmで5分間遠心脱水を行い、メッシュを取り除いてから膨潤した原反フィルムの質量(W1)を求めた。続いて、その原反フィルムを105℃の乾燥機で16時間乾燥した後、質量(W2)を求めた。下記式により、原反フィルムの膨潤度を算出した。
 膨潤度(%)={(W1)/(W2)}×100
[Swelling degree of original film]
About 1.5 g of raw film obtained in each of the following Examples or Comparative Examples was collected. This was cut into about 2 mm × 10 cm, wrapped in 100 mesh (“N-N0110S 115” by NBC Meshtec Inc.), and immersed in distilled water at 30 ° C. for 15 minutes. Thereafter, centrifugal dewatering was performed at 3,000 rpm for 5 minutes to remove the mesh, and then the mass (W1) of the swollen original film was determined. Subsequently, the raw film was dried by a dryer at 105 ° C. for 16 hours, and then the mass (W2) was determined. The swelling degree of the raw film was calculated by the following equation.
Swelling degree (%) = {(W1) / (W2)} × 100
[原反フィルム中の樹脂粒子の平均粒径]
 以下の各実施例又は比較例で得られた原反フィルムをウルトラミクロトーム(Leica社の「ウルトラカットS/FC-S」)で切り出した後、四酸化オスミニウムの蒸気に23℃の雰囲気下で5日間晒し、PVAのヒドロキシ基を染色処理した。染色処理後、さらにダイヤモンドナイフ(DiATOME社の「Ultra Cryo Dry」2mm 35°)を用いて、-100℃の雰囲気下で観察用の凍結切片を切り出した。その後、過剰に染色された観察用の凍結切片を蒸留水で洗浄して乾燥させた。透過型電子顕微鏡(日立ハイテクノロジーズ社の「透過電子顕微鏡HT7000」)を用いて切断面を観察し、TEM画像を得た。加速電圧は100kV、エミッション電流は10μAに設定し、電子銃はLaB6フィラメントを用いた。
[Average particle size of resin particles in raw film]
The raw film obtained in each of the following Examples or Comparative Examples is cut with an ultramicrotome ("Ultra cut S / FC-S" manufactured by Leica), and then subjected to osmium tetraoxide vapor under an atmosphere of 23 ° C. 5 It was exposed for a day to stain the hydroxyl group of PVA. After the staining process, a frozen section for observation was further cut out under an atmosphere of -100 ° C. using a diamond knife ("Ultra Cryo Dry" 2 mm 35 ° by DiATOME). Thereafter, the over-stained frozen sections for observation were washed with distilled water and dried. The cut surface was observed using a transmission electron microscope ("transmission electron microscope HT7000" manufactured by Hitachi High-Technologies Corporation) to obtain a TEM image. The acceleration voltage was set to 100 kV, the emission current was set to 10 μA, and the electron gun used a LaB6 filament.
 上記方法で得られたTEM画像を用いて、以下の方法にて、原反フィルム中の樹脂粒子の平均粒径を測定した。まず、画像解析ソフト「Image-Pro Plus 7.0J」(Media Cybernetics社製)を用いて、TEM画像を開いた後、「変換」で8ビットスケールに変換変更し、「フィルター処理」で平坦化処理を行った。次に、「コントラスト強調」でコントラスト値を80に設定し、「カウント/サイズ」内の測定項目設定ページにおいて「平均粒径」を選択した後、明るい色のオブジェクトを自動抽出させることで、機械的に樹脂粒子を抽出し、原反フィルム中の樹脂粒子の平均粒径を算出した。なお、粒径がTEM画像中での最大径の1/10より小さいものは、ノイズとして除去した。また、TEM画像において、PVAよりも樹脂粒子の色が濃い場合には、暗い色のオブジェクトを自動抽出させることで、原反フィルム中の樹脂粒子の平均粒径を算出した。 The average particle diameter of the resin particles in the raw film was measured by the following method using the TEM image obtained by the above method. First, a TEM image is opened using an image analysis software "Image-Pro Plus 7.0J" (manufactured by Media Cybernetics), then converted to an 8-bit scale by "conversion" and flattened by "filter processing" I did the processing. Next, set the contrast value to 80 in "Contrast Enhance", select "Average Particle Size" on the measurement item setting page in "Count / Size", and then automatically extract bright colored objects. Then, the resin particles were extracted, and the average particle diameter of the resin particles in the raw film was calculated. The particle size smaller than 1/10 of the maximum diameter in the TEM image was removed as noise. Moreover, in the TEM image, when the color of the resin particle is darker than that of PVA, the dark particle is automatically extracted to calculate the average particle diameter of the resin particle in the raw film.
[偏光フィルム中の樹脂粒子の長さ]
 以下の各実施例又は比較例で得られた偏光フィルムについて、上記「原反フィルム中の樹脂粒子の平均粒径」に記載の方法と同様にして、切断面のTEM画像を得た。但し、この偏光フィルムについては、延伸方向に対して平行な切断面から観察を行った。
 上記方法で得られたTEM像を用いて、以下の方法にて、偏光フィルム中の樹脂粒子の延伸方向長さA(長軸長さ)、及び延伸方向に垂直な方向の長さB(単軸長さ)を測定した。まず、画像解析ソフト「Image-Pro Plus 7.0J」(Media Cybernetics社製)を用いて、TEM画像を開いた後、「変換」で8ビットスケールに変換変更し、「フィルター処理」で平坦化処理を行った。次に、「コントラスト強調」でコントラスト値を80に設定し、「カウント/サイズ」内の測定項目設定ページにおいて「楕円の長軸/短軸比」を選択した後、明るい色のオブジェクトを自動抽出させることで、機械的に樹脂粒子を抽出し、偏光フィルム中の樹脂粒子の長軸方向の長さA(延伸方向の長さ)、短軸方向の長さB(延伸方向に垂直な方向の長さ)、及びこれらの長さ比(A/B)を算出した。なお、粒径がTEM画像中での最大径の1/10より小さいものは、ノイズとして除去した。また、TEM画像において、PVAよりも樹脂粒子の色が濃い場合には、暗い色のオブジェクトを自動抽出させることで、偏光フィルム中の樹脂粒子の各長さを算出した。
[Length of resin particles in polarizing film]
A TEM image of a cut surface was obtained for the polarizing film obtained in each of the following examples or comparative examples, in the same manner as the method described in "Average particle diameter of resin particles in raw film". However, about this polarizing film, it observed from the cutting plane parallel to the extending | stretching direction.
Length A (long-axis length) of resin particles in a polarizing film in the stretching direction and length B (single-axis in a direction perpendicular to the stretching direction) by the following method using the TEM image obtained by the above method Axis length was measured. First, a TEM image is opened using an image analysis software "Image-Pro Plus 7.0J" (manufactured by Media Cybernetics), then converted to an 8-bit scale by "conversion" and flattened by "filter processing" I did the processing. Next, set the contrast value to 80 in "Contrast enhancement", select "Elliptical major axis / minor axis ratio" on the measurement item setting page in "Count / Size", and then automatically extract bright colored objects The resin particles are extracted mechanically, and the length A (length in the stretching direction) of the resin particles in the polarizing film in the major axis direction and the length B in the minor axis direction (the direction perpendicular to the stretching direction) The lengths) and their length ratios (A / B) were calculated. The particle size smaller than 1/10 of the maximum diameter in the TEM image was removed as noise. In addition, when the color of the resin particle is darker than that of PVA in the TEM image, each length of the resin particle in the polarizing film was calculated by automatically extracting a dark-colored object.
[耐裂け性評価:突き刺し性]
 以下の各実施例又は比較例で得られた偏光フィルムを温度23℃、相対湿度20%で24時間静置した。この後、この偏光フィルムから長さ方向(偏光フィルムの延伸方向)に40mm×幅方向に20mmのフィルム片を切り出し、金属枠で挟んで4辺を固定した。その後、引っ張り試験装置(島津製作所社の「オートグラフAGS-H」)にこの偏光フィルムを取り付け、この偏光フィルムの延伸方向とマイナスドライバー(偏光フィルムとの接触面積:1mm×5mm)の長辺とが平行になるように、マイナスドライバーを上のチャック部に取り付け、1mm/minの速度で偏光フィルムにマイナスドライバーを押し付けた。そして、マイナスドライバーが偏光フィルムを貫通したときの最大荷重を突き刺し強度とし、以下の基準で突き刺し性を評価した。なお、A及びBは実用上問題なく使用できるため良好と判定し、Cは不良と判定した。
 A:突き刺し強度が5N以上
 B:突き刺し強度が3N以上5N未満
 C:突き刺し強度が3N未満
[Tear resistance evaluation: piercing property]
The polarizing film obtained in each of the following Examples or Comparative Examples was allowed to stand at a temperature of 23 ° C. and a relative humidity of 20% for 24 hours. After this, a piece of film of 40 mm × 20 mm in the width direction was cut out from the polarizing film in the length direction (stretching direction of the polarizing film), and 4 sides were fixed by sandwiching with a metal frame. Thereafter, the polarizing film is attached to a tensile test apparatus ("Autograph AGS-H" manufactured by Shimadzu Corporation), and the stretching direction of the polarizing film and the long side of a minus driver (contact area with polarizing film: 1 mm x 5 mm) A flathead screwdriver was attached to the upper chuck so that was parallel, and the flathead screwdriver was pressed against the polarizing film at a speed of 1 mm / min. Then, the maximum load when the minus driver penetrated the polarizing film was taken as the piercing strength, and the piercing property was evaluated based on the following criteria. In addition, since A and B can be used without a problem in practical use, it was determined to be good, and C was determined to be defective.
A: piercing strength 5 N or more B: piercing strength 3 N or more and less than 5 N C: piercing strength less than 3 N
[耐裂け性評価:カッティング性]
 以下の各実施例又は比較例で得られた偏光フィルムを温度23℃、相対湿度50%で24時間静置した。この後、この偏光フィルムを延伸方向と垂直な方向に速度600mm/minでカッターナイフを用いてカットし、カット断面を実体顕微鏡で観察した。なお、カッターナイフの刃と偏光フィルムの延伸方向とのなす角度を45°とした。そして、偏光フィルムのカット断面の1cmあたりに存在するクラック数を測定し、以下の基準でカッティング性を評価した。なお、A及びBは実用上問題なく使用できるため良好と判定し、Cは不良と判定した。
 A:クラック無し
 B:1~4本/cm
 C:5本以上/cm
[Evaluation of tear resistance: cutting ability]
The polarizing film obtained in each of the following examples or comparative examples was allowed to stand at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours. After this, this polarizing film was cut using a cutter knife at a speed of 600 mm / min in the direction perpendicular to the stretching direction, and the cut cross section was observed with a stereomicroscope. The angle between the blade of the cutter knife and the stretching direction of the polarizing film was 45 °. Then, the number of cracks present per cm of the cut cross section of the polarizing film was measured, and the cutting property was evaluated based on the following criteria. In addition, since A and B can be used without a problem in practical use, it was determined to be good, and C was determined to be defective.
A: No crack B: 1 to 4 pieces / cm
C: 5 or more / cm
[耐裂け性評価:打ち抜き性]
 以下の各実施例又は比較例で得られた偏光フィルムを温度23℃、相対湿度50%で24時間静置した。この後、カッティングマット(コクヨ社の「マー40N」)の上に偏光フィルムを置き、直径10mmの円形のポンチ(スリーエッチ社のベルトポンチ「TPO-100」)を用いて偏光フィルムを打ち抜き、円形にくり抜かれた偏光フィルムの打ち抜き端面を実体顕微鏡で観察した。そして、偏光フィルムに存在するクラック数を測定し、以下の基準で打ち抜き性を評価した。なお、A及びBは実用上問題なく使用できるため良好と判定し、Cは不良と判定した。
 A:クラック無し
 B:1~4本/周
 C:5本以上/周
[Evaluation of tear resistance: punching property]
The polarizing film obtained in each of the following examples or comparative examples was allowed to stand at a temperature of 23 ° C. and a relative humidity of 50% for 24 hours. After this, the polarizing film is placed on a cutting mat (Kokuyo "mar 40 N"), the polarizing film is punched out using a circular punch 10 mm in diameter (belt punch "TPO-100" from Three Etch Co.), and circular The punched end face of the hollowed out polarizing film was observed with a stereomicroscope. Then, the number of cracks present in the polarizing film was measured, and the punching property was evaluated based on the following criteria. In addition, since A and B can be used without a problem in practical use, it was determined to be good, and C was determined to be defective.
A: No crack B: 1 to 4 per week C: 5 or more per week
[偏光フィルムの偏光性能]
(透過率Tsの測定)
 偏光フィルムの中央部から、偏光フィルムの延伸方向に2cmの長さのサンプルを2枚採取した。1枚のサンプルについて、積分球付き分光光度計(日本分光社の「V7100」)を用いて、JIS Z 8722(物体色の測定方法)に準拠し、C光源、2°視野の可視光領域の視感度補正を行い、長さ方向に対して+45°傾けた場合の光の透過率と-45°傾けた場合の光の透過率を測定して、それらの平均値Ts1(%)を求めた。もう1枚のサンプルについても同様にして、+45°傾けた場合の光の透過率と-45°傾けた場合の光の透過率を測定して、それらの平均値Ts2(%)を求めた。下記計算式(1)を用いて、Ts1とTs2を平均し、偏光フィルムの透過率Ts(%)とした。
 Ts=(Ts1+Ts2)/2・・・(1)
 以下の実施例又は比較例においては、染色処理条件を調整して透過率Tsが44.0%になるようサンプルを作製し、以下の偏光度Vの測定を行った。
[Polarization performance of polarizing film]
(Measurement of transmittance Ts)
From the center of the polarizing film, two samples of 2 cm in length were taken in the stretching direction of the polarizing film. For one sample, using a spectrophotometer with integrating sphere (“V7100” of JASCO Corporation), according to JIS Z 8722 (Method of measuring object color), C light source, visible light region of 2 ° visual field Visibility correction was performed, and the light transmittance when tilted + 45 ° with respect to the length direction and the light transmittance when tilted −45 ° was measured, and their average value Ts1 (%) was determined. . The same was applied to the other sample, and the light transmittance when tilted by + 45 ° and the light transmittance when tilted by −45 ° was measured, and their average value Ts2 (%) was determined. Ts1 and Ts2 were averaged using the following calculation formula (1) to obtain the transmittance Ts (%) of the polarizing film.
Ts = (Ts1 + Ts2) / 2 (1)
In the following examples or comparative examples, the staining processing conditions were adjusted to prepare a sample so that the transmittance Ts was 44.0%, and the following measurement of the degree of polarization V was performed.
(偏光度Vの測定)
 上記透過率Tsの測定で使用した2枚のサンプルについて、その延伸方向がお互いに直交するように重ねた場合の光の透過率T(%)と、その延伸方向が平行になるように重ねた場合の光の透過率T//(%)を測定した。この測定は、積分球付き分光光度計(日本分光社の「V7100」)を用いて、JIS Z 8722(物体色の測定方法)に準拠し、C光源、2°視野の可視光領域の視感度補正を行って実施した。測定したT//(%)及びT(%)から、下記計算式(2)を用いて、偏光度V(%)を求めた。
 V={(T//-T)/(T//+T)}1/2×100・・・(2)
(Measurement of polarization degree V)
With regard to the two samples used in the measurement of the transmittance Ts, the light transmittance T (%) in the case of overlapping so that the stretching directions are orthogonal to each other and the stacking so that the stretching directions become parallel The light transmittance T // (%) was measured. This measurement conforms to JIS Z 8722 (Method for measuring object color) using an integrating sphere-equipped spectrophotometer (“V7100” from JASCO Corporation), and a C light source, a visible light region of 2 ° visual field. The correction was carried out. The degree of polarization V (%) was determined from the measured T // (%) and T (%) using the following formula (2).
V = {(T // -T ⊥ ) / (T // + T ⊥)} 1/2 × 100 ··· (2)
[製造例1]樹脂粒子Aの製造
 乾燥させた0.5Lの耐圧重合槽に、重合開始剤であるペルオキソ二硫酸カリウム0.20g、三洋化成工業社の反応性乳化剤「JS-20」36.0g、及びイオン交換水300gを仕込んだ。これを30分間窒素ガスにてバブリングすることで脱酸素処理を行い、開始乳化液を得た。次に、この開始乳化液を撹拌しながら60℃に昇温した後に、それぞれ脱気処理したアクリル酸n-ブチル45.0g、メタクリル酸アリル0.45g、及びトリメチロールプロパントリメタクリレート0.23gの混合液を1.0ml/分の速度で連続的に添加した。
 その後、後述する方法にて算出した各単量体の転化率が95質量%を超えたことを確認した時点で、脱気処理したメタクリル酸ジシクロペンタニル5.6gを1.0ml/分の速度で連続的に添加した。上記添加後、上記方法にて算出した単量体転化率が95質量%を超えたことを確認し、重合槽を100℃に昇温して重合を行い、残留単量体がガスクロマトグラフィの検出限界以下になるまで重合を行った。重合後25℃まで冷却して、樹脂粒子Aを含むエマルション溶液(樹脂分17質量%)を得た。なお、重合開始から25℃までの冷却に要した重合時間は8時間であった。また、得られた樹脂粒子は、コアがポリアクリル酸n-ブチル、シェルがポリメタクリル酸ジシクロペンタニルであるコアシェル型の粒子である。
(単量体の転化率)
 重合開始から1時間毎にサンプリングした乳化液(0.100g)をテトラヒドロフラン溶液(10.0g、0.1質量%4-ターシャリー・ブチルカテコール添加)に滴下することで、被覆重合体粒子又は重合体粒子のテトラヒドロフラン溶液を調製した。この溶液をガスクロマトグラフィ(島津製作所GC-14A、カラムUAWAX-20EX-1.0F)で分析し、検出された単量体量及び乳化重合開始時点の単量体の添加量から単量体転化率(%)を算出した。
Production Example 1 Production of Resin Particle A In a dried 0.5 L pressure polymerization vessel, 0.20 g of potassium peroxodisulfate as a polymerization initiator, a reactive emulsifier “JS-20” manufactured by Sanyo Chemical Industries, Ltd. 36. 0 g and 300 g of ion exchange water were charged. This was deoxygenated by bubbling nitrogen gas for 30 minutes to obtain a starting emulsion. Next, the temperature of the starting emulsion was raised to 60 ° C. with stirring, and then 45.0 g of n-butyl acrylate, 0.45 g of allyl methacrylate, and 0.23 g of trimethylolpropane trimethacrylate were separately added. The mixture was added continuously at a rate of 1.0 ml / min.
Thereafter, when it is confirmed that the conversion of each monomer calculated by the method to be described later exceeds 95% by mass, 5.6 g of the decyclopentadilated dicyclopentanyl methacrylate is 1.0 ml / min. Added continuously at speed. After the addition, it is confirmed that the monomer conversion rate calculated by the above method exceeds 95% by mass, the polymerization tank is heated to 100 ° C. for polymerization, and the residual monomer is detected by gas chromatography The polymerization was carried out until the limit was reached. It cooled to 25 degreeC after superposition | polymerization, and obtained the emulsion solution (resin content 17 mass%) containing the resin particle A. The polymerization time required for cooling from the polymerization start to 25 ° C. was 8 hours. In addition, the obtained resin particles are core-shell type particles in which the core is n-butyl polyacrylate and the shell is dicyclopentanyl polymethacrylate.
(Monomer conversion rate)
The coated polymer particles or the weight are dropped by dropping the emulsion (0.100 g) sampled every hour from the polymerization start into a solution of tetrahydrofuran (10.0 g, 0.1 mass% 4-tert-butyl catechol added). A solution of coalesced particles in tetrahydrofuran was prepared. This solution was analyzed by gas chromatography (Shimadzu GC-14A, column UAWAX-20EX-1.0F), and the monomer conversion rate was determined from the detected amount of monomer and the addition amount of monomer at the time of initiation of the emulsion polymerization. (%) Was calculated.
[製造例2]樹脂粒子Bの製造
 二軸押出機(パーカーコーポレーション社製)に、ホッパーから(メタ)アクリル系ブロック共重合体であるメタクリル酸メチル-アクリル酸n-ブチル-メタクリル酸メチルトリブロック共重合体(クラリティ(登録商標)LA2140、(株)クラレ製、メタクリル酸メチル単位24質量%)を0.66kg/時で供給し、シリンダー途中からN-メチルシクロヘキシルアミンを72kg/時((メタ)アクリル系重合体中のメタクリル酸メチル単位100モルに対して40モルとなる量)で供給し、シリンダー温度220℃、スクリュウ回転数100rpmで溶融混練した。これにより、メタクリル酸無水物-アクリル酸n-ブチル共重合体1を得た。これを20mm以下に粉砕し、80℃の熱水に24時間浸漬することで、酸無水物をカルボキシ基に変換し、メタクリル酸-アクリル酸n-ブチル-メタクリル酸トリブロック共重合体とした。その後、この共重合体をろ過により取り出し、乾燥し、メタノールに固形分濃度10質量%になるように溶解した。その後、メタノールと同質量分の水を滴下し、分散溶液を得た後、得られた溶液を60℃で減圧処理してメタノールを留去し、メタクリル酸-アクリル酸n-ブチル-メタクリル酸トリブロック共重合体の樹脂粒子Bを含むエマルション溶液(樹脂分10質量%)を得た。
Production Example 2 Production of Resin Particle B In a twin-screw extruder (manufactured by Parker Corporation), from the hopper, (meth) acrylic block copolymer, methyl methacrylate-n-butyl acrylate-methyl methacrylate triblock A copolymer (Klarity (registered trademark) LA 2140, manufactured by Kuraray Co., Ltd., 24 mass% of methyl methacrylate unit) is supplied at 0.66 kg / hour, and 72 kg / hour of N-methylcyclohexylamine ((meth 2.) An amount of 40 moles per 100 moles of methyl methacrylate unit in the acrylic polymer was supplied, and melt kneading was performed at a cylinder temperature of 220 ° C. and a screw rotation speed of 100 rpm. Thus, a methacrylic anhydride-n-butyl acrylate copolymer 1 was obtained. This was pulverized to 20 mm 3 or less and immersed in hot water at 80 ° C. for 24 hours to convert the acid anhydride to a carboxy group to obtain methacrylic acid-acrylic acid n-butyl-methacrylic acid triblock copolymer. . Thereafter, the copolymer was taken out by filtration, dried and dissolved in methanol so as to have a solid content concentration of 10% by mass. Thereafter, water of the same mass as methanol is added dropwise to obtain a dispersion solution, and the resulting solution is treated under reduced pressure at 60 ° C. to distill off methanol, and methacrylic acid-acrylic acid n-butyl-methacrylic acid triacetate An emulsion solution (resin content: 10% by mass) containing the resin particles B of the block copolymer was obtained.
 以下に、実施例及び比較例用いた市販の樹脂粒子を示す。
樹脂粒子C:イーテック社の「AE986B」(アクリル樹脂製粒子)
樹脂粒子D:サイデン化学社の「UC-143」(アクリル樹脂製粒子)
樹脂粒子E:星光PMC社の「QE-1042」
樹脂粒子F:星光PMC社の「KE-1062」
樹脂粒子G:イーテック社の「N827(A)-1」(アクリル樹脂製粒子)
Hereinafter, commercially available resin particles used in Examples and Comparative Examples are shown.
Resin particle C: "AE986B" from E-tech (particles made of acrylic resin)
Resin particle D: "UC-143" (made of acrylic resin) made by Siden Chemical Co., Ltd.
Resin particle E: "QE-1042" from Starlight PMC
Resin particle F: "KE-1062" from Starlight PMC
Resin particles G: E-Tech's "N 827 (A) -1" (particles made of acrylic resin)
[実施例1]
(原反フィルムの製造)
 PVA(酢酸ビニルの単独重合体のけん化物であり、重合度は2,400、けん化度は99.95モル%である。)とグリセリン(PVA100質量部に対して12質量部)と界面活性剤(PVA100質量部に対して0.03質量部)と水とを混合し、90℃で4時間溶解することで、PVA水溶液を得た。その後、このPVA水溶液にPVA100質量部に対して、10質量部の樹脂粒子Aを添加し、85℃で30分間撹拌した。その後、PVA水溶液の脱泡のため、PVA水溶液を85℃で16時間保温した。
 上記PVA水溶液を、80℃の金属ロール上で乾燥してPVAフィルムを得た。その後、110℃の乾燥機で10分間熱処理を行い、平均厚みが30μmの実施例1の原反フィルムを得た。
Example 1
(Production of raw film)
PVA (saponified product of homopolymer of vinyl acetate, polymerization degree is 2,400, saponification degree is 99.95 mol%), glycerin (12 parts by mass with respect to 100 parts by mass of PVA) and surfactant (0.03 mass parts with respect to 100 mass parts of PVA) and water were mixed, and the PVA aqueous solution was obtained by melt | dissolving at 90 degreeC for 4 hours. Thereafter, 10 parts by mass of the resin particles A were added to 100 parts by mass of the PVA aqueous solution, and the mixture was stirred at 85 ° C. for 30 minutes. Thereafter, the PVA aqueous solution was kept at 85 ° C. for 16 hours for degassing of the PVA aqueous solution.
The PVA aqueous solution was dried on a metal roll at 80 ° C. to obtain a PVA film. Then, heat processing were performed for 10 minutes with a 110 degreeC dryer, and the original film of Example 1 with an average thickness of 30 micrometers was obtained.
(2)偏光フィルムの製造
 上記(1)で得られた原反フィルムから、長さ方向9cm×幅方向5cmの長方形の試験片を採取した。この試験片の長さ方向の両端を、延伸部分のサイズが長さ方向5cm×幅方向5cmとなるように延伸治具に固定し、温度30℃の水中に38秒間浸漬している間に24cm/分の延伸速度で元の長さの2.2倍に長さ方向に一軸延伸(1段目延伸)した。その後、ヨウ素を0.03質量%及びヨウ化カリウムを3質量%の濃度で含有する温度30℃のヨウ素/ヨウ化カリウム水溶液中に60秒間浸漬している間に24cm/分の延伸速度で元の長さの3.3倍まで長さ方向に一軸延伸(2段目延伸)した。次いで、ホウ酸を3質量%及びヨウ化カリウムを3質量%の濃度で含有する温度30℃のホウ酸/ヨウ化カリウム水溶液中に約20秒間浸漬している間に24cm/分の延伸速度で元の長さの3.6倍まで長さ方向に一軸延伸(3段目延伸)した。続いて、ホウ酸を4質量%及びヨウ化カリウムを約5質量%の濃度で含有する温度58℃のホウ酸/ヨウ化カリウム水溶液中に浸漬しながら24cm/分の延伸速度で限界延伸倍率(4枚のフィルムを取り付け、2枚が切れた延伸倍率を限界延伸倍率とした)まで長さ方向に一軸延伸(4段目延伸)した。その後、ホウ酸を1.5質量%及びヨウ化カリウムを3質量%の濃度で含有するヨウ化カリウム水溶液中に10秒間浸漬して固定処理を行った。その後60℃の乾燥機で4分間乾燥して、延伸光学フィルムである実施例1の偏光フィルム(平均厚み13μm)を得た。
(2) Production of Polarized Film From the raw film obtained in the above (1), a rectangular test piece of 9 cm in length direction x 5 cm in width direction was collected. The two ends of the test piece in the lengthwise direction are fixed to a drawing jig so that the size of the drawn part is 5cm in the length direction x 5cm in the width direction, and while immersed in water at a temperature of 30 ° C for 38 seconds It was uniaxially stretched (first-stage stretching) in the lengthwise direction to 2.2 times its original length at a drawing speed of 1 / min. Then, while immersed in an iodine / potassium iodide aqueous solution at a temperature of 30 ° C. containing iodine at 0.03% by mass and potassium iodide at a concentration of 3% by mass for 60 seconds, the original film was drawn at a stretching rate of 24 cm / min. Uniaxial stretching (second stage stretching) in the lengthwise direction up to 3.3 times the length of. Then, while immersing in a boric acid / potassium iodide aqueous solution at a temperature of 30 ° C. containing about 3% by weight of boric acid and 3% by weight of potassium iodide, at a drawing speed of 24 cm / min. The film was uniaxially stretched (third-stage stretching) in the lengthwise direction up to 3.6 times the original length. Subsequently, while immersing in a boric acid / potassium iodide aqueous solution at a temperature of 58 ° C. containing 4% by mass of boric acid and about 5% by mass of potassium iodide, the critical draw ratio at a drawing speed of 24 cm / min. Four films were attached, and the film was uniaxially stretched (four-step stretching) in the length direction until the draw ratio at which two sheets were cut was taken as the limit draw ratio). Then, the fixing treatment was performed by immersion for 10 seconds in an aqueous potassium iodide solution containing 1.5% by mass of boric acid and 3% by mass of potassium iodide. Then, it was dried for 4 minutes with a dryer at 60 ° C. to obtain a polarizing film (average thickness 13 μm) of Example 1 which is a stretched optical film.
[実施例2~6、比較例1~4]
 PVA水溶液に添加した樹脂粒子の種類及び量を表1に示すとおりとしたこと以外は、実施例1と同様にして、実施例2~6及び比較例1~4の各原反フィルム及び偏光フィルムを得た。なお、比較例1においては、樹脂粒子を添加しなかった。
[Examples 2 to 6, Comparative Examples 1 to 4]
Each original film and polarizing film of Examples 2 to 6 and Comparative Examples 1 to 4 in the same manner as Example 1 except that the type and amount of the resin particles added to the PVA aqueous solution are as shown in Table 1. I got In Comparative Example 1, no resin particles were added.
[比較例5]
 原反フィルムの平均厚みを60μmにしたこと以外は比較例1と同様にして、比較例5の原反フィルム及び偏光フィルムを得た。得られた偏光フィルムの平均厚みは26μmであった。
Comparative Example 5
A raw film and a polarizing film of Comparative Example 5 were obtained in the same manner as in Comparative Example 1 except that the average thickness of the raw film was 60 μm. The average thickness of the obtained polarizing film was 26 μm.
[評価]
 得られた各原反フィルムを用い、上記した方法により、樹脂粒子のガラス転移温度、原反フィルムの膨潤度、及び原反フィルム中の樹脂粒子の平均粒径を測定した。また、得られた偏光フィルムを用い、上記した方法により、偏光フィルム中の樹脂粒子の長さA(延伸方向の長さ)、長さB(延伸方向に垂直な方向の長さ)及びその長さ比(A/B)の測定、並びに突き刺し性、カッティング性、打ち抜き性、及び偏光性能の評価を行った。結果を表1に示す。
[Evaluation]
The glass transition temperature of the resin particles, the degree of swelling of the raw film, and the average particle size of the resin particles in the raw film were measured using the obtained raw films by the method described above. Further, using the obtained polarizing film, the length A (length in the stretching direction), the length B (length in the direction perpendicular to the stretching direction), and the length of the resin particles in the polarizing film The measurement of the power ratio (A / B) and the evaluation of the piercing property, cutting property, punching property, and polarization performance were performed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1~6で得られた偏光フィルムは、突き刺し性、カッティング性及び打ち抜き性の評価がA又はBであり、薄型でありながら、裂けにくく、取扱性や生産性に優れることがわかる。また、実施例1~6は、複雑な工程を経ることなく行われ、偏光フィルムを比較的容易に製造できることがわかる。さらに、実施例1~4の偏光フィルムにおいては、偏光性能も特に良好であることがわかる。 As shown in Table 1, the polarizing films obtained in Examples 1 to 6 have the evaluations of piercing property, cutting property and punching property of A or B, and although thin, they are not easily torn, and they are easy to handle and produce. It turns out that it is excellent in the nature. In addition, it is understood that Examples 1 to 6 can be carried out without complicated steps, and the polarizing film can be relatively easily manufactured. Furthermore, in the polarizing films of Examples 1 to 4, it is understood that the polarization performance is particularly good.
 一方、比較例1~4で得られた偏光フィルムは、突き刺し性、カッティング性及び打ち抜き性の評価が低く、裂けやすいことがわかる。また、比較例5では、得られた偏光フィルムは耐裂け性を有するものの、薄い偏光フィルムを得られなかった。 On the other hand, it is understood that the polarizing films obtained in Comparative Examples 1 to 4 have low evaluations of piercing property, cutting property and punching property and are easy to tear. Moreover, in the comparative example 5, although the obtained polarizing film had tear resistance, the thin polarizing film was not obtained.
  1:延伸光学フィルム
  2:樹脂粒子
  X:延伸方向
  A:延伸方向の長さ
  B:延伸方向に垂直な方向の長さ
1: Stretched optical film 2: Resin particles X: Stretching direction A: Stretching direction length B: Length in the direction perpendicular to the stretching direction
 本発明の原反フィルムは、LCDの構成材料である偏光フィルム等の材料として好適に用いることができる。また、本発明の延伸光学フィルムの製造方法、及び延伸光学フィルムは、偏光フィルムやその製造方法として好適に用いることができる。
 
The raw film of the present invention can be suitably used as a material such as a polarizing film which is a constituent material of LCD. Moreover, the manufacturing method of the extending | stretching optical film of this invention, and an extending | stretching optical film can be used suitably as a polarizing film or its manufacturing method.

Claims (5)

  1.  平均厚みが45μm以下であり、
     主成分であるビニルアルコール系重合体と、ガラス転移温度が30℃以下の樹脂粒子とを含有し、
     上記ビニルアルコール系重合体100質量部に対する上記樹脂粒子の含有量が、1質量部以上50質量部以下である延伸光学フィルム製造用の原反フィルム。
    Average thickness is 45 μm or less,
    Containing a vinyl alcohol polymer which is a main component, and resin particles having a glass transition temperature of 30 ° C. or less,
    The raw film film for stretched optical film manufacture whose content of the said resin particle with respect to 100 mass parts of said vinyl alcohol polymers is 1 mass part or more and 50 mass parts or less.
  2.  上記樹脂粒子の平均粒径が、1nm以上300nm以下である請求項1に記載の原反フィルム。 The raw film film according to claim 1, wherein an average particle diameter of the resin particles is 1 nm or more and 300 nm or less.
  3.  請求項1又は請求項2に記載の原反フィルムを延伸する工程
     を備える延伸光学フィルムの製造方法。
    A process for producing a stretched optical film, comprising the step of stretching the raw film according to claim 1 or 2.
  4.  平均厚みが20μm以下であり、
     主成分であるビニルアルコール系重合体と、ガラス転移温度が30℃以下の樹脂粒子とを含有し、
     上記ビニルアルコール系重合体100質量部に対する上記樹脂粒子の含有量が、1質量部以上50質量部以下である延伸光学フィルム。
    The average thickness is 20 μm or less,
    Containing a vinyl alcohol polymer which is a main component, and resin particles having a glass transition temperature of 30 ° C. or less,
    The stretched optical film, wherein the content of the resin particle is 1 part by mass to 50 parts by mass with respect to 100 parts by mass of the vinyl alcohol polymer.
  5.  延伸方向に平行な切断面における透過型電子顕微鏡画像にて観測される上記樹脂粒子の上記延伸方向の長さが、上記延伸方向に垂直な方向の長さよりも長い請求項4に記載の延伸光学フィルム。
     
     
    5. The stretching optical system according to claim 4, wherein a length of the resin particle in the stretching direction observed in a transmission electron microscope image in a cut surface parallel to the stretching direction is longer than a length in a direction perpendicular to the stretching direction. the film.

PCT/JP2018/020386 2017-06-21 2018-05-28 Raw material film, stretched optical film manufacturing method, and stretched optical film WO2018235532A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880041581.XA CN110809725B (en) 2017-06-21 2018-05-28 Raw material film, method for producing stretched optical film, and stretched optical film
JP2019525274A JP7093349B2 (en) 2017-06-21 2018-05-28 Raw film, method of manufacturing stretched optical film, and stretched optical film
KR1020197038697A KR102565518B1 (en) 2017-06-21 2018-05-28 Fabric film, manufacturing method of stretched optical film, and stretched optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-121086 2017-06-21
JP2017121086 2017-06-21

Publications (1)

Publication Number Publication Date
WO2018235532A1 true WO2018235532A1 (en) 2018-12-27

Family

ID=64736947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020386 WO2018235532A1 (en) 2017-06-21 2018-05-28 Raw material film, stretched optical film manufacturing method, and stretched optical film

Country Status (5)

Country Link
JP (1) JP7093349B2 (en)
KR (1) KR102565518B1 (en)
CN (1) CN110809725B (en)
TW (1) TWI682957B (en)
WO (1) WO2018235532A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166505A1 (en) * 2019-02-12 2020-08-20 日東電工株式会社 Polarizing plate, manufacturing method thereof, and image display device using said polarizing plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093277A1 (en) * 2014-12-12 2016-06-16 住友化学株式会社 Method for producing polarizing film, and polarizing film
JP2016166305A (en) * 2015-03-10 2016-09-15 東洋インキScホールディングス株式会社 Polyvinyl alcohol composition
JP2017009795A (en) * 2015-06-22 2017-01-12 日東電工株式会社 Polarizing plate and manufacturing method therefor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4815544B1 (en) 1969-05-09 1973-05-15
JP3315914B2 (en) 1997-12-18 2002-08-19 日本合成化学工業株式会社 Polarizing film and polarizing plate using the same
JP4218860B2 (en) * 2000-01-24 2009-02-04 東洋インキ製造株式会社 Synthesis method of pre-crosslinked fine particles
US20110262663A1 (en) * 2008-01-23 2011-10-27 Lg Chem, Ltd Retardation film, fabrication method thereof, and liquid crystal display comprising the same
JPWO2011083690A1 (en) * 2010-01-08 2013-05-13 コニカミノルタアドバンストレイヤー株式会社 Hard coat film, polarizing plate and liquid crystal display device
JP4691205B1 (en) 2010-09-03 2011-06-01 日東電工株式会社 Method for producing optical film laminate including thin high-performance polarizing film
JP5844562B2 (en) * 2011-07-06 2016-01-20 住友化学株式会社 Method for producing polarizing laminated film
JP5390052B1 (en) * 2012-03-30 2014-01-15 株式会社クラレ POLYVINYL ALCOHOL POLYMER FILM AND POLARIZING FILM
JP6094193B2 (en) 2012-12-11 2017-03-15 東亞合成株式会社 Active energy ray-curable composition for forming optical film or sheet, optical film or sheet, and polarizing plate
JPWO2014175040A1 (en) * 2013-04-26 2017-02-23 コニカミノルタ株式会社 Polarizing plate, manufacturing method thereof, and liquid crystal display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093277A1 (en) * 2014-12-12 2016-06-16 住友化学株式会社 Method for producing polarizing film, and polarizing film
JP2016166305A (en) * 2015-03-10 2016-09-15 東洋インキScホールディングス株式会社 Polyvinyl alcohol composition
JP2017009795A (en) * 2015-06-22 2017-01-12 日東電工株式会社 Polarizing plate and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166505A1 (en) * 2019-02-12 2020-08-20 日東電工株式会社 Polarizing plate, manufacturing method thereof, and image display device using said polarizing plate
JPWO2020166505A1 (en) * 2019-02-12 2021-10-21 日東電工株式会社 A polarizing plate, a method for manufacturing the same, and an image display device using the polarizing plate.
JP7288465B2 (en) 2019-02-12 2023-06-07 日東電工株式会社 Polarizing plate, manufacturing method thereof, and image display device using the polarizing plate

Also Published As

Publication number Publication date
JPWO2018235532A1 (en) 2020-04-23
TWI682957B (en) 2020-01-21
CN110809725B (en) 2022-08-16
KR102565518B1 (en) 2023-08-09
CN110809725A (en) 2020-02-18
KR20200016897A (en) 2020-02-17
TW201906915A (en) 2019-02-16
JP7093349B2 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
WO2020184587A1 (en) Polyvinyl alcohol film, polarizing film, and polarizing plate
JP2022008895A (en) Method for manufacturing polarization film
JP6629496B1 (en) Polyvinyl alcohol film, stretched film, and method for producing polyvinyl alcohol film
JP7093349B2 (en) Raw film, method of manufacturing stretched optical film, and stretched optical film
JP6629495B1 (en) Polyvinyl alcohol film, stretched film, polarizing film, and method for producing polyvinyl alcohol film
KR20150091493A (en) Multilayer film
JP2021091818A (en) Polyvinyl alcohol film and method for producing the same
JP5563331B2 (en) Method for producing polyvinyl alcohol polymer film
WO2016121507A1 (en) Film
JP7093350B2 (en) Raw film, method of manufacturing stretched optical film, and stretched optical film
JP2019066533A (en) Raw material film for production of optical film and production method of optical film using the same
JP5179646B2 (en) Polarized film
JP6792456B2 (en) the film
JP6571955B2 (en) Polyvinyl alcohol film
JPH07196819A (en) Polyolefin film
JP2021102694A (en) Polyvinyl alcohol film and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525274

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197038697

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18820705

Country of ref document: EP

Kind code of ref document: A1