WO2020235477A1 - Visual observation assistance device - Google Patents

Visual observation assistance device Download PDF

Info

Publication number
WO2020235477A1
WO2020235477A1 PCT/JP2020/019435 JP2020019435W WO2020235477A1 WO 2020235477 A1 WO2020235477 A1 WO 2020235477A1 JP 2020019435 W JP2020019435 W JP 2020019435W WO 2020235477 A1 WO2020235477 A1 WO 2020235477A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
transmitted light
light source
transmitted
Prior art date
Application number
PCT/JP2020/019435
Other languages
French (fr)
Japanese (ja)
Inventor
光広 小山
華織 綾部
Original Assignee
シンクロア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=73454529&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020235477(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by シンクロア株式会社 filed Critical シンクロア株式会社
Publication of WO2020235477A1 publication Critical patent/WO2020235477A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications

Definitions

  • the present invention relates to a visual support device that irradiates various objects with light to visually recognize foreign substances such as scratches and dirt.
  • Patent Document 1 a head-mounted lighting device including a light source unit and a transmissive member arranged in front of the eyes as a device (visual support device) useful for detecting foreign substances.
  • the head-mounted lighting device disclosed in Patent Document 1 is a spectacles type, and the focal length becomes a problem when a magnifying function is attached to magnify an object. That is, when looking at a place other than the object, it is out of focus and dizziness occurs, which is not convenient for detecting foreign matter.
  • Non-Patent Document 1 a desk-installed foreign matter detection device (visual support device) disclosed in Non-Patent Document 1 is used.
  • This foreign matter detection device is a desk-mounted type, and either the object is placed on the stage, or the object is picked by hand and installed above the stage, and the object is irradiated with light to irradiate the object with light. It has a structure for observing the surface condition. The object is magnified through the magnifying lens element, and the operator looks into the magnifying lens element from above to see if there is a foreign substance on the surface of the object irradiated with light.
  • Patent No. 6185686 1589432561918_0 (Illumination magnifier introduced on the website of Otsuka Optical Co., Ltd.)
  • the above-mentioned known desk-installed foreign matter detection device has a structure that simply irradiates an object with light and magnifies and visually recognizes the reflected light, glare is effective for the reflected light from the object. It is difficult to accurately detect whether or not foreign matter is attached to the object because it has not been removed. In this case, glare is removed by arranging polarizing elements directed so that the polarization axes are 90 ° to each other on the light irradiation side (light source side) and the light receiving side (magnifying lens element side).
  • the light can be visually recognized, it is possible to easily check the adhesion status of foreign matter, but it is possible to remove glare more effectively depending on the color of the object to be inspected and the unevenness status (type of foreign matter). desirable.
  • reflected light with glare removed effectively can be obtained for one object, but it is sufficient when another object is inspected. Glare may not be removed. It is considered that this is because the surface state of each object is different, and the method of diffuse reflection, color absorption and reflection, contrast, and the like are different.
  • the known desk-installed foreign matter detection device has a configuration in which the object is irradiated with light and the reflected light is magnified and visually recognized, the object is transparent (for example, a jewel or an eye drop container).
  • the proportion of transmitted light passing through the object increases, which makes it difficult to detect foreign matter.
  • a known desk-mounted foreign matter detecting device it is difficult to accurately visually recognize that foreign matter is attached to such a transparent article.
  • the present invention has been made based on the above-mentioned problems, and when irradiating an object with light to detect whether or not a foreign substance is attached to the object, glare occurs regardless of the state of the object. It is an object of the present invention to provide a visual support measure capable of effectively removing foreign matter and detecting foreign matter.
  • the visual support device visually recognizes a transmitted light unit that irradiates a transparent object with transmitted light and the irradiation light from the transmitted light unit.
  • the transmitted light unit includes an observation unit that enables observation of the state of the object, and the transmitted light unit is arranged in a hand-held operable housing and the housing to emit transmitted light. It is characterized by having an organic EL light source and a polarizing element that linearly polarizes the emitted light emitted from the organic EL light source.
  • FIG. 1 shows the 1st Embodiment of the visual aid device which concerns on this invention, and is the perspective view which shows the whole structure.
  • a side view of the visual aid device shown in FIG. The exploded perspective view of the reflected light unit of the visual aid device shown in FIG.
  • a photo copy of an iron ball illuminated with light and the reflected light taken with a camera before glare removal).
  • a photo copy of a cable material for optical fibers made of a translucent resin material that is irradiated with unpolarized light and the reflected light is taken with a camera.
  • FIG. 16 and irradiated with polarized light, and the reflected light is taken by a camera.
  • a photographic copy of the material shown in FIG. 15 irradiated with polarized light and the transmitted light taken with a camera.
  • FIG. 20 From the state shown in FIG. 20, a photograph copy obtained by irradiating the first wavelength plate with light in a polarized state rotated by 90 ° and taking the transmitted light with a camera.
  • FIG. 1 It is a figure which shows the 2nd Embodiment of the visual assistance apparatus which installed the light source which provided the projector function in the reflected light unit, (a) is the side view which shows the structure of the whole apparatus, (b) is irradiation by a projector. The figure which shows the light.
  • FIG. 1 to 3 are diagrams showing the first embodiment of the entire visual support device.
  • the visual support device 1 has a light source (reflected light unit) that irradiates the object 100 installed in the workspace with reflected light and a light source (transmitted light unit) that irradiates the transmitted light. ), And.
  • the reflected light unit is installed at two places, one is a position where light is irradiated from an oblique direction to the object 100 (first reflected light unit), and the other is light from a vertical direction. It is arranged at the position (second reflected light unit) to irradiate.
  • the transmitted light unit is arranged below the workspace.
  • the visual support device 1 includes a box-shaped base 3 and a support column 5 installed at a position on the back side of the base 3 when an operator works.
  • the base 3 is provided with a workspace in which the object 100 is installed when the operator performs visual work (inspection work).
  • This workspace corresponds to the area of the flat surface 3a of the base 3 or the space area above the flat surface 3a. That is, the operator visually performs the visual work of the object by placing the object 100 on the flat surface 3a or by holding the object 100 in his hand and positioning it in the space area above the flat surface 3a.
  • the support column 5 includes a reflected light unit (first reflected light unit) 10 having a light source (first reflecting light source) that irradiates an object 100 installed in the workspace with light (reflected light), and an object.
  • a magnifying optical unit (observation unit) 20 is installed to magnify and make visible.
  • the reflected light unit 10 is installed so as to be movable up and down with respect to the support column 5 so as to irradiate the object 100 installed in the workspace with light from an oblique direction.
  • the housing 10A of the reflected light unit 10 is held so as to be rotatable in a certain range in the vertical direction with respect to the support member 6, and the support member 6 is held in the vertical direction with respect to the support column 5. It is slidably supported and can be fixed to the support column 5 at an arbitrary position by operating the operation knob 7.
  • the housing 10A of the reflected light unit 10 is rotatably supported with respect to the support shaft 6a of the support member 6, and is rotated in the direction of arrow D1 to transmit transmitted light.
  • the housing 10A is rotated so that the light emitted from the light source of the reflected light unit 10 is directed toward the magnifying optical unit 20, so that it can be visually recognized from above the magnifying optical unit 20, and is transmitted in the workspace. It may be configured so that a sexual object can be inspected.
  • the reflected light unit 10 installed on the support column 5 can be configured to have a function as a transmitted light unit.
  • the magnifying optical unit 20 is installed above the workspace and above the reflected light unit 10, and is installed so as to be vertically movable with respect to the support column 5.
  • the housing 20A of the magnifying optical unit 20 is held so as to be rotatable in a certain range in the vertical direction with respect to the support member 8, and the support member 8 is held in the vertical direction with respect to the support column 5. It is slidably supported.
  • the housing 20A can be fixed at an arbitrary rotation position by operating the operation knob 9a, and can be fixed at an arbitrary height position with respect to the support column 5 by operating the operation knob 9b. It can be fixed with.
  • a magnifying lens element (preferably about ⁇ 2 to ⁇ 10) 21 for enlarging the object 100 and making it visible to the operator is installed in the housing 20A.
  • a ring-shaped light source (second reflection light source) is incorporated around the magnifying lens element 21 in the housing 20A. That is, in the present embodiment, the reflected light unit (second reflected light unit) 30 provided with a ring-shaped light source is provided in the magnifying optical unit 20 so that the reflected light can be irradiated to the object 100 from the vertical direction. It has been incorporated.
  • the configurations of the reflected light units 10 and 30 and the magnifying optical unit 20 described above will be described.
  • the housing 10A of the reflected light unit 10 has a substantially cylindrical shape, and a light source (first reflection light source) 11 is arranged in the housing.
  • the light source 11 can be configured by an LED or the like, and a condensing lens (collimating lens) (not shown) is arranged in front of the light source 11 to irradiate the object 100 with spot light. It is possible.
  • a retardation ring 12 provided with a polarizing element and a wave plate is arranged in the opening of the housing 10A, and the retardation ring 12 polarizes the emitted light emitted from the light source 11 (circularly). It has a function of irradiating the object 100 with polarized light or elliptically polarized light.
  • the retardation ring 12 includes a fixing ring 12a fixed to the opening edge of the housing 10A, and a movable ring 12b that covers the fixing ring 12a and is rotatably arranged with respect to the fixing ring 12a.
  • a first polarizing element 14 that linearly polarizes the emitted light emitted from the light source 11 is fixed to the fixing ring 12a.
  • a first wave plate 15 having a function of converting linearly polarized light transmitted through the first polarizing element 14 into circularly polarized light or elliptically polarized light in the clockwise / counterclockwise direction is fixed to the movable ring 12b. There is. Therefore, by pinching and rotating the movable ring 12b, the first wave plate 15 can rotate over 360 °.
  • the housing 20A of the magnifying optical unit 20 is formed in a thin cylindrical shape, and the magnifying lens element 21 is arranged in the central region thereof. Further, in the housing 20A, the second polarizing element 24 is arranged on the object side with respect to the magnifying lens element 21, and the second wavelength plate 25 is arranged below the second polarizing element 24.
  • the second polarizing element 24 is held and fixed to the fixing ring 24a so as to have a polarization axis orthogonal to the polarization axis of the first polarizing element 14 by 90 ° (including substantially 90 °).
  • the two-wavelength plate 25 is held and fixed to the fixing ring 25a attached to the fixing ring 24a.
  • the second wave plate 25 has the same phase difference as that of the first wavelength plate 15, and the respective wave plates 15 and 25 are arranged so as to overlap each of the polarizing elements 14 and 24.
  • the first wave plate 15 may be overlapped on the light source side with respect to the first polarizing element 14, and the second wavelength plate 25 may be overlapped on the magnifying lens element 21 side with respect to the second polarizing element 24. ..
  • the second polarizing element 24 and the second wavelength plate 25 are slidably supported with respect to the housing 20A so as to be out of the field of view of the magnifying lens element 21.
  • the fixing rings 24a and 25a are provided with projecting pieces 24b and 25b that protrude from the housing 20A and can be picked by fingers, and the fixing rings 24a and 25a are provided by pinching each projecting piece. By sliding the 24a and 25a, it is possible to remove the second polarizing element 24 and / or the second wavelength plate 25 from the field of view of the magnifying lens element 21.
  • a blue light cut filter 26 is arranged so as to overlap the upper side of the second polarizing element 24, and is held and fixed to the fixing ring 26a.
  • the fixing ring 26a is provided with a projecting piece 26b that can be picked with a finger, and the blue light cut filter 26 is a magnifying lens element similar to the second polarizing element 24 and the second wavelength plate 25. It is slidably supported with respect to the magnifying optical unit 20 so as to be out of the field of view of 21.
  • the light emitted from the light source 11 of the reflected light unit 10 is changed to linearly polarized light by the first polarizing element 14. That is, the light (non-polarized light) emitted from the light source 11 by the first polarizing element 14 becomes linearly polarized light in which the vibration direction of the electric field (and the magnetic field) is constant, and irradiates the object 100.
  • the reflected light is linearly polarized as it is, but since foreign matter such as unevenness actually exists, the reflected light is diffused including the linearly polarized light component. It becomes light (non-polarized state).
  • the reflected light from the object 100 is diffusely reflected, even if the incident light is linearly polarized light, the reflected light is in a non-polarized state, and the light in this non-polarized state is included in the light. Contains a component of positively reflected light (the incident linear polarization is reflected as it is as linear polarization). Since the component of this specularly reflected light becomes glare in which the light source is reflected, it hinders the determination of the presence of foreign matter.
  • the first polarizing element 14 Since the second polarizing element 24, which is a polarization axis orthogonal to the polarization axis of the above, is transmitted, diffused reflected light excluding the reflection component that causes gloss can be obtained, and the reflected light from the object 100 can be obtained. Will be free of glare, and the presence of foreign matter can be easily determined.
  • the first polarizing element 14 and the second polarizing element 24 described above are, for example, a linear polarizing filter, a film polarizing element, a nanowire grid polarizing plate / an inorganic polarizing plate (an aluminum thin film is formed on a glass wafer, and fine slits are formed. It can be composed of (formed) and the like. Alternatively, it may be configured to be coated with a thin film having such a function. Further, in the above configuration, the emitted light from the light source 11 is electrically frequency-modulated (pulse-modulated) by an external signal to change the phase, amplitude, and polarization plane, and the vibration direction of the electric field of the light is accurate. It is also possible to remove glare more effectively by aligning (aligning) the object and irradiating the object through a wire grid polarizing plate, which is a first polarizing element having high transmittance.
  • first polarizing element 14 and the second polarizing element 24 have a first wave plate (1/2 wave plate, 1/4 wave plate, 1/8 wave plate, etc.) 15 and the same phase difference, respectively.
  • the second wave plate 25 is arranged so as to overlap each other.
  • the surface of an object is in various states, and on that surface, light cannot be specularly reflected and causes diffuse reflection, and depending on the surface color, part of the wavelength band of the emitted light is , It is reflected or absorbed, the color information of the light is lost (contrast changes), and the reflected light looks cloudy (turbid state).
  • the diffused reflection on the surface changes depending on the object, and the color information of the light also changes in various ways.
  • the wave plate 25 having the same phase difference glare can be further effectively removed. That is, the appearance changes depending on the state of scratches and dust, the color and contrast of the background, and the reflection angle also changes. Therefore, by rotating the wave plate, the phase angle can be shifted to make it easier to see. ..
  • the first wavelength plate 15 superimposed on the first polarizing element 14 is rotatably arranged with respect to the first polarizing element 14. This is because it is taken into consideration that the angle of reflection, absorption of light, etc. differ depending on the content of the foreign matter (scratches, dust, etc.), and the appearance of the reflected light changes. That is, the first wavelength plate 15 is rotated to adjust the intensity of the light passing through the second polarizing element 24 to the minimum, and the direction of polarization and the direction of one axis of the wave plate are matched ( By rotating the wave plate to detect an angle with a large effect), the contrast is improved, and foreign matter adhering to the object can be made clearer without causing glare.
  • the first wave plate 15 on the emission side is fixed and the second wave plate 25 installed on the magnifying optical unit 20 on the light receiving side (observation side) is rotatable.
  • the light source on the emission side is fixed in a state where specular reflection does not occur, and the observation side is rotated, so that the position where glare is effectively removed can be easily detected. Will be.
  • the present embodiment has a configuration in which the wavelength plates 15 and 25 are provided corresponding to the first polarizing element 14 and the second polarizing element 24, respectively, for example, a half mirror, a beam splitter, or the like is arranged on the optical path. Compared with the configuration in which glare is removed by one wave plate, the object is not difficult to see because the amount of light does not change and the polarization state does not change.
  • the relative positions of the wave plates 15 and 25 that can be removed by glare vary depending on the surface shape, color, contrast, etc. of the object 10, and it is not possible to clearly specify the relationship between the positions of the object and the wave plate.
  • an optical unit equipped with the above-mentioned polarizing element and wave plate irradiate various objects with light, and refer to the image obtained by the camera for the reflected light from the objects.
  • glare is removed.
  • a plurality of objects having various surface states such as brightness, contrast, and uneven state of the reflected light from the surface of the object are prepared and verified for each.
  • a 1/4 wave plate is used for both.
  • FIG. 4 is an image obtained by irradiating the housing (shining silver color) of the keyboard part of a notebook computer with light from a light source and taking the reflected light with a camera.
  • the light from the light source is reflected in the reflected light from the housing portion to cause glare. From this state, when the first wave plate on the light source side was rotated by about 1/8, an image as shown in FIG. 5 could be obtained.
  • FIG. 5 the glare of the housing portion seen in FIG. 4 has been removed, and it has become possible to clearly see the scratches adhering to the surface of the housing portion.
  • FIG. 6 is an image obtained by irradiating a green control board on which various elements are mounted with light from a light source and capturing the reflected light with a camera.
  • glare is generated in the black CPU portion in the central portion and the reflected light from the brilliant lead frame region extending around the CPU portion. From this state, the first light source side first.
  • FIG. 7 When the wave plate was rotated about 1/12, an image as shown in FIG. 7 could be obtained.
  • FIG. 7 glare on the entire control board has been removed, and it has become possible to clearly visually recognize the mounting state of each element and the printing on the surface.
  • FIG. 8 is an image of a white golf ball irradiated with light from a light source and the reflected light taken by a camera.
  • glare is generated in the reflected light from the spherical top region. From this state, when the first wave plate on the light source side is rotated about 1/10, as shown in FIG. I was able to get a good image.
  • FIG. 9 glare in the top region has been removed, making it possible to clearly see the adhesion of dirt on the surface.
  • FIG. 10 is an image obtained by irradiating an iron ball with a rough surface with light from a light source and capturing the reflected light with a camera.
  • glare is generated in the reflected light from the top region of the iron ball.
  • the first wave plate on the light source side is rotated about 1/12, and FIG. 11 shows. I was able to obtain an image as shown.
  • glare in the top region has been removed, making it possible to clearly see the rust on the surface.
  • the wave plate is rotatably attached to the housing 10A so as to have moderation every 1/16 rotation, and glare is caused by stopping at any of the modest rotation positions. It becomes possible to acquire the image in which is removed.
  • the wave plates 15 and 25 only the first wave plate 15 on the light source side can be rotated, only the second wave plate 25 on the magnifying optical unit side can be rotated, or both may be arranged so as to be rotatable.
  • An appropriate wave plate may be selected and one of them may be rotated according to the type of the object, the state of the foreign matter, and the like.
  • the rotation of the wave plate may be configured so that the position can be adjusted steplessly (linearly can be adjusted) without giving moderation.
  • the above-mentioned wave plate 15 may be configured so that it can be rotated by a driving means such as a motor instead of being manually operated.
  • a driving means such as a motor instead of being manually operated.
  • the drive motor 18 is installed in the housing 10A of the reflected light unit, and the movable ring 12b is operated by operating the operation button 61 of the controller (operation member) 60 on the hand side. May be rotationally driven.
  • a spur gear is provided on the output shaft of the drive motor 18 and a power transmission mechanism such as engaging the spur gear with the internal gear provided on the movable ring 12b is provided. It is possible to do.
  • the operating members 60 may be provided at a plurality of locations in consideration of operability and the like, and the function of selecting a light source, the function of changing the amount of light (illuminance), and the light source may be a projector as described later.
  • the function of is provided, a function of selecting an image to be projected on an object may be provided.
  • it may be configured by a foot pedal or the like.
  • the above-mentioned second polarizing element 24, the second wavelength plate 25, and the blue light cut filter 26 are excluded from the field of view, if necessary. It is also possible to inspect the condition of scratches and dirt in more detail.
  • the second reflected light unit 30 is arranged in the magnifying optical unit 20.
  • the second reflected light unit 30 incorporates a ring-shaped light source (second reflecting light source) 31 so that light can be emitted from the vertical direction to the object 100.
  • the light source 31 is continuously arranged in a ring shape so as to surround the magnifying lens element 21.
  • Each light source (ring illumination) 31 may be any light source (ring illumination) 31 that can irradiate an object 100 on the workspace with spot light or diffused light, and is provided by LEDs or the like arranged at regular intervals on the circumference. It is possible to configure.
  • the reflected light unit 30 may be provided with a condensing lens so as to condense the light emitted from each light source 31 (become parallel light).
  • the condensing lens may be arranged corresponding to each light source 31, or may condense light by one lens. That is, the configuration of the lens system is not particularly limited as long as the light emitted from the light source 31 is spot-irradiated, parallel-irradiated, or diffused-irradiated to the object.
  • the reflected light unit 30 is provided with a polarizing element (first polarizing element) and a wave plate (first wave plate) rotatable with respect to the polarizing element, as in the configuration of the reflected light unit 20.
  • the first wave plate may be configured to be manually rotated, or may be configured to be driven by a motor by incorporating a drive motor or the like in the housing 20A.
  • the reflected light unit 30 as described above is selectively used with the reflected light unit 10 according to the configuration, arrangement mode, observation method, etc. of the object. For example, as shown in FIG. 13, when the object 100a to be inspected has a cylindrical shape and it is desired to observe the outer peripheral surface thereof, the object 100a is placed on the workspace (flat surface 3a) and a conical mirror. When the (axicon mirror) 80 is installed and observed, the outer peripheral surface thereof can be observed. In such an inspection method, by selecting the reflected light unit 30, vertical light is applied to the object 100a, and it is possible to accurately observe the outer peripheral surface of the object 100a without causing a shadow. Become.
  • the magnifying optical unit 20 (magnifying lens element 21) and the ring illumination 31 may be configured as separate bodies instead of being installed in one housing 20A. That is, in the visual support device of the present embodiment, it is possible to add a light source (reflection light source, transmission light source) as needed, and in such a configuration, the focal length of the magnifying lens element and ring illumination are effective. Since there may be cases where the points of action are different, both do not have to be configured as an integral structure.
  • the visual support device of the present embodiment includes a transmitted light unit 40 that irradiates the transmitted light to the object 100 installed in the workspace.
  • the transmitted light unit 40 is installed at a position where the transmitted light is irradiated to the object arranged in the workspace, and in the present embodiment, the transmitted light unit 40 is placed on the flat surface 3a of the base 3 so as not to be exposed to the outside.
  • a recess 3A is formed and incorporated into the recess 3A.
  • the surface of the portion where the transmitted light unit 40 is arranged is covered with glass 45.
  • the transmitted light unit 40 includes a light source 41 composed of an LED or the like, and a polarizing element (first polarizing element) is located above the light source 41 (workspace side). ) And a retardation ring 42 provided with a wavelength plate (first wavelength plate).
  • the wave plate (first wavelength plate), which is a component of the retardation ring 42, is rotatably held by a manual operation or a drive motor 43, and is configured so that the wave plate can be fixed at an arbitrary rotational position. Has been done.
  • the object to be observed is a transparent material (glass, transparent resin, jewelry, etc.)
  • the light is absorbed by the object in the irradiation light from the reflected light units 10 and 30 described above. Therefore, it may not be possible to observe sufficiently. Therefore, as shown in FIG. 14, the object 100b made of a transparent material is irradiated with transmitted light from the light source 41 of the transmitted light unit 40 and visually recognized through the magnifying light unit 20. , It is possible to observe whether or not foreign matter is present inside or on the surface without glare.
  • transparent resin molded products often have strain after injection molding, and the strain is removed by annealing.
  • an inspection work observation work
  • FIG. 15 is a cable material for an optical fiber made of a translucent resin material.
  • a core material formed of a translucent resin material is embedded in the central region of the columnar resin, and consideration is given to detecting the center of this core material.
  • FIG. 15 is an image obtained by irradiating the reflected light in a non-polarized state and taking the reflected light with a camera. The existence of the core material cannot be confirmed only by irradiating the reflected light.
  • FIG. 16 is an image obtained by irradiating the light in a polarized state with the reflected light unit described above
  • FIG. 17 is an image in which the first wave plate on the light source side is rotated by 90 ° from the state shown in FIG. .. In this way, when the object is made of a transparent material, the reflected light units 10 and 30 described above clearly observe the internal state and the surface state of the reflected light units 10 and 30 even if the first wave plate is rotated. It was difficult to do.
  • FIG. 20 is an image of an eye drop container made of a transparent orange resin material observed with transmitted light polarized by the above-mentioned retardation ring.
  • scratches, foreign substances, etc. cannot be visually recognized in the eye drop container, but as described above, the transmitted light is visually recognized through the polarizing element, so that the light from the light source affects the eyes. It is possible to observe the object without giving. Then, when the first wave plate is rotated by 90 ° from this state, as shown in FIG. 21, it becomes possible to visually recognize the presence of air bubbles and the presence of foreign matter (the portion visible in green). It was. That is, by installing the transmitted light unit 40, even if the object has transparency, the light from the light source does not become dazzling, and the presence of foreign matter or the like can be detected without glare. Become.
  • any one of the reflected light unit 10, the reflected light unit 30, and the transmitted light unit 40 is selected according to the object to be observed (for example, FIGS. 1 and 1).
  • the first wave plate which may be the second wave plate
  • the surface condition and the surface condition thereof can be changed. It is possible to observe the internal state without causing glare, and it is possible to easily perform inspection work for foreign substances (visual inspection work) with high accuracy.
  • the light source 41 may be composed of an organic EL light source (a light source that emits surface light, for example, an organic EL panel or the like). That is, the light source 41 may have a configuration in which the organic EL panel is installed on the flat surface 3a. Since such an organic EL light source emits surface light, it is not too bright for the operator and the inspection work can be performed without burdening the eyes.
  • the light source used in the reflected light units 10 and 30 and the transmitted light unit 40 of the above-mentioned visual support device LED lighting, a halogen lamp, a xenon lamp, a fluorescent lamp, a surface emitter, or the like can be used.
  • the light source used in the above-mentioned unit is an illumination having a projector function (illumination with a projector). Lighting provided with such a projector function makes it possible to project an image in which foreign matter such as scratches is easily visible.
  • the light source of the reflected light unit 10 has a projector function, it is possible to project color images having different wavelengths onto an object. That is, it is possible to make the foreign matter easier to see by changing the color of the projected image according to the color of the object.
  • a plurality of color images having different wavelength bands are included in the image projected by the light source (light source with a projector function incorporated in the reflected light unit), and the object 100 is simultaneously irradiated with the plurality of color images. It is configured so that it can be done. Specifically, by projecting different color images (for example, a green image on the area 90A and a yellow image on the area 90B) on the front side area 90A and the back side area 90B of the worker, the worker can display the image. By moving the object 100 to the front / back, it is possible to perform an inspection with two colors of irradiation light, and it is possible to improve work efficiency.
  • the inspection work can be streamlined and the presence or absence of foreign matter or the like can be visually recognized with high accuracy.
  • the method of irradiating the color image on the workspace can be variously modified, such as dividing it into the left-right direction, and an appropriate single color may be irradiated depending on the object.
  • color images having different wavelengths may be used as described above, but a regular pattern image such as a striped pattern or a checkerboard pattern is projected onto the object. By observing the reflected light, it becomes possible to perform a three-dimensional inspection.
  • FIG. 23 shows an image in which a striped pattern is projected onto an object and the reflected light is captured by a light source having a projector function in the reflected light unit.
  • the height of the step or the like is included in the projected stripe pattern (regular stripe pattern). It is possible to visually recognize parts with different heights (parts where the difference in height can be grasped in 3D), remove glare, and more accurately visually recognize surface scratches and foreign matter adhesion. It becomes. That is, by providing the light source with a projector function, the color and image projected on the object can be changed as appropriate, and observation can be performed in an optimum state.
  • the transmitted light unit 40 incorporated in the visual support device having the above configuration may be configured as a single unit that can be operated by hand so that the observation work can be performed in various places (observing a transparent object). It may be configured as a transmitted light unit for observing an object). Further, the magnifying optical unit 20 for visually recognizing an object may also be configured as a single unit that can be operated by hand so that observation work can be performed at various places. That is, the visual support device of the present embodiment includes a transmitted light unit 400 that can be operated by hand, and an observation unit 500 that is configured as an eyeglass type that makes the light emitted from the transmitted light unit 400 visible.
  • FIG. 24 shows a transmitted light unit 400 that is configured as a single unit, and is configured to have a size that can be grasped and carried by hand.
  • a housing (storage case) 402 is attached to a plate-shaped and rectangular base member 401, and an organic EL light source 405 as a light source is arranged in the storage case 402. .
  • the organic EL light source 405 arranged in the storage case is closed by a lid member 406 having an opening 406a, and a polarizing element 412 sandwiched between a pair of glass plates 410 is arranged on the lid member 406. There is.
  • the pair of glass plates 410 sandwiching the polarizing element 412 are sandwiched between the fixing members 420 from both side sides, and are fixed to the housing 402 by a plurality of fixing screws 422. Further, the lid member 406 is fixed to the housing 402 by a plurality of fixing screws 425. Further, the base member 401 is fixed to the housing 402 by a plurality of set screws 427.
  • a driver 430 for an organic EL light source is incorporated in the housing 402, and power is supplied via a power connection (DC jack) 432 exposed to the outside to cause the organic EL light source 405 to emit light.
  • DC jack power connection
  • the transmitted light unit 400 is installed below the object 100 without providing the base 3 as shown in FIG. 1, and the object is installed via the magnifying optical unit (observation unit) 20. It becomes possible to observe the object 100.
  • the observer visually recognizes the light generated by surface emission, so that the observer does not become dazzled. , It becomes possible to work for a long time.
  • the organic EL light source 405 preferably emits monochromatic light in consideration of observation workability, and in particular, white emission (white monochromatic light) makes it possible to reduce eye strain.
  • the wave plate 413 in the transmitted light unit 400 as in the above-described embodiment. That is, since the wavelength plate (second wavelength plate) is arranged on the magnifying optical unit 20 on the observation side, the wavelength plate 413 having the same configuration may be arranged on the transmitted light unit 400 as well. preferable.
  • the wavelength plate 413 may be arranged so as to be overlapped with the polarizing elements 412 sandwiched between the pair of glass plates 410.
  • the transmitted light unit 400 described above is used as a light source, as shown in FIG. 25, it is possible to observe an object with the spectacle-type observation unit 500. That is, it is possible to construct a hand-held visual support device by the transmitted light unit 400 and the observation unit 500.
  • the observation unit 500 of the present embodiment includes a pair of temples 502 and 502 that can be hung on the observer's ears, and a connecting portion 503 that connects the front end side of each temple.
  • the connecting portion 503 is provided with a transmitting member 505 that allows an observer to visually recognize the light from the transmitted light unit 400 (light transmitted through an object), and the transmitting member 505 is incorporated into the magnifying optical unit 20.
  • a polarizing element similar to the polarizing element is provided.
  • the polarization axis of the polarizing element superimposed on the transmission member 505 is set to be 90 ° with respect to the polarization axis of the polarization element 412 of the transmitted light unit 400, and further, a wave plate is attached to the transmitted light unit 400.
  • wave plates having the same wavelength may be laminated and arranged.
  • Such a transmitted light unit 400 is large as shown in FIG. 1 because the observer only needs to wear the spectacle type observation unit 500 and observe the object with the transmitted light from the transmitted light unit 400. It is possible to inspect an object without installing the device. That is, it is possible to easily observe various objects regardless of the work space. Further, if necessary, the wave plate 412 provided in the transmitted light unit 400 is configured to be rotatable with respect to the housing 402, and the wave plate arranged in the transmitting member 505 of the observation unit 500 is rotated in left-right synchronization. It may be configured to be used. Further, when it is difficult to visually recognize scratches or the like on the object, it is possible to make it easy to visually recognize even if the housing 402 is rotated.
  • the transmitted light unit 400 is configured as a single body so as to be portable, but is held by a support rod (not shown) and at a constant angle (for example, 0 ° to 90 °) with respect to the support rod. It may be arranged so as to move.
  • a support rod for example, the support column 5 of the device shown in FIG. 1
  • the transmitted light unit 400 can be rotated from the horizontal state to the vertical state, and the object can be observed from above. , It becomes possible to observe in the horizontal direction.
  • the present invention is not limited to the above-described embodiments and can be variously modified.
  • two reflected light units 10 and 20 are installed as a light source for irradiating an object with light, and one transmitted light unit 40 is installed.
  • any one of the visual support devices is used. It may be configured to have one unit.
  • the magnifying optical unit 20 may have a filter (polarizing filter) having a polarizing function installed without having a wave plate.
  • the light source installed in each unit can be appropriately deformed by being configured by a semiconductor laser light emitting element (surface emitting laser), an electrodeless lamp, or the like, and the light source installation position. , Illuminance, light field diameter, etc. can be appropriately modified.
  • the magnifying optical unit 20 may be installed on a telescopic arm or a rotating arm so that the object can be visually recognized from various angles, and the reflected light unit and the transmitted light unit may be arranged at different locations. , It can be deformed as appropriate.
  • the transmitted light unit 400 shown in the third embodiment can be incorporated in the base 3 shown in FIG.
  • the above-mentioned visual support device can be used not only for detecting foreign substances of various objects, but also for, for example, sample inspection in the medical field, production lines for various industrial products, and the like.

Abstract

A visual observation assistance device according to the present invention is provided with: a transmitted light unit 400 which shines transmitted light onto a transparent target object; and an observation unit which enables the condition of the target object to be observed by visually recognizing the transmitted light from the transmitted light unit 400. The transmitted light unit 400 includes: a housing 402 capable of handheld operation; an organic EL light source 405 which is disposed inside the housing 402 and which radiates the transmitted light; and a polarizing element 412 for linearly polarizing emitted light emitted from the organic EL light source 405.

Description

目視支援装置Visual support device
 本発明は、様々な対象物に光を照射して、傷や汚れなどの異物を目視によって視認可能にする目視支援装置に関する。 The present invention relates to a visual support device that irradiates various objects with light to visually recognize foreign substances such as scratches and dirt.
 各種の工業製品、食品、生鮮品など(以下、これらを総称して対象物と称する)の表面には、傷や汚れなど(以下、異物と称する)が付着していることがあり、このような異物は、製造段階、加工処理段階、検査段階等において発見し、排除する必要がある。通常、異物は、視認し易いように対象物に対して光を照射し、その反射光を目視することで検知する。例えば、ファクトリーオートメーション(FA)の業界では、対象物の生産ラインに人員を配置し、コンベアで搬送されてくる対象物を抽出したり、エラー表示があった対象物を抽出し、その表面状態を目視観察することで、異物の有無を検出する作業が行われている。 Scratches, stains, etc. (hereinafter referred to as foreign substances) may adhere to the surface of various industrial products, foods, fresh products, etc. (hereinafter, these are collectively referred to as objects). Foreign matter needs to be found and eliminated at the manufacturing stage, processing stage, inspection stage, and the like. Usually, a foreign substance is detected by irradiating an object with light so that it can be easily visually recognized and visually observing the reflected light. For example, in the factory automation (FA) industry, personnel are assigned to the production line of an object to extract the object transported by the conveyor, or to extract the object with an error display, and its surface condition is determined. Work is being carried out to detect the presence or absence of foreign matter by visual observation.
 本件特許出願人は、異物の検出に役立つ装置(目視支援装置)として、光源ユニットと、眼前に配設される透過部材と、を備えた頭部装着型照明装置を提案している(特許文献1)。この特許文献1に開示されている頭部装着型照明装置は、眼鏡タイプであり、対象物を拡大するために拡大機能を取り付けると焦点距離が問題となる。すなわち、対象物以外のところを見るとピントが合わず、めまいが起こる等、異物を検出する上では使い勝手が悪い。 The patent applicant has proposed a head-mounted lighting device including a light source unit and a transmissive member arranged in front of the eyes as a device (visual support device) useful for detecting foreign substances (Patent Document). 1). The head-mounted lighting device disclosed in Patent Document 1 is a spectacles type, and the focal length becomes a problem when a magnifying function is attached to magnify an object. That is, when looking at a place other than the object, it is out of focus and dizziness occurs, which is not convenient for detecting foreign matter.
 通常、異物の有無を検査することが行われる製造ラインでは、例えば、非特許文献1に開示されたデスク設置型の異物検出装置(目視支援装置)が利用されている。この異物検出装置は、デスク設置型であり、対象物をステージ上に載置するか、又は、対象物を手で摘まんでステージの上方に設置し、対象物に光を照射して対象物の表面状態を観察する構造となっている。対象物は、拡大レンズ素子を通して拡大され、作業者は、拡大レンズ素子を上方から覗いて、光で照射される対象物の表面に異物があるか否かを視認する。 Normally, in a manufacturing line where the presence or absence of foreign matter is inspected, for example, a desk-installed foreign matter detection device (visual support device) disclosed in Non-Patent Document 1 is used. This foreign matter detection device is a desk-mounted type, and either the object is placed on the stage, or the object is picked by hand and installed above the stage, and the object is irradiated with light to irradiate the object with light. It has a structure for observing the surface condition. The object is magnified through the magnifying lens element, and the operator looks into the magnifying lens element from above to see if there is a foreign substance on the surface of the object irradiated with light.
特許第6185686号Patent No. 6185686
 上記した公知のデスク設置型の異物検出装置は、単に、対象物に光を照射し、その反射光を拡大して視認するだけの構造であるため、対象物からの反射光は、グレアが効果的に除去されておらず、対象物に対して異物が付着しているか否かを正確に検出することは難しい。この場合、光の照射側(光源側)と、受光側(拡大レンズ素子側)に、偏光軸が互いに90°になるように指向された偏光素子を配設することでグレアが除去された反射光を視認できるため、異物の付着状況を確認し易くすることが可能であるが、検査する対象物の色や凹凸状況(異物の種別)等に応じて、より効果的にグレアを除去できることが望ましい。また、1つの異物検出装置を用いて、多種多様な対象物を検査すると、ある対象物では、効果的にグレアが除去された反射光が得られるが、別の対象物を検査した場合、充分にグレアが除去されないことがある。これは、対象物毎に、その表面状態が様々であり、乱反射の仕方、色の吸収や反射、コントラスト等が異なることが理由と考えられる。 Since the above-mentioned known desk-installed foreign matter detection device has a structure that simply irradiates an object with light and magnifies and visually recognizes the reflected light, glare is effective for the reflected light from the object. It is difficult to accurately detect whether or not foreign matter is attached to the object because it has not been removed. In this case, glare is removed by arranging polarizing elements directed so that the polarization axes are 90 ° to each other on the light irradiation side (light source side) and the light receiving side (magnifying lens element side). Since the light can be visually recognized, it is possible to easily check the adhesion status of foreign matter, but it is possible to remove glare more effectively depending on the color of the object to be inspected and the unevenness status (type of foreign matter). desirable. In addition, when a wide variety of objects are inspected using one foreign matter detection device, reflected light with glare removed effectively can be obtained for one object, but it is sufficient when another object is inspected. Glare may not be removed. It is considered that this is because the surface state of each object is different, and the method of diffuse reflection, color absorption and reflection, contrast, and the like are different.
 さらに、公知のデスク設置型の異物検出装置は、対象物に光を照射し、その反射光を拡大して視認させる構成であるため、対象物が透明状のもの(例えば、宝石、目薬容器のような透明性がある物品)であると、対象物を通過する透過光の割合が多くなり、異物の検出が難しくなってしまう。公知のデスク設置型の異物検出装置では、そのような透明状の物品について、異物が付着していることを正確に視認することは難しい。 Further, since the known desk-installed foreign matter detection device has a configuration in which the object is irradiated with light and the reflected light is magnified and visually recognized, the object is transparent (for example, a jewel or an eye drop container). In the case of such a transparent article), the proportion of transmitted light passing through the object increases, which makes it difficult to detect foreign matter. With a known desk-mounted foreign matter detecting device, it is difficult to accurately visually recognize that foreign matter is attached to such a transparent article.
 本発明は、上記した問題に基づいてなされたものであり、対象物に光を照射して、対象物に異物が付着しているか否かを検出するに際し、対象物の状態に関係なく、グレアを効果的に除去して異物検出が行える目視支援措置を提供することを目的とする。 The present invention has been made based on the above-mentioned problems, and when irradiating an object with light to detect whether or not a foreign substance is attached to the object, glare occurs regardless of the state of the object. It is an object of the present invention to provide a visual support measure capable of effectively removing foreign matter and detecting foreign matter.
 上記した目的を達成するために、本発明に係る目視支援装置は、透明性のある対象物に対して透過光を照射する透過光ユニットと、この透過光ユニットからの照射光を視認することで、前記対象物の状態を観察することを可能にする観察ユニットと、を備えており、前記透過光ユニットは、手持ち操作可能な筐体と、前記筐体内に配設され、透過光を発光する有機EL光源と、前記有機EL光源から射出される射出光を直線偏光にする偏光素子と、を有することを特徴とする。 In order to achieve the above object, the visual support device according to the present invention visually recognizes a transmitted light unit that irradiates a transparent object with transmitted light and the irradiation light from the transmitted light unit. The transmitted light unit includes an observation unit that enables observation of the state of the object, and the transmitted light unit is arranged in a hand-held operable housing and the housing to emit transmitted light. It is characterized by having an organic EL light source and a polarizing element that linearly polarizes the emitted light emitted from the organic EL light source.
 本発明によれば、対象物に光を照射して、対象物に異物が付着しているか否かを検出するに際し、対象物の状態に関係なく、グレアを効果的に除去して異物の検出が行える目視支援装置が得られる。 According to the present invention, when irradiating an object with light to detect whether or not foreign matter is attached to the object, glare is effectively removed to detect the foreign matter regardless of the state of the object. A visual support device capable of performing the above is obtained.
本発明に係る目視支援装置の第1の実施形態を示す図であり、全体構成を示す斜視図。It is a figure which shows the 1st Embodiment of the visual aid device which concerns on this invention, and is the perspective view which shows the whole structure. 図1に示す目視支援装置の側面図。A side view of the visual aid device shown in FIG. 図1に示す目視支援装置の反射光ユニットの分解斜視図。The exploded perspective view of the reflected light unit of the visual aid device shown in FIG. ノートパソコンのキーボード部分の筐体に光を照射し、その反射光をカメラで撮影した写真コピー(グレア除去前)。A photo copy (before glare removal) taken with a camera by irradiating the housing of the keyboard part of a laptop computer with light. 図5に示した状態から光源側の波長板を所定量回転してその反射光をカメラで撮影した写真コピー(グレア除去後)。A photographic copy (after removing glare) of rotating the wave plate on the light source side by a predetermined amount from the state shown in FIG. 5 and taking the reflected light with a camera. 制御基板に光を照射し、その反射光をカメラで撮影した写真コピー(グレア除去前)。A photo copy of the control board illuminated with light and the reflected light taken with a camera (before glare removal). 図6に示した状態から光源側の波長板を所定量回転してその反射光をカメラで撮影した写真コピー(グレア除去後)。A photographic copy (after removing glare) of rotating the wave plate on the light source side by a predetermined amount from the state shown in FIG. 6 and taking the reflected light with a camera. ゴルフボールに光を照射し、その反射光をカメラで撮影した写真コピー(グレア除去前)。A photo copy (before glare removal) of a golf ball illuminated with light and the reflected light taken with a camera. 図8に示した状態から光源側の波長板を所定量回転してその反射光をカメラで撮影した写真コピー(グレア除去後)。A photographic copy (after removing glare) of rotating the wave plate on the light source side by a predetermined amount from the state shown in FIG. 8 and taking the reflected light with a camera. 鉄球に光を照射し、その反射光をカメラで撮影した写真コピー(グレア除去前)。A photo copy of an iron ball illuminated with light and the reflected light taken with a camera (before glare removal). 図10に示した状態から光源側の波長板を所定量回転してその反射光をカメラで撮影した写真コピー(グレア除去後)。A photographic copy (after removing glare) of rotating the wave plate on the light source side by a predetermined amount from the state shown in FIG. 10 and taking the reflected light with a camera. 拡大光学ユニットに組み込まれる反射光ユニット(第2反射光ユニット)の光源の配置態様を示す図。The figure which shows the arrangement mode of the light source of the reflected light unit (the second reflected light unit) incorporated in a magnifying optical unit. 第2反射光ユニットの使用方法の一例を示す図。The figure which shows an example of the usage of the 2nd reflected light unit. 透過光ユニットの使用方法の一例を示す図。The figure which shows an example of the usage of a transmitted light unit. 半透明性の樹脂材料で形成された光ファイバー用のケーブル素材に無偏光状態の光を照射し、その反射光をカメラで撮影した写真コピー。A photo copy of a cable material for optical fibers made of a translucent resin material that is irradiated with unpolarized light and the reflected light is taken with a camera. 図15に示す素材に偏光状態の光を照射し、その反射光をカメラで撮影した写真コピー。A photographic copy of the material shown in FIG. 15 irradiated with polarized light and the reflected light taken with a camera. 図16に示した状態から光源側の第1波長板を90°回転した偏光状態の光を照射し、その反射光をカメラで撮影した写真コピー。A photographic copy in which the first wave plate on the light source side is rotated by 90 ° from the state shown in FIG. 16 and irradiated with polarized light, and the reflected light is taken by a camera. 図15に示す素材に偏光状態の光を照射し、その透過光をカメラで撮影した写真コピー。A photographic copy of the material shown in FIG. 15 irradiated with polarized light and the transmitted light taken with a camera. 図18で示す状態から、第1波長板を90°回転した偏光状態の光を照射し、その透過光をカメラで撮影した写真コピー。From the state shown in FIG. 18, a photograph copy obtained by irradiating the first wavelength plate with light in a polarized state rotated by 90 ° and taking the transmitted light with a camera. 透明性の樹脂材料で形成された目薬容器に偏光状態の光を照射し、その透過光をカメラで撮影した写真コピー。A photocopy of an eye drop container made of a transparent resin material that is irradiated with polarized light and the transmitted light taken with a camera. 図20で示す状態から、第1波長板を90°回転した偏光状態の光を照射し、その透過光をカメラで撮影した写真コピー。From the state shown in FIG. 20, a photograph copy obtained by irradiating the first wavelength plate with light in a polarized state rotated by 90 ° and taking the transmitted light with a camera. 反射光ユニットにプロジェクタ機能を備えた光源を設置した目視支援装置の第2の実施形態を示す図であり、(a)は、装置全体の構成を示す側面図、(b)は、プロジェクタによる照射光を示す図。It is a figure which shows the 2nd Embodiment of the visual assistance apparatus which installed the light source which provided the projector function in the reflected light unit, (a) is the side view which shows the structure of the whole apparatus, (b) is irradiation by a projector. The figure which shows the light. 反射光ユニットにプロジェクタ機能を備えた光源を設置した目視支援装において、ストライプ模様の照射光を対象物に投影し、その反射光をカメラで撮影した写真コピー。A photocopy of a visual aid with a light source equipped with a projector function installed in the reflected light unit, which projects the irradiation light of a striped pattern onto an object and takes the reflected light with a camera. 目視支援装置の第3の実施形態を示し、目視支援装置を構成する透過光ユニットの一例を示した分解斜視図。An exploded perspective view showing a third embodiment of the visual assistance device and showing an example of a transmitted light unit constituting the visual assistance device. 目視支援装置を構成する観察ユニット(眼鏡タイプ)を示す図であり、図24に示す透過光ユニットからの照射光によって、対象物を観察することが可能な観察ユニット(眼鏡タイプ)の一例を示す図。It is a figure which shows the observation unit (glasses type) which constitutes a visual aid device, and shows an example of the observation unit (glasses type) which can observe an object by the irradiation light from the transmitted light unit shown in FIG. Figure.
 以下、本発明に係る目視支援装置の実施形態を、添付の図面を参照して説明する。 
 図1~図3は、目視支援装置の全体の第1の実施形態を示す図である。
Hereinafter, embodiments of the visual aid device according to the present invention will be described with reference to the accompanying drawings.
1 to 3 are diagrams showing the first embodiment of the entire visual support device.
 これらの図に示すように、目視支援装置1は、ワークスペースに設置される対象物100に対して、反射光を照射する光源(反射光ユニット)と、透過光を照射する光源(透過光ユニット)と、を備えた構成となっている。前記反射光ユニットは、2箇所に設置されており、1つは、前記対象物100に対して斜め方向から光を照射する位置(第1反射光ユニット)、もう1つは、垂直方向から光を照射する位置(第2反射光ユニット)に配設されている。また、透過光ユニットは、ワークスペースの下方に配設されている。 As shown in these figures, the visual support device 1 has a light source (reflected light unit) that irradiates the object 100 installed in the workspace with reflected light and a light source (transmitted light unit) that irradiates the transmitted light. ), And. The reflected light unit is installed at two places, one is a position where light is irradiated from an oblique direction to the object 100 (first reflected light unit), and the other is light from a vertical direction. It is arranged at the position (second reflected light unit) to irradiate. Further, the transmitted light unit is arranged below the workspace.
 前記目視支援装置1は、ボックス状に構成された基台3と、作業者が作業する際に基台3の奥側となる位置に設置される支柱5とを備えている。前記基台3には、作業者が目視作業(検査作業)をする際、対象物100を設置するワークスペースが設けられている。このワークスペースは、基台3の平坦面3aの領域、又は、平坦面3aの上方の空間領域が該当する。すなわち、作業者は、平坦面3aに対象物100を載置する、或いは、対象物100を手に把持して平坦面3aの上方の空間領域に位置付けることで、対象物の目視作業を行なう。 The visual support device 1 includes a box-shaped base 3 and a support column 5 installed at a position on the back side of the base 3 when an operator works. The base 3 is provided with a workspace in which the object 100 is installed when the operator performs visual work (inspection work). This workspace corresponds to the area of the flat surface 3a of the base 3 or the space area above the flat surface 3a. That is, the operator visually performs the visual work of the object by placing the object 100 on the flat surface 3a or by holding the object 100 in his hand and positioning it in the space area above the flat surface 3a.
 前記支柱5には、ワークスペースに設置される対象物100に光(反射光)を照射する光源(第1の反射用光源)を有する反射光ユニット(第1反射光ユニット)10と、対象物を拡大して視認可能にする拡大光学ユニット(観察ユニット)20が設置されている。 The support column 5 includes a reflected light unit (first reflected light unit) 10 having a light source (first reflecting light source) that irradiates an object 100 installed in the workspace with light (reflected light), and an object. A magnifying optical unit (observation unit) 20 is installed to magnify and make visible.
 前記反射光ユニット10は、ワークスペースに設置される対象物100に対して斜め方向から光を照射するように、支柱5に対して上下動可能に設置されている。具体的には、反射光ユニット10の筐体10Aは、支持部材6に対して上下方向に一定の範囲回動可能に保持されており、前記支持部材6は、支柱5に対して上下方向に摺動可能に支持されると共に、操作ツマミ7を操作することで、支柱5に対して任意の位置で固定できるようになっている。なお、この反射光ユニット10の筐体10Aは、図2に示すように、支持部材6の支軸6aに対して回動可能に支持しておき、矢印D1方向に回動して、透過光ユニットとしての機能を併せ持つように構成しても良い。すなわち、筐体10Aを、反射光ユニット10の光源から照射された光が拡大光学ユニット20に向かうように回動し、拡大光学ユニット20の上から視認できるようにして、ワークスペースに設置した透過性のある対象物を検査できるように構成しても良い。このように、支柱5に設置される反射光ユニット10については、透過光ユニットとしての機能を兼ね備える構成にすることも可能である。 The reflected light unit 10 is installed so as to be movable up and down with respect to the support column 5 so as to irradiate the object 100 installed in the workspace with light from an oblique direction. Specifically, the housing 10A of the reflected light unit 10 is held so as to be rotatable in a certain range in the vertical direction with respect to the support member 6, and the support member 6 is held in the vertical direction with respect to the support column 5. It is slidably supported and can be fixed to the support column 5 at an arbitrary position by operating the operation knob 7. As shown in FIG. 2, the housing 10A of the reflected light unit 10 is rotatably supported with respect to the support shaft 6a of the support member 6, and is rotated in the direction of arrow D1 to transmit transmitted light. It may be configured to have a function as a unit as well. That is, the housing 10A is rotated so that the light emitted from the light source of the reflected light unit 10 is directed toward the magnifying optical unit 20, so that it can be visually recognized from above the magnifying optical unit 20, and is transmitted in the workspace. It may be configured so that a sexual object can be inspected. As described above, the reflected light unit 10 installed on the support column 5 can be configured to have a function as a transmitted light unit.
 前記拡大光学ユニット20は、ワークスペースの上方で、かつ、反射光ユニット10よりも上方側に設置されており、支柱5に対して上下動可能に設置されている。具体的には、拡大光学ユニット20の筐体20Aは、支持部材8に対して上下方向に一定の範囲回動可能に保持されており、前記支持部材8は、支柱5に対して上下方向に摺動可能に支持されている。この場合、筐体20Aは、操作ツマミ9aを操作することで、任意の回動位置で固定できるようになっており、操作ツマミ9bを操作することで、支柱5に対して任意の高さ位置で固定できるようになっている。 The magnifying optical unit 20 is installed above the workspace and above the reflected light unit 10, and is installed so as to be vertically movable with respect to the support column 5. Specifically, the housing 20A of the magnifying optical unit 20 is held so as to be rotatable in a certain range in the vertical direction with respect to the support member 8, and the support member 8 is held in the vertical direction with respect to the support column 5. It is slidably supported. In this case, the housing 20A can be fixed at an arbitrary rotation position by operating the operation knob 9a, and can be fixed at an arbitrary height position with respect to the support column 5 by operating the operation knob 9b. It can be fixed with.
 前記拡大光学ユニット20は、その筐体20A内に、対象物100を拡大して作業者に視認させる拡大レンズ素子(×2~×10程度が好ましい)21が設置されている。また、前記筐体20A内の拡大レンズ素子21の周囲には、リング状の光源(第2の反射用光源)が組み込まれている。すなわち、本実施形態では、対象物100に対して垂直方向から反射光を照射できるように、拡大光学ユニット20内に、リング状の光源を備えた反射光ユニット(第2反射光ユニット)30が組み込まれている。 
 以下、上記した反射光ユニット10,30、及び、拡大光学ユニット20の構成について説明する。
In the magnifying optical unit 20, a magnifying lens element (preferably about × 2 to × 10) 21 for enlarging the object 100 and making it visible to the operator is installed in the housing 20A. A ring-shaped light source (second reflection light source) is incorporated around the magnifying lens element 21 in the housing 20A. That is, in the present embodiment, the reflected light unit (second reflected light unit) 30 provided with a ring-shaped light source is provided in the magnifying optical unit 20 so that the reflected light can be irradiated to the object 100 from the vertical direction. It has been incorporated.
Hereinafter, the configurations of the reflected light units 10 and 30 and the magnifying optical unit 20 described above will be described.
 図3に示すように、反射光ユニット10の筐体10Aは、略円筒形状に構成されており、その筐体内には、光源(第1の反射用光源)11が配設されている。光源11は、LED等によって構成することが可能であり、光源11の前方には、図示されていない集光レンズ(コリメートレンズ)が配設されて、対象物100に対して、スポット光を照射可能となっている。また、筐体10Aの開口部には、偏光素子及び波長板を備えた位相差リング12が配設されており、この位相差リング12は、光源11から射出される射出光を偏光状態(円偏光又は楕円偏光)にして対象物100に照射する機能を有している。 As shown in FIG. 3, the housing 10A of the reflected light unit 10 has a substantially cylindrical shape, and a light source (first reflection light source) 11 is arranged in the housing. The light source 11 can be configured by an LED or the like, and a condensing lens (collimating lens) (not shown) is arranged in front of the light source 11 to irradiate the object 100 with spot light. It is possible. Further, a retardation ring 12 provided with a polarizing element and a wave plate is arranged in the opening of the housing 10A, and the retardation ring 12 polarizes the emitted light emitted from the light source 11 (circularly). It has a function of irradiating the object 100 with polarized light or elliptically polarized light.
 前記位相差リング12は、筐体10Aの開口縁に固定される固定リング12aと、固定リング12aを覆い、固定リング12aに対して回転可能に配設される可動リング12bとを備えている。前記固定リング12aには、光源11から射出される射出光を直線偏光にする第1偏光素子14が固定されている。また、前記可動リング12bには、第1偏光素子14を透過した直線偏光を、右回り方向/左回り方向となる円偏光又は楕円偏光にする機能を備えた第1波長板15が固定されている。このため、可動リング12bを摘まんで回転操作することで、第1波長板15は、360°に亘って回転可能となっている。 The retardation ring 12 includes a fixing ring 12a fixed to the opening edge of the housing 10A, and a movable ring 12b that covers the fixing ring 12a and is rotatably arranged with respect to the fixing ring 12a. A first polarizing element 14 that linearly polarizes the emitted light emitted from the light source 11 is fixed to the fixing ring 12a. Further, a first wave plate 15 having a function of converting linearly polarized light transmitted through the first polarizing element 14 into circularly polarized light or elliptically polarized light in the clockwise / counterclockwise direction is fixed to the movable ring 12b. There is. Therefore, by pinching and rotating the movable ring 12b, the first wave plate 15 can rotate over 360 °.
 前記拡大光学ユニット20の筐体20Aは、薄い円筒形状に構成されており、その中央領域に拡大レンズ素子21が配設されている。また、筐体20A内には、拡大レンズ素子21に対して対象物側に第2偏光素子24が配設されると共に、その下方に第2波長板25が配設されている。前記第2偏光素子24は、前記第1偏光素子14の偏光軸に対して90°(略90°を含む)直交する偏光軸となるように固定リング24aに保持、固定されており、前記第2波長板25は、固定リング24aに併設される固定リング25aに保持、固定されている。この場合、第2波長板25は、前記第1波長板15と同じ位相差のものが用いられており、それぞれの波長板15,25は、各偏光素子14,24に対して重ねて配設されている。なお、第1波長板15は、第1偏光素子14に対して光源側に重ねても良く、第2波長板25は、第2偏光素子24に対して拡大レンズ素子21側に重ねても良い。 The housing 20A of the magnifying optical unit 20 is formed in a thin cylindrical shape, and the magnifying lens element 21 is arranged in the central region thereof. Further, in the housing 20A, the second polarizing element 24 is arranged on the object side with respect to the magnifying lens element 21, and the second wavelength plate 25 is arranged below the second polarizing element 24. The second polarizing element 24 is held and fixed to the fixing ring 24a so as to have a polarization axis orthogonal to the polarization axis of the first polarizing element 14 by 90 ° (including substantially 90 °). The two-wavelength plate 25 is held and fixed to the fixing ring 25a attached to the fixing ring 24a. In this case, the second wave plate 25 has the same phase difference as that of the first wavelength plate 15, and the respective wave plates 15 and 25 are arranged so as to overlap each of the polarizing elements 14 and 24. Has been done. The first wave plate 15 may be overlapped on the light source side with respect to the first polarizing element 14, and the second wavelength plate 25 may be overlapped on the magnifying lens element 21 side with respect to the second polarizing element 24. ..
 本実施形態では、前記第2偏光素子24及び第2波長板25は、拡大レンズ素子21の視野から外れるように、筐体20Aに対してスライド可能に支持されている。例えば、図1に示すように、固定リング24a,25aには、筐体20Aから突出して指で摘まむことが可能な突片24b,25bが設けられており、各突片を摘まんで固定リング24a,25aをスライドすることで、第2偏光素子24及び/又は第2波長板25を、拡大レンズ素子21の視野から外すことが可能となっている。 In the present embodiment, the second polarizing element 24 and the second wavelength plate 25 are slidably supported with respect to the housing 20A so as to be out of the field of view of the magnifying lens element 21. For example, as shown in FIG. 1, the fixing rings 24a and 25a are provided with projecting pieces 24b and 25b that protrude from the housing 20A and can be picked by fingers, and the fixing rings 24a and 25a are provided by pinching each projecting piece. By sliding the 24a and 25a, it is possible to remove the second polarizing element 24 and / or the second wavelength plate 25 from the field of view of the magnifying lens element 21.
 上記した拡大光学ユニット20には、ブルーライトカットフィルタ26を配設しておくことが好ましい。このブルーライトカットフィルタ26は、前記第2偏光素子24の上方側で重なるように配設されており、固定リング26aに保持、固定されている。そして、固定リング26aには、指で摘まむことが可能な突片26bが設けられており、ブルーライトカットフィルタ26は、前記第2偏光素子24及び第2波長板25と同様、拡大レンズ素子21の視野から外れるように、拡大光学ユニット20に対してスライド可能に支持されている。 It is preferable to dispose a blue light cut filter 26 in the magnifying optical unit 20 described above. The blue light cut filter 26 is arranged so as to overlap the upper side of the second polarizing element 24, and is held and fixed to the fixing ring 26a. The fixing ring 26a is provided with a projecting piece 26b that can be picked with a finger, and the blue light cut filter 26 is a magnifying lens element similar to the second polarizing element 24 and the second wavelength plate 25. It is slidably supported with respect to the magnifying optical unit 20 so as to be out of the field of view of 21.
 上記した構成によれば、反射光ユニット10の光源11から射出された光は、第1偏光素子14によって直線偏光に変更される。すなわち、第1偏光素子14によって、光源11から射出される光(非偏光状態の光)は、電場(および磁場)の振動方向が一定となる直線偏光となって対象物100に照射される。この場合、対象物100の表面が鏡面状態であれば、その反射光は、そのまま直線偏光となるが、実際には凹凸等の異物が存在するため、反射光は、直線偏光成分を含んだ拡散光(非偏光状態)となる。このように、対象物100からの反射光が拡散反射することから、入射光が直線偏光であったとしても、その反射光は非偏光状態となるのであり、この非偏光状態の光の中には、正反射光(入射した直線偏光がそのまま直線偏光となって反射される)の成分が含まれている。この正反射光の成分が、光源が写り込んだグレアとなることから、異物の存在を判別する上で妨げとなってしまう。 According to the above configuration, the light emitted from the light source 11 of the reflected light unit 10 is changed to linearly polarized light by the first polarizing element 14. That is, the light (non-polarized light) emitted from the light source 11 by the first polarizing element 14 becomes linearly polarized light in which the vibration direction of the electric field (and the magnetic field) is constant, and irradiates the object 100. In this case, if the surface of the object 100 is in a mirror surface state, the reflected light is linearly polarized as it is, but since foreign matter such as unevenness actually exists, the reflected light is diffused including the linearly polarized light component. It becomes light (non-polarized state). In this way, since the reflected light from the object 100 is diffusely reflected, even if the incident light is linearly polarized light, the reflected light is in a non-polarized state, and the light in this non-polarized state is included in the light. Contains a component of positively reflected light (the incident linear polarization is reflected as it is as linear polarization). Since the component of this specularly reflected light becomes glare in which the light source is reflected, it hinders the determination of the presence of foreign matter.
 すなわち、異物は、主にコントラストの変化で検知することから、グレアが生じていると、異物の発見が困難となってしまうが、視認側となる拡大光学ユニット20において、第1の偏光素子14の偏光軸に対して90°直交する偏光軸となる第2偏光素子24を透過させるため、光沢の原因となる反射成分を除いた拡散反射光を得ることができ、対象物100からの反射光はグレアのないとなり、異物の存在を容易に判別することが可能となる。 That is, since foreign matter is detected mainly by the change in contrast, if glare occurs, it becomes difficult to find the foreign matter. However, in the magnifying optical unit 20 on the visual side, the first polarizing element 14 Since the second polarizing element 24, which is a polarization axis orthogonal to the polarization axis of the above, is transmitted, diffused reflected light excluding the reflection component that causes gloss can be obtained, and the reflected light from the object 100 can be obtained. Will be free of glare, and the presence of foreign matter can be easily determined.
 なお、上記した第1偏光素子14及び第2偏光素子24は、例えば、リニア偏光フィルタ、フィルム偏光子、ナノワイヤーグリッド偏光板・無機偏光板(ガラスウエハ上にアルミ薄膜を形成し、微細なスリットを形成したもの)等によって構成することができる。或いは、そのような機能を有する薄膜を被着した構成であっても良い。また、上記した構成では、光源11からの射出光に対して、外部信号により電気的に周波数変調(パルス変調)をかけて位相、振幅、偏波面を変化させて光の電場の振動方向を正確に揃え(整列状態にする)、これを透過率の高い第1偏光素子であるワイヤーグリッド偏光板を通して対象物に照射することにより、より効果的にグレアを除去することも可能である。 The first polarizing element 14 and the second polarizing element 24 described above are, for example, a linear polarizing filter, a film polarizing element, a nanowire grid polarizing plate / an inorganic polarizing plate (an aluminum thin film is formed on a glass wafer, and fine slits are formed. It can be composed of (formed) and the like. Alternatively, it may be configured to be coated with a thin film having such a function. Further, in the above configuration, the emitted light from the light source 11 is electrically frequency-modulated (pulse-modulated) by an external signal to change the phase, amplitude, and polarization plane, and the vibration direction of the electric field of the light is accurate. It is also possible to remove glare more effectively by aligning (aligning) the object and irradiating the object through a wire grid polarizing plate, which is a first polarizing element having high transmittance.
 また、前記第1偏光素子14及び第2偏光素子24には、それぞれ第1波長板(1/2波長板、1/4波長板、1/8波長板など)15、及び、同じ位相差の第2波長板25が重ねて配設されている。 
 一般的に、光を物体に照射して反射光を得るとき、光の電場の振動方向が正確にそろった偏光を活用すれば対象物からも正確にそろった偏光が帰ってくる。この場合、対象物に対して円偏光や楕円偏光を照射して、光の透過にかかる時間や強度の変化を観測することによって、分子の立体的配置の差異であるキラリティの情報を得ることが可能となる。通常、対象物の表面は様々な状態となっており、その表面では、光は正反射することができずに乱反射を起こし、また、表面色によって、照射される光の波長帯域の一部は、反射または吸収されてしまい、光の色情報が失われて(コントラストが変化する)、反射光は曇った状態(濁った状態)となって見えてしまう。
Further, the first polarizing element 14 and the second polarizing element 24 have a first wave plate (1/2 wave plate, 1/4 wave plate, 1/8 wave plate, etc.) 15 and the same phase difference, respectively. The second wave plate 25 is arranged so as to overlap each other.
In general, when irradiating an object with light to obtain reflected light, if polarized light with exactly the same vibration direction of the electric field of light is used, the polarized light with exactly the same vibration is returned from the object. In this case, it is possible to obtain information on chirality, which is the difference in the three-dimensional arrangement of molecules, by irradiating the object with circularly polarized light or elliptically polarized light and observing changes in the time and intensity required for light transmission. It will be possible. Normally, the surface of an object is in various states, and on that surface, light cannot be specularly reflected and causes diffuse reflection, and depending on the surface color, part of the wavelength band of the emitted light is , It is reflected or absorbed, the color information of the light is lost (contrast changes), and the reflected light looks cloudy (turbid state).
 このように、対象物の色、表面の凹凸状況、水分の付着などの要因によって、表面での乱反射が対象物によって変化し、光の色情報についても様々に変化することから、直線偏光の光を、上記した波長板15に透過させて、右回り方向/左回り方向の円偏光/楕円偏光(適切な偏光状態)にして対象物100に照射し、かつ、対象物100からの反射光についても、同じ位相差の波長板25を透過させることで、さらにグレアを効果的に除去することが可能となる。すなわち、傷や埃の状態、背景の色やコントラスト等によって見え方変わり、その反射角度も変わることから、波長板を回転することで位相角をずらして行き、見易い状態にすることが可能となる。 In this way, due to factors such as the color of the object, the unevenness of the surface, and the adhesion of moisture, the diffused reflection on the surface changes depending on the object, and the color information of the light also changes in various ways. Is transmitted through the wave plate 15 described above to irradiate the object 100 with circularly polarized light / elliptically polarized light (appropriately polarized light) in the clockwise / counterclockwise direction, and the reflected light from the object 100 However, by transmitting the wave plate 25 having the same phase difference, glare can be further effectively removed. That is, the appearance changes depending on the state of scratches and dust, the color and contrast of the background, and the reflection angle also changes. Therefore, by rotating the wave plate, the phase angle can be shifted to make it easier to see. ..
 これを具体的に説明すると、例えば、光が水面などに反射する際、横方向の振動の大きな光に変化する特性を持っているので、ここに円偏光をかけると、縦方向の振動が極端に減少して、横方向の振動のみの振動に近い光に変化することから、反射した光を円偏光後に直線偏光へ変えることにより、対象物の表面に水分が付着していたとしても、グレアを効果的に軽減することが可能となる。すなわち、検査する対象物の色や凹凸状況(異物の種別)等に応じて、上記した偏光素子14および偏光素子24に重ねる第1波長板15および第2波長板25を、対象物に応じて適切な偏光状態にすることによって、さらに効果的にグレアを除去した画像を取得することが可能となる。 To explain this concretely, for example, when light is reflected on the water surface, it has the property of changing to light with a large lateral vibration, so if circularly polarized light is applied here, the vertical vibration will be extreme. Since it decreases to light that is close to the vibration of only lateral vibration, by changing the reflected light to linearly polarized light after circularly polarized light, glare even if moisture adheres to the surface of the object. Can be effectively reduced. That is, depending on the color of the object to be inspected, the unevenness state (type of foreign matter), etc., the first wavelength plate 15 and the second wavelength plate 25 to be superimposed on the above-mentioned polarizing element 14 and the polarizing element 24 are changed according to the object. By setting the polarization state appropriately, it becomes possible to acquire an image from which glare has been removed more effectively.
 前記第1偏光素子14に重ねられる第1波長板15は、上述したように、第1偏光素子14に対して回転可能に配設されている。これは、異物の内容(傷、埃など)によっては、反射の角度や光の吸収等が異なり、反射光の見え方が変化することを考慮したためである。すなわち、第1波長板15を回転操作して、第2偏光素子24を通過する光の強さが最小になるように調整し、偏光の向きと波長板の1つの軸の向きを一致させる(波長板を回転して、効果の大きい角度を検知する)ことで、コントラストが向上し、対象物に付着している異物を、グレアを生じさせることなく、より鮮明にすることが可能となる。 
 この場合、射出側となる第1波長板15を固定状態にし、受光側(観察側)となる拡大光学ユニット20に設置される第2波長板25を回転可能にすることが好ましい。このような構成によれば、射出側の光源を正反射が生じない状態に固定しておき、観察側を回転させることで、効果的にグレアが除去されるポジションを容易に検知することができるようになる。
As described above, the first wavelength plate 15 superimposed on the first polarizing element 14 is rotatably arranged with respect to the first polarizing element 14. This is because it is taken into consideration that the angle of reflection, absorption of light, etc. differ depending on the content of the foreign matter (scratches, dust, etc.), and the appearance of the reflected light changes. That is, the first wavelength plate 15 is rotated to adjust the intensity of the light passing through the second polarizing element 24 to the minimum, and the direction of polarization and the direction of one axis of the wave plate are matched ( By rotating the wave plate to detect an angle with a large effect), the contrast is improved, and foreign matter adhering to the object can be made clearer without causing glare.
In this case, it is preferable that the first wave plate 15 on the emission side is fixed and the second wave plate 25 installed on the magnifying optical unit 20 on the light receiving side (observation side) is rotatable. According to such a configuration, the light source on the emission side is fixed in a state where specular reflection does not occur, and the observation side is rotated, so that the position where glare is effectively removed can be easily detected. Will be.
 また、本実施形態は、第1偏光素子14及び第2偏光素子24に、それぞれ対応して波長板15,25を設置した構成であるため、例えば、光路上にハーフミラーやビームスプリッタ等を配設して1つの波長板でグレアを除去する構成と比較すると、光量の変化がなく偏光状態が変化することもないので、対象物が見難くなることはない。 Further, since the present embodiment has a configuration in which the wavelength plates 15 and 25 are provided corresponding to the first polarizing element 14 and the second polarizing element 24, respectively, for example, a half mirror, a beam splitter, or the like is arranged on the optical path. Compared with the configuration in which glare is removed by one wave plate, the object is not difficult to see because the amount of light does not change and the polarization state does not change.
 グレアが除去できる波長板15,25の相対的な位置については、対象物10の表面形状、色、コントラスト等によって様々であり、対象物と波長板の位置の関係性を明確に特定することはできないが、実際に上記した偏光素子、及び、波長板を備えた光学ユニットを準備し、様々な対象物に光を照射し、その対象物からの反射光をカメラで取得した画像を参照して、グレアが除去されることを説明する。ここでは、対象物の表面からの反射光の明度、コントラスト、凹凸状態等、表面が様々な状態の複数の対象物を準備し、それぞれについて検証をしている。なお、第1波長板及び第2波長板については、共に1/4波長板を用いている。 The relative positions of the wave plates 15 and 25 that can be removed by glare vary depending on the surface shape, color, contrast, etc. of the object 10, and it is not possible to clearly specify the relationship between the positions of the object and the wave plate. Although it is not possible, actually prepare an optical unit equipped with the above-mentioned polarizing element and wave plate, irradiate various objects with light, and refer to the image obtained by the camera for the reflected light from the objects. Explain that glare is removed. Here, a plurality of objects having various surface states such as brightness, contrast, and uneven state of the reflected light from the surface of the object are prepared and verified for each. As for the first wave plate and the second wave plate, a 1/4 wave plate is used for both.
 図4は、ノートパソコンのキーボード部分の筐体(光輝性のある銀色)に、光源からの光を照射し、その反射光をカメラで撮影した画像である。図4では、筐体部分からの反射光に、光源からの光が写り込んでグレアが生じた状態となっている。この状態から、光源側の第1波長板を、約1/8回転させたところ、図5で示すような画像を取得することができた。図5では、図4で見られた筐体部分のグレアが除去されており、筐体部分の表面に付着している傷を明確に視認することが可能となった。 FIG. 4 is an image obtained by irradiating the housing (shining silver color) of the keyboard part of a notebook computer with light from a light source and taking the reflected light with a camera. In FIG. 4, the light from the light source is reflected in the reflected light from the housing portion to cause glare. From this state, when the first wave plate on the light source side was rotated by about 1/8, an image as shown in FIG. 5 could be obtained. In FIG. 5, the glare of the housing portion seen in FIG. 4 has been removed, and it has become possible to clearly see the scratches adhering to the surface of the housing portion.
 図6は、各種の素子を実装した緑色の制御基板に光源からの光を照射し、その反射光をカメラで撮影した画像である。図6では、中央部分の黒色のCPU部分、及び、その周囲に延びる光輝性のあるリードフレーム領域からの反射光にグレアが生じた状態となっているが、この状態から、光源側の第1波長板を、約1/12回転させたところ、図7で示すような画像を取得することができた。図7では、制御基板全体のグレアが除去されており、各素子の実装状態や表面の印字を明確に視認することが可能となった。 FIG. 6 is an image obtained by irradiating a green control board on which various elements are mounted with light from a light source and capturing the reflected light with a camera. In FIG. 6, glare is generated in the black CPU portion in the central portion and the reflected light from the brilliant lead frame region extending around the CPU portion. From this state, the first light source side first. When the wave plate was rotated about 1/12, an image as shown in FIG. 7 could be obtained. In FIG. 7, glare on the entire control board has been removed, and it has become possible to clearly visually recognize the mounting state of each element and the printing on the surface.
 図8は、白色のゴルフボールに光源からの光を照射し、その反射光をカメラで撮影した画像である。図8では、球状の頂部領域からの反射光にグレアが生じた状態となっているが、この状態から、光源側の第1波長板を約1/10回転させたところ、図9で示すような画像を取得することができた。図9では、頂部領域のグレアが除去されており、その表面の汚れの付着を明確に視認することが可能となった。 FIG. 8 is an image of a white golf ball irradiated with light from a light source and the reflected light taken by a camera. In FIG. 8, glare is generated in the reflected light from the spherical top region. From this state, when the first wave plate on the light source side is rotated about 1/10, as shown in FIG. I was able to get a good image. In FIG. 9, glare in the top region has been removed, making it possible to clearly see the adhesion of dirt on the surface.
 図10は、表面が荒れた状態にある鉄球に光源からの光を照射し、その反射光をカメラで撮影した画像である。図10では、鉄球の頂部領域からの反射光にグレアが生じた状態となっているが、この状態から、光源側の第1波長板を、約1/12回転させたところ、図11で示すような画像を取得することができた。図11では、頂部領域のグレアが除去されており、その表面に生じている錆を明確に視認することが可能となった。 FIG. 10 is an image obtained by irradiating an iron ball with a rough surface with light from a light source and capturing the reflected light with a camera. In FIG. 10, glare is generated in the reflected light from the top region of the iron ball. From this state, the first wave plate on the light source side is rotated about 1/12, and FIG. 11 shows. I was able to obtain an image as shown. In FIG. 11, glare in the top region has been removed, making it possible to clearly see the rust on the surface.
 なお、上記の対象物以外にも、様々な物品で検査したところ、いずれのタイプの波長板を用いた場合であっても、波長板は、少なくとも1/16回転以上させれば、グレアが除去された画像(異物が鮮明に視認できる画像)が得られた。このため、波長板については、1/16回転毎に節度を有するように、筐体10Aに回転可能に装着しておくことが好ましく、節度のあるいずれかの回転位置で停止することで、グレアが除去された画像を取得することが可能となる。前記波長板15,25については、光源側の第1波長板15のみを回転可能、拡大光学ユニット側の第2波長板25のみを回転可能、或いは、両者を回転可能に配設しても良く、対象物の種別や異物の状態等に応じて、適切な波長板を選択し、いずれかを回転させれば良い。勿論、波長板の回転については、節度を持たせることなく、無段階に位置調整できる(リニアに調整できる)構成であっても良い。 In addition to the above-mentioned objects, when inspected with various articles, glare was removed by rotating the wave plate at least 1/16 rotation regardless of the type of wave plate used. An image (an image in which foreign matter can be clearly seen) was obtained. Therefore, it is preferable that the wave plate is rotatably attached to the housing 10A so as to have moderation every 1/16 rotation, and glare is caused by stopping at any of the modest rotation positions. It becomes possible to acquire the image in which is removed. Regarding the wave plates 15 and 25, only the first wave plate 15 on the light source side can be rotated, only the second wave plate 25 on the magnifying optical unit side can be rotated, or both may be arranged so as to be rotatable. , An appropriate wave plate may be selected and one of them may be rotated according to the type of the object, the state of the foreign matter, and the like. Of course, the rotation of the wave plate may be configured so that the position can be adjusted steplessly (linearly can be adjusted) without giving moderation.
 上記した波長板15(或いは波長板25)については、手動操作ではなく、モータ等の駆動手段によって回転操作できるように構成しても良い。例えば、図2に示すように、反射光ユニットの筐体10A内に駆動モータ18を設置しておき、手元側のコントローラ(操作部材)60の操作ボタン61を操作することで、前記可動リング12bを回転駆動させても良い。可動リング12bの回転駆動については、例えば、駆動モータ18の出力軸に平歯車を設けておき、これを可動リング12bに設けられた内歯車に噛合させる等の動力伝達機構を配設することで行うことが可能である。この場合、操作部材60は、操作性等を考慮して複数個所に設けても良く、光源を選択する機能、光量(照度)を可変させる機能、更には、光源が、後述するようなプロジェクタとしての機能を備える場合、対象物に投影する画像を選択する機能などを備えていても良い。或いは、手元操作する以外にも、フットペダル等によって構成しても良い。 The above-mentioned wave plate 15 (or wave plate 25) may be configured so that it can be rotated by a driving means such as a motor instead of being manually operated. For example, as shown in FIG. 2, the drive motor 18 is installed in the housing 10A of the reflected light unit, and the movable ring 12b is operated by operating the operation button 61 of the controller (operation member) 60 on the hand side. May be rotationally driven. Regarding the rotary drive of the movable ring 12b, for example, a spur gear is provided on the output shaft of the drive motor 18 and a power transmission mechanism such as engaging the spur gear with the internal gear provided on the movable ring 12b is provided. It is possible to do. In this case, the operating members 60 may be provided at a plurality of locations in consideration of operability and the like, and the function of selecting a light source, the function of changing the amount of light (illuminance), and the light source may be a projector as described later. When the function of is provided, a function of selecting an image to be projected on an object may be provided. Alternatively, in addition to the hand operation, it may be configured by a foot pedal or the like.
 また、本実施形態の構成では、実際に対象物100を拡大して視認する場合、必要に応じて、上記した第2偏光素子24、第2波長板25、ブルーライトカットフィルタ26を視界から除外することもできるので、傷や汚れの状態等、より詳しく検査することが可能となる。 Further, in the configuration of the present embodiment, when the object 100 is actually magnified and visually recognized, the above-mentioned second polarizing element 24, the second wavelength plate 25, and the blue light cut filter 26 are excluded from the field of view, if necessary. It is also possible to inspect the condition of scratches and dirt in more detail.
 上記したように、拡大光学ユニット20内には、第2反射光ユニット30が配設されている。この第2反射光ユニット30は、対象物100に対して、垂直方向から光を照射できるようにリング状の光源(第2の反射用光源)31が組み込まれている。光源31は、図12に示すように、前記拡大レンズ素子21を囲むようにして、リング状に連続的に配設されている。各光源(リング照明)31については、ワークスペース上の対象物100に対してスポット光や拡散光を照射できるものであればよく、円周上に一定間隔をおいて配設されたLED等によって構成することが可能である。 As described above, the second reflected light unit 30 is arranged in the magnifying optical unit 20. The second reflected light unit 30 incorporates a ring-shaped light source (second reflecting light source) 31 so that light can be emitted from the vertical direction to the object 100. As shown in FIG. 12, the light source 31 is continuously arranged in a ring shape so as to surround the magnifying lens element 21. Each light source (ring illumination) 31 may be any light source (ring illumination) 31 that can irradiate an object 100 on the workspace with spot light or diffused light, and is provided by LEDs or the like arranged at regular intervals on the circumference. It is possible to configure.
 また、反射光ユニット30には、各光源31から射出される光を集光させる(平行光となる)ように、集光レンズを配設しても良い。この場合、集光レンズは、各光源31に対応してそれぞれ配設しても良いし、1つのレンズによって光を集光するものであっても良い。すなわち、光源31から射出された光を、対象物に対して、スポット照射、平行照射、拡散照射するような構成であれば、レンズ系の構成については、特に限定されることはない。 Further, the reflected light unit 30 may be provided with a condensing lens so as to condense the light emitted from each light source 31 (become parallel light). In this case, the condensing lens may be arranged corresponding to each light source 31, or may condense light by one lens. That is, the configuration of the lens system is not particularly limited as long as the light emitted from the light source 31 is spot-irradiated, parallel-irradiated, or diffused-irradiated to the object.
 また、反射光ユニット30には、反射光ユニット20の構成と同様、偏光素子(第1偏光素子)、及び、この偏光素子に対して回転可能な波長板(第1波長板)を配設しても良い。この場合、第1波長板については、手動で回転操作する構成であっても良いし、筐体20Aに駆動モータ等を組み込んでおき、モータ駆動される構成であっても良い。 Further, the reflected light unit 30 is provided with a polarizing element (first polarizing element) and a wave plate (first wave plate) rotatable with respect to the polarizing element, as in the configuration of the reflected light unit 20. You may. In this case, the first wave plate may be configured to be manually rotated, or may be configured to be driven by a motor by incorporating a drive motor or the like in the housing 20A.
 上記したような反射光ユニット30は、対象物の構成、配置態様、観察方法等に応じて、前記反射光ユニット10と選択的に使用される。例えば、図13に示すように、検査する対象物100aが円柱形状のような構成で、その外周面を観察したい場合、ワークスペース(平坦面3a)に対象物100aを載置して、円錐ミラー(アキシコンミラー)80を設置して観察すると、その外周面を観察することができる。このような検査方法では、反射光ユニット30を選択することで対象物100aに対して垂直光が照射され、影を生じさせることなく、対象物100aの外周面を精度良く観察することが可能となる。
 なお、拡大光学ユニット20(拡大レンズ素子21)と、リング照明31は、1つの筐体20Aに設置するのではなく、別体として構成されていても良い。すなわち、本実施形態の目視支援装置は、必要に応じて光源(反射光源、透過光源)を追加することが可能であり、このような構成では、拡大レンズ素子の焦点距離と、リング照明では有効作用点が異なるケースもあり得るため、両者は、一体構造に構成されていなくても良い。
The reflected light unit 30 as described above is selectively used with the reflected light unit 10 according to the configuration, arrangement mode, observation method, etc. of the object. For example, as shown in FIG. 13, when the object 100a to be inspected has a cylindrical shape and it is desired to observe the outer peripheral surface thereof, the object 100a is placed on the workspace (flat surface 3a) and a conical mirror. When the (axicon mirror) 80 is installed and observed, the outer peripheral surface thereof can be observed. In such an inspection method, by selecting the reflected light unit 30, vertical light is applied to the object 100a, and it is possible to accurately observe the outer peripheral surface of the object 100a without causing a shadow. Become.
The magnifying optical unit 20 (magnifying lens element 21) and the ring illumination 31 may be configured as separate bodies instead of being installed in one housing 20A. That is, in the visual support device of the present embodiment, it is possible to add a light source (reflection light source, transmission light source) as needed, and in such a configuration, the focal length of the magnifying lens element and ring illumination are effective. Since there may be cases where the points of action are different, both do not have to be configured as an integral structure.
 上述したように、本実施形態の目視支援装置は、ワークスペースに設置される対象物100に対して、透過光を照射する透過光ユニット40を備えている。透過光ユニット40は、ワークスペースに配置される対象物に対して透過光を照射する位置に設置されており、本実施形態では、外部に露出しないように、前記基台3の平坦面3aに凹所3Aを形成し、この凹所3A内に組み込んでいる。また、透過光ユニット40が配設される部分は、表面をガラス45で覆っている。 As described above, the visual support device of the present embodiment includes a transmitted light unit 40 that irradiates the transmitted light to the object 100 installed in the workspace. The transmitted light unit 40 is installed at a position where the transmitted light is irradiated to the object arranged in the workspace, and in the present embodiment, the transmitted light unit 40 is placed on the flat surface 3a of the base 3 so as not to be exposed to the outside. A recess 3A is formed and incorporated into the recess 3A. The surface of the portion where the transmitted light unit 40 is arranged is covered with glass 45.
 前記透過光ユニット40は、上記した反射光ユニット20と同様、LED等によって構成される光源41を備えており、光源41よりも上方側(ワークスペース側)に、偏光素子(第1の偏光素子)及び波長板(第1の波長板)を備えた位相差リング42が配設されている。この位相差リング42の構成要素である波長板(第1の波長板)は、手動操作、又は、駆動モータ43によって回転可能に保持されており、波長板を任意の回転位置で固定できるよう構成されている。 Like the reflected light unit 20, the transmitted light unit 40 includes a light source 41 composed of an LED or the like, and a polarizing element (first polarizing element) is located above the light source 41 (workspace side). ) And a retardation ring 42 provided with a wavelength plate (first wavelength plate). The wave plate (first wavelength plate), which is a component of the retardation ring 42, is rotatably held by a manual operation or a drive motor 43, and is configured so that the wave plate can be fixed at an arbitrary rotational position. Has been done.
 観察する対象物が、透過性のある素材(ガラス、透明性のある樹脂、宝石類など)である場合、上記した反射光ユニット10,30からの照射光では、対象物に光が吸収されてしまい、十分な観察ができない可能性がある。このため、図14に示すように、透過性のある素材の対象物100bに対しては、透過光ユニット40の光源41から透過光を照射して、拡大光ユニット20を介して視認することで、その内部や表面に異物が存在しているか否かをグレアなく観察することが可能となる。 When the object to be observed is a transparent material (glass, transparent resin, jewelry, etc.), the light is absorbed by the object in the irradiation light from the reflected light units 10 and 30 described above. Therefore, it may not be possible to observe sufficiently. Therefore, as shown in FIG. 14, the object 100b made of a transparent material is irradiated with transmitted light from the light source 41 of the transmitted light unit 40 and visually recognized through the magnifying light unit 20. , It is possible to observe whether or not foreign matter is present inside or on the surface without glare.
 また、透明な樹脂成型品では、射出成型した後、ひずみが生じていることが多く、アニール処理を行なうことでひずみを除去することが行なわれている。品質向上を図る場合、アニール処理の効果を確認するために、上記した透過光ユニット40を利用して検品作業(観察作業)を行なうことが可能である。 In addition, transparent resin molded products often have strain after injection molding, and the strain is removed by annealing. When improving the quality, it is possible to carry out an inspection work (observation work) using the transmitted light unit 40 described above in order to confirm the effect of the annealing treatment.
 これを図15から図19を参照して具体的に説明する。 
 図15は、半透明性の樹脂材料で形成された光ファイバー用のケーブル素材である。円柱状の樹脂の中央領域には、半透明性の樹脂材料で形成された芯材が埋め込まれており、この芯材の中心を検出することを考慮する。図15は、無偏光状態の反射光を照射し、その反射光をカメラで撮影した画像である。反射光を照射しただけでは、その芯材の存在を確認することはできない。図16は、上記した反射光ユニットで偏光状態の光を照射した画像であり、図17は、図16に示した状態から光源側の第1波長板を、90°回転した状態の画像である。このように、対象物が透過性を有する素材で形成されていると、上記した反射光ユニット10,30では、第1波長板を回転させても、その内部状態及び表面状態を明確にして観察することは困難であった。
This will be specifically described with reference to FIGS. 15 to 19.
FIG. 15 is a cable material for an optical fiber made of a translucent resin material. A core material formed of a translucent resin material is embedded in the central region of the columnar resin, and consideration is given to detecting the center of this core material. FIG. 15 is an image obtained by irradiating the reflected light in a non-polarized state and taking the reflected light with a camera. The existence of the core material cannot be confirmed only by irradiating the reflected light. FIG. 16 is an image obtained by irradiating the light in a polarized state with the reflected light unit described above, and FIG. 17 is an image in which the first wave plate on the light source side is rotated by 90 ° from the state shown in FIG. .. In this way, when the object is made of a transparent material, the reflected light units 10 and 30 described above clearly observe the internal state and the surface state of the reflected light units 10 and 30 even if the first wave plate is rotated. It was difficult to do.
 これに対し、透過光ユニット40を用い、上記した位相差リングで偏光状態にされた透過光を同一のケーブル素材に照射し、その状態を拡大すると、図18で示すように、中央領域に埋め込まれた芯材の存在を視認することをが可能となった。そして、図18で示す状態から、波長板を90°回転させると、図19で示すように、芯材部分をより明確化して観察することが可能となり、第1波長板を回転しながら対象物を観察することにより、いずれかの回転位置で、その表面状態や内部状態に関し、グレアを生じさせることなく、明確に観察することが可能となった。 On the other hand, when the same cable material is irradiated with the transmitted light polarized by the retardation ring described above using the transmitted light unit 40 and the state is enlarged, it is embedded in the central region as shown in FIG. It has become possible to visually recognize the presence of the core material. Then, when the wave plate is rotated by 90 ° from the state shown in FIG. 18, as shown in FIG. 19, the core material portion can be observed more clearly, and the object can be observed while rotating the first wave plate. By observing, it became possible to clearly observe the surface state and the internal state at any of the rotation positions without causing glare.
 図20は、透明性のあるオレンジ色の樹脂材料で形成された目薬容器を、上記した位相差リングで偏光状態にした透過光で観察した画像である。この画像で示すように、目薬容器には、傷や異物等を視認することはできないが、上記したように、偏光素子を介して透過光を視認することから、光源からの光が目に影響を与えることはなく、対象物を観察することが可能となる。そして、この状態から第1波長板を90°回転させると、図21で示すように、気泡の存在、及び、異物(グリーンで見える部分)が混入していることを視認することが可能となった。すなわち、透過光ユニット40を設置することにより、透過性を有する対象物であっても、光源からの光が眩しくなることはなく、かつ、異物等の存在をグレアなく、検知することが可能となる。 FIG. 20 is an image of an eye drop container made of a transparent orange resin material observed with transmitted light polarized by the above-mentioned retardation ring. As shown in this image, scratches, foreign substances, etc. cannot be visually recognized in the eye drop container, but as described above, the transmitted light is visually recognized through the polarizing element, so that the light from the light source affects the eyes. It is possible to observe the object without giving. Then, when the first wave plate is rotated by 90 ° from this state, as shown in FIG. 21, it becomes possible to visually recognize the presence of air bubbles and the presence of foreign matter (the portion visible in green). It was. That is, by installing the transmitted light unit 40, even if the object has transparency, the light from the light source does not become dazzling, and the presence of foreign matter or the like can be detected without glare. Become.
 以上のように、本実施形態の目視支援装置によれば、観察する対象物に応じて、反射光ユニット10、反射光ユニット30、透過光ユニット40のいずれかを選択(例えば、図1、図2で示すコントローラ60でいずれかのユニットを選択)し、かつ、対象物を視認しながら、第1波長板(第2波長板であっても良い)を回転操作することで、その表面状態や内部の状態を、グレアを生じさせることなく観察することが可能となり、異物等の検査作業(視認による検査作業)を高精度かつ容易に行なうことが可能となる。 
 なお、前記光源41については、LED光源以外にも、有機EL光源(面発光する光源、例えば有機ELパネル等)で構成しても良い。すなわち、光源41は、有機ELパネルを平坦面3a上に設置する構成であっても良い。このような有機EL光源であれば、面発光するため、作業者にとって明る過ぎることがなく、目に負担を掛けることなく検品作業を行なうことが可能である。
As described above, according to the visual support device of the present embodiment, any one of the reflected light unit 10, the reflected light unit 30, and the transmitted light unit 40 is selected according to the object to be observed (for example, FIGS. 1 and 1). By selecting one of the units with the controller 60 shown in 2) and rotating the first wave plate (which may be the second wave plate) while visually recognizing the object, the surface condition and the surface condition thereof can be changed. It is possible to observe the internal state without causing glare, and it is possible to easily perform inspection work for foreign substances (visual inspection work) with high accuracy.
In addition to the LED light source, the light source 41 may be composed of an organic EL light source (a light source that emits surface light, for example, an organic EL panel or the like). That is, the light source 41 may have a configuration in which the organic EL panel is installed on the flat surface 3a. Since such an organic EL light source emits surface light, it is not too bright for the operator and the inspection work can be performed without burdening the eyes.
 次に、本発明の第2の実施形態について説明する。 
 上記した目視支援装置の反射光ユニット10,30、透過光ユニット40で用いられる光源は、LED照明、或いは、ハロゲンランプ、キセノンランプ、蛍光ランプ、面発光体等を用いることが可能である。本実施形態では、上記したユニットに用いられる光源を、プロジェクタ機能を有する照明(プロジェクタ付き照明)としている。 
 このようなプロジェクタ機能を備えた照明であれば、傷等の異物を視認し易い画像を投影することが可能となる。
Next, a second embodiment of the present invention will be described.
As the light source used in the reflected light units 10 and 30 and the transmitted light unit 40 of the above-mentioned visual support device, LED lighting, a halogen lamp, a xenon lamp, a fluorescent lamp, a surface emitter, or the like can be used. In the present embodiment, the light source used in the above-mentioned unit is an illumination having a projector function (illumination with a projector).
Lighting provided with such a projector function makes it possible to project an image in which foreign matter such as scratches is easily visible.
 図22(a)(b)に示すように、反射光ユニット10の光源にプロジェクタ機能を持たせると、波長が異なる色画像を対象物に投影することが可能となる。すなわち、対象物の色彩等によって、投影する画像の色を変えることで、異物を見え易くすることも可能となる。この場合、人による目視では、見易い色が存在しており、傷や異物の付着、背景色によっては見易い色が異なるため、見易くなるように、その都度、投影する色画像を切り替える必要性が生じる。 As shown in FIGS. 22A and 22B, if the light source of the reflected light unit 10 has a projector function, it is possible to project color images having different wavelengths onto an object. That is, it is possible to make the foreign matter easier to see by changing the color of the projected image according to the color of the object. In this case, there are colors that are easy to see visually by humans, and the colors that are easy to see differ depending on the adhesion of scratches and foreign substances and the background color, so it is necessary to switch the projected color image each time so that it is easy to see. ..
 本実施形態では、光源(反射光ユニットに組み込まれるプロジェクタ機能付きの光源)によって投影される画像に、波長帯域の異なる複数の色画像を含ませており、これを対象物100に対して同時に照射できるうように構成している。具体的には、作業者の手前側の領域90Aと奥側の領域90Bで異なる色画像(例えば、領域90Aにグリーンの画像、領域90Bにイエローの画像)を投影することで、作業者は、対象物100を手前/奥に移動させることで、2色の照射光で検査を行なうことが可能となり、作業効率を向上することが可能となる。 In the present embodiment, a plurality of color images having different wavelength bands are included in the image projected by the light source (light source with a projector function incorporated in the reflected light unit), and the object 100 is simultaneously irradiated with the plurality of color images. It is configured so that it can be done. Specifically, by projecting different color images (for example, a green image on the area 90A and a yellow image on the area 90B) on the front side area 90A and the back side area 90B of the worker, the worker can display the image. By moving the object 100 to the front / back, it is possible to perform an inspection with two colors of irradiation light, and it is possible to improve work efficiency.
 このように、対象物に画像を投影する場合、少なくとも1色以上(複数)の色画像が照射できるようにすることで、検査作業を効率化して、精度良く、異物等の有無を視認することが可能となる。なお、ワークスペースに対する色画像の照射の仕方については、左右方向に分ける等、種々変形することが可能であり、また、対象物に応じて、適切な単一色を照射するようにしても良い。 In this way, when projecting an image on an object, by making it possible to irradiate at least one color (plural) color images, the inspection work can be streamlined and the presence or absence of foreign matter or the like can be visually recognized with high accuracy. Is possible. It should be noted that the method of irradiating the color image on the workspace can be variously modified, such as dividing it into the left-right direction, and an appropriate single color may be irradiated depending on the object.
 対象物に画像を投影する場合、上記したように、波長の異なる色画像を用いても良いが、例えば、ストライプ模様、格子模様のような、規則性のある模様画像を対象物に投影してその反射光を観察すると、3次元検査を行なうことが可能となる。 When projecting an image onto an object, color images having different wavelengths may be used as described above, but a regular pattern image such as a striped pattern or a checkerboard pattern is projected onto the object. By observing the reflected light, it becomes possible to perform a three-dimensional inspection.
 図23は、上記した反射光ユニットにプロジェクタ機能を備えた光源において、ストライプ模様を対象物に投影し、その反射光を撮影した画像を示している。この写真で見られるように、表面に打痕箇所A1があったり、テープが付着されている部分A2があると、投影されるストライプ模様(規則性のあるストライプ模様)中に、段差等の高さが異なるような部分(3D的に高さの違いが把握できる部分)を視認すること可能となり、グレアを除去して、表面の傷や異物の付着等を、より精度良く視認することが可能となる。
 すなわち、光源にプロジェクタ機能を持たせることで、対象物に投影する色、画像を適宜、変更することができ、最適な状態で観察することが可能となる。 
FIG. 23 shows an image in which a striped pattern is projected onto an object and the reflected light is captured by a light source having a projector function in the reflected light unit. As can be seen in this photograph, if there is a dented portion A1 on the surface or a portion A2 to which the tape is attached, the height of the step or the like is included in the projected stripe pattern (regular stripe pattern). It is possible to visually recognize parts with different heights (parts where the difference in height can be grasped in 3D), remove glare, and more accurately visually recognize surface scratches and foreign matter adhesion. It becomes.
That is, by providing the light source with a projector function, the color and image projected on the object can be changed as appropriate, and observation can be performed in an optimum state.
 次に、本発明の第3の実施形態について説明する。 
 上記した構成の目視支援装置に組み込まれる透過光ユニット40については、様々な場所で観察作業ができるように、手持ち操作可能な単体として構成されていても良い(透明性のある対象物を観察する対象物観察用の透過光ユニットとして構成されていても良い)。また、対象物を視認する拡大光学ユニット20についても、様々な場所で観察作業ができるように、手持ち操作可能な単体として構成されていても良い。すなわち、本実施形態の目視支援装置は、手持ち操作可能な透過光ユニット400と、透過光ユニット400から照射される光を視認可能にする眼鏡タイプで構成した観察ユニット500と、を備えている。
Next, a third embodiment of the present invention will be described.
The transmitted light unit 40 incorporated in the visual support device having the above configuration may be configured as a single unit that can be operated by hand so that the observation work can be performed in various places (observing a transparent object). It may be configured as a transmitted light unit for observing an object). Further, the magnifying optical unit 20 for visually recognizing an object may also be configured as a single unit that can be operated by hand so that observation work can be performed at various places. That is, the visual support device of the present embodiment includes a transmitted light unit 400 that can be operated by hand, and an observation unit 500 that is configured as an eyeglass type that makes the light emitted from the transmitted light unit 400 visible.
 図24は、単体として構成される透過光ユニット400を示しており、手で把持して持ち運び可能な大きさに構成されている。図に示す透過光ユニット400は、板状で矩形状のベース部材401に、筐体(収納ケース)402を取り付け、この収納ケース402内に、光源となる有機EL光源405を配設している。収納ケース内に配設される有機EL光源405は、開口406aを備えた蓋部材406によって閉塞され、蓋部材406上には、一対のガラス板410に挟持された偏光素子412が配設されている。 FIG. 24 shows a transmitted light unit 400 that is configured as a single unit, and is configured to have a size that can be grasped and carried by hand. In the transmitted light unit 400 shown in the figure, a housing (storage case) 402 is attached to a plate-shaped and rectangular base member 401, and an organic EL light source 405 as a light source is arranged in the storage case 402. .. The organic EL light source 405 arranged in the storage case is closed by a lid member 406 having an opening 406a, and a polarizing element 412 sandwiched between a pair of glass plates 410 is arranged on the lid member 406. There is.
 偏光素子412を挟持した一対のガラス板410は、両サイド側から固定部材420で挟まれ、複数の止めビス422によって筐体402に固定される。また、蓋部材406は、複数の止めビス425によって筐体402に固定される。さらに、ベース部材401は、複数の止めビス427によって筐体402に固定される。 The pair of glass plates 410 sandwiching the polarizing element 412 are sandwiched between the fixing members 420 from both side sides, and are fixed to the housing 402 by a plurality of fixing screws 422. Further, the lid member 406 is fixed to the housing 402 by a plurality of fixing screws 425. Further, the base member 401 is fixed to the housing 402 by a plurality of set screws 427.
 前記筐体402には、有機EL光源用のドライバ430が組み込まれており、外部に露出する電源接続部(DCジャック)432を介して電力が供給され、有機EL光源405を発光させる。 A driver 430 for an organic EL light source is incorporated in the housing 402, and power is supplied via a power connection (DC jack) 432 exposed to the outside to cause the organic EL light source 405 to emit light.
 このような構成の透過光ユニット400によれば、図1に示したような基台3を設けることなく、対象物100の下方に設置して、拡大光学ユニット(観察ユニット)20を介して対象物100を観察することが可能となる。また、透明性のある対象物(透明性のある樹脂成型品、樹脂製の袋など)を透過光で観察する場合、観察者は、面発光による光を視認することから、眩しくなることはなく、長時間に亘って作業を行なうことが可能となる。なお、有機EL光源405は、観察の作業性を考慮して単色の発光であることが好ましく、特に白色の発光(白色単色光)にすることで目の疲れを軽減することが可能となる。 According to the transmitted light unit 400 having such a configuration, it is installed below the object 100 without providing the base 3 as shown in FIG. 1, and the object is installed via the magnifying optical unit (observation unit) 20. It becomes possible to observe the object 100. In addition, when observing a transparent object (transparent resin molded product, resin bag, etc.) with transmitted light, the observer visually recognizes the light generated by surface emission, so that the observer does not become dazzled. , It becomes possible to work for a long time. The organic EL light source 405 preferably emits monochromatic light in consideration of observation workability, and in particular, white emission (white monochromatic light) makes it possible to reduce eye strain.
 また、上記した実施形態と同様、透過光ユニット400に波長板413を配設しておくことが好ましい。すなわち、観察側となる拡大光学ユニット20に波長板(第2波長板)が配設されていることから、透過光ユニット400にも同じ構成の波長板413を重ねて配設しておくことが好ましい。この波長板413については、一対のガラス板410に挟持される偏光素子412に重ねて配設しておけば良い。 Further, it is preferable to dispose the wave plate 413 in the transmitted light unit 400 as in the above-described embodiment. That is, since the wavelength plate (second wavelength plate) is arranged on the magnifying optical unit 20 on the observation side, the wavelength plate 413 having the same configuration may be arranged on the transmitted light unit 400 as well. preferable. The wavelength plate 413 may be arranged so as to be overlapped with the polarizing elements 412 sandwiched between the pair of glass plates 410.
 上記した透過光ユニット400を光源として用いる場合、図25に示すように、眼鏡タイプの観察ユニット500によって対象物を観察することが可能である。すなわち、透過光ユニット400と観察ユニット500によって、手持ち搬送可能な目視支援装置を構築することが可能である。 When the transmitted light unit 400 described above is used as a light source, as shown in FIG. 25, it is possible to observe an object with the spectacle-type observation unit 500. That is, it is possible to construct a hand-held visual support device by the transmitted light unit 400 and the observation unit 500.
 本実施形態の観察ユニット500は、観察者の耳に掛けられる一対のテンプル502,502、及び、各テンプルの前端側を連結する連結部503を備えている。前記連結部503には、透過光ユニット400からの光(対象物を透過した光)を観察者に視認させる透過部材505が設けられており、この透過部材505に、拡大光学ユニット20に組み込まれた偏光素子と同様な偏光素子が設けられている。この場合、透過部材505に重ねられる偏光素子の偏光軸は、透過光ユニット400の偏光素子412の偏光軸に対して90°となるように設定されており、更に、透過光ユニット400に波長板が設けられる構成では、同じ波長となる波長板を積層して配設しておけば良い。 The observation unit 500 of the present embodiment includes a pair of temples 502 and 502 that can be hung on the observer's ears, and a connecting portion 503 that connects the front end side of each temple. The connecting portion 503 is provided with a transmitting member 505 that allows an observer to visually recognize the light from the transmitted light unit 400 (light transmitted through an object), and the transmitting member 505 is incorporated into the magnifying optical unit 20. A polarizing element similar to the polarizing element is provided. In this case, the polarization axis of the polarizing element superimposed on the transmission member 505 is set to be 90 ° with respect to the polarization axis of the polarization element 412 of the transmitted light unit 400, and further, a wave plate is attached to the transmitted light unit 400. In the configuration in which is provided, wave plates having the same wavelength may be laminated and arranged.
 このような透過光ユニット400は、観察者が眼鏡タイプの観察ユニット500を装着して、対象物を透過光ユニット400からの透過光で観察するだけで良いため、図1に示したような大型の装置を設置しなくても対象物を検査することが可能となる。すなわち、作業スペースに関係なく、様々な対象物を容易に観察することが可能となる。また、必要に応じて透過光ユニット400に設けられる波長板412を筐体402に対して回転可能に構成したり、観察ユニット500の透過部材505に配設される波長板を左右同期して回転させる構成にしても良い。また、対象物の傷等が視認し難い場合、筐体402を回転させても視認し易くすることが可能である。 Such a transmitted light unit 400 is large as shown in FIG. 1 because the observer only needs to wear the spectacle type observation unit 500 and observe the object with the transmitted light from the transmitted light unit 400. It is possible to inspect an object without installing the device. That is, it is possible to easily observe various objects regardless of the work space. Further, if necessary, the wave plate 412 provided in the transmitted light unit 400 is configured to be rotatable with respect to the housing 402, and the wave plate arranged in the transmitting member 505 of the observation unit 500 is rotated in left-right synchronization. It may be configured to be used. Further, when it is difficult to visually recognize scratches or the like on the object, it is possible to make it easy to visually recognize even if the housing 402 is rotated.
 前記透過光ユニット400は、持ち運び可能なように、単体として構成されるが、支持ロッド(図示せず)に保持すると共に、支持ロッドに対して、一定角度(例えば、0°~90°)回動するように配設されていても良い。このような支持ロッドを、例えば、図1に示した装置の支柱5に固定することで、透過光ユニット400を水平状態から垂直状態に回動させることができ、対象物を上方から観察したり、水平方向で観察することが可能となる。 The transmitted light unit 400 is configured as a single body so as to be portable, but is held by a support rod (not shown) and at a constant angle (for example, 0 ° to 90 °) with respect to the support rod. It may be arranged so as to move. By fixing such a support rod to, for example, the support column 5 of the device shown in FIG. 1, the transmitted light unit 400 can be rotated from the horizontal state to the vertical state, and the object can be observed from above. , It becomes possible to observe in the horizontal direction.
 以上、本発明の実施形態について説明したが、本発明は、上記した実施形態に限定されることはなく、種々変形することが可能である。 
 上記した目視支援装置は、対象物に光を照射する光源として、2つの反射光ユニット10,20を設置すると共に、1つの透過光ユニット40を設置したが、目視支援装置としては、いずれか1つのユニットを有する構成であっても良い。この場合、透過光ユニットのみを設置する場合、拡大光学ユニット20は、波長板を有することなく、偏光機能を有するフィルタ(偏光フィルタ)が設置されたものであっても良い。また、上述した実施形態において、各ユニットに設置される光源については、半導体レーザ発光素子(面発光レーザ)や無電極ランプなどによって構成する等、適宜変形することが可能であり、光源の設置位置、照度、光野径などについても適宜変形することが可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments and can be variously modified.
In the above-mentioned visual support device, two reflected light units 10 and 20 are installed as a light source for irradiating an object with light, and one transmitted light unit 40 is installed. However, any one of the visual support devices is used. It may be configured to have one unit. In this case, when only the transmitted light unit is installed, the magnifying optical unit 20 may have a filter (polarizing filter) having a polarizing function installed without having a wave plate. Further, in the above-described embodiment, the light source installed in each unit can be appropriately deformed by being configured by a semiconductor laser light emitting element (surface emitting laser), an electrodeless lamp, or the like, and the light source installation position. , Illuminance, light field diameter, etc. can be appropriately modified.
 また、拡大光学ユニット20は、伸縮アームや回動アームに設置して、対象物を様々な角度から視認できるように設置しても良いし、反射光ユニットや透過光ユニットの配設箇所については、適宜、変形することが可能である。また、第3の実施形態で示した透過光ユニット400は、図1に示す基台3内に組み込むことも可能である。 Further, the magnifying optical unit 20 may be installed on a telescopic arm or a rotating arm so that the object can be visually recognized from various angles, and the reflected light unit and the transmitted light unit may be arranged at different locations. , It can be deformed as appropriate. Further, the transmitted light unit 400 shown in the third embodiment can be incorporated in the base 3 shown in FIG.
 さらに、上記した目視支援装置は、各種の対象物の異物の検出作業以外にも、例えば、医療分野における検体検査、各種の工業製品用の製造ライン等に利用することが可能である。 Furthermore, the above-mentioned visual support device can be used not only for detecting foreign substances of various objects, but also for, for example, sample inspection in the medical field, production lines for various industrial products, and the like.
1 目視支援装置
3 基台
10 反射光ユニット
14 偏光素子(第1偏光素子)
15 波長板(第1波長板)
20 拡大光学ユニット(観察ユニット)
24 偏光素子(第2偏光素子)
25 波長板(第2波長板)
30 反射光ユニット
40,400 透過光ユニット
100,100a,100b 対象物
500 観察ユニット
1 Visual support device 3 Base 10 Reflected light unit 14 Polarizing element (1st polarizing element)
15 Wave plate (1st wave plate)
20 Magnifying optical unit (observation unit)
24 Polarizing element (second polarizing element)
25 wave plate (second wave plate)
30 Reflected light unit 40,400 Transmitted light unit 100, 100a, 100b Object 500 Observation unit

Claims (6)

  1.  透明性のある対象物に対して透過光を照射する透過光ユニットと、この透過光ユニットからの照射光を視認することで、前記対象物の状態を観察することを可能にする観察ユニットと、を備えた目視支援装置であって、
     前記透過光ユニットは、
     手持ち操作可能な筐体と、
     前記筐体内に配設され、透過光を発光する有機EL光源と、
     前記有機EL光源から射出される射出光を直線偏光にする偏光素子と、
    を有することを特徴とする目視支援装置。
    A transmitted light unit that irradiates a transparent object with transmitted light, and an observation unit that makes it possible to observe the state of the object by visually recognizing the irradiation light from the transmitted light unit. It is a visual support device equipped with
    The transmitted light unit is
    With a handheld case
    An organic EL light source that is arranged in the housing and emits transmitted light,
    A polarizing element that linearly polarizes the emitted light emitted from the organic EL light source, and
    A visual aid device characterized by having.
  2.  前記透過光ユニットは、前記偏光素子に重ねて配設され、前記有機EL光源からの射出光を円偏光又は楕円偏光にする波長板を有することを特徴とする請求項1に記載の目視支援装置。 The visual support device according to claim 1, wherein the transmitted light unit is arranged so as to be superimposed on the polarizing element and has a wave plate that converts the emitted light from the organic EL light source into circularly polarized light or elliptically polarized light. ..
  3.  前記有機EL光源は、白色単色光を発光することを特徴とする請求項1又は2に記載の目視支援装置。 The visual support device according to claim 1 or 2, wherein the organic EL light source emits white monochromatic light.
  4.  前記観察ユニットは、観察者の耳に掛けられる一対のテンプルと、各テンプルの前端側を連結する連結部とを備えており、
     前記連結部には、前記透過光ユニットから対象物を透過した光を観察者に視認させる透過部材が設けられており、
     この透過部材に、前記透過光ユニットの偏光素子の偏光軸に対して90°となるように偏光軸が設定された偏光素子が設けられていることを特徴とする請求項2又は3に記載の目視支援装置。
    The observation unit includes a pair of temples that can be hung on the observer's ears, and a connecting portion that connects the front end side of each temple.
    The connecting portion is provided with a transmitting member that allows an observer to visually recognize the light transmitted through the object from the transmitted light unit.
    The second or third aspect of the present invention, wherein the transmitting member is provided with a polarizing element whose polarization axis is set so as to be 90 ° with respect to the polarization axis of the polarization element of the transmitted light unit. Visual assistance device.
  5.  前記透過部材には、前記透過光ユニットに設けられた波長板と同じ波長の波長板が配設されていることを特徴とする請求項4に記載の目視支援装置。 The visual support device according to claim 4, wherein a wave plate having the same wavelength as the wave plate provided in the transmitted light unit is provided on the transmission member.
  6.  透明性のある対象物に対して透過光を照射して、前記対象物の状態を観察することを可能にする目視支援装置に用いられ、
     手持ち操作可能な筐体と、
     前記筐体内に配設され、透過光を発光する有機EL光源と、
     前記有機EL光源から射出される射出光を直線偏光にする偏光素子と、
    を有することを特徴とする透過光ユニット。
    It is used in a visual aid device that makes it possible to observe the state of a transparent object by irradiating it with transmitted light.
    With a handheld case
    An organic EL light source that is arranged in the housing and emits transmitted light,
    A polarizing element that linearly polarizes the emitted light emitted from the organic EL light source, and
    A transmitted light unit characterized by having.
PCT/JP2020/019435 2019-05-17 2020-05-15 Visual observation assistance device WO2020235477A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-093523 2019-05-17
JP2019093523 2019-05-17
JP2019202175A JP7312448B2 (en) 2019-05-17 2019-11-07 Visual aid device
JP2019-202175 2019-11-07

Publications (1)

Publication Number Publication Date
WO2020235477A1 true WO2020235477A1 (en) 2020-11-26

Family

ID=73454529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019435 WO2020235477A1 (en) 2019-05-17 2020-05-15 Visual observation assistance device

Country Status (2)

Country Link
JP (1) JP7312448B2 (en)
WO (1) WO2020235477A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7256166B2 (en) * 2020-12-21 2023-04-11 新日本空調株式会社 Paint surface observation method
JP7256567B1 (en) 2022-04-28 2023-04-12 ニシハツ産業株式会社 Seaweed foreign matter detection device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083911A (en) * 2001-09-07 2003-03-19 Hitachi Kokusai Electric Inc Macro inspecting apparatus
JP2003215057A (en) * 2001-11-15 2003-07-30 Matsushita Electric Works Ltd Method and apparatus for detecting foreign object of container
JP2014170016A (en) * 2014-06-24 2014-09-18 Koito Mfg Co Ltd Foreign matter inspection device and foreign matter inspection method for vehicular lamp
JP6185686B1 (en) * 2017-05-10 2017-08-23 シンクロア株式会社 Medical head-mounted illumination device
US20170274490A1 (en) * 2014-10-07 2017-09-28 Shamir Optical Industry Ltd. Methods and apparatus for inspection and optional rework of blocked ophthalmic lenses
JP2017187425A (en) * 2016-04-07 2017-10-12 株式会社カネカ Defect inspection device, defect inspection method, and method of manufacturing balloon catheter
WO2018158824A1 (en) * 2017-02-28 2018-09-07 東洋ガラス株式会社 Container inspection device and container inspection method
JP2018205025A (en) * 2017-05-31 2018-12-27 株式会社キーエンス Image inspection device, image inspection method, image inspection program, and computer readable recording medium and recorded apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128239A (en) * 1986-11-19 1988-05-31 Hitachi Ltd Micro-photoelasticity measuring instrument
JPH04142508A (en) * 1990-10-04 1992-05-15 Scala Kk Magnifying observation tool
JPH08129172A (en) * 1994-10-31 1996-05-21 Sony Corp Display device
JP2970585B2 (en) * 1997-04-17 1999-11-02 日本電気株式会社 Anisotropic thin film evaluation method and anisotropic thin film evaluation apparatus
JP2003262595A (en) * 2002-03-07 2003-09-19 Hitachi Electronics Eng Co Ltd Foreign-substance inspection apparatus
KR200340344Y1 (en) * 2003-10-18 2004-02-11 (주) 옵토바이오메드 Polarization Magnifier
KR100763421B1 (en) * 2006-01-18 2007-10-05 (주) 옵토바이오메드 Polarization Magnifier
JP3171325U (en) * 2011-08-02 2011-10-27 株式会社ルケオ Strain tester
EP3623690A4 (en) * 2017-05-09 2021-01-27 Synqroa Co., Ltd. Head-mounted lighting device
KR102070014B1 (en) * 2017-10-11 2020-01-29 주식회사 일루코 Light emitting unit mounted on dermatoscope devices and dermatoscope devices comprising the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083911A (en) * 2001-09-07 2003-03-19 Hitachi Kokusai Electric Inc Macro inspecting apparatus
JP2003215057A (en) * 2001-11-15 2003-07-30 Matsushita Electric Works Ltd Method and apparatus for detecting foreign object of container
JP2014170016A (en) * 2014-06-24 2014-09-18 Koito Mfg Co Ltd Foreign matter inspection device and foreign matter inspection method for vehicular lamp
US20170274490A1 (en) * 2014-10-07 2017-09-28 Shamir Optical Industry Ltd. Methods and apparatus for inspection and optional rework of blocked ophthalmic lenses
JP2017187425A (en) * 2016-04-07 2017-10-12 株式会社カネカ Defect inspection device, defect inspection method, and method of manufacturing balloon catheter
WO2018158824A1 (en) * 2017-02-28 2018-09-07 東洋ガラス株式会社 Container inspection device and container inspection method
JP6185686B1 (en) * 2017-05-10 2017-08-23 シンクロア株式会社 Medical head-mounted illumination device
JP2018205025A (en) * 2017-05-31 2018-12-27 株式会社キーエンス Image inspection device, image inspection method, image inspection program, and computer readable recording medium and recorded apparatus

Also Published As

Publication number Publication date
JP2020190540A (en) 2020-11-26
JP7312448B2 (en) 2023-07-21

Similar Documents

Publication Publication Date Title
TWI596333B (en) Means for measuring a film with a transparent substrate and a measuring method thereof
WO2020235477A1 (en) Visual observation assistance device
RU2227287C2 (en) Method and device to scan diamonds and precious stones
JP4617305B2 (en) Method and apparatus for visualizing marks on spectacle lenses
JP3762952B2 (en) Optical apparatus and image measuring apparatus and inspection apparatus using the same
KR101854401B1 (en) Multi focus image acquisition apparatus and sample surface inspection system
JP7021468B2 (en) Lens measuring device
KR100873057B1 (en) Illumination device for visual inspection based on reflected light and transmitted light
JP7225756B2 (en) Inspection device, inspection method
JP7086813B2 (en) Lighting equipment
JP7185913B2 (en) optical unit
US9429525B2 (en) Optical module for surface inspection and surface inspection apparatus including the same
JP4662194B2 (en) Inspection device
WO2021106244A1 (en) Optical unit
JP3748107B2 (en) Optical cord photographing device
JP4487042B2 (en) Optical apparatus, inspection apparatus, and inspection method
US20130214180A1 (en) System and method for providing light
KR101522365B1 (en) Apparatus for inspecting substrate using oblique illumination
JP6797592B2 (en) Lighting device
JP2020085712A (en) Optical unit for inspection device
JP2012251808A (en) Inspection image acquisition device, pattern inspection device, and inspection image acquisition method
TWI705244B (en) Semiconductor defects inspection apparatus
CN216351638U (en) Electrically controllable polarized light source system
JP2005241692A (en) Optical device, imaging apparatus and inspection device
JP2013068460A (en) Pattern image display device, and pattern image display method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809283

Country of ref document: EP

Kind code of ref document: A1