WO2020235575A1 - Thermoplastic resin molded body and manufacturing method therefor - Google Patents

Thermoplastic resin molded body and manufacturing method therefor Download PDF

Info

Publication number
WO2020235575A1
WO2020235575A1 PCT/JP2020/019850 JP2020019850W WO2020235575A1 WO 2020235575 A1 WO2020235575 A1 WO 2020235575A1 JP 2020019850 W JP2020019850 W JP 2020019850W WO 2020235575 A1 WO2020235575 A1 WO 2020235575A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
weight
thermoplastic resin
resin molded
molded product
Prior art date
Application number
PCT/JP2020/019850
Other languages
French (fr)
Japanese (ja)
Inventor
内田壮一
三枝一範
中谷和史
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2021520805A priority Critical patent/JPWO2020235575A1/ja
Publication of WO2020235575A1 publication Critical patent/WO2020235575A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor

Definitions

  • the present invention relates to a thermoplastic resin molded product that can be suitably used for home appliances and automobile parts, and a method for manufacturing the same.
  • Patent Document 1 describes a thermoplastic resin foam molded product in which a rib or boss-shaped protrusion integrated with the foamed base material portion is provided on the foamed base material portion. Such protrusions secure the rigidity of the molded body as a whole and reinforce the molded body.
  • the joint portion between the protrusion and the foamed base material has a structure having a curvature R, but the reinforcing effect of the protrusion is insufficient in a low temperature environment. Therefore, further improvement is required.
  • the present invention provides a thermoplastic resin molded product which is lightweight, has high surface impact strength even in a low temperature environment, and has no appearance defects such as sink marks, and a method for producing the same.
  • the present invention reinforces the main body portion made of a thermoplastic resin foam and the thermoplastic resin molded body provided with reinforcing ribs formed on the back surface side of the main body portion.
  • the root portion of the reinforcing rib bulges outward, so that the joint portion between the reinforcing rib and the main body portion has a curved shape, and the reinforcing rib has a curved shape.
  • the tip portion has a radius of curvature at both corners or has an arc shape, the thickness T1 of the main body portion is 1.8 mm or more and 6.0 mm or less, and the radius of curvature Ra of the joint portion is 0.
  • Thermoplastic resin molding having a thickness of 05 mm or more and 2.2 mm or less, and a ratio T3 / T1 of the thickness T1 of the main body to the maximum thickness T3 of the reinforcing rib being larger than 0.25 and 0.75 or less. Regarding the body.
  • the present invention also comprises, in one or more embodiments, the method for manufacturing a thermoplastic resin molded body, wherein the main body and reinforcing ribs are integrally molded by injection molding to obtain a thermoplastic resin molded body.
  • the present invention relates to a method for producing a thermoplastic resin molded article containing.
  • thermoplastic resin molded product that is lightweight, has high surface impact strength even in a low temperature environment, and has no appearance defects such as sink marks. Further, according to the production method of the present invention, it is possible to obtain a thermoplastic resin molded product which is lightweight and has high surface impact strength even in a low temperature environment.
  • FIG. 1 is a schematic perspective view of a thermoplastic resin molded product according to one or more embodiments of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a portion of the thermoplastic resin molded product in which reinforcing ribs are arranged according to one or more embodiments of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a portion of the thermoplastic resin molded product in which reinforcing ribs are arranged according to one or more embodiments of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a portion of the thermoplastic resin molded product in which reinforcing ribs are arranged according to one or more embodiments of the present invention.
  • FIG. 1 is a schematic perspective view of a thermoplastic resin molded product according to one or more embodiments of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a portion of the thermoplastic resin molded product in which reinforcing ribs are arranged according to one or
  • FIG. 5 is a schematic cross-sectional view of a portion of the thermoplastic resin molded product in which reinforcing ribs are arranged according to one or more embodiments of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a portion of the thermoplastic resin molded product of Comparative Example 1 in which reinforcing ribs are arranged.
  • FIG. 7 is a schematic view of a test piece used for measuring the surface impact strength of an injection foam molded product
  • a is a schematic plan view of a design surface (cavity side)
  • b and c are non-design surfaces (respectively). It is a schematic plan view of (core side).
  • FIG. 8 is a photograph (300 times) of the cross section of the central part of the main body of Example 1 observed with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the present inventors diligently studied in order to solve the above-mentioned problems.
  • the root portion of the reinforcing ribs is expanded outward.
  • the joint between the reinforcing rib and the main body is formed into a curved shape, and the tip of the reinforcing rib is formed into a shape having radius of curvature Rb at both corners, or is formed into an arc shape and the thickness of the main body.
  • the arcuate means all shapes similar to an arc, specifically a perfect circular arc (true arc) and a curved shape including a part of an ellipse. Includes (elliptical arc). In the following, unless otherwise specified, arcs include true arcs and elliptical arcs.
  • FIG. 1 is a schematic perspective view of a thermoplastic resin molded product according to one or more embodiments of the present invention.
  • 2 to 5 are schematic cross-sectional views of a portion of the thermoplastic resin molded product in which reinforcing ribs are arranged according to one or more embodiments of the present invention.
  • the thermoplastic resin molded product 1 has a main body portion 2 made of a thermoplastic resin foam and a back surface side (also referred to as a non-design surface side) of the main body portion 2. It is provided with a reinforcing rib 3 formed in. If the thermoplastic resin molded body 1 has a main body portion 2 and a reinforcing rib 3 formed on the back surface side of the main body portion 2, the shape and size of the main body portion 2 and the number of reinforcing ribs 3 are provided. And the arrangement location can be appropriately set according to the application of the thermoplastic resin molded product 1.
  • the main body 2 may be made of a thermoplastic resin foam, and the reinforcing rib 3 may or may not be foamed.
  • the main body 2 may have a flat plate shape or a curved plate shape having a curved surface portion. Further, it may have concave portions, convex portions and the like so as to have a desired shape according to the purpose of use and the like.
  • the thickness T1 of the main body 2 is 1.8 mm or more and 6.0 mm or less, preferably 1.8 mm or more and 5.5 mm or less, and more preferably 2.0 mm or more and 5.0 mm or less. It is possible to increase the lightness of the thermoplastic resin molded product and prevent sink marks from occurring on the surface side (also referred to as the design surface side) of the main body 2.
  • the thickness T1 of the main body portion can be obtained by arbitrarily selecting and measuring the thickness of the main body portion in which the reinforcing ribs are not formed at five points and averaging them. ..
  • the reinforcing rib 3 is not particularly limited as long as it has the effect of increasing the strength of the thermoplastic resin molded body 1. As shown in the schematic cross-sectional views (cross sections) of FIGS. 2 to 5, the root portion of the reinforcing rib 3 bulges outward, so that the joint portion between the reinforcing rib 3 and the main body 2 has a curved shape. It has become. Further, as shown in the schematic cross-sectional view (cross section) of FIG. 2, the tip portion of the reinforcing rib 3 has a radius of curvature Rb at each of both corner portions, or has a radius of curvature Rb, or FIGS. As shown in the schematic cross-sectional view (cross section), it has an arcuate shape. In FIG.
  • the tip of the reinforcing rib 3 has the shape of a true arc
  • the tip of the reinforcing rib 3 has the shape of an elliptical arc.
  • the surface impact strength of the thermoplastic resin molded product 1 at a low temperature can be increased.
  • the tip portion of the reinforcing rib 3 has an arc shape as shown in FIGS. 3 to 5.
  • the radius of curvature Ra of the joint between the reinforcing rib 3 and the main body 2 is 0.05 mm or more and 2.2 mm or less, preferably 0.05 mm or more and 2.0 mm or less, and more preferably 0.05 mm or more and 1.8 mm. It is less than or equal to, more preferably 0.1 mm or more and 1.5 mm or less, and even more preferably 0.1 mm or more and 1.3 mm or less.
  • the radius of curvature Ra is in the above range, the surface impact strength of the thermoplastic resin molded product at a low temperature can be increased.
  • the ratio T3 / T1 of the thickness T1 of the main body and the maximum thickness T3 of the reinforcing rib 3 is larger than 0.25 and 0.75 or less, preferably 0.3 or more and 0.70 or less, and more preferably 0. It is 0.3 or more and 0.65 or less.
  • T3 / T1 is in the above-mentioned range, the weight of the thermoplastic resin molded product can be increased, and the occurrence of sink marks on the design surface can be effectively suppressed.
  • the maximum thickness T3 of the reinforcing ribs means the maximum thickness of the root portion of the reinforcing ribs.
  • the average thickness T2 of the portion of the reinforcing rib 3 excluding the tip portion and the root portion (hereinafter, also simply referred to as the average thickness T2 of the reinforcing rib 3) is not particularly limited, but for example, the low temperature of the thermoplastic resin molded product. From the viewpoint of easily increasing the surface impact strength in the above and easily suppressing the occurrence of sink marks on the design surface, it is preferably 0.2 mm or more and 4.3 mm or less, more preferably 0.2 mm or more and 4.0 mm or less, and further. It is preferably 0.2 mm or more and 3.5 mm or less.
  • the average thickness T2 of the reinforcing rib 3 can be calculated by the following mathematical formula (1).
  • T2 T3-2 x Ra (1)
  • Rb is preferably larger than 0 mm and smaller than T2 / 2.
  • the radius of curvature Rb of the corner portion is preferably 0.05 mm or more and 1.5 mm or less, more preferably 0.05 mm or more and 1.3 mm or less, and further preferably 0.1 mm or more 1 .2 mm or less.
  • the tip of the reinforcing rib 3 when the tip of the reinforcing rib 3 has a radius of curvature Rb at both corners, the tip of the reinforcing rib 3 may have a flat portion at the center. ..
  • the radius of curvature Rc of the true arc is equal to T2 / 2.
  • the radius of curvature Rc is preferably 0.05 mm or more and 2.2 mm or less, more preferably 0.05 mm or more and 2.0 mm or less, and further preferably 0.1 mm or more and 1.5 mm or less.
  • the radius of curvature Rd of the elliptical arc is the length of T2 determined by the ratio of T3 / T1 and Ra. It may be set based on an appropriately set rib height, and the angle of the elliptical arc may be an acute angle or an obtuse angle.
  • the radius of curvature Rd of the elliptical arc is, for example, preferably 0.05 mm or more and 9.5 mm or less, more preferably 0.05 mm or more and 8.0 mm or less, and preferably 0.1 mm or more and 7.0 mm or less. It is even more preferably 0.1 mm or more and 5.0 mm or less.
  • the height H of the reinforcing rib 3 is not particularly limited, and may be appropriately set according to the application of the thermoplastic resin molded body 1 and the arrangement location of the reinforcing rib 3.
  • the height H of the reinforcing rib 3 is preferably 2 mm or more and 15 mm or less, and preferably 2 mm or more and 10 mm or less. More preferably, it is 2 mm or more and 7 mm or less.
  • the ratio H / T2 of the height H of the reinforcing rib 3 to the average thickness T2 of the reinforcing rib 3 is preferably 0.4 or more and 75 or less, preferably 0.5 or more, from the viewpoint of achieving both weight reduction and strength reinforcement. It is more preferably 50 or more, more preferably 1.0 or more and 35 or less, particularly preferably 1.5 or more and 20 or less, and further particularly preferably 2.0 or more and 10 or less.
  • the reinforcing ribs 3 may be formed on the non-design surface side of the thermoplastic resin molded body 1, and the number and specific arrangement locations thereof are appropriately set according to the application of the thermoplastic resin molded body 1 and the like. do it. From the viewpoint of enhancing the reinforcing effect, the reinforcing rib 3 preferably has an elongated plate shape in which the longitudinal direction is arranged along the longitudinal direction of the thermoplastic resin molded body 1.
  • the length (length in the longitudinal direction) of the reinforcing rib 3 is not particularly limited, and is appropriately adjusted according to the length of the thermoplastic resin molded body, for example, the resin part requiring reinforcement and the required degree of reinforcement.
  • the length is equal to that of the resin component.
  • the thermoplastic resin molded body is a resin part for automobile use
  • the thermoplastic resin molded body is usually provided with a clip seat for joining with a metal chassis, and is used for reinforcement at a place where stress is applied during attachment / detachment.
  • the ribs may be set preferentially. From the viewpoint of further increasing the surface impact strength immediately below the reinforcing rib 3 at a low temperature and its surroundings, the widthwise spacing between adjacent reinforcing ribs is set based on the spread of the stress distribution when an impact is applied. Is preferable.
  • the widthwise distance between adjacent reinforcing ribs is preferably 3 mm or more and 20 mm or less, more preferably 5 mm or more and 15 mm or less, and further preferably 5 mm or more and 10 mm or less.
  • the length (length in the longitudinal direction) of the thermoplastic resin molded product 1 is preferably 200 mm or more and 3000 mm or less, more preferably 300 mm or more and 2500 mm or less, and the width is preferably 50 mm or more and 3000 mm or less. It is more preferably 50 mm or more and 2500 mm or less. When the length and the width are the same size, one of them may be the length and the other may be the width.
  • the thermoplastic resin molded product 1 can be composed of a thermoplastic resin composition.
  • the thermoplastic resin used in the thermoplastic resin composition is not particularly limited, and for example, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene, ABS resin, acrylic resin, polyethylene terephthalate (PET).
  • General-purpose thermoplastic resins such as, polyamide (PA), polycarbonate (PC), modified polyphenylene ether (m-PPE), polybutylene terephthalate (PBT), engineering resins such as cycloolefin polymer (COP), polyphenylene sulfide (PPS), etc.
  • a polymer alloy may be used as the thermoplastic resin.
  • the polymer alloy include polyphenylene ether (PPE) -based alloys, PA-based alloys, PC-based alloys, PBT-based alloys, ABS and polyolefin alloys, and the like.
  • PPE polyphenylene ether
  • PA-based alloys PA-based alloys
  • PC-based alloys PC-based alloys
  • PBT-based alloys ABS and polyolefin alloys
  • the like examples of the PC-based alloy include an alloy of polycarbonate and ABS, an alloy of polycarbonate and thermoplastic polyester, an alloy of polycarbonate and polypropylene, and the like.
  • thermoplastic resin one type may be used alone, or two or more types may be used in combination.
  • the thermoplastic resin molded body 1 when the thermoplastic resin molded body 1 is a part for a vehicle such as an automobile, the thermoplastic resin includes polycarbonate, heat-resistant ABS resin, polycarbonate and ABS alloy (PC / ABS), and, from the viewpoint of heat resistance. It is preferable to use one or more selected from the group consisting of polycarbonate and polyethylene terephthalate alloy (PC / PET), and it is more preferable to use PC / PET.
  • PC / PET polyethylene terephthalate alloy
  • thermoplastic resin composition is a polycarbonate resin composition containing a polycarbonate resin such as polycarbonate, an alloy of polycarbonate and ABS (PC / ABS), and an alloy of polycarbonate and polyethylene terephthalate (PC / PET), the above.
  • the polycarbonate-based resin composition preferably contains heat-expandable microcapsules as a foaming agent from the viewpoint of improving the appearance of the thermoplastic resin molded product, and more preferably a master batch containing the heat-expandable microcapsules. It is preferable to include it.
  • the master batch for example, one containing a heat-expandable microcapsule and a carrier resin composition can be used.
  • the heat-expandable microcapsules are capsule-shaped foaming agents in which a liquid low boiling point compound is wrapped in a thermoplastic polymer shell, and are vaporized by heating during molding such as heating in a cylinder of an injection molding machine.
  • the pressure of the inflated capsule functions as a foaming agent.
  • the heat-expandable microcapsules for example, those described in Japanese Patent Application Laid-Open No. 2011-16884 may be preferably used.
  • the heat-expandable microcapsules have a core-shell structure, the core is composed of one or more compounds having a boiling point of 10 ° C. or higher and 330 ° C. or lower, and the shell contains the core and is thermoplastic. It is preferably composed of a resin.
  • the core may be composed of one or more selected from compounds having a boiling point of 10 ° C. or higher and 330 ° C. or higher.
  • the compound constituting the core is not particularly limited, and examples thereof include hydrocarbons, alcohols, ketones and the like. Hydrocarbons are not particularly limited, but for example, pentane, hexane, heptane, octane, nonan, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane, eikosan, and these. Examples include structural isomers of hydrocarbons.
  • the compound constituting the core is preferably one or more hydrocarbons having a boiling point of 10 ° C. or higher and 330 ° C. or lower, more preferably one or more hydrocarbons having a boiling point of 30 ° C. or higher and 280 ° C. or lower, and further. It is preferably one or more hydrocarbons having a boiling point of 30 ° C. or higher and 200 ° C. or lower.
  • a compound having a boiling point of 10 ° C. or higher it is easy to master-batch heat-expandable microcapsules.
  • a compound having a boiling point of 330 ° C. or lower the dispersibility is improved during polymerization, and it is easy to produce thermally expandable microcapsules.
  • Examples of the monomer component of the thermoplastic resin constituting the shell of the heat-expandable microcapsule include a nitrile-based monomer, a (meth) acrylate-based monomer, an aromatic vinyl-based monomer, and a diene-based monomer.
  • One or more monomers selected from the above can be used.
  • nitrile-based monomer examples include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethoxyacrylonitrile, fumaronitrile, and the like.
  • Examples of the (meth) acrylate-based monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, and 2-ethylhexyl.
  • Examples thereof include (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, phenyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, and benzyl (meth) acrylate.
  • the "(meth) acrylate” may be a methacrylate or an acrylate.
  • aromatic vinyl-based monomer examples include styrene, ⁇ -methylstyrene, vinyltoluene, t-butylstyrene, p-nitrostyrene, chloromethylstyrene and the like.
  • diene-based monomer examples include butadiene, isoprene, and chloroprene.
  • vinyl monomer having a carboxyl group examples include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, etaclilic acid, crotonic acid and silicic acid, maleic acid, itaconic acid, fumaric acid, citraconic acid and chloromalein.
  • unsaturated monocarboxylic acids such as acids and their anhydrides, monomethyl maleate, monoethyl maleate, monobutyl maleate, monomethyl fumarate, monoethyl fumarate, monomethyl itaconic acid, monoethyl itaconic acid, monobutyl itaconic acid and other unsaturated dicarboxylic acids. Examples include monoesters.
  • a monomer having one or more reactive functional groups selected from the group consisting of a methylol group, a hydroxyl group, an amino group, an epoxy group, and an isocyanate group (hereinafter, simply "a monomer having a reactive functional group”).
  • a monomer having a reactive functional group also referred to as), for example, N-methylol (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, vinyl glycidyl ether, propenyl glycidyl ether, glycidyl.
  • Examples thereof include (meth) acrylate, glycerin mono (meth) acrylate, 4-hydroxybutylbutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, p-hydroxystyrene, blocked isocyanate and the like.
  • the blocked isocyanate include phenol, alcohol, dimethyl malonate, diethyl malonate, ethyl acetoacetate, oxime, dimethylpyrazole, etc. of isocyanate compounds (diphenylmethane diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, etc.).
  • blocked isocyanates such as methyl ethyl ketone oxime and caprolactam.
  • "(meth) acrylamide” may be methacrylamide or acrylamide.
  • the thermoplastic resin constituting the shell is the above-mentioned nitrile-based monomer, (meth). It is preferable to contain at least one selected from the group consisting of an acrylate-based monomer, an aromatic vinyl-based monomer, and a vinyl-based monomer having a carboxyl group. Further, the thermoplastic resin constituting the shell may appropriately contain a chain transfer agent and a monomer having a reactive functional group.
  • the chain transfer agent may be any one used in ordinary radical polymerization and is not particularly limited.
  • a mercaptan-based compound can be used.
  • the mercaptan compound include alkyl mercaptans such as n-dodecyl mercaptan, n-octyl mercaptan, t-dodecyl mercaptan, n-octadecyl mercaptan, 2-mercaptobenzothiazole, bromtrichloromethane, ⁇ -methylstyrene dimer and thioglycol 2-Ethylhexyl acid or the like can be preferably used.
  • the heat-expandable microcapsules preferably have an average particle size (when unexpanded) of 0.5 ⁇ m or more and 50 ⁇ m or less, more preferably 0.7 ⁇ m or more and 50 ⁇ m or less, and further preferably 1.0 ⁇ m or more and 45 ⁇ m. It is less than or equal to, more preferably 1.0 ⁇ m or more and 40 ⁇ m or less, and particularly preferably 1.0 ⁇ m or more and 35 ⁇ m or less.
  • the maximum particle size of the heat-expandable microcapsules when heated is in the range of about 3 times or more and 5 times or less from the average particle size when not expanded.
  • the average particle size when not expanded is 0.5 ⁇ m or more and 50 ⁇ m or less, the particle size when expanded is approximately 1.5 ⁇ m or more and 250 ⁇ m or less, and the Charpy impact strength and surface impact strength during foaming are significantly reduced. It can be suppressed.
  • the average particle size of the heat-expandable microcapsules when not expanded can be measured with a particle size distribution measuring device, specifically, a particle size distribution measuring device SALD-3000J manufactured by Shimadzu Corporation.
  • the maximum expansion temperature (also referred to as the maximum foaming temperature) of the heat-expandable microcapsules is preferably 180 ° C. or higher and 300 ° C. or lower, more preferably 190 ° C. or higher and 290 ° C. or lower, and further preferably 200 ° C. or higher and 280 ° C. It is °C or less, and particularly preferably 210 °C or more and 270 °C or less.
  • the maximum expansion temperature of the heat-expandable microcapsules can be measured by the measuring method described in Japanese Patent No. 5484673. Specifically, "TMA measurement" is performed using a TMA-7 type manufactured by Birkin Elmer.
  • the temperature is raised at a temperature rising rate of 5 ° C./min, the displacement of the height is continuously measured, and the displacement of the height of the sample in the container is maximized.
  • the temperature of be the maximum expansion temperature.
  • the carrier resin composition is preferably substantially compatible with polycarbonate from the viewpoint of obtaining a thermoplastic resin molded product having a good appearance.
  • substantially compatible with polycarbonate means that, specifically, in differential scanning calorimetry (DSC) of a mixture of a carrier resin composition and polycarbonate, the peak of the glass transition temperature becomes one. To say.
  • the shear viscosity of the carrier resin composition at 130 ° C. is preferably 1.0 ⁇ 10 2 Pa ⁇ s or more and 1.0 ⁇ 10 6 Pa ⁇ s or less.
  • the shear viscosity of the carrier resin composition at 130 ° C. is 1.0 ⁇ 10 2 Pa ⁇ s or more and 1.0 ⁇ 10 6 Pa ⁇ s or less, the heat-expandable microcapsules are uniform in the carrier resin composition. It becomes easier to obtain master batches distributed in.
  • the shear viscosity of the carrier resin composition at 130 ° C. is preferably 1.0 ⁇ 10 3 Pa ⁇ s or more and 9.0 ⁇ 10 5 Pa ⁇ s or less.
  • the shear viscosity of the carrier resin composition at 130 ° C. can be measured using a flow tester (model CFT-500C) manufactured by Shimadzu Corporation.
  • the measurement start temperature is set to 50 ° C., and a constant load of 30 kgf is applied to the carrier resin composition to flow the carrier resin composition in a capillary having a diameter of 1.0 mm and a length of 10 mm, and the temperature is raised at 10 ° C./min to measure the temperature.
  • the shear viscosity at the time when becomes 130 ° C. is measured.
  • the carrier resin composition has a shear viscosity of 1.0 ⁇ 10 2 Pa ⁇ s or more and 1.0 at any temperature in the temperature range of 40 ° C. or more and 100 ° C. or less. It is preferably ⁇ 10 6 Pa ⁇ s or less, more preferably 1.0 ⁇ 10 3 Pa ⁇ s or more and 9.0 ⁇ 10 5 Pa ⁇ s or less, and 2.0 ⁇ 10 3 Pa ⁇ s or more 6.
  • the carrier resin composition contains polystyrene having a weight average molecular weight of 1,000 or more and less than 180,000 (hereinafter, also referred to as carrier resin composition (B1)), or the carrier resin composition is polystyrene and weight average.
  • Acrylic containing an acrylic plasticizer having a molecular weight of 1,000 or more and 20,000 or less (hereinafter, also referred to as carrier resin composition (B2)) or having a weight average molecular weight of 8,000 or more and 350,000 or less. It preferably contains a based resin and an acrylic plasticizer having a weight average molecular weight of 1,000 or more and 20,000 or less (hereinafter, also referred to as a carrier resin composition (B3)).
  • the weight average molecular weight and the number average molecular weight of the resin are measured by GPC (gel permeation chromatography).
  • Carrier resin composition (B1) contains polystyrene having a weight average molecular weight of 1,000 or more and less than 180,000. As a result, the carrier resin composition (B1) can easily satisfy the range in which the shear viscosity at 130 ° C. is 1.0 ⁇ 10 2 Pa ⁇ s or more and 1.0 ⁇ 10 6 Pa ⁇ s or less. It is preferable that the carrier resin composition (B1) does not substantially contain an acrylic plasticizer having a weight average molecular weight of 1,000 or more and 20,000 or less.
  • the carrier resin composition (B1) contains 0 parts by weight or more of an acrylic plasticizer having a weight average molecular weight of 1,000 or more and 20,000 or less with respect to 100 parts by weight of polystyrene. It means that it contains less than 3 parts by weight, preferably less than 1 part by weight.
  • polystyrene may have a weight average molecular weight of 1,000 or more and less than 180,000, and is not particularly limited.
  • the polystyrene may be a homopolymer of one kind of styrene-based monomer, or may be a copolymer of two or more kinds of styrene-based monomers. Further, it may be a copolymer of another monomer copolymerizable with the styrene-based monomer, and in that case, the repeating unit derived from styrene is contained in an amount of 50% by weight or more in all the repeating units. However, it is preferably contained in an amount of 80% by weight or more.
  • styrene-based monomer examples include styrene and styrene-based derivatives.
  • examples of the styrene derivative include methylstyrene, dimethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene, dichlorostyrene, trichlorostyrene and the like. Of these, styrene is preferable.
  • Examples of the other copolymerizable monomer include polyfunctional vinyl compounds such as divinylbenzene; acrylate, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, acrylonitrile and the like.
  • Examples thereof include (meth) acrylic compounds; diene compounds such as budadiene and derivatives thereof; unsaturated carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride. These can be used alone or in combination of two or more.
  • the polystyrene is preferably a homopolymer of styrene.
  • the weight average molecular weight of polystyrene is preferably 150,000 or less, more preferably 130,000 or less, and 100,000 or less, from the viewpoint of enhancing compatibility with polycarbonate. It is more preferably less than or equal to, even more preferably 80,000 or less, and particularly preferably 40,000 or less. Further, from the viewpoint of improving the processability of the masterbatch, the weight average molecular weight of polystyrene is preferably 2,000 or more, more preferably 5,000 or more, and preferably 10,000 or more. More preferred.
  • the polystyrene is not particularly limited, but the glass transition temperature is preferably 15 ° C. or higher and 130 ° C. or lower.
  • the glass transition temperature of the polystyrene is 15 ° C. or higher, it is easy to control the temperature of the extruder at the time of producing the masterbatch, and the workability is improved.
  • the carrier resin composition (B1) tends to have an appropriate viscosity during the production of the masterbatch, so that the heat-expandable microcapsules do not rupture. , Workability is improved.
  • Carrier resin composition (B2) contains polystyrene and an acrylic plasticizer having a weight average molecular weight of 1,000 or more and 20,000 or less.
  • polystyrene is not particularly limited, and may be a homopolymer of one kind of styrene-based monomer, or a copolymer of two or more kinds of styrene-based monomers. You may. Further, it may be a copolymer of another monomer copolymerizable with the styrene-based monomer, and in that case, the repeating unit derived from styrene is contained in an amount of 50% by weight or more in all the repeating units. However, it is preferably contained in an amount of 80% by weight or more.
  • styrene-based monomer examples include styrene and styrene-based derivatives.
  • examples of the styrene derivative include methylstyrene, dimethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene, dichlorostyrene, trichlorostyrene and the like. Of these, styrene is preferable.
  • Examples of the other copolymerizable monomer include polyfunctional vinyl compounds such as divinylbenzene; acrylate, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, acrylonitrile and the like.
  • Examples thereof include (meth) acrylic compounds; diene compounds such as budadiene and derivatives thereof; unsaturated carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride. These can be used alone or in combination of two or more.
  • the polystyrene is preferably a homopolymer of styrene.
  • the polystyrene is not particularly limited, but the glass transition temperature is preferably 15 ° C. or higher and 130 ° C. or lower.
  • the glass transition temperature of the polystyrene is 15 ° C. or higher, it is easy to control the temperature of the extruder at the time of producing the masterbatch, and the workability is improved.
  • the carrier resin composition (B2) tends to have an appropriate viscosity during the production of the masterbatch, so that the heat-expandable microcapsules do not rupture. , Workability is improved.
  • the weight average molecular weight of the polycarbonate is not particularly limited and may be, for example, 1,000 or more, but when used in combination with an acrylic plasticizer described later, the phase with the polycarbonate From the viewpoint of improving the solubility, it is preferably 180,000 or more.
  • the weight average molecular weight of polystyrene is less than 180,000, the compatibility with polycarbonate is good even if it is not used in combination with an acrylic plasticizer described later, as described in the carrier resin composition (B1).
  • the weight average molecular weight of polycarbonate is preferably 450,000 or less, more preferably 400,000 or less, still more preferably 350,000 or less.
  • Acrylic plasticizers have a weight average molecular weight of 1,000 or more and 20,000 or less. As a result, when used in combination with polystyrene, especially polystyrene with a weight average molecular weight of 180,000 or more, a carrier resin having a shear viscosity at 130 ° C. of 1.0 ⁇ 10 2 Pa ⁇ s or more and 1.0 ⁇ 10 6 Pa ⁇ s or less.
  • the composition (B2) can be easily obtained.
  • the weight average molecular weight of the acrylic plasticizer is preferably 1,000 or more and 18,000 or less, more preferably 1,000 or more and 15,000 or less, and 1,000 or more and 13,000 or less. Is even more preferable.
  • the acrylic plasticizer preferably has a viscosity at 25 ° C. of 300 mPa ⁇ s or more and 100,000 mPa ⁇ s or less, more preferably 350 mPa ⁇ s or more and 90,000 mPa ⁇ s or less, and 400 mPa ⁇ s or more and 80, It is more preferably 000 mPa ⁇ s or less.
  • the carrier resin composition (B2) having a shear viscosity at 130 ° C of 1.0 ⁇ 10 2 Pa ⁇ s or more and 1.0 ⁇ 10 6 Pa ⁇ s or less.
  • the acrylic plasticizer is preferably liquid at room temperature (20 ⁇ 5 ° C.).
  • the viscosity of the acrylic plasticizer at 25 ° C. can be measured using an E-type viscometer according to JIS Z 8803-1991.
  • acrylic plasticizer those generally known as acrylic plasticizers can be used, and it is preferable to use a non-functional acrylic plasticizer.
  • acrylic plasticizer include (meth) acrylic acid ester polymers, (meth) acrylic acid ester-aromatic vinyl monomer copolymers, and the like, and (meth) acrylic acid ester polymers are preferable.
  • the (meth) acrylic acid ester is not particularly limited, but for example, alkyl acrylates having an alkyl group having 10 or less carbon atoms such as methyl acrylate, ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate; Examples thereof include alkyl methacrylates having an alkyl group having 10 or less carbon atoms, such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, and 2-ethylhexyl methacrylate. These may be used individually by 1 type and may be used in combination of 2 or more type. Above all, it is preferable that it is at least one selected from the group consisting of methyl methacrylate, butyl methacrylate, ethyl acrylate and butyl acrylate.
  • the aromatic vinyl monomer is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, monochlorostyrene, and dichlorostyrene.
  • the (meth) acrylic acid ester polymer is a homopolymer of an acrylic acid alkyl ester, a homopolymer of a methacrylic acid alkyl ester, a copolymer of acrylic acid alkyl esters, a copolymer of methacrylic acid alkyl esters, and acrylic. Includes copolymers of acid alkyl esters and methacrylic acid alkyl esters.
  • the acrylic plasticizer is not particularly limited, but specifically, the product names "UP-1000”, “UP-1010”, “UP-1020”, “UP-1021” and “UP-1021” manufactured by Toagosei Co., Ltd.
  • a commercially available non-functional group type acrylic plasticizer such as "-1061" can be used.
  • Carrier resin composition (B3) contains an acrylic resin having a weight average molecular weight of 8,000 or more and 350,000 or less and the acrylic plasticizer.
  • the acrylic resin has a weight average molecular weight of preferably 10,000 or more and 330,000 or less, more preferably 10,000 or more and 300,000 or less, and further preferably 10,000 or more and 280,000 or less. Yes, even more preferably 14,000 or more and 330,000 or less, even more preferably 14,000 or more and 300,000 or less, even more preferably 14,000 or more and 280,000 or less, even more preferably. Is 16,000 or more and 330,000 or less, more preferably 16,000 or more and 300,000 or less, even more preferably 16,000 or more and 280,000 or less, and even more preferably 19,000 or more. It is 330,000 or less, more preferably 19,000 or more and 300,000 or less, and even more preferably 19,000 or more and 280,000 or less.
  • the acrylic resin is preferably solid at room temperature (20 ⁇ 5 ° C.) from the viewpoint of handleability.
  • the acrylic resin includes acrylic resin particles (a) having an average particle diameter of 50 ⁇ m or more and 500 ⁇ m or less, and acrylic having an average particle diameter of 0.05 ⁇ m or more and 0.5 ⁇ m or less covering the acrylic resin particles (a). It is more preferable that the acrylic resin contains the based resin particles (b).
  • the acrylic resin particles (a) may have an average particle diameter of 50 ⁇ m or more and 500 ⁇ m or less, but preferably 75 ⁇ m or more and 300 ⁇ m or less, and more preferably 100 ⁇ m or more and 250 ⁇ m or less.
  • the acrylic resin particles (a) having the above-mentioned average particle diameter can be obtained by a suspension polymerization method.
  • the average particle size of the acrylic resin particles (a) is 50 ⁇ m or more, the filterability is good, and when the average particle size is 500 ⁇ m or less, the particulate compound is uniformly mixed with the acrylic resin. be able to.
  • the average particle size of the acrylic resin particles (a) is measured using Microtrack MT3300 manufactured by Microtrack Bell Co., Ltd.
  • the acrylic resin particles (b) when the acrylic resin particles (b) coat the acrylic resin particles (a), the entire surface of the acrylic resin particles (a) may be coated with the acrylic resin particles (b). , The surface of the acrylic resin particles (a) may be partially coated with the acrylic resin particles (b).
  • the surface area of the acrylic resin particles (a) is preferably 50% or more coated with the acrylic resin particles (b), and more preferably 60% or more. When the surface area to be coated is 50% or more, the powder characteristics of the acrylic resin become good.
  • the average particle size of the acrylic resin particles (a) is preferably 3% or more and 50% or less larger than that before coating. If the change of the acrylic resin particles (a) is smaller than 3%, the acrylic resin particles (a) remain in the system, and as a result, the filterability tends to be difficult to improve. That is, the average particle size of the acrylic resin is preferably 3% or more and 50% or less larger than the average particle size of the acrylic resin particles (a).
  • the average particle size of the acrylic resin is measured using Microtrac MT3300 manufactured by Microtrac Bell Co., Ltd.
  • the acrylic resin particles (a) can be copolymerized with 30% by weight or more and 100% by weight or less of the (meth) acrylic acid ester from the viewpoint of easily controlling the dust associated with the polymer obtained by suspension polymerization.
  • the vinyl monomer is preferably composed of 0% by weight or more and 70% by weight or less. More preferably, the (meth) acrylic acid ester is composed of 70% by weight or more and 100% by weight or less, and 0% by weight or more and 30% by weight or less of a vinyl monomer copolymerizable therewith.
  • the "(meth) acrylic acid” may be methacrylic acid or acrylic acid.
  • the (meth) acrylic acid ester is not particularly limited, and is, for example, alkyl acrylates having an alkyl group having 10 or less carbon atoms such as methyl acrylate, ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate, and alkyl acrylates.
  • alkyl methacrylates having an alkyl group having 10 or less carbon atoms such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, and 2-ethylhexyl methacrylate. These may be used alone or in combination of two or more.
  • the vinyl monomer copolymerizable with the (meth) acrylic acid ester is not particularly limited, and is, for example, an aromatic vinyl monomer such as styrene, ⁇ -methylstyrene, monochlorostyrene, dichlorostyrene; acrylic acid, methacrylic acid, etc.
  • Vinyl carboxylic acid monomer Vinyl cyanide monomer such as acrylonitrile and methacrylic acid; Vinyl halide monomer such as vinyl chloride, vinyl bromide and chloroprene; Alkens such as vinyl acetate, ethylene, propylene, butylene, butadiene and isobutylene; Alkens halides; polyfunctional monomers such as allyl methacrylate, diallyl phthalate, triallyl cyanurate, monoethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, divinylbenzene, and glycidyl methacrylate. And so on. These may be used alone or in combination of two or more.
  • styrene, ⁇ -methylstyrene, acrylic acid, methacrylic acid, acrylonitrile, vinyl acetate, allyl methacrylate and methacrylic from the viewpoint of obtaining a molded product of good quality in combination with the acrylic resin particles (b).
  • One or more selected from the group consisting of glycidyl acid acid is preferable.
  • the acrylic resin particles (a) may be single or mixed polymer particles of a polymer obtained by suspension polymerization of one or more of the above-mentioned monomers, and in some cases copolymerized or graft-polymerized. Can be done.
  • an ordinary inorganic dispersant or an organic dispersant can be used as the dispersion stabilizer in suspension polymerization.
  • the inorganic dispersant include magnesium carbonate, tricalcium phosphate and the like.
  • the organic dispersant include starch, gelatin, acrylamide, partially saponified polyvinyl alcohol (PVA), partially saponified polymethyl methacrylate, polyacrylic acid, salt of polyacrylic acid, cellulose, methyl cellulose, hydroxymethyl cellulose, and hydroxy.
  • Natural polymer dispersants and synthetic polymer dispersants such as ethyl cellulose, polyalkylene oxide, polyvinyl pyrrolidone, polyvinyl imidazole, and sulfonated polystyrene, and low molecular weight dispersants such as alkylbenzene sulfonates and fatty acid salts (also referred to as emulsifiers). .) Etc. can be mentioned.
  • polymerization initiator in suspension polymerization examples include peroxides such as benzoyl peroxide and lauroyl peroxide, and azo compounds such as azobisisobutyronitrile.
  • a chain transfer agent may be used for adjusting the molecular weight.
  • the chain transfer agent those listed in the description of the heat-expandable microcapsules can be used.
  • the amount of the dispersion stabilizer, the polymerization initiator and the chain transfer agent added may be appropriately set according to the physical properties of the monomer to be used and the target suspended polymer particles (acrylic resin particles (a)). it can.
  • the method for producing the suspended polymer particles is not particularly limited, and any generally usable method can be used.
  • a method in which a monomer or a monomer mixture is suspended in water and the polymerization reaction is carried out as it is, or a part of the monomer or the monomer mixture is suspended in water to start the polymerization reaction and the polymerization reaction is carried out.
  • a method of carrying out the polymerization reaction by dividing the aqueous suspension of the remaining monomer or monomer mixture into one or several stages or continuously adding it to the polymerization reaction tank as the process progresses.
  • a part of the monomer mixture is suspended in water to start the polymerization reaction, and as the polymerization reaction progresses, the remaining monomer or the monomer mixture is divided into one stage or several stages, or continuously. Examples thereof include a method of carrying out a polymerization reaction by adding it to a polymerization reaction tank.
  • the method of adding the polymerization initiator and the chain transfer agent is not particularly limited, but after dissolving both the polymerization initiator and the chain transfer agent in the monomer, the monomer is suspended in water and the polymerization reaction is carried out as it is.
  • the method to be carried out is preferable.
  • the time required for polymerization varies depending on the type and amount of the polymerization initiator, the polymerization temperature and the like, but is usually 1 to 24 hours. Further, it is also possible to add additives such as a plasticizer, a lubricant, a stabilizer and an ultraviolet absorber to the monomer during suspension polymerization, if necessary.
  • the acrylic resin particles (b) may have an average particle diameter of 0.05 ⁇ m or more and 0.5 ⁇ m or less, but preferably 0.06 ⁇ m or more and 0.3 ⁇ m or less.
  • the acrylic resin particles (b) having the above-mentioned average particle diameter can be obtained by an emulsion polymerization method. When the average particle size of the acrylic resin particles (b) is within the above-mentioned range, the processability at the time of molding the acrylic resin and the impact strength and transparency of the obtained molded product tend to be improved.
  • the average particle size of the acrylic resin particles (b) is measured using Microtrack MT3300 manufactured by Microtrack Bell Co., Ltd.
  • the acrylic resin particles (b) are preferably composed of 30% by weight or more and 100% by weight or less of the (meth) acrylic acid ester, and 0% by weight or more and 70% by weight or less of the vinyl monomer copolymerizable therewith.
  • Monomer mixture (b2) containing 90% by weight or less, 0% by weight or more and 25% by weight or less of vinyl cyanide monomer, and 0% by weight or more and 20% by weight or less of vinyl monomer copolymerizable with these, 10 parts by weight or more and 50% by weight. More preferably, the part or less of the polymer particles is polymerized, and the total of the latex particles (b1) and the monomer mixture (b2) is 100 parts by weight.
  • the (meth) acrylic acid ester constituting the acrylic resin particles (b) is not particularly limited, and for example, the (meth) acrylic acid ester listed at the time of explaining the acrylic resin particles (a) may be appropriately used. it can.
  • the aromatic vinyl monomer, vinyl cyanide monomer, polyfunctional monomer, and other copolymerizable vinyl monomer constituting the acrylic resin particles (b) are not particularly limited, and for example, the acrylic resin particles ( Those listed at the time of the explanation of a) can be appropriately used.
  • the acrylic resin particles (b) are more preferably methyl methacrylate in an amount of 50% by weight or more and 95% by weight or less, and 5% by weight or more and 50% by weight or less of a methacrylate ester having an alkyl group having 2 or more and 8 or less carbon atoms. 70 parts by weight or more and 95 parts by weight or less of latex particles (b1) obtained by emulsifying and polymerizing a monomer mixture (a) containing 0% by weight or more and 20% by weight or less of a copolymerizable vinyl monomer, and acrylic acid ester and methyl methacrylate.
  • the monomer mixture (b2) containing% or more and 20% by weight or less is an emulsified polymer particle obtained by graft-polymerizing 5 parts by weight or more and 30 parts by weight or less, and the total of the latex particles (b1) and the monomer mixture (b2) is It is 100 parts by weight.
  • methyl methacrylate is 50% by weight or more and 95% by weight or less, 5% by weight or more and 50% by weight or less of a methacrylate ester having an alkyl group having 2 or more and 8 or less carbon atoms, and 0 weight of vinyl monomer copolymerizable with these.
  • a monomer mixture containing% or more and 20% by weight or less (I) of 70 parts by weight or more and 95 parts by weight or less is emulsified and polymerized, and in the presence of the obtained polymer latex, acrylate and methacrylic acid excluding methyl methacrylate
  • the total of is preferably 100 parts by weight.
  • the acrylic resin particles (b) are more preferably methyl methacrylate 40% by weight or more and 99.99% by weight or less, vinyl monomer copolymerizable with them 0% by weight or more and 59.99% by weight or less, and a polyfunctional monomer.
  • Monomer mixture containing 0.01% by weight or more and 10% by weight or less (III) 10 parts by weight or more and 60 parts by weight or less of the first-stage polymer polymerized, and alkyl acrylate 60% by weight or more and 99.9% by weight or less, 40 parts by weight or more and 90 parts by weight or less of a monomer mixture (IV) containing 0% by weight or more and 39.9% by weight or less of a vinyl monomer copolymerizable with these and 0.1% by weight or more and 5% by weight or less of a polyfunctional monomer.
  • the second-stage polymer particles (latex particles (b1)) having a total of 100 parts by weight of the monomer mixture (III) and the monomer mixture (IV) obtained by polymerizing the above and (meth).
  • Emulsified polymer particles obtained by polymerizing 11 parts by weight or more and 67 parts by weight or less of a monomer mixture containing 60% by weight or more and 100% by weight or less of an acrylic acid ester and 0% by weight or more and 40% by weight or less of a vinyl monomer copolymerizable therewith.
  • a monomer mixture containing 60% by weight or more and 100% by weight or less of an acrylic acid ester and 0% by weight or more and 40% by weight or less of a vinyl monomer copolymerizable therewith.
  • the alkyl acrylate is 60% by weight or more and 99.9% by weight. 40 parts by weight or more of the monomer mixture (IV) containing 0% by weight or more and 39.9% by weight or less of the vinyl monomer copolymerizable with these and 0.1% by weight or more and 5% by weight or less of the polyfunctional monomer.
  • the second-stage polymer latex was obtained by emulsion polymerization of parts by weight or less, and the total of the monomer mixture (III) and the monomer mixture (IV) was 100 parts by weight, and the obtained second-stage polymer latex was obtained.
  • the solid content (latex particles (b1)) 60% by weight or more and 100% by weight or less of the (meth) acrylic acid ester and 0% by weight or more and 40% by weight or less of the vinyl monomer copolymerizable with these.
  • the latex particles (b1) preferably have a glass transition temperature of 0 ° C. or lower, more preferably ⁇ 30 ° C. or lower.
  • the glass transition temperature of the latex particles (b1) is 0 ° C. or lower, the impact resistance of the injection foam molded product tends to be improved.
  • the acrylic resin preferably contains 22 parts by weight or more and 100 parts by weight or less, and 25 parts by weight or more and 100 parts by weight or less of the acrylic resin particles (b) with respect to 100 parts by weight of the acrylic resin particles (a). Is more preferable, and it is further preferable to include 30 parts by weight or more and 100 parts by weight or less. If the amount of the acrylic resin particles (b) is less than 22 parts by weight with respect to 100 parts by weight of the acrylic resin particles (a), the filterability may not be improved. Further, when the acrylic resin particles (b) exceed 100 parts by weight with respect to 100 parts by weight of the acrylic resin particles (a), the water content of the acrylic resin after dehydration may increase.
  • the acrylic resin is not particularly limited, but can be produced, for example, as follows. First, a suspension containing acrylic resin particles (a) is prepared by suspension polymerization, and an emulsion polymerization latex containing acrylic polymer particles (b) is prepared by emulsion polymerization. Next, the suspension and the emulsion-polymerized latex are mixed. Next, the solid content concentration (total concentration of the acrylic polymer particles (a) and the acrylic polymer particles (b)) in the obtained mixed suspension is adjusted to 25% by weight or more and 35% by weight or less.
  • an aqueous electrolyte solution was added to the mixed suspension in which the solid content was adjusted at a temperature equal to or lower than the Vicat softening temperature of the acrylic polymer particles (b), and the temperature was higher than the Vicat softening temperature of the acrylic polymer particles (b).
  • the acrylic resin is recovered by solid-liquid separation.
  • the method of mixing the suspension containing the acrylic resin particles (a) obtained by suspension polymerization and the emulsion polymerization latex containing the acrylic polymer particles (b) obtained by emulsion polymerization is carried out under stirring. It is preferable to add the emulsion-polymerized latex to the suspension, or to add the suspension to the emulsion-polymerized latex with stirring.
  • the solid content ratio of the suspension containing the acrylic resin particles (a) and the emulsion polymerized latex containing the acrylic polymer particles (b) was 100 parts by weight of the acrylic resin particles (a).
  • the particles (b) are preferably 22 parts by weight or more and 100 parts by weight or less, more preferably 25 parts by weight or more and 100 parts by weight or less, and further preferably 30 parts by weight or more and 100 parts by weight or less.
  • the amount of the acrylic polymer particles (b) is 22 parts by weight or more with respect to 100 parts by weight of the acrylic resin particles (a)
  • the residual acrylic resin particles (b) in the system are reduced, and as a result, filtration is performed. Easy to improve sex.
  • the amount of the acrylic polymer particles (b) is 100 parts by weight or less with respect to 100 parts by weight of the acrylic resin particles (a)
  • the water content of the obtained acrylic resin after dehydration becomes low.
  • the solid content concentration of the suspension and the emulsion polymerization latex is not particularly limited, and the emulsion polymerization latex or the suspension polymerization suspension obtained by a normal polymerization operation can be used. It is most convenient and preferable to use it as it is in terms of production.
  • the solid content concentration (concentration of acrylic resin particles (a)) of the suspension containing the acrylic resin particles (a) is preferably 25% by weight or more and 55% by weight or less, and 30% by weight or more and 45% by weight. It is more preferably 33% by weight or more and 45% by weight or less, and particularly preferably 35% by weight or more and 40% by weight or less.
  • the solid content concentration of the emulsion polymerized latex containing the acrylic resin particles (b) is preferably 25% by weight or more and 55% by weight or less, and 25% by weight or more and 45% by weight or less. It is more preferably 30% by weight or more and 45% by weight or less, and particularly preferably 30% by weight or more and 40% by weight or less.
  • the temperature at the time of mixing is preferably 5 ° C. or higher, and if it is lower than 5 ° C., the amount of utility used in the subsequent heat treatment operation becomes large, which tends to be unfavorable.
  • the solid content concentration (concentration of polymer particles) in the mixed suspension when the aqueous electrolyte solution is added is preferably 25% by weight or more and 35% by weight or less, and is 27% by weight or more and 33% by weight or less. Is more preferable.
  • concentration of the polymer particles (solid content) in the mixed suspension when the aqueous electrolyte solution is added is 25% by weight or more, the particles in the mixed suspension after the aqueous electrolyte solution is added and heat-treated. The formation of micro-aggregates having a diameter of 50 ⁇ m or less is suppressed, the filterability is improved, and the water content of the acrylic resin after dehydration is lowered.
  • the concentration of the polymer particles in the mixed suspension when the aqueous electrolyte solution is added is 35% by weight or less, the formation of secondary aggregated particles via the acrylic resin particles (b) is suppressed, and the acrylic After dehydration of the based resin, the water content becomes low.
  • the acrylic resin particles (b) which are emulsified polymer particles are coagulated (precipitated) on the surface of the acrylic resin particles (a) which are suspension polymer particles, and the surface of the acrylic resin particles (a) is formed. Cover.
  • the addition of the aqueous electrolyte solution needs to be carried out after mixing the suspension polymerization suspension and the emulsion polymerization latex.
  • an aqueous solution of an organic acid, an organic acid salt, an inorganic acid, and an inorganic salt having a property of coagulating and coagulating acrylic resin particles (b) can be appropriately used.
  • the electrolyte aqueous solution include sodium chloride, potassium chloride, lithium chloride, sodium bromide, potassium bromide, lithium bromide, potassium iodide, sodium iodide, potassium sulfate, sodium sulfate, ammonium sulfate, ammonium chloride, and sodium nitrate.
  • aqueous solutions of inorganic salts such as sodium chloride, potassium chloride, sodium sulfate, ammonium chloride, calcium chloride, magnesium chloride, magnesium sulfate, barium chloride, ferrous chloride, aluminum sulfate, potassium myoban, iron myoban, etc.
  • An aqueous solution of inorganic acids such as hydrochloric acid, sulfuric acid and nitrate can be preferably used.
  • the concentration of the aqueous electrolyte solution is preferably 0.001% by weight or more, more preferably 0.1% by weight or more, still more preferably 1% by weight or more. If the concentration of the aqueous electrolyte solution is less than 0.001% by weight, it is necessary to add a large amount of the aqueous electrolyte solution in order to coagulate the acrylic resin particles (b), and the amount of utility used in the subsequent heat treatment operation is large. There is a risk of becoming.
  • the addition of the aqueous electrolyte solution needs to be carried out at a temperature equal to or lower than the Vicat softening temperature of the acrylic resin particles (b). If the temperature of the mixed suspension exceeds the Vicat softening temperature of the acrylic resin particles (b) when the electrolyte aqueous solution is added, the shape of the resulting acrylic resin may be distorted and the water content after dehydration may increase, resulting in unsolidification. Acrylic resin particles (b) tend to remain and cause extreme deterioration of filterability, and agglomeration between acrylic resins tends to occur frequently.
  • the rate of addition of the aqueous electrolyte solution is extremely high, or the concentration of the aqueous electrolyte solution is extremely high, a significant increase in viscosity is observed when the aqueous electrolyte solution is added.
  • an operation may be performed to reduce the viscosity of the system to such an extent that the normal stirring state can be maintained, such as adding water to the system as appropriate.
  • the amount of the aqueous electrolyte solution naturally varies depending on the ratio of the acrylic resin particles (b) in the mixed suspension, but it is sufficient to add an amount or more so that the unsolidified acrylic resin particles (b) do not exist after the heat treatment.
  • the aqueous electrolyte solution After adding the aqueous electrolyte solution to the mixed suspension, if the aqueous electrolyte solution is an acidic aqueous solution and the mixed suspension after granulation is acidic, neutralize it with an alkali such as sodium hydroxide, or the aqueous electrolyte solution is medium.
  • a acidic aqueous solution it is preferable to heat-treat the acrylic polymer particles (b) at a temperature higher than the Vicat softening temperature, for example, 50 to 120 ° C.
  • the agglomerates of the acrylic polymer particles (b) coating the surface of the acrylic polymer particles (a) are densified, and the water content of the obtained acrylic resin is lowered. Then, dehydration and drying are carried out according to a conventional method to obtain an acrylic resin.
  • the masterbatch preferably contains the heat-expandable microcapsules in an amount of 30% by weight or more and 80% by weight or less, more preferably 30% by weight or more and 70% by weight or less, and further preferably 30% by weight or more and 60% by weight or less. ..
  • the masterbatch preferably contains the carrier resin composition in an amount of 20% by weight or more and 70% by weight or less, more preferably 30% by weight or more and 70% by weight or less, and further preferably. Includes 40% by weight or more and 70% by weight or less.
  • the masterbatch contains the carrier resin composition (B1)
  • the carrier resin composition (B1) is concrete from the viewpoints of compatibility with polycarbonate, shear viscosity at 130 ° C., handleability, storage stability, dispersibility in the base resin, and the like. It is preferable that the heat-expandable microcapsules are contained in an amount of 30% by weight or more and 80% by weight or less, the carrier resin composition (B1) is preferably contained in an amount of 20% by weight or more and 70% by weight or less, and the heat-expandable microcapsules are contained in an amount of 30% by weight or more.
  • the carrier resin composition (B1) % To 70% by weight, more preferably 30% by weight or more and 70% by weight or less of the carrier resin composition (B1), and 30% by weight or more and 60% by weight or less of the heat-expandable microcapsules, the carrier resin composition ( It is more preferable to contain B1) in an amount of 40% by weight or more and 70% by weight or less.
  • the heat-expandable microcapsules are 30% by weight or more and 80% by weight or less, the polystyrene is 15% by weight or more and 40% by weight or less, and the acrylic plasticizer.
  • the agent is contained in an amount of 5% by weight or more and 30% by weight or less.
  • the masterbatch contains 30% by weight or more and 80% by weight or less of the heat-expandable microcapsules, 12% by weight or more and 45% by weight or less of the polystyrene, and 8% by weight or more and 25% by weight of the acrylic plasticizer. Including the following.
  • the masterbatch contains 30% by weight or more and 80% by weight or less of the heat-expandable microcapsules, 12% by weight or more and 50% by weight or less of the polystyrene, and 8% by weight or more and 20% by weight or less of the acrylic plasticizer.
  • the master batch contains 30% by weight or more and 80% by weight or less of the heat-expandable microcapsules, 12% by weight or more and 55% by weight or less of the polystyrene, and 8% by weight or more and 15% by weight or less of the acrylic plastic agent. Including.
  • the heat-expandable microcapsules are 30% by weight or more and 80% by weight or less
  • the acrylic resin is 15% by weight or more and 40% by weight or less
  • the acrylic Contains 5% by weight or more and 30% by weight or less of the plasticizer.
  • the blending amount of the acrylic plasticizer is 5% by weight or more, the low shearing effect is likely to be exhibited at the time of producing the master batch, and the capsule can be prevented from breaking.
  • the blending amount of the acrylic plasticizer is 30% by weight or less, the increase in the amount of thermal decomposition of the plasticizer with respect to the temperature at the time of foam molding is suppressed, and the appearance is prevented from being adversely affected. ..
  • the masterbatch contains 30% by weight or more and 80% by weight or less of the heat-expandable microcapsules, 12% by weight or more and 45% by weight or less of the acrylic resin, and 8% by weight or more and 25% by weight of the acrylic plasticizer. Includes less than% by weight. More preferably, the masterbatch contains 30% by weight or more and 80% by weight or less of the heat-expandable microcapsules, 12% by weight or more and 50% by weight or less of the acrylic resin, and 8% by weight or more and 20% by weight of the acrylic plasticizer. Including% or less.
  • the masterbatch contains 30% by weight or more and 80% by weight or less of the heat-expandable microcapsules, 12% by weight or more and 55% by weight or less of the acrylic resin, and 8% by weight or more and 15% by weight of the acrylic plasticizer. Including% or less.
  • the content of the masterbatch may be appropriately set according to the expansion ratio of the final product, the type of foaming agent, the resin temperature at the time of molding, and the like.
  • the content of the masterbatch in the polycarbonate resin composition is preferably 1% by weight or more and 15% by weight or less, more preferably 2% by weight or more and 15% by weight or less, and particularly preferably 3% by weight or more and 10% by weight or less.
  • the polycarbonate is a polycarbonate derived from a compound having two phenolic hydroxyl groups (hereinafter referred to as divalent phenol), and is usually obtained by a reaction between divalent phenol and phosgen or divalent phenol and carbonic acid diester. Use resin.
  • divalent phenol examples include biphenol, methylene bisphenol (bisphenol F), bis (4-hydroxyphenyl) sulfone (bisphenol S), 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) and the like. Of these, bisphenol A is preferable, but is not limited thereto.
  • the polycarbonate preferably has a number average molecular weight of 10,000 or more and 60,000 or less, and more preferably 10,000 or more and 30,000 or less. ..
  • the content of polycarbonate in the polycarbonate resin composition is preferably 30% by weight or more and 99% by weight or less, more preferably 30% by weight or more and 80% by weight or less, and further preferably 30% by weight or more and 70% by weight or less.
  • the polycarbonate-based resin composition further comprises a polyester-based resin, a polyester-polyether copolymer, an acrylonitrile-butadiene-styrene copolymer, an acrylonitrile-ethylene-propylene-diene-styrene copolymer, and an acrylate-styrene-acrylonitrile. It may contain one or more other thermoplastic resins selected from the group consisting of polymers, acrylonitrile-styrene copolymers, polyarylate resins, polystyrene resins, and polyamide resins.
  • the polyester-based resin includes amorphous thermoplastic polyester-based resins such as amorphous aliphatic polyester, amorphous semi-aromatic polyester, and amorphous total aromatic polyester, crystalline aliphatic polyester, and crystalline semi-aromatic.
  • a crystalline thermoplastic polyester resin such as polyester or crystalline total aromatic polyester
  • a liquid crystal thermoplastic polyester resin such as liquid crystal aliphatic polyester, liquid crystal semi-aromatic polyester, or liquid crystal total aromatic polyester. Can be done.
  • the crystalline thermoplastic polyester include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polybutylene naphthalate, poly1,4-cyclohexylene methylene terephthalate, and polyethylene-1,2. Crystalline of -bis (phenoxy) ethane-4,4'-dicarboxylate, polyethylene isophthalate / terephthalate, polybutylene terephthalate / isophthalate, polybutylene terephthalate / decandicarboxylate, polycyclohexanedimethylene terephthalate / isophthalate, etc. Examples thereof include copolymerized polyester.
  • polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polybutylene naphthalate, poly1,4-cyclohexylene methylene terephthalate and the like are preferably used.
  • the content of the thermoplastic polyester resin in the polycarbonate resin composition is preferably 60% by weight or less, more preferably 50% by weight or less, from the viewpoint of improving the appearance of the injection foam molded product. , 40% by weight or less is more preferable.
  • the polyester-polyester copolymer preferably contains an aromatic polyester unit and a polyether unit.
  • the polyether unit is represented by, for example, the following general formula (1), general formula (2), general formula (3), general formula (4), general formula (5) and general formula (6). Can be mentioned. Among these, those represented by the following general formula (6) are preferable.
  • -A- is -O-, -S-, -SO-, -SO 2- , -CO-, an alkylene group having 1 to 20 carbon atoms, or an alkylidene having 6 to 20 carbon atoms. It is a group.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are hydrogen atoms, halogen atoms, or monovalent hydrocarbon groups having 1 to 5 carbon atoms, respectively.
  • R 9 and R 10 are divalent hydrocarbon groups having 1 to 5 carbon atoms, respectively.
  • m and n indicate the number of repeating units of the oxyalkylene unit, and m and n are integers of 0 to 70, respectively, and 10 ⁇ m + n ⁇ 70.
  • R 1 , R 2 , R 3 , and R 4 are hydrogen atoms, halogen atoms, or monovalent hydrocarbon groups having 1 to 5 carbon atoms, respectively.
  • R 9 and R 10 are divalent hydrocarbon groups having 1 to 5 carbon atoms, respectively.
  • m and n indicate the number of repeating units of the oxyalkylene unit, and m and n are integers of 0 to 70, respectively, and 10 ⁇ m + n ⁇ 70.
  • R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are hydrogen atoms, halogen atoms, or monovalent hydrocarbon groups having 1 to 5 carbon atoms, respectively. .. R 9 and R 10 are divalent hydrocarbon groups having 1 to 5 carbon atoms, respectively.
  • m and n indicate the number of repeating units of the oxyalkylene unit, and m and n are integers of 0 to 70, respectively, and 10 ⁇ m + n ⁇ 70.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are hydrogen atoms, halogen atoms, or monovalents having 1 to 5 carbon atoms, respectively. It is a hydrocarbon group of.
  • R 9 and R 10 are divalent hydrocarbon groups having 1 to 5 carbon atoms, respectively.
  • m and n indicate the number of repeating units of the oxyalkylene unit, and m and n are integers of 0 to 70, respectively, and 10 ⁇ m + n ⁇ 70.
  • R 9 is a divalent hydrocarbon group having 1 to 5 carbon atoms.
  • m indicates the number of repeating units of the oxyalkylene unit, and m is an integer of 2 to 70.
  • n and n indicate the number of repeating units of the oxyalkylene unit, and m and n are integers of 0 to 50, respectively, and 10 ⁇ m + n ⁇ 50.
  • the aromatic polyester unit is an alternating polycondensate composed of an aromatic dicarboxylic acid or an aromatic dicarboxylic acid ester and a diol.
  • the aromatic polyester unit include polyalkylene terephthalate units such as polyethylene terephthalate, polypropylene terephthalate and polybutylene terephthalate; and polyalkylene naphthalate units such as polyethylene naphthalate, polypropylene naphthalate and polybutylene naphthalate.
  • the polyalkylene terephthalate unit is preferable, and the polyethylene terephthalate unit is more preferable.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid and the like. Of these, terephthalic acid is preferable.
  • aromatic dicarboxylic acid ester examples include dialkyl esters of the aromatic dicarboxylic acid.
  • other aromatic oxycarboxylic acids such as oxybenzoic acid, and aliphatic or alicyclic dicarboxylic acids such as adipic acid, sebatic acid, and cyclohexane 1,4-dicarboxylic acid are used in combination. May be.
  • the diol is, for example, a glycol having 2 or more and 10 or less carbon atoms such as ethylene glycol, trimethylene glycol, tetramethylene glycol, hexanediol, decanediol, and cyclohexanedimethanol.
  • the logarithmic viscosity (IV value) at 0.5 g / dl is preferably 0.3 or more and 1.0 or less.
  • the method for producing the polyester-polyether copolymer is not particularly limited, but is (1) a direct transesterification method in which an aromatic dicarboxylic acid, a diol and a polyether are reacted, and (2) an aromatic dicarboxylic acid dialkyl ester and a diol. , And a method of transesterification in which polyethers are reacted, (3) a method of adding a modified polyether during or after transesterification of an aromatic dicarboxylic acid dialkyl ester and a diol to carry out polycondensation, (4) a polymer. Examples thereof include a method in which the aromatic polyester of No. 1 is mixed with polyether and then transesterified under melting and reduced pressure.
  • the content of the polyester-polyester copolymer in the polycarbonate resin composition is preferably 0 to 60% by weight, preferably 0 to 50% by weight, from the viewpoint of improving the appearance of the injection foam molded product. More preferably, it is more preferably 0 to 40% by weight.
  • the acrylonitrile-butadiene-styrene copolymer is preferably contained in an amount of 50% by weight or less based on 100% by weight of the polycarbonate resin composition, and a more preferable range is 40. By weight% or less, a more preferable range is 30% by weight or less.
  • the content of butadiene in the acrylonitrile-butadiene-styrene copolymer may be 10% by weight or more and 30% by weight or less.
  • acrylonitrile-butadiene-styrene copolymer As the acrylonitrile-butadiene-styrene copolymer, a part of styrene in the acrylonitrile-butadiene-styrene copolymer is replaced with ⁇ -methylstyrene to improve the heat resistance as compared with the usual acrylonitrile-butadiene-styrene copolymer.
  • Acrylonitrile-butadiene-styrene copolymer modified with phenylmaleimide or the like can also be appropriately used as it has improved heat resistance.
  • the master batch is 1 from the viewpoint of effectively suppressing whitening of the surface of the injection foamed molded product and improving the appearance.
  • the polycarbonate resin composition may further contain an inorganic compound in order to improve the flexural rigidity and dimensional stability of the injection foam molded product.
  • the inorganic compound is selected from the group consisting of mica, talc, montmorillonite, sericite, kaolin, glass flakes, plate-like alumina, synthetic hydrotalcite, wallastnite, hollow glass balloon, carbon fiber, aramid fiber, and whiskers.
  • mica, talc, montmorillonite, cericite, kaolin, glass flakes, hollow glass beads, and carbon fibers are more preferable, and impact resistance, from the viewpoint of bending rigidity improving effect and dispersibility in polycarbonate resin.
  • Mica, talc, glass flakes and wallastnite are more preferred from the standpoint of balancing fluidity and product appearance.
  • the content of the inorganic compound is preferably 5% by weight or more and 45% by weight or less, preferably 5% by weight or more and 35% by weight or less in the polycarbonate resin composition from the viewpoint of impact resistance, heat resistance, rigidity, moldability and the like. Is more preferable, and 5% by weight or more and 25% by weight or less is further preferable.
  • the polycarbonate resin composition may further contain an impact resistance modifier in order to further improve the impact resistance of the injection foam molded product.
  • an impact resistance improving agent one or more selected from the group consisting of a multi-stage graft polymer, a polyolefin-based polymer, an olefin-unsaturated carboxylic acid ester copolymer, and a thermoplastic polyester-based elastomer is preferable.
  • the multi-stage graft polymer is a rubber-like polymer obtained by graft-polymerizing a vinyl-based monomer.
  • the rubber-like polymer preferably has a glass transition temperature of 0 ° C. or lower, more preferably ⁇ 40 ° C. or lower.
  • Specific examples of such rubber-like polymers include diene rubbers such as polybutadiene, butadiene-styrene copolymer, butadiene-acrylic acid ester copolymer, and butadiene-acrylonitrile copolymer, butyl polyacrylate, and poly.
  • Acrylic rubber such as 2-ethylhexyl acrylate, dimethylsiloxane-butyl acrylate rubber, silicon-based / butyl acrylate composite rubber, olefin-based rubber such as ethylene-propylene copolymer, ethylene-propylene-diene copolymer, polydimethyl
  • olefin-based rubber such as ethylene-propylene copolymer, ethylene-propylene-diene copolymer, polydimethyl
  • siloxane-based rubbers and dimethylsiloxane-diphenylsiloxane copolymer-based rubbers examples of the butadiene-acrylic acid ester copolymer include a butadiene-butyl acrylate copolymer and a butadiene-acrylic acid diethylhexyl copolymer.
  • polybutadiene, butadiene-styrene copolymer, and butadiene-butyl acrylate copolymer are preferably used.
  • the butadiene-butyl acrylate copolymers a copolymer of 50 to 70% by weight of butyl acrylate and 30 to 50% by weight of butadiene is preferable from the viewpoint of weather resistance and impact resistance.
  • the average particle size of the rubber-like polymer is not particularly limited, but it is preferably in the range of 0.05 ⁇ m or more and 2.00 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 0.4 ⁇ m or less.
  • the gel content is also not particularly limited, but those in the range of 10% by weight or more and 99% by weight or less, and further 80% by weight or more and 96% by weight or less are preferably used.
  • Examples of the vinyl-based monomer used in the production of the multi-stage graft polymer include aromatic vinyl monomer, vinyl cyanide monomer, (meth) acrylic acid ester and the like. One of these may be used alone, or two or more thereof may be used in combination.
  • aromatic vinyl monomer, the cyanide vinyl monomer, and the (meth) acrylic acid ester those listed at the time of the description of the acrylic resin particles (a) can be appropriately used.
  • the multistage graft polymer is 10 weights of one or more rubber-like polymers selected from the group consisting of polybutadiene, butadiene-styrene copolymer, butadiene-acrylic acid ester copolymer, and polyorganosiloxane. % To 90% by weight, and one or more vinyl-based monomers selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth) acrylic acid ester compounds in the presence of the rubbery polymer. It is preferable that the graft component is composed of 10% by weight or more and 90% by weight or less of the graft component composed of the polymer obtained by polymerizing. It is particularly preferable to use a multi-stage graft polymer produced by using an organophosphorus emulsifier.
  • the rubber-like polymer when the total amount of the rubber-like polymer and the vinyl-based monomer is 100% by weight, the rubber-like polymer is 10% by weight or more and 90% by weight or less, vinyl. It is preferable that the based monomer is 10% by weight or more and 90% by weight or less, the rubber-like polymer is 30% by weight or more and 85% by weight or less, and the vinyl-based monomer is 15% by weight or more and 70% by weight or less. If the proportion of the rubber-like polymer is less than 10% by weight, the impact resistance tends to decrease, while if it exceeds 90% by weight, the heat resistance tends to decrease.
  • the amount of the impact-resistant modifier is preferably 0% by weight or more and 20% by weight or less, preferably 0% by weight, in the polycarbonate-based resin composition from the viewpoint of impact resistance, heat resistance, rigidity, moldability, and the like. It is more preferably 15% by weight or more, and further preferably 0% by weight or more and 10% by weight or less.
  • the polycarbonate-based resin composition is further added with a flame retardant, a UV resistant agent, a stabilizer, a mold release agent, a pigment, a softening agent, a plasticizer, a surfactant, etc., depending on the use of the thermoplastic resin molded product 1. It may contain an agent.
  • the reinforcing rib 3 may be integrally molded with the same material as the main body 2, or the reinforcing rib 3 prepared in advance as a separate member may be integrated with the main body 2 by heat fusion or the like, but productivity From the viewpoint of the reinforcing effect, the reinforcing rib 3 is preferably integrally molded with the main body 2.
  • the thermoplastic resin molded body 1 can be manufactured by integrally molding the main body 2 and the reinforcing rib 3 by injection foam molding, foam extrusion molding, or the like. From the viewpoint that a molded product having a complicated shape can be easily obtained, it can be produced by injection foam molding.
  • the injection foam molded product can be produced by a method of foaming the polycarbonate resin composition in a mold.
  • foaming there are various methods of foaming in the mold, but among them, it is composed of a fixed mold (also called a cavity) and a movable mold (also called a core) that can move forward and backward at an arbitrary position.
  • the so-called core back method Moving Cavity method is preferable, in which the resin composition is injected to the initial filling thickness using a mold, and then the movable mold is retracted and foamed.
  • a skin layer (non-foaming layer) is formed on the surface of the main body to smooth out irregularities on the order of several ⁇ m to several tens of ⁇ m on the outside, and the foamed layer inside becomes uniform fine bubbles. It is preferable because it is easy to obtain an injection-foamed molded product having excellent lightness.
  • either the fixed mold or the movable mold is provided with engraving or the like for forming the reinforcing rib 3 having the above-mentioned shape and dimensions.
  • the movable retreat may be performed in one step, may be performed in multiple steps of two or more steps, and the retreat speed may be adjusted as appropriate.
  • the molding conditions are not particularly limited, but for example, the resin temperature is 240 ° C. or higher and 280 ° C. or lower, the mold temperature is 60 ° C. or higher and 90 ° C. or lower, the molding cycle is 1 second or longer and 60 seconds or lower, and the injection speed is 10 mm / Conditions such as seconds or more and 400 mm / sec or less, injection pressure of 10 MPa or more and 200 MPa or less, back pressure of 5 MPa or more and 40 MPa or less, and screw rotation speed of 10 rpm or more and 200 rpm or less may be used.
  • the specific gravity of the thermoplastic resin molded product 1 is preferably 0.3 g / cm 3 or more and 1.2 g / cm 3 or less from the viewpoint of weight reduction and impact strength. If the specific gravity of the thermoplastic resin molded product 1 is less than 0.3 g / cm 3 , coarse bubbles exceeding 1.5 mm tend to increase and the impact strength tends to decrease, and if it exceeds 1.2 g / cm 3 , the weight is reduced. Hard to achieve.
  • the specific gravity conforms to JIS K 7112: 1999 and can be calculated by the underwater substitution method.
  • the foaming ratio of the main body 2 is preferably 1.1 times or more and 3.0 times or less, more preferably 1.1 times or more and 2.5 times or less, from the viewpoint of weight reduction and impact strength. It is preferable, and more preferably 1.1 times or more and 2.0 times or less. If the foaming ratio is less than 1.1 times, it tends to be difficult to obtain light weight, and if it exceeds 3.0 times, the surface impact strength tends to decrease significantly. In the present specification, the foaming ratio is a value obtained by dividing the thickness of the injection foam molded product (cavity clearance t f after core back) by the initial cavity clearance t 0 .
  • the reinforcing rib 3 may or may not be foamed.
  • the surface impact strength of the thermoplastic resin molded product 1 is calculated by 50% fracture energy by conducting a DuPont impact test (measured according to ASTM D 2794) in an environment of -30 ° C in the built-in chamber. Can be evaluated. The impact is applied to the side where the reinforcing ribs are not formed (design surface side), directly under the reinforcing ribs provided on the non-design surface side, or to the corresponding locations between the reinforcing ribs and the reinforcing ribs.
  • the value of the surface impact strength (50% fracture energy) directly under the reinforcing rib is preferably 1.9 J or more, more preferably 2.0 J or more, and further preferably 2.1 J or more. ..
  • the value of the surface impact strength (50% fracture energy) directly under the reinforcing rib is preferably 50 J or less. Further, the value of the surface impact strength (50% fracture energy) between the reinforcing ribs is preferably 2.0 J or more, and more preferably 2.1 J or more. Further, the value of the surface impact strength (50% fracture energy) between the reinforcing ribs is preferably 50 J or less.
  • the thermoplastic resin molded body 1 includes exterior parts (housing, etc.) and internal mechanism parts of OA equipment such as copiers, personal computers, and faclimill; exterior parts and internal mechanism parts of home appliances such as refrigerators, air conditioners, and vacuum cleaners; automobiles. It can be suitably used as an interior part or an exterior part (including an outer panel part) of a vehicle such as the above. In particular, it can be suitably used as an exterior part (including an outer panel part) of a vehicle such as an automobile. Examples of vehicle exterior parts and outer panel parts include automobile fenders, door panels, back door panels, garnishes, pillars, spoilers, and the like.
  • the present invention is not particularly limited, but includes, for example, the following aspects.
  • [1] In a main body portion made of a thermoplastic resin foam and a thermoplastic resin molded body provided with reinforcing ribs formed on the back surface side of the main body portion.
  • the root portion of the reinforcing rib bulges outward, so that the joint portion between the reinforcing rib and the main body portion has a curved shape, and the reinforcing rib is used for reinforcement.
  • the tip of the rib has a radius of curvature at both corners or is arcuate.
  • the thickness T1 of the main body is 1.8 mm or more and 6.0 mm or less.
  • the radius of curvature Ra of the joint is 0.05 mm or more and 2.2 mm or less.
  • a thermoplastic resin molded product wherein the ratio T3 / T1 of the thickness T1 of the main body to the maximum thickness T3 of the reinforcing rib is larger than 0.25 and 0.75 or less.
  • the tip of the reinforcing rib has a shape of a true arc having a radius of curvature Rc of 0.05 mm or more and 2.2 mm or less, or an elliptical arc having a radius of curvature Rd of 0.05 mm or more and 9.5 mm or less.
  • thermoplastic resin molded product according to any one of [1] to [4], wherein the height H of the reinforcing rib is 2 mm or more and 15 mm or less.
  • Plastic resin molded body [7] The reinforcing ribs are arranged so that the longitudinal direction is along the longitudinal direction of the thermoplastic resin molded body, and the interval in the width direction between the adjacent reinforcing ribs is 3 mm or more and 20 mm or less.
  • thermoplastic resin molded article according to any one of [6].
  • the thermoplastic resin molded product is an injection foam molded product, and the specific gravity of the thermoplastic resin molded product is 0.3 g / cm 3 or more and 1.2 g / cm 3 or less, or the foaming ratio of the main body is 1.
  • the thermoplastic resin molded article according to.
  • thermoplastic according to any one of [1] to [9], wherein the value of the surface impact strength measured by the following method for measuring the surface impact strength is 1.9 J or more in the thermoplastic resin molded product.
  • Resin molded body Resin molded body.
  • Measurement method of surface impact strength The inside of the built-in chamber is set to an environment of ⁇ 30 ° C., a DuPont impact test (measured according to ASTM D 2794) is performed, and 50% fracture energy is calculated to obtain the surface impact strength. The impact is applied to a portion directly below the reinforcing rib provided on the non-design surface side on the side where the reinforcing rib is not formed (design surface side).
  • thermoplastic resin molded product according to any one of [1] to [10], wherein the thermoplastic resin molded product contains polycarbonate and / or ABS resin.
  • thermoplastic resin molded product according to any one of [1] to [11], wherein the thermoplastic resin molded product is a foam molded product of a thermoplastic resin composition containing a heat-expandable microcapsule.
  • the thermoplastic resin molded product is one or more selected from the group consisting of automobile parts, exterior parts of OA equipment, internal mechanical parts of OA equipment, exterior parts of home appliances, and internal mechanical parts of home appliances.
  • a method for manufacturing a thermoplastic resin molded body which comprises a step of integrally molding the main body and reinforcing ribs by injection molding to obtain a thermoplastic resin molded body.
  • Acrylic resin particles (a) (suspended polymer particles) are subjected to a temperature rise condition of 5 ° C./min using a differential scanning calorimeter (DSC220C manufactured by Seiko Denshi Kogyo Co., Ltd.). The glass transition temperature was measured.
  • Second Vicat softening temperature The measurement of the Vicat softening temperature of the acrylic resin particles (b) (emulsified polymer particles) was carried out based on the JIS K7206 A method. The test piece was prepared by recovering the emulsified polymer obtained by emulsion polymerization by coagulation, heat treatment, and drying, pelletizing it with an extrusion molding machine, and then sheeting it with a press molding machine.
  • PC Polycarbonate
  • DSC Differential scanning calorimetry
  • the measurement start temperature is set to 50 ° C., and a constant load of 30 kgf is applied to the carrier resin composition to flow the carrier resin composition in a capillary having a diameter of 1.0 mm and a length of 10 mm, and the temperature is raised at 10 ° C./min to measure the temperature.
  • the shear viscosity was measured when the temperature reached 80 ° C.
  • Viscosity The viscosity of the plasticizer at 25 ° C. was measured using an E-type viscometer according to JIS Z 8803-1991.
  • Maximum expansion temperature "TMA measurement” was performed using a TMA-7 type manufactured by Birkin Elmer.
  • GH-20 manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • the rotation speed of the stirrer was adjusted so that the dispersed particle size of the monomer was about 250 ⁇ m. Then, the temperature was gradually raised to 60 ° C. for 2 hours, 70 ° C. for 2 hours, 80 ° C. for 2 hours, and 90 ° C. for 1 hour to complete the polymerization, and the acrylic resin particles (a) (polymer solid content).
  • the latex of the obtained innermost crosslinked methacrylic polymer was kept at 80 ° C. in a nitrogen stream, 0.1 part by weight of potassium persulfate was added, and then 41 parts by weight of n-butyl acrylate and 9 parts by weight of styrene were added.
  • a mixture of 1 part by weight of allyl methacrylate and 1 part by weight of allyl methacrylate was continuously added over 5 hours. During this period, 0.1 part by weight of potassium oleate was added in 3 portions. After the addition of the monomer mixed solution was completed, 0.05 parts by weight of potassium persulfate was further added to complete the polymerization, and the mixture was retained for 2 hours.
  • the average particle size of the latex particles (b1) was 2300 ⁇ , and the polymerization conversion rate was 99%.
  • the latex of the latex particles (b1) was kept at 80 ° C., 0.02 parts by weight of potassium persulfate was added, and then 24 parts by weight of methyl methacrylate, 1 part by weight of n-butyl acrylate, and 0 parts by weight of t-dodecyl mercaptan. . 1 part by weight of the mixed solution was continuously added over 1 hour.
  • the particles (a) (100 parts) are mixed under stirring, and the obtained mixed suspension (solid content, that is, the total concentration of the acrylic resin particles (a) and the acrylic resin particles (b) is 30%) is brought to 60 ° C.
  • 50 parts of a 1.0% aqueous solution of calcium chloride was added dropwise over 10 minutes under stirring. Then, the temperature was raised to 95 ° C. under stirring and heat treatment was performed to obtain an acrylic resin having an average particle diameter of 200 ⁇ m.
  • the weight average molecular weight of the acrylic resin was 60,000.
  • a masterbatch of pellet-shaped heat-expandable microcapsules was obtained by supplying the mixture to a machine (Technobel, 25 mm extruder), melt-kneading at 130 ° C., cooling the strands with water, and cutting the strands with a pelletizer.
  • the carrier resin composition used in the preparation of the masterbatch had compatibility with polycarbonate and had a shear viscosity of 60 ⁇ 10 4 Pa ⁇ s at 80 ° C. In addition, the workability of the masterbatch was also good.
  • polyester-polyether copolymer had a polyether content of 30% and an IV value of 0.45.
  • Example 1 Manufacturing of injection foam molding>
  • the polycarbonate-based resin composition obtained above was injection-foam molded to prepare an injection-foam molded product.
  • the polycarbonate-based resin composition obtained in Production Example 1 is supplied to an electric injection molding machine (manufactured by Toyo Kikai Kinzoku Co., Ltd.) having a core back function and a shut-off nozzle with a mold clamping force of 180 tons.
  • melt-kneading at a cylinder temperature of 270 ° C and a back pressure of 10 MPa, it is composed of a fixed type set at 60 ° C and a movable type that can move forward and backward, and has a flat plate-shaped cavity (initial cavity) of 160 mm in length and 160 mm in width.
  • a mold having a clearance t 0 2.4 mm and a direct gate of ⁇ 8 mm at the center of the bottom surface was injected and filled at an injection speed of 100 mm / sec.
  • the bottom surface can be moved to the desired thickness (foaming magnification) (clearance is such that the cavity clearance t f after core back is 3.6 mm).
  • the mold was retracted to foam the polycarbonate resin composition in the cavity. After the foaming was completed, the injection foam molded product was taken out after cooling for 40 seconds. The foaming ratio was 1.5 times.
  • the movable surface was provided with one engraving for forming the reinforcing rib 3 having the shape of the cross section shown in FIG.
  • Example 2 As the movable mold of the mold, injection is performed in the same manner as in Example 1 except that a movable mold provided with two engravings for forming the reinforcing rib 3 having the shape of the cross section shown in FIG. 3 is used. A foam molded product was produced. The distance between the adjacent reinforcing ribs 3 was 7 mm.
  • thermoplastic resin molded product having high surface impact strength in a low temperature environment and no appearance defects such as sink marks was obtained. Further, in the embodiment, the weight is reduced by forming the main body 2 with a thermoplastic resin foam.
  • SEM scanning electron microscope
  • the tip portion of the reinforcing rib 13 does not have a radius of curvature at both corners and does not have an arc shape, so that the obtained thermoplastic resin molded product is in a low temperature environment.
  • the surface impact strength was low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

One or more embodiments of the present invention relates to a thermoplastic resin molded body 1 comprising: a body section 2 that is structured from a thermoplastic resin foamed body; and a reinforcing rib 3 that is formed on a back surface side of the body section 2. When viewed in a transverse cross-section of the reinforcing rib 3, a joining section of the reinforcing rib 3 and the body section 2 has a curved shape due to a base section of the reinforcing rib 3 expanding outward, and a tip end section of the reinforcing rib 3 has a radius of curvature Rb at both corner sections, or the entire tip end section has a circular arc shape. The thickness T1 of the body section 2 is 1.8mm to 6.0mm, the radius of curvature Ra of the joining section is 0.05mm to 2.2mm, and the ratio T3/T1 of the thickness T1 of the body section 2 and the maximum thickness T3 of the reinforcing rib 3 is greater than 0.25 and less than or equal to 0.75. Consequently, provided are a thermoplastic resin molded body that is lightweight, has high surface impact strength even in a low-temperature environment, and does not have visual defects such as sink marks, as well as a manufacturing method therefor.

Description

熱可塑性樹脂成形体及びその製造方法Thermoplastic resin molded product and its manufacturing method
 本発明は、家電製品や自動車の部品に好適に用いることができる熱可塑性樹脂成形体及びその製造方法に関する。 The present invention relates to a thermoplastic resin molded product that can be suitably used for home appliances and automobile parts, and a method for manufacturing the same.
 家電製品や自動車に用いる部品では、軽量性が求められている。そこで、発泡成形体を用いることで、軽量性を付与することが行われている。例えば、特許文献1には、発泡基材部に、該発泡基材部と一体化されたリブもしくはボス状突起部が設けられた熱可塑性樹脂発泡成形体が記載されている。このような突起部は、成形体全体としての剛性を確保して成形体を補強する。 Light weight is required for parts used in home appliances and automobiles. Therefore, by using a foam molded product, lightness is imparted. For example, Patent Document 1 describes a thermoplastic resin foam molded product in which a rib or boss-shaped protrusion integrated with the foamed base material portion is provided on the foamed base material portion. Such protrusions secure the rigidity of the molded body as a whole and reinforce the molded body.
特開2002-225165号公報JP-A-2002-225165
 特許文献1に記載の熱可塑性樹脂発泡成形体において、突起部と発泡基材部の接合部が曲率Rを有する構造となっているが、低温環境下において、該突起部による補強効果は不十分であり、さらに改善することが求められている。 In the thermoplastic resin foam molded product described in Patent Document 1, the joint portion between the protrusion and the foamed base material has a structure having a curvature R, but the reinforcing effect of the protrusion is insufficient in a low temperature environment. Therefore, further improvement is required.
 本発明は、上記の問題を解決するため、軽量であり、低温環境下でも面衝撃強度が高く、ヒケなどの外観不良もない熱可塑性樹脂成形体及びその製造方法を提供する。 In order to solve the above problems, the present invention provides a thermoplastic resin molded product which is lightweight, has high surface impact strength even in a low temperature environment, and has no appearance defects such as sink marks, and a method for producing the same.
 本発明は、1以上の実施形態において、熱可塑性樹脂発泡体で構成されている本体部、及び前記本体部の裏面側に形成された補強用リブを備えた熱可塑性樹脂成形体において、前記補強用リブの横断面を観察した場合、前記補強用リブの根元部分が外側に膨らむことで、前記補強用リブと前記本体部の接合部は湾曲形状となっており、かつ、前記補強用リブの先端部は、両角部に曲率半径を有するか、或いは、円弧状になっており、前記本体部の厚みT1は1.8mm以上6.0mm以下であり、前記接合部の曲率半径Raは0.05mm以上2.2mm以下であり、前記本体部の厚みT1と前記補強用リブの最大厚みT3の比率T3/T1が0.25より大きく0.75以下であることを特徴とする熱可塑性樹脂成形体に関する。 In one or more embodiments, the present invention reinforces the main body portion made of a thermoplastic resin foam and the thermoplastic resin molded body provided with reinforcing ribs formed on the back surface side of the main body portion. When observing the cross section of the reinforcing rib, the root portion of the reinforcing rib bulges outward, so that the joint portion between the reinforcing rib and the main body portion has a curved shape, and the reinforcing rib has a curved shape. The tip portion has a radius of curvature at both corners or has an arc shape, the thickness T1 of the main body portion is 1.8 mm or more and 6.0 mm or less, and the radius of curvature Ra of the joint portion is 0. Thermoplastic resin molding having a thickness of 05 mm or more and 2.2 mm or less, and a ratio T3 / T1 of the thickness T1 of the main body to the maximum thickness T3 of the reinforcing rib being larger than 0.25 and 0.75 or less. Regarding the body.
 本発明は、また、1以上の実施形態において、前記の熱可塑性樹脂成形体の製造方法であって、射出成形により本体部と補強用リブを一体成形して熱可塑性樹脂成形体を得る工程を含む熱可塑性樹脂成形体の製造方法に関する。 The present invention also comprises, in one or more embodiments, the method for manufacturing a thermoplastic resin molded body, wherein the main body and reinforcing ribs are integrally molded by injection molding to obtain a thermoplastic resin molded body. The present invention relates to a method for producing a thermoplastic resin molded article containing.
 本発明によれば、軽量であり、低温環境下でも面衝撃強度が高く、ヒケなどの外観不良もない熱可塑性樹脂成形体を提供することができる。また、本発明の製造方法によれば、軽量であり、かつ、低温環境下でも面衝撃強度が高い熱可塑性樹脂成形体を得ることができる。 According to the present invention, it is possible to provide a thermoplastic resin molded product that is lightweight, has high surface impact strength even in a low temperature environment, and has no appearance defects such as sink marks. Further, according to the production method of the present invention, it is possible to obtain a thermoplastic resin molded product which is lightweight and has high surface impact strength even in a low temperature environment.
図1は、本発明の1以上の実施形態における熱可塑性樹脂成形体の模式的斜視図である。FIG. 1 is a schematic perspective view of a thermoplastic resin molded product according to one or more embodiments of the present invention. 図2は、本発明の1以上の実施形態における熱可塑性樹脂成形体の補強用リブが配置された部分の模式的断面図である。FIG. 2 is a schematic cross-sectional view of a portion of the thermoplastic resin molded product in which reinforcing ribs are arranged according to one or more embodiments of the present invention. 図3は、本発明の1以上の実施形態における熱可塑性樹脂成形体の補強用リブが配置された部分の模式的断面図である。FIG. 3 is a schematic cross-sectional view of a portion of the thermoplastic resin molded product in which reinforcing ribs are arranged according to one or more embodiments of the present invention. 図4は、本発明の1以上の実施形態における熱可塑性樹脂成形体の補強用リブが配置された部分の模式的断面図である。FIG. 4 is a schematic cross-sectional view of a portion of the thermoplastic resin molded product in which reinforcing ribs are arranged according to one or more embodiments of the present invention. 図5は、本発明の1以上の実施形態における熱可塑性樹脂成形体の補強用リブが配置された部分の模式的断面図である。FIG. 5 is a schematic cross-sectional view of a portion of the thermoplastic resin molded product in which reinforcing ribs are arranged according to one or more embodiments of the present invention. 図6は、比較例1の熱可塑性樹脂成形体の補強用リブが配置された部分の模式的断面図である。FIG. 6 is a schematic cross-sectional view of a portion of the thermoplastic resin molded product of Comparative Example 1 in which reinforcing ribs are arranged. 図7は、射出発泡成形体の面衝撃強度の測定に用いた試験片の模式図であり、aは意匠面(キャビティ側)の模式的平面図であり、b及びcはそれぞれ非意匠面(コア側)の模式的平面図である。FIG. 7 is a schematic view of a test piece used for measuring the surface impact strength of an injection foam molded product, a is a schematic plan view of a design surface (cavity side), and b and c are non-design surfaces (respectively). It is a schematic plan view of (core side). 図8は、実施例1の本体部の深部中央の断面を走査型電子顕微鏡(SEM)で観察した写真(300倍)である。FIG. 8 is a photograph (300 times) of the cross section of the central part of the main body of Example 1 observed with a scanning electron microscope (SEM).
 本発明者らは、上述した課題を解決するため、鋭意検討した。その結果、熱可塑性樹脂発泡体で構成されている本体部、及び前記本体部の裏面側に形成された補強用リブを備えた熱可塑性樹脂成形体において、補強用リブの根元部分を外側に膨らませて補強用リブと本体部の接合部を湾曲形状とし、補強用リブの先端部を両角部に曲率半径Rbを有する形状に形成するか、或いは、円弧状に形成するとともに、前記本体部の厚みT1を1.8mm以上6.0mm以下に、前記接合部の曲率半径Raを0.05mm以上2.2mm以下に、前記本体部の厚みT1と前記補強用リブの最大厚みT3の比率T3/T1を0.25より大きく0.75以下にすることで、熱可塑性樹脂成形体を軽量化しつつ、低温環境下でも、熱可塑性樹脂成形体の面衝撃強度を向上し得ることを見出した。本発明に1以上の実施形態において、円弧状とは、円弧に類する全ての形状を意味し、具体的には、真円の円弧(真円弧)、及び楕円の一部を含む曲線状の形状(楕円弧)を含む。以下において、特に指摘がない場合、円弧は、真円弧及び楕円弧を含む。 The present inventors diligently studied in order to solve the above-mentioned problems. As a result, in the main body portion made of the thermoplastic resin foam and the thermoplastic resin molded body provided with the reinforcing ribs formed on the back surface side of the main body portion, the root portion of the reinforcing ribs is expanded outward. The joint between the reinforcing rib and the main body is formed into a curved shape, and the tip of the reinforcing rib is formed into a shape having radius of curvature Rb at both corners, or is formed into an arc shape and the thickness of the main body. T1 is 1.8 mm or more and 6.0 mm or less, the radius of curvature Ra of the joint is 0.05 mm or more and 2.2 mm or less, and the ratio of the thickness T1 of the main body to the maximum thickness T3 of the reinforcing rib T3 / T1 It has been found that the surface impact strength of the thermoplastic resin molded product can be improved even in a low temperature environment while reducing the weight of the thermoplastic resin molded product by making the value greater than 0.25 and 0.75 or less. In one or more embodiments of the present invention, the arcuate means all shapes similar to an arc, specifically a perfect circular arc (true arc) and a curved shape including a part of an ellipse. Includes (elliptical arc). In the following, unless otherwise specified, arcs include true arcs and elliptical arcs.
 以下、図面等に基づいて、本発明の実施の形態を具体的に説明するが、本発明は以下に説明する実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings and the like, but the present invention is not limited to the embodiments described below.
 図1は、本発明の1以上の実施形態における熱可塑性樹脂成形体の模式的斜視図である。図2~図5は、本発明の1以上の実施形態における熱可塑性樹脂成形体の補強用リブが配置された部分の模式的断面図である。 FIG. 1 is a schematic perspective view of a thermoplastic resin molded product according to one or more embodiments of the present invention. 2 to 5 are schematic cross-sectional views of a portion of the thermoplastic resin molded product in which reinforcing ribs are arranged according to one or more embodiments of the present invention.
 図1に示されているように、熱可塑性樹脂成形体1は、熱可塑性樹脂発泡体で構成されている本体部2、及び本体部2の裏面側(非意匠面側とも称される。)に形成された補強用リブ3を備えている。熱可塑性樹脂成形体1は、本体部2と、本体部2の裏面側に形成された補強用リブ3とを有するものであれば、本体部2の形状や大きさ、補強用リブ3の個数や配置箇所等は、熱可塑性樹脂成形体1の用途等に応じて適宜に設定できる。熱可塑性樹脂成形体1において、本体部2が熱可塑性樹脂発泡体で構成されていればよく、補強用リブ3は、発泡してもよく、発泡していなくともよい。 As shown in FIG. 1, the thermoplastic resin molded product 1 has a main body portion 2 made of a thermoplastic resin foam and a back surface side (also referred to as a non-design surface side) of the main body portion 2. It is provided with a reinforcing rib 3 formed in. If the thermoplastic resin molded body 1 has a main body portion 2 and a reinforcing rib 3 formed on the back surface side of the main body portion 2, the shape and size of the main body portion 2 and the number of reinforcing ribs 3 are provided. And the arrangement location can be appropriately set according to the application of the thermoplastic resin molded product 1. In the thermoplastic resin molded body 1, the main body 2 may be made of a thermoplastic resin foam, and the reinforcing rib 3 may or may not be foamed.
 本体部2は平板状であってもよく、曲面部を有する湾曲板状でもよい。また、使用目的等に応じて所望の形状になるように、凹部、凸部等を有してもよい。本体部2の厚みT1は1.8mm以上6.0mm以下であり、好ましくは1.8mm以上5.5mm以下であり、より好ましくは2.0mm以上5.0mm以下である。熱可塑性樹脂成形体の軽量性を高めるとともに、本体部2の表面側(意匠面側とも称される。)にヒケが発生することを防止することができる。本発明の1以上の実施形態1において、本体部の厚みT1は、補強用リブが形成されていない本体部の厚みを任意に5箇所選択して測定し、それらを平均して得ることができる。 The main body 2 may have a flat plate shape or a curved plate shape having a curved surface portion. Further, it may have concave portions, convex portions and the like so as to have a desired shape according to the purpose of use and the like. The thickness T1 of the main body 2 is 1.8 mm or more and 6.0 mm or less, preferably 1.8 mm or more and 5.5 mm or less, and more preferably 2.0 mm or more and 5.0 mm or less. It is possible to increase the lightness of the thermoplastic resin molded product and prevent sink marks from occurring on the surface side (also referred to as the design surface side) of the main body 2. In one or more embodiments 1 of the present invention, the thickness T1 of the main body portion can be obtained by arbitrarily selecting and measuring the thickness of the main body portion in which the reinforcing ribs are not formed at five points and averaging them. ..
 補強用リブ3は、熱可塑性樹脂成形体1の強度を高める効果を有するものであれば、特に限定されない。図2~図5の模式的断面図(横断面)に示されているように、補強用リブ3の根元部分が外側に膨らむことで、補強用リブ3と本体部2の接合部は湾曲形状となっている。また、補強用リブ3の先端部は、図2の模式的断面図(横断面)に示されているように、両角部のそれぞれが曲率半径Rbを有するか、或いは、図3~図5の模式的断面図(横断面)に示されているように、円弧状の形状を有する。図3において、補強用リブ3の先端部は、真円弧の形状を有し、図4及び図5において、補強用リブ3の先端部は、楕円弧の形状を有する。補強用リブ3の根本部分と先端部がこのような形状を有することで、熱可塑性樹脂成形体1の低温における面衝撃強度を高めることができる。熱可塑性樹脂成形体の低温における面衝撃強度をより高める観点から、図3~図5に示されているように、補強用リブ3の先端部は円弧状であることが好ましい。 The reinforcing rib 3 is not particularly limited as long as it has the effect of increasing the strength of the thermoplastic resin molded body 1. As shown in the schematic cross-sectional views (cross sections) of FIGS. 2 to 5, the root portion of the reinforcing rib 3 bulges outward, so that the joint portion between the reinforcing rib 3 and the main body 2 has a curved shape. It has become. Further, as shown in the schematic cross-sectional view (cross section) of FIG. 2, the tip portion of the reinforcing rib 3 has a radius of curvature Rb at each of both corner portions, or has a radius of curvature Rb, or FIGS. As shown in the schematic cross-sectional view (cross section), it has an arcuate shape. In FIG. 3, the tip of the reinforcing rib 3 has the shape of a true arc, and in FIGS. 4 and 5, the tip of the reinforcing rib 3 has the shape of an elliptical arc. When the root portion and the tip portion of the reinforcing rib 3 have such a shape, the surface impact strength of the thermoplastic resin molded product 1 at a low temperature can be increased. From the viewpoint of further increasing the surface impact strength of the thermoplastic resin molded product at a low temperature, it is preferable that the tip portion of the reinforcing rib 3 has an arc shape as shown in FIGS. 3 to 5.
 補強用リブ3と本体部2の接合部の曲率半径Raは0.05mm以上2.2mm以下であり、好ましくは0.05mm以上2.0mm以下であり、より好ましくは0.05mm以上1.8mm以下であり、さらに好ましくは0.1mm以上1.5mm以下であり、よりさらに好ましくは0.1mm以上1.3mm以下である。曲率半径Raが上述した範囲であると、熱可塑性樹脂成形体の低温における面衝撃強度を高めることができる。 The radius of curvature Ra of the joint between the reinforcing rib 3 and the main body 2 is 0.05 mm or more and 2.2 mm or less, preferably 0.05 mm or more and 2.0 mm or less, and more preferably 0.05 mm or more and 1.8 mm. It is less than or equal to, more preferably 0.1 mm or more and 1.5 mm or less, and even more preferably 0.1 mm or more and 1.3 mm or less. When the radius of curvature Ra is in the above range, the surface impact strength of the thermoplastic resin molded product at a low temperature can be increased.
 本体部の厚みT1と補強用リブ3の最大厚みT3の比率T3/T1は、0.25より大きく0.75以下であり、好ましくは0.3以上0.70以下であり、より好ましくは0.3以上0.65以下である。T3/T1が上述した範囲であると、熱可塑性樹脂成形体の軽量性を高めるとともに、意匠面におけるヒケの発生を効果的に抑制することができる。本発明の1以上の実施形態において、補強用リブの最大厚みT3は、補強用リブの根本部の最大厚みを意味する。 The ratio T3 / T1 of the thickness T1 of the main body and the maximum thickness T3 of the reinforcing rib 3 is larger than 0.25 and 0.75 or less, preferably 0.3 or more and 0.70 or less, and more preferably 0. It is 0.3 or more and 0.65 or less. When T3 / T1 is in the above-mentioned range, the weight of the thermoplastic resin molded product can be increased, and the occurrence of sink marks on the design surface can be effectively suppressed. In one or more embodiments of the present invention, the maximum thickness T3 of the reinforcing ribs means the maximum thickness of the root portion of the reinforcing ribs.
 補強用リブ3における先端部及び根本部を除く部分の平均厚みT2(以下において、単に補強用リブ3の平均厚みT2とも記す。)は、特に限定されないが、例えば、熱可塑性樹脂成形体の低温における面衝撃強度を高めやすく、意匠面におけるヒケの発生を抑制しやすい観点から、0.2mm以上4.3mm以下であることが好ましく、より好ましくは0.2mm以上4.0mm以下であり、さらに好ましくは0.2mm以上3.5mm以下である。補強用リブ3の平均厚みT2は、下記数式(1)で求めることができる。
 T2=T3-2×Ra   (1)
The average thickness T2 of the portion of the reinforcing rib 3 excluding the tip portion and the root portion (hereinafter, also simply referred to as the average thickness T2 of the reinforcing rib 3) is not particularly limited, but for example, the low temperature of the thermoplastic resin molded product. From the viewpoint of easily increasing the surface impact strength in the above and easily suppressing the occurrence of sink marks on the design surface, it is preferably 0.2 mm or more and 4.3 mm or less, more preferably 0.2 mm or more and 4.0 mm or less, and further. It is preferably 0.2 mm or more and 3.5 mm or less. The average thickness T2 of the reinforcing rib 3 can be calculated by the following mathematical formula (1).
T2 = T3-2 x Ra (1)
 図2に示しているように、補強用リブ3の先端部が両角部に曲率半径Rbを有する形状である場合、Rbは0mmより大きく、T2/2より小さいことが好ましい。具体的には、前記角部の曲率半径Rbは、0.05mm以上1.5mm以下であることが好ましく、より好ましくは0.05mm以上1.3mm以下であり、さらに好ましくは0.1mm以上1.2mm以下である。 As shown in FIG. 2, when the tip of the reinforcing rib 3 has a radius of curvature Rb at both corners, Rb is preferably larger than 0 mm and smaller than T2 / 2. Specifically, the radius of curvature Rb of the corner portion is preferably 0.05 mm or more and 1.5 mm or less, more preferably 0.05 mm or more and 1.3 mm or less, and further preferably 0.1 mm or more 1 .2 mm or less.
 図2に示しているように、補強用リブ3の先端部が両角部に曲率半径Rbを有する形状である場合、補強用リブ3の先端部は、中央部に平坦部を有してもよい。この場合、補強用リブ3の先端部における平坦部の厚みT4は、下記数式(2)で算出することができる。
 T4=T2-2×Rb  (2)
As shown in FIG. 2, when the tip of the reinforcing rib 3 has a radius of curvature Rb at both corners, the tip of the reinforcing rib 3 may have a flat portion at the center. .. In this case, the thickness T4 of the flat portion at the tip of the reinforcing rib 3 can be calculated by the following mathematical formula (2).
T4 = T2-2 × Rb (2)
 図3に示しているように、補強用リブ3の先端部が真円弧の形状を有する場合、真円弧の曲率半径RcはT2/2と等しくなる。その場合の曲率半径Rcは、0.05mm以上2.2mm以下であることが好ましく、より好ましくは0.05mm以上2.0mm以下であり、さらに好ましくは0.1mm以上1.5mm以下である。 As shown in FIG. 3, when the tip of the reinforcing rib 3 has the shape of a true arc, the radius of curvature Rc of the true arc is equal to T2 / 2. In that case, the radius of curvature Rc is preferably 0.05 mm or more and 2.2 mm or less, more preferably 0.05 mm or more and 2.0 mm or less, and further preferably 0.1 mm or more and 1.5 mm or less.
 図4又は図5に示しているように、補強用リブ3の先端部が楕円弧の形状を有する場合は、楕円弧の曲率半径Rdは、T3/T1の比率とRaにより決定されたT2の長さと適宜設定したリブ高さに基づいて設定すれば良く、楕円弧の角度は鋭角であってもよく、鈍角であってもよい。楕円弧の曲率半径Rdは、例えば、0.05mm以上9.5mm以下であることが好ましく、0.05mm以上8.0mm以下であることがより好ましく、0.1mm以上7.0mm以下であることがさらに好ましく、0.1mm以上5.0mm以下であることがさらにより好ましい。 As shown in FIG. 4 or 5, when the tip of the reinforcing rib 3 has an elliptical arc shape, the radius of curvature Rd of the elliptical arc is the length of T2 determined by the ratio of T3 / T1 and Ra. It may be set based on an appropriately set rib height, and the angle of the elliptical arc may be an acute angle or an obtuse angle. The radius of curvature Rd of the elliptical arc is, for example, preferably 0.05 mm or more and 9.5 mm or less, more preferably 0.05 mm or more and 8.0 mm or less, and preferably 0.1 mm or more and 7.0 mm or less. It is even more preferably 0.1 mm or more and 5.0 mm or less.
 補強用リブ3の高さHは、特に限定されず、熱可塑性樹脂成形体1の用途及び補強用リブ3の配置箇所等に応じて適宜設定すればよい。例えば、強度補強と軽量化と実際の成形時の金型離型性の観点から、補強用リブ3の高さHは、2mm以上15mm以下であることが好ましく、2mm以上10mm以下であることがより好ましく、2mm以上7mm以下であることがさらに好ましい。 The height H of the reinforcing rib 3 is not particularly limited, and may be appropriately set according to the application of the thermoplastic resin molded body 1 and the arrangement location of the reinforcing rib 3. For example, from the viewpoint of strength reinforcement, weight reduction, and mold releasability during actual molding, the height H of the reinforcing rib 3 is preferably 2 mm or more and 15 mm or less, and preferably 2 mm or more and 10 mm or less. More preferably, it is 2 mm or more and 7 mm or less.
 補強用リブ3の平均厚みT2に対する補強用リブ3の高さHの比率H/T2は、軽量化及び強度補強を両立させる観点から、0.4以上75以下であることが好ましく、0.5以上50以下であることがより好ましく、1.0以上35以下であることがさらに好ましく、1.5以上20以下が特に好ましく、2.0以上10以下であることがさらに特に好ましい。 The ratio H / T2 of the height H of the reinforcing rib 3 to the average thickness T2 of the reinforcing rib 3 is preferably 0.4 or more and 75 or less, preferably 0.5 or more, from the viewpoint of achieving both weight reduction and strength reinforcement. It is more preferably 50 or more, more preferably 1.0 or more and 35 or less, particularly preferably 1.5 or more and 20 or less, and further particularly preferably 2.0 or more and 10 or less.
 補強用リブ3は、熱可塑性樹脂成形体1の非意匠面側に形成されていればよく、その個数及び具体的な配置箇所等は、熱可塑性樹脂成形体1の用途等に応じて適宜設定すればよい。補強効果を高める観点から、補強用リブ3は、長手方向が熱可塑性樹脂成形体1の長手方向に沿って配置された細長い板状であることが好ましい。補強用リブ3の長さ(長手方向のサイズ)は、特に限定されず、熱可塑性樹脂成形体、例えば、補強を必要とする樹脂部品の長さ及び所要とする補強程度に応じて適宜調整することが可能であるが、樹脂部品全体の強度を効果的に補強する観点から、樹脂部品の長さと同等であることが望ましい。熱可塑性樹脂成形体が自動車用途の樹脂部品である場合、通常、該熱可塑性樹脂成形体には金属シャーシとの接合クリップ座が設置されており、取付け取外しの際に応力がかかる箇所に補強用リブを優先的に設定すれば良い。低温における補強用リブ3の直下及びその周囲の面衝撃強度をより高める観点から、隣接する補強用リブ間の幅方向の間隔は、衝撃が付与された時の応力分布の広がりに基づいて設定することが好ましい。具体的には、隣接する補強用リブの各々の応力分布の広がりの末端(応力がかかる最末端)が重なるような間隔で設置することが好ましい。そのように設置することで補強効果が高まる。例えば、隣接する補強用リブ間の幅方向の間隔は3mm以上20mm以下であることが好ましく、5mm以上15mm以下であることがより好ましく、5mm以上10mm以下であることがさらに好ましい。 The reinforcing ribs 3 may be formed on the non-design surface side of the thermoplastic resin molded body 1, and the number and specific arrangement locations thereof are appropriately set according to the application of the thermoplastic resin molded body 1 and the like. do it. From the viewpoint of enhancing the reinforcing effect, the reinforcing rib 3 preferably has an elongated plate shape in which the longitudinal direction is arranged along the longitudinal direction of the thermoplastic resin molded body 1. The length (length in the longitudinal direction) of the reinforcing rib 3 is not particularly limited, and is appropriately adjusted according to the length of the thermoplastic resin molded body, for example, the resin part requiring reinforcement and the required degree of reinforcement. However, from the viewpoint of effectively reinforcing the strength of the entire resin component, it is desirable that the length is equal to that of the resin component. When the thermoplastic resin molded body is a resin part for automobile use, the thermoplastic resin molded body is usually provided with a clip seat for joining with a metal chassis, and is used for reinforcement at a place where stress is applied during attachment / detachment. The ribs may be set preferentially. From the viewpoint of further increasing the surface impact strength immediately below the reinforcing rib 3 at a low temperature and its surroundings, the widthwise spacing between adjacent reinforcing ribs is set based on the spread of the stress distribution when an impact is applied. Is preferable. Specifically, it is preferable to install them at intervals so that the ends of the spreads of the stress distributions (the most stressed ends) of the adjacent reinforcing ribs overlap. By installing in such a way, the reinforcing effect is enhanced. For example, the widthwise distance between adjacent reinforcing ribs is preferably 3 mm or more and 20 mm or less, more preferably 5 mm or more and 15 mm or less, and further preferably 5 mm or more and 10 mm or less.
 熱可塑性樹脂成形体1の長さ(長手方向のサイズ)は、200mm以上3000mm以下であることが好ましく、300mm以上2500mm以下であることがより好ましく、幅は50mm以上3000mm以下であることが好ましく、50mm以上2500mm以下であることがより好ましい。なお、長さと幅が同じサイズである場合、いずれか一方を長さとし、他方を幅とすればよい。 The length (length in the longitudinal direction) of the thermoplastic resin molded product 1 is preferably 200 mm or more and 3000 mm or less, more preferably 300 mm or more and 2500 mm or less, and the width is preferably 50 mm or more and 3000 mm or less. It is more preferably 50 mm or more and 2500 mm or less. When the length and the width are the same size, one of them may be the length and the other may be the width.
 熱可塑性樹脂成形体1は、熱可塑性樹脂組成物で構成することができる。熱可塑性樹脂組成物に用いる熱可塑性樹脂としては、特に限定されないが、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリスチレン、ABS樹脂、アクリル樹脂、ポリエチレンテレフタレート(PET)等の汎用熱可塑性樹脂、ポリアミド(PA)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m-PPE)、ポリブチレンテレフタレート(PBT)、シクロオレフィンポリマー(COP)等のエンジニアリング樹脂、ポリフェニレンスルフィド(PPS)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリテトラフルオロエチレン、熱可塑性ポリイミド、ポリアリレート(PAR)、ポリサルホン(PSU)、ポリエーテルサルホン(PES)、液晶ポリマー(LCP)、熱可塑性ポリイミド(PI)等のスーパーエンジニアリング樹脂等を挙げることができる。 The thermoplastic resin molded product 1 can be composed of a thermoplastic resin composition. The thermoplastic resin used in the thermoplastic resin composition is not particularly limited, and for example, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene, ABS resin, acrylic resin, polyethylene terephthalate (PET). General-purpose thermoplastic resins such as, polyamide (PA), polycarbonate (PC), modified polyphenylene ether (m-PPE), polybutylene terephthalate (PBT), engineering resins such as cycloolefin polymer (COP), polyphenylene sulfide (PPS), etc. Polyetherketone (PEK), polyetheretherketone (PEEK), polytetrafluoroethylene, thermoplastic polyimide, polyallylate (PAR), polysalphon (PSU), polyethersalphon (PES), liquid crystal polymer (LCP), heat Examples thereof include super engineering resins such as thermoplastic polyimide (PI).
 前記熱可塑性樹脂として、ポリマーアロイを用いても良い。ポリマーアロイとしては、例えば、ポリフェニレンエーテル(PPE)系アロイ、PA系アロイ、PC系アロイ、PBT系アロイ、ABSとポリオレフィンのアロイ等が挙げられる。PC系アロイとしては、例えば、ポリカーボネートとABSのアロイ、ポリカーボネートと熱可塑性ポリエステルとのアロイ、ポリカーボネートとポリプロピレンとのアロイ等が挙げられる。 A polymer alloy may be used as the thermoplastic resin. Examples of the polymer alloy include polyphenylene ether (PPE) -based alloys, PA-based alloys, PC-based alloys, PBT-based alloys, ABS and polyolefin alloys, and the like. Examples of the PC-based alloy include an alloy of polycarbonate and ABS, an alloy of polycarbonate and thermoplastic polyester, an alloy of polycarbonate and polypropylene, and the like.
 上述した熱可塑性樹脂は、1種を単独で用いてもよく、2種以上を組みあわせて用いてもよい。 As the above-mentioned thermoplastic resin, one type may be used alone, or two or more types may be used in combination.
 中でも、熱可塑性樹脂成形体1が自動車等の車両用部品である場合、耐熱性の観点から、前記熱可塑性樹脂としては、ポリカーボネート、耐熱ABS樹脂、ポリカーボネートとABSのアロイ(PC/ABS)、及びポリカーボネートとポリエチレンテレフタレートのアロイ(PC/PET)からなる群から選ばれる1種以上を用いることが好ましく、PC/PETを用いることがより好ましい。 Among them, when the thermoplastic resin molded body 1 is a part for a vehicle such as an automobile, the thermoplastic resin includes polycarbonate, heat-resistant ABS resin, polycarbonate and ABS alloy (PC / ABS), and, from the viewpoint of heat resistance. It is preferable to use one or more selected from the group consisting of polycarbonate and polyethylene terephthalate alloy (PC / PET), and it is more preferable to use PC / PET.
 前記熱可塑性樹脂組成物が、ポリカーボネート、ポリカーボネートとABSのアロイ(PC/ABS)、ポリカーボネートとポリエチレンテレフタレートのアロイ(PC/PET)等のポリカーボネート系樹脂を含むポリカーボネート系樹脂組成物である場合は、前記ポリカーボネート系樹脂組成物は、熱可塑性樹脂成形体の外観をより良好にする観点から、発泡剤として熱膨張性マイクロカプセルを含むことが好ましく、より好ましくは、熱膨張性マイクロカプセルを含むマスターバッチを含むことが好ましい。 When the thermoplastic resin composition is a polycarbonate resin composition containing a polycarbonate resin such as polycarbonate, an alloy of polycarbonate and ABS (PC / ABS), and an alloy of polycarbonate and polyethylene terephthalate (PC / PET), the above. The polycarbonate-based resin composition preferably contains heat-expandable microcapsules as a foaming agent from the viewpoint of improving the appearance of the thermoplastic resin molded product, and more preferably a master batch containing the heat-expandable microcapsules. It is preferable to include it.
 前記マスターバッチとしては、例えば、熱膨張性マイクロカプセル、キャリア樹脂組成物を含有するものを用いることができる。 As the master batch, for example, one containing a heat-expandable microcapsule and a carrier resin composition can be used.
 前記熱膨張性マイクロカプセルは、液状の低沸点化合物を熱可塑性ポリマーのシェルで包んだカプセル状の発泡剤であり、射出成形機のシリンダ内の加熱等の成形時の加熱で気化した低沸点化合物の圧力によって、膨張したカプセルが発泡剤として機能する。前記熱膨張性マイクロカプセルとしては、例えば、特開2011-16884号公報に記載されているものを好適に用いてもよい。具体的には、熱膨張性マイクロカプセルは、コアシェル構造を有し、コアは沸点が10℃以上330℃以下である化合物の1種以上で構成され、シェルはコアを内包しており、熱可塑性樹脂で構成されていることが好ましい。 The heat-expandable microcapsules are capsule-shaped foaming agents in which a liquid low boiling point compound is wrapped in a thermoplastic polymer shell, and are vaporized by heating during molding such as heating in a cylinder of an injection molding machine. The pressure of the inflated capsule functions as a foaming agent. As the heat-expandable microcapsules, for example, those described in Japanese Patent Application Laid-Open No. 2011-16884 may be preferably used. Specifically, the heat-expandable microcapsules have a core-shell structure, the core is composed of one or more compounds having a boiling point of 10 ° C. or higher and 330 ° C. or lower, and the shell contains the core and is thermoplastic. It is preferably composed of a resin.
 コアは、沸点が10℃以上330℃以上である化合物の中から選択した1種以上で構成すればよい。コアを構成する化合物としては、特に限定されないが、例えば、炭化水素類、アルコール類、ケトン類等が挙げられる。炭化水素類としては、特に限定されないが、例えば、ペンタン、ヘキサン、へプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン、オクタデカン、ノナデカン、エイコサン、及び、これらの炭化水素の構造異性体等が挙げられる。コアを構成する化合物は、好ましくは、沸点が10℃以上330℃以下の炭化水素の1種以上であり、より好ましくは沸点が30℃以上280℃以下の炭化水素の1種以上であり、さらに好ましくは沸点が30℃以上200℃以下の炭化水素の1種以上である。沸点が10℃以上の化合物を用いることで、熱膨張性マイクロカプセルをマスターバッチ化しやすい。また、沸点が330℃以下の化合物を用いることで、重合時に分散性が良好になり、熱膨張性マイクロカプセルを製造しやすい。 The core may be composed of one or more selected from compounds having a boiling point of 10 ° C. or higher and 330 ° C. or higher. The compound constituting the core is not particularly limited, and examples thereof include hydrocarbons, alcohols, ketones and the like. Hydrocarbons are not particularly limited, but for example, pentane, hexane, heptane, octane, nonan, decane, undecane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane, eikosan, and these. Examples include structural isomers of hydrocarbons. The compound constituting the core is preferably one or more hydrocarbons having a boiling point of 10 ° C. or higher and 330 ° C. or lower, more preferably one or more hydrocarbons having a boiling point of 30 ° C. or higher and 280 ° C. or lower, and further. It is preferably one or more hydrocarbons having a boiling point of 30 ° C. or higher and 200 ° C. or lower. By using a compound having a boiling point of 10 ° C. or higher, it is easy to master-batch heat-expandable microcapsules. Further, by using a compound having a boiling point of 330 ° C. or lower, the dispersibility is improved during polymerization, and it is easy to produce thermally expandable microcapsules.
 熱膨張性マイクロカプセルのシェルを構成する熱可塑性樹脂の単量体成分としては、例えば、ニトリル系単量体、(メタ)アクリレート系単量体、芳香族ビニル系単量体、ジエン系単量体、カルボキシル基を有するビニル系単量体、並びにメチロール基、水酸基、アミノ基、エポキシ基、及びイソシアネート基からなる群より選択される1種以上の反応性官能基を有する単量体からなる群より選択される1種以上の単量体を用いることができる。 Examples of the monomer component of the thermoplastic resin constituting the shell of the heat-expandable microcapsule include a nitrile-based monomer, a (meth) acrylate-based monomer, an aromatic vinyl-based monomer, and a diene-based monomer. A group consisting of a body, a vinyl-based monomer having a carboxyl group, and a monomer having one or more reactive functional groups selected from the group consisting of a methylol group, a hydroxyl group, an amino group, an epoxy group, and an isocyanate group. One or more monomers selected from the above can be used.
 ニトリル系単量体としては、例えば、アクリロニトリル、メタクリロニトリル、α-クロルアクリロニトリル、α-エトキシアクリロニトリル、フマロニトリル等が挙げられる。 Examples of the nitrile-based monomer include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethoxyacrylonitrile, fumaronitrile, and the like.
 (メタ)アクリレート系単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、フェニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。本発明において、「(メタ)アクリレート」は、メタクリレートであってもよく、アクリレートであってもよい。 Examples of the (meth) acrylate-based monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, and 2-ethylhexyl. Examples thereof include (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, phenyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, and benzyl (meth) acrylate. In the present invention, the "(meth) acrylate" may be a methacrylate or an acrylate.
 芳香族ビニル系単量体としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、t-ブチルスチレン、p-ニトロスチレン、クロロメチルスチレン等が挙げられる。 Examples of the aromatic vinyl-based monomer include styrene, α-methylstyrene, vinyltoluene, t-butylstyrene, p-nitrostyrene, chloromethylstyrene and the like.
 ジエン系単量体としては、例えば、ブタジエン、イソプレン、クロロプレン等が挙げられる。 Examples of the diene-based monomer include butadiene, isoprene, and chloroprene.
 カルボキシル基を有するビニル単量体としては、例えば、アクリル酸、メタクリル酸、エタクリル酸、クロトン酸、ケイ皮酸等の不飽和モノカルボン酸、マレイン酸、イタコン酸、フマル酸、シトラコン酸、クロロマレイン酸等の不飽和ジカルボン酸、及びその無水物、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノブチル、フマル酸モノメチル、フマル酸モノエチル、イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノブチル等の不飽和ジカルボン酸モノエステル等が挙げられる。 Examples of the vinyl monomer having a carboxyl group include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, etaclilic acid, crotonic acid and silicic acid, maleic acid, itaconic acid, fumaric acid, citraconic acid and chloromalein. Unsaturated dicarboxylic acids such as acids and their anhydrides, monomethyl maleate, monoethyl maleate, monobutyl maleate, monomethyl fumarate, monoethyl fumarate, monomethyl itaconic acid, monoethyl itaconic acid, monobutyl itaconic acid and other unsaturated dicarboxylic acids. Examples include monoesters.
 メチロール基、水酸基、アミノ基、エポキシ基、及びイソシアネート基からなる群より選択される1種以上の反応性官能基を有する単量体(以下において、単に「反応性官能基を有する単量体」とも記す。)としては、例えば、N-メチロール(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、N、N-ジメチルアミノプロピル(メタ)アクリレート、ビニルグリシジルエーテル、プロペニルグリシジルエーテル、グリシジル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、4-ヒドロキシブチルブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、p-ヒドロキシスチレン、ブロックイソシアネート等が挙げられる。ブロックイソシアネートとしては、例えば、イソシアネート化合物(ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネート等)のフェノール、アルコール、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸エチル、オキシム、ジメチルピラゾール、メチルエチルケトンオキシム、カプロラクタム等によるブロックイソシアネート等が挙げられる。本発明において、「(メタ)アクリルアミド」は、メタクリルアミドであってもよく、アクリルアミドであってもよい。 A monomer having one or more reactive functional groups selected from the group consisting of a methylol group, a hydroxyl group, an amino group, an epoxy group, and an isocyanate group (hereinafter, simply "a monomer having a reactive functional group"). Also referred to as), for example, N-methylol (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, vinyl glycidyl ether, propenyl glycidyl ether, glycidyl. Examples thereof include (meth) acrylate, glycerin mono (meth) acrylate, 4-hydroxybutylbutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, p-hydroxystyrene, blocked isocyanate and the like. Examples of the blocked isocyanate include phenol, alcohol, dimethyl malonate, diethyl malonate, ethyl acetoacetate, oxime, dimethylpyrazole, etc. of isocyanate compounds (diphenylmethane diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, etc.). Examples thereof include blocked isocyanates such as methyl ethyl ketone oxime and caprolactam. In the present invention, "(meth) acrylamide" may be methacrylamide or acrylamide.
 前記熱膨張性マイクロカプセルのシェルによってポリカーボネート等の熱可塑性樹脂成分の主鎖が分解することを抑制する観点から、前記シェルを構成する熱可塑性樹脂は、上述したニトリル系単量体、(メタ)アクリレート系単量体、芳香族ビニル系単量体、及びカルボキシル基を有するビニル系単量体からなる群から選ばれる1種以上を含むことが好ましい。また、前記シェルを構成する熱可塑性樹脂は、連鎖移動剤及び反応性官能基を有する単量体を適宜含んでもよい。 From the viewpoint of suppressing the decomposition of the main chain of the thermoplastic resin component such as polycarbonate by the shell of the heat-expandable microcapsules, the thermoplastic resin constituting the shell is the above-mentioned nitrile-based monomer, (meth). It is preferable to contain at least one selected from the group consisting of an acrylate-based monomer, an aromatic vinyl-based monomer, and a vinyl-based monomer having a carboxyl group. Further, the thermoplastic resin constituting the shell may appropriately contain a chain transfer agent and a monomer having a reactive functional group.
 連鎖移動剤としては、通常のラジカル重合で使用されるものであれば良く、特に限定されない。具体的には、メルカプタン系化合物を用いることができる。メルカプタン系化合物としては、例えば、n-ドデシルメルカプタン、n-オクチルメルカプタン、t-ドデシルメルカプタン、n-オクタデシルメルカプタン等のアルキルメルカプタン、2-メルカプトベンゾチアゾール、ブロムトリクロルメタン、α-メチルスチレンダイマー、チオグリコール酸2-エチルヘキシル等が好適に使用できる。 The chain transfer agent may be any one used in ordinary radical polymerization and is not particularly limited. Specifically, a mercaptan-based compound can be used. Examples of the mercaptan compound include alkyl mercaptans such as n-dodecyl mercaptan, n-octyl mercaptan, t-dodecyl mercaptan, n-octadecyl mercaptan, 2-mercaptobenzothiazole, bromtrichloromethane, α-methylstyrene dimer and thioglycol 2-Ethylhexyl acid or the like can be preferably used.
 前記熱膨張性マイクロカプセルは、(未膨張時の)平均粒子径が0.5μm以上50μm以下であることが好ましく、より好ましくは0.7μm以上50μm以下であり、さらに好ましくは1.0μm以上45μm以下であり、さらにより好ましくは1.0μm以上40μm以下であり、特に好ましくは1.0μm以上35μm以下である。熱膨張性マイクロカプセルの加熱時の最大粒子径は、未膨張時の平均粒子径から凡そ3倍以上5倍以下の範囲である。未膨張時の平均粒子径が0.5μm以上50μm以下であれば、膨張時の粒子径は凡そ1.5μm以上250μm以下のサイズとなり、発泡時のシャルピー衝撃強度や面衝撃強度の強度低下を大きく抑制することができる。熱膨張性マイクロカプセルの未膨張時の平均粒子径は、粒度分布測定装置、具体的には島津製作所製の粒度分布測定装置SALD-3000Jで測定することができる。 The heat-expandable microcapsules preferably have an average particle size (when unexpanded) of 0.5 μm or more and 50 μm or less, more preferably 0.7 μm or more and 50 μm or less, and further preferably 1.0 μm or more and 45 μm. It is less than or equal to, more preferably 1.0 μm or more and 40 μm or less, and particularly preferably 1.0 μm or more and 35 μm or less. The maximum particle size of the heat-expandable microcapsules when heated is in the range of about 3 times or more and 5 times or less from the average particle size when not expanded. If the average particle size when not expanded is 0.5 μm or more and 50 μm or less, the particle size when expanded is approximately 1.5 μm or more and 250 μm or less, and the Charpy impact strength and surface impact strength during foaming are significantly reduced. It can be suppressed. The average particle size of the heat-expandable microcapsules when not expanded can be measured with a particle size distribution measuring device, specifically, a particle size distribution measuring device SALD-3000J manufactured by Shimadzu Corporation.
 熱膨張性マイクロカプセルは、最大膨張温度(最大発泡温度とも称される。)は、180℃以上300℃以下が好ましく、より好ましくは190℃以上290℃以下であり、さらに好ましくは200℃以上280℃以下であり、特に好ましくは210℃以上270℃以下である。熱膨張性マイクロカプセルの最大膨張温度は、特許第5484673号に記載されている測定方法で測定することができる。具体的には、バーキンエルマー社製のTMA-7型を用いて「TMA測定」を行う。サンプル約0.25mgを容器に入れて、昇温速度5℃/minで昇温し、その高さの変位を連続的に測定し、容器内のサンプルの高さの変位が最大となった時の温度を最大膨張温度とする。熱膨張性マイクロカプセルの最大膨張温度が上述した範囲であると、ポリカーボネートの成形温度とマッチングすることから、低密度かつ強度が高い射出発泡成形体が得られやすい。 The maximum expansion temperature (also referred to as the maximum foaming temperature) of the heat-expandable microcapsules is preferably 180 ° C. or higher and 300 ° C. or lower, more preferably 190 ° C. or higher and 290 ° C. or lower, and further preferably 200 ° C. or higher and 280 ° C. It is ℃ or less, and particularly preferably 210 ℃ or more and 270 ℃ or less. The maximum expansion temperature of the heat-expandable microcapsules can be measured by the measuring method described in Japanese Patent No. 5484673. Specifically, "TMA measurement" is performed using a TMA-7 type manufactured by Birkin Elmer. When about 0.25 mg of the sample is placed in a container, the temperature is raised at a temperature rising rate of 5 ° C./min, the displacement of the height is continuously measured, and the displacement of the height of the sample in the container is maximized. Let the temperature of be the maximum expansion temperature. When the maximum expansion temperature of the heat-expandable microcapsules is in the above range, it matches the molding temperature of polycarbonate, so that an injection-foamed molded product having low density and high strength can be easily obtained.
 前記キャリア樹脂組成物は、良好な外観を有する熱可塑性樹脂成形体を得る観点から、ポリカーボネートと実質的に相溶することが好ましい。本発明において、「ポリカーボネートと実質的に相溶する」とは、具体的には、キャリア樹脂組成物とポリカーボネートの混合物の示差走査熱量測定(DSC)において、ガラス転移温度のピークが一つとなることをいう。 The carrier resin composition is preferably substantially compatible with polycarbonate from the viewpoint of obtaining a thermoplastic resin molded product having a good appearance. In the present invention, "substantially compatible with polycarbonate" means that, specifically, in differential scanning calorimetry (DSC) of a mixture of a carrier resin composition and polycarbonate, the peak of the glass transition temperature becomes one. To say.
 前記キャリア樹脂組成物の130℃におけるせん断粘度が1.0×102Pa・s以上1.0×106Pa・s以下であることが好ましい。前記キャリア樹脂組成物の130℃におけるせん断粘度が1.0×102Pa・s以上1.0×106Pa・s以下であることにより、熱膨張性マイクロカプセルがキャリア樹脂組成物中に均一に分散したマスターバッチを得やすくなる。マスターバッチ化の加工性を高める観点から、前記キャリア樹脂組成物の130℃におけるせん断粘度は、1.0×103Pa・s以上9.0x105Pa・s以下であることが好ましく、2.0×103Pa・s以上6.0x105Pa・s以下であることがより好ましく、さらに好ましくは3.0×103Pa・s以上3.0x105Pa・s以下であり、さらにより好ましくは5.0×103Pa・s以上1.5x105Pa・s以下である。前記キャリア樹脂組成物の130℃におけるせん断粘度は、島津製作所製フローテスター(型式CFT-500C)を使用して測定することができる。具体的には、測定開始温度を50℃とし、直径1.0mm、長さ10mmのキャピラリー中をキャリア樹脂組成物に一定荷重30kgfを与えて流動させ、10℃/minで昇温させ、測定温度が130℃となった時点での剪断粘度を測定する。 The shear viscosity of the carrier resin composition at 130 ° C. is preferably 1.0 × 10 2 Pa · s or more and 1.0 × 10 6 Pa · s or less. When the shear viscosity of the carrier resin composition at 130 ° C. is 1.0 × 10 2 Pa · s or more and 1.0 × 10 6 Pa · s or less, the heat-expandable microcapsules are uniform in the carrier resin composition. It becomes easier to obtain master batches distributed in. From the viewpoint of improving the processability of master batching, the shear viscosity of the carrier resin composition at 130 ° C. is preferably 1.0 × 10 3 Pa · s or more and 9.0 × 10 5 Pa · s or less. It is more preferably 0 × 10 3 Pa · s or more and 6.0 × 10 5 Pa · s or less, still more preferably 3.0 × 10 3 Pa · s or more and 3.0 × 10 5 Pa · s or less, and even more preferably. Is 5.0 × 10 3 Pa · s or more and 1.5 × 10 5 Pa · s or less. The shear viscosity of the carrier resin composition at 130 ° C. can be measured using a flow tester (model CFT-500C) manufactured by Shimadzu Corporation. Specifically, the measurement start temperature is set to 50 ° C., and a constant load of 30 kgf is applied to the carrier resin composition to flow the carrier resin composition in a capillary having a diameter of 1.0 mm and a length of 10 mm, and the temperature is raised at 10 ° C./min to measure the temperature. The shear viscosity at the time when becomes 130 ° C. is measured.
 前記キャリア樹脂組成物は、マスターバッチの低温加工性を高める観点から、40℃以上100℃以下の温度範囲のいずれかの温度において、せん断粘度が1.0×102Pa・s以上1.0×106Pa・s以下であることが好ましく、1.0×103Pa・s以上9.0x105Pa・s以下であることがより好ましく、2.0×103Pa・s以上6.0x105Pa・s以下であることがさらに好ましく、さらにより好ましくは3.0×103Pa・s以上3.0x105Pa・s以下であり、特に好ましくは5.0×103Pa・s以上1.5x105Pa・s以下である。 From the viewpoint of improving the low temperature processability of the master batch, the carrier resin composition has a shear viscosity of 1.0 × 10 2 Pa · s or more and 1.0 at any temperature in the temperature range of 40 ° C. or more and 100 ° C. or less. It is preferably × 10 6 Pa · s or less, more preferably 1.0 × 10 3 Pa · s or more and 9.0 × 10 5 Pa · s or less, and 2.0 × 10 3 Pa · s or more 6. It is more preferably 0 x 10 5 Pa · s or less, still more preferably 3.0 × 10 3 Pa · s or more and 3.0 × 10 5 Pa · s or less, and particularly preferably 5.0 × 10 3 Pa · s. It is 1.5 x 10 5 Pa · s or less.
 前記キャリア樹脂組成物は、重量平均分子量が1,000以上180,000未満のポリスチレンを含む(以下において、キャリア樹脂組成物(B1)とも記す。)か、キャリア樹脂組成物は、ポリスチレン及び重量平均分子量が1,000以上20,000以下のアクリル系可塑剤を含む(以下において、キャリア樹脂組成物(B2)とも記す。)か、或いは、重量平均分子量が8,000以上350,000以下のアクリル系樹脂及び重量平均分子量が1,000以上20,000以下のアクリル系可塑剤を含む(以下において、キャリア樹脂組成物(B3)とも記す。)ことが好ましい。本発明において、樹脂の重量平均分子量及び数平均分子量は、GPC(ゲル浸透クロマトグラフィ)によって測定する。 The carrier resin composition contains polystyrene having a weight average molecular weight of 1,000 or more and less than 180,000 (hereinafter, also referred to as carrier resin composition (B1)), or the carrier resin composition is polystyrene and weight average. Acrylic containing an acrylic plasticizer having a molecular weight of 1,000 or more and 20,000 or less (hereinafter, also referred to as carrier resin composition (B2)) or having a weight average molecular weight of 8,000 or more and 350,000 or less. It preferably contains a based resin and an acrylic plasticizer having a weight average molecular weight of 1,000 or more and 20,000 or less (hereinafter, also referred to as a carrier resin composition (B3)). In the present invention, the weight average molecular weight and the number average molecular weight of the resin are measured by GPC (gel permeation chromatography).
 《キャリア樹脂組成物(B1)》
 キャリア樹脂組成物(B1)は、重量平均分子量が1,000以上180,000未満のポリスチレンを含む。これにより、キャリア樹脂組成物(B1)は、130℃におけるせん断粘度が1.0×102Pa・s以上1.0×106Pa・s以下の範囲を満たしやすくなる。キャリア樹脂組成物(B1)は、重量平均分子量が1,000以上20,000以下のアクリル系可塑剤を実質的に含有しないことが好ましい。ここで、「実質的に含有しない」は、キャリア樹脂組成物(B1)が、ポリスチレン100重量部に対して重量平均分子量が1,000以上20,000以下のアクリル系可塑剤を0重量部以上3重量部未満含むことを意味し、好ましくは1重量部未満含む。
<< Carrier resin composition (B1) >>
The carrier resin composition (B1) contains polystyrene having a weight average molecular weight of 1,000 or more and less than 180,000. As a result, the carrier resin composition (B1) can easily satisfy the range in which the shear viscosity at 130 ° C. is 1.0 × 10 2 Pa · s or more and 1.0 × 10 6 Pa · s or less. It is preferable that the carrier resin composition (B1) does not substantially contain an acrylic plasticizer having a weight average molecular weight of 1,000 or more and 20,000 or less. Here, "substantially free" means that the carrier resin composition (B1) contains 0 parts by weight or more of an acrylic plasticizer having a weight average molecular weight of 1,000 or more and 20,000 or less with respect to 100 parts by weight of polystyrene. It means that it contains less than 3 parts by weight, preferably less than 1 part by weight.
 キャリア樹脂組成物(B1)において、ポリスチレンは重量平均分子量が1,000以上180,000未満であればよく、特に限定されない。前記ポリスチレンは、1種のスチレン系単量体の単独重合体であってもよく、2種以上のスチレン系単量体の共重合体であってもよい。また、スチレン系単量体と共重合可能な他の単量体の共重合体であってもよく、その場合は、スチレンに由来する繰り返し単位が、全繰り返し単位中50重量%以上含まれていればよく、80重量%以上含まれていることが好ましい。 In the carrier resin composition (B1), polystyrene may have a weight average molecular weight of 1,000 or more and less than 180,000, and is not particularly limited. The polystyrene may be a homopolymer of one kind of styrene-based monomer, or may be a copolymer of two or more kinds of styrene-based monomers. Further, it may be a copolymer of another monomer copolymerizable with the styrene-based monomer, and in that case, the repeating unit derived from styrene is contained in an amount of 50% by weight or more in all the repeating units. However, it is preferably contained in an amount of 80% by weight or more.
 前記スチレン系単量体としては、スチレンやスチレン系誘導体が挙げられる。前記スチレン誘導体としては、例えば、メチルスチレン、ジメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、ブロモスチレン、ジブロモスチレン、トリブロモスチレン、クロロスチレン、ジクロロスチレン、トリクロロスチレン等が挙げられる。これらのうち、スチレンが好ましい。 Examples of the styrene-based monomer include styrene and styrene-based derivatives. Examples of the styrene derivative include methylstyrene, dimethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene, dichlorostyrene, trichlorostyrene and the like. Of these, styrene is preferable.
 前記共重合可能な他の単量体としては、例えば、ジビニルベンゼン等の多官能性ビニル化合物;アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリロニトリル等の(メタ)アクリル系化合物;ブダジエン等のジエン系化合物及びその誘導体;無水マレイン酸、無水イタコン酸等の不飽和カルボン酸無水物等が挙げられる。これらは単独あるいは2種以上混合して使用することができる。 Examples of the other copolymerizable monomer include polyfunctional vinyl compounds such as divinylbenzene; acrylate, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, acrylonitrile and the like. Examples thereof include (meth) acrylic compounds; diene compounds such as budadiene and derivatives thereof; unsaturated carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride. These can be used alone or in combination of two or more.
 前記ポリスチレンは、加工性の観点から、スチレンの単独重合体であることが好ましい。 From the viewpoint of processability, the polystyrene is preferably a homopolymer of styrene.
 キャリア樹脂組成物(B1)において、ポリカーボネートとの相溶性を高める観点から、ポリスチレンの重量平均分子量は、150,000以下であることが好ましく、130,000以下であることがより好ましく、100,000以下であることがさらに好ましく、80,000以下であることがさらにより好ましく、40,000以下であることが特に好ましい。また、マスターバッチの加工性を良好にする観点から、ポリスチレンの重量平均分子量は、2,000以上であることが好ましく、5,000以上であることがより好ましく、10,000以上であることがさらに好ましい。 In the carrier resin composition (B1), the weight average molecular weight of polystyrene is preferably 150,000 or less, more preferably 130,000 or less, and 100,000 or less, from the viewpoint of enhancing compatibility with polycarbonate. It is more preferably less than or equal to, even more preferably 80,000 or less, and particularly preferably 40,000 or less. Further, from the viewpoint of improving the processability of the masterbatch, the weight average molecular weight of polystyrene is preferably 2,000 or more, more preferably 5,000 or more, and preferably 10,000 or more. More preferred.
 前記ポリスチレンは、特に限定されないが、ガラス転移温度が15℃以上130℃以下であることが好ましい。前記ポリスチレンのガラス転移温度が15℃以上であると、マスターバッチ作製時に、押出機の温度をコントロールしやすく、加工性が良好になる。また、前記ポリスチレンのガラス転移温度が130℃以下であると、マスターバッチの作製時に、キャリア樹脂組成物(B1)が適切な粘度を有しやすいため、熱膨張性マイクロカプセルが破泡することなく、加工性が良好になる。 The polystyrene is not particularly limited, but the glass transition temperature is preferably 15 ° C. or higher and 130 ° C. or lower. When the glass transition temperature of the polystyrene is 15 ° C. or higher, it is easy to control the temperature of the extruder at the time of producing the masterbatch, and the workability is improved. Further, when the glass transition temperature of the polystyrene is 130 ° C. or lower, the carrier resin composition (B1) tends to have an appropriate viscosity during the production of the masterbatch, so that the heat-expandable microcapsules do not rupture. , Workability is improved.
 《キャリア樹脂組成物(B2)》
 キャリア樹脂組成物(B2)は、ポリスチレン及び重量平均分子量が1,000以上20,000以下のアクリル系可塑剤を含む。
<< Carrier resin composition (B2) >>
The carrier resin composition (B2) contains polystyrene and an acrylic plasticizer having a weight average molecular weight of 1,000 or more and 20,000 or less.
 キャリア樹脂組成物(B2)において、ポリスチレンは、特に限定されず、1種のスチレン系単量体の単独重合体であってもよく、2種以上のスチレン系単量体の共重合体であってもよい。また、スチレン系単量体と共重合可能な他の単量体の共重合体であってもよく、その場合は、スチレンに由来する繰り返し単位が、全繰り返し単位中50重量%以上含まれていればよく、80重量%以上含まれていることが好ましい。 In the carrier resin composition (B2), polystyrene is not particularly limited, and may be a homopolymer of one kind of styrene-based monomer, or a copolymer of two or more kinds of styrene-based monomers. You may. Further, it may be a copolymer of another monomer copolymerizable with the styrene-based monomer, and in that case, the repeating unit derived from styrene is contained in an amount of 50% by weight or more in all the repeating units. However, it is preferably contained in an amount of 80% by weight or more.
 前記スチレン系単量体としては、スチレンやスチレン系誘導体が挙げられる。前記スチレン誘導体としては、例えば、メチルスチレン、ジメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、ブロモスチレン、ジブロモスチレン、トリブロモスチレン、クロロスチレン、ジクロロスチレン、トリクロロスチレン等が挙げられる。これらのうち、スチレンが好ましい。 Examples of the styrene-based monomer include styrene and styrene-based derivatives. Examples of the styrene derivative include methylstyrene, dimethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, bromostyrene, dibromostyrene, tribromostyrene, chlorostyrene, dichlorostyrene, trichlorostyrene and the like. Of these, styrene is preferable.
 前記共重合可能な他の単量体としては、例えば、ジビニルベンゼン等の多官能性ビニル化合物;アクリル酸、メタクリル酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリロニトリル等の(メタ)アクリル系化合物;ブダジエン等のジエン系化合物及びその誘導体;無水マレイン酸、無水イタコン酸等の不飽和カルボン酸無水物等が挙げられる。これらは単独あるいは2種以上混合して使用することができる。 Examples of the other copolymerizable monomer include polyfunctional vinyl compounds such as divinylbenzene; acrylate, methacrylic acid, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, acrylonitrile and the like. Examples thereof include (meth) acrylic compounds; diene compounds such as budadiene and derivatives thereof; unsaturated carboxylic acid anhydrides such as maleic anhydride and itaconic anhydride. These can be used alone or in combination of two or more.
 前記ポリスチレンは、加工性の観点から、スチレンの単独重合体であることが好ましい。 From the viewpoint of processability, the polystyrene is preferably a homopolymer of styrene.
 前記ポリスチレンは、特に限定されないが、ガラス転移温度が15℃以上130℃以下であることが好ましい。前記ポリスチレンのガラス転移温度が15℃以上であると、マスターバッチ作製時に、押出機の温度をコントロールしやすく、加工性が良好になる。また、前記ポリスチレンのガラス転移温度が130℃以下であると、マスターバッチの作製時に、キャリア樹脂組成物(B2)が適切な粘度を有しやすいため、熱膨張性マイクロカプセルが破泡することなく、加工性が良好になる。 The polystyrene is not particularly limited, but the glass transition temperature is preferably 15 ° C. or higher and 130 ° C. or lower. When the glass transition temperature of the polystyrene is 15 ° C. or higher, it is easy to control the temperature of the extruder at the time of producing the masterbatch, and the workability is improved. Further, when the glass transition temperature of the polystyrene is 130 ° C. or lower, the carrier resin composition (B2) tends to have an appropriate viscosity during the production of the masterbatch, so that the heat-expandable microcapsules do not rupture. , Workability is improved.
 キャリア樹脂組成物(B2)において、ポリカーボネートの重量平均分子量は、特に限定されず、例えば、1,000以上であってもよいが、後述するアクリル系可塑剤と併用することで、ポリカーボネートとの相溶性が良好になる観点から、180,000以上であることが好ましい。ポリスチレンの重量平均分子量が180,000未満であれば、キャリア樹脂組成物(B1)にて説明したとおり、後述するアクリル系可塑剤と併用しなくても、ポリカーボネートとの相溶性が良好である。汎用性の観点から、ポリカーボネートの重量平均分子量は、450,000以下であることが好ましく、400,000以下がより好ましく、350,000以下がさらに好ましい。 In the carrier resin composition (B2), the weight average molecular weight of the polycarbonate is not particularly limited and may be, for example, 1,000 or more, but when used in combination with an acrylic plasticizer described later, the phase with the polycarbonate From the viewpoint of improving the solubility, it is preferably 180,000 or more. When the weight average molecular weight of polystyrene is less than 180,000, the compatibility with polycarbonate is good even if it is not used in combination with an acrylic plasticizer described later, as described in the carrier resin composition (B1). From the viewpoint of versatility, the weight average molecular weight of polycarbonate is preferably 450,000 or less, more preferably 400,000 or less, still more preferably 350,000 or less.
 [アクリル系可塑剤]
 アクリル系可塑剤は、重量平均分子量が1,000以上20,000以下である。これにより、ポリスチレン、特に重量平均分子量が180,000以上のポリスチレンと併用した場合、130℃におけるせん断粘度が1.0×102Pa・s以上1.0×106Pa・s以下のキャリア樹脂組成物(B2)を得られやすい。アクリル系可塑剤の重量平均分子量は、1,000以上18,000以下であることが好ましく、1,000以上15,000以下であることがより好ましく、1,000以上13,000以下であることがさらに好ましい。
[Acrylic plasticizer]
Acrylic plasticizers have a weight average molecular weight of 1,000 or more and 20,000 or less. As a result, when used in combination with polystyrene, especially polystyrene with a weight average molecular weight of 180,000 or more, a carrier resin having a shear viscosity at 130 ° C. of 1.0 × 10 2 Pa · s or more and 1.0 × 10 6 Pa · s or less. The composition (B2) can be easily obtained. The weight average molecular weight of the acrylic plasticizer is preferably 1,000 or more and 18,000 or less, more preferably 1,000 or more and 15,000 or less, and 1,000 or more and 13,000 or less. Is even more preferable.
 アクリル系可塑剤は、25℃における粘度が300mPa・s以上100,000mPa・s以下であることが好ましく、350mPa・s以上90,000mPa・s以下であることがより好ましく、400mPa・s以上80,000mPa・s以下であることがさらに好ましい。アクリル系可塑剤の25℃における粘度が上述した範囲であると、130℃におけるせん断粘度が1.0×102Pa・s以上1.0×106Pa・s以下のキャリア樹脂組成物(B2)が得やすくなる。アクリル系可塑剤は、室温(20±5℃)において、液状であることが好ましい。アクリル系可塑剤の25℃における粘度は、JIS Z 8803-1991に準じてE型粘度計を用いて測定することができる。 The acrylic plasticizer preferably has a viscosity at 25 ° C. of 300 mPa · s or more and 100,000 mPa · s or less, more preferably 350 mPa · s or more and 90,000 mPa · s or less, and 400 mPa · s or more and 80, It is more preferably 000 mPa · s or less. When the viscosity of the acrylic plasticizer at 25 ° C is within the above range, the carrier resin composition (B2) having a shear viscosity at 130 ° C of 1.0 × 10 2 Pa · s or more and 1.0 × 10 6 Pa · s or less. ) Is easy to obtain. The acrylic plasticizer is preferably liquid at room temperature (20 ± 5 ° C.). The viscosity of the acrylic plasticizer at 25 ° C. can be measured using an E-type viscometer according to JIS Z 8803-1991.
 アクリル系可塑剤は、一般にアクリル系可塑剤として知られているものを用いることが可能であり、無官能タイプのアクリル系可塑剤を用いることが好ましい。アクリル系可塑剤としては、例えば、(メタ)アクリル酸エステル重合体、(メタ)アクリル酸エステル-芳香族ビニルモノマー共重合体等が挙げられ、(メタ)アクリル酸エステル重合体が好ましい。 As the acrylic plasticizer, those generally known as acrylic plasticizers can be used, and it is preferable to use a non-functional acrylic plasticizer. Examples of the acrylic plasticizer include (meth) acrylic acid ester polymers, (meth) acrylic acid ester-aromatic vinyl monomer copolymers, and the like, and (meth) acrylic acid ester polymers are preferable.
 前記(メタ)アクリル酸エステルは、特に限定されないが、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル等の炭素数が10以下のアルキル基を有するアクリル酸アルキル類;メタクル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル等の炭素数が10以下のアルキル基を有するメタクリル酸アルキル類等が挙げられる。これらは、1種を単独で用いてもよく、2種以上の組み合わせで用いてもよい。中でも、メタクリル酸メチル、メタクリル酸ブチル、アクリル酸エチル及びアクリル酸ブチルからなる群から選ばれる1種以上であることが好ましい。 The (meth) acrylic acid ester is not particularly limited, but for example, alkyl acrylates having an alkyl group having 10 or less carbon atoms such as methyl acrylate, ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate; Examples thereof include alkyl methacrylates having an alkyl group having 10 or less carbon atoms, such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, and 2-ethylhexyl methacrylate. These may be used individually by 1 type and may be used in combination of 2 or more type. Above all, it is preferable that it is at least one selected from the group consisting of methyl methacrylate, butyl methacrylate, ethyl acrylate and butyl acrylate.
 前記芳香族ビニルモノマーとしては、特に限定されないが、例えば、スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレン等が挙げられる。 The aromatic vinyl monomer is not particularly limited, and examples thereof include styrene, α-methylstyrene, monochlorostyrene, and dichlorostyrene.
 前記(メタ)アクリル酸エステル重合体は、アクリル酸アルキルエステルの単独重合体、メタクリル酸アルキルエステルの単独重合体、アクリル酸アルキルエステル同士の共重合体、メタクリル酸アルキルエステル同士の共重合体、アクリル酸アルキルエステル及びメタクリル酸アルキルエステルの共重合体を含む。 The (meth) acrylic acid ester polymer is a homopolymer of an acrylic acid alkyl ester, a homopolymer of a methacrylic acid alkyl ester, a copolymer of acrylic acid alkyl esters, a copolymer of methacrylic acid alkyl esters, and acrylic. Includes copolymers of acid alkyl esters and methacrylic acid alkyl esters.
 アクリル系可塑剤としては、特に限定されないが、具体的には、東亞合成社製の製品名「UP-1000」、「UP-1010」、「UP-1020」、「UP-1021」及び「UP-1061」等の市販の無官能基タイプのアクリル系可塑剤を用いることができる。 The acrylic plasticizer is not particularly limited, but specifically, the product names "UP-1000", "UP-1010", "UP-1020", "UP-1021" and "UP-1021" manufactured by Toagosei Co., Ltd. A commercially available non-functional group type acrylic plasticizer such as "-1061" can be used.
 《キャリア樹脂組成物(B3)》
 キャリア樹脂組成物(B3)は、重量平均分子量が8,000以上350,000以下のアクリル系樹脂及び前記アクリル系可塑剤を含む。
<< Carrier resin composition (B3) >>
The carrier resin composition (B3) contains an acrylic resin having a weight average molecular weight of 8,000 or more and 350,000 or less and the acrylic plasticizer.
 前記アクリル系樹脂は、重量平均分子量が、好ましくは10,000以上330,000以下であり、より好ましくは10,000以上300,000以下であり、さらに好ましくは10,000以上280,000以下であり、さらにより好ましくは14,000以上330,000以下であり、さらにより好ましくは14,000以上300,000以下であり、さらにより好ましくは14,000以上280,000以下であり、さらにより好ましくは16,000以上330,000以下であり、さらにより好ましくは16,000以上300,000以下であり、さらにより好ましくは16,000以上280,000以下であり、さらにより好ましくは19,000以上330,000以下であり、さらにより好ましくは19,000以上300,000以下であり、さらにより好ましくは19,000以上280,000以下である。前記アクリル系樹脂は、室温(20±5℃)において、取扱い性の観点から、固体であることが好ましい。 The acrylic resin has a weight average molecular weight of preferably 10,000 or more and 330,000 or less, more preferably 10,000 or more and 300,000 or less, and further preferably 10,000 or more and 280,000 or less. Yes, even more preferably 14,000 or more and 330,000 or less, even more preferably 14,000 or more and 300,000 or less, even more preferably 14,000 or more and 280,000 or less, even more preferably. Is 16,000 or more and 330,000 or less, more preferably 16,000 or more and 300,000 or less, even more preferably 16,000 or more and 280,000 or less, and even more preferably 19,000 or more. It is 330,000 or less, more preferably 19,000 or more and 300,000 or less, and even more preferably 19,000 or more and 280,000 or less. The acrylic resin is preferably solid at room temperature (20 ± 5 ° C.) from the viewpoint of handleability.
 前記アクリル系樹脂は、平均粒子径が50μm以上500μm以下のアクリル系樹脂粒子(a)と、アクリル系樹脂粒子(a)を被覆している平均粒子径が0.05μm以上0.5μm以下のアクリル系樹脂粒子(b)を含むアクリル系樹脂であることがより好ましい。 The acrylic resin includes acrylic resin particles (a) having an average particle diameter of 50 μm or more and 500 μm or less, and acrylic having an average particle diameter of 0.05 μm or more and 0.5 μm or less covering the acrylic resin particles (a). It is more preferable that the acrylic resin contains the based resin particles (b).
 アクリル系樹脂粒子(a)は、平均粒子径が50μm以上500μm以下であればよいが、75μm以上300μm以下であることが好ましく、100μm以上250μm以下であることがより好ましい。上述した平均粒子径を有するアクリル系樹脂粒子(a)は、懸濁重合法で得ることができる。アクリル系樹脂粒子(a)の平均粒子径が50μm以上であれば、ろ過性が良好になり、500μm以下であれば、アクリル系樹脂に粒子状配合剤を粉体混合する場合、均一に混合することができる。アクリル系樹脂粒子(a)の平均粒子径は、マイクロトラックベル株式会社製のマイクロトラックMT3300を使用して測定する。 The acrylic resin particles (a) may have an average particle diameter of 50 μm or more and 500 μm or less, but preferably 75 μm or more and 300 μm or less, and more preferably 100 μm or more and 250 μm or less. The acrylic resin particles (a) having the above-mentioned average particle diameter can be obtained by a suspension polymerization method. When the average particle size of the acrylic resin particles (a) is 50 μm or more, the filterability is good, and when the average particle size is 500 μm or less, the particulate compound is uniformly mixed with the acrylic resin. be able to. The average particle size of the acrylic resin particles (a) is measured using Microtrack MT3300 manufactured by Microtrack Bell Co., Ltd.
 アクリル系樹脂において、アクリル系樹脂粒子(b)がアクリル系樹脂粒子(a)を被覆するとは、アクリル系樹脂粒子(a)の表面の全部をアクリル系樹脂粒子(b)で被覆してもよく、アクリル系樹脂粒子(a)の表面を部分的にアクリル系樹脂粒子(b)で被覆してもよい。アクリル系樹脂粒子(a)は、その表面積の50%以上がアクリル系樹脂粒子(b)で被覆されることが好ましく、60%以上が被覆されることがより好ましい。被覆される表面積が50%以上であると、アクリル系樹脂の粉体特性が良好になる。 In the acrylic resin, when the acrylic resin particles (b) coat the acrylic resin particles (a), the entire surface of the acrylic resin particles (a) may be coated with the acrylic resin particles (b). , The surface of the acrylic resin particles (a) may be partially coated with the acrylic resin particles (b). The surface area of the acrylic resin particles (a) is preferably 50% or more coated with the acrylic resin particles (b), and more preferably 60% or more. When the surface area to be coated is 50% or more, the powder characteristics of the acrylic resin become good.
 アクリル系樹脂粒子(a)をアクリル系樹脂粒子(b)で被覆することにより、アクリル系樹脂粒子(a)の平均粒子径は、被覆前と比べ3%以上50%以下大きくなることが好ましい。アクリル系樹脂粒子(a)の変化が3%より小さいと、系中にアクリル系樹脂粒子(a)が残存し、その結果としてろ過性の改善されにくい傾向がある。すなわち、アクリル系樹脂の平均粒子径は、アクリル系樹脂粒子(a)の平均粒子径より3%以上50%以下大きいことが好ましい。アクリル系樹脂の平均粒子径は、マイクロトラックベル株式会社製のマイクロトラックMT3300を使用して測定する。 By coating the acrylic resin particles (a) with the acrylic resin particles (b), the average particle size of the acrylic resin particles (a) is preferably 3% or more and 50% or less larger than that before coating. If the change of the acrylic resin particles (a) is smaller than 3%, the acrylic resin particles (a) remain in the system, and as a result, the filterability tends to be difficult to improve. That is, the average particle size of the acrylic resin is preferably 3% or more and 50% or less larger than the average particle size of the acrylic resin particles (a). The average particle size of the acrylic resin is measured using Microtrac MT3300 manufactured by Microtrac Bell Co., Ltd.
 アクリル系樹脂粒子(a)は、懸濁重合で得られる重合体にともなう粉塵を制御しやすい観点から、(メタ)アクリル酸エステルを30重量%以上100重量%以下、及びこれと共重合可能なビニルモノマー0重量%以上70重量%以下で構成されていることが好ましい。より好ましくは、(メタ)アクリル酸エステルを70重量%以上100重量%以下、及びこれと共重合可能なビニルモノマー0重量%以上30重量%以下で構成されている。アクリル系樹脂粒子(a)において、(メタ)アクリル酸エステル由来の構成単位の含有量が30重量%以上であると、アクリル系樹脂粒子(b)との相溶性が良く、成形加工が良好になる。本発明において、「(メタ)アクリル酸」とは、メタクリル酸であってもよく、アクリル酸であってもよい。 The acrylic resin particles (a) can be copolymerized with 30% by weight or more and 100% by weight or less of the (meth) acrylic acid ester from the viewpoint of easily controlling the dust associated with the polymer obtained by suspension polymerization. The vinyl monomer is preferably composed of 0% by weight or more and 70% by weight or less. More preferably, the (meth) acrylic acid ester is composed of 70% by weight or more and 100% by weight or less, and 0% by weight or more and 30% by weight or less of a vinyl monomer copolymerizable therewith. When the content of the constituent unit derived from the (meth) acrylic acid ester in the acrylic resin particles (a) is 30% by weight or more, the compatibility with the acrylic resin particles (b) is good and the molding process is good. Become. In the present invention, the "(meth) acrylic acid" may be methacrylic acid or acrylic acid.
 (メタ)アクリル酸エステルは、特に限定されないが、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル等の炭素数が10以下のアルキル基を有するアクリル酸アルキル類、及びメタクル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル等の炭素数が10以下のアルキル基を有するメタクリル酸アルキル類等が挙げられる。これらは、1種を単独で用いてもよく、2種以上の組み合わせで用いることができる。これらのなかでも、アクリル系樹脂粒子(b)と組合せて良好な品質の成形体が得られる観点から、メタクリル酸メチル、メタクリル酸ブチル、アクリル酸エチル及びアクリル酸ブチルからなる群から選ばれる1種以上であることが好ましい。 The (meth) acrylic acid ester is not particularly limited, and is, for example, alkyl acrylates having an alkyl group having 10 or less carbon atoms such as methyl acrylate, ethyl acrylate, butyl acrylate, and 2-ethylhexyl acrylate, and alkyl acrylates. Examples thereof include alkyl methacrylates having an alkyl group having 10 or less carbon atoms, such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, and 2-ethylhexyl methacrylate. These may be used alone or in combination of two or more. Among these, one selected from the group consisting of methyl methacrylate, butyl methacrylate, ethyl acrylate and butyl acrylate from the viewpoint of obtaining a molded product of good quality in combination with the acrylic resin particles (b). The above is preferable.
 また、(メタ)アクリル酸エステルと共重合可能なビニルモノマーとしては、特に限定されないが、例えば、スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレン等の芳香族ビニルモノマー;アクリル酸、メタクリル酸等のビニルカルボン酸モノマー;アクリロニトリル、メタクリロニトリル等のシアン化ビニルモノマー;塩化ビニル、臭化ビニル、クロロプレン等のハロゲン化ビニルモノマー;酢酸ビニル、エチレン、プロピレン、ブチレン、ブタジエン、イソブチレン等のアルケン類;ハロゲン化アルケン類;メタクリル酸アリル、ジアリルフタレート、トリアリルシアヌレート、ジメタクリル酸モノエチレングリコール、ジメタクリル酸テトラエチレングリコール、ジメタクリル酸テトラエチレングリコール、ジビニルベンゼン、メタクリル酸グリシジル等の多官能性モノマー等が挙げられる。これらは、1種を単独で用いてもよく、2種以上の組合せで用いることができる。これらのなかでも、アクリル系樹脂粒子(b)と組み合わせて良好な品質の成形体が得られる観点から、スチレン、α-メチルスチレン、アクリル酸、メタクリル酸、アクリロニトリル、酢酸ビニル、メタクリル酸アリル及びメタクリル酸グリシジルからなる群から選択される1種以上が好ましい。 The vinyl monomer copolymerizable with the (meth) acrylic acid ester is not particularly limited, and is, for example, an aromatic vinyl monomer such as styrene, α-methylstyrene, monochlorostyrene, dichlorostyrene; acrylic acid, methacrylic acid, etc. Vinyl carboxylic acid monomer; Vinyl cyanide monomer such as acrylonitrile and methacrylic acid; Vinyl halide monomer such as vinyl chloride, vinyl bromide and chloroprene; Alkens such as vinyl acetate, ethylene, propylene, butylene, butadiene and isobutylene; Alkens halides; polyfunctional monomers such as allyl methacrylate, diallyl phthalate, triallyl cyanurate, monoethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, divinylbenzene, and glycidyl methacrylate. And so on. These may be used alone or in combination of two or more. Among these, styrene, α-methylstyrene, acrylic acid, methacrylic acid, acrylonitrile, vinyl acetate, allyl methacrylate and methacrylic from the viewpoint of obtaining a molded product of good quality in combination with the acrylic resin particles (b). One or more selected from the group consisting of glycidyl acid acid is preferable.
 アクリル系樹脂粒子(a)は、上述した単量体の1種以上を懸濁重合して得られた、場合によっては共重合又はグラフト重合させた重合体の単独又は混合重合体粒子とすることができる。 The acrylic resin particles (a) may be single or mixed polymer particles of a polymer obtained by suspension polymerization of one or more of the above-mentioned monomers, and in some cases copolymerized or graft-polymerized. Can be done.
 懸濁重合における分散安定剤としては、例えば、通常の無機系分散剤や有機系分散剤を使用することができる。無機系分散剤としては、例えば、炭酸マグネシウム、第三リン酸カルシウム等が挙げられる。有機系分散剤としては、例えば、でんぷん、ゼラチン、アクリルアミド、部分ケン化ポリビニルアルコール(PVA)、部分ケン化ポリメタクリル酸メチル、ポリアクリル酸、ポリアクリル酸の塩、セルロース、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ポリアルキレンオキシド、ポリビニルピロリドン、ポリビニルイミダゾール、スルホン化ポリスチレン等の天然高分子分散剤及び合成高分子分散剤、並びに、アルキルベンゼンスルホン酸塩、脂肪酸塩等の低分子分散剤(乳化剤とも称される。)等が挙げられる。 As the dispersion stabilizer in suspension polymerization, for example, an ordinary inorganic dispersant or an organic dispersant can be used. Examples of the inorganic dispersant include magnesium carbonate, tricalcium phosphate and the like. Examples of the organic dispersant include starch, gelatin, acrylamide, partially saponified polyvinyl alcohol (PVA), partially saponified polymethyl methacrylate, polyacrylic acid, salt of polyacrylic acid, cellulose, methyl cellulose, hydroxymethyl cellulose, and hydroxy. Natural polymer dispersants and synthetic polymer dispersants such as ethyl cellulose, polyalkylene oxide, polyvinyl pyrrolidone, polyvinyl imidazole, and sulfonated polystyrene, and low molecular weight dispersants such as alkylbenzene sulfonates and fatty acid salts (also referred to as emulsifiers). .) Etc. can be mentioned.
 懸濁重合における重合開始剤としては、ベンゾイルパーオキシド、ラウロイルパーオキシド等過酸化物や、アゾビスイソブチロニトリル等のアゾ化合物が挙げられる。 Examples of the polymerization initiator in suspension polymerization include peroxides such as benzoyl peroxide and lauroyl peroxide, and azo compounds such as azobisisobutyronitrile.
 また、分子量調節のために、連鎖移動剤を用いても良い。連鎖移動剤としては、熱膨張性マイクロカプセルの説明時に列挙したものを用いることができる。 Further, a chain transfer agent may be used for adjusting the molecular weight. As the chain transfer agent, those listed in the description of the heat-expandable microcapsules can be used.
 分散安定剤、重合開始剤及び連鎖移動剤の添加量は、使用する単量体、及び目的とする懸濁重合体粒子(アクリル系樹脂粒子(a))の物性に応じて適宜設定することができる。 The amount of the dispersion stabilizer, the polymerization initiator and the chain transfer agent added may be appropriately set according to the physical properties of the monomer to be used and the target suspended polymer particles (acrylic resin particles (a)). it can.
 懸濁重合体粒子の製造方法は、特に限定されず、一般的に使用できる全ての手法を用いることができる。例えば、単量体又は単量体混合物を水に懸濁させ、そのまま重合反応を実施する方法、単量体又は単量体混合物の一部を水に懸濁させ重合反応を開始し、重合反応の進行に伴い、残りの単量体又は単量体混合物の水懸濁液を一段又は数段に分けて、あるいは連続的に重合反応槽へ追加して重合反応を実施する方法、単量体又は単量体混合物の一部を水に懸濁させ重合反応を開始し、重合反応の進行に伴い、残りの単量体又は単量体混合物を一段、あるいは数段に分けて、あるいは連続的に重合反応槽へ追加して重合反応を実施する方法等が挙げられる。 The method for producing the suspended polymer particles is not particularly limited, and any generally usable method can be used. For example, a method in which a monomer or a monomer mixture is suspended in water and the polymerization reaction is carried out as it is, or a part of the monomer or the monomer mixture is suspended in water to start the polymerization reaction and the polymerization reaction is carried out. A method of carrying out the polymerization reaction by dividing the aqueous suspension of the remaining monomer or monomer mixture into one or several stages or continuously adding it to the polymerization reaction tank as the process progresses. Alternatively, a part of the monomer mixture is suspended in water to start the polymerization reaction, and as the polymerization reaction progresses, the remaining monomer or the monomer mixture is divided into one stage or several stages, or continuously. Examples thereof include a method of carrying out a polymerization reaction by adding it to a polymerization reaction tank.
 重合開始剤及び連鎖移動剤の添加方法には特に制限がないが、重合開始剤及び連鎖移動剤の両方を単量体に溶解した後、単量体を水中に懸濁させ、そのまま重合反応を実施する手法が好ましい。重合に要する時間は、重合開始剤の種類と量、及び重合温度等によって異なるが通常1~24時間である。また、懸濁重合時に可塑剤、滑剤、安定剤及び紫外線吸収剤等の添加剤を必要に応じて単量体に添加することも可能である。 The method of adding the polymerization initiator and the chain transfer agent is not particularly limited, but after dissolving both the polymerization initiator and the chain transfer agent in the monomer, the monomer is suspended in water and the polymerization reaction is carried out as it is. The method to be carried out is preferable. The time required for polymerization varies depending on the type and amount of the polymerization initiator, the polymerization temperature and the like, but is usually 1 to 24 hours. Further, it is also possible to add additives such as a plasticizer, a lubricant, a stabilizer and an ultraviolet absorber to the monomer during suspension polymerization, if necessary.
 アクリル系樹脂粒子(b)は、平均粒子径が0.05μm以上0.5μm以下であればよいが、0.06μm以上0.3μm以下であることが好ましい。上述した平均粒子径を有するアクリル系樹脂粒子(b)は、乳化重合法で得ることができる。アクリル系樹脂粒子(b)の平均粒子径が上述した範囲内であると、アクリル系樹脂を成形加工する際の加工性、並びに得られる成形体の耐衝撃強度及び透明性が良好になりやすい。アクリル系樹脂粒子(b)の平均粒子径は、マイクロトラックベル株式会社製のマイクロトラックMT3300を使用して測定する。 The acrylic resin particles (b) may have an average particle diameter of 0.05 μm or more and 0.5 μm or less, but preferably 0.06 μm or more and 0.3 μm or less. The acrylic resin particles (b) having the above-mentioned average particle diameter can be obtained by an emulsion polymerization method. When the average particle size of the acrylic resin particles (b) is within the above-mentioned range, the processability at the time of molding the acrylic resin and the impact strength and transparency of the obtained molded product tend to be improved. The average particle size of the acrylic resin particles (b) is measured using Microtrack MT3300 manufactured by Microtrack Bell Co., Ltd.
 アクリル系樹脂粒子(b)は、(メタ)アクリル酸エステル30重量%以上100重量%以下、及びこれと共重合可能なビニルモノマー0重量%以上70重量%以下で構成されていることが好ましく、(メタ)アクリル酸エステル50重量%以上100重量%以下、芳香族ビニルモノマー0重量%以上40重量%以下、これらと共重合可能なビニルモノマー0重量%以上10重量%以下、及び多官能性モノマー0重量%以上5重量%以下で構成されたラテックス粒子(b1)50重量部以上90重量部以下と、(メタ)アクリル酸エステル10重量%以上100重量%以下、芳香族ビニルモノマー0重量%以上90重量%以下、シアン化ビニルモノマー0重量%以上25重量%以下、及びこれらと共重合可能なビニルモノマー0重量%以上20重量%以下を含む単量体混合物(b2)10重量部以上50重量部以下が重合した重合体粒子であって、ラテックス粒子(b1)と単量体混合物(b2)の合計が100重量部であることがより好ましい。 The acrylic resin particles (b) are preferably composed of 30% by weight or more and 100% by weight or less of the (meth) acrylic acid ester, and 0% by weight or more and 70% by weight or less of the vinyl monomer copolymerizable therewith. (Meta) acrylic acid ester 50% by weight or more and 100% by weight or less, aromatic vinyl monomer 0% by weight or more and 40% by weight or less, vinyl monomer copolymerizable with these 0% by weight or more and 10% by weight or less, and polyfunctional monomer Latex particles (b1) composed of 0% by weight or more and 5% by weight or less, 50 parts by weight or more and 90 parts by weight or less, (meth) acrylic acid ester 10% by weight or more and 100% by weight or less, aromatic vinyl monomer 0% by weight or more. Monomer mixture (b2) containing 90% by weight or less, 0% by weight or more and 25% by weight or less of vinyl cyanide monomer, and 0% by weight or more and 20% by weight or less of vinyl monomer copolymerizable with these, 10 parts by weight or more and 50% by weight. More preferably, the part or less of the polymer particles is polymerized, and the total of the latex particles (b1) and the monomer mixture (b2) is 100 parts by weight.
 アクリル系樹脂粒子(b)を構成する(メタ)アクリル酸エステルとしては、特に限定されず、例えば、アクリル系樹脂粒子(a)についての説明時に列挙した(メタ)アクリル酸エステルを適宜用いることができる。また、アクリル系樹脂粒子(b)を構成する芳香族ビニルモノマー、シアン化ビニルモノマー、多官能性モノマー、その他の共重合可能なビニルモノマーとしては、特に限定されず、例えば、アクリル系樹脂粒子(a)についての説明時に列挙したものを適宜に用いることができる。 The (meth) acrylic acid ester constituting the acrylic resin particles (b) is not particularly limited, and for example, the (meth) acrylic acid ester listed at the time of explaining the acrylic resin particles (a) may be appropriately used. it can. The aromatic vinyl monomer, vinyl cyanide monomer, polyfunctional monomer, and other copolymerizable vinyl monomer constituting the acrylic resin particles (b) are not particularly limited, and for example, the acrylic resin particles ( Those listed at the time of the explanation of a) can be appropriately used.
 アクリル系樹脂粒子(b)は、より好ましくは、メタクリル酸メチル50重量%以上95重量%以下、炭素数2以上8以下のアルキル基を有するメタクリル酸エステル5重量%以上50重量%以下及びこれらと共重合可能なビニルモノマー0重量%以上20重量%以下を含む単量体混合物(a)を乳化重合したラテックス粒子(b1)70重量部以上95重量部以下と、アクリル酸エステル及びメタクリル酸メチルを除くメタクリル酸エステルからなる群から選ばれた1種以上の単量体20重量%以上80重量%以下、メタクリル酸メチル20重量%以上80重量%以下、及びこれらと共重合可能なビニルモノマー0重量%以上20重量%以下を含む単量体混合物(b2)5重量部以上30重量部以下をグラフト重合した乳化重合体粒子であり、ラテックス粒子(b1)及び単量体混合物(b2)の合計が100重量部である。具体的には、メタクリル酸メチル50重量%以上95重量%以下、炭素数2以上8以下のアルキル基を有するメタクリル酸エステル5重量%以上50重量%以下及びこれらと共重合可能なビニルモノマー0重量%以上20重量%以下を含む単量体混合物(I)70重量部以上95重量部以下を乳化重合し、得られた重合体ラテックスの存在下で、アクリル酸エステル及びメタクリル酸メチルを除くメタクリル酸エステルからなる群から選ばれた1種以上の単量体20重量%以上80重量%以下、メタクリル酸メチル20重量%以上80重量%以下、及びこれらと共重合可能なビニルモノマー0重量%以上20重量%以下を含む単量体混合物(II)5重量部以上30重量部以下をグラフト重合することにより得られる乳化重合体粒子であり、単量体混合物(I)及び単量体混合物(II)の合計が100重量部であることが好ましい。 The acrylic resin particles (b) are more preferably methyl methacrylate in an amount of 50% by weight or more and 95% by weight or less, and 5% by weight or more and 50% by weight or less of a methacrylate ester having an alkyl group having 2 or more and 8 or less carbon atoms. 70 parts by weight or more and 95 parts by weight or less of latex particles (b1) obtained by emulsifying and polymerizing a monomer mixture (a) containing 0% by weight or more and 20% by weight or less of a copolymerizable vinyl monomer, and acrylic acid ester and methyl methacrylate. 20% by weight or more and 80% by weight or less of one or more monomers selected from the group consisting of the methacrylic acid esters excluded, 20% by weight or more and 80% by weight or less of methyl methacrylate, and 0 weight of vinyl monomer copolymerizable with these. The monomer mixture (b2) containing% or more and 20% by weight or less is an emulsified polymer particle obtained by graft-polymerizing 5 parts by weight or more and 30 parts by weight or less, and the total of the latex particles (b1) and the monomer mixture (b2) is It is 100 parts by weight. Specifically, methyl methacrylate is 50% by weight or more and 95% by weight or less, 5% by weight or more and 50% by weight or less of a methacrylate ester having an alkyl group having 2 or more and 8 or less carbon atoms, and 0 weight of vinyl monomer copolymerizable with these. A monomer mixture containing% or more and 20% by weight or less (I) of 70 parts by weight or more and 95 parts by weight or less is emulsified and polymerized, and in the presence of the obtained polymer latex, acrylate and methacrylic acid excluding methyl methacrylate One or more monomers selected from the group consisting of esters 20% by weight or more and 80% by weight or less, methyl methacrylate 20% by weight or more and 80% by weight or less, and vinyl monomers copolymerizable with them 0% by weight or more 20 It is an emulsified polymer particle obtained by graft-polymerizing 5 parts by weight or more and 30 parts by weight or less of a monomer mixture (II) containing% by weight or less, and is a monomer mixture (I) and a monomer mixture (II). The total of is preferably 100 parts by weight.
 アクリル系樹脂粒子(b)は、より好ましくは、メタクリル酸メチル40重量%以上99.99重量%以下、これらと共重合可能なビニルモノマー0重量%以上59.99重量%以下及び多官能性モノマー0.01重量%以上10重量%以下を含む単量体混合物(III)重合した1段目重合体10重量部以上60重量部以下と、アクリル酸アルキル60重量%以上99.9重量%以下、これらと共重合可能なビニルモノマー0重量%以上39.9重量%以下及び多官能性モノマー0.1重量%以上5重量%以下を含む単量体混合物(IV)40重量部以上90重量部以下を重合して得られ、単量体混合物(III)及び単量体混合物(IV)の合計が100重量部である2段目重合体粒子(ラテックス粒子(b1))100重量部と、(メタ)アクリル酸エステル60重量%以上100重量%以下及びこれらと共重合可能なビニルモノマー0重量%以上40重量%以下を含む単量体混合物11重量部以上67重量部以下を重合した乳化重合体粒子である。具体的には、メタクリル酸メチル40重量%以上99.99重量%以下、これらと共重合可能なビニルモノマー0重量%以上59.99重量%以下及び多官能性モノマー0.01重量%以上10重量%以下を含む単量体混合物(III)10重量部以上60重量部以下を乳化重合し、得られた1段目重合体のラテックスの存在下に、アクリル酸アルキル60重量%以上99.9重量%以下、これらと共重合可能なビニルモノマー0重量%以上39.9重量%以下及び多官能性モノマー0.1重量%以上5重量%以下を含む単量体混合物(IV)40重量部以上90重量部以下を乳化重合して2段目重合体ラテックスを得、単量体混合物(III)及び単量体混合物(IV)の合計が100重量部であり、得られた2段目重合体ラテックスの固形分(ラテックス粒子(b1))100重量部の存在下に、さらに(メタ)アクリル酸エステル60重量%以上100重量%以下及びこれらと共重合可能なビニルモノマー0重量%以上40重量%以下を含む単量体混合物(b2)11重量部以上67重量部以下を重合してなる3層構造を有する乳化重合体粒子である。 The acrylic resin particles (b) are more preferably methyl methacrylate 40% by weight or more and 99.99% by weight or less, vinyl monomer copolymerizable with them 0% by weight or more and 59.99% by weight or less, and a polyfunctional monomer. Monomer mixture containing 0.01% by weight or more and 10% by weight or less (III) 10 parts by weight or more and 60 parts by weight or less of the first-stage polymer polymerized, and alkyl acrylate 60% by weight or more and 99.9% by weight or less, 40 parts by weight or more and 90 parts by weight or less of a monomer mixture (IV) containing 0% by weight or more and 39.9% by weight or less of a vinyl monomer copolymerizable with these and 0.1% by weight or more and 5% by weight or less of a polyfunctional monomer. The second-stage polymer particles (latex particles (b1)) having a total of 100 parts by weight of the monomer mixture (III) and the monomer mixture (IV) obtained by polymerizing the above and (meth). ) Emulsified polymer particles obtained by polymerizing 11 parts by weight or more and 67 parts by weight or less of a monomer mixture containing 60% by weight or more and 100% by weight or less of an acrylic acid ester and 0% by weight or more and 40% by weight or less of a vinyl monomer copolymerizable therewith. Is. Specifically, methyl methacrylate 40% by weight or more and 99.99% by weight or less, vinyl monomer copolymerizable with these 0% by weight or more and 59.99% by weight or less, and polyfunctional monomer 0.01% by weight or more and 10% by weight. In the presence of the latex of the first-stage polymer obtained by emulsion polymerization of 10 parts by weight or more and 60 parts by weight or less of the monomer mixture (III) containing% or less, the alkyl acrylate is 60% by weight or more and 99.9% by weight. 40 parts by weight or more of the monomer mixture (IV) containing 0% by weight or more and 39.9% by weight or less of the vinyl monomer copolymerizable with these and 0.1% by weight or more and 5% by weight or less of the polyfunctional monomer. The second-stage polymer latex was obtained by emulsion polymerization of parts by weight or less, and the total of the monomer mixture (III) and the monomer mixture (IV) was 100 parts by weight, and the obtained second-stage polymer latex was obtained. In the presence of 100 parts by weight of the solid content (latex particles (b1)), 60% by weight or more and 100% by weight or less of the (meth) acrylic acid ester and 0% by weight or more and 40% by weight or less of the vinyl monomer copolymerizable with these. It is an emulsion polymer particle having a three-layer structure formed by polymerizing 11 parts by weight or more and 67 parts by weight or less of a monomer mixture (b2) containing.
 ラテックス粒子(b1)は、ガラス転移温度が0℃以下であることが好ましく、-30℃以下であることがより好ましい。ラテックス粒子(b1)のガラス転移温度が0℃以下であると、射出発泡成形体の耐衝撃強度が向上しやすい。 The latex particles (b1) preferably have a glass transition temperature of 0 ° C. or lower, more preferably −30 ° C. or lower. When the glass transition temperature of the latex particles (b1) is 0 ° C. or lower, the impact resistance of the injection foam molded product tends to be improved.
 アクリル系樹脂は、アクリル系樹脂粒子(a)100重量部に対して、アクリル系樹脂粒子(b)を22重量部以上100重量部以下含むことが好ましく、25重量部以上100重量部以下含むことがより好ましく、30重量部以上100重量部以下含むことがさらに好ましい。アクリル系樹脂粒子(a)100重量部に対してアクリル系樹脂粒子(b)が22重量部未満では、ろ過性が改善されない恐れがある。また、アクリル系樹脂粒子(a)100重量部に対してアクリル系樹脂粒子(b)が100重量部を超える場合は、アクリル系樹脂の脱水後含水率が高くなるおそれがある。 The acrylic resin preferably contains 22 parts by weight or more and 100 parts by weight or less, and 25 parts by weight or more and 100 parts by weight or less of the acrylic resin particles (b) with respect to 100 parts by weight of the acrylic resin particles (a). Is more preferable, and it is further preferable to include 30 parts by weight or more and 100 parts by weight or less. If the amount of the acrylic resin particles (b) is less than 22 parts by weight with respect to 100 parts by weight of the acrylic resin particles (a), the filterability may not be improved. Further, when the acrylic resin particles (b) exceed 100 parts by weight with respect to 100 parts by weight of the acrylic resin particles (a), the water content of the acrylic resin after dehydration may increase.
 アクリル系樹脂は、特に限定されないが、例えば、下記のように作製することができる。まず、懸濁重合によりアクリル系樹脂粒子(a)を含む懸濁液を調製し、乳化重合によりアクリル系重合体粒子(b)を含む乳化重合ラテックスを調製する。次に、前記懸濁液と前記乳化重合ラテックスを混合する。次に、得られた混合懸濁液中の固形分濃度(アクリル系重合体粒子(a)及びアクリル系重合体粒子(b)の合計濃度)を25重量%以上35重量%以下に調整する。次に、固形分の濃度を調製した混合懸濁液に、アクリル系重合体粒子(b)のビカット軟化温度以下の温度で電解質水溶液を添加しアクリル系重合体粒子(b)のビカット軟化温度より高い温度に加熱した後、固液分離によりアクリル系樹脂を回収する。上述した製造方法により、アクリル系重合体粒子(a)の表面を均一にアクリル系重合体粒子(b)で被覆することができるとともに、ろ過性悪化の原因となるアクリル系重合体粒子(b)の残存を大幅に削減することが可能となる。 The acrylic resin is not particularly limited, but can be produced, for example, as follows. First, a suspension containing acrylic resin particles (a) is prepared by suspension polymerization, and an emulsion polymerization latex containing acrylic polymer particles (b) is prepared by emulsion polymerization. Next, the suspension and the emulsion-polymerized latex are mixed. Next, the solid content concentration (total concentration of the acrylic polymer particles (a) and the acrylic polymer particles (b)) in the obtained mixed suspension is adjusted to 25% by weight or more and 35% by weight or less. Next, an aqueous electrolyte solution was added to the mixed suspension in which the solid content was adjusted at a temperature equal to or lower than the Vicat softening temperature of the acrylic polymer particles (b), and the temperature was higher than the Vicat softening temperature of the acrylic polymer particles (b). After heating to a high temperature, the acrylic resin is recovered by solid-liquid separation. By the above-mentioned production method, the surface of the acrylic polymer particles (a) can be uniformly coated with the acrylic polymer particles (b), and the acrylic polymer particles (b) cause deterioration in filterability. It is possible to significantly reduce the residual amount of particles.
 懸濁重合により得られたアクリル系樹脂粒子(a)を含む懸濁液と、乳化重合により得られたアクリル系重合体粒子(b)を含む乳化重合ラテックスを混合する方法は、撹拌下に、懸濁液へ乳化重合ラテックスを添加、又は、撹拌下に乳化重合ラテックスへ懸濁液を添加することが好ましい。 The method of mixing the suspension containing the acrylic resin particles (a) obtained by suspension polymerization and the emulsion polymerization latex containing the acrylic polymer particles (b) obtained by emulsion polymerization is carried out under stirring. It is preferable to add the emulsion-polymerized latex to the suspension, or to add the suspension to the emulsion-polymerized latex with stirring.
 アクリル系樹脂粒子(a)を含む懸濁液とアクリル系重合体粒子(b)を含む乳化重合ラテックスの固形分比は、アクリル系樹脂粒子(a)100重量部に対して、アクリル系重合体粒子(b)が22重量部以上100重量部以下であることが好ましく、25重量部以上100重量部以下であることがより好ましく、30重量部以上100重量部以下であることがさらに好ましい。アクリル系樹脂粒子(a)100重量部に対して、アクリル系重合体粒子(b)が22重量部以上であると、系中の残存アクリル系樹脂粒子(b)が低減し、その結果としてろ過性を改善しやすい。また、アクリル系樹脂粒子(a)100重量部に対して、アクリル系重合体粒子(b)が100重量部以下であると、得られるアクリル系樹脂の脱水後含水率が低くなる。 The solid content ratio of the suspension containing the acrylic resin particles (a) and the emulsion polymerized latex containing the acrylic polymer particles (b) was 100 parts by weight of the acrylic resin particles (a). The particles (b) are preferably 22 parts by weight or more and 100 parts by weight or less, more preferably 25 parts by weight or more and 100 parts by weight or less, and further preferably 30 parts by weight or more and 100 parts by weight or less. When the amount of the acrylic polymer particles (b) is 22 parts by weight or more with respect to 100 parts by weight of the acrylic resin particles (a), the residual acrylic resin particles (b) in the system are reduced, and as a result, filtration is performed. Easy to improve sex. Further, when the amount of the acrylic polymer particles (b) is 100 parts by weight or less with respect to 100 parts by weight of the acrylic resin particles (a), the water content of the obtained acrylic resin after dehydration becomes low.
 前記懸濁液と乳化重合ラテックスを混合する際において、懸濁液と乳化重合ラテックスの固形分濃度には特に制限はなく、通常の重合操作で得られる乳化重合ラテックス又は懸濁重合懸濁液をそのまま用いるのが製造上最も簡便であり好ましい。通常は、アクリル系樹脂粒子(a)を含む懸濁液の固形分濃度(アクリル系樹脂粒子(a)の濃度)は25重量%以上55重量%以下であることが好ましく、30重量%以上45重量%以下であることがより好ましく、33重量%以上45重量%以下であることがさらに好ましく、35重量%以上40重量%以下であることが特に好ましい。アクリル系樹脂粒子(b)を含む乳化重合ラテックスの固形分濃度(アクリル系樹脂粒子(b)の濃度)は25重量%以上55重量%以下であることが好ましく、25重量%以上45重量%以下であることがより好ましく、30重量%以上45重量%以下であることがさらに好ましく、30重量%以上40重量%以下であることが特に好ましい。混合時の温度は5℃以上が好ましく、5℃よりも低い場合はその後の熱処理操作のユーティリティー使用量が多大となるため好ましくない傾向がある。 When the suspension and the emulsion polymerization latex are mixed, the solid content concentration of the suspension and the emulsion polymerization latex is not particularly limited, and the emulsion polymerization latex or the suspension polymerization suspension obtained by a normal polymerization operation can be used. It is most convenient and preferable to use it as it is in terms of production. Usually, the solid content concentration (concentration of acrylic resin particles (a)) of the suspension containing the acrylic resin particles (a) is preferably 25% by weight or more and 55% by weight or less, and 30% by weight or more and 45% by weight. It is more preferably 33% by weight or more and 45% by weight or less, and particularly preferably 35% by weight or more and 40% by weight or less. The solid content concentration of the emulsion polymerized latex containing the acrylic resin particles (b) (concentration of the acrylic resin particles (b)) is preferably 25% by weight or more and 55% by weight or less, and 25% by weight or more and 45% by weight or less. It is more preferably 30% by weight or more and 45% by weight or less, and particularly preferably 30% by weight or more and 40% by weight or less. The temperature at the time of mixing is preferably 5 ° C. or higher, and if it is lower than 5 ° C., the amount of utility used in the subsequent heat treatment operation becomes large, which tends to be unfavorable.
 電解質水溶液を添加する際の前記混合懸濁液中における固形分濃度(重合体粒子の濃度)は25重量%以上35重量%以下であることが好ましく、27重量%以上33重量%以下であることがより好ましい。電解質水溶液を添加する際の混合懸濁液中における重合体粒子(固形分)の濃度が25重量%以上であると、電解質水溶液を添加し加熱処理を実施した後の混合懸濁液中における粒子径が50μm以下の微小凝集体の生成が抑制され、ろ過性が良好になるとともにアクリル系樹脂の脱水後含水率が低くなる。また、電解質水溶液を添加する際の混合懸濁液中における重合体粒子の濃度が35重量%以下であると、アクリル系樹脂粒子(b)を介した二次凝集粒子の生成が抑制され、アクリル系樹脂の脱水後含水率が低くなる。 The solid content concentration (concentration of polymer particles) in the mixed suspension when the aqueous electrolyte solution is added is preferably 25% by weight or more and 35% by weight or less, and is 27% by weight or more and 33% by weight or less. Is more preferable. When the concentration of the polymer particles (solid content) in the mixed suspension when the aqueous electrolyte solution is added is 25% by weight or more, the particles in the mixed suspension after the aqueous electrolyte solution is added and heat-treated. The formation of micro-aggregates having a diameter of 50 μm or less is suppressed, the filterability is improved, and the water content of the acrylic resin after dehydration is lowered. Further, when the concentration of the polymer particles in the mixed suspension when the aqueous electrolyte solution is added is 35% by weight or less, the formation of secondary aggregated particles via the acrylic resin particles (b) is suppressed, and the acrylic After dehydration of the based resin, the water content becomes low.
 前記電解質水溶液は、撹拌下で、前記混合懸濁液へ添加することが好ましい。この操作により、乳化重合体粒子であるアクリル系樹脂粒子(b)が懸濁重合体粒子であるアクリル系樹脂粒子(a)表面に凝析(析出)し、アクリル系樹脂粒子(a)の表面を被覆する。前記電解質水溶液の添加は、懸濁重合の懸濁液と乳化重合ラテックスを混合した後に実施する必要がある。この理由は、懸濁重合の懸濁液と乳化重合ラテックスの混合時に、電解質水溶液が存在すると、生成するアクリル系樹脂の形状が歪になり脱水後含水率が高くなるだけでなく、未凝固のアクリル系樹脂粒子(b)が残存し極度のろ過性の悪化する傾向にある。例えば、懸濁重合の懸濁液に電解質水溶液を添加した後に、乳化重合ラテックスを添加すると、アクリル系樹脂粒子(a)の表面におけるアクリル系樹脂粒子(b)の被覆の均一性の低下、及びろ過性悪化の原因となるアクリル系重合体粒子(b)の残存量が大幅に増加するという問題が発生する。 It is preferable to add the aqueous electrolyte solution to the mixed suspension with stirring. By this operation, the acrylic resin particles (b) which are emulsified polymer particles are coagulated (precipitated) on the surface of the acrylic resin particles (a) which are suspension polymer particles, and the surface of the acrylic resin particles (a) is formed. Cover. The addition of the aqueous electrolyte solution needs to be carried out after mixing the suspension polymerization suspension and the emulsion polymerization latex. The reason for this is that when the suspension polymerized suspension and the emulsion polymerized latex are mixed, the presence of an aqueous electrolyte distorts the shape of the acrylic resin produced, which not only increases the water content after dehydration, but also unsolidifies. Acrylic resin particles (b) remain, and the filterability tends to be extremely deteriorated. For example, when an emulsion polymerization latex is added after adding an aqueous electrolyte solution to a suspension of suspension polymerization, the uniformity of coating of the acrylic resin particles (b) on the surface of the acrylic resin particles (a) is lowered, and There arises a problem that the residual amount of the acrylic polymer particles (b), which causes deterioration of filterability, is significantly increased.
 前記電解質水溶液としては、アクリル系樹脂粒子(b)を凝析・凝固し得る性質を有する有機酸、有機酸塩、無機酸、及び無機塩の水溶液を適宜用いることができる。前記電解質水溶液としては、例えば、塩化ナトリウム、塩化カリウム、塩化リチウム、臭化ナトリウム、臭化カリウム、臭化リチウム、ヨウ化カリウム、ヨウ化ナトリウム、硫酸カリウム、硫酸ナトリウム、硫酸アンモニウム、塩化アンモニウム、硝酸ナトリウム、硝酸カリウム、塩化カルシウム、硫酸第一鉄、硫酸マグネシウム、硫酸亜鉛、硫酸銅、塩化バリウム、塩化第一鉄、塩化第二鉄、塩化マグネシウム、硫酸第二鉄、硫酸アルミニウム、カリウムミョウバン、鉄ミョウバン等の無機塩類の水溶液、塩酸、硫酸、硝酸、リン酸等の無機酸類の水溶液、酢酸、ギ酸等の有機酸類及びそれらの水溶液、酢酸ナトリウム、酢酸カルシウム、ギ酸ナトリウム、ギ酸カルシウム等の有機酸塩類の水溶液等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いることができる。なかでも、アクリル系樹脂粒子(a)の表面のアクリル系樹脂粒子(b)による被覆の均一性、ろ過性悪化の原因となるアクリル系重合体粒子(b)の残存の大幅削減及び排水処理の容易性の点で、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、塩化アンモニウム、塩化カルシウム、塩化マグネシウム、硫酸マグネシウム、塩化バリウム、塩化第一鉄、硫酸アルミニウム、カリウムミョウバン、鉄ミョウバン等の無機塩の水溶液や塩酸、硫酸、硝酸等の無機酸類の水溶液を好適に用いることができる。 As the electrolyte aqueous solution, an aqueous solution of an organic acid, an organic acid salt, an inorganic acid, and an inorganic salt having a property of coagulating and coagulating acrylic resin particles (b) can be appropriately used. Examples of the electrolyte aqueous solution include sodium chloride, potassium chloride, lithium chloride, sodium bromide, potassium bromide, lithium bromide, potassium iodide, sodium iodide, potassium sulfate, sodium sulfate, ammonium sulfate, ammonium chloride, and sodium nitrate. , Potassium nitrate, calcium chloride, ferrous sulfate, magnesium sulfate, zinc sulfate, copper sulfate, barium chloride, ferrous chloride, ferric chloride, magnesium chloride, ferric sulfate, aluminum sulfate, potassium myoban, iron myoban, etc. Aqueous solutions of inorganic salts, aqueous solutions of inorganic acids such as hydrochloric acid, sulfuric acid, nitrate and phosphoric acid, organic acids such as acetic acid and formic acid and their aqueous solutions, and organic acid salts such as sodium acetate, calcium acetate, sodium formate and calcium formate. Examples include an aqueous solution. One of these may be used alone, or two or more thereof may be mixed and used. Among them, the uniformity of coating on the surface of the acrylic resin particles (a) with the acrylic resin particles (b), the drastic reduction of the residual acrylic polymer particles (b) causing deterioration of the filterability, and the wastewater treatment. In terms of ease, aqueous solutions of inorganic salts such as sodium chloride, potassium chloride, sodium sulfate, ammonium chloride, calcium chloride, magnesium chloride, magnesium sulfate, barium chloride, ferrous chloride, aluminum sulfate, potassium myoban, iron myoban, etc. An aqueous solution of inorganic acids such as hydrochloric acid, sulfuric acid and nitrate can be preferably used.
 前記電解質水溶液の濃度は、0.001重量%以上が好ましく、0.1重量%以上がより好ましく、1重量%以上がさらに好ましい。電解質水溶液の濃度が0.001重量%未満であると、アクリル系樹脂粒子(b)を凝析させるために多量の電解質水溶液を添加する必要があり、その後の熱処理操作時のユーティリティー使用量が多大となるおそれがある。 The concentration of the aqueous electrolyte solution is preferably 0.001% by weight or more, more preferably 0.1% by weight or more, still more preferably 1% by weight or more. If the concentration of the aqueous electrolyte solution is less than 0.001% by weight, it is necessary to add a large amount of the aqueous electrolyte solution in order to coagulate the acrylic resin particles (b), and the amount of utility used in the subsequent heat treatment operation is large. There is a risk of becoming.
 前記電解質水溶液の添加は、アクリル系樹脂粒子(b)のビカット軟化温度以下の温度で実施する必要がある。電解質水溶液添加時に混合懸濁液の温度がアクリル系樹脂粒子(b)のビカット軟化温度を超えると、生成するアクリル系樹脂の形状が歪になり脱水後含水率が高くなるおそれがあり、未凝固のアクリル系樹脂粒子(b)が残存し極度のろ過性の悪化を招いたり、アクリル系樹脂間の凝集が頻発する傾向がある。 The addition of the aqueous electrolyte solution needs to be carried out at a temperature equal to or lower than the Vicat softening temperature of the acrylic resin particles (b). If the temperature of the mixed suspension exceeds the Vicat softening temperature of the acrylic resin particles (b) when the electrolyte aqueous solution is added, the shape of the resulting acrylic resin may be distorted and the water content after dehydration may increase, resulting in unsolidification. Acrylic resin particles (b) tend to remain and cause extreme deterioration of filterability, and agglomeration between acrylic resins tends to occur frequently.
 混合懸濁液中の乳化重合ラテックスの比率が高い場合、あるいは電解質水溶液の添加速度が極端に速い場合、又は電解質水溶液濃度が極端に高い場合には、電解質水溶液添加時に著しい粘度上昇が見られる場合がある。このような場合は、系中に適宜水を加える等、通常の撹拌状態が維持できる程度に系の粘度を低下させる操作を実施すればよい。電解質水溶液の量は、混合懸濁液のアクリル系樹脂粒子(b)の比率により当然異なるが、熱処理後に未凝固のアクリル系樹脂粒子(b)が存在しなくなる量以上を添加すれば良い。 When the ratio of emulsion-polymerized latex in the mixed suspension is high, the rate of addition of the aqueous electrolyte solution is extremely high, or the concentration of the aqueous electrolyte solution is extremely high, a significant increase in viscosity is observed when the aqueous electrolyte solution is added. There is. In such a case, an operation may be performed to reduce the viscosity of the system to such an extent that the normal stirring state can be maintained, such as adding water to the system as appropriate. The amount of the aqueous electrolyte solution naturally varies depending on the ratio of the acrylic resin particles (b) in the mixed suspension, but it is sufficient to add an amount or more so that the unsolidified acrylic resin particles (b) do not exist after the heat treatment.
 混合懸濁液に電解質水溶液を添加した後、電解質水溶液が酸性水溶液で、造粒後の混合懸濁液が酸性を示す場合は水酸化ナトリウム等のアルカリで中和した後、又は電解質水溶液が中性の水溶液の場合はそのまま、アクリル系重合体粒子(b)のビカット軟化温度より高い温度、例えば、50~120℃で熱処理するのが好ましい。熱処理により、アクリル系重合体粒子(a)の表面を被覆した、アクリル系重合体粒子(b)の凝集体が緻密化し、得られたアクリル系樹脂の含水率が低下する。その後、常法に従って脱水及び乾燥を行えば、アクリル系樹脂が得られる。 After adding the aqueous electrolyte solution to the mixed suspension, if the aqueous electrolyte solution is an acidic aqueous solution and the mixed suspension after granulation is acidic, neutralize it with an alkali such as sodium hydroxide, or the aqueous electrolyte solution is medium. In the case of a acidic aqueous solution, it is preferable to heat-treat the acrylic polymer particles (b) at a temperature higher than the Vicat softening temperature, for example, 50 to 120 ° C. By the heat treatment, the agglomerates of the acrylic polymer particles (b) coating the surface of the acrylic polymer particles (a) are densified, and the water content of the obtained acrylic resin is lowered. Then, dehydration and drying are carried out according to a conventional method to obtain an acrylic resin.
 前記マスターバッチは、前記熱膨張性マイクロカプセルを30重量%以上80重量%以下含むことが好ましく、より好ましくは30重量%以上70重量%以下含み、さらに好ましくは30重量%以上60重量%以下含む。 The masterbatch preferably contains the heat-expandable microcapsules in an amount of 30% by weight or more and 80% by weight or less, more preferably 30% by weight or more and 70% by weight or less, and further preferably 30% by weight or more and 60% by weight or less. ..
 前記マスターバッチは、ポリカーボネートとの相溶性及び加工性の観点から、キャリア樹脂組成物を20重量%以上70重量%以下含むことが好ましく、より好ましくは30重量%以上70重量%以下含み、さらに好ましくは40重量%以上70重量%以下含む。 From the viewpoint of compatibility with polycarbonate and processability, the masterbatch preferably contains the carrier resin composition in an amount of 20% by weight or more and 70% by weight or less, more preferably 30% by weight or more and 70% by weight or less, and further preferably. Includes 40% by weight or more and 70% by weight or less.
 前記マスターバッチが、キャリア樹脂組成物(B1)を含む場合、ポリカーボネートとの相溶性及び130℃におけるせん断粘度、並びに、取扱い性、貯蔵安定性及び基材樹脂への分散性等の観点から、具体的には、前記熱膨張性マイクロカプセルを30重量%以上80重量%以下、キャリア樹脂組成物(B1)を20重量%以上70重量%以下含むことが好ましく、前記熱膨張性マイクロカプセルを30重量%以上70重量%以下、キャリア樹脂組成物(B1)を30重量%以上70重量%以下含むことがより好ましく、前記熱膨張性マイクロカプセルを30重量%以上60重量%以下、キャリア樹脂組成物(B1)を40重量%以上70重量%以下含むことがさらに好ましい。 When the masterbatch contains the carrier resin composition (B1), it is concrete from the viewpoints of compatibility with polycarbonate, shear viscosity at 130 ° C., handleability, storage stability, dispersibility in the base resin, and the like. It is preferable that the heat-expandable microcapsules are contained in an amount of 30% by weight or more and 80% by weight or less, the carrier resin composition (B1) is preferably contained in an amount of 20% by weight or more and 70% by weight or less, and the heat-expandable microcapsules are contained in an amount of 30% by weight or more. % To 70% by weight, more preferably 30% by weight or more and 70% by weight or less of the carrier resin composition (B1), and 30% by weight or more and 60% by weight or less of the heat-expandable microcapsules, the carrier resin composition ( It is more preferable to contain B1) in an amount of 40% by weight or more and 70% by weight or less.
 前記マスターバッチがキャリア樹脂組成物(B2)を含む場合、好ましくは、前記熱膨張性マイクロカプセルを30重量%以上80重量%以下、前記ポリスチレンを15重量%以上40重量%以下、前記アクリル系可塑剤を5重量%以上30重量%以下含む。アクリル系可塑剤の配合量が5重量%以上であると、マスターバッチの作製時に低せん断化効果が発揮しやすく、カプセルが破断することを防止することができる。また、アクリル系可塑剤の配合量が30重量%以下であると、発泡成形時の温度に対して可塑剤の熱分解量が増加することが抑制され、外観に悪影響を及ぼすことが防止される。より好ましくは、前記マスターバッチは、前記熱膨張性マイクロカプセルを30重量%以上80重量%以下、前記ポリスチレンを12重量%以上45重量%以下、前記アクリル系可塑剤を8重量%以上25重量%以下含む。さらに好ましくは、マスターバッチは、前記熱膨張性マイクロカプセルを30重量%以上80重量%以下、前記ポリスチレンを12重量%以上50重量%以下、前記アクリル系可塑剤を8重量%以上20重量%以下含む。特に好ましくは、マスターバッチは、前記熱膨張性マイクロカプセルを30重量%以上80重量%以下、前記ポリスチレンを12重量%以上55重量%以下、前記アクリル系可塑剤を8重量%以上15重量%以下含む。 When the masterbatch contains the carrier resin composition (B2), preferably, the heat-expandable microcapsules are 30% by weight or more and 80% by weight or less, the polystyrene is 15% by weight or more and 40% by weight or less, and the acrylic plasticizer. The agent is contained in an amount of 5% by weight or more and 30% by weight or less. When the blending amount of the acrylic plasticizer is 5% by weight or more, the low shearing effect is likely to be exhibited at the time of producing the master batch, and the capsule can be prevented from breaking. Further, when the blending amount of the acrylic plasticizer is 30% by weight or less, the increase in the amount of thermal decomposition of the plasticizer with respect to the temperature at the time of foam molding is suppressed, and the appearance is prevented from being adversely affected. .. More preferably, the masterbatch contains 30% by weight or more and 80% by weight or less of the heat-expandable microcapsules, 12% by weight or more and 45% by weight or less of the polystyrene, and 8% by weight or more and 25% by weight of the acrylic plasticizer. Including the following. More preferably, the masterbatch contains 30% by weight or more and 80% by weight or less of the heat-expandable microcapsules, 12% by weight or more and 50% by weight or less of the polystyrene, and 8% by weight or more and 20% by weight or less of the acrylic plasticizer. Including. Particularly preferably, the master batch contains 30% by weight or more and 80% by weight or less of the heat-expandable microcapsules, 12% by weight or more and 55% by weight or less of the polystyrene, and 8% by weight or more and 15% by weight or less of the acrylic plastic agent. Including.
 前記マスターバッチがキャリア樹脂組成物(B3)を含む場合、好ましくは、前記熱膨張性マイクロカプセルを30重量%以上80重量%以下、前記アクリル系樹脂を15重量%以上40重量%以下、前記アクリル系可塑剤を5重量%以上30重量%以下含む。アクリル系可塑剤の配合量が5重量%以上であると、マスターバッチの作製時に低せん断化効果が発揮しやすく、カプセルが破断することを防止することができる。また、アクリル系可塑剤の配合量が30重量%以下であると、発泡成形時の温度に対して可塑剤の熱分解量が増加することが抑制され、外観に悪影響を及ぼすことが防止される。より好ましくは、前記マスターバッチは、前記熱膨張性マイクロカプセルを30重量%以上80重量%以下、前記アクリル系樹脂を12重量%以上45重量%以下、前記アクリル系可塑剤を8重量%以上25重量%以下含む。さらに好ましくは、マスターバッチは、前記熱膨張性マイクロカプセルを30重量%以上80重量%以下、前記アクリル系樹脂を12重量%以上50重量%以下、前記アクリル系可塑剤を8重量%以上20重量%以下含む。特に好ましくは、マスターバッチは、前記熱膨張性マイクロカプセルを30重量%以上80重量%以下、前記アクリル系樹脂を12重量%以上55重量%以下、前記アクリル系可塑剤を8重量%以上15重量%以下含む。 When the masterbatch contains the carrier resin composition (B3), preferably, the heat-expandable microcapsules are 30% by weight or more and 80% by weight or less, the acrylic resin is 15% by weight or more and 40% by weight or less, and the acrylic. Contains 5% by weight or more and 30% by weight or less of the plasticizer. When the blending amount of the acrylic plasticizer is 5% by weight or more, the low shearing effect is likely to be exhibited at the time of producing the master batch, and the capsule can be prevented from breaking. Further, when the blending amount of the acrylic plasticizer is 30% by weight or less, the increase in the amount of thermal decomposition of the plasticizer with respect to the temperature at the time of foam molding is suppressed, and the appearance is prevented from being adversely affected. .. More preferably, the masterbatch contains 30% by weight or more and 80% by weight or less of the heat-expandable microcapsules, 12% by weight or more and 45% by weight or less of the acrylic resin, and 8% by weight or more and 25% by weight of the acrylic plasticizer. Includes less than% by weight. More preferably, the masterbatch contains 30% by weight or more and 80% by weight or less of the heat-expandable microcapsules, 12% by weight or more and 50% by weight or less of the acrylic resin, and 8% by weight or more and 20% by weight of the acrylic plasticizer. Including% or less. Particularly preferably, the masterbatch contains 30% by weight or more and 80% by weight or less of the heat-expandable microcapsules, 12% by weight or more and 55% by weight or less of the acrylic resin, and 8% by weight or more and 15% by weight of the acrylic plasticizer. Including% or less.
 前記ポリカーボネート系樹脂組成物において、マスターバッチの含有量は、最終製品の発泡倍率と発泡剤の種類や成形時の樹脂温度等によって適宜設定すればよい。ポリカーボネート系樹脂組成物中のマスターバッチの含有量は、1重量%以上15重量%以下が好ましく、2重量%以上15重量%以下がより好ましく、3重量%以上10重量%以下が特に好ましい。マスターバッチをこの範囲で使用することにより、経済的に発泡倍率が1.1倍以上で、かつ、均一微細気泡の発泡成形体が得られやすい。 In the polycarbonate-based resin composition, the content of the masterbatch may be appropriately set according to the expansion ratio of the final product, the type of foaming agent, the resin temperature at the time of molding, and the like. The content of the masterbatch in the polycarbonate resin composition is preferably 1% by weight or more and 15% by weight or less, more preferably 2% by weight or more and 15% by weight or less, and particularly preferably 3% by weight or more and 10% by weight or less. By using the masterbatch in this range, it is economically easy to obtain a foamed molded product having a foaming ratio of 1.1 times or more and uniform fine bubbles.
 前記ポリカーボネートとしては、フェノール性水酸基を2個有する化合物(以下、2価フェノールという。)より誘導されるポリカーボネートであり、通常2価フェノールとホスゲン、又は2価フェノールと炭酸ジエステルとの反応により得られる樹脂を用いる。 The polycarbonate is a polycarbonate derived from a compound having two phenolic hydroxyl groups (hereinafter referred to as divalent phenol), and is usually obtained by a reaction between divalent phenol and phosgen or divalent phenol and carbonic acid diester. Use resin.
 前記2価フェノールとしては、ビフェノール、メチレンビスフェノール(ビスフェノールF)、ビス(4-ヒドロキシフェニル)スルホン(ビスフェノールS)、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)等が挙げられる。これらの中でもビスフェノールAが好適であるが、これに限定されるものではない。 Examples of the divalent phenol include biphenol, methylene bisphenol (bisphenol F), bis (4-hydroxyphenyl) sulfone (bisphenol S), 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) and the like. Of these, bisphenol A is preferable, but is not limited thereto.
 前記ポリカーボネートは、耐衝撃性、耐薬品性及び成形加工性等の観点から、数平均分子量が10,000以上60,000以下のものが好ましく、10,000以上30,000以下のものがより好ましい。ポリカーボネート系樹脂組成物中のポリカーボネートの含有量は、30重量%以上99重量%以下が好ましく、30重量%以上80重量%以下がより好ましく、さらに好ましくは30重量%以上70重量%以下である。 From the viewpoint of impact resistance, chemical resistance, molding processability, etc., the polycarbonate preferably has a number average molecular weight of 10,000 or more and 60,000 or less, and more preferably 10,000 or more and 30,000 or less. .. The content of polycarbonate in the polycarbonate resin composition is preferably 30% by weight or more and 99% by weight or less, more preferably 30% by weight or more and 80% by weight or less, and further preferably 30% by weight or more and 70% by weight or less.
 前記ポリカーボネート系樹脂組成物は、さらに、ポリエステル系樹脂、ポリエステル-ポリエーテル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-エチレン-プロピレン-ジエン-スチレン共重合体、アクリレート-スチレン-アクリロニトリル共重合体、アクリロニトリル-スチレン共重合体、ポリアリレート樹脂、ポリスチレン系樹脂、及びポリアミド系樹脂からなる群より選択される1種以上の他の熱可塑性樹脂を含んでもよい。 The polycarbonate-based resin composition further comprises a polyester-based resin, a polyester-polyether copolymer, an acrylonitrile-butadiene-styrene copolymer, an acrylonitrile-ethylene-propylene-diene-styrene copolymer, and an acrylate-styrene-acrylonitrile. It may contain one or more other thermoplastic resins selected from the group consisting of polymers, acrylonitrile-styrene copolymers, polyarylate resins, polystyrene resins, and polyamide resins.
 前記ポリエステル系樹脂は、非晶性脂肪族ポリエステル、非晶性半芳香族ポリエステル、非晶性全芳香族ポリエステル等の非晶性熱可塑性ポリエステル系樹脂、結晶性脂肪族ポリエステル、結晶性半芳香族ポリエステル、結晶性全芳香族ポリエステル等の結晶性熱可塑性ポリエステル系樹脂、液晶性脂肪族ポリエステル、液晶性半芳香族ポリエステル、液晶性全芳香族ポリエステル等の液晶性熱可塑性ポリエステル系樹脂等を用いることができる。 The polyester-based resin includes amorphous thermoplastic polyester-based resins such as amorphous aliphatic polyester, amorphous semi-aromatic polyester, and amorphous total aromatic polyester, crystalline aliphatic polyester, and crystalline semi-aromatic. Use a crystalline thermoplastic polyester resin such as polyester or crystalline total aromatic polyester, a liquid crystal thermoplastic polyester resin such as liquid crystal aliphatic polyester, liquid crystal semi-aromatic polyester, or liquid crystal total aromatic polyester. Can be done.
 結晶性熱可塑性ポリエステルの具体例としては、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンナフタレート、ポリ1,4-シクロヘキシレンジメチレンテレフタレート、ポリエチレン-1,2-ビス(フェノキシ)エタン-4,4'-ジカルボキシレート、ポリエチレンイソフタレート/テレフタレート、ポリブチレンテレフタレート/イソフタレート、ポリブチレンテレフタレート/デカンジカルボキシレート、ポリシクロヘキサンジメチレンテレフタレート/イソフタレート等の結晶性共重合ポリエステル等が挙げられる。中でもポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンナフタレート、ポリ1,4-シクロヘキシレンジメチレンテレフタレート等を用いることが好ましい。ポリカーボネート系樹脂組成物中の熱可塑性ポリエステル系樹脂の含有量は、射出発泡成形体の外観を良好にする観点から、60重量%以下であることが好ましく、50重量%以下であることがより好ましく、40重量%以下であることがさらに好ましい。 Specific examples of the crystalline thermoplastic polyester include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polybutylene naphthalate, poly1,4-cyclohexylene methylene terephthalate, and polyethylene-1,2. Crystalline of -bis (phenoxy) ethane-4,4'-dicarboxylate, polyethylene isophthalate / terephthalate, polybutylene terephthalate / isophthalate, polybutylene terephthalate / decandicarboxylate, polycyclohexanedimethylene terephthalate / isophthalate, etc. Examples thereof include copolymerized polyester. Of these, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polybutylene naphthalate, poly1,4-cyclohexylene methylene terephthalate and the like are preferably used. The content of the thermoplastic polyester resin in the polycarbonate resin composition is preferably 60% by weight or less, more preferably 50% by weight or less, from the viewpoint of improving the appearance of the injection foam molded product. , 40% by weight or less is more preferable.
 前記ポリエステル-ポリエーテル共重合体は、芳香族ポリエステル単位とポリエーテル単位を含むことが好ましい。前記ポリエーテル単位は、例えば、下記一般式(1)、一般式(2)、一般式(3)、一般式(4)、一般式(5)及び一般式(6)で表されるものが挙げられる。これらの中でも、下記一般式(6)で表されるものが好ましい。 The polyester-polyester copolymer preferably contains an aromatic polyester unit and a polyether unit. The polyether unit is represented by, for example, the following general formula (1), general formula (2), general formula (3), general formula (4), general formula (5) and general formula (6). Can be mentioned. Among these, those represented by the following general formula (6) are preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、-A-は、-O-、-S-、-SO-、-SO2-、-CO-、炭素数1~20のアルキレン基、又は炭素数6~20のアルキリデン基である。R1、R2、R3、R4、R5、R6、R7、及びR8は、それぞれ、水素原子、ハロゲン原子、又は炭素数1~5の1価の炭化水素基である。R9、及びR10は、それぞれ炭素数1~5の2価の炭化水素基である。m、及びnはオキシアルキレン単位の繰り返し単位数を示し、m及びnはそれぞれ0~70の整数であって、10≦m+n≦70である。 In the general formula (1), -A- is -O-, -S-, -SO-, -SO 2- , -CO-, an alkylene group having 1 to 20 carbon atoms, or an alkylidene having 6 to 20 carbon atoms. It is a group. R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are hydrogen atoms, halogen atoms, or monovalent hydrocarbon groups having 1 to 5 carbon atoms, respectively. R 9 and R 10 are divalent hydrocarbon groups having 1 to 5 carbon atoms, respectively. m and n indicate the number of repeating units of the oxyalkylene unit, and m and n are integers of 0 to 70, respectively, and 10 ≦ m + n ≦ 70.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記一般式(2)中、R1、R2、R3、及びR4は、それぞれ、水素原子、ハロゲン原子、又は炭素数1~5の1価の炭化水素基である。R9、及びR10は、それぞれ、炭素数1~5の2価の炭化水素基である。m、及びnはオキシアルキレン単位の繰り返し単位数を示し、m及びnはそれぞれ0~70の整数であって、10≦m+n≦70である。 In the general formula (2), R 1 , R 2 , R 3 , and R 4 are hydrogen atoms, halogen atoms, or monovalent hydrocarbon groups having 1 to 5 carbon atoms, respectively. R 9 and R 10 are divalent hydrocarbon groups having 1 to 5 carbon atoms, respectively. m and n indicate the number of repeating units of the oxyalkylene unit, and m and n are integers of 0 to 70, respectively, and 10 ≦ m + n ≦ 70.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(3)中、R1、R2、R3、R4、R5、及びR6は、それぞれ、水素原子、ハロゲン原子、又は炭素数1~5の1価の炭化水素基である。R9、及びR10は、それぞれ、炭素数1~5の2価の炭化水素基である。m、及びnはオキシアルキレン単位の繰り返し単位数を示し、m及びnはそれぞれ0~70の整数であって、10≦m+n≦70である。 In the general formula (3), R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are hydrogen atoms, halogen atoms, or monovalent hydrocarbon groups having 1 to 5 carbon atoms, respectively. .. R 9 and R 10 are divalent hydrocarbon groups having 1 to 5 carbon atoms, respectively. m and n indicate the number of repeating units of the oxyalkylene unit, and m and n are integers of 0 to 70, respectively, and 10 ≦ m + n ≦ 70.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(4)中、R1、R2、R3、R4、R5、R6、R7、及びR8は、それぞれ、水素原子、ハロゲン原子、又は炭素数1~5の1価の炭化水素基である。R9、及びR10は、それぞれ、炭素数1~5の2価の炭化水素基である。m、及びnはオキシアルキレン単位の繰り返し単位数を示し、m及びnはそれぞれ0~70の整数であって、10≦m+n≦70である。 In the general formula (4), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are hydrogen atoms, halogen atoms, or monovalents having 1 to 5 carbon atoms, respectively. It is a hydrocarbon group of. R 9 and R 10 are divalent hydrocarbon groups having 1 to 5 carbon atoms, respectively. m and n indicate the number of repeating units of the oxyalkylene unit, and m and n are integers of 0 to 70, respectively, and 10 ≦ m + n ≦ 70.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(5)中、R9は、炭素数1~5の2価の炭化水素基である。mはオキシアルキレン単位の繰り返し単位数を示し、mは2~70の整数である。 In the general formula (5), R 9 is a divalent hydrocarbon group having 1 to 5 carbon atoms. m indicates the number of repeating units of the oxyalkylene unit, and m is an integer of 2 to 70.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(6)中、m、及びnはオキシアルキレン単位の繰り返し単位数を示し、m及びnはそれぞれ0~50の整数であって、10≦m+n≦50である。 In the general formula (6), m and n indicate the number of repeating units of the oxyalkylene unit, and m and n are integers of 0 to 50, respectively, and 10 ≦ m + n ≦ 50.
 前記芳香族ポリエステル単位は、芳香族ジカルボン酸又は芳香族ジカルボン酸エステルと、ジオールで構成された交互重縮合体である。前記芳香族ポリエステル単位は、例えば、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート等のポリアルキレンテレフタレート単位;ポリエチレンナフタレート、ポリプロピレンナフタレート、ポリブチレンナフタレート等のポリアルキレンナフタレート単位等が挙げられる。これらの中でも、ポリアルキレンテレフタレート単位が好ましく、ポリエチレンテレフタレート単位がより好ましい。前記芳香族ジカルボン酸は、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ジフェノキシエタンジカルボン酸等が例示される。中でも、テレフタル酸が好ましい。前記芳香族ジカルボン酸エステルとしては、前記芳香族ジカルボン酸のジアルキルエステルが挙げられる。また、芳香族ジカルボン酸以外に、オキシ安息香酸等の他の芳香族オキシカルボン酸、及びアジピン酸、セバチン酸、シクロヘキサン1,4-ジカルボン酸等の脂肪族、又は脂環族ジカルボン酸を併用してもよい。前記ジオールは、例えば、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサンジオール、デカンジオール、シクロヘキサンジメタノール等の炭素数2以上10以下のグリコールである。前記芳香族ポリエステルの溶液粘度としては、得られる成形品の耐衝撃性、耐薬品性や成形加工性の観点から、フェノール/テトラクロロエタン=1/1(重量比)混合溶媒中、25℃で濃度0.5g/dlにおける対数粘度(IV値)が0.3以上1.0以下であることが好ましい。 The aromatic polyester unit is an alternating polycondensate composed of an aromatic dicarboxylic acid or an aromatic dicarboxylic acid ester and a diol. Examples of the aromatic polyester unit include polyalkylene terephthalate units such as polyethylene terephthalate, polypropylene terephthalate and polybutylene terephthalate; and polyalkylene naphthalate units such as polyethylene naphthalate, polypropylene naphthalate and polybutylene naphthalate. Among these, the polyalkylene terephthalate unit is preferable, and the polyethylene terephthalate unit is more preferable. Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, diphenoxyethanedicarboxylic acid and the like. Of these, terephthalic acid is preferable. Examples of the aromatic dicarboxylic acid ester include dialkyl esters of the aromatic dicarboxylic acid. In addition to the aromatic dicarboxylic acid, other aromatic oxycarboxylic acids such as oxybenzoic acid, and aliphatic or alicyclic dicarboxylic acids such as adipic acid, sebatic acid, and cyclohexane 1,4-dicarboxylic acid are used in combination. May be. The diol is, for example, a glycol having 2 or more and 10 or less carbon atoms such as ethylene glycol, trimethylene glycol, tetramethylene glycol, hexanediol, decanediol, and cyclohexanedimethanol. The solution viscosity of the aromatic polyester is concentrated at 25 ° C. in a phenol / tetrachloroethane = 1/1 (weight ratio) mixed solvent from the viewpoint of impact resistance, chemical resistance and molding processability of the obtained molded product. The logarithmic viscosity (IV value) at 0.5 g / dl is preferably 0.3 or more and 1.0 or less.
 ポリエステル-ポリエーテル共重合体の製造方法は、特に限定されないが、(1)芳香族ジカルボン酸、ジオール、及び、ポリエーテルを反応させる直接エステル化法、(2)芳香族ジカルボン酸ジアルキルエステル、ジオール、及び、ポリエーテルを反応させるエステル交換法、(3)芳香族ジカルボン酸ジアルキルエステルとジオールのエステル交換中、又は、エステル交換後に変性ポリエーテルを加えて、重縮合する方法、(4)高分子の芳香族ポリエステルを用い、ポリエーテルと混合後、溶融減圧下でエステル交換する方法等が挙げられる。 The method for producing the polyester-polyether copolymer is not particularly limited, but is (1) a direct transesterification method in which an aromatic dicarboxylic acid, a diol and a polyether are reacted, and (2) an aromatic dicarboxylic acid dialkyl ester and a diol. , And a method of transesterification in which polyethers are reacted, (3) a method of adding a modified polyether during or after transesterification of an aromatic dicarboxylic acid dialkyl ester and a diol to carry out polycondensation, (4) a polymer. Examples thereof include a method in which the aromatic polyester of No. 1 is mixed with polyether and then transesterified under melting and reduced pressure.
 ポリカーボネート系樹脂組成物中のポリエステル-ポリエーテル共重合体の含有量は、射出発泡成形体の外観を良好にする観点から、0~60重量%であることが好ましく、0~50重量%であることがより好ましく、0~40重量%であることがさらに好ましい。 The content of the polyester-polyester copolymer in the polycarbonate resin composition is preferably 0 to 60% by weight, preferably 0 to 50% by weight, from the viewpoint of improving the appearance of the injection foam molded product. More preferably, it is more preferably 0 to 40% by weight.
 前記アクリロニトリル-ブタジエン-スチレン共重合体は、外観の改善効果及び耐熱性維持の観点から、ポリカーボネート系樹脂組成物100重量%中、50重量%以下含まれていることが好ましく、より好ましい範囲は40重量%以下であり、さらに好ましい範囲は30重量%以下である。 From the viewpoint of improving the appearance and maintaining heat resistance, the acrylonitrile-butadiene-styrene copolymer is preferably contained in an amount of 50% by weight or less based on 100% by weight of the polycarbonate resin composition, and a more preferable range is 40. By weight% or less, a more preferable range is 30% by weight or less.
 前記アクリロニトリル-ブタジエン-スチレン共重合体中のブタジエンの含有量は、10重量%以上30重量%以下であればよい。 The content of butadiene in the acrylonitrile-butadiene-styrene copolymer may be 10% by weight or more and 30% by weight or less.
 前記アクリロニトリル-ブタジエン-スチレン共重合体としては、アクリロニトリル-ブタジエン-スチレン共重合体中のスチレンの一部をα-メチルスチレンに代替し通常のアクリロニトリル-ブタジエン-スチレン共重合体よりも耐熱性を改良したものを用いてもよく、さらに耐熱性を改良したもので、フェニルマレイミドで変性したアクリロニトリル-ブタジエン-スチレン共重合体等も適宜使用することが可能である。 As the acrylonitrile-butadiene-styrene copolymer, a part of styrene in the acrylonitrile-butadiene-styrene copolymer is replaced with α-methylstyrene to improve the heat resistance as compared with the usual acrylonitrile-butadiene-styrene copolymer. Acrylonitrile-butadiene-styrene copolymer modified with phenylmaleimide or the like can also be appropriately used as it has improved heat resistance.
 前記ポリカーボネート系樹脂組成物は、熱可塑性樹脂成形体1が射出発泡成形体の場合、射出発泡成形体の表面の白化を効果的に抑制し、外観を良好にする観点から、前記マスターバッチを1重量%以上15重量%以下、前記ポリカーボネートを30重量%以上99重量%以下、並びにポリエステル系樹脂、ポリエステル-ポリエーテル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、アクリロニトリル-エチレン-プロピレン-ジエン-スチレン共重合体、アクリレート-スチレン-アクリロニトリル共重合体、アクリロニトリル-スチレン共重合体、ポリアリレート樹脂、ポリスチレン系樹脂、及びポリアミド系樹脂からなる群より選択される1種以上の熱可塑性樹脂を0重量%以上55重量%以下含有することが好ましい。 In the polycarbonate resin composition, when the thermoplastic resin molded body 1 is an injection foamed molded product, the master batch is 1 from the viewpoint of effectively suppressing whitening of the surface of the injection foamed molded product and improving the appearance. Weight% or more and 15% by weight or less, 30% by weight or more and 99% by weight or less of the polycarbonate, and polyester resin, polyester-polyether copolymer, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-ethylene-propylene-diene- 0 weight of one or more thermoplastic resins selected from the group consisting of styrene copolymers, acrylate-styrene-acrylonitrile copolymers, acrylonitrile-styrene copolymers, polyarylate resins, polystyrene resins, and polyamide resins. It is preferably contained in an amount of% or more and 55% by weight or less.
 熱可塑性樹脂成形体1が射出発泡成形体の場合、射出発泡成形体の曲げ剛性、寸法安定性を向上させるために、前記ポリカーボネート系樹脂組成物は、さらに無機化合物を含んでもよい。前記無機化合物としては、マイカ、タルク、モンモリロナイト、セリサイト、カオリン、ガラスフレーク、板状アルミナ、合成ハイドロタルサイト、ワラストナイト、中空ガラスバルーン、炭素繊維、アラミド繊維、ウィスカーからなる群から選ばれる1種以上が好ましく、曲げ剛性向上効果及びポリカーボネート系樹脂への分散性の観点から、マイカ、タルク、モンモリロナイト、セリサイト、カオリン、ガラスフレーク、中空ガラスビーズ、炭素繊維がより好ましく、耐衝撃性、流動性及び製品外観のバランスの観点から、マイカ、タルク、ガラスフレーク、ワラストナイトがさらに好ましい。 When the thermoplastic resin molded product 1 is an injection foam molded product, the polycarbonate resin composition may further contain an inorganic compound in order to improve the flexural rigidity and dimensional stability of the injection foam molded product. The inorganic compound is selected from the group consisting of mica, talc, montmorillonite, sericite, kaolin, glass flakes, plate-like alumina, synthetic hydrotalcite, wallastnite, hollow glass balloon, carbon fiber, aramid fiber, and whiskers. One or more is preferable, and mica, talc, montmorillonite, cericite, kaolin, glass flakes, hollow glass beads, and carbon fibers are more preferable, and impact resistance, from the viewpoint of bending rigidity improving effect and dispersibility in polycarbonate resin. Mica, talc, glass flakes and wallastnite are more preferred from the standpoint of balancing fluidity and product appearance.
 前記無機化合物の含有量は、耐衝撃性、耐熱性、剛性及び成形性等の観点から、ポリカーボネート系樹脂組成物中、5重量%以上45重量%以下が好ましく、5重量%以上35重量%以下がより好ましく、5重量%以上25重量%以下がさらに好ましい。 The content of the inorganic compound is preferably 5% by weight or more and 45% by weight or less, preferably 5% by weight or more and 35% by weight or less in the polycarbonate resin composition from the viewpoint of impact resistance, heat resistance, rigidity, moldability and the like. Is more preferable, and 5% by weight or more and 25% by weight or less is further preferable.
  熱可塑性樹脂成形体1が射出発泡成形体の場合、射出発泡成形体の耐衝撃性を更に向上させるために、前記ポリカーボネート系樹脂組成物は耐衝撃性改質剤をさらに含んでも良い。耐衝撃改良剤としては、多段グラフト重合体、ポリオレフィン系重合体、オレフィン-不飽和カルボン酸エステル共重合体、及び熱可塑性ポリエステル系エラストマーからなる群から選ばれる1種以上が好ましい。 When the thermoplastic resin molded product 1 is an injection foam molded product, the polycarbonate resin composition may further contain an impact resistance modifier in order to further improve the impact resistance of the injection foam molded product. As the impact resistance improving agent, one or more selected from the group consisting of a multi-stage graft polymer, a polyolefin-based polymer, an olefin-unsaturated carboxylic acid ester copolymer, and a thermoplastic polyester-based elastomer is preferable.
 前記多段グラフト重合体とは、ゴム状重合体にビニル系モノマーをグラフト重合させたものである。ゴム状重合体としては、ガラス転移温度が0℃以下のものが好ましく、より好ましくは-40℃以下のものである。このようなゴム状重合体の具体例としては、たとえばポリブタジエン、ブタジエン-スチレン共重合体、ブタジエン-アクリル酸エステル共重合体、ブタジエン-アクリロニトリル共重合体等のジエン系ゴム、ポリアクリル酸ブチル、ポリアクリル酸2-エチルヘキシル、ジメチルシロキサン-アクリル酸ブチルゴム、シリコン系/アクリル酸ブチル複合ゴム等のアクリル系ゴム、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体等のオレフィン系ゴム、ポリジメチルシロキサン系ゴム、ジメチルシロキサン-ジフェニルシロキサン共重合体系ゴム等が挙げられる。ブタジエン-アクリル酸エステル共重合体としては、例えば、ブタジエン-アクリル酸ブチル共重合体、ブタジエン-アクリル酸2エチルヘキシル共重合体が例示出来る。耐衝撃性の面より、ポリブタジエン、ブタジエン-スチレン共重合体、ブタジエン-アクリル酸ブチル共重合体が好ましく使用される。ブタジエン-アクリル酸ブチル共重合体のうちでも、アクリル酸ブチル50~70重量%とブタジエン30~50重量%との共重合体が耐候性、耐衝撃性から好ましい。ゴム状重合体の平均粒子径にもとくに限定はないが、0.05μm以上2.00μm以下の範囲のものが好ましく、0.1μm以上0.4μm以下がより好ましい。また、ゲル含有量についてもとくに限定はないが、10重量%以上99重量%以下、さらには80重量%以上96重量%以下の範囲のものが好ましく使用される。 The multi-stage graft polymer is a rubber-like polymer obtained by graft-polymerizing a vinyl-based monomer. The rubber-like polymer preferably has a glass transition temperature of 0 ° C. or lower, more preferably −40 ° C. or lower. Specific examples of such rubber-like polymers include diene rubbers such as polybutadiene, butadiene-styrene copolymer, butadiene-acrylic acid ester copolymer, and butadiene-acrylonitrile copolymer, butyl polyacrylate, and poly. Acrylic rubber such as 2-ethylhexyl acrylate, dimethylsiloxane-butyl acrylate rubber, silicon-based / butyl acrylate composite rubber, olefin-based rubber such as ethylene-propylene copolymer, ethylene-propylene-diene copolymer, polydimethyl Examples thereof include siloxane-based rubbers and dimethylsiloxane-diphenylsiloxane copolymer-based rubbers. Examples of the butadiene-acrylic acid ester copolymer include a butadiene-butyl acrylate copolymer and a butadiene-acrylic acid diethylhexyl copolymer. From the viewpoint of impact resistance, polybutadiene, butadiene-styrene copolymer, and butadiene-butyl acrylate copolymer are preferably used. Among the butadiene-butyl acrylate copolymers, a copolymer of 50 to 70% by weight of butyl acrylate and 30 to 50% by weight of butadiene is preferable from the viewpoint of weather resistance and impact resistance. The average particle size of the rubber-like polymer is not particularly limited, but it is preferably in the range of 0.05 μm or more and 2.00 μm or less, and more preferably 0.1 μm or more and 0.4 μm or less. The gel content is also not particularly limited, but those in the range of 10% by weight or more and 99% by weight or less, and further 80% by weight or more and 96% by weight or less are preferably used.
 前記多段グラフト重合体の製造に使用されるビニル系モノマーとしては、たとえば芳香族ビニルモノマー、シアン化ビニルモノマー、(メタ)アクリル酸エステル等が挙げられる。これらは1種を単独で用いてもよく、2種以上併用してもよい。芳香族ビニルモノマー、シアン化ビニルモノマー及び(メタ)アクリル酸エステルとしては、それぞれ、アクリル系樹脂粒子(a)についての説明時に列挙したものを適宜に用いることができる。 Examples of the vinyl-based monomer used in the production of the multi-stage graft polymer include aromatic vinyl monomer, vinyl cyanide monomer, (meth) acrylic acid ester and the like. One of these may be used alone, or two or more thereof may be used in combination. As the aromatic vinyl monomer, the cyanide vinyl monomer, and the (meth) acrylic acid ester, those listed at the time of the description of the acrylic resin particles (a) can be appropriately used.
 前記多段グラフト重合体は、具体的には、ポリブタジエン、ブタジエン-スチレン共重合体、ブタジエン-アクリル酸エステル共重合体、及びポリオルガノシロキサンからなる群より選ばれる1種以上のゴム状重合体10重量%以上90重量%以下、並びに、前記ゴム状重合体の存在下に、芳香族ビニルモノマー、シアン化ビニルモノマー、及び(メタ)アクリル酸エステル化合物からなる群より選ばれる1種以上のビニル系モノマーを重合して得られる重合体により構成されるグラフト成分10重量%以上90重量%以下で構成されたものであることが好ましい。有機リン系乳化剤を用いて製造された多段グラフト重合体を用いることが特に好ましい。 Specifically, the multistage graft polymer is 10 weights of one or more rubber-like polymers selected from the group consisting of polybutadiene, butadiene-styrene copolymer, butadiene-acrylic acid ester copolymer, and polyorganosiloxane. % To 90% by weight, and one or more vinyl-based monomers selected from the group consisting of aromatic vinyl monomers, vinyl cyanide monomers, and (meth) acrylic acid ester compounds in the presence of the rubbery polymer. It is preferable that the graft component is composed of 10% by weight or more and 90% by weight or less of the graft component composed of the polymer obtained by polymerizing. It is particularly preferable to use a multi-stage graft polymer produced by using an organophosphorus emulsifier.
 前記多段グラフト重合体としてコア/シェルグラフト重合体を調製する場合、ゴム状重合体及びビニル系モノマーの合計量を100重量%とした場合、ゴム状重合体10重量%以上90重量%以下、ビニル系モノマーが10重量%以上90重量%以下であることが好ましく、ゴム状重合体30重量%以上85重量%以下、ビニル系モノマーが15重量%以上70重量%以下であることがより好ましい。ゴム状重合体の割合が10重量%未満では耐衝撃性が低下しやすくなり、一方、90重量%を超えると耐熱性が低下する傾向が生ずる。 When a core / shell graft polymer is prepared as the multi-stage graft polymer, when the total amount of the rubber-like polymer and the vinyl-based monomer is 100% by weight, the rubber-like polymer is 10% by weight or more and 90% by weight or less, vinyl. It is preferable that the based monomer is 10% by weight or more and 90% by weight or less, the rubber-like polymer is 30% by weight or more and 85% by weight or less, and the vinyl-based monomer is 15% by weight or more and 70% by weight or less. If the proportion of the rubber-like polymer is less than 10% by weight, the impact resistance tends to decrease, while if it exceeds 90% by weight, the heat resistance tends to decrease.
 耐衝撃改質剤の量としては、耐衝撃性、耐熱性、剛性及び成形性等の観点から、ポリカーボネート系樹脂組成物中、0重量%以上20重量%以下であることが好ましく、0重量%以上15重量%以下であることがより好ましく、0重量%以上10重量%以下であることがさらに好ましい。 The amount of the impact-resistant modifier is preferably 0% by weight or more and 20% by weight or less, preferably 0% by weight, in the polycarbonate-based resin composition from the viewpoint of impact resistance, heat resistance, rigidity, moldability, and the like. It is more preferably 15% by weight or more, and further preferably 0% by weight or more and 10% by weight or less.
 前記ポリカーボネート系樹脂組成物は、さらに熱可塑性樹脂成形体1の用途等に応じて、難燃剤、耐UV剤、安定剤、離型剤、顔料、軟化剤、可塑剤、界面活性剤等の添加剤を含んでいてもよい。 Further, the polycarbonate-based resin composition is further added with a flame retardant, a UV resistant agent, a stabilizer, a mold release agent, a pigment, a softening agent, a plasticizer, a surfactant, etc., depending on the use of the thermoplastic resin molded product 1. It may contain an agent.
 補強用リブ3は本体部2と同一材料にて一体成形されてもよく、別部材として予め作製された補強用リブ3を熱融着等によって本体部2と一体化してもよいが、生産性及び補強効果の観点から、補強用リブ3は本体部2と一体成形されたものであることが好ましい。熱可塑性樹脂成形体1は、具体的には、射出発泡成形や発泡押出形成等により、本体部2と補強用リブ3を一体成形することで作製することができる。複雑な形状の成形体が得られやすい観点から、射出発泡成形で作製することができる。 The reinforcing rib 3 may be integrally molded with the same material as the main body 2, or the reinforcing rib 3 prepared in advance as a separate member may be integrated with the main body 2 by heat fusion or the like, but productivity From the viewpoint of the reinforcing effect, the reinforcing rib 3 is preferably integrally molded with the main body 2. Specifically, the thermoplastic resin molded body 1 can be manufactured by integrally molding the main body 2 and the reinforcing rib 3 by injection foam molding, foam extrusion molding, or the like. From the viewpoint that a molded product having a complicated shape can be easily obtained, it can be produced by injection foam molding.
 前記ポリカーボネート系樹脂組成物を、射出発泡することで、白化が抑制され、外観が良好な熱可塑性樹脂成形体1が得られやすい。具体的には、前記射出発泡成形体は、前記ポリカーボネート系樹脂組成物を金型内で発泡させる方法で作製することができる。金型内で発泡させる方法としては種々有るが、なかでも固定型(キャビティとも称される。)と任意の位置に前進及び後退が可能な可動型(コアとも称される。)とから構成される金型を使用し、樹脂組成物を初期充填厚みまで射出完了後、可動型を後退させて発泡させる、いわゆるコアバック法(Moving Cavity法)が好ましい。コアバック法によれば、本体部の表面にスキン層(非発泡層)が形成されることで外観の数μm~数十μmオーダーの凹凸を平滑にし、かつ内部の発泡層が均一微細気泡になりやすく、軽量性に優れた射出発泡成形体が得られやすいことから、好ましい。 By injection foaming the polycarbonate resin composition, whitening is suppressed, and it is easy to obtain a thermoplastic resin molded product 1 having a good appearance. Specifically, the injection foam molded product can be produced by a method of foaming the polycarbonate resin composition in a mold. There are various methods of foaming in the mold, but among them, it is composed of a fixed mold (also called a cavity) and a movable mold (also called a core) that can move forward and backward at an arbitrary position. The so-called core back method (Moving Cavity method) is preferable, in which the resin composition is injected to the initial filling thickness using a mold, and then the movable mold is retracted and foamed. According to the core back method, a skin layer (non-foaming layer) is formed on the surface of the main body to smooth out irregularities on the order of several μm to several tens of μm on the outside, and the foamed layer inside becomes uniform fine bubbles. It is preferable because it is easy to obtain an injection-foamed molded product having excellent lightness.
 前記金型において、固定型及び移動型のいずれか一方には、上述した形状及び寸法を有する補強用リブ3を形成するための彫りこみ等が設けられている。 In the mold, either the fixed mold or the movable mold is provided with engraving or the like for forming the reinforcing rib 3 having the above-mentioned shape and dimensions.
 コアバック法において、可動型の後退は、一段階で行ってもよいし、二段階以上の多段階で行ってもよく、後退させる速度も適宜調整してもよい。コアバック法において、その成形条件としては、特に限定されないが、例えば、樹脂温度240℃以上280℃以下、金型温度60℃以上90℃以下、成形サイクル1秒以上60秒以下、射出速度10mm/秒以上400mm/秒以下、射出圧10MPa以上200MPa以下、背圧5MPa以上40MPa以下、スクリュ回転数10rpm以上200rpm以下等の条件であってもよい。 In the core back method, the movable retreat may be performed in one step, may be performed in multiple steps of two or more steps, and the retreat speed may be adjusted as appropriate. In the core back method, the molding conditions are not particularly limited, but for example, the resin temperature is 240 ° C. or higher and 280 ° C. or lower, the mold temperature is 60 ° C. or higher and 90 ° C. or lower, the molding cycle is 1 second or longer and 60 seconds or lower, and the injection speed is 10 mm / Conditions such as seconds or more and 400 mm / sec or less, injection pressure of 10 MPa or more and 200 MPa or less, back pressure of 5 MPa or more and 40 MPa or less, and screw rotation speed of 10 rpm or more and 200 rpm or less may be used.
 熱可塑性樹脂成形体1の比重は、軽量化と衝撃強度の観点から、0.3g/cm3以上1.2g/cm3以下であることが好ましい。熱可塑性樹脂成形体1の比重が0.3g/cm3未満であると、1.5mmを超える粗大気泡が増え衝撃強度が低下する傾向があり、1.2g/cm3を超えると軽量化が達成されにくい。比重は、JIS K 7112:1999に準拠し、水中置換法により算出することができる。 The specific gravity of the thermoplastic resin molded product 1 is preferably 0.3 g / cm 3 or more and 1.2 g / cm 3 or less from the viewpoint of weight reduction and impact strength. If the specific gravity of the thermoplastic resin molded product 1 is less than 0.3 g / cm 3 , coarse bubbles exceeding 1.5 mm tend to increase and the impact strength tends to decrease, and if it exceeds 1.2 g / cm 3 , the weight is reduced. Hard to achieve. The specific gravity conforms to JIS K 7112: 1999 and can be calculated by the underwater substitution method.
 熱可塑性樹脂成形体1において、本体部2の発泡倍率は、軽量化と衝撃強度の観点から、1.1倍以上3.0倍以下が好ましく、1.1倍以上2.5倍以下がより好ましく、1.1倍以上2.0倍以下がさらに好ましい。発泡倍率が1.1倍未満では、軽量性が得られ難い傾向があり、3.0倍を超える場合には、面衝撃強度の低下が著しくなる傾向がある。なお、本明細書において、発泡倍率とは、射出発泡成形体の厚み(コアバック後キャビティクリアランスtf)を初期キャビティクリアランスt0で除した値である。補強用リブ3は、発泡してもよく、発泡していなくともよい。 In the thermoplastic resin molded product 1, the foaming ratio of the main body 2 is preferably 1.1 times or more and 3.0 times or less, more preferably 1.1 times or more and 2.5 times or less, from the viewpoint of weight reduction and impact strength. It is preferable, and more preferably 1.1 times or more and 2.0 times or less. If the foaming ratio is less than 1.1 times, it tends to be difficult to obtain light weight, and if it exceeds 3.0 times, the surface impact strength tends to decrease significantly. In the present specification, the foaming ratio is a value obtained by dividing the thickness of the injection foam molded product (cavity clearance t f after core back) by the initial cavity clearance t 0 . The reinforcing rib 3 may or may not be foamed.
 熱可塑性樹脂成形体1の面衝撃強度は、ビルドインチャンバー内を-30℃の環境下とし、デュポン衝撃試験(ASTM D 2794に則って測定する)を実施することによって、50%破壊エネルギーを算出して評価することができる。なお、衝撃は補強用リブが形成されていない側(意匠面側)において、非意匠面側に設けた補強用リブの直下や補強用リブと補強用リブの間に対応する箇所に付与する。補強用リブの直下の面衝撃強度(50%破壊エネルギー)の値は、1.9J以上であることが好ましく、2.0J以上であることがより好ましく、2.1J以上であることがさらに好ましい。また、補強用リブの直下の面衝撃強度(50%破壊エネルギー)の値は50J以下であることが好ましい。また、補強用リブと補強用リブの間の面衝撃強度(50%破壊エネルギー)の値は、2.0J以上であることが好ましく、2.1J以上であることがより好ましい。また、補強用リブと補強用リブの間の面衝撃強度(50%破壊エネルギー)の値は50J以下であることが好ましい。 The surface impact strength of the thermoplastic resin molded product 1 is calculated by 50% fracture energy by conducting a DuPont impact test (measured according to ASTM D 2794) in an environment of -30 ° C in the built-in chamber. Can be evaluated. The impact is applied to the side where the reinforcing ribs are not formed (design surface side), directly under the reinforcing ribs provided on the non-design surface side, or to the corresponding locations between the reinforcing ribs and the reinforcing ribs. The value of the surface impact strength (50% fracture energy) directly under the reinforcing rib is preferably 1.9 J or more, more preferably 2.0 J or more, and further preferably 2.1 J or more. .. Further, the value of the surface impact strength (50% fracture energy) directly under the reinforcing rib is preferably 50 J or less. Further, the value of the surface impact strength (50% fracture energy) between the reinforcing ribs is preferably 2.0 J or more, and more preferably 2.1 J or more. Further, the value of the surface impact strength (50% fracture energy) between the reinforcing ribs is preferably 50 J or less.
 熱可塑性樹脂成形体1は、コピー機、パソコン及びファクリミリ等のOA機器の外装部品(筐体など)や内部機構部品;冷蔵庫、エアコン及び掃除機等の家電製品の外装部品や内部機構部品;自動車等の車両の内装部品や外装部品(外板部品を含む。)等として好適に用いることができる。特に、自動車等の車両の外装部品(外板部品を含む。)として好適に用いることができる。車両の外装部品や外板部品としては、例えば、自動車のフェンダー、ドアパネル、バックドアパネル、ガーニッシュ、ピラー、及びスポイラー等が挙げられる。 The thermoplastic resin molded body 1 includes exterior parts (housing, etc.) and internal mechanism parts of OA equipment such as copiers, personal computers, and faclimill; exterior parts and internal mechanism parts of home appliances such as refrigerators, air conditioners, and vacuum cleaners; automobiles. It can be suitably used as an interior part or an exterior part (including an outer panel part) of a vehicle such as the above. In particular, it can be suitably used as an exterior part (including an outer panel part) of a vehicle such as an automobile. Examples of vehicle exterior parts and outer panel parts include automobile fenders, door panels, back door panels, garnishes, pillars, spoilers, and the like.
 本発明は、特に限定されないが、例えば以下の態様を含む。
 [1] 熱可塑性樹脂発泡体で構成されている本体部、及び前記本体部の裏面側に形成された補強用リブを備えた熱可塑性樹脂成形体において、
 前記補強用リブの横断面を観察した場合、前記補強用リブの根元部分が外側に膨らむことで、前記補強用リブと前記本体部の接合部は湾曲形状となっており、かつ、前記補強用リブの先端部は、両角部に曲率半径を有するか、或いは、円弧状になっており、
 前記本体部の厚みT1は1.8mm以上6.0mm以下であり、
 前記接合部の曲率半径Raは0.05mm以上2.2mm以下であり、
 前記本体部の厚みT1と前記補強用リブの最大厚みT3の比率T3/T1が0.25より大きく0.75以下であることを特徴とする熱可塑性樹脂成形体。
 [2] 前記補強用リブの先端部は、両角部に曲率半径Rbを有する形状であり、前記角部の曲率半径Rbは0.05mm以上2.2mm以下である、[1]に記載の熱可塑性樹脂成形体。
 [3] 前記補強用リブの先端部は、曲率半径Rcが0.05mm以上2.2mm以下である真円弧の形状、又は曲率半径Rdが0.05mm以上9.5mm以下である楕円弧の形状を有する、[1]に記載の熱可塑性樹脂成形体。
 [4] 前記補強用リブにおいて、先端部及び根本部を除く部分の平均厚みT2は、0.2mm以上4.3mm以下である、[1]~[3]のいずれかに記載の熱可塑性樹脂成形体。
 [5] 前記補強用リブの高さHは、2mm以上15mm以下である、[1]~[4]のいずれかに記載の熱可塑性樹脂成形体。
 [6]前記補強用リブの平均厚みT2に対する前記補強用リブの高さHの比率H/T2は、0.4以上75以下である、[1]~[5]のいずれかに記載の熱可塑性樹脂成形体。
 [7] 前記補強用リブは、長手方向が熱可塑性樹脂成形体の長手方向に沿うように配置されており、隣接する補強用リブ間の幅方向の間隔は、3mm以上20mm以下である、[1]~[6]のいずれかに記載の熱可塑性樹脂成形体。
 [8] 前記熱可塑性樹脂成形体は射出発泡成形体であり、熱可塑性樹脂成形体の比重が0.3g/cm3以上1.2g/cm3以下である、又は本体部の発泡倍率が1.1倍以上3.0倍以下である、[1]~[7]のいずれかに記載の熱可塑性樹脂成形体。
 [9] 前記熱可塑性樹脂成形体の長さが200mm以上3000mm以下である、及び/又は、前記熱可塑性樹脂成形体の幅が50mm以上3000mm以下である、[1]~[8]のいずれかに記載の熱可塑性樹脂成形体。
 [10] 前記熱可塑性樹脂成形体において、下記の面衝撃強度の測定方法で測定した面衝撃強度の値が1.9J以上である、[1]~[9]のいずれかに記載の熱可塑性樹脂成形体。
 (面衝撃強度の測定方法)
 ビルドインチャンバー内を-30℃の環境にし、デュポン衝撃試験(ASTM D 2794に則って測定する)を実施して50%破壊エネルギーを算出して面衝撃強度とする。なお、衝撃は補強用リブが形成されていない側(意匠面側)において、非意匠面側に設けた補強用リブの直下に対応する箇所に付与する。
 [11] 前記熱可塑性樹脂成形体が、ポリカーボネート及び/又はABS樹脂を含有する、[1]~[10]のいずれかに記載の熱可塑性樹脂成形体。
 [12] 前記熱可塑性樹脂成形体が、熱膨張性マイクロカプセルを含有する熱可塑性樹脂組成物の発泡成形体である、[1]~[11]のいずれかに記載の熱可塑性樹脂成形体。
 [13] 前記熱可塑性樹脂成形体は、自動車用部品、OA機器の外装部品、OA機器の内部機構部品、家電製品の外装部品、及び家電製品の内部機構部品からなる群から選ばれる一種以上である、[1]~[12]のいずれかに記載の熱可塑性樹脂成形体。
 [14] 前記自動車用部品は、外装部品及び外板部品からなる群から選ばれる1種以上である、[13]に記載の熱可塑性樹脂成形体。
 [15] [1]~[14]のいずれかに記載の熱可塑性樹脂成形体の製造方法であって、
 射出成形により本体部と補強用リブを一体成形して熱可塑性樹脂成形体を得る工程を含む熱可塑性樹脂成形体の製造方法。
The present invention is not particularly limited, but includes, for example, the following aspects.
[1] In a main body portion made of a thermoplastic resin foam and a thermoplastic resin molded body provided with reinforcing ribs formed on the back surface side of the main body portion.
When observing the cross section of the reinforcing rib, the root portion of the reinforcing rib bulges outward, so that the joint portion between the reinforcing rib and the main body portion has a curved shape, and the reinforcing rib is used for reinforcement. The tip of the rib has a radius of curvature at both corners or is arcuate.
The thickness T1 of the main body is 1.8 mm or more and 6.0 mm or less.
The radius of curvature Ra of the joint is 0.05 mm or more and 2.2 mm or less.
A thermoplastic resin molded product, wherein the ratio T3 / T1 of the thickness T1 of the main body to the maximum thickness T3 of the reinforcing rib is larger than 0.25 and 0.75 or less.
[2] The heat according to [1], wherein the tip portion of the reinforcing rib has a shape having a radius of curvature Rb at both corners, and the radius of curvature Rb of the corner is 0.05 mm or more and 2.2 mm or less. Plastic resin molded body.
[3] The tip of the reinforcing rib has a shape of a true arc having a radius of curvature Rc of 0.05 mm or more and 2.2 mm or less, or an elliptical arc having a radius of curvature Rd of 0.05 mm or more and 9.5 mm or less. The thermoplastic resin molded product according to [1].
[4] The thermoplastic resin according to any one of [1] to [3], wherein the average thickness T2 of the portion of the reinforcing rib excluding the tip portion and the root portion is 0.2 mm or more and 4.3 mm or less. Molded body.
[5] The thermoplastic resin molded product according to any one of [1] to [4], wherein the height H of the reinforcing rib is 2 mm or more and 15 mm or less.
[6] The heat according to any one of [1] to [5], wherein the ratio H / T2 of the height H of the reinforcing rib to the average thickness T2 of the reinforcing rib is 0.4 or more and 75 or less. Plastic resin molded body.
[7] The reinforcing ribs are arranged so that the longitudinal direction is along the longitudinal direction of the thermoplastic resin molded body, and the interval in the width direction between the adjacent reinforcing ribs is 3 mm or more and 20 mm or less. 1] The thermoplastic resin molded article according to any one of [6].
[8] The thermoplastic resin molded product is an injection foam molded product, and the specific gravity of the thermoplastic resin molded product is 0.3 g / cm 3 or more and 1.2 g / cm 3 or less, or the foaming ratio of the main body is 1. The thermoplastic resin molded product according to any one of [1] to [7], which is 1-fold or more and 3.0-fold or less.
[9] Any of [1] to [8], wherein the length of the thermoplastic resin molded product is 200 mm or more and 3000 mm or less, and / or the width of the thermoplastic resin molded product is 50 mm or more and 3000 mm or less. The thermoplastic resin molded article according to.
[10] The thermoplastic according to any one of [1] to [9], wherein the value of the surface impact strength measured by the following method for measuring the surface impact strength is 1.9 J or more in the thermoplastic resin molded product. Resin molded body.
(Measurement method of surface impact strength)
The inside of the built-in chamber is set to an environment of −30 ° C., a DuPont impact test (measured according to ASTM D 2794) is performed, and 50% fracture energy is calculated to obtain the surface impact strength. The impact is applied to a portion directly below the reinforcing rib provided on the non-design surface side on the side where the reinforcing rib is not formed (design surface side).
[11] The thermoplastic resin molded product according to any one of [1] to [10], wherein the thermoplastic resin molded product contains polycarbonate and / or ABS resin.
[12] The thermoplastic resin molded product according to any one of [1] to [11], wherein the thermoplastic resin molded product is a foam molded product of a thermoplastic resin composition containing a heat-expandable microcapsule.
[13] The thermoplastic resin molded product is one or more selected from the group consisting of automobile parts, exterior parts of OA equipment, internal mechanical parts of OA equipment, exterior parts of home appliances, and internal mechanical parts of home appliances. The thermoplastic resin molded product according to any one of [1] to [12].
[14] The thermoplastic resin molded product according to [13], wherein the automobile parts are one or more selected from the group consisting of exterior parts and outer panel parts.
[15] The method for producing a thermoplastic resin molded product according to any one of [1] to [14].
A method for manufacturing a thermoplastic resin molded body, which comprises a step of integrally molding the main body and reinforcing ribs by injection molding to obtain a thermoplastic resin molded body.
 以下、本発明を実施例に基づいてより具体的に説明する。なお、本発明は、下記の実施例に限定されない。なお、下記において、特に指摘がない場合、「部」は「重量部」を意味し、「%」は「重量%」を意味する。 Hereinafter, the present invention will be described in more detail based on examples. The present invention is not limited to the following examples. In the following, unless otherwise specified, "part" means "part by weight" and "%" means "% by weight".
 各種測定方法及び評価方法を下記に示した。 Various measurement methods and evaluation methods are shown below.
 (1)ガラス転移温度
 アクリル系樹脂粒子(a)(懸濁重合体粒子)について、示差走査熱量計(セイコー電子工業(株)製のDSC220C)を用いて5℃/分の昇温条件にてガラス転移温度を測定した。
 (2)ビカット軟化温度
 アクリル系樹脂粒子(b)(乳化重合体粒子)のビカット軟化温度の測定は、JIS K7206 A法に基づいて実施した。試験片は、乳化重合により得られた乳化重合体を、凝固、熱処理、乾燥により回収し、押出し成形機でペレット化後、プレス成形機でシート化し作製した。
 (3)平均粒子径
 アクリル系樹脂粒子(a)、アクリル系樹脂粒子(b)及びアクリル系樹脂の平均粒子径は、マイクロトラックベル株式会社製マイクロトラックMT-3300で測定した。熱膨張性マイクロカプセルの平均粒子径(未膨張時)は、島津製作所製の粒度分布測定装置SALD-3000Jで測定した。
 (4)重量平均分子量
 樹脂の重量平均分子量は、GPC(ゲル浸透クロマトグラフィ)によって測定した。具体的には、システム:東ソー製HLC-8220、カラム:東ソー製TSKgel SuperHZM-H(x2本)、溶媒:THFを用いて測定し、ポリスチレン換算で求めた。
 (5)ポリカーボネート(PC)との相溶性
 キャリア樹脂組成物とポリカーボネートの混合物の示差走査熱量測定(DSC)を行い、下記の基準でPCとの相溶性の有無を判断した。
相溶性有:DSCにおいて、ガラス転移温度のピークが一つである
相溶性無:DSCにおいて、ガラス転移温度のピークが二つである
 (6)せん断粘度
 キャリア樹脂組成物の80℃におけるせん断粘度は、島津製作所製フローテスター「型式CFT-500C」を使用して測定した。具体的には、測定開始温度を50℃とし、直径1.0mm、長さ10mmのキャピラリー中をキャリア樹脂組成物に一定荷重30kgfを与えて流動させ、10℃/minで昇温させ、測定温度が80℃となった時点での剪断粘度を測定した。
 (7)粘度
 可塑剤の25℃における粘度は、JIS Z 8803-1991に準じてE型粘度計を用いて測定した。
 (8)最大膨張温度
 バーキンエルマー社製のTMA-7型を用いて「TMA測定」を行った。サンプル約0.25mgを容器に入れて、昇温速度5℃/minで昇温し、その高さの変位を連続的に測定し、容器内のサンプルの高さの変位が最大となった時の温度を最大膨張温度とした。
 (9)マスターバッチの加工性
 マスターバッチのペレットの断面を走査型電子顕微鏡(SEM、日本電子株式会社製、型式「JSM-6060LA」)で観察し、熱膨張性マイクロカプセルの状態に基づいて、マスターバッチの加工性を評価した。
良好:熱膨張性マイクロカプセルの膨張なし
不良:熱膨張性マイクロカプセルの膨張あり
 (10)射出発泡成形体の発泡倍率
 平板形状の射出発泡成形体の厚み(コアバック後キャビティクリアランスtf)を、当該部位の金型の型締め状態でのキャビティクリアランスt0で除することにより、算出した。
 (11)射出発泡成形体の意匠面側のヒケ
 射出発泡成形体の意匠面側を目視で観察し、非意匠面側の補強用リブ設置個所に対応する箇所におけるヒケの有無を評価した。
 (12)射出発泡成形体の面衝撃強度
 射出発泡成形体から図7に示すような彫りこみ部位を含む55mmx55mmサイズとなるよう試験片を切りだし、ビルドインチャンバー内を-30℃の環境下とし、デュポン衝撃試験(ASTM D 2794に則って測定した)を実施することによって、50%破壊エネルギーを算出した。なお、衝撃は意匠面側から付与しているが、非意匠面側に設けたリブの直下やリブとリブの間に対応する箇所に付与した。実施例1及び比較例1における試験片の模式図を図7(a)及び7(b)に示した。実施例2における試験片の模式図を図7(a)及び7(c)に示した。
(1) Glass transition temperature Acrylic resin particles (a) (suspended polymer particles) are subjected to a temperature rise condition of 5 ° C./min using a differential scanning calorimeter (DSC220C manufactured by Seiko Denshi Kogyo Co., Ltd.). The glass transition temperature was measured.
(2) Vicat softening temperature The measurement of the Vicat softening temperature of the acrylic resin particles (b) (emulsified polymer particles) was carried out based on the JIS K7206 A method. The test piece was prepared by recovering the emulsified polymer obtained by emulsion polymerization by coagulation, heat treatment, and drying, pelletizing it with an extrusion molding machine, and then sheeting it with a press molding machine.
(3) Average Particle Size The average particle size of the acrylic resin particles (a), the acrylic resin particles (b) and the acrylic resin was measured with Microtrac MT-3300 manufactured by Microtrac Bell Co., Ltd. The average particle size (when not expanded) of the heat-expandable microcapsules was measured by a particle size distribution measuring device SALD-3000J manufactured by Shimadzu Corporation.
(4) Weight average molecular weight The weight average molecular weight of the resin was measured by GPC (gel permeation chromatography). Specifically, the measurement was performed using a system: HLC-8220 manufactured by Tosoh, a column: TSKgel SuperHZM-H (x2) manufactured by Tosoh, and a solvent: THF, and determined in terms of polystyrene.
(5) Compatibility with Polycarbonate (PC) Differential scanning calorimetry (DSC) of the carrier resin composition and the mixture of polycarbonate was performed, and the presence or absence of compatibility with PC was determined based on the following criteria.
Compatibility: One peak of glass transition temperature in DSC Non-compatible: Two peaks of glass transition temperature in DSC (6) Shear viscosity The shear viscosity of the carrier resin composition at 80 ° C. , Shimadzu's flow tester "Model CFT-500C" was used for measurement. Specifically, the measurement start temperature is set to 50 ° C., and a constant load of 30 kgf is applied to the carrier resin composition to flow the carrier resin composition in a capillary having a diameter of 1.0 mm and a length of 10 mm, and the temperature is raised at 10 ° C./min to measure the temperature. The shear viscosity was measured when the temperature reached 80 ° C.
(7) Viscosity The viscosity of the plasticizer at 25 ° C. was measured using an E-type viscometer according to JIS Z 8803-1991.
(8) Maximum expansion temperature "TMA measurement" was performed using a TMA-7 type manufactured by Birkin Elmer. When about 0.25 mg of the sample is placed in a container, the temperature is raised at a temperature rising rate of 5 ° C./min, the displacement of the height is continuously measured, and the displacement of the height of the sample in the container is maximized. The temperature of was taken as the maximum expansion temperature.
(9) Masterbatch workability The cross section of the masterbatch pellet was observed with a scanning electron microscope (SEM, manufactured by JEOL Ltd., model "JSM-6060LA"), and based on the state of the thermally expandable microcapsules, The workability of the masterbatch was evaluated.
Good: No expansion of the heat-expandable microcapsule Defective: With expansion of the heat-expandable microcapsule (10) Expansion ratio of the injection foam molded product The thickness of the flat plate-shaped injection foam molded product (cavity clearance t f after core back) It was calculated by dividing by the cavity clearance t 0 in the molded state of the mold of the relevant part.
(11) Sink marks on the design surface side of the injection foam molded product The design surface side of the injection foam molded product was visually observed, and the presence or absence of sink marks at the locations corresponding to the reinforcing rib installation locations on the non-design surface side was evaluated.
(12) Surface Impact Strength of Injection Foam Mold A test piece was cut out from the injection foam mold so as to have a size of 55 mm x 55 mm including the engraved portion as shown in FIG. 7, and the inside of the build-in chamber was placed in an environment of -30 ° C. 50% fracture energy was calculated by performing an impact test (measured according to ASTM D 2794). Although the impact was applied from the design surface side, it was applied to a portion directly under the rib provided on the non-design surface side or between the ribs. Schematic diagrams of the test pieces in Example 1 and Comparative Example 1 are shown in FIGS. 7 (a) and 7 (b). Schematic diagrams of the test pieces in Example 2 are shown in FIGS. 7 (a) and 7 (c).
 <アクリル系樹脂の製造例1>
 〈アクリル系樹脂粒子(a)の作製〉
 撹拌機付反応器に脱イオン水220部、3%のPVA水溶液15部(GH-20:日本合成化学工業(株)製)を仕込み、反応機内を窒素置換した。そこへ、ラウロイルパーオキサイド0.5部、ベンゾイルパーオキサイド0.5部、チオグリコール酸2-エチルヘキシル0.5部を溶解させたアクリル酸ブチル25部とメタクリル酸メチル75部のモノマー混合物を仕込み、単量体の分散粒子径が約250μmとなるように撹拌機の回転数を調整した。その後、60℃で2時間、70℃で2時間、80℃で2時間、90℃で1時間と段階的に昇温し重合を完結させ、アクリル系樹脂粒子(a)(重合体固形分)の濃度が30%、ガラス転移温度が72℃、及び平均粒子径150μmのアクリル系樹脂粒子(a)の懸濁液を作製した。
<Production example 1 of acrylic resin>
<Preparation of acrylic resin particles (a)>
220 parts of deionized water and 15 parts of a 3% PVA aqueous solution (GH-20: manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) were charged into a reactor with a stirrer, and the inside of the reactor was replaced with nitrogen. A monomer mixture of 25 parts of butyl acrylate and 75 parts of methyl methacrylate in which 0.5 parts of lauroyl peroxide, 0.5 parts of benzoyl peroxide and 0.5 part of 2-ethylhexyl thioglycolic acid were dissolved was charged therein. The rotation speed of the stirrer was adjusted so that the dispersed particle size of the monomer was about 250 μm. Then, the temperature was gradually raised to 60 ° C. for 2 hours, 70 ° C. for 2 hours, 80 ° C. for 2 hours, and 90 ° C. for 1 hour to complete the polymerization, and the acrylic resin particles (a) (polymer solid content). A suspension of acrylic resin particles (a) having a concentration of 30%, a glass transition temperature of 72 ° C., and an average particle diameter of 150 μm was prepared.
 〈アクリル系樹脂粒子(b)の作製〉
 撹拌機付与反応器に脱イオン水220部、ほう酸0.3部、炭酸ナトリウム0.03部、N-ラウロイルサルコシン酸ナトリウム0.09部、ホルムアルデヒドスルホキシル酸ナトリウム0.09部、エチレンジアミン四酢酸ナトリウム0.006部、及び硫酸第一鉄7水塩0.002部を仕込み、窒素置換後、80℃に昇温した、これにメタクリル酸メチル25部、メタクリル酸アリル0.1部、t-ブチルハイドロパーオキサイド0.1部よりなるモノマー混合物のうち25%を一括して仕込み、45分間重合を行った。続いてこの混合液の残り75%を1時間に渡って連続追加した。追加終了後、同温度で2時間保持し重合を完結させた。また、この間に0.2重量部のN-ラウロイルサルコシン酸ナトリウムを追加した。得られた最内層架橋メタクリル系重合体のラテックス中の重合体粒子の平均粒子径は1600Å(546nmの波長の光散乱を利用して求めた)であり、重合転化率(重合体生成量/モノマー仕込量x100)は98%であった。続いて、得られた最内層架橋メタクリル系重合体のラテックスを窒素気流中で80℃に保ち、過硫酸カリウム0.1重量部を添加した後、アクリル酸n-ブチル41重量部、スチレン9重量部、メタクリル酸アリル1重量部のモノマー混合液を5時間に渡って連続追加した。この間にオレイン酸カリウム0.1重量部を3回に分けて添加した。モノマー混合液の追加終了後、重合を完結させる為にさらに過硫酸カリウムを0.05重量部添加し2時間保持した。得られた乳化重合のラテックスにおいて、ラテックス粒子(b1)の平均粒子径は2300Åであり、重合転化率は99%であった。続いて、ラテックス粒子(b1)のラテックスを80℃に保ち、過硫酸カリウム0.02重量部を添加した後、メタクリル酸メチル24重量部、アクリル酸n-ブチル1重量部、t-ドデシルメルカプタン0.1重量部の混合液を1時間に渡って連続追加した。モノマー混合液の追加終了後1時間保持し、多層構造を持ち、平均粒子径が0.25μm、ビカット軟化温度90℃の乳化重合グラフト共重合体(アクリル系樹脂粒子(b))のラテックスを得た。
<Preparation of acrylic resin particles (b)>
220 parts of deionized water, 0.3 part of boric acid, 0.03 part of sodium carbonate, 0.09 part of sodium N-lauroyl sarcosate, 0.09 part of sodium formaldehyde sulfoxylate, sodium ethylenediamine tetraacetate in a stirrer addition reactor 0.006 part and 0.002 part of ferrous sulfate heptahydrate were charged, and after nitrogen substitution, the temperature was raised to 80 ° C., to which 25 parts of methyl methacrylate, 0.1 part of allyl methacrylate, and t-butyl were added. Twenty-five percent of the monomer mixture consisting of 0.1 part of hydroperoxide was charged in a batch and polymerized for 45 minutes. Subsequently, the remaining 75% of this mixture was continuously added over an hour. After the addition was completed, the mixture was kept at the same temperature for 2 hours to complete the polymerization. In the meantime, 0.2 parts by weight of sodium N-lauroylsarcosine was added. The average particle size of the polymer particles in the latex of the obtained innermost crosslinked methacrylic polymer was 1600 Å (determined using light scattering with a wavelength of 546 nm), and the polymerization conversion rate (polymer production amount / monomer). The amount charged x 100) was 98%. Subsequently, the latex of the obtained innermost crosslinked methacrylic polymer was kept at 80 ° C. in a nitrogen stream, 0.1 part by weight of potassium persulfate was added, and then 41 parts by weight of n-butyl acrylate and 9 parts by weight of styrene were added. A mixture of 1 part by weight of allyl methacrylate and 1 part by weight of allyl methacrylate was continuously added over 5 hours. During this period, 0.1 part by weight of potassium oleate was added in 3 portions. After the addition of the monomer mixed solution was completed, 0.05 parts by weight of potassium persulfate was further added to complete the polymerization, and the mixture was retained for 2 hours. In the obtained emulsion-polymerized latex, the average particle size of the latex particles (b1) was 2300 Å, and the polymerization conversion rate was 99%. Subsequently, the latex of the latex particles (b1) was kept at 80 ° C., 0.02 parts by weight of potassium persulfate was added, and then 24 parts by weight of methyl methacrylate, 1 part by weight of n-butyl acrylate, and 0 parts by weight of t-dodecyl mercaptan. . 1 part by weight of the mixed solution was continuously added over 1 hour. After the addition of the monomer mixture was completed, the mixture was held for 1 hour to obtain a latex of an emulsion polymerization graft copolymer (acrylic resin particles (b)) having a multilayer structure, an average particle size of 0.25 μm, and a Vicat softening temperature of 90 ° C. It was.
 〈アクリル系樹脂の作製>
 得られたアクリル系樹脂粒子(b)のラテックス96部(固形分すなわちアクリル系樹脂粒子(b)30部)と、アクリル系樹脂粒子(a)の懸濁液332部(固形分すなわちアクリル系樹脂粒子(a)100部)を撹拌下に混合し、得られた混合懸濁液(固形分すなわちアクリル系樹脂粒子(a)及びアクリル系樹脂粒子(b)の合計濃度30%)を60℃に調整した後、1.0%塩化カルシウム水溶液50部を撹拌下に10分間で滴下した。その後、撹拌下に95℃まで昇温して熱処理し、平均粒子径200μmのアクリル系樹脂を得た。アクリル系樹脂の重量平均分子量は6万であった。
<Making acrylic resin>
96 parts of the latex of the obtained acrylic resin particles (b) (solid content, that is, 30 parts of the acrylic resin particles (b)) and 332 parts of the suspension of the acrylic resin particles (a) (solid content, that is, the acrylic resin). The particles (a) (100 parts) are mixed under stirring, and the obtained mixed suspension (solid content, that is, the total concentration of the acrylic resin particles (a) and the acrylic resin particles (b) is 30%) is brought to 60 ° C. After the adjustment, 50 parts of a 1.0% aqueous solution of calcium chloride was added dropwise over 10 minutes under stirring. Then, the temperature was raised to 95 ° C. under stirring and heat treatment was performed to obtain an acrylic resin having an average particle diameter of 200 μm. The weight average molecular weight of the acrylic resin was 60,000.
 <熱膨張性マイクロカプセルのマスターバッチの製造例1>
 上記で得られたアクリル系樹脂48部、アクリル系可塑剤12部(東亜合成株式会社製、「アルフォン UP1020」、重量平均分子量2000、25℃における粘度500mPa・s、オールアクリル、無官能基)、及び熱膨張性マイクロカプセル40部(株式会社クレハ製、「マイクロスフェアー S2640D」、平均粒子径21μm、最大膨張温度249℃)を混合した後、重量式フィーダーにセットし、同方向噛み合い二軸押出機(テクノベル製、25mm押出機)に供給し、130℃で溶融混練し、ストランドを水冷後、ペレタイザーで切断することによって、ペレット状の熱膨張性マイクロカプセルのマスターバッチを得た。なお、マスターバッチの作製で用いたキャリア樹脂組成物は、ポリカーボネートと相溶性を有しており、80℃におけるせん断粘度が60×104Pa・sであった。また、マスターバッチの加工性も良好であった。
<Manufacturing example of a master batch of thermally expandable microcapsules 1>
48 parts of acrylic resin obtained above, 12 parts of acrylic plasticizer (manufactured by Toa Synthetic Co., Ltd., "Alfon UP1020", weight average molecular weight 2000, viscosity at 25 ° C. 500 mPa · s, all acrylic, non-functional group), And 40 parts of heat-expandable microcapsules (manufactured by Kureha Co., Ltd., "Microsphere S2640D", average particle size 21 μm, maximum expansion temperature 249 ° C.), set in a heavy-duty feeder, and mesh in the same direction for biaxial extrusion. A masterbatch of pellet-shaped heat-expandable microcapsules was obtained by supplying the mixture to a machine (Technobel, 25 mm extruder), melt-kneading at 130 ° C., cooling the strands with water, and cutting the strands with a pelletizer. The carrier resin composition used in the preparation of the masterbatch had compatibility with polycarbonate and had a shear viscosity of 60 × 10 4 Pa · s at 80 ° C. In addition, the workability of the masterbatch was also good.
 <ポリエステル-ポリエーテル共重合体の製造例1>
 攪拌機、ガス排出出口を備えた反応器に、ゲルマニウム系触媒で製造されたポリエチレンテレフタレート(IV=0.65)と、ビスフェノールAエチレンオキサイド30モル付加物(東邦化学社製、「ビスオール30EN」、一般式(6)で表されるポリエーテル単位に該当し、n+mは30である。)と、ポリエチレンテレフタレートとビスフェノールAエチレンオキサイド30モル付加物の合計量を基準として、二酸化ゲルマニウムを400ppm、安定剤(チバ・スペシャリティーケミカルズ製のイルガノックス1010)2000ppmとを仕込み、270℃で2時間保持した後、真空ポンプで減圧し、1torrで重縮合を実施し、所定の重合度に達したところで減圧を終了して反応を停止し製造されたものを取り出し、更に、水槽で冷却したストランドを、100℃に設定した熱風乾燥機中で後結晶化と乾燥を同時に行った後、粉砕器に投入してペレット化する事で、ペレット状態のポリエステル-ポリエーテル共重合体を得た。得られたポリエステル-ポリエーテル共重合体のポリエーテルの含有量は30%であり、IV値は0.45であった。なお、ポリエステル-ポリエーテル共重合体のIV値は、テトラクロロエタン/フェノール=50/50(重量比)の混合溶媒中、25℃、0.5g/dlでの対数粘度から算出したものである。
<Production Example 1 of Polyester-Polyester Copolymer>
A reactor equipped with a stirrer and a gas outlet, polyethylene terephthalate (IV = 0.65) manufactured with a germanium-based catalyst, and a 30 mol adduct of bisphenol A ethylene oxide (manufactured by Toho Kagaku Co., Ltd., "Bisol 30EN", general It corresponds to the polyether unit represented by the formula (6), and n + m is 30), based on the total amount of polyethylene terephthalate and 30 mol of bisphenol A ethylene oxide adduct, 400 ppm of germanium dioxide, stabilizer ( Irganox 1010) 2000 ppm manufactured by Ciba Specialty Chemicals was charged, held at 270 ° C. for 2 hours, then depressurized with a vacuum pump, subjected to polycondensation with 1 torr, and the depressurization was terminated when the predetermined degree of polymerization was reached. Then, the reaction was stopped, the produced product was taken out, and the strands cooled in the water tank were post-crystallized and dried at the same time in a hot air dryer set at 100 ° C., and then put into a crusher for pelletization. By chemistry, a pelleted polyester-polyethylene copolymer was obtained. The obtained polyester-polyether copolymer had a polyether content of 30% and an IV value of 0.45. The IV value of the polyester-polyether copolymer was calculated from the logarithmic viscosity at 25 ° C. and 0.5 g / dl in a mixed solvent of tetrachloroethane / phenol = 50/50 (weight ratio).
 <ポリカーボネート系樹脂組成物の製造例1>
 ポリカーボネート(三菱化学株式会社製「S-2000」、数平均分子量23,000)を50部、熱可塑性ポリエステル系樹脂(株式会社ベルポリエステルプロダクツ製「ベルペット EFG70」、ポリエチレンテレフタレート)を15部、上記で得られたポリエステル-ポリエーテル共重合体を15部、無機化合物(マイカ、株式会社ヤマグチマイカ製「YM-21S」、数平均粒子径27μm)15部を同方向噛み合い二軸押出機(日本製鋼所製、TEX44)に供給し、280℃にて溶融混練し、ストランドを水冷後、ペレタイザーで切断することによってペレット状の基材成分となるポリカーボネート系樹脂組成物を得た。得られた基材成分のポリカーボネート系樹脂組成物95部と、上記で得られた熱膨張性マイクロカプセルのマスターバッチ5部をハンドブレンドしてポリカーボネート系樹脂組成物を得た。
<Production Example 1 of Polycarbonate Resin Composition>
50 parts of polycarbonate ("S-2000" manufactured by Mitsubishi Chemical Corporation, number average molecular weight 23,000), 15 parts of thermoplastic polyester resin ("Belpet EFG70" manufactured by Bell Polyester Products Co., Ltd., polyethylene terephthalate), above. 15 parts of the polyester-polyether copolymer obtained in the above, and 15 parts of the inorganic compound (Mica, "YM-21S" manufactured by Yamaguchi Mica Co., Ltd., number average particle diameter 27 μm) are meshed in the same direction to a twin shaft extruder (Japan Steel Works) It was supplied to TEX44) manufactured by Japan Steel Works, melt-kneaded at 280 ° C., the strands were cooled with water, and then cut with a pelletizer to obtain a polycarbonate-based resin composition as a pellet-shaped base material component. A polycarbonate resin composition was obtained by hand-blending 95 parts of the obtained polycarbonate-based resin composition as a base material component and 5 parts of the masterbatch of the heat-expandable microcapsules obtained above.
 (実施例1)
 <射出発泡成形体の作製>
 上記で得られたポリカーボネート系樹脂組成物を射出発泡成形して射出発泡成形体を作製した。具体的には、製造例1で得られたポリカーボネート系樹脂組成物を型締力180tで、コアバック機能及びシャットオフノズルを有する電動の射出成形機(東洋機械金属(株)製)に供給し、シリンダ温度270℃、背圧10MPaで溶融混練した後、60℃に設定された固定型と前進及び後退が可能な可動型とから構成され、縦160mm×横160mmの平板形状のキャビティ(初期キャビティクリアランスt0=2.4mmを有し、底面部の中心位置にφ8mmのダイレクトゲート)を有する金型中に、射出速度100mm/秒で射出充填した。初期充填厚み(初期キャビティクリアランスt0)まで射出充填完了後に、底面部が所望の厚み(発泡倍率)となるように(クリアランスが、コアバック後キャビティクリアランスtfが3.6mmとなるよう)可動型を後退させて、キャビティ内のポリカーボネート系樹脂組成物を発泡させた。発泡完了後40秒間冷却してから射出発泡成形体を取り出した。発泡倍率は、1.5倍であった。前記可動型の表面には、図3に示す横断面の形状を有する補強用リブ3を形成するための彫りこみが1つ設けられていた。
(Example 1)
<Manufacturing of injection foam molding>
The polycarbonate-based resin composition obtained above was injection-foam molded to prepare an injection-foam molded product. Specifically, the polycarbonate-based resin composition obtained in Production Example 1 is supplied to an electric injection molding machine (manufactured by Toyo Kikai Kinzoku Co., Ltd.) having a core back function and a shut-off nozzle with a mold clamping force of 180 tons. After melt-kneading at a cylinder temperature of 270 ° C and a back pressure of 10 MPa, it is composed of a fixed type set at 60 ° C and a movable type that can move forward and backward, and has a flat plate-shaped cavity (initial cavity) of 160 mm in length and 160 mm in width. A mold having a clearance t 0 = 2.4 mm and a direct gate of φ8 mm at the center of the bottom surface was injected and filled at an injection speed of 100 mm / sec. After injection filling is completed up to the initial filling thickness (initial cavity clearance t 0 ), the bottom surface can be moved to the desired thickness (foaming magnification) (clearance is such that the cavity clearance t f after core back is 3.6 mm). The mold was retracted to foam the polycarbonate resin composition in the cavity. After the foaming was completed, the injection foam molded product was taken out after cooling for 40 seconds. The foaming ratio was 1.5 times. The movable surface was provided with one engraving for forming the reinforcing rib 3 having the shape of the cross section shown in FIG.
 (実施例2)
 金型の可動型として、図3に示す横断面の形状を有する補強用リブ3を形成するための彫りこみが2つ設けられている可動型を用いた以外は、実施例1と同様にして射出発泡成形体を作製した。隣接する補強用リブ3間の間隔は7mmであった。
(Example 2)
As the movable mold of the mold, injection is performed in the same manner as in Example 1 except that a movable mold provided with two engravings for forming the reinforcing rib 3 having the shape of the cross section shown in FIG. 3 is used. A foam molded product was produced. The distance between the adjacent reinforcing ribs 3 was 7 mm.
 (比較例1)
 金型の可動型として、図6に示す横断面の形状を有する補強用リブ13を形成するための彫りこみが1つ設けられている可動型を用いた以外は、実施例1と同様にして、本体部12及び補強用リブ13を備えた射出発泡成形体11を作製した。
(Comparative Example 1)
As the movable mold of the mold, a movable mold provided with one engraving for forming the reinforcing rib 13 having the shape of the cross section shown in FIG. 6 was used, except that the movable mold was used in the same manner as in the first embodiment. An injection foam molded product 11 having a main body portion 12 and reinforcing ribs 13 was produced.
 実施例及び比較例で得られた射出発泡成形体の面衝撃強度及び意匠面側のヒケを上述したとおりに測定・評価し、その結果を下記表1に示した。下記表1には、補強用リブの各寸法も併せて示した。 The surface impact strength and the sink mark on the design surface side of the injection foam molded product obtained in Examples and Comparative Examples were measured and evaluated as described above, and the results are shown in Table 1 below. Table 1 below also shows the dimensions of the reinforcing ribs.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1から分かるように、実施例では、低温環境下の面衝撃強度が高く、ヒケなどの外観不良もない熱可塑性樹脂成形体が得られた。また、実施例では、本体部2を熱可塑性樹脂発泡体で構成することで軽量化が高まっている。実施例1の本体部の深部中央の断面を走査型電子顕微鏡(SEM)(日本電子株式会社製、型番「6060LA」)で観察したところ、図8に示しているように、100μm以下の均一微細の独立気泡が存在することが観察された。 As can be seen from Table 1, in the examples, a thermoplastic resin molded product having high surface impact strength in a low temperature environment and no appearance defects such as sink marks was obtained. Further, in the embodiment, the weight is reduced by forming the main body 2 with a thermoplastic resin foam. When the cross section of the deep center of the main body of Example 1 was observed with a scanning electron microscope (SEM) (manufactured by JEOL Ltd., model number "6060LA"), as shown in FIG. 8, uniform fineness of 100 μm or less. The presence of closed cells was observed.
 一方、比較例では、補強用リブ13の先端部は、両角部に曲率半径を有さず、かつ、円弧状にもなっていないことから、得られた熱可塑性樹脂成形体の低温環境下の面衝撃強度が低かった。 On the other hand, in the comparative example, the tip portion of the reinforcing rib 13 does not have a radius of curvature at both corners and does not have an arc shape, so that the obtained thermoplastic resin molded product is in a low temperature environment. The surface impact strength was low.
 1、11 熱可塑性樹脂成形体
 2、12 本体部
 3、13 補強用リブ
 T1 本体部の厚み
 T2 補強用リブの平均厚み
 T3 補強用リブの最大厚み
 T4 補強用リブの先端部における平坦部の厚み
 Ra 補強用リブと本体部の接合部の曲率半径
 Rb 補強用リブの先端部における角部の曲率半径
 Rc、Rd 補強用リブの先端部の曲率半径
                                       
1,11 Thermoplastic resin molded body 2, 12 Main body 3, 13 Reinforcing rib T1 Main body thickness T2 Average thickness of reinforcing rib T3 Maximum thickness of reinforcing rib T4 Thickness of flat part at the tip of reinforcing rib Ra Radius of curvature of the joint between the reinforcing rib and the main body Rb Radius of curvature of the corner at the tip of the reinforcing rib Rc, Rd Radius of curvature of the tip of the reinforcing rib

Claims (15)

  1.  熱可塑性樹脂発泡体で構成されている本体部、及び前記本体部の裏面側に形成された補強用リブを備えた熱可塑性樹脂成形体において、
     前記補強用リブの横断面を観察した場合、前記補強用リブの根元部分が外側に膨らむことで、前記補強用リブと前記本体部の接合部は湾曲形状となっており、かつ、前記補強用リブの先端部は、両角部に曲率半径を有するか、或いは、円弧状になっており、
     前記本体部の厚みT1は1.8mm以上6.0mm以下であり、
     前記接合部の曲率半径Raは0.05mm以上2.2mm以下であり、
     前記本体部の厚みT1と前記補強用リブの最大厚みT3の比率T3/T1が0.25より大きく0.75以下であることを特徴とする熱可塑性樹脂成形体。
    In a main body portion made of a thermoplastic resin foam and a thermoplastic resin molded body provided with reinforcing ribs formed on the back surface side of the main body portion.
    When observing the cross section of the reinforcing rib, the root portion of the reinforcing rib bulges outward, so that the joint portion between the reinforcing rib and the main body portion has a curved shape, and the reinforcing rib is used for reinforcement. The tip of the rib has a radius of curvature at both corners or is arcuate.
    The thickness T1 of the main body is 1.8 mm or more and 6.0 mm or less.
    The radius of curvature Ra of the joint is 0.05 mm or more and 2.2 mm or less.
    A thermoplastic resin molded product, wherein the ratio T3 / T1 of the thickness T1 of the main body to the maximum thickness T3 of the reinforcing rib is larger than 0.25 and 0.75 or less.
  2.  前記補強用リブの先端部は、両角部に曲率半径Rbを有する形状であり、前記角部の曲率半径Rbは0.05mm以上2.2mm以下である請求項1に記載の熱可塑性樹脂成形体。 The thermoplastic resin molded product according to claim 1, wherein the tip portion of the reinforcing rib has a shape having a radius of curvature Rb at both corners, and the radius of curvature Rb of the corner is 0.05 mm or more and 2.2 mm or less. ..
  3.  前記補強用リブの先端部は、曲率半径Rcが0.05mm以上2.2mm以下である真円弧の形状、又は曲率半径Rdが0.05mm以上9.5mm以下である楕円弧の形状を有する請求項1に記載の熱可塑性樹脂成形体。 The claim that the tip of the reinforcing rib has a shape of a true arc having a radius of curvature Rc of 0.05 mm or more and 2.2 mm or less, or an elliptical arc having a radius of curvature Rd of 0.05 mm or more and 9.5 mm or less. The thermoplastic resin molded product according to 1.
  4.  前記補強用リブにおいて、先端部及び根本部を除く部分の平均厚みT2は、0.2mm以上4.3mm以下である請求項1~3のいずれかに記載の熱可塑性樹脂成形体。 The thermoplastic resin molded product according to any one of claims 1 to 3, wherein the average thickness T2 of the portion of the reinforcing rib excluding the tip portion and the root portion is 0.2 mm or more and 4.3 mm or less.
  5.  前記補強用リブの高さHは、2mm以上15mm以下である請求項1~4のいずれかに記載の熱可塑性樹脂成形体。 The thermoplastic resin molded product according to any one of claims 1 to 4, wherein the height H of the reinforcing rib is 2 mm or more and 15 mm or less.
  6.  前記補強用リブの平均厚みT2に対する前記補強用リブの高さHの比率H/T2は、0.4以上75以下である請求項1~5のいずれかに記載の熱可塑性樹脂成形体。 The thermoplastic resin molded product according to any one of claims 1 to 5, wherein the ratio H / T2 of the height H of the reinforcing ribs to the average thickness T2 of the reinforcing ribs is 0.4 or more and 75 or less.
  7.  前記補強用リブは、長手方向が熱可塑性樹脂成形体の長手方向に沿うように配置されており、隣接する補強用リブ間の幅方向の間隔は、3mm以上20mm以下である請求項1~6のいずれかに記載の熱可塑性樹脂成形体。 The reinforcing ribs are arranged so that the longitudinal direction is along the longitudinal direction of the thermoplastic resin molded product, and the widthwise distance between adjacent reinforcing ribs is 3 mm or more and 20 mm or less. The thermoplastic resin molded article according to any one of.
  8.  前記熱可塑性樹脂成形体は射出発泡成形体であり、熱可塑性樹脂成形体の比重が0.3g/cm3以上1.2g/cm3以下である、又は本体部の発泡倍率が1.1倍以上3.0倍以下である請求項1~7のいずれかに記載の熱可塑性樹脂成形体。 The thermoplastic resin molded product is an injection foam molded product, and the specific gravity of the thermoplastic resin molded product is 0.3 g / cm 3 or more and 1.2 g / cm 3 or less, or the foaming ratio of the main body is 1.1 times. The thermoplastic resin molded product according to any one of claims 1 to 7, which is 3.0 times or more.
  9.  前記熱可塑性樹脂成形体の長さが200mm以上3000mm以下である、及び/又は、前記熱可塑性樹脂成形体の幅が50mm以上3000mm以下である、請求項1~8のいずれかに記載の熱可塑性樹脂成形体。 The thermoplastic according to any one of claims 1 to 8, wherein the length of the thermoplastic resin molded product is 200 mm or more and 3000 mm or less, and / or the width of the thermoplastic resin molded product is 50 mm or more and 3000 mm or less. Resin molded body.
  10.  前記熱可塑性樹脂成形体において、下記の面衝撃強度の測定方法で測定した面衝撃強度の値が1.9J以上である請求項1~9のいずれかに記載の熱可塑性樹脂成形体。
     (面衝撃強度の測定方法)
     ビルドインチャンバー内を-30℃の環境にし、デュポン衝撃試験(ASTM D 2794に則って測定する)を実施して50%破壊エネルギーを算出して面衝撃強度とする。なお、衝撃は補強用リブが形成されていない側(意匠面側)において、非意匠面側に設けた補強用リブの直下に対応する箇所に付与する。
    The thermoplastic resin molded product according to any one of claims 1 to 9, wherein the value of the surface impact strength measured by the following method for measuring the surface impact strength is 1.9 J or more in the thermoplastic resin molded product.
    (Measurement method of surface impact strength)
    The inside of the built-in chamber is set to an environment of −30 ° C., a DuPont impact test (measured according to ASTM D 2794) is performed, and 50% fracture energy is calculated to obtain the surface impact strength. The impact is applied to a portion directly below the reinforcing rib provided on the non-design surface side on the side where the reinforcing rib is not formed (design surface side).
  11.  前記熱可塑性樹脂成形体が、ポリカーボネート及び/又はABS樹脂を含有する請求項1~10のいずれかに記載の熱可塑性樹脂成形体。 The thermoplastic resin molded product according to any one of claims 1 to 10, wherein the thermoplastic resin molded product contains polycarbonate and / or ABS resin.
  12.  前記熱可塑性樹脂成形体が、熱膨張性マイクロカプセルを含有する熱可塑性樹脂組成物の発泡成形体である請求項1~11のいずれかに記載の熱可塑性樹脂成形体。 The thermoplastic resin molded product according to any one of claims 1 to 11, wherein the thermoplastic resin molded product is a foam molded product of a thermoplastic resin composition containing a heat-expandable microcapsule.
  13.  前記熱可塑性樹脂成形体は、自動車用部品、OA機器の外装部品、OA機器の内部機構部品、家電製品の外装部品、及び家電製品の内部機構部品からなる群から選ばれる一種以上である請求項1~12のいずれかに記載の熱可塑性樹脂成形体。 The claim that the thermoplastic resin molded product is one or more selected from the group consisting of automobile parts, exterior parts of OA equipment, internal mechanical parts of OA equipment, exterior parts of home appliances, and internal mechanical parts of home appliances. The thermoplastic resin molded product according to any one of 1 to 12.
  14.  前記自動車用部品は、外装部品及び外板部品からなる群から選ばれる1種以上である請求項13に記載の熱可塑性樹脂成形体。 The thermoplastic resin molded product according to claim 13, wherein the automobile parts are one or more selected from the group consisting of exterior parts and outer panel parts.
  15.  請求項1~14のいずれかに記載の熱可塑性樹脂成形体の製造方法であって、
     射出成形により本体部と補強用リブを一体成形して熱可塑性樹脂成形体を得る工程を含む熱可塑性樹脂成形体の製造方法。
    The method for producing a thermoplastic resin molded product according to any one of claims 1 to 14.
    A method for manufacturing a thermoplastic resin molded body, which comprises a step of integrally molding the main body and reinforcing ribs by injection molding to obtain a thermoplastic resin molded body.
PCT/JP2020/019850 2019-05-21 2020-05-20 Thermoplastic resin molded body and manufacturing method therefor WO2020235575A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021520805A JPWO2020235575A1 (en) 2019-05-21 2020-05-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-095386 2019-05-21
JP2019095386 2019-05-21

Publications (1)

Publication Number Publication Date
WO2020235575A1 true WO2020235575A1 (en) 2020-11-26

Family

ID=73459401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019850 WO2020235575A1 (en) 2019-05-21 2020-05-20 Thermoplastic resin molded body and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JPWO2020235575A1 (en)
WO (1) WO2020235575A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194164U (en) * 1986-05-30 1987-12-10
JPH0623553U (en) * 1992-08-06 1994-03-29 株式会社アシックス Golf club head
JPH09220983A (en) * 1996-02-19 1997-08-26 Nissan Motor Co Ltd Vehicle body structure for automobile
JP2002225165A (en) * 2001-01-30 2002-08-14 Sumitomo Chem Co Ltd Thermoplastic resin foamed molded object
JP2003341449A (en) * 2002-05-30 2003-12-03 Hitachi Chem Co Ltd Shock absorbing member
JP2008168855A (en) * 2007-01-15 2008-07-24 Toyota Motor Corp Bumper structure of vehicle
JP2009166521A (en) * 2008-01-10 2009-07-30 Toyota Boshoku Corp Door trim
JP2010170915A (en) * 2009-01-23 2010-08-05 Toyota Motor Corp Battery
JP2015025094A (en) * 2013-07-29 2015-02-05 積水化成品工業株式会社 Form molding

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194164U (en) * 1986-05-30 1987-12-10
JPH0623553U (en) * 1992-08-06 1994-03-29 株式会社アシックス Golf club head
JPH09220983A (en) * 1996-02-19 1997-08-26 Nissan Motor Co Ltd Vehicle body structure for automobile
JP2002225165A (en) * 2001-01-30 2002-08-14 Sumitomo Chem Co Ltd Thermoplastic resin foamed molded object
JP2003341449A (en) * 2002-05-30 2003-12-03 Hitachi Chem Co Ltd Shock absorbing member
JP2008168855A (en) * 2007-01-15 2008-07-24 Toyota Motor Corp Bumper structure of vehicle
JP2009166521A (en) * 2008-01-10 2009-07-30 Toyota Boshoku Corp Door trim
JP2010170915A (en) * 2009-01-23 2010-08-05 Toyota Motor Corp Battery
JP2015025094A (en) * 2013-07-29 2015-02-05 積水化成品工業株式会社 Form molding

Also Published As

Publication number Publication date
JPWO2020235575A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
JP6936788B2 (en) Injection foam molded product with good surface properties due to resin composition that can reduce weight and rib design
US8664322B2 (en) Thermoplastic resin composition and plastic article
US11898016B2 (en) Master batch, polycarbonate resin composition, injection foam molded body and method for producing same
WO2007069493A1 (en) Polymer particles, process for production thereof, resin compositions containing the particles, and moldings
TW201821532A (en) Thermoplastic resin composition and molded article thereof
TWI295679B (en)
JP7022576B2 (en) Masterbatch of heat-expandable microcapsules
JP3974972B2 (en) Thermoplastic resin composition for hot plate welding and automotive lamp using the same
WO2020235575A1 (en) Thermoplastic resin molded body and manufacturing method therefor
JP4618692B2 (en) Rubber-containing graft polymer and thermoplastic resin composition
JP7216628B2 (en) Graft copolymer and thermoplastic resin composition
JP4102512B2 (en) Automotive lamp housing
WO2020196781A1 (en) Master batch for polycarbonate resin, polycarbonate resin composition, injection molded foam, and production methods therefor
WO2021200970A1 (en) Master batch, method for manufacturing same, polycarbonate resin composition, injection foam molded article, and method for manufacturing same
JP5179026B2 (en) MODIFIED MATERIAL, METHOD FOR PRODUCING MOLDED ARTICLE USING SAME, AND METHOD FOR RECYCLING WASTE STYRENE
JP4786243B2 (en) Graft copolymer and production method thereof, thermoplastic resin composition, and molded article
JP2010116527A (en) Thermoplastic resin composition for foam molding, foam molded product, and laminated product
JP2001279049A (en) Abs-based resin composition for blow molding use and the resultant blow molded product
KR100633624B1 (en) Thermoplastic resin composition for Automobile
JP2003138089A (en) Thermoplastic resin composition for hot plate welding, and resin molded article
JP4592725B2 (en) Automotive lamp
JP2015168814A (en) Thermoplastic resin composition and molded article
JPH1081805A (en) Impact-resistant methacrylic resin composition
JP2006143924A (en) Bulked rubbery polymer, rubber-containing graft copolymer, their producing methods, thermoplastic resin composition, and molded product from the same
JP2004099828A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20808764

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520805

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20808764

Country of ref document: EP

Kind code of ref document: A1