WO2020235442A1 - Graft copolymer and method for producing same, and precursor for graft copolymer - Google Patents

Graft copolymer and method for producing same, and precursor for graft copolymer Download PDF

Info

Publication number
WO2020235442A1
WO2020235442A1 PCT/JP2020/019262 JP2020019262W WO2020235442A1 WO 2020235442 A1 WO2020235442 A1 WO 2020235442A1 JP 2020019262 W JP2020019262 W JP 2020019262W WO 2020235442 A1 WO2020235442 A1 WO 2020235442A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
graft copolymer
polymer
precursor
aliphatic polycarbonate
Prior art date
Application number
PCT/JP2020/019262
Other languages
French (fr)
Japanese (ja)
Inventor
幸司 中野
彼方 秋山
聖司 西岡
Original Assignee
住友精化株式会社
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社, 国立大学法人東京農工大学 filed Critical 住友精化株式会社
Priority to JP2021520745A priority Critical patent/JPWO2020235442A1/ja
Publication of WO2020235442A1 publication Critical patent/WO2020235442A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/02Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonates or saturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/32General preparatory processes using carbon dioxide
    • C08G64/34General preparatory processes using carbon dioxide and cyclic ethers

Definitions

  • the present invention relates to a graft copolymer, a method for producing the same, and a precursor of the graft copolymer.
  • a graft copolymer is a polymer compound formed by chemically bonding different types of branch polymers to a stem polymer, and has various functions derived from its special structure together with a block copolymer, and thus has various uses. It is being actively studied for use in. In particular, by combining polymers having different properties, it is possible to achieve both high functionality while achieving both properties of both polymers.
  • Patent Document 1 discloses a binder resin obtained by grafting a (meth) acrylic acid ester polymer onto a cellulosic resin, and exhibits physical properties such as rheological properties, adhesiveness, and sheet strength of the cellulose resin, and the acrylic resin. It is possible to have both easy thermal decomposition properties.
  • Patent Document 2 shows a thermoplastic resin obtained by grafting a vinyl polymer onto a polyester resin, and the polyester resin using this resin as a modifier has heat resistance, molding processability, impact resistance, and adhesion. It is disclosed that the sex is improved.
  • Non-Patent Document 1 discloses a graft copolymer in which the stem polymer is a carbon dioxide / propylene oxide copolymer and the branch polymer is polylactic acid.
  • Patent Document 3 discloses a graft copolymer in which the stem polymer is an acrylic polymer and the branch polymer is a carbon dioxide / propylene oxide copolymer.
  • the present invention has been made in view of the above, and the graft copolymer in which the stem polymer is an aliphatic polycarbonate and the branch polymer is a polymer of a radically polymerizable monomer, a method for producing the same, and a graft copolymer. It is intended to provide a precursor.
  • the present invention includes, for example, the subjects described in the following sections.
  • Item 1 A graft copolymer having a stem polymer and a branch polymer bonded to the stem polymer, wherein the stem polymer is an aliphatic polycarbonate.
  • Item 2 Item 2.
  • Item 3 Item 2.
  • the graft copolymer according to Item 1 or 2 wherein the radically polymerizable monomer is at least one selected from the group consisting of a styrene-based monomer, an unsaturated ester-based monomer, and an unsaturated amide-based monomer.
  • Item 4 Item 2. The item according to any one of Items 1 to 3, wherein the value of the ratio DP2 / DP1 of the number average degree of polymerization DP1 of the stem polymer to the number average degree of polymerization DP2 of the branch polymer is 0.1 or more and 10 or less. Graft copolymer.
  • Item 5 A precursor of a graft copolymer,
  • the stem polymer is aliphatic polycarbonate,
  • the aliphatic polycarbonate is a precursor having a structural unit containing a functional group having a controlled radical polymerization initiation ability.
  • Item 6 Item 5.
  • Item 7 Item 5.
  • the precursor according to Item 5 or 6 wherein the structural unit containing a functional group having a controlled radical polymerization initiation ability is contained in 1 mol% or more and 20 mol% or less in all the structural units of the aliphatic polycarbonate.
  • Item 8 Item 6.
  • Item 9 A method for producing a graft copolymer, comprising a step of carrying out a polymerization reaction using the precursor according to any one of Items 5 to 8.
  • the graft copolymer according to the present invention is a novel graft copolymer in which the stem polymer is an aliphatic polycarbonate and the branch polymer is a polymer of a radically polymerizable monomer. Further, the precursor of the graft copolymer according to the present invention is suitable as a raw material for producing the novel graft copolymer, and it is possible to provide the graft copolymer by a simple method.
  • the 1 H-NMR spectrum of the precursor of the graft copolymer obtained in Example 1a The 1 H-NMR spectrum of the precursor of the graft copolymer obtained in Example 1d.
  • the 1 H-NMR spectrum of the graft copolymer obtained in Example 2a The 1 H-NMR spectrum of the graft copolymer obtained in Example 2b.
  • the 1 H-NMR spectrum of the graft copolymer obtained in Example 2d is shown.
  • the graft copolymer of the present invention is a graft copolymer having a stem polymer and a branch polymer bonded to the stem polymer, the stem polymer being an aliphatic polycarbonate, and the branch polymer being a radical. It is a polymer of polymerizable monomers.
  • the stem polymer is the backbone of the graft copolymer and is composed of aliphatic polycarbonate.
  • the type of the aliphatic polycarbonate is not particularly limited, and examples thereof include an aliphatic polycarbonate having a structure having a copolymer of carbon dioxide and an epoxide as a skeleton.
  • the structural unit of the aliphatic polycarbonate having such a structure includes, for example, a structural unit containing a carbonate bond in which carbon dioxide and an epoxide are alternately reacted, and an ether bond in which carbon dioxide does not react and the epoxide is continuously reacted. Structural units and can be included.
  • the structural unit of the aliphatic polycarbonate preferably contains 80 mol% or more of structural units containing a carbonate bond, more preferably 90 mol% or more, further preferably 95 mol% or more, and 99 mol% or more. Is particularly preferable.
  • the branch polymer binds to the stem polymer by a chemical bond (particularly a covalent bond).
  • the branch polymer is formed by a polymer of radically polymerizable monomers. That is, the graft copolymer of the present invention has an aliphatic polycarbonate as a main chain and a polymer of a radically polymerizable monomer as a side chain.
  • the type of radically polymerizable monomer is not particularly limited, and for example, known radically polymerizable monomers can be widely applied.
  • Specific examples of the radically polymerizable monomer include an olefin-based monomer, a styrene-based monomer, an unsaturated ester-based monomer, an unsaturated alcohol-based monomer, an unsaturated carboxylic acid-based monomer, an unsaturated carboxylate-based monomer, and an unsaturated amide-based monomer. , Vinyl-based monomers and the like.
  • olefin-based monomer examples include ethylene, propylene, isobutene, isoprene, butadiene, cyclopentadiene, indene, limonene, ⁇ -pinene, ⁇ -pinene and the like.
  • styrene-based monomers examples include styrene, ⁇ -methylstyrene, 4-methoxystyrene, 4-tert-butylstyrene, 4-chlorostyrene, 4-aminostyrene, 4-nitrostyrene, 4-vinylbenzoic acid, and 4-styrenesulfon. Examples thereof include sodium acid acid and divinylbenzene.
  • esters of polymerizable carboxylic acid compounds such as (meth) acrylic acid esters; and the like.
  • (meth) acrylic means “acrylic” or “methacrylic”
  • (meth) acrylate means “acrylate” or “methacrylate”
  • (meth) allyl means “(meth) allyl”.
  • Examples of the (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and (meth).
  • ester of the polymerizable carboxylic acid compound examples include methyl crotonate, methyl angelic acid, methyl tiglic acid, methyl oleate, dimethyl maleate, and dimethyl fumarate, in addition to the (meth) acrylic acid ester.
  • unsaturated alcohol-based monomers examples include allyl alcohol, ⁇ -metharyl alcohol, crotyl alcohol, 3-buten-1-ol, and oleyl alcohol.
  • unsaturated carboxylic acid-based monomers include (meth) acrylic acid, crotonic acid, angelic acid, tiglic acid, oleic acid, maleic acid, maleic anhydride, fumaric acid and the like.
  • Examples of the unsaturated carboxylate-based monomer include sodium (meth) acrylate, zinc (meth) acrylate, ammonium (meth) acrylate, sodium crotonic acid, sodium oleate, sodium maleate, sodium fumarate, and the like. ..
  • Examples of unsaturated amide monomers include (meth) acrylamide, N-methyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N, N-dimethylacrylamide, and N, N-isopropyl.
  • Examples include acrylamide.
  • radically polymerizable monomers include vinyl chloride, (meth) acrylonitrile, vinyl sulfonic acid, vinyl phosphonic acid, N-vinylpyrrolidone, 2-vinylpyridine, ethyl vinyl ether, vinyl oxylane, methyl vinyl ketone, vinylene carbonate, and vinyl.
  • vinyl-based monomers such as ethylene carbonate.
  • Only one type of the above radically polymerizable monomers can be used, or two or more types can be used in combination.
  • the radically polymerizable monomer is preferably one or more selected from the group consisting of a styrene-based monomer, an unsaturated ester-based monomer, an unsaturated carboxylic acid-based monomer, and an unsaturated amide-based monomer. More preferably, it is one or more selected from the group consisting of styrene-based monomers, unsaturated ester-based monomers, and unsaturated amide-based monomers.
  • the radically polymerizable monomers are styrene, vinyl acetate, methyl (meth) acrylate, hydroxyethyl (meth) acrylate, and N-isopropyl (meth) from the viewpoint of easily controlling the polymerization reaction of the radically polymerizable monomer.
  • the radically polymerizable monomers are styrene, vinyl acetate, methyl (meth) acrylate, hydroxyethyl (meth) acrylate, and N-isopropyl (meth) from the viewpoint of easily controlling the polymerization reaction of the radically polymerizable monomer.
  • examples of the polymer of the radically polymerizable monomer include polystyrene, polyvinyl acetate, methyl poly (meth) acrylate, hydroxyethyl poly (meth) acrylate, poly N-isopropylacrylamide, polyvinyl alcohol, polyvinyl butyral and the like. Is particularly preferred.
  • the polymer of the radically polymerizable monomer may be a derivative having a structure substituted with another functional group or the like.
  • the functional group is not particularly limited, and for example, the substituent includes an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a halogen atom, a carboxy group, and a carbonyl group. Examples thereof include a group, a sulfonyl group, a sulfone group, a cyano group and the like. These other functional groups can be introduced by further carrying out an addition reaction, a substitution reaction or the like on the polymer of the radically polymerizable monomer.
  • the polymer of the radically polymerizable monomer may be a homopolymer composed of one kind of monomer unit or a copolymer composed of two or more kinds of monomer units. Further, the polymer of the radically polymerizable monomer is usually linear, but can also have a branch.
  • the number average degree of polymerization and the number average molecular weight of the graft copolymer of the present invention are not particularly limited, and can be appropriately set according to the type of aliphatic polycarbonate, the type of polymer of radically polymerizable monomer, and the like.
  • the number average molecular weight of the graft copolymer is 1000 to 100,000, preferably 2000 or more, more preferably 3000 or more, and preferably 90000 from the viewpoint of avoiding a decrease in reactivity of the living radical polymerization reaction described later. Below, it is more preferably 80,000 or less, still more preferably 70,000 or less.
  • the value of the ratio DP2 / DP1 between the number average degree of polymerization DP1 of the stem polymer and the number average degree of polymerization DP2 of the branch polymer is not particularly limited, and the performance of the target graft copolymer is not particularly limited. It can be set as appropriate according to.
  • the value of the ratio DP2 / DP1 between the number average degree of polymerization DP1 of the stem polymer and the number average degree of polymerization DP2 of the branch polymer can be 0.1 or more and 10 or less. ..
  • the graft copolymer can preferably exhibit the physical properties of both the stem polymer and the branch polymer.
  • the value of DP2 / DP1 is more preferably 0.2 or more and 5 or less, and further preferably 0.5 or more and 2.5 or less.
  • the number average degree of polymerization DP2 of the branch polymer indicates the total degree of polymerization of all the branch polymers present per molecule of the graft copolymer.
  • the value of DP2 / DP1 can be measured by nuclear magnetic resonance spectroscopy (NMR analysis). Specifically, the number of moles of the structural unit of the stem polymer and the number of moles of the structural unit of the branch polymer can be obtained by 1 H-NMR analysis of the graft copolymer, and the value of DP2 / DP1 can be obtained from the ratio of the two. it can.
  • NMR analysis nuclear magnetic resonance spectroscopy
  • the graft copolymer in the present invention can be in various forms such as powder, granule, lump, pellet, strand, fibrous, liquid, dispersion, solution, and molded product.
  • the graft copolymer is different from the conventional graft copolymer in which the stem polymer is an aliphatic polycarbonate and the branch polymer is a polymer of a radically polymerizable monomer, so that the stem polymer is an acrylic polymer and the branch polymer is an aliphatic polycarbonate.
  • the stem polymer is an acrylic polymer
  • the branch polymer is an aliphatic polycarbonate.
  • the acrylic polymer is polyacrylic acid
  • a graft having a carboxy group is obtained. Therefore, it becomes a graft polymer having both the properties of polyacrylic acid and the properties of aliphatic polycarbonate.
  • the copolymer itself can be applied as a functional resin, or it can be used as an additive in a material or the like that has not been suitable for conventional graft copolymers. It is possible to exert various effects.
  • the graft copolymer of the present invention can be applied to a pyrolytic binder, a dispersant, a compatibilizer, a resin modifier, a substrate surface modifier, an adhesive, a paint, an additive such as an ink, and the like. It is possible.
  • the stem polymer is an aliphatic polycarbonate, and the aliphatic polycarbonate starts controlled radical polymerization. It has a structural unit containing a functional group having a function.
  • the aliphatic polycarbonate in the precursor is referred to as “aliphatic polycarbonate P”
  • structural unit I the structural unit containing a functional group having a controlled radical polymerization initiation ability
  • the aliphatic polycarbonate P is not particularly limited as long as it has the structural unit I, and for example, an aliphatic polycarbonate obtained by copolymerizing carbon dioxide and an epoxide is preferable.
  • R 1 , R 2 and R 3 are the same or different, and are substituted with a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may be substituted with a substituent, or a substituent. Indicates an aryl group having 6 to 20 carbon atoms which may be used. Two of R 1 to R 3 may be bonded to each other to form a substituted or unsaturated saturated or unsaturated aliphatic ring having 3 to 10 ring members together with the carbon atom to which they are bonded.
  • A represents a functional group having a controlled radical polymerization initiation ability.
  • the functional group A having the ability to initiate controlled radical polymerization is simply abbreviated as "functional group A".
  • the controlled radical polymerization means for example, various living radical polymerizations, and specific examples thereof include atom transfer radical polymerization, reversible addition cleavage chain transfer polymerization, and nitroxide-mediated radical polymerization.
  • R 1 , R 2 and R 3 may all be the same, R 1 and R 2 may be the same and R 3 may be different, R 2 and R 3 may be the same and R 1 may be different. R 1 , R 2 and R 3 may all be different.
  • the alkyl group having 1 to 10 carbon atoms is a linear or branched alkyl group having 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms. ..
  • the number of carbon atoms is preferably 1 to 9, more preferably 1 to 8, still more preferably 1 to 6, and even more preferably 1 to 4.
  • the alkyl groups represented by R 1 , R 2 and R 3 may be substituted with one or more substituents.
  • substituents in the alkyl group represented by R 1 , R 2 and R 3 include an alkoxy group, an acyloxy group, an alkoxycarbonyl group, an aryl group and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom). And so on.
  • the alkoxy group here include a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group and the like.
  • Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group and the like.
  • Examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, and a tert-butoxycarbonyl group.
  • the aryl group include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a naphthyl group and the like.
  • the aryl group having 6 to 20 carbon atoms is an aryl group having 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 carbon atoms. It is a group, preferably 6 to 14.
  • a phenyl group, a naphthyl group, a tetrahydronaphthyl group and the like can be mentioned.
  • the aryl group represented by R 1 , R 2 and R 3 may be substituted with one or more substituents.
  • substituents in the aryl group include an alkyl group, an aryl group, an alkoxy group, an acyloxy group, an alkoxycarbonyl group, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom).
  • the alkyl group here include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group and the like.
  • Examples of the aryl group include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a naphthyl group, an indenyl group and the like.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group and the like.
  • Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group and the like.
  • examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, a tert-butoxycarbonyl group and the like.
  • examples of the substituted or unsaturated saturated or unsaturated aliphatic ring having 3 to 10 member numbers formed by bonding two of R 1 , R 2 , and R 3 to each other include, for example.
  • the substituent include an alkyl group, an aryl group, an alkoxy group, an acyloxy group, a silyl group, a sulfanyl group, a cyano group, a nitro group and a sulfo group.
  • substituents include an alkyl group, an aryl group, an alkoxy group, an acyloxy group, a silyl group, a sulfanyl group, a cyano group, a nitro group and a sulfo group.
  • substituents include an alkyl group, an aryl group, an alkoxy group, an acyloxy group, a silyl group, a sulfanyl group, a cyano group, a nitro group and a sulfo group.
  • examples thereof include a formyl group and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom and an
  • Examples of the alkyl group here include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group and the like.
  • Examples of the aryl group include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a naphthyl group, an indenyl group and the like.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group and the like.
  • acyloxy group examples include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group and the like.
  • alkoxycarbonyl group examples include a methoxycarbonyl group, an ethoxycarbonyl group, and a tert-butoxycarbonyl group.
  • R 1 , R 2 and R 3 are preferably the same or different, and are preferably hydrogen atoms or alkyl groups having 1 to 4 carbon atoms. Of these, R 1 , R 2 and R 3 are preferably hydrogen atoms.
  • the type of the functional group A is not particularly limited as long as it is a functional group that functions as a controlled radical polymerization initiator.
  • a halogen-containing group, a dithioester group, a dithiocarbonate group, a dithiocarbamate group, a trithiocarbonate group and the like are preferably mentioned. More specifically, for example, the following general formula (2):
  • R 4 and R 5 are the same or different and represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms, and X is a chlorine atom, a bromine atom or iodine. Indicates an atom.
  • R 6 represents an alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or an ester group having 1 to 15 carbon atoms
  • Y represents an alkyl group having 1 to 10 carbon atoms and a carbon number of carbon atoms. It represents an aryl group of 6 to 20, an alkoxy group having 1 to 10 carbon atoms, an alkylamino group having 1 to 10 carbon atoms, or a thioalkoxy group having 1 to 10 carbon atoms.
  • R 7 represents an alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or an ester group having 1 to 15 carbon atoms
  • R 8 and R 9 are the same or different hydrogen atoms.
  • An alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms, and R 8 and R 9 may be bonded to each other together with the nitrogen atom to which they are bonded and substituted with a substituent.
  • An aliphatic nitrogen heterocycle having 4 to 10 ring members may be formed.
  • the alkyl group having 1 to 10 carbon atoms and the aryl group having 6 to 20 carbon atoms are the same as the alkyl group having 1 to 10 carbon atoms and the aryl group having 6 to 20 carbon atoms in the formula (1), respectively.
  • the types of can be exemplified.
  • the alkylene group having 1 to 10 carbon atoms is preferably, for example, methylene, ethylene, propylene or the like.
  • the arylene group having 6 to 20 carbon atoms is preferably phenylene or the like.
  • the ester group having 1 to 15 carbon atoms has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or Fifteen linear or branched ester groups.
  • the number of carbon atoms is preferably 2 to 13, more preferably 2 to 11, and even more preferably 2 to 10.
  • ester group specifically, -OCO -, - OCOCH 2 - , - OCOCH 2 CH 2 -, - OCOC 6 H 4 -, - OCOCH 2 C 6 H 4 -, - OCOCH 2 C 6 H 4 CH 2- , -OCOCH 2 C 6 H 4 CH (CH 3 )-, -CH 2 COOCH 2- , -CH 2 OCOCH 2-, and the like can be preferably exemplified.
  • the alkoxy group having 1 to 10 carbon atoms is a linear or branched alkoxy group having 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms. ..
  • the number of carbon atoms is preferably 1 to 9, more preferably 1 to 8, still more preferably 1 to 6, and even more preferably 1 to 4.
  • Specific examples of the alkoxy group include -OCH 3 , -OCH 2 CH 3 , -OCH 2 CH 2 CH 3 , -OCH (CH 3 ) CH 3 , -OCH 2 CH 2 CH 2 CH 3 , and -OCH.
  • the alkylamino group having 1 to 10 carbon atoms is a linear or branched alkylamino group having 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms. Is.
  • the number of carbon atoms is preferably 1 to 9, more preferably 1 to 8, still more preferably 1 to 6, and even more preferably 1 to 4.
  • Specific examples of the alkylamino group include -NHCH 3 , -NHCH 2 CH 3 , -NHCH 2 CH 2 CH 3 , -NHCH (CH 3 ) 2 , -NHCH 2 CH 2 CH 2 CH 3 , and -NHCH.
  • the thioalkoxy group having 1 to 10 carbon atoms is a linear or branched thioalkoxy group having 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms. Is.
  • the number of carbon atoms is preferably 1 to 9, more preferably 1 to 8, still more preferably 1 to 6, and even more preferably 1 to 4.
  • thioalkoxy group examples include -SCH 3 , -SCH 2 CH 3 , -SCH 2 CH 2 CH 3 , -SCH 2 CH 2 CH 2 CH 3 , -SCH 2 CH (CH 3 ) 2 , -SCH (CH 3 ) CH 2 CH 3 , -SCH 2 CH 2 CH 2 CH 3 , -SCH 2 CH 2 CH (CH 3 ) 2 , -SCH 2 CH (CH 3 ) CH 2 CH 3 , -SCH (CH 3 ) CH 2 CH 3 and the like can be preferably exemplified.
  • R 8 and R 9 are attached to each other together with the nitrogen atom to which they are attached, and are aliphatic groups having 4 to 10 ring members (4, 5, 6, 7, 8, 9, or 10).
  • a nitrogen heterocycle may be formed.
  • the nitrogen atom in the aliphatic nitrogen heterocycle is derived from the nitrogen atom to which R 8 and R 9 are bonded.
  • the aliphatic nitrogen heterocycle may be saturated or unsaturated.
  • the aliphatic nitrogen heterocycle may be substituted with a substituent.
  • substituent examples include an alkyl group, an aryl group, an alkoxy group, an acyloxy group, a silyl group, a sulfanyl group, a cyano group, a nitro group, a sulfo group, a formyl group and the like.
  • the aliphatic nitrogen heterocycle may be substituted with one or more substituents.
  • the alkyl group here include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group and the like.
  • Examples of the aryl group include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a naphthyl group, an indenyl group and the like.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group and the like.
  • Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group and the like.
  • silyl group examples include a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a trimethoxysilyl group, a dimethoxymethylsilyl group, a methoxydimethylsilyl group and the like.
  • the aliphatic polycarbonate P can have other structural units other than the structural unit I.
  • the following general formula (5) is a specific example of another structural unit.
  • R 10 , R 11 , R 12 and R 13 are the same or different alkyl groups having 1 to 10 carbon atoms which may be substituted with hydrogen atoms or substituents, or substituents. It represents an aryl group having 6 to 20 carbon atoms which may be substituted, and two of R 10 to R 13 are bonded to each other, and together with the carbon atom to which they are bonded, the substituted or unsaturated saturated or unsaturated It may form an aliphatic ring having 3 to 10 ring members.)
  • the structural unit represented by is given.
  • R 10 , R 11 , R 12 and R 13 are the same or different. That is, R 10 , R 11 , R 12 and R 13 may all be the same, R 10 , R 11 , R 12 may be the same and R 13 may be different, and R 10 , R 12 , and R 13 may be the same. R 11 may be different, and R 10 , R 11 , R 12 and R 13 may all be different.
  • the alkyl group having 1 to 10 carbon atoms which may be substituted with the substituent is the same as the alkyl group having 1 to 10 carbon atoms which may be substituted with the substituent of the formula (1).
  • the types of can be exemplified.
  • the aryl group having 6 to 20 carbon atoms which may be substituted with the substituent is the same as the aryl group having 6 to 20 carbon atoms which may be substituted with the substituent of the formula (1).
  • the types of can be exemplified.
  • aliphatic ring having a saturated or unsaturated ring member number of 3 to 10 which is substituted or unsaturated and is formed by bonding two of R 10 , R 11 , R 12 and R 13 to each other.
  • a 3- to 8-membered aliphatic ring which may be substituted with a substituent may be mentioned. More specific examples of the aliphatic ring include a cyclopentane ring, a cyclopentene ring, a cyclohexane ring, a cyclohexene ring, a cycloheptane ring and the like.
  • the substituent include an alkyl group, an aryl group, an alkoxy group, an acyloxy group, a silyl group, a sulfanyl group, a cyano group, a nitro group and a sulfo group.
  • substituents include an alkyl group, an aryl group, an alkoxy group, an acyloxy group, a silyl group, a sulfanyl group, a cyano group, a nitro group and a sulfo group.
  • substituents include an alkyl group, an aryl group, an alkoxy group, an acyloxy group, a silyl group, a sulfanyl group, a cyano group, a nitro group and a sulfo group.
  • examples thereof include a formyl group and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom and an
  • Examples of the alkyl group here include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group and the like.
  • Examples of the aryl group include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a naphthyl group, an indenyl group and the like.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group and the like.
  • acyloxy group examples include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group and the like.
  • alkoxycarbonyl group examples include a methoxycarbonyl group, an ethoxycarbonyl group, and a tert-butoxycarbonyl group.
  • R 10 , R 11 , R 12 and R 13 are preferably the same or different, and are preferably hydrogen atoms or alkyl groups having 1 to 4 carbon atoms.
  • R 10 , R 11 and R 12 are hydrogen atoms
  • R 13 is an alkyl group having 1 to 4 carbon atoms.
  • R 13 is a methyl group.
  • the content ratio of the structural unit I is not particularly limited.
  • the structural unit I is preferably contained in an amount of 1 mol% or more and 20 mol% or less in all the structural units of the aliphatic polycarbonate P.
  • both the physical properties of the stem polymer and the branch polymer can be preferably exhibited.
  • the structural unit contained in the aliphatic polycarbonate P for example, other structural units described above can be mentioned as the structural unit other than the structural unit I, and the structural unit represented by the formula (5) is preferable. Can be done.
  • the structural unit I is more preferably contained in an amount of 2 mol% or more and 12 mol% or less, more preferably 2.5 mol% or more and 8 mol% or less, in the total structural unit of the aliphatic polycarbonate P, 3 mol. It is particularly preferable that it is contained in an amount of% or more and 8 mol% or less. In these cases, the balance can be, for example, a structural unit represented by the formula (5).
  • the number average molecular weight of the aliphatic polycarbonate P is not particularly limited, and is, for example, 1000 to 100,000. In this case, the handleability of the graft copolymer obtained by the living radical polymerization of the precursor described later is excellent.
  • the number average molecular weight of the aliphatic polycarbonate P is preferably 2000 or more, more preferably 3000 or more, and preferably 50,000 or less, more preferably 30,000 or less, from the viewpoint of avoiding a decrease in the reactivity of the living radical polymerization reaction described later. More preferably, it is 25,000 or less.
  • the method for producing the precursor is not particularly limited, and for example, the polymerization method used in the production of known aliphatic polycarbonates can be selected.
  • the aliphatic polycarbonate P can be produced by a production method including a step of copolymerizing carbon dioxide and epoxide.
  • this manufacturing method is abbreviated as "manufacturing method P".
  • the aliphatic polycarbonate P obtained by the production method P contains a structural unit containing a carbonate bond in which carbon dioxide and an epoxide are alternately reacted, and a structural unit containing an ether bond in which carbon dioxide does not react and the epoxide is continuously reacted. It can be.
  • the structural unit of the aliphatic polycarbonate P preferably contains 80 mol% or more of structural units containing a carbonate bond, more preferably 90 mol% or more, further preferably 95 mol% or more, and 99 mol% or more. Is particularly preferred.
  • an epoxide having a functional group having at least a controlled radical polymerization initiation ability and an epoxide capable of forming the structural unit I represented by the formula (1) by reacting with carbon dioxide is used. Can be done. As a result, the aliphatic polycarbonate P obtained by the production method P can have the structural unit I in its structural unit.
  • an aliphatic polycarbonate having a structural unit I is formed by forming an aliphatic polycarbonate by a polymerization reaction of carbon dioxide and an epoxide, and then introducing a functional group A having a controlled radical polymerization initiation ability into a side chain.
  • Polycarbonate P can be obtained.
  • examples of the epoxide used for forming the structural unit represented by the formula (1) include glycidyl chloroacetate, glycidyl bromoacetate, glycidyl 2-chloropropionate, and 2-bromo.
  • the epoxide used in the production method P is a combination of the epoxide used for forming the structural unit represented by the formula (1) and the epoxide used for forming the structural unit represented by the formula (5). can do.
  • Examples of the epoxide used to form the structural unit represented by the formula (5) include ethylene oxide, propylene oxide, 1-butene oxide, 2-butene oxide, isobutylene oxide, 1-pentene oxide, 2-pentene oxide, and 1 -Hexene oxide, 1-octene oxide, 1-dodecene oxide, cyclopentene oxide, cyclohexene oxide, styrene oxide, vinylcyclohexane oxide, 3-phenylpropylene oxide, 3-naphthylpropylene oxide, 3-phenoxypropylene oxide, 3-naphthoxy Examples include propylene oxide.
  • ethylene oxide, propylene oxide, 1-butene oxide and cyclohexene oxide are preferable, ethylene oxide, propylene oxide and 1-butene oxide are more preferable, and propylene oxide is particularly preferable, from the viewpoint of having high reactivity.
  • the content of the epoxide used for forming the structural unit represented by the formula (1) and the epoxide used for forming the structural unit represented by the formula (5). Is not particularly limited.
  • the ratio of both can be adjusted so that the content ratio of the constituent unit I is within the range described later.
  • the polymerization reaction of carbon dioxide and epoxide is preferably carried out in the presence of a metal catalyst.
  • a metal catalyst for example, a known metal catalyst used in the polymerization reaction of carbon dioxide and epoxide can be widely used.
  • the metal catalyst include zinc-based catalysts, magnesium-based catalysts, aluminum-based catalysts, chromium-based catalysts, cobalt-based catalysts, nickel-based catalysts, and the like.
  • zinc-based catalysts and cobalt-based catalysts are preferable because they have high polymerization activity in the polymerization reaction between epoxides and carbon dioxide, and cobalt-based catalysts are more preferable from the viewpoint of easy control of molecular weight.
  • Examples of the zinc-based catalyst include organic zinc catalysts such as zinc acetate, diethyl zinc, and dibutyl zinc; primary amines, divalent phenols, aromatic dicarboxylic acids, aromatic hydroxy acids, aliphatic dicarboxylic acids, and aliphatic monocarboxylic acids.
  • Examples thereof include an organozinc catalyst obtained by reacting a compound such as the above with a zinc compound.
  • organozinc catalysts an organozinc catalyst obtained by reacting a zinc compound with an aliphatic dicarboxylic acid and an aliphatic monocarboxylic acid is preferable because it has a higher polymerization activity, and zinc oxide, glutaric acid, and acetic acid are preferable.
  • An organozinc catalyst obtained by reacting with is more preferable.
  • R 14 and R 15 identical or different, hydrogen atoms, substituted or unsubstituted alkyl groups, substituted or unsubstituted aromatic groups, or substituted or unsubstituted aromatic heterocyclic groups? , Or two R 14s or two R 15s may combine with each other to form a substituted or unsubstituted saturated or unsaturated aliphatic ring; R 16 , R 17 and R 18 may be the same or Differently, hydrogen atoms, substituted or unsubstituted alkyl groups, substituted or unsubstituted alkenyl groups, substituted or unsubstituted aromatic groups, substituted or unsubstituted aromatic heterocyclic groups, substituted or unsubstituted alkoxy groups, R 17 on a substituted or unsubstituted acyl group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted aromatic oxycarbonyl group, a
  • Z is, F -, Cl -, Br -, I -, N 3 - , CF 3 SO 3 -, p -CH 3 C 6 H 4 SO 3 -, BF 4 -, NO 2 -, NO 3 -, OH -, PF 6 -, BPh 4 -, SbF 6 -, ClO 4 -,
  • a cobalt complex represented by is used.
  • R 14 and R 15 identical or different, hydrogen atoms, substituted or unsubstituted alkyl groups, substituted or unsubstituted aromatic groups, or substituted or unsubstituted aromatic heterocyclic groups? , Or two R 13s or two R 15s may combine with each other to form a substituted or unsubstituted saturated or unsaturated aliphatic ring; each of the plurality of R 19s is independently hydrogenated.
  • cobalt complexes represented by the formula (7) the cobalt complexes represented by the following formulas (7-1) to (7-5) are preferable.
  • the amount of the metal catalyst used in the polymerization reaction is preferably 0.001 part by mass or more, more preferably 0.01 with respect to 100 parts by mass of the epoxide, from the viewpoint of promoting the progress of the polymerization reaction. It is preferably 20 parts by mass or less, and more preferably 10 parts by mass or less from the viewpoint of obtaining an effect commensurate with the amount used.
  • the metal catalyst used in the polymerization reaction can be produced, for example, by a known method.
  • the polymerization reaction may be carried out in the presence of a co-catalyst in addition to the metal catalyst, if necessary.
  • a co-catalyst bis (triphenylphosphoranylidene) ammonium chloride (PPNCl), piperidine, bis (triphenylphosphoranylidene) ammonium fluoride (PPNF), bis (triphenylphosphoranilidine) ammonium pentafluorobenzoate (PPNOBzF) 5 ), Tetra-n-butylammonium chloride (nBu 4 NCl), tetra-n-butylammonium bromide (nBu 4 NBr), tetra-n-butylammonium iodide (nBu 4 NI), tetra-n-butylammonium acetate.
  • PPNCl bis (triphenylphosphoranylidene) ammonium chloride
  • PPNF bis (triphenylphosphoranylidene)
  • N-n-butylammonium nitrate nBu 4 NO 3
  • Triethylphosphine Et 3 P
  • tri-n-butylphosphine nBu 3 P
  • triphenylphosphine Ph 3 P
  • Examples thereof include pyridine, 4-methylpyridine, 4-formylpyridine, 4- (N, N-dimethylamino) pyridine, N-methylimidazole, N-ethylimidazole and the like.
  • PPNCl, PPNF, PPNOBzF 5 and nBu 4 NCl are preferable, and PPNCl is more preferable from the viewpoint of having high reaction activity.
  • the amount of the co-catalyst used is preferably 0.1 to 10 mol, more preferably 0.3 to 5 mol, still more preferably 0. It is 5 to 1.5 mol. If it is less than 0.1 mol or more than 10 mol, a side reaction is likely to occur in the polymerization reaction.
  • a solvent can be used in the polymerization reaction if necessary.
  • the solvent is not particularly limited, and various organic solvents can be used.
  • the organic solvent include aliphatic hydrocarbon solvents such as pentane, hexane, octane and cyclohexane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; methylene chloride, chloroform, carbon tetrachloride, 1,1- Halogenated hydrocarbon solvents such as dichloroethane, 1,2-dichloroethane, chlorbenzene and bromobenzene; ether solvents such as dimethoxyethane, tetrahydrofuran, 2-methyl tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane and anisole.
  • Ester solvents such as ethyl acetate, n-propyl acetate, isopropyl acetate; amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide; dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, propylene carbonate and the like Examples thereof include carbonate solvents.
  • the amount of the solvent used is preferably 100 to 10000 parts by mass with respect to 100 parts by mass of epoxide, for example, from the viewpoint of smoothly proceeding the polymerization reaction.
  • the method of polymerizing the epoxide and carbon dioxide is not particularly limited.
  • an autoclave may be charged with an epoxide, a metal catalyst, and if necessary, a co-catalyst, a reaction solvent, or the like, mixed, and then carbon dioxide is press-fitted to cause a reaction.
  • the amount of carbon dioxide used in the polymerization reaction is preferably 1 to 10 mol, more preferably 1 to 5 mol, and further preferably 1 to 3 mol with respect to 1 mol of the epoxide.
  • the working pressure of carbon dioxide used in the polymerization reaction is not particularly limited, but is preferably 0.1 MPa or more, more preferably 0.2 MPa or more, still more preferably 0.5 MPa or more, from the viewpoint of smooth progress of the reaction. From the viewpoint of obtaining an effect commensurate with the working pressure, it is preferably 20 MPa or less, more preferably 10 MPa or less, still more preferably 5 MPa or less.
  • the polymerization reaction temperature in the polymerization reaction is not particularly limited. From the viewpoint of shortening the reaction time, it is preferably 0 ° C. or higher, more preferably 10 ° C. or higher, still more preferably 20 ° C. or higher, and from the viewpoint of suppressing side reactions and improving the yield, preferably 100 ° C. or lower. It is preferably 90 ° C. or lower, more preferably 80 ° C. or lower.
  • the polymerization reaction time cannot be unconditionally determined because it varies depending on the polymerization reaction conditions, but it is preferably about 1 to 40 hours.
  • a graft copolymer can be produced by a step of carrying out a polymerization reaction using the precursor as a raw material.
  • the precursor is an aliphatic polycarbonate P having a structural unit I and has a functional group A having a controlled radical polymerization initiation ability in its side chain, the precursor is subjected to controlled radical polymerization. Therefore, the graft copolymer of the present invention can be easily produced.
  • the controlled radical polymerization method that can be used in the method for producing a graft copolymer of the present invention can be appropriately selected depending on the type of functional group having the ability to initiate controlled radical polymerization.
  • the functional group having a controlled radical polymerization initiation ability is the above-mentioned halogen-containing group
  • atom transfer radical polymerization can be used.
  • the functional group having a controlled radical polymerization initiation ability is the above-mentioned dithioester group, dithiocarbonate group, dithiocarbamate group, or trithiocarbonate group
  • reversible addition cleavage chain transfer polymerization can be used.
  • the functional group having a controlled radical polymerization initiation ability is the above-mentioned alkoxyamine group
  • nitroxide-mediated radical polymerization can be used.
  • production method G the method for producing the graft copolymer of the present invention using the precursor as a raw material.
  • a graft copolymer can be specifically produced by polymerizing a precursor and a radically polymerizable monomer.
  • the precursor becomes the stem polymer of the graft copolymer
  • the radically polymerizable monomer polymerizes to become the branch polymer of the graft copolymer.
  • a catalyst or an initiator can be used in the polymerization reaction, if necessary.
  • a catalyst consisting of a compound containing at least one central element selected from nitrogen, carbon, oxygen, germanium, tin, and antimony and a halogen atom bonded to the central element; an organic amine compound; and an ion with a halide ion.
  • a catalyst C which is a non-metal compound having a bond in which a non-metal atom in the non-metal compound is in a cation state and forms an ionic bond with a halide ion.
  • transition metal compounds such as Group 7, 8, 9, 10, or 11 include cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, and oxidation.
  • Bronze ferrous chloride, ferrous bromide, ferrous iodide, iron dichloride, iron dibromide, iron diiodide, ruthenium dichloride, ruthenium dibromide, ruthenium diiodide, etc. Can be mentioned.
  • organic ligands examples include 2,2'-bipyridyl, 1,10-phenanthroline, tetramethylethylenediamine, pentamethyldiethylenetriamine, tris (dimethylaminoethyl) amine, tris (2-pyridylmethyl) amine, and triphenyl.
  • organic ligands examples include 2,2'-bipyridyl, 1,10-phenanthroline, tetramethylethylenediamine, pentamethyldiethylenetriamine, tris (dimethylaminoethyl) amine, tris (2-pyridylmethyl) amine, and triphenyl.
  • examples thereof include phosphine and tributylphosphine.
  • the catalyst used as the central element selected from germanium, tin, or antimony is a compound containing at least one central element selected from germanium, tin, or antimony and at least one halogen atom bonded to the central element.
  • Specific examples thereof include germanium iodide (II), germanium iodide (IV), tin iodide (II), tin iodide (IV) and the like.
  • the catalyst containing nitrogen or phosphorus as a central element include compounds containing at least one central element selected from nitrogen or phosphorus and at least one halogen atom bonded to the central element. Specific examples thereof include phosphorus halide, phosphine halide, nitrogen halide, phosphite halide, amine halide and imide derivative halide.
  • organic amine compound examples include triethylamine, tributylamine, 1,1,2,2-tetrakis (dimethylamino) ethylene, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane. , Ethylenediamine, tetramethylethylenediamine, tetramethyldiaminomethane, tris (2-aminoethyl) amine, tris (2-methylaminoethyl) amine and the like.
  • the catalyst C examples include ammonium salts such as tetrabutylammonium iodide, tetrabutylammonium triiodide, and tetrabutylammonium bromodiiodide; 1-methyl-3-methyl-imidazolium iodide, 1-ethyl-3-methyl.
  • Imidazolium salts such as imidazolium bromide; pyridinium salts such as 2-chloro-1-methylpyridinium iodide; phosphonium salts such as methyltributylphosphonium iodide and tetraphenylphosphonium iodide; sulfonium salts such as tributylsulfonium iodide; diphenyl Iodonium salts such as iodonium iodide; and the like.
  • a graft copolymer can be obtained without using a catalyst and an initiator.
  • the radically polymerizable monomer used in the production method G is the same as the radically polymerizable monomer described in the section of "1. Graft copolymer”.
  • the amount of the radically polymerizable monomer used is not particularly limited, and can be appropriately set according to the structure of the target graft copolymer.
  • the amount of the radically polymerizable monomer used is 10 to 5000 mol with respect to 1 mol of the functional group having the ability to initiate controlled radical polymerization in the precursor.
  • both the physical properties of the stem polymer and the physical properties of the branch polymer can be preferably exhibited.
  • the amount of the radically polymerizable monomer used is preferably 50 mol to 1500 mol, more preferably 100 mol to 800 mol, based on 1 mol of the functional group having the ability to initiate controlled radical polymerization in the precursor.
  • a solvent can be used in the polymerization reaction as needed.
  • Various organic solvents can be used as the solvent, for example, aliphatic hydrocarbon solvents such as pentane, hexane, octane and cyclohexane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; dimethoxyethane, tetrahydrofuran, etc.
  • Ether solvents such as 2-methyl tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, anisole; ester solvents such as ethyl acetate, n-propyl acetate, isopropyl acetate; N, N-dimethylformamide, N, N -Amid solvents such as dimethylacetamide; carbonate solvents such as dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate, propylene carbonate and the like can be mentioned. Further, when a radically polymerizable monomer that becomes liquid during the polymerization reaction is used, it is not necessary to use a solvent.
  • the amount of the solvent used is, for example, 0 mol to 10000 mol, preferably 10 mol to 5000 mol, further preferably 50 mol to 2000 mol, and particularly preferably 100 mol to 1000 mol, based on 1 mol of the precursor.
  • the amount of the solvent is within this range, the graft polymerization reaction can be carried out at a sufficient reaction rate.
  • the temperature of the polymerization reaction can be appropriately set according to the type of controlled radical polymerization and the type of radically polymerizable monomer used, for example, 0 ° C. to 200 ° C., preferably 30 ° C. to 150 ° C. , More preferably 50 ° C to 120 ° C.
  • graft copolymer Even after the polymerization reaction is completed, in the obtained graft copolymer, a structure that serves as an initiator of controlled radical polymerization exists at the end of the branch polymer, so that the same or other monomer and the graft copolymer can be used. Can also be controlled radical polymerization.
  • the terminal group of the branch polymer can be converted to another group, which further increases the degree of freedom in designing the graft copolymer.
  • the post-treatment can be appropriately selected depending on the type of controlled radical polymerization, for example, decomposition treatment by heating and light irradiation; hydrolysis treatment; hydrogenation decomposition treatment; coupling reaction with free radicals; thiol compound. Reduction treatment; etc.
  • the number average molecular weight (Mn) of the aliphatic polycarbonate and the block copolymer was measured by the following method.
  • the DP2 / DP1 ratio was measured from the 1 H-NMR spectrum of the graft copolymer, and specifically, it was measured as follows according to the radically polymerizable monomer species used in the production of the graft copolymer. -In the case of methyl methacrylate, the integral ratio of the peak of methine hydrogen on the carbon adjacent to the carbonate appearing near 5.0 ppm is A, and the integral ratio of the peak of methyl hydrogen of polymethyl methacrylate appearing around 3.6 ppm is B. , B / 3A was defined as the degree of polymerization ratio DP2 / DP1.
  • the integral ratio of the peak of methine hydrogen on the carbon adjacent to the carbonate appearing near 5.0 ppm is A
  • the integral ratio of the peak of methine hydrogen of the epoxy group of polyglycidyl methacrylate appearing around 3.2 ppm. was B
  • the value of B / A was the degree of polymerization ratio DP2 / DP1.
  • the integral ratio of the peak of methine hydrogen on the carbon adjacent to the carbonate appearing around 5.0 ppm is A
  • the ratio was B, and the value of B / 6A was the degree of polymerization ratio DP2 / DP1.
  • B the integral ratio of the peak of methine hydrogen on the carbon adjacent to the carbonate appearing near 5.0 ppm is A, and the integral ratio of the peak of hydrogen of the phenyl group appearing around 6.3 to 7.2 ppm is B.
  • the value of B / 5A was defined as the degree of polymerization ratio DP2 / DP1.
  • Example 1a Precursors were synthesized according to the reaction scheme shown in the following formula (S1-1).
  • S1-1 a 50 mL autoclave
  • 8.7 mg (0.011 mmol) of the cobalt complex obtained in Production Example 1 6.2 mg (0.011 mmol) of bis (triphenylphosphoranylidene) ammonium chloride (PPNCl), and 2-bromoisobutyric acid.
  • 80 ⁇ L (0.53 mmol) of glycidyl was charged, and the inside of the autoclave was replaced with an argon atmosphere.
  • FIG. 1 shows a 1 H-NMR spectrum of a precursor of the graft copolymer obtained in Example 1a. From this 1 1 H-NMR, it was found that the content of the structural unit I represented by the above formula (1) was 2.4 mol% in the total structural units.
  • Example 1b In a 50 mL autoclave, 17.5 mg (0.021 mmol) of the cobalt complex obtained in Production Example 1, 12.3 mg (0.021 mmol) of bis (triphenylphosphoranylidene) ammonium chloride (PPNCl), 2-bromoisobutyric acid. 0.32 mL (2.1 mmol) of glycidyl was charged, and the inside of the autoclave was replaced with an argon atmosphere. 3.0 mL (42 mmol) of propylene oxide was charged, filled with carbon dioxide until the pressure in the autoclave reached 1.5 MPa, and then stirred at 25 ° C. for 24 hours.
  • PPNCl bis (triphenylphosphoranylidene) ammonium chloride
  • Example 1c In a 50 mL autoclave, 8.7 mg (0.011 mmol) of the cobalt complex obtained in Production Example 1, 6.2 mg (0.011 mmol) of bis (triphenylphosphoranylidene) ammonium chloride (PPNCl), and 2-bromoisobutyric acid. 0.32 mL (2.1 mmol) of glycidyl was charged, and the inside of the autoclave was replaced with an argon atmosphere. 1.5 mL (21 mmol) of propylene oxide was charged, filled with carbon dioxide until the pressure in the autoclave reached 1.5 MPa, and then stirred at 25 ° C. for 24 hours.
  • PPNCl bis (triphenylphosphoranylidene) ammonium chloride
  • the reaction mixture was diluted with methylene chloride, and then 1.0 g of hydrochloric acid acidic methanol was added to stop the reaction.
  • the mixture was concentrated under reduced pressure, and the obtained residue was dissolved by adding 5 mL of chloroform, and this solution was added dropwise to 100 g of methanol to precipitate a solid.
  • the obtained solid was filtered and dried under reduced pressure to obtain 1.27 g of aliphatic polycarbonate (yield 45%).
  • the Mn of the obtained precursor was 19100. From 1 H-NMR of the obtained precursor, it was found that the content of the structural unit I represented by the above formula (1) was 4.8 mol% in all the structural units.
  • FIG. 2 shows the 1 H-NMR spectrum of the precursor of the graft copolymer obtained in Example 1d. From this 1 1 H-NMR, it was found that the content of the structural unit I represented by the above formula (1) was 2.5 mol% in the total structural units.
  • Example 2a The graft copolymer was synthesized according to the reaction scheme shown in the following formula (S2-1). 0.20 g of the precursor obtained in Example 1b (0.097 mmol as the structural unit I represented by the above formula (1)) and cuprous bromide 2 in a 30 mL Schlenk tube containing a magnetic stirrer. 9. 9 mg (0.020 mmol) and 1.4 mg (0.0048 mmol) of tris (2-pyridylmethyl) amine (TPMA) were charged, and the inside of the container was replaced with an argon atmosphere. 2.1 mL (20 mmol) of methyl methacrylate (MMA) was charged and freeze-degassed.
  • S2-1 The graft copolymer was synthesized according to the reaction scheme shown in the following formula (S2-1). 0.20 g of the precursor obtained in Example 1b (0.097 mmol as the structural unit I represented by the above formula (1)) and cuprous bromide 2 in a 30 mL Schlenk tube containing a magnetic stir
  • Example 2b The graft copolymer was synthesized according to the reaction scheme represented by the following formula (S2-2). 0.20 g of the precursor obtained in Example 1b (0.097 mmol as the structural unit I represented by the above formula (1)) and cuprous bromide 2 in a 30 mL Schlenk tube containing a magnetic stirrer. .2 mg (0.015 mmol) and 1.1 mg (0.0038 mmol) of tris (2-pyridylmethyl) amine (TPMA) were charged, and the inside of the container was replaced with an argon atmosphere.
  • S2-2 The graft copolymer was synthesized according to the reaction scheme represented by the following formula (S2-2). 0.20 g of the precursor obtained in Example 1b (0.097 mmol as the structural unit I represented by the above formula (1)) and cuprous bromide 2 in a 30 mL Schlenk tube containing a magnetic stirrer. .2 mg (0.015 mmol) and 1.1 mg (0.0038 mmol) of tris
  • the residue was dissolved in 3 mL of chloroform and added dropwise to 100 g of methanol to precipitate a solid.
  • the obtained solid was collected by filtration and dried under reduced pressure to obtain 0.49 g of a colorless graft copolymer.
  • the Mn of the obtained graft copolymer was 42500.
  • the structure was identified by 1 1 H-NMR.
  • Example 2c The graft copolymer was synthesized according to the reaction scheme represented by the following formula (S2-3). 0.20 g of the precursor obtained in Example 1b (0.097 mmol as the structural unit I represented by the above formula (1)) and cuprous bromide 2 in a 30 mL Schlenk tube containing a magnetic stirrer. .9 mg (0.020 mmol), 1.5 mg (0.005 mmol) of tris (2-pyridylmethyl) amine (TPMA), and 2.3 g (20 mmol) of N-isopropylacrylamide (NIPAM) were charged, and the inside of the container was filled with an argon atmosphere. Replaced with.
  • S2-3 The graft copolymer was synthesized according to the reaction scheme represented by the following formula (S2-3). 0.20 g of the precursor obtained in Example 1b (0.097 mmol as the structural unit I represented by the above formula (1)) and cuprous bromide 2 in a 30 mL Schlenk tube containing a
  • Example 2d 0.20 g (side chain functional group 0.087 mmol) of the aliphatic polycarbonate obtained in Example 1c, 2.6 mg (0.018 mmol) of cuprous bromide, in a 30 mL Schlenk tube containing a magnetic stir bar. And 1.3 mg (0.005 mmol) of tris (2-pyridylmethyl) amine (TPMA) and 2.0 g (18 mmol) of N-isopropylacrylamide (NIPAM) were charged, and the inside of the container was replaced with an argon atmosphere. 2.0 mL of tetrahydrofuran was charged and freeze-deaerated.
  • TPMA 2,2-pyridylmethyl) amine
  • NIPAM N-isopropylacrylamide
  • Example 2e> The graft copolymer was synthesized according to the reaction scheme represented by the following formula (S2-4). 0.20 g of the precursor obtained in Example 1d (0.048 mmol as the structural unit I represented by the above formula (1)) and cuprous bromide 1 in a 30 mL Schlenk tube containing a magnetic stirrer. .8 mg (0.013 mmol) and 1.0 mg (0.006 mmol) of N, N, N ′′, N ′′, N ′′ -pentamethyldiethylenetriamine (PMDTEA) were charged, and the inside of the container was replaced with an argon atmosphere.
  • S2-4 The graft copolymer was synthesized according to the reaction scheme represented by the following formula (S2-4). 0.20 g of the precursor obtained in Example 1d (0.048 mmol as the structural unit I represented by the above formula (1)) and cuprous bromide 1 in a 30 mL Schlenk tube containing a magnetic stirrer. .8 mg (0.013 m
  • the obtained solid was collected by filtration and dried under reduced pressure to obtain 0.58 g of a colorless polypropylene carbonate-polystyrene graft copolymer.
  • the Mn of the obtained graft copolymer was 16600.
  • the structure was identified by 1 1 H-NMR.
  • Table 1 shows the physical properties of the precursor and the graft copolymer obtained in each example.
  • a desired graft copolymer can be produced by a polymerization reaction using a precursor, and that each obtained graft copolymer is produced from 1 H-NMR with high purity. confirmed.
  • the graft copolymer of the present invention can be applied to a pyrolytic binder, a dispersant, a compatibilizer, a resin modifier, a substrate surface modifier, an adhesive, a paint, an additive such as an ink, and the like. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Provided are: a graft copolymer in which a backbone polymer is an aliphatic polycarbonate and a branch polymer is a polymer of a radical-copolymerizable monomer; a method for producing the graft copolymer; and a precursor for a graft copolymer. The graft copolymer of the present invention is a graft copolymer having a backbone polymer and a branch polymer bonded to the backbone polymer, wherein the backbone polymer is an aliphatic polycarbonate and the branch polymer is a polymer of a radical-polymerizable monomer. The precursor of the present invention is a precursor for a graft copolymer, wherein a backbone polymer is an aliphatic polycarbonate and the aliphatic polycarbonate has a structural unit containing a functional group having a controlled radical polymerization initiation ability.

Description

グラフト共重合体及びその製造方法、並びにグラフト共重合体の前駆体Graft copolymer and its production method, and precursor of graft copolymer
 本発明は、グラフト共重合体及びその製造方法、並びにグラフト共重合体の前駆体に関する。 The present invention relates to a graft copolymer, a method for producing the same, and a precursor of the graft copolymer.
 グラフト共重合体は、幹ポリマーに異種の枝ポリマーが化学結合して形成される高分子化合物であり、ブロック共重合体とともに、その特殊な構造に由来する様々な機能を有するため、種々の用途への利用が盛んに研究されている。特に性質の異なるポリマーを組み合わせることで、両方のポリマーが有する性質を両立させた上で、さらなる高機能化を図ることができる。 A graft copolymer is a polymer compound formed by chemically bonding different types of branch polymers to a stem polymer, and has various functions derived from its special structure together with a block copolymer, and thus has various uses. It is being actively studied for use in. In particular, by combining polymers having different properties, it is possible to achieve both high functionality while achieving both properties of both polymers.
 例えば、特許文献1には、セルロース系樹脂に(メタ)アクリル酸エステル系ポリマーがグラフトしたバインダー樹脂が開示されており、セルロース樹脂のレオロジー特性、接着性、シート強度等の物性と、アクリル樹脂の易熱分解性を併せ持つことが可能となる。特許文献2には、ポリエステル系樹脂にビニルポリマーがグラフトした熱可塑性樹脂が示されており、この樹脂を改質剤として用いたポリエステル系樹脂は、耐熱性、成形加工性、耐衝撃性及び接着性が改善されることが開示されている。 For example, Patent Document 1 discloses a binder resin obtained by grafting a (meth) acrylic acid ester polymer onto a cellulosic resin, and exhibits physical properties such as rheological properties, adhesiveness, and sheet strength of the cellulose resin, and the acrylic resin. It is possible to have both easy thermal decomposition properties. Patent Document 2 shows a thermoplastic resin obtained by grafting a vinyl polymer onto a polyester resin, and the polyester resin using this resin as a modifier has heat resistance, molding processability, impact resistance, and adhesion. It is disclosed that the sex is improved.
 近年では、脂肪族ポリカーボネートの研究も盛んに行われており、さまざまな手法により機能を付与することが検討されている。その一つの手法として、他のポリマーとのグラフト共重合体を形成する方法が挙げられる。例えば、非特許文献1には、幹ポリマーが二酸化炭素/プロピレンオキシド共重合体であり、枝ポリマーがポリ乳酸であるグラフト共重合体が開示されている。特許文献3には、幹ポリマーがアクリルポリマーであり、枝ポリマーが二酸化炭素/プロピレンオキシド共重合体であるグラフト共重合体が開示されている。 In recent years, research on aliphatic polycarbonate has been actively conducted, and it is being considered to impart functions by various methods. One of the methods is a method of forming a graft copolymer with another polymer. For example, Non-Patent Document 1 discloses a graft copolymer in which the stem polymer is a carbon dioxide / propylene oxide copolymer and the branch polymer is polylactic acid. Patent Document 3 discloses a graft copolymer in which the stem polymer is an acrylic polymer and the branch polymer is a carbon dioxide / propylene oxide copolymer.
特開2005-1911号公報Japanese Unexamined Patent Publication No. 2005-1911 特開2002-226527号公報JP-A-2002-226527 特表2013-523988号公報Special Table 2013-523988
 しかしながら、これまでの研究において、幹ポリマーが脂肪族ポリカーボネートであり、枝ポリマーがラジカル重合性モノマーの重合体であるグラフト共重合体の合成例はなかった。 However, in the studies so far, there have been no synthetic examples of graft copolymers in which the stem polymer is an aliphatic polycarbonate and the branch polymer is a polymer of a radically polymerizable monomer.
 本発明者らは、メタクリル基等のラジカル重合性基を側鎖に有する脂肪族ポリカーボネートからのグラフト重合を試みたところ、ラジカル重合性モノマーの単独重合反応、あるいは自己架橋反応等の副反応が無視できない割合で起こり、高い純度のグラフト重合体を製造することは難しいことがわかった。このように、脂肪族ポリカーボネートをベースとするグラフト共重合体において、幹ポリマーを脂肪族ポリカーボネート、枝ポリマーをラジカル重合性モノマーの重合体とすることは難しく、脂肪族ポリカーボネートを用いたグラフト共重合体を製造する上では、そのポリマー設計に制限があった。また、そのような共重合体を製造するにしても、高い純度で得ることが難しいものであった。 When the present inventors attempted graft polymerization from an aliphatic polycarbonate having a radically polymerizable group such as a methacrylic group in the side chain, side reactions such as a homopolymerization reaction of a radically polymerizable monomer or a self-crosslinking reaction were ignored. It occurred at a rate that could not be achieved, and it was found that it was difficult to produce a high-purity graft polymer. As described above, in the graft copolymer based on the aliphatic polycarbonate, it is difficult to use the stem polymer as the aliphatic polycarbonate and the branch polymer as the polymer of the radically polymerizable monomer, and the graft copolymer using the aliphatic polycarbonate is used. There were restrictions on the polymer design in the production of. Moreover, even if such a copolymer is produced, it is difficult to obtain it with high purity.
 本発明は、上記に鑑みてなされたものであり、幹ポリマーが脂肪族ポリカーボネートであり、枝ポリマーがラジカル重合性モノマーの重合体であるグラフト共重合体及びその製造方法、並びにグラフト共重合体の前駆体を提供することを目的とする。 The present invention has been made in view of the above, and the graft copolymer in which the stem polymer is an aliphatic polycarbonate and the branch polymer is a polymer of a radically polymerizable monomer, a method for producing the same, and a graft copolymer. It is intended to provide a precursor.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、脂肪族ポリカーボネートの側鎖の一部に制御ラジカル重合の開始剤となる官能基を導入することに成功し、これにより、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of diligent research to achieve the above object, the present inventors have succeeded in introducing a functional group as an initiator of controlled radical polymerization into a part of the side chain of the aliphatic polycarbonate. We have found that the above object can be achieved, and have completed the present invention.
 すなわち、本発明は、例えば、以下の項に記載の主題を包含する。
項1
幹ポリマーと、該幹ポリマーに結合した枝ポリマーを有するグラフト共重合体であって、前記幹ポリマーが脂肪族ポリカーボネートであり、
前記枝ポリマーがラジカル重合性モノマーの重合体である、グラフト共重合体。
項2
前記脂肪族ポリカーボネートが二酸化炭素とエポキシドとの共重合体である、項1に記載のグラフト共重合体。
項3
前記ラジカル重合性モノマーがスチレン系モノマー、不飽和エステル系モノマー、及び、不飽和アミド系モノマーからなる群より選ばれる1種以上である、項1又は2に記載のグラフト共重合体。
項4
前記幹ポリマーの数平均重合度DP1と、前記枝ポリマーの数平均重合度DP2との比DP2/DP1の値が0.1以上10以下である、項1~3のいずれか1項に記載のグラフト共重合体。
項5
グラフト共重合体の前駆体であって、
幹ポリマーが脂肪族ポリカーボネートであり、
前記脂肪族ポリカーボネートは、制御ラジカル重合開始能を有する官能基を含む構造単位を有する、前駆体。
項6
前記脂肪族ポリカーボネートが二酸化炭素とエポキシドとの共重合体である、項5に記載の前駆体。
項7
前記制御ラジカル重合開始能を有する官能基を含む構造単位は、前記脂肪族ポリカーボネートの全構造単位中に、1モル%以上、20モル%以下含まれる、項5又は6に記載の前駆体。
項8
制御ラジカル重合が、原子移動ラジカル重合、可逆的付加開裂連鎖移動重合又はニトロキシド媒介ラジカル重合である、項5~7のいずれか1項に記載の前駆体。
項9
項5~8のいずれか1項に記載の前駆体を用いて重合反応を行う工程を備える、グラフト共重合体の製造方法。
That is, the present invention includes, for example, the subjects described in the following sections.
Item 1
A graft copolymer having a stem polymer and a branch polymer bonded to the stem polymer, wherein the stem polymer is an aliphatic polycarbonate.
A graft copolymer in which the branch polymer is a polymer of a radically polymerizable monomer.
Item 2
Item 2. The graft copolymer according to Item 1, wherein the aliphatic polycarbonate is a copolymer of carbon dioxide and epoxide.
Item 3
Item 2. The graft copolymer according to Item 1 or 2, wherein the radically polymerizable monomer is at least one selected from the group consisting of a styrene-based monomer, an unsaturated ester-based monomer, and an unsaturated amide-based monomer.
Item 4
Item 2. The item according to any one of Items 1 to 3, wherein the value of the ratio DP2 / DP1 of the number average degree of polymerization DP1 of the stem polymer to the number average degree of polymerization DP2 of the branch polymer is 0.1 or more and 10 or less. Graft copolymer.
Item 5
A precursor of a graft copolymer,
The stem polymer is aliphatic polycarbonate,
The aliphatic polycarbonate is a precursor having a structural unit containing a functional group having a controlled radical polymerization initiation ability.
Item 6
Item 5. The precursor according to Item 5, wherein the aliphatic polycarbonate is a copolymer of carbon dioxide and epoxide.
Item 7
Item 5. The precursor according to Item 5 or 6, wherein the structural unit containing a functional group having a controlled radical polymerization initiation ability is contained in 1 mol% or more and 20 mol% or less in all the structural units of the aliphatic polycarbonate.
Item 8
Item 6. The precursor according to any one of Items 5 to 7, wherein the controlled radical polymerization is atom transfer radical polymerization, reversible addition cleavage chain transfer polymerization or nitroxide-mediated radical polymerization.
Item 9
A method for producing a graft copolymer, comprising a step of carrying out a polymerization reaction using the precursor according to any one of Items 5 to 8.
 本発明に係るグラフト共重合体は、幹ポリマーが脂肪族ポリカーボネートであり、枝ポリマーがラジカル重合性モノマーの重合体であるという新規なグラフト共重合体である。また、本発明に係るグラフト共重合体の前駆体は、前記新規なグラフト共重合体を製造するための原料として適しており、簡便な方法でグラフト共重合体を提供することを可能とする。 The graft copolymer according to the present invention is a novel graft copolymer in which the stem polymer is an aliphatic polycarbonate and the branch polymer is a polymer of a radically polymerizable monomer. Further, the precursor of the graft copolymer according to the present invention is suitable as a raw material for producing the novel graft copolymer, and it is possible to provide the graft copolymer by a simple method.
実施例1aで得られたグラフト共重合体の前駆体のH-NMRスペクトルを示す。The 1 H-NMR spectrum of the precursor of the graft copolymer obtained in Example 1a. 実施例1dで得られたグラフト共重合体の前駆体のH-NMRスペクトルを示す。The 1 H-NMR spectrum of the precursor of the graft copolymer obtained in Example 1d. 実施例2aで得られたグラフト共重合体のH-NMRスペクトルを示す。The 1 H-NMR spectrum of the graft copolymer obtained in Example 2a. 実施例2bで得られたグラフト共重合体のH-NMRスペクトルを示す。The 1 H-NMR spectrum of the graft copolymer obtained in Example 2b. 実施例2dで得られたグラフト共重合体のH-NMRスペクトルを示す。The 1 H-NMR spectrum of the graft copolymer obtained in Example 2d is shown. 実施例2eで得られたグラフト共重合体のH-NMRスペクトルを示す。The 1 H-NMR spectrum of the graft copolymer obtained in Example 2e.
 以下、本発明の実施形態について詳細に説明する。なお、本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。 Hereinafter, embodiments of the present invention will be described in detail. In addition, in this specification, the expressions "contains" and "includes" include the concepts of "contains", "includes", "substantially consists" and "consists of only".
 1.グラフト共重合体
 本発明のグラフト共重合体は、幹ポリマーと、該幹ポリマーに結合した枝ポリマーを有するグラフト共重合体であって、前記幹ポリマーが脂肪族ポリカーボネートであり、前記枝ポリマーがラジカル重合性モノマーの重合体である。
1. 1. Graft Copolymer The graft copolymer of the present invention is a graft copolymer having a stem polymer and a branch polymer bonded to the stem polymer, the stem polymer being an aliphatic polycarbonate, and the branch polymer being a radical. It is a polymer of polymerizable monomers.
 幹ポリマーはグラフト共重合体のバックボーンとなる部位であり、脂肪族ポリカーボネートで構成される。 The stem polymer is the backbone of the graft copolymer and is composed of aliphatic polycarbonate.
 脂肪族ポリカーボネートの種類は特に限定されず、例えば、二酸化炭素とエポキシドとの共重合体を骨格とする構造を有する脂肪族ポリカーボネートを挙げることができる。このような構造を有する脂肪族ポリカーボネートの構造単位は、例えば、二酸化炭素とエポキシドが交互に反応したカーボネート結合を含む構造単位と、二酸化炭素が反応せずエポキシドが連続して反応したエーテル結合を含む構造単位とが含まれ得る。脂肪族ポリカーボネートの構造単位は、カーボネート結合を含む構造単位を80モル%以上含むことが好ましく、90モル%以上含むことがより好ましく、95モル%以上含むことがさらに好ましく、99モル%以上含むことが特に好ましい。 The type of the aliphatic polycarbonate is not particularly limited, and examples thereof include an aliphatic polycarbonate having a structure having a copolymer of carbon dioxide and an epoxide as a skeleton. The structural unit of the aliphatic polycarbonate having such a structure includes, for example, a structural unit containing a carbonate bond in which carbon dioxide and an epoxide are alternately reacted, and an ether bond in which carbon dioxide does not react and the epoxide is continuously reacted. Structural units and can be included. The structural unit of the aliphatic polycarbonate preferably contains 80 mol% or more of structural units containing a carbonate bond, more preferably 90 mol% or more, further preferably 95 mol% or more, and 99 mol% or more. Is particularly preferable.
 枝ポリマーは、化学結合(特には、共有結合)によって幹ポリマーに結合する。枝ポリマーは、グラフト共重合体1分子あたりに1以上存在し、通常、グラフト共重合体1分子あたりに枝ポリマーは複数存在する。枝ポリマーは、ラジカル重合性のモノマーの重合体によって形成される。つまり、本発明のグラフト共重合体は、脂肪族ポリカーボネートを主鎖とし、側鎖としてラジカル重合性のモノマーの重合体を有する。 The branch polymer binds to the stem polymer by a chemical bond (particularly a covalent bond). There is one or more branch polymers per molecule of the graft copolymer, and usually there are a plurality of branch polymers per molecule of the graft copolymer. The branch polymer is formed by a polymer of radically polymerizable monomers. That is, the graft copolymer of the present invention has an aliphatic polycarbonate as a main chain and a polymer of a radically polymerizable monomer as a side chain.
 ラジカル重合性のモノマーの種類は特に限定されず、例えば、公知のラジカル重合性モノマーを広く適用することができる。ラジカル重合性のモノマーの具体例として、オレフィン系モノマー、スチレン系モノマー、不飽和エステル系モノマー、不飽和アルコール系モノマー、不飽和カルボン酸系モノマー、不飽和カルボン酸塩系モノマー、不飽和アミド系モノマー、ビニル系モノマー等が挙げられる。 The type of radically polymerizable monomer is not particularly limited, and for example, known radically polymerizable monomers can be widely applied. Specific examples of the radically polymerizable monomer include an olefin-based monomer, a styrene-based monomer, an unsaturated ester-based monomer, an unsaturated alcohol-based monomer, an unsaturated carboxylic acid-based monomer, an unsaturated carboxylate-based monomer, and an unsaturated amide-based monomer. , Vinyl-based monomers and the like.
 オレフィン系モノマーとしては、エチレン、プロピレン、イソブテン、イソプレン、ブタジエン、シクロペンタジエン、インデン、リモネン、α-ピネン、β-ピネン等が挙げられる。 Examples of the olefin-based monomer include ethylene, propylene, isobutene, isoprene, butadiene, cyclopentadiene, indene, limonene, α-pinene, β-pinene and the like.
 スチレン系モノマーとしては、スチレン、α-メチルスチレン、4-メトキシスチレン、4-tert-ブチルスチレン、4-クロロスチレン、4-アミノスチレン、4-ニトロスチレン、4-ビニル安息香酸、4-スチレンスルホン酸ナトリウム、ジビニルベンゼン等が挙げられる。 Examples of styrene-based monomers include styrene, α-methylstyrene, 4-methoxystyrene, 4-tert-butylstyrene, 4-chlorostyrene, 4-aminostyrene, 4-nitrostyrene, 4-vinylbenzoic acid, and 4-styrenesulfon. Examples thereof include sodium acid acid and divinylbenzene.
 不飽和エステル系モノマーとしては、酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、シクロヘキサンカルボン酸ビニル、モノクロロ酢酸ビニル、安息香酸ビニル、酢酸イソプロペニル、酢酸アリル等のエステル部位に重合性二重結合を有するモノマー;(メタ)アクリル酸エステル等の重合性カルボン酸化合物のエステル;等を挙げることができる。なお、本明細書において、「(メタ)アクリル」とは「アクリル」または「メタクリル」を、「(メタ)アクリレート」とは「アクリレート」または「メタクリレート」を、「(メタ)アリル」とは「アリル」または「メタリル」を意味する。 As the unsaturated ester-based monomer, vinyl acetate, vinyl propionate, vinyl pivalate, vinyl cyclohexanecarboxylic acid, vinyl monochloroacetate, vinyl benzoate, isopropenyl acetate, allyl acetate, etc. have a polymerizable double bond at the ester moiety. Monomers; esters of polymerizable carboxylic acid compounds such as (meth) acrylic acid esters; and the like. In the present specification, "(meth) acrylic" means "acrylic" or "methacrylic", "(meth) acrylate" means "acrylate" or "methacrylate", and "(meth) allyl" means "(meth) allyl". Means "allyl" or "methacrylic".
 (メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸イソボルニル等を挙げることができる。これらは1種類を単独で使用してもよいし、2種類以上を併用してもよい。 Examples of the (meth) acrylic acid ester include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and (meth). ) Isobutyl acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, glycidyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) ) N-octyl acrylate, n-decyl (meth) acrylate, isodecyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylic Examples thereof include benzyl acid acid and isobornyl (meth) acrylate. One of these may be used alone, or two or more thereof may be used in combination.
 重合性カルボン酸化合物のエステルは、前記(メタ)アクリル酸エステルの他、クロトン酸メチル、アンゲリカ酸メチル、チグリン酸メチル、オレイン酸メチル、マレイン酸ジメチル、フマル酸ジメチル等が挙げられる。 Examples of the ester of the polymerizable carboxylic acid compound include methyl crotonate, methyl angelic acid, methyl tiglic acid, methyl oleate, dimethyl maleate, and dimethyl fumarate, in addition to the (meth) acrylic acid ester.
 不飽和アルコール系モノマーとしては、アリルアルコール、β-メタリルアルコール、クロチルアルコール、3-ブテン-1-オール、オレイルアルコール等が挙げられる。 Examples of unsaturated alcohol-based monomers include allyl alcohol, β-metharyl alcohol, crotyl alcohol, 3-buten-1-ol, and oleyl alcohol.
 不飽和カルボン酸系モノマーとしては(メタ)アクリル酸、クロトン酸、アンゲリカ酸、チグリン酸、オレイン酸、マレイン酸、無水マレイン酸、フマル酸等が挙げられる。 Examples of unsaturated carboxylic acid-based monomers include (meth) acrylic acid, crotonic acid, angelic acid, tiglic acid, oleic acid, maleic acid, maleic anhydride, fumaric acid and the like.
 不飽和カルボン酸塩系モノマーとしては、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸亜鉛、(メタ)アクリル酸アンモニウム、クロトン酸ナトリウム、オレイン酸ナトリウム、マレイン酸ナトリウム、フマル酸ナトリウム等が挙げられる。 Examples of the unsaturated carboxylate-based monomer include sodium (meth) acrylate, zinc (meth) acrylate, ammonium (meth) acrylate, sodium crotonic acid, sodium oleate, sodium maleate, sodium fumarate, and the like. ..
 不飽和アミド系モノマーとしては、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N,N-ジメチルアクリルアミド、N,N-イソプロピルアクリルアミド等が挙げられる。 Examples of unsaturated amide monomers include (meth) acrylamide, N-methyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N, N-dimethylacrylamide, and N, N-isopropyl. Examples include acrylamide.
 その他、ラジカル重合性のモノマーとしては、塩化ビニル、(メタ)アクリロニトリル、ビニルスルホン酸、ビニルホスホン酸、N-ビニルピロリドン、2-ビニルピリジン、エチルビニルエーテル、ビニルオキシラン、メチルビニルケトン、ビニレンカーボネート、ビニルエチレンカーボネート等の各種ビニル系モノマーが挙げられる。 Other radically polymerizable monomers include vinyl chloride, (meth) acrylonitrile, vinyl sulfonic acid, vinyl phosphonic acid, N-vinylpyrrolidone, 2-vinylpyridine, ethyl vinyl ether, vinyl oxylane, methyl vinyl ketone, vinylene carbonate, and vinyl. Examples thereof include various vinyl-based monomers such as ethylene carbonate.
 以上のラジカル重合性モノマーは、1種のみを使用することができ、あるいは、2種以上を組み合わせて使用することもできる。 Only one type of the above radically polymerizable monomers can be used, or two or more types can be used in combination.
 ラジカル重合性のモノマーは、好ましくは、スチレン系モノマー、不飽和エステル系モノマー、不飽和カルボン酸系モノマー及び不飽和アミド系モノマーからなる群より選ばれる1種以上である。より好ましくは、スチレン系モノマー、不飽和エステル系モノマー、及び、不飽和アミド系モノマーからなる群より選ばれる1種以上である。 The radically polymerizable monomer is preferably one or more selected from the group consisting of a styrene-based monomer, an unsaturated ester-based monomer, an unsaturated carboxylic acid-based monomer, and an unsaturated amide-based monomer. More preferably, it is one or more selected from the group consisting of styrene-based monomers, unsaturated ester-based monomers, and unsaturated amide-based monomers.
 中でも、ラジカル重合性のモノマーの重合反応を制御しやすいという観点から、ラジカル重合性のモノマーは、スチレン、酢酸ビニル、(メタ)アクリル酸メチル、(メタ)アクリル酸ヒドロキシエチル、N-イソプロピル(メタ)アクリルアミド、(メタ)アクリル酸グリシジル、ビニルアルコール及びビニルブチラールからなる群より選ばれる1種以上であることが特に好ましい。従って、ラジカル重合性のモノマーの重合体としては、ポリスチレン、ポリ酢酸ビニル、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸ヒドロキシエチル、ポリN-イソプロピルアクリルアミド、ポリビニルアルコール、ポリビニルブチラール等であることが特に好ましい。 Among them, the radically polymerizable monomers are styrene, vinyl acetate, methyl (meth) acrylate, hydroxyethyl (meth) acrylate, and N-isopropyl (meth) from the viewpoint of easily controlling the polymerization reaction of the radically polymerizable monomer. ) It is particularly preferable that one or more selected from the group consisting of acrylamide, glycidyl (meth) acrylate, vinyl alcohol and vinyl butyral. Therefore, examples of the polymer of the radically polymerizable monomer include polystyrene, polyvinyl acetate, methyl poly (meth) acrylate, hydroxyethyl poly (meth) acrylate, poly N-isopropylacrylamide, polyvinyl alcohol, polyvinyl butyral and the like. Is particularly preferred.
 本発明のグラフト共重合体において、ラジカル重合性のモノマーの重合体は、さらに他の官能基等で置換された構造を有する誘導体であってもよい。官能基としては特に限定されず、例えば、置換基としては、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、ハロゲン原子、カルボキシ基、カルボニル基、スルホニル基、スルホン基、シアノ基等を挙げることができる。これらの他の官能基は、ラジカル重合性モノマーの重合体に対し、さらに付加反応や置換反応等を行うことで導入することができる。 In the graft copolymer of the present invention, the polymer of the radically polymerizable monomer may be a derivative having a structure substituted with another functional group or the like. The functional group is not particularly limited, and for example, the substituent includes an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a halogen atom, a carboxy group, and a carbonyl group. Examples thereof include a group, a sulfonyl group, a sulfone group, a cyano group and the like. These other functional groups can be introduced by further carrying out an addition reaction, a substitution reaction or the like on the polymer of the radically polymerizable monomer.
 ラジカル重合性のモノマーの重合体は、1種のモノマー単位で構成されるホモポリマーであってもよいし、2種以上のモノマー単位で構成されるコポリマーであってもよい。また、ラジカル重合性のモノマーの重合体は、通常直鎖状であるが、分岐を有することもできる。 The polymer of the radically polymerizable monomer may be a homopolymer composed of one kind of monomer unit or a copolymer composed of two or more kinds of monomer units. Further, the polymer of the radically polymerizable monomer is usually linear, but can also have a branch.
 本発明のグラフト共重合体の数平均重合度及び数平均分子量等は特に限定されず、脂肪族ポリカーボネートの種類、ラジカル重合性のモノマーの重合体の種類等に応じて適宜設定することができる。例えば、グラフト共重合体の数平均分子量は、1000から100000であり、好ましくは2000以上、より好ましくは3000以上であり、後記するリビングラジカル重合反応の反応性の低下を避ける観点から、好ましくは90000以下、より好ましくは80000以下、さらに好ましくは70000以下である。 The number average degree of polymerization and the number average molecular weight of the graft copolymer of the present invention are not particularly limited, and can be appropriately set according to the type of aliphatic polycarbonate, the type of polymer of radically polymerizable monomer, and the like. For example, the number average molecular weight of the graft copolymer is 1000 to 100,000, preferably 2000 or more, more preferably 3000 or more, and preferably 90000 from the viewpoint of avoiding a decrease in reactivity of the living radical polymerization reaction described later. Below, it is more preferably 80,000 or less, still more preferably 70,000 or less.
 本発明のグラフト共重合体において、幹ポリマーの数平均重合度DP1と、枝ポリマーの数平均重合度DP2との比DP2/DP1の値も特に限定されず、目的とするグラフト共重合体の性能に応じて適宜設定することができる。 In the graft copolymer of the present invention, the value of the ratio DP2 / DP1 between the number average degree of polymerization DP1 of the stem polymer and the number average degree of polymerization DP2 of the branch polymer is not particularly limited, and the performance of the target graft copolymer is not particularly limited. It can be set as appropriate according to.
 例えば、本発明のグラフト共重合体において、幹ポリマーの数平均重合度DP1と、枝ポリマーの数平均重合度DP2との比DP2/DP1の値は、0.1以上10以下とすることができる。DP2/DP1がこの範囲であると、グラフト共重合体は、幹ポリマーの物性と枝ポリマーの物性の両方の性能を好ましく発揮することができる。DP2/DP1の値は、0.2以上5以下であることがより好ましく、0.5以上2.5以下であることがさらに好ましい。 For example, in the graft copolymer of the present invention, the value of the ratio DP2 / DP1 between the number average degree of polymerization DP1 of the stem polymer and the number average degree of polymerization DP2 of the branch polymer can be 0.1 or more and 10 or less. .. When DP2 / DP1 is in this range, the graft copolymer can preferably exhibit the physical properties of both the stem polymer and the branch polymer. The value of DP2 / DP1 is more preferably 0.2 or more and 5 or less, and further preferably 0.5 or more and 2.5 or less.
 本明細書において、枝ポリマーの数平均重合度DP2は、グラフト共重合体1分子あたりに存在する枝ポリマーのすべての重合度の総和を示す。 In the present specification, the number average degree of polymerization DP2 of the branch polymer indicates the total degree of polymerization of all the branch polymers present per molecule of the graft copolymer.
 本発明におけるグラフト共重合体において、DP2/DP1の値は、核磁気共鳴分光分析(NMR分析)により計測することができる。具体的に、グラフト共重合体のH-NMR分析により、幹ポリマーの構造単位のモル数と枝ポリマーの構造単位のモル数とを求め、両者の比からDP2/DP1の値を求めることができる。 In the graft copolymer of the present invention, the value of DP2 / DP1 can be measured by nuclear magnetic resonance spectroscopy (NMR analysis). Specifically, the number of moles of the structural unit of the stem polymer and the number of moles of the structural unit of the branch polymer can be obtained by 1 H-NMR analysis of the graft copolymer, and the value of DP2 / DP1 can be obtained from the ratio of the two. it can.
 本発明におけるグラフト共重合体は、例えば、粉末、顆粒、塊状、ペレット状、ストランド状、繊維状、液状、分散体、溶液、成型体等、種々の形態とすることができる。 The graft copolymer in the present invention can be in various forms such as powder, granule, lump, pellet, strand, fibrous, liquid, dispersion, solution, and molded product.
 グラフト共重合体は、幹ポリマーが脂肪族ポリカーボネート、枝ポリマーがラジカル重合性モノマーの重合体であることで、幹ポリマーがアクリルポリマーで、枝ポリマーが脂肪族ポリカーボネートである従来のグラフト共重合体とは異なる機能を有する。例えば、アクリルポリマーとしてポリアクリル酸を例にとれば、アクリルポリマーを幹ポリマーとする従来のグラフト重合体ではカルボキシ基がすべてグラフト重合の開始点として使われ、得られるグラフト重合体にはカルボキシ基が存在しない。そのため、斯かる従来のグラフト共重合体では、ポリアクリル酸の性質が失われたグラフト重合体となる。一方、本発明の脂肪族ポリカーボネートを幹ポリマーとするグラフト重合体では、アクリルポリマーがポリアクリル酸である場合は、カルボキシ基が存在するグラフト体が得られる。そのため、ポリアクリル酸の性質と脂肪族ポリカーボネートの性質を併せ持つグラフト重合体となる。 The graft copolymer is different from the conventional graft copolymer in which the stem polymer is an aliphatic polycarbonate and the branch polymer is a polymer of a radically polymerizable monomer, so that the stem polymer is an acrylic polymer and the branch polymer is an aliphatic polycarbonate. Has different functions. For example, taking polyacrylic acid as an acrylic polymer as an example, in a conventional graft polymer using an acrylic polymer as a stem polymer, all carboxy groups are used as starting points of graft polymerization, and the obtained graft polymer has a carboxy group. not exist. Therefore, in such a conventional graft copolymer, the property of polyacrylic acid is lost. On the other hand, in the graft polymer using the aliphatic polycarbonate of the present invention as the stem polymer, when the acrylic polymer is polyacrylic acid, a graft having a carboxy group is obtained. Therefore, it becomes a graft polymer having both the properties of polyacrylic acid and the properties of aliphatic polycarbonate.
 従って、本発明のグラフト共重合体は、該共重合体そのものを機能性樹脂として応用することができ、あるいは、これまでのグラフト共重合体では適していなかった材料等に添加剤として使用することができ、種々の効果を発揮することができる。例えば、本発明のグラフト共重合体は、熱分解性バインダー、分散剤、相溶化剤、樹脂改質剤、基板の表面修飾剤、接着剤、塗料、インク等の添加剤等に応用することが可能である。 Therefore, in the graft copolymer of the present invention, the copolymer itself can be applied as a functional resin, or it can be used as an additive in a material or the like that has not been suitable for conventional graft copolymers. It is possible to exert various effects. For example, the graft copolymer of the present invention can be applied to a pyrolytic binder, a dispersant, a compatibilizer, a resin modifier, a substrate surface modifier, an adhesive, a paint, an additive such as an ink, and the like. It is possible.
 2.グラフト共重合体の前駆体
 本発明のグラフト共重合体の前駆体(以下、単に「前駆体」と表記する)は、幹ポリマーが脂肪族ポリカーボネートであり、前記脂肪族ポリカーボネートは、制御ラジカル重合開始能を有する官能基を含む構造単位を有する。以下、前駆体における脂肪族ポリカーボネートを「脂肪族ポリカーボネートP」と表記し、制御ラジカル重合開始能を有する官能基を含む構造単位を「構造単位I」と表記する。
2. 2. Precursor of Graft Copolymer In the precursor of the graft copolymer of the present invention (hereinafter, simply referred to as "precursor"), the stem polymer is an aliphatic polycarbonate, and the aliphatic polycarbonate starts controlled radical polymerization. It has a structural unit containing a functional group having a function. Hereinafter, the aliphatic polycarbonate in the precursor is referred to as "aliphatic polycarbonate P", and the structural unit containing a functional group having a controlled radical polymerization initiation ability is referred to as "structural unit I".
 脂肪族ポリカーボネートPは、構造単位Iを有する限り特に制限はなく、例えば、二酸化炭素とエポキシドを共重合して得られる脂肪族ポリカーボネートが好ましい。 The aliphatic polycarbonate P is not particularly limited as long as it has the structural unit I, and for example, an aliphatic polycarbonate obtained by copolymerizing carbon dioxide and an epoxide is preferable.
 例えば、脂肪族ポリカーボネートPが有する構造単位Iとして、下記一般式(1)で表される構造単位を挙げることができる。 For example, as the structural unit I of the aliphatic polycarbonate P, a structural unit represented by the following general formula (1) can be mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ここで、式(1)中、R、R及びRは、同一又は異なって、水素原子、置換基で置換されていてもよい炭素数1~10のアルキル基、又は置換基で置換されていてもよい炭素数6~20のアリール基を示す。R~Rのうち二つが、互いに結合して、これらが結合する炭素原子と共に、置換もしくは非置換の飽和もしくは不飽和の環員数3~10の脂肪族環を形成していてもよい。式(1)中、Aは制御ラジカル重合開始能を有する官能基を示す。以下、この制御ラジカル重合開始能を有する官能基Aを単に「官能基A」と略記する。 Here, in the formula (1), R 1 , R 2 and R 3 are the same or different, and are substituted with a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may be substituted with a substituent, or a substituent. Indicates an aryl group having 6 to 20 carbon atoms which may be used. Two of R 1 to R 3 may be bonded to each other to form a substituted or unsaturated saturated or unsaturated aliphatic ring having 3 to 10 ring members together with the carbon atom to which they are bonded. In formula (1), A represents a functional group having a controlled radical polymerization initiation ability. Hereinafter, the functional group A having the ability to initiate controlled radical polymerization is simply abbreviated as "functional group A".
 制御ラジカル重合とは、例えば、各種のリビングラジカル重合を意味し、具体例として、原子移動ラジカル重合、可逆的付加開裂連鎖移動重合又はニトロキシド媒介ラジカル重合を挙げることができる。 The controlled radical polymerization means, for example, various living radical polymerizations, and specific examples thereof include atom transfer radical polymerization, reversible addition cleavage chain transfer polymerization, and nitroxide-mediated radical polymerization.
 式(1)において、R、R及びRが全て同一でもよく、R及びRが同一でRは異なっていてもよく、R及びRが同一でRは異なっていてもよく、R、R及びRが全て異なっていてもよい。 In equation (1), R 1 , R 2 and R 3 may all be the same, R 1 and R 2 may be the same and R 3 may be different, R 2 and R 3 may be the same and R 1 may be different. R 1 , R 2 and R 3 may all be different.
 本明細書において、炭素数1~10のアルキル基は、炭素数1、2、3、4、5、6、7、8、9、又は10の、直鎖又は分岐鎖状のアルキル基である。炭素数は、好ましくは1から9であり、より好ましくは1から8であり、さらに好ましくは1から6であり、よりさらに好ましくは1から4である。具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。 In the present specification, the alkyl group having 1 to 10 carbon atoms is a linear or branched alkyl group having 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms. .. The number of carbon atoms is preferably 1 to 9, more preferably 1 to 8, still more preferably 1 to 6, and even more preferably 1 to 4. Specifically, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, n-heptyl group. , N-octyl group, n-nonyl group, n-decyl group and the like.
 式(1)において、R、R及びRで示されるアルキル基は、1又は2以上の置換基で置換されていてもよい。R、R及びRで示されるアルキル基における置換基としては、例えば、アルコキシ基、アシルオキシ基、アルコキシカルボニル基、アリール基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)等が挙げられる。ここでのアルコキシ基としては、例えばメトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基等が挙げられる。また、アシルオキシ基としては、例えばアセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基等が挙げられる。また、アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、tert-ブトキシカルボニル基等が挙げられる。また、アリール基としては、例えばフェニル基、o-トリル基、m-トリル基、p-トリル基、ナフチル基等が挙げられる。 In the formula (1), the alkyl groups represented by R 1 , R 2 and R 3 may be substituted with one or more substituents. Examples of the substituent in the alkyl group represented by R 1 , R 2 and R 3 include an alkoxy group, an acyloxy group, an alkoxycarbonyl group, an aryl group and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom). And so on. Examples of the alkoxy group here include a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group and the like. Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group and the like. Examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, and a tert-butoxycarbonyl group. Examples of the aryl group include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a naphthyl group and the like.
 式(1)において、炭素数6~20のアリール基は、炭素数6、7、8、9、10、11、12、13、14、15、16、17、18、19、又は20のアリール基であり、好ましくは6から14である。例えば、フェニル基、ナフチル基、テトラヒドロナフチル基等が挙げられる。 In the formula (1), the aryl group having 6 to 20 carbon atoms is an aryl group having 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 carbon atoms. It is a group, preferably 6 to 14. For example, a phenyl group, a naphthyl group, a tetrahydronaphthyl group and the like can be mentioned.
 式(1)において、R、R及びRで示されるアリール基は、1又は2以上の置換基で置換されていてもよい。当該アリール基における置換基としては、例えば、アルキル基、アリール基、アルコキシ基、アシルオキシ基、アルコキシカルボニル基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)等が挙げられる。ここでのアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。また、アリール基としては、例えばフェニル基、o-トリル基、m-トリル基、p-トリル基、ナフチル基、インデニル基等が挙げられる。また、アルコキシ基としては、例えばメトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基等が挙げられる。また、アシルオキシ基としては、例えばアセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基等が挙げられる。また、また、アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、tert-ブトキシカルボニル基等が挙げられる。 In the formula (1), the aryl group represented by R 1 , R 2 and R 3 may be substituted with one or more substituents. Examples of the substituent in the aryl group include an alkyl group, an aryl group, an alkoxy group, an acyloxy group, an alkoxycarbonyl group, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom). Examples of the alkyl group here include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group and the like. Examples of the aryl group include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a naphthyl group, an indenyl group and the like. Examples of the alkoxy group include a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group and the like. Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group and the like. Further, examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, a tert-butoxycarbonyl group and the like.
 式(1)において、R、R、及びRのうち二つが互いに結合して形成される、置換もしくは非置換の飽和もしくは不飽和の環員数3~10の脂肪族環としては、例えば、置換基で置換されていてもよい3~8員環の脂肪族環が挙げられる。当該脂肪族環としては、より具体的には、シクロペンタン環、シクロペンテン環、シクロヘキサン環、シクロヘキセン環、シクロヘプタン環等が挙げられる。また、当該脂肪族環が置換基で置換されている場合、置換基としては、例えば、アルキル基、アリール基、アルコキシ基、アシルオキシ基、シリル基、スルファニル基、シアノ基、ニトロ基、スルホ基、ホルミル基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)等が挙げられる。また、当該脂肪族環は、1又は2以上の置換基で置換されていてもよい。ここでのアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。また、アリール基としては、例えばフェニル基、o-トリル基、m-トリル基、p-トリル基、ナフチル基、インデニル基等が挙げられる。また、アルコキシ基としては、例えばメトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基等が挙げられる。また、アシルオキシ基としては、例えばアセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基等が挙げられる。また、アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、tert-ブトキシカルボニル基等が挙げられる。 In formula (1), examples of the substituted or unsaturated saturated or unsaturated aliphatic ring having 3 to 10 member numbers formed by bonding two of R 1 , R 2 , and R 3 to each other include, for example. , A 3- to 8-membered aliphatic ring which may be substituted with a substituent. More specific examples of the aliphatic ring include a cyclopentane ring, a cyclopentene ring, a cyclohexane ring, a cyclohexene ring, a cycloheptane ring and the like. When the aliphatic ring is substituted with a substituent, examples of the substituent include an alkyl group, an aryl group, an alkoxy group, an acyloxy group, a silyl group, a sulfanyl group, a cyano group, a nitro group and a sulfo group. Examples thereof include a formyl group and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom). In addition, the aliphatic ring may be substituted with one or more substituents. Examples of the alkyl group here include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group and the like. Examples of the aryl group include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a naphthyl group, an indenyl group and the like. Examples of the alkoxy group include a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group and the like. Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group and the like. Examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, and a tert-butoxycarbonyl group.
 特に制限はされないが、式(1)において、R、R及びRは、同一又は異なって、水素原子又は炭素数1から4のアルキル基であることが好ましい。中でも、R、R及びRは水素原子であることが好ましい。 Although not particularly limited, in the formula (1), R 1 , R 2 and R 3 are preferably the same or different, and are preferably hydrogen atoms or alkyl groups having 1 to 4 carbon atoms. Of these, R 1 , R 2 and R 3 are preferably hydrogen atoms.
 式(1)において、官能基Aは、制御ラジカル重合開始剤としての機能を果たす官能基である限り、その種類は特に限定されない。例えば、官能基Aとして、ハロゲン含有基、ジチオエステル基、ジチオカーボネート基、ジチオカルバメート基、トリチオカーボネート基等が好ましく挙げられる。より具体的には、例えば、下記一般式(2): In the formula (1), the type of the functional group A is not particularly limited as long as it is a functional group that functions as a controlled radical polymerization initiator. For example, as the functional group A, a halogen-containing group, a dithioester group, a dithiocarbonate group, a dithiocarbamate group, a trithiocarbonate group and the like are preferably mentioned. More specifically, for example, the following general formula (2):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (式(2)中、R及びRは同一又は異なって、水素原子、炭素数1から10のアルキル基又は炭素数6から20のアリール基を示し、Xは塩素原子、臭素原子又はヨウ素原子を示す。)
で表される構造を含む基、下記一般式(3):
(In formula (2), R 4 and R 5 are the same or different and represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms, and X is a chlorine atom, a bromine atom or iodine. Indicates an atom.)
A group containing a structure represented by the following general formula (3):
Figure JPOXMLDOC01-appb-C000003
(式中、Rは炭素数1から10のアルキレン基、炭素数6から20のアリーレン基、又は炭素数1から15のエステル基を示し、Yは炭素数1から10のアルキル基、炭素数6から20のアリール基、炭素数1から10のアルコキシ基、炭素数1から10のアルキルアミノ基、又は炭素数1から10のチオアルコキシ基を示す。)
で表される構造を含む基、または下記一般式(4);
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 6 represents an alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or an ester group having 1 to 15 carbon atoms, and Y represents an alkyl group having 1 to 10 carbon atoms and a carbon number of carbon atoms. It represents an aryl group of 6 to 20, an alkoxy group having 1 to 10 carbon atoms, an alkylamino group having 1 to 10 carbon atoms, or a thioalkoxy group having 1 to 10 carbon atoms.
A group containing a structure represented by, or the following general formula (4);
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、Rは炭素数1から10のアルキレン基、炭素数6から20のアリーレン基、又は炭素数1から15のエステル基を示し、R及びRは同一又は異なって、水素原子、炭素数1から10のアルキル基又は炭素数6から20のアリール基を示し、R及びRは、これらが結合する窒素原子と共に、互いに結合して、置換基で置換されていてもよい環員数4から10の脂肪族窒素ヘテロ環を形成してもよい。)
で表される構造を含む基、
を挙げることができる。
(In the formula, R 7 represents an alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or an ester group having 1 to 15 carbon atoms, and R 8 and R 9 are the same or different hydrogen atoms. , An alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 20 carbon atoms, and R 8 and R 9 may be bonded to each other together with the nitrogen atom to which they are bonded and substituted with a substituent. An aliphatic nitrogen heterocycle having 4 to 10 ring members may be formed.)
A group containing a structure represented by
Can be mentioned.
 式(2)において、炭素数1から10のアルキル基及び炭素数6から20のアリール基はそれぞれ、式(1)の炭素数1から10のアルキル基及び炭素数6から20のアリール基と同様の種類を例示することができる。 In the formula (2), the alkyl group having 1 to 10 carbon atoms and the aryl group having 6 to 20 carbon atoms are the same as the alkyl group having 1 to 10 carbon atoms and the aryl group having 6 to 20 carbon atoms in the formula (1), respectively. The types of can be exemplified.
 式(3)及び(4)において、炭素数1から10のアルキレン基としては、例えば、メチレン、エチレン、プロピレン等であることが好ましい。 In the formulas (3) and (4), the alkylene group having 1 to 10 carbon atoms is preferably, for example, methylene, ethylene, propylene or the like.
 式(3)及び(4)において、炭素数6から20のアリーレン基としては、フェニレン等であることが好ましい。 In the formulas (3) and (4), the arylene group having 6 to 20 carbon atoms is preferably phenylene or the like.
 式(3)及び(4)において、炭素数1から15のエステル基は、炭素数1、2、3、4、5、6、7、8、9、10、11、12、13、14又は15の直鎖または分岐状のエステル基である。炭素数は好ましくは2から13であり、より好ましくは2から11であり、さらに好ましくは2から10である。当該エステル基としては、具体的には、-OCO-、-OCOCH-、-OCOCHCH-、-OCOC-、-OCOCH-、-OCOCHCH-、-OCOCHCH(CH)-、-CHCOOCH-、-CHOCOCH-などが好ましく例示できる。 In the formulas (3) and (4), the ester group having 1 to 15 carbon atoms has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or Fifteen linear or branched ester groups. The number of carbon atoms is preferably 2 to 13, more preferably 2 to 11, and even more preferably 2 to 10. As the ester group, specifically, -OCO -, - OCOCH 2 - , - OCOCH 2 CH 2 -, - OCOC 6 H 4 -, - OCOCH 2 C 6 H 4 -, - OCOCH 2 C 6 H 4 CH 2- , -OCOCH 2 C 6 H 4 CH (CH 3 )-, -CH 2 COOCH 2- , -CH 2 OCOCH 2-, and the like can be preferably exemplified.
 なお、-C-は、下記式(a) Incidentally, -C 6 H 4 - is represented by the following formula (a)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
で表される基であり、より詳細には下記式(a1)~(a3)のいずれかの基とすることができ、中でも式(a1)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000006
The group represented by the following formula (a1) to (a3) can be used in more detail, and the group represented by the formula (a1) is preferable.
Figure JPOXMLDOC01-appb-C000006
 式(3)において、炭素数1から10のアルコキシ基は、炭素数1、2、3、4、5、6、7、8、9、又は10の直鎖又は分岐鎖状のアルコキシ基である。炭素数は、好ましくは1から9であり、より好ましくは1から8であり、さらに好ましくは1から6であり、よりさらに好ましくは1から4である。当該アルコキシ基としては、具体的には、-OCH、-OCHCH、-OCHCHCH、-OCH(CH)CH、-OCHCHCHCH、-OCHCH(CH)CH、-OCH(CH)CHCH、-OCHCHCHCHCH、-OCHCHCH(CH)CH、-OCHCH(CH)CHCH、-OCH(CH)CHCHCHなどが好ましく例示できる。 In the formula (3), the alkoxy group having 1 to 10 carbon atoms is a linear or branched alkoxy group having 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms. .. The number of carbon atoms is preferably 1 to 9, more preferably 1 to 8, still more preferably 1 to 6, and even more preferably 1 to 4. Specific examples of the alkoxy group include -OCH 3 , -OCH 2 CH 3 , -OCH 2 CH 2 CH 3 , -OCH (CH 3 ) CH 3 , -OCH 2 CH 2 CH 2 CH 3 , and -OCH. 2 CH (CH 3 ) CH 3 , -OCH (CH 3 ) CH 2 CH 3 , -OCH 2 CH 2 CH 2 CH 2 CH 3 , -OCH 2 CH 2 CH (CH 3 ) CH 3 , -OCH 2 CH ( CH 3 ) CH 2 CH 3 , -OCH (CH 3 ) CH 2 CH 2 CH 3 and the like can be preferably exemplified.
 式(3)において、炭素数1から10のアルキルアミノ基は、炭素数1、2、3、4、5、6、7、8、9、又は10の直鎖又は分岐鎖状のアルキルアミノ基である。炭素数は、好ましくは1から9であり、より好ましくは1から8であり、さらに好ましくは1から6であり、よりさらに好ましくは1から4である。当該アルキルアミノ基としては、具体的には、-NHCH、-NHCHCH、-NHCHCHCH、-NHCH(CH、-NHCHCHCHCH、-NHCHCH(CH)CH、-NHCH(CH)CHCH、-NHCHCHCHCHCH、-NHCHCHCH(CH、-NHCHCH(CH)CHCH、-NHCH(CH)CHCHCH、-N(CH、-N(CHCHなどが好ましく例示できる。 In the formula (3), the alkylamino group having 1 to 10 carbon atoms is a linear or branched alkylamino group having 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms. Is. The number of carbon atoms is preferably 1 to 9, more preferably 1 to 8, still more preferably 1 to 6, and even more preferably 1 to 4. Specific examples of the alkylamino group include -NHCH 3 , -NHCH 2 CH 3 , -NHCH 2 CH 2 CH 3 , -NHCH (CH 3 ) 2 , -NHCH 2 CH 2 CH 2 CH 3 , and -NHCH. 2 CH (CH 3 ) CH 3 , -NHCH (CH 3 ) CH 2 CH 3 , -NHCH 2 CH 2 CH 2 CH 2 CH 3 , -NHCH 2 CH 2 CH (CH 3 ) 2 , -NHCH 2 CH (CH) 3 ) CH 2 CH 3 , -NHCH (CH 3 ) CH 2 CH 2 CH 3 , -N (CH 3 ) 2 , -N (CH 2 CH 3 ) 2, and the like can be preferably exemplified.
 式(3)において、炭素数1から10のチオアルコキシ基は、炭素数1、2、3、4、5、6、7、8、9、又は10の直鎖又は分岐鎖状のチオアルコキシ基である。炭素数は、好ましくは1から9であり、より好ましくは1から8であり、さらに好ましくは1から6であり、よりさらに好ましくは1から4である。当該チオアルコキシ基としては、具体的には、-SCH、-SCHCH、-SCHCHCH、-SCHCHCHCH、-SCHCH(CH、-SCH(CH)CHCH、-SCHCHCHCHCH、-SCHCHCH(CH、-SCHCH(CH)CHCH、-SCH(CH)CHCHCHなどが好ましく例示できる。 In the formula (3), the thioalkoxy group having 1 to 10 carbon atoms is a linear or branched thioalkoxy group having 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 carbon atoms. Is. The number of carbon atoms is preferably 1 to 9, more preferably 1 to 8, still more preferably 1 to 6, and even more preferably 1 to 4. Specific examples of the thioalkoxy group include -SCH 3 , -SCH 2 CH 3 , -SCH 2 CH 2 CH 3 , -SCH 2 CH 2 CH 2 CH 3 , -SCH 2 CH (CH 3 ) 2 , -SCH (CH 3 ) CH 2 CH 3 , -SCH 2 CH 2 CH 2 CH 2 CH 3 , -SCH 2 CH 2 CH (CH 3 ) 2 , -SCH 2 CH (CH 3 ) CH 2 CH 3 , -SCH (CH 3 ) CH 2 CH 2 CH 3 and the like can be preferably exemplified.
 式(4)において、R及びRは、これらが結合する窒素原子と共に、互いに結合して、環員数4から10(4、5、6、7、8、9、又は10)の脂肪族窒素ヘテロ環を形成してもよい。当該脂肪族窒素ヘテロ環における窒素原子は、R及びRが結合する窒素原子に由来する。また、当該脂肪族窒素ヘテロ環は、飽和又は不飽和であってもよい。また、当該脂肪族窒素ヘテロ環は、置換基で置換されていてもよい。ここでの置換基としては、例えば、アルキル基、アリール基、アルコキシ基、アシルオキシ基、シリル基、スルファニル基、シアノ基、ニトロ基、スルホ基、ホルミル基等が挙げられる。また、脂肪族窒素ヘテロ環は、1又は2以上の置換基で置換されていてもよい。ここでのアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。また、アリール基としては、例えばフェニル基、o-トリル基、m-トリル基、p-トリル基、ナフチル基、インデニル基等が挙げられる。また、アルコキシ基としては、例えばメトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基等が挙げられる。また、アシルオキシ基としては、例えばアセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基等が挙げられる。また、シリル基としては、例えばトリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、トリメトキシシリル基、ジメトキシメチルシリル基、メトキシジメチルシリル基等が挙げられる。 In formula (4), R 8 and R 9 are attached to each other together with the nitrogen atom to which they are attached, and are aliphatic groups having 4 to 10 ring members (4, 5, 6, 7, 8, 9, or 10). A nitrogen heterocycle may be formed. The nitrogen atom in the aliphatic nitrogen heterocycle is derived from the nitrogen atom to which R 8 and R 9 are bonded. In addition, the aliphatic nitrogen heterocycle may be saturated or unsaturated. Moreover, the aliphatic nitrogen heterocycle may be substituted with a substituent. Examples of the substituent here include an alkyl group, an aryl group, an alkoxy group, an acyloxy group, a silyl group, a sulfanyl group, a cyano group, a nitro group, a sulfo group, a formyl group and the like. Further, the aliphatic nitrogen heterocycle may be substituted with one or more substituents. Examples of the alkyl group here include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group and the like. Examples of the aryl group include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a naphthyl group, an indenyl group and the like. Examples of the alkoxy group include a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group and the like. Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group and the like. Examples of the silyl group include a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a trimethoxysilyl group, a dimethoxymethylsilyl group, a methoxydimethylsilyl group and the like.
 前駆体において、脂肪族ポリカーボネートPは、構造単位I以外に他の構造単位を有することができる。他の構造単位の具体例として、下記一般式(5) In the precursor, the aliphatic polycarbonate P can have other structural units other than the structural unit I. As a specific example of another structural unit, the following general formula (5)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式(5)中、R10、R11、R12及びR13は、同一又は異なって、水素原子、置換基で置換されていてもよい炭素数1~10のアルキル基、又は置換基で置換されていてもよい炭素数6~20のアリール基を示し、R10~R13のうち二つが、互いに結合して、これらが結合する炭素原子と共に、置換もしくは非置換の飽和もしくは不飽和の環員数3~10の脂肪族環を形成していてもよい。)
で表される構造単位を挙げることができる。
(In formula (5), R 10 , R 11 , R 12 and R 13 are the same or different alkyl groups having 1 to 10 carbon atoms which may be substituted with hydrogen atoms or substituents, or substituents. It represents an aryl group having 6 to 20 carbon atoms which may be substituted, and two of R 10 to R 13 are bonded to each other, and together with the carbon atom to which they are bonded, the substituted or unsaturated saturated or unsaturated It may form an aliphatic ring having 3 to 10 ring members.)
The structural unit represented by is given.
 式(5)において、R10、R11、R12及びR13は、同一又は異なっている。つまり、R10、R11、R12及びR13が全て同一でもよく、R10、R11、R12が同一でR13は異なっていてもよく、R10、R12、R13が同一でR11は異なっていてもよく、R10、R11、R12、及びR13が全て異なっていてもよい。 In formula (5), R 10 , R 11 , R 12 and R 13 are the same or different. That is, R 10 , R 11 , R 12 and R 13 may all be the same, R 10 , R 11 , R 12 may be the same and R 13 may be different, and R 10 , R 12 , and R 13 may be the same. R 11 may be different, and R 10 , R 11 , R 12 and R 13 may all be different.
 式(5)において、置換基で置換されていてもよい炭素数1~10のアルキル基としては、式(1)の置換基で置換されていてもよい炭素数1~10のアルキル基と同様の種類を例示することができる。 In the formula (5), the alkyl group having 1 to 10 carbon atoms which may be substituted with the substituent is the same as the alkyl group having 1 to 10 carbon atoms which may be substituted with the substituent of the formula (1). The types of can be exemplified.
 式(5)において、置換基で置換されていてもよい炭素数6~20のアリール基としては、式(1)の置換基で置換されていてもよい炭素数6~20のアリール基と同様の種類を例示することができる。 In the formula (5), the aryl group having 6 to 20 carbon atoms which may be substituted with the substituent is the same as the aryl group having 6 to 20 carbon atoms which may be substituted with the substituent of the formula (1). The types of can be exemplified.
 式(5)において、R10、R11、R12及びR13のうち二つが互いに結合して形成される、置換もしくは非置換の飽和もしくは不飽和の環員数3~10の脂肪族環としては、例えば、置換基で置換されていてもよい3~8員環の脂肪族環が挙げられる。当該脂肪族環としては、より具体的には、シクロペンタン環、シクロペンテン環、シクロヘキサン環、シクロヘキセン環、シクロヘプタン環等が挙げられる。また、当該脂肪族環が置換基で置換されている場合、置換基としては、例えば、アルキル基、アリール基、アルコキシ基、アシルオキシ基、シリル基、スルファニル基、シアノ基、ニトロ基、スルホ基、ホルミル基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)等が挙げられる。また、当該脂肪族環は、1又は2以上の置換基で置換されていてもよい。ここでのアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。また、アリール基としては、例えばフェニル基、o-トリル基、m-トリル基、p-トリル基、ナフチル基、インデニル基等が挙げられる。また、アルコキシ基としては、例えばメトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基等が挙げられる。また、アシルオキシ基としては、例えばアセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基等が挙げられる。また、アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、tert-ブトキシカルボニル基等が挙げられる。 In formula (5), as an aliphatic ring having a saturated or unsaturated ring member number of 3 to 10 which is substituted or unsaturated and is formed by bonding two of R 10 , R 11 , R 12 and R 13 to each other. For example, a 3- to 8-membered aliphatic ring which may be substituted with a substituent may be mentioned. More specific examples of the aliphatic ring include a cyclopentane ring, a cyclopentene ring, a cyclohexane ring, a cyclohexene ring, a cycloheptane ring and the like. When the aliphatic ring is substituted with a substituent, examples of the substituent include an alkyl group, an aryl group, an alkoxy group, an acyloxy group, a silyl group, a sulfanyl group, a cyano group, a nitro group and a sulfo group. Examples thereof include a formyl group and a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom and an iodine atom). In addition, the aliphatic ring may be substituted with one or more substituents. Examples of the alkyl group here include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group and the like. Examples of the aryl group include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a naphthyl group, an indenyl group and the like. Examples of the alkoxy group include a methoxy group, an ethoxy group, an isopropoxy group, a tert-butoxy group and the like. Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group and the like. Examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, and a tert-butoxycarbonyl group.
 中でも、R10、R11、R12及びR13は、同一又は異なって、水素原子又は炭素数1から4のアルキル基であることが好ましい。特に、R10、R11及びR12は水素原子であり、R13は炭素数1から4のアルキル基であることが好ましい。また、中でも、R13はメチル基であることが更に好ましい。 Among them, R 10 , R 11 , R 12 and R 13 are preferably the same or different, and are preferably hydrogen atoms or alkyl groups having 1 to 4 carbon atoms. In particular, it is preferable that R 10 , R 11 and R 12 are hydrogen atoms, and R 13 is an alkyl group having 1 to 4 carbon atoms. Further, among them, it is more preferable that R 13 is a methyl group.
 脂肪族ポリカーボネートPにおいて、構造単位Iの含有割合は特に限定されない。例えば、構造単位Iは、脂肪族ポリカーボネートPの全構造単位中、1モル%以上20モル%以下含まれることが好ましい。この場合、前駆体を用いて合成したグラフト共重合体において、幹ポリマー及び枝ポリマーの物性の両方の性能を好ましく発揮することができる。なお、脂肪族ポリカーボネートPに含まれる構造単位として、構造単位I以外としては、例えば、前述の他の構造単位を挙げることができ、好ましくは、式(5)で表される構造単位とすることができる。構造単位Iは、脂肪族ポリカーボネートPの全構造単位中、2モル%以上12モル%以下含まれることがより好ましく、2.5モル%以上、8モル%以下含まれることがさらに好ましく、3モル%以上、8モル%以下含まれることが特に好ましい。これらの場合において、残部は、例えば、式(5)で表される構造単位とすることができる。 In the aliphatic polycarbonate P, the content ratio of the structural unit I is not particularly limited. For example, the structural unit I is preferably contained in an amount of 1 mol% or more and 20 mol% or less in all the structural units of the aliphatic polycarbonate P. In this case, in the graft copolymer synthesized using the precursor, both the physical properties of the stem polymer and the branch polymer can be preferably exhibited. As the structural unit contained in the aliphatic polycarbonate P, for example, other structural units described above can be mentioned as the structural unit other than the structural unit I, and the structural unit represented by the formula (5) is preferable. Can be done. The structural unit I is more preferably contained in an amount of 2 mol% or more and 12 mol% or less, more preferably 2.5 mol% or more and 8 mol% or less, in the total structural unit of the aliphatic polycarbonate P, 3 mol. It is particularly preferable that it is contained in an amount of% or more and 8 mol% or less. In these cases, the balance can be, for example, a structural unit represented by the formula (5).
 脂肪族ポリカーボネートPの数平均分子量は、特に限定されず、例えば、1000から100000である。この場合、後記する前駆体のリビングラジカル重合によって得られるグラフト共重合体のハンドリング性が優れる。脂肪族ポリカーボネートPの数平均分子量は、好ましくは2000以上、より好ましくは3000以上であり、後記するリビングラジカル重合反応の反応性の低下を避ける観点から、好ましくは50000以下、より好ましくは30000以下、さらに好ましくは25000以下である。 The number average molecular weight of the aliphatic polycarbonate P is not particularly limited, and is, for example, 1000 to 100,000. In this case, the handleability of the graft copolymer obtained by the living radical polymerization of the precursor described later is excellent. The number average molecular weight of the aliphatic polycarbonate P is preferably 2000 or more, more preferably 3000 or more, and preferably 50,000 or less, more preferably 30,000 or less, from the viewpoint of avoiding a decrease in the reactivity of the living radical polymerization reaction described later. More preferably, it is 25,000 or less.
 (前駆体の製造方法)
 前駆体の製造方法は特に制限されず、例えば、公知の脂肪族ポリカーボネートの製造で採用されている重合方法を選択することができる。例えば、二酸化炭素とエポキシドとを共重合する工程を含む製造方法により、脂肪族ポリカーボネートPを製造することができる。以下、この製造方法を「製造方法P」と略記する。
(Precursor manufacturing method)
The method for producing the precursor is not particularly limited, and for example, the polymerization method used in the production of known aliphatic polycarbonates can be selected. For example, the aliphatic polycarbonate P can be produced by a production method including a step of copolymerizing carbon dioxide and epoxide. Hereinafter, this manufacturing method is abbreviated as "manufacturing method P".
 製造方法Pで得られる脂肪族ポリカーボネートPは、二酸化炭素とエポキシドが交互に反応したカーボネート結合を含む構造単位と、二酸化炭素が反応せずエポキシドが連続して反応したエーテル結合を含む構造単位が含まれ得る。脂肪族ポリカーボネートPの構造単位は、カーボネート結合を含む構造単位を80モル%以上含むことが好ましく、90モル%以上含むことがより好ましく、95モル%以上含むことがさらに好ましく、99モル%以上含むことが特に好ましい。 The aliphatic polycarbonate P obtained by the production method P contains a structural unit containing a carbonate bond in which carbon dioxide and an epoxide are alternately reacted, and a structural unit containing an ether bond in which carbon dioxide does not react and the epoxide is continuously reacted. It can be. The structural unit of the aliphatic polycarbonate P preferably contains 80 mol% or more of structural units containing a carbonate bond, more preferably 90 mol% or more, further preferably 95 mol% or more, and 99 mol% or more. Is particularly preferred.
 製造方法Pでは、少なくとも制御ラジカル重合開始能を有する官能基を有するエポキシドと、二酸化炭素との反応により、式(1)で表される構造単位Iを形成することが可能なエポキシドを使用することができる。これにより、製造方法Pで得られる脂肪族ポリカーボネートPは、その構造単位中に構造単位Iを有することができる。 In the production method P, an epoxide having a functional group having at least a controlled radical polymerization initiation ability and an epoxide capable of forming the structural unit I represented by the formula (1) by reacting with carbon dioxide is used. Can be done. As a result, the aliphatic polycarbonate P obtained by the production method P can have the structural unit I in its structural unit.
 もしくは、製造方法Pでは、二酸化炭素とエポキシドとの重合反応で脂肪族ポリカーボネートを形成した後、制御ラジカル重合開始能を有する官能基Aを側鎖に導入することで、構造単位Iを有する脂肪族ポリカーボネートPを得ることができる。 Alternatively, in the production method P, an aliphatic polycarbonate having a structural unit I is formed by forming an aliphatic polycarbonate by a polymerization reaction of carbon dioxide and an epoxide, and then introducing a functional group A having a controlled radical polymerization initiation ability into a side chain. Polycarbonate P can be obtained.
 本発明の脂肪族ポリカーボネートのうち、式(1)で表される構造単位を形成するために用いられるエポキシドとしては、例えば、クロロ酢酸グリシジル、ブロモ酢酸グリシジル、2-クロロプロピオン酸グリシジル、2-ブロモプロピオン酸グリシジル、2-クロロイソ酪酸グリシジル、2-ブロモイソ酪酸グリシジル、1-クロロフェニル酢酸グリシジル、1-ブロモフェニル酢酸グリシジル、2-[4-(クロロメチル)フェニル]オキシラン、2-[4-(ブロモメチル)フェニル]オキシラン、2-[4-(クロロメチル)フェノキシ]メチルオキシラン、2-[4-(ブロモメチル)フェノキシ]メチルオキシラン、2-[4-(1-クロロエチル)フェニル]オキシラン、2-[4-(1-ブロモエチル)フェニル]オキシラン、2-[4-(1-クロロエチル)フェノキシ]メチルオキシラン、2-[4-(1-ブロモエチル)フェノキシ]メチルオキシラン、2-(チオベンゾイルチオ)酢酸グリシジル、ジチオ安息香酸グリシジル、4-シアノ-4-[[[2-フェニルエチルチオ]チオキソメチル]チオペンタン酸グリシジル、2-[[(ドデシルチオ)チオキソメチル]チオ]-2-メチル酪酸グリシジル、N,N-ジメチルジチオカルバミン酸グリシジル、N,N-ジドデシルジチオカルバミン酸グリシジル、N-メチル-N-(フェニルメチル)ジチオカルバミン酸グリシジル、メチルキサントゲン酸グリシジル、エチルキサントゲン酸グリシジル、ブチルキサントゲン酸グリシジル、2,2,6,6-テトラメチル-1-[1-[4-(2-オキシラニルメトキシ)フェニル]エトキシ]-4-メトキシピペリジン、2,2,6,6-テトラメチル-1-[1-[4-(2-オキシラニルメトキシ)フェニル]エトキシ]-4-プロポキシピペリジン、2,2,6,6-テトラメチル-1-[1-[4-(2-オキシラニルメトキシ)フェニル]エトキシ]ピペリジン、[(2,2,6,6-テトラメチル-1-ピペリジニル)オキシ]酢酸グリシジル、[(2,2,6,6-テトラメチル-1-ピペリジニル)オキシ]プロピオン酸グリシジル等が挙げられる。
 なかでも、高い反応性を有する観点から、2-クロロプロピオン酸グリシジル、2-ブロモプロピオン酸グリシジル、2-ブロモイソ酪酸グリシジルが好ましい。
Among the aliphatic polycarbonates of the present invention, examples of the epoxide used for forming the structural unit represented by the formula (1) include glycidyl chloroacetate, glycidyl bromoacetate, glycidyl 2-chloropropionate, and 2-bromo. Glycidyl propionate, glycidyl 2-chloroisobutyrate, glycidyl 2-bromoisobutyrate, 1-chlorophenyl glycidyl acetate, 1-bromophenyl glycidyl acetate, 2- [4- (chloromethyl) phenyl] oxylane, 2- [4- (bromomethyl) Phenyl] oxylan, 2- [4- (chloromethyl) phenoxy] methyloxylan, 2- [4- (bromomethyl) phenoxy] methyloxylan, 2- [4- (1-chloroethyl) phenyl] oxylan, 2- [4- (1-Bromoethyl) phenyl] oxylane, 2- [4- (1-chloroethyl) phenoxy] methyloxylan, 2- [4- (1-bromoethyl) phenoxy] methyloxylan, 2- (thiobenzoylthio) glycidyl acetate, dithio Glycidyl benzoate, 4-cyano-4-[[[2-phenylethylthio] thioxomethyl] glycidyl thiopentate, 2-[[(dodecylthio) thioxomethyl] thio] glycidyl 2-methylbutyrate, N, N-dimethyldithiocarbamic acid Glycidyl, N, N-didodecyl dithiocarbamate glycidyl, N-methyl-N- (phenylmethyl) glycidyl dithiocarbamate, glycidyl methylxanthogenate, glycidyl ethylxanthogenate, glycidyl butylxanthogenate, 2,2,6,6-tetra Methyl-1- [1- [4- (2-oxylanylmethoxy) phenyl] ethoxy] -4-methoxypiperidin, 2,2,6,6-tetramethyl-1- [1- [4- (2- (2-) Oxylanylmethoxy) phenyl] ethoxy] -4-propoxypiperidine, 2,2,6,6-tetramethyl-1- [1- [4- (2-oxylanylmethoxy) phenyl] ethoxy] piperidine, [( 2,2,6,6-tetramethyl-1-piperidinyl) oxy] glycidyl acetate, [(2,2,6,6-tetramethyl-1-piperidinyl) oxy] glycidyl propionate and the like can be mentioned.
Of these, glycidyl 2-chloropropionate, glycidyl 2-bromopropionate, and glycidyl 2-bromoisobutyrate are preferable from the viewpoint of having high reactivity.
 製造方法Pで使用するエポキシドは、式(1)で表される構造単位を形成するために用いられるエポキシドの他、式(5)で表される構造単位を形成するために用いられるエポキシドを併用することができる。式(5)で表される構造単位を形成するために用いられるエポキシドとしては、エチレンオキシド、プロピレンオキシド、1-ブテンオキシド、2-ブテンオキシド、イソブチレンオキシド、1-ペンテンオキシド、2-ペンテンオキシド、1-ヘキセンオキシド、1-オクテンオキシド、1-ドデセンオキシド、シクロペンテンオキシド、シクロヘキセンオキシド、スチレンオキシド、ビニルシクロヘキサンオキシド、3-フェニルプロピレンオキシド、3-ナフチルプロピレンオキシド、3-フェノキシプロピレンオキシド、3-ナフトキシプロピレンオキシド等が挙げられる。
 なかでも、高い反応性を有する観点から、エチレンオキシド、プロピレンオキシド、1-ブテンオキシド、シクロヘキセンオキシドが好ましく、エチレンオキシド、プロピレンオキシド、1-ブテンオキシドがさらに好ましく、プロピレンオキシドが特に好ましい。
The epoxide used in the production method P is a combination of the epoxide used for forming the structural unit represented by the formula (1) and the epoxide used for forming the structural unit represented by the formula (5). can do. Examples of the epoxide used to form the structural unit represented by the formula (5) include ethylene oxide, propylene oxide, 1-butene oxide, 2-butene oxide, isobutylene oxide, 1-pentene oxide, 2-pentene oxide, and 1 -Hexene oxide, 1-octene oxide, 1-dodecene oxide, cyclopentene oxide, cyclohexene oxide, styrene oxide, vinylcyclohexane oxide, 3-phenylpropylene oxide, 3-naphthylpropylene oxide, 3-phenoxypropylene oxide, 3-naphthoxy Examples include propylene oxide.
Among them, ethylene oxide, propylene oxide, 1-butene oxide and cyclohexene oxide are preferable, ethylene oxide, propylene oxide and 1-butene oxide are more preferable, and propylene oxide is particularly preferable, from the viewpoint of having high reactivity.
 製造方法Pで使用するエポキシドにおいて、式(1)で表される構造単位を形成するために用いられるエポキシドと、式(5)で表される構造単位を形成するために用いられるエポキシドの含有量は特に制限されない。例えば、構成単位Iの含有割合が後記する範囲となるように両者の割合を調整することができる。 In the epoxide used in the production method P, the content of the epoxide used for forming the structural unit represented by the formula (1) and the epoxide used for forming the structural unit represented by the formula (5). Is not particularly limited. For example, the ratio of both can be adjusted so that the content ratio of the constituent unit I is within the range described later.
 製造方法Pにおいて、二酸化炭素とエポキシドとの重合反応は、金属触媒の存在下で行うことが好ましい。この場合の金属触媒としては、例えば、二酸化炭素とエポキシドとの重合反応で使用される公知の金属触媒を広く使用することができる。 In the production method P, the polymerization reaction of carbon dioxide and epoxide is preferably carried out in the presence of a metal catalyst. As the metal catalyst in this case, for example, a known metal catalyst used in the polymerization reaction of carbon dioxide and epoxide can be widely used.
 金属触媒の具体例としては、例えば、亜鉛系触媒、マグネシウム系触媒、アルミニウム系触媒、クロム系触媒、コバルト系触媒、ニッケル系触媒等が挙げられる。これらの中では、エポキシドと二酸化炭素との重合反応において、高い重合活性を有することから、亜鉛系触媒及びコバルト系触媒が好ましく、分子量を制御しやすいという観点から、コバルト系触媒がより好ましい。 Specific examples of the metal catalyst include zinc-based catalysts, magnesium-based catalysts, aluminum-based catalysts, chromium-based catalysts, cobalt-based catalysts, nickel-based catalysts, and the like. Among these, zinc-based catalysts and cobalt-based catalysts are preferable because they have high polymerization activity in the polymerization reaction between epoxides and carbon dioxide, and cobalt-based catalysts are more preferable from the viewpoint of easy control of molecular weight.
 亜鉛系触媒としては、例えば、酢酸亜鉛、ジエチル亜鉛、ジブチル亜鉛等の有機亜鉛触媒;一級アミン、2価のフェノール、芳香族ジカルボン酸、芳香族ヒドロキシ酸、脂肪族ジカルボン酸、脂肪族モノカルボン酸等の化合物と亜鉛化合物とを反応させることにより得られる有機亜鉛触媒等が挙げられる。これらの有機亜鉛触媒の中でも、より高い重合活性を有することから、亜鉛化合物と脂肪族ジカルボン酸と脂肪族モノカルボン酸とを反応させて得られる有機亜鉛触媒が好ましく、酸化亜鉛とグルタル酸と酢酸とを反応させて得られる有機亜鉛触媒がより好ましい。 Examples of the zinc-based catalyst include organic zinc catalysts such as zinc acetate, diethyl zinc, and dibutyl zinc; primary amines, divalent phenols, aromatic dicarboxylic acids, aromatic hydroxy acids, aliphatic dicarboxylic acids, and aliphatic monocarboxylic acids. Examples thereof include an organozinc catalyst obtained by reacting a compound such as the above with a zinc compound. Among these organozinc catalysts, an organozinc catalyst obtained by reacting a zinc compound with an aliphatic dicarboxylic acid and an aliphatic monocarboxylic acid is preferable because it has a higher polymerization activity, and zinc oxide, glutaric acid, and acetic acid are preferable. An organozinc catalyst obtained by reacting with is more preferable.
 前記コバルト系触媒としては、例えば、下記一般式(6): As the cobalt-based catalyst, for example, the following general formula (6):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、R14及びR15は、同一又は異なって、水素原子、置換もしくは非置換のアルキル基、置換もしくは非置換の芳香族基、又は置換もしくは非置換の芳香族複素環基であるか、又は2個のR14もしくは2個のR15が互いに結合して置換もしくは非置換の飽和もしくは不飽和の脂肪族環を形成してもよく;R16、R17及びR18は、同一又は異なって、水素原子、置換もしくは非置換のアルキル基、置換もしくは非置換のアルケニル基、置換もしくは非置換の芳香族基、置換もしくは非置換の芳香族複素環基、置換もしくは非置換のアルコキシ基、置換もしくは非置換のアシル基、置換もしくは非置換のアルコキシカルボニル基、置換もしくは非置換の芳香族オキシカルボニル基、置換もしくは非置換のアラルキルオキシカルボニル基であるか、又は隣り合う炭素原子上のR17とR18とが互いに結合して置換もしくは非置換の脂肪族環又は置換もしくは非置換の芳香環を形成してもよく、Zは、F、Cl、Br、I、N 、CFSO 、p-CHSO 、BF 、NO 、NO 、OH、PF 、BPh 、SbF 、ClO 、脂肪族カルボキシラート、芳香族カルボキシラート、アルコキシド、及び芳香族オキシドからなる群より選択されるアニオン性配位子である)
で示されるコバルト錯体を用いることができる。
(In the formula, are R 14 and R 15 identical or different, hydrogen atoms, substituted or unsubstituted alkyl groups, substituted or unsubstituted aromatic groups, or substituted or unsubstituted aromatic heterocyclic groups? , Or two R 14s or two R 15s may combine with each other to form a substituted or unsubstituted saturated or unsaturated aliphatic ring; R 16 , R 17 and R 18 may be the same or Differently, hydrogen atoms, substituted or unsubstituted alkyl groups, substituted or unsubstituted alkenyl groups, substituted or unsubstituted aromatic groups, substituted or unsubstituted aromatic heterocyclic groups, substituted or unsubstituted alkoxy groups, R 17 on a substituted or unsubstituted acyl group, a substituted or unsubstituted alkoxycarbonyl group, a substituted or unsubstituted aromatic oxycarbonyl group, a substituted or unsubstituted aralkyloxycarbonyl group, or adjacent carbon atoms. and R 18 and are may be bonded to form a substituted or unsubstituted aliphatic ring or a substituted or unsubstituted aromatic rings each other, Z is, F -, Cl -, Br -, I -, N 3 - , CF 3 SO 3 -, p -CH 3 C 6 H 4 SO 3 -, BF 4 -, NO 2 -, NO 3 -, OH -, PF 6 -, BPh 4 -, SbF 6 -, ClO 4 -, An anionic ligand selected from the group consisting of aliphatic carboxylates, aromatic carboxylates, alkoxides, and aromatic oxides)
A cobalt complex represented by is used.
 式(6)で示されるコバルト錯体のなかでも、下記一般式(7): Among the cobalt complexes represented by the formula (6), the following general formula (7):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、R14及びR15は、同一又は異なって、水素原子、置換もしくは非置換のアルキル基、置換もしくは非置換の芳香族基、又は置換もしくは非置換の芳香族複素環基であるか、又は2個のR13もしくは2個のR15が互いに結合して置換もしくは非置換の飽和もしくは不飽和の脂肪族環を形成してもよく;複数のR19は、それぞれ独立して、水素原子、炭素数1から6のアルキル基、炭素数1から6のアルコキシ基、置換もしくは非置換の芳香族基、又はハロゲン原子であり、Zは、F、Cl、Br、I、N 、CFSO 、p-CHSO 、BF 、NO 、NO 、OH、PF 、BPh 、SbF 、ClO 、脂肪族カルボキシラート、芳香族カルボキシラート、アルコキシド、及び芳香族オキシドからなる群より選択されるアニオン性配位子である)
で示されるコバルト錯体が好ましい。
(In the formula, are R 14 and R 15 identical or different, hydrogen atoms, substituted or unsubstituted alkyl groups, substituted or unsubstituted aromatic groups, or substituted or unsubstituted aromatic heterocyclic groups? , Or two R 13s or two R 15s may combine with each other to form a substituted or unsubstituted saturated or unsaturated aliphatic ring; each of the plurality of R 19s is independently hydrogenated. An atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a substituted or unsubstituted aromatic group, or a halogen atom, where Z is F , Cl , Br , I ,. N 3 -, CF 3 SO 3 -, p-CH 3 C 6 H 4 SO 3 -, BF 4 -, NO 2 -, NO 3 -, OH -, PF 6 -, BPh 4 -, SbF 6 -, ClO 4 -, aliphatic carboxylate, aromatic carboxylate, alkoxide, and an anionic ligand selected from the group consisting of aromatic oxide)
The cobalt complex represented by is preferable.
 式(7)で示されるコバルト錯体の中でも、次の式(7-1)から(7-5)で示されるコバルト錯体が好ましい。 Among the cobalt complexes represented by the formula (7), the cobalt complexes represented by the following formulas (7-1) to (7-5) are preferable.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 製造方法Pにおいて、重合反応に用いられる金属触媒の使用量は、重合反応の進行を促進する観点から、エポキシド100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.01質量部以上であり、使用量に見合う効果を得る観点から、好ましくは20質量部以下、より好ましくは10質量部以下である。 In the production method P, the amount of the metal catalyst used in the polymerization reaction is preferably 0.001 part by mass or more, more preferably 0.01 with respect to 100 parts by mass of the epoxide, from the viewpoint of promoting the progress of the polymerization reaction. It is preferably 20 parts by mass or less, and more preferably 10 parts by mass or less from the viewpoint of obtaining an effect commensurate with the amount used.
 製造方法Pにおいて、重合反応に用いられる金属触媒は、例えば、公知の方法により製造することができる。 In the production method P, the metal catalyst used in the polymerization reaction can be produced, for example, by a known method.
 前記重合反応は、必要に応じて、金属触媒に加えて、助触媒の存在下で行ってもよい。助触媒としては、ビス(トリフェニルホスホラニリデン)アンモニウムクロリド(PPNCl)、ピペリジン、ビス(トリフェニルホスホラニリデン)アンモニウムフルオリド(PPNF)、ビス(トリフェニルホスホラニリデン)アンモニウムペンタフルオロベンゾエート(PPNOBzF)、テトラ-n-ブチルアンモニウムクロリド(nBuNCl)、テトラ-n-ブチルアンモニウムブロミド(nBuNBr)、テトラ-n-ブチルアンモニウムヨージド(nBuNI)、テトラ-n-ブチルアンモニウムアセテート(nBuNOAc)、テトラ-n-ブチルアンモニウムナイトレート(nBuNO)、トリエチルホスフィン(EtP)、トリ-n-ブチルホスフィン(nBuP)、トリフェニルホスフィン(PhP)、ピリジン、4-メチルピリジン、4-ホルミルピリジン、4-(N,N-ジメチルアミノ)ピリジン、N-メチルイミダゾール、N-エチルイミダゾール等が挙げられる。これらのなかでは、PPNCl、PPNF、PPNOBzF及びnBuNClが好ましく、高い反応活性を有する観点から、PPNClがより好ましい。 The polymerization reaction may be carried out in the presence of a co-catalyst in addition to the metal catalyst, if necessary. As co-catalysts, bis (triphenylphosphoranylidene) ammonium chloride (PPNCl), piperidine, bis (triphenylphosphoranylidene) ammonium fluoride (PPNF), bis (triphenylphosphoranilidine) ammonium pentafluorobenzoate (PPNOBzF) 5 ), Tetra-n-butylammonium chloride (nBu 4 NCl), tetra-n-butylammonium bromide (nBu 4 NBr), tetra-n-butylammonium iodide (nBu 4 NI), tetra-n-butylammonium acetate. (NBu 4 NOAc), tetra-n-butylammonium nitrate (nBu 4 NO 3 ), triethylphosphine (Et 3 P), tri-n-butylphosphine (nBu 3 P), triphenylphosphine (Ph 3 P), Examples thereof include pyridine, 4-methylpyridine, 4-formylpyridine, 4- (N, N-dimethylamino) pyridine, N-methylimidazole, N-ethylimidazole and the like. Among these, PPNCl, PPNF, PPNOBzF 5 and nBu 4 NCl are preferable, and PPNCl is more preferable from the viewpoint of having high reaction activity.
 製造方法Pにおいて助触媒を使用する場合、助触媒の使用量は、金属触媒1モルに対して、好ましくは0.1から10モル、より好ましくは0.3から5モル、さらに好ましくは0.5から1.5モルである。0.1モルより少なくても、10モルより多くても、重合反応において副反応が起こりやすくなる。 When the co-catalyst is used in the production method P, the amount of the co-catalyst used is preferably 0.1 to 10 mol, more preferably 0.3 to 5 mol, still more preferably 0. It is 5 to 1.5 mol. If it is less than 0.1 mol or more than 10 mol, a side reaction is likely to occur in the polymerization reaction.
 製造方法Pにおいて、重合反応では必要に応じて溶媒を用いることができる。溶媒としては、特に限定されず、種々の有機溶媒を用いることができる。有機溶媒としては、例えば、ペンタン、ヘキサン、オクタン、シクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;塩化メチレン、クロロホルム、四塩化炭素、1,1-ジクロロエタン、1,2-ジクロロエタン、クロルベンゼン、ブロモベンゼン等のハロゲン化炭化水素系溶媒;ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、アニソール等のエーテル系溶媒;酢酸エチル、酢酸n-プロピル、酢酸イソプロピル等のエステル系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、プロピレンカーボネート等のカーボネート系溶媒等が挙げられる。 In the production method P, a solvent can be used in the polymerization reaction if necessary. The solvent is not particularly limited, and various organic solvents can be used. Examples of the organic solvent include aliphatic hydrocarbon solvents such as pentane, hexane, octane and cyclohexane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; methylene chloride, chloroform, carbon tetrachloride, 1,1- Halogenated hydrocarbon solvents such as dichloroethane, 1,2-dichloroethane, chlorbenzene and bromobenzene; ether solvents such as dimethoxyethane, tetrahydrofuran, 2-methyl tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane and anisole. Ester solvents such as ethyl acetate, n-propyl acetate, isopropyl acetate; amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide; dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, propylene carbonate and the like Examples thereof include carbonate solvents.
 製造方法Pにおいて溶媒を使用する場合、溶媒の使用量は、重合反応を円滑に進行させる観点から、例えばエポキシド100質量部に対して、100から10000質量部が好ましい。 When a solvent is used in the production method P, the amount of the solvent used is preferably 100 to 10000 parts by mass with respect to 100 parts by mass of epoxide, for example, from the viewpoint of smoothly proceeding the polymerization reaction.
 製造方法Pにおいて、エポキシドと二酸化炭素とを重合反応させる方法としては、特に限定されない。例えば、オートクレーブに、エポキシド、金属触媒、及び必要により助触媒、反応溶媒等を仕込み、混合した後、二酸化炭素を圧入して、反応させる方法が挙げられる。 In the production method P, the method of polymerizing the epoxide and carbon dioxide is not particularly limited. For example, an autoclave may be charged with an epoxide, a metal catalyst, and if necessary, a co-catalyst, a reaction solvent, or the like, mixed, and then carbon dioxide is press-fitted to cause a reaction.
 製造方法Pにおいて、前記重合反応において用いられる二酸化炭素の使用量は、エポキシド1モルに対して、好ましくは1から10モル、より好ましくは1から5モル、さらに好ましくは1から3モルである。 In the production method P, the amount of carbon dioxide used in the polymerization reaction is preferably 1 to 10 mol, more preferably 1 to 5 mol, and further preferably 1 to 3 mol with respect to 1 mol of the epoxide.
 前記重合反応において用いられる二酸化炭素の使用圧力は、特に限定されないが、反応を円滑に進行させる観点から、好ましくは0.1MPa以上、より好ましくは0.2MPa以上、さらに好ましくは0.5MPa以上であり、使用圧力に見合う効果を得る観点から、好ましくは20MPa以下、より好ましくは10MPa以下、さらに好ましくは5MPa以下である。 The working pressure of carbon dioxide used in the polymerization reaction is not particularly limited, but is preferably 0.1 MPa or more, more preferably 0.2 MPa or more, still more preferably 0.5 MPa or more, from the viewpoint of smooth progress of the reaction. From the viewpoint of obtaining an effect commensurate with the working pressure, it is preferably 20 MPa or less, more preferably 10 MPa or less, still more preferably 5 MPa or less.
 前記重合反応における重合反応温度は、特に限定されない。反応時間短縮の観点から、好ましくは0℃以上、より好ましくは10℃以上、さらに好ましくは20℃以上であり、副反応を抑制し、収率を向上させる観点から、好ましくは100℃以下、より好ましくは90℃以下、さらに好ましくは80℃以下である。重合反応時間は、重合反応条件により異なるために一概には決定できないが、1から40時間程度であることが好ましい。 The polymerization reaction temperature in the polymerization reaction is not particularly limited. From the viewpoint of shortening the reaction time, it is preferably 0 ° C. or higher, more preferably 10 ° C. or higher, still more preferably 20 ° C. or higher, and from the viewpoint of suppressing side reactions and improving the yield, preferably 100 ° C. or lower. It is preferably 90 ° C. or lower, more preferably 80 ° C. or lower. The polymerization reaction time cannot be unconditionally determined because it varies depending on the polymerization reaction conditions, but it is preferably about 1 to 40 hours.
 3.グラフト共重合体の製造方法
 本発明のグラフト共重合体の製造方法は特に限定されない。例えば、前記前駆体を原料として用いて重合反応を行う工程により、グラフト共重合体を製造することができる。特に、前駆体は、構造単位Iを有する脂肪族ポリカーボネートPであって、その側鎖に制御ラジカル重合開始能を有する官能基Aを有していることから、前駆体を制御ラジカル重合に供することにより、本発明のグラフト共重合体を簡便に製造することができる。
3. 3. Method for Producing Graft Copolymer The method for producing the graft copolymer of the present invention is not particularly limited. For example, a graft copolymer can be produced by a step of carrying out a polymerization reaction using the precursor as a raw material. In particular, since the precursor is an aliphatic polycarbonate P having a structural unit I and has a functional group A having a controlled radical polymerization initiation ability in its side chain, the precursor is subjected to controlled radical polymerization. Therefore, the graft copolymer of the present invention can be easily produced.
 本発明のグラフト共重合体の製造方法で利用できる制御ラジカル重合の手法としては、制御ラジカル重合開始能を有する官能基の種類によって、適宜選択することができる。例えば、制御ラジカル重合開始能を有する官能基が前述のハロゲン含有基の場合、原子移動ラジカル重合が利用できる。制御ラジカル重合開始能を有する官能基が前述のジチオエステル基、ジチオカーボネート基、ジチオカルバメート基、トリチオカーボネート基の場合、可逆的付加開裂連鎖移動重合が利用できる。制御ラジカル重合開始能を有する官能基が前述のアルコキシアミン基の場合、ニトロキシド媒介ラジカル重合が利用できる。 The controlled radical polymerization method that can be used in the method for producing a graft copolymer of the present invention can be appropriately selected depending on the type of functional group having the ability to initiate controlled radical polymerization. For example, when the functional group having a controlled radical polymerization initiation ability is the above-mentioned halogen-containing group, atom transfer radical polymerization can be used. When the functional group having a controlled radical polymerization initiation ability is the above-mentioned dithioester group, dithiocarbonate group, dithiocarbamate group, or trithiocarbonate group, reversible addition cleavage chain transfer polymerization can be used. When the functional group having a controlled radical polymerization initiation ability is the above-mentioned alkoxyamine group, nitroxide-mediated radical polymerization can be used.
 以下、前記前駆体を原料として用いて、本発明のグラフト共重合体を製造する方法を、製造方法Gと表記する。 Hereinafter, the method for producing the graft copolymer of the present invention using the precursor as a raw material will be referred to as production method G.
 製造方法Gでは、具体的に、前駆体と、ラジカル重合性モノマーとを重合反応させることにより、グラフト共重合体を製造することができる。この場合、前駆体はグラフト共重合体の幹ポリマーとなり、ラジカル重合性モノマーは重合してグラフト共重合体の枝ポリマーとなる。 In the production method G, a graft copolymer can be specifically produced by polymerizing a precursor and a radically polymerizable monomer. In this case, the precursor becomes the stem polymer of the graft copolymer, and the radically polymerizable monomer polymerizes to become the branch polymer of the graft copolymer.
 製造方法Gにおいて、重合反応では必要に応じて、触媒又は開始剤を使用することができる。 In the production method G, a catalyst or an initiator can be used in the polymerization reaction, if necessary.
 触媒として、原子移動ラジカル重合を利用する場合、例えば、第7族、8族、9族、10族、又は11族などの遷移金属化合物と有機配位子とから形成される金属錯体;リン、窒素、炭素、酸素、ゲルマニウム、スズ、及びアンチモンから選ばれる少なくとも1種の中心元素と、該中心元素に結合したハロゲン原子とを含む化合物からなる触媒;有機アミン化合物;及びハロゲン化物イオンとのイオン結合を有する非金属化合物であって、該非金属化合物中の非金属原子がカチオンの状態であり、ハロゲン化物イオンとイオン結合を形成している触媒C;等が挙げられる。 When atomic transfer radical polymerization is used as a catalyst, for example, a metal complex formed from a transition metal compound such as Group 7, 8, 9, 10, or 11 and an organic ligand; phosphorus, A catalyst consisting of a compound containing at least one central element selected from nitrogen, carbon, oxygen, germanium, tin, and antimony and a halogen atom bonded to the central element; an organic amine compound; and an ion with a halide ion. Examples thereof include a catalyst C; which is a non-metal compound having a bond in which a non-metal atom in the non-metal compound is in a cation state and forms an ionic bond with a halide ion.
 上記の第7族、8族、9族、10族、又は11族などの遷移金属化合物としては、塩化第一銅、臭化第一銅、ヨウ化第一銅、シアン化第一銅、酸化第一銅、塩化第一鉄、臭化第一鉄、ヨウ化第一鉄、二塩化鉄、二臭化鉄、二ヨウ化鉄、二塩化ルテニウム、二臭化ルテニウム、二ヨウ化ルテニウム等が挙げられる。 Examples of the transition metal compounds such as Group 7, 8, 9, 10, or 11 include cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, and oxidation. Bronze, ferrous chloride, ferrous bromide, ferrous iodide, iron dichloride, iron dibromide, iron diiodide, ruthenium dichloride, ruthenium dibromide, ruthenium diiodide, etc. Can be mentioned.
 前記有機配位子の例としては、2,2’-ビピリジル、1,10-フェナントロリン、テトラメチルエチレンジアミン、ペンタメチルジエチレントリアミン、トリス(ジメチルアミノエチル)アミン、トリス(2-ピリジルメチル)アミン、トリフェニルホスフィン、トリブチルホスフィン等が挙げられる。 Examples of the organic ligands include 2,2'-bipyridyl, 1,10-phenanthroline, tetramethylethylenediamine, pentamethyldiethylenetriamine, tris (dimethylaminoethyl) amine, tris (2-pyridylmethyl) amine, and triphenyl. Examples thereof include phosphine and tributylphosphine.
 ゲルマニウム、スズ、又はアンチモンから選択される中心元素とする触媒としては、ゲルマニウム、スズ、又はアンチモンから選択される少なくとも一つの中心元素と、該中心元素に結合した少なくとも一つのハロゲン原子を含む化合物が挙げられる。具体的には、ヨウ化ゲルマニウム(II)、ヨウ化ゲルマニウム(IV)、ヨウ化スズ(II)、ヨウ化スズ(IV)等が挙げられる。 The catalyst used as the central element selected from germanium, tin, or antimony is a compound containing at least one central element selected from germanium, tin, or antimony and at least one halogen atom bonded to the central element. Can be mentioned. Specific examples thereof include germanium iodide (II), germanium iodide (IV), tin iodide (II), tin iodide (IV) and the like.
 窒素又はリンを中心元素とする触媒としては、窒素又はリンから選択される少なくとも一つの中心元素と、該中心元素に結合した少なくとも一つのハロゲン原子とを含む化合物が挙げられる。具体的には、ハロゲン化リン、ハロゲン化ホスフィン、ハロゲン化窒素、ハロゲン化亜リン酸、ハロゲン化アミンあるいはハロゲン化イミド誘導体等が挙げられる。 Examples of the catalyst containing nitrogen or phosphorus as a central element include compounds containing at least one central element selected from nitrogen or phosphorus and at least one halogen atom bonded to the central element. Specific examples thereof include phosphorus halide, phosphine halide, nitrogen halide, phosphite halide, amine halide and imide derivative halide.
 前記有機アミン化合物としては、トリエチルアミン、トリブチルアミン、1,1,2,2-テトラキス(ジメチルアミノ)エチレン、1,4,8,11-テトラメチル-1,4,8,11-テトラアザシクロテトラデカン、エチレンジアミン、テトラメチルエチレンジアミン、テトラメチルジアミノメタン、トリス(2-アミノエチル)アミン、トリス(2-メチルアミノエチル)アミン等が挙げられる。 Examples of the organic amine compound include triethylamine, tributylamine, 1,1,2,2-tetrakis (dimethylamino) ethylene, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane. , Ethylenediamine, tetramethylethylenediamine, tetramethyldiaminomethane, tris (2-aminoethyl) amine, tris (2-methylaminoethyl) amine and the like.
 前記触媒Cとしては、テトラブチルアンモニウムヨージド、テトラブチルアンモニウムトリヨージド、テトラブチルアンモニウムブロモジヨージド等のアンモニウム塩;1-メチル-3-メチル-イミダゾリウムヨージド、1-エチル-3-メチルイミダゾリウムブロミド等のイミダゾリウム塩;2-クロロ-1-メチルピリジニウムヨージド等のピリジニウム塩;メチルトリブチルホスホニウムヨージド、テトラフェニルホスホニウムヨージド等のホスホニウム塩、トリブチルスルホニウムヨージド等のスルホニウム塩;ジフェニルヨードニウムヨージド等のヨードニウム塩;等を挙げることができる。 Examples of the catalyst C include ammonium salts such as tetrabutylammonium iodide, tetrabutylammonium triiodide, and tetrabutylammonium bromodiiodide; 1-methyl-3-methyl-imidazolium iodide, 1-ethyl-3-methyl. Imidazolium salts such as imidazolium bromide; pyridinium salts such as 2-chloro-1-methylpyridinium iodide; phosphonium salts such as methyltributylphosphonium iodide and tetraphenylphosphonium iodide; sulfonium salts such as tributylsulfonium iodide; diphenyl Iodonium salts such as iodonium iodide; and the like.
 開始剤として、可逆的付加開裂連鎖移動重合を利用する場合、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2-メチルプロピオン酸)ジメチル、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩等のアゾ化合物;ベンゾイルパーオキシド、ジ-tert-ブチルパーオキシド、ジクミルパーオキシド、tert-ブチルヒドロパーオキシド、クメンヒドロパーオキシド、ペルオキソ二硫酸カリウム等の過酸化物;が挙げられる。 When reversible addition cleavage chain transfer polymerization is used as an initiator, 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2'- Azobis (2-methylbutyronitrile), 4,4'-azobis (4-cyanovaleric acid), 2,2'-azobis (2-methylpropionic acid) dimethyl, 2,2'-azobis (2-methylpropion) Azobisisobutyate and other azo compounds; peroxides such as benzoyl peroxide, di-tert-butyl peroxide, dicumyl peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, potassium peroxobisulfate; Can be mentioned.
 ニトロキシド媒介ラジカル重合を利用する場合は、触媒及び開始剤を使用せずとも、グラフト共重合体を得ることができる。 When nitroxide-mediated radical polymerization is used, a graft copolymer can be obtained without using a catalyst and an initiator.
 製造方法Gで使用するラジカル重合性モノマーは、「1.グラフト共重合体」の項で説明したラジカル重合性モノマーと同様である。 The radically polymerizable monomer used in the production method G is the same as the radically polymerizable monomer described in the section of "1. Graft copolymer".
 製造方法Gにおいて、ラジカル重合性モノマーの使用量は特に限定されず、目的とするグラフト共重合体の構造に応じて適宜設定することができる。例えば、前駆体中の制御ラジカル重合開始能を有する官能基1モルに対して、ラジカル重合性モノマーの使用量は、10モルから5000モルである。この範囲の使用量である場合、幹ポリマーの物性及び枝ポリマーの物性の両方を好ましく発揮することができる。前駆体中の制御ラジカル重合開始能を有する官能基1モルに対して、ラジカル重合性モノマーの使用量は、50モルから1500モルが好ましく、100モルから800モルがより好ましい。 In the production method G, the amount of the radically polymerizable monomer used is not particularly limited, and can be appropriately set according to the structure of the target graft copolymer. For example, the amount of the radically polymerizable monomer used is 10 to 5000 mol with respect to 1 mol of the functional group having the ability to initiate controlled radical polymerization in the precursor. When the amount used is in this range, both the physical properties of the stem polymer and the physical properties of the branch polymer can be preferably exhibited. The amount of the radically polymerizable monomer used is preferably 50 mol to 1500 mol, more preferably 100 mol to 800 mol, based on 1 mol of the functional group having the ability to initiate controlled radical polymerization in the precursor.
 製造方法Gにおいて、重合反応では必要に応じて溶媒を使用することができる。溶媒は各種の有機溶媒を使用することができ、例えば、ペンタン、ヘキサン、オクタン、シクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、アニソール等のエーテル系溶媒;酢酸エチル、酢酸n-プロピル、酢酸イソプロピル等のエステル系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、プロピレンカーボネート等のカーボネート系溶媒等が挙げられる。また、重合反応時に液状となるラジカル重合性モノマーを使用する場合は、溶媒を用いなくても良い。 In the production method G, a solvent can be used in the polymerization reaction as needed. Various organic solvents can be used as the solvent, for example, aliphatic hydrocarbon solvents such as pentane, hexane, octane and cyclohexane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; dimethoxyethane, tetrahydrofuran, etc. Ether solvents such as 2-methyl tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, anisole; ester solvents such as ethyl acetate, n-propyl acetate, isopropyl acetate; N, N-dimethylformamide, N, N -Amid solvents such as dimethylacetamide; carbonate solvents such as dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate, propylene carbonate and the like can be mentioned. Further, when a radically polymerizable monomer that becomes liquid during the polymerization reaction is used, it is not necessary to use a solvent.
 溶媒の使用量は、前駆体1モルに対して、例えば、0モルから10000モルであり、10モルから5000モルが好ましく、50モルから2000モルがさらに好ましく、100モルから1000モルが特に好ましい。溶媒量がこの範囲内であれば、グラフト重合反応を十分な反応速度で行うことができる。 The amount of the solvent used is, for example, 0 mol to 10000 mol, preferably 10 mol to 5000 mol, further preferably 50 mol to 2000 mol, and particularly preferably 100 mol to 1000 mol, based on 1 mol of the precursor. When the amount of the solvent is within this range, the graft polymerization reaction can be carried out at a sufficient reaction rate.
 製造方法Gにおいて、重合反応の温度は、制御ラジカル重合の種類、使用するラジカル重合性モノマーの種類に応じて適宜設定することができ、例えば、0℃から200℃、好ましくは30℃から150℃、より好ましくは、50℃から120℃である。 In the production method G, the temperature of the polymerization reaction can be appropriately set according to the type of controlled radical polymerization and the type of radically polymerizable monomer used, for example, 0 ° C. to 200 ° C., preferably 30 ° C. to 150 ° C. , More preferably 50 ° C to 120 ° C.
 重合反応が完了した後も、得られたグラフト共重合体において、枝ポリマーの末端には制御ラジカル重合の開始剤となる構造が存在するので、さらに同一又は他のモノマーと、グラフト共重合体とを制御ラジカル重合させることもできる。 Even after the polymerization reaction is completed, in the obtained graft copolymer, a structure that serves as an initiator of controlled radical polymerization exists at the end of the branch polymer, so that the same or other monomer and the graft copolymer can be used. Can also be controlled radical polymerization.
 また、重合反応後に後処理を行うことで、枝ポリマーの末端基を別の基に変換することもでき、これにより、グラフト共重合体の設計の自由度がさらに高まる。後処理としては、制御ラジカル重合の種類に応じて適宜選択することができ、例えば、加熱、光照射による分解処理;加水分解処理;加水素分解処理;フリーラジカルとのカップリング反応;チオール化合物による還元処理;等が挙げられる。 Further, by performing post-treatment after the polymerization reaction, the terminal group of the branch polymer can be converted to another group, which further increases the degree of freedom in designing the graft copolymer. The post-treatment can be appropriately selected depending on the type of controlled radical polymerization, for example, decomposition treatment by heating and light irradiation; hydrolysis treatment; hydrogenation decomposition treatment; coupling reaction with free radicals; thiol compound. Reduction treatment; etc.
 以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例の態様に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the aspects of these Examples.
 本実施例において、脂肪族ポリカーボネート及びブロック共重合体の数平均分子量(Mn)は、以下の方法により測定した。 In this example, the number average molecular weight (Mn) of the aliphatic polycarbonate and the block copolymer was measured by the following method.
 〔数平均分子量(Mn)〕
 脂肪族ポリカーボネート濃度又はブロック共重合体濃度が0.5質量%のクロロホルム溶液を調製し、高速液体クロマトグラフ(HPLC)を用いて測定した。測定後、同一条件で測定した数平均分子量が既知のポリスチレンと比較することにより、数平均分子量を算出した。また、測定条件は、以下の通りである。
カラム:GPCカラム(昭和電工株式会社の商品名、Shodex K-804L)
カラム温度:40℃
溶出液:クロロホルム
流速:1.0mL/min
[Number average molecular weight (Mn)]
A chloroform solution having an aliphatic polycarbonate concentration or a block copolymer concentration of 0.5% by mass was prepared and measured using a high performance liquid chromatograph (HPLC). After the measurement, the number average molecular weight was calculated by comparing the number average molecular weight measured under the same conditions with known polystyrene. The measurement conditions are as follows.
Column: GPC column (trade name of Showa Denko KK, Shodex K-804L)
Column temperature: 40 ° C
Eluate: Chloroform flow rate: 1.0 mL / min
 〔DP2/DP1比〕
 DP2/DP1比は、グラフト共重合体のH-NMRスペクトルから計測し、具体的に、グラフト共重合体の製造で使用したラジカル重合性モノマー種に応じて、次のように計測した。
・メタクリル酸メチルの場合
 5.0ppm付近に現れるカーボネートに隣接する炭素上のメチン水素のピークの積分比をA、3.6ppm付近に現れるポリメタクリル酸メチルのメチル水素のピークの積分比をBとし、B/3Aの値を重合度比DP2/DP1とした。
・メタクリル酸グリシジルの場合
 5.0ppm付近に現れるカーボネートに隣接する炭素上のメチン水素のピークの積分比をA、3.2ppm付近に現れるポリメタクリル酸グリシジルのエポキシ基のメチン水素のピークの積分比をBとし、B/Aの値を重合度比DP2/DP1とした。
・N-イソプロピルアクリルアミドの場合
 5.0ppm付近に現れるカーボネートに隣接する炭素上のメチン水素のピークの積分比をA、1.1ppm付近に現れるポリ(N-イソプロピルアクリルアミド)のメチル水素のピークの積分比をBとし、B/6Aの値を重合度比DP2/DP1とした。
・スチレンの場合
 5.0ppm付近に現れるカーボネートに隣接する炭素上のメチン水素のピークの積分比をA、6.3から7.2ppm付近に現れるフェニル基の水素のピークの積分比をBとし、B/5Aの値を重合度比DP2/DP1とした。
[DP2 / DP1 ratio]
The DP2 / DP1 ratio was measured from the 1 H-NMR spectrum of the graft copolymer, and specifically, it was measured as follows according to the radically polymerizable monomer species used in the production of the graft copolymer.
-In the case of methyl methacrylate, the integral ratio of the peak of methine hydrogen on the carbon adjacent to the carbonate appearing near 5.0 ppm is A, and the integral ratio of the peak of methyl hydrogen of polymethyl methacrylate appearing around 3.6 ppm is B. , B / 3A was defined as the degree of polymerization ratio DP2 / DP1.
-In the case of glycidyl methacrylate, the integral ratio of the peak of methine hydrogen on the carbon adjacent to the carbonate appearing near 5.0 ppm is A, and the integral ratio of the peak of methine hydrogen of the epoxy group of polyglycidyl methacrylate appearing around 3.2 ppm. Was B, and the value of B / A was the degree of polymerization ratio DP2 / DP1.
-In the case of N-isopropylacrylamide, the integral ratio of the peak of methine hydrogen on the carbon adjacent to the carbonate appearing around 5.0 ppm is A, and the integral ratio of the peak of methyl hydrogen of poly (N-isopropylacrylamide) appearing around 1.1 ppm. The ratio was B, and the value of B / 6A was the degree of polymerization ratio DP2 / DP1.
-In the case of styrene, the integral ratio of the peak of methine hydrogen on the carbon adjacent to the carbonate appearing near 5.0 ppm is A, and the integral ratio of the peak of hydrogen of the phenyl group appearing around 6.3 to 7.2 ppm is B. The value of B / 5A was defined as the degree of polymerization ratio DP2 / DP1.
 (製造例1:コバルト錯体触媒の製造)
 撹拌機を備えた50mLフラスコに,(R,R)-N,N′-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノコバルト(II)(Aldrich社より購入)150 mg(0.25 mmol)、ペンタフルオロ安息香酸53mg(0.25 mmol)、及びジクロロメタン5mLを仕込み、空気を導入しながら22時間攪拌し反応させた。揮発成分を減圧留去した後、減圧乾燥させ、コバルト錯体(前記(式7-3)で表されるコバルト錯体)を暗緑色固体として得た(収量195mg,収率96.5%)。
(Production Example 1: Production of cobalt complex catalyst)
In a 50 mL flask equipped with a stirrer, (R, R) -N, N'-bis (3,5-di-tert-butylsalicylidene) -1,2-cyclohexanediaminocobalt (II) (from Aldrich) (Purchased) 150 mg (0.25 mmol), 53 mg (0.25 mmol) of pentafluorobenzoic acid, and 5 mL of dichloromethane were charged, and the mixture was stirred and reacted for 22 hours while introducing air. The volatile components were evaporated under reduced pressure and then dried under reduced pressure to obtain a cobalt complex (cobalt complex represented by the above formula (7-3)) as a dark green solid (yield 195 mg, yield 96.5%).
 (実施例:グラフト共重合体の前駆体の合成)
 <実施例1a>
 下記式(S1-1)に示す反応スキームに従い、前駆体の合成を行った。50mL容のオートクレーブに,製造例1で得られたコバルト錯体8.7mg(0.011mmol)、ビス(トリフェニルホスホラニリデン)アンモニウムクロリド(PPNCl)6.2mg(0.011mmol)、2-ブロモイソ酪酸グリシジル80μL(0.53mmol)を仕込み、オートクレーブ内をアルゴン雰囲気に置換した。プロピレンオキシド1.5mL(21mmol)を仕込み、オートクレーブ内の圧力が1.5MPaとなるまで二酸化炭素を充填し、その後、25℃で24時間攪拌した。反応終了後、オートクレーブを脱圧し、反応混合物を塩化メチレンで希釈したのち、塩酸酸性メタノール1.0gを加えて反応を停止させた。この混合物を減圧下で濃縮し、得られた残渣をクロロホルム5mL を加えて溶解させ、この溶液をメタノール100g中に滴下して固体を析出させた。得られた固体をろ過し、減圧乾燥させて脂肪族ポリカーボネート1.77gを得た(収率76%)。得られた脂肪族ポリカーボネートのMnは25800であった。
(Example: Synthesis of precursor of graft copolymer)
<Example 1a>
Precursors were synthesized according to the reaction scheme shown in the following formula (S1-1). In a 50 mL autoclave, 8.7 mg (0.011 mmol) of the cobalt complex obtained in Production Example 1, 6.2 mg (0.011 mmol) of bis (triphenylphosphoranylidene) ammonium chloride (PPNCl), and 2-bromoisobutyric acid. 80 μL (0.53 mmol) of glycidyl was charged, and the inside of the autoclave was replaced with an argon atmosphere. 1.5 mL (21 mmol) of propylene oxide was charged, filled with carbon dioxide until the pressure in the autoclave reached 1.5 MPa, and then stirred at 25 ° C. for 24 hours. After completion of the reaction, the autoclave was decompressed, the reaction mixture was diluted with methylene chloride, and then 1.0 g of hydrochloric acid acidic methanol was added to stop the reaction. The mixture was concentrated under reduced pressure, and the obtained residue was dissolved by adding 5 mL of chloroform, and this solution was added dropwise to 100 g of methanol to precipitate a solid. The obtained solid was filtered and dried under reduced pressure to obtain 1.77 g of aliphatic polycarbonate (yield 76%). The Mn of the obtained aliphatic polycarbonate was 25,800.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 図1は、実施例1aで得られたグラフト共重合体の前駆体のH-NMRスペクトルを示す。このH-NMRから、前記式(1)で表される構造単位Iの含有量は、全構造単位中、2.4モル%であることがわかった。 FIG. 1 shows a 1 H-NMR spectrum of a precursor of the graft copolymer obtained in Example 1a. From this 1 1 H-NMR, it was found that the content of the structural unit I represented by the above formula (1) was 2.4 mol% in the total structural units.
 <実施例1b>
 50mL容のオートクレーブに、製造例1で得られたコバルト錯体17.5mg(0.021mmol)、ビス(トリフェニルホスホラニリデン)アンモニウムクロリド(PPNCl)12.3mg(0.021mmol)、2-ブロモイソ酪酸グリシジル0.32mL(2.1mmol)を仕込み、オートクレーブ内をアルゴン雰囲気に置換した。プロピレンオキシド3.0mL(42mmol)を仕込み、オートクレーブ内の圧力が1.5MPaとなるまで二酸化炭素を充填し、その後、25℃で24時間攪拌した。反応終了後、オートクレーブを脱圧し、反応混合物を塩化メチレンで希釈したのち、塩酸酸性メタノール1.0gを加えて反応を停止させた。この反応混合物を減圧下で濃縮し、得られた残渣にクロロホルム5mLを加えて溶解させて溶液を得た。この溶液をメタノール100g中に滴下して固体を析出させた。得られた固体をろ過し、減圧乾燥させて前駆体2.83gを得た(収率57%)。得られた前駆体のMnは21900であった。得られた前駆体のH-NMRから、前記式(1)で表される構造単位Iの含有量は、全構造単位中、5.4モル%であることがわかった。
<Example 1b>
In a 50 mL autoclave, 17.5 mg (0.021 mmol) of the cobalt complex obtained in Production Example 1, 12.3 mg (0.021 mmol) of bis (triphenylphosphoranylidene) ammonium chloride (PPNCl), 2-bromoisobutyric acid. 0.32 mL (2.1 mmol) of glycidyl was charged, and the inside of the autoclave was replaced with an argon atmosphere. 3.0 mL (42 mmol) of propylene oxide was charged, filled with carbon dioxide until the pressure in the autoclave reached 1.5 MPa, and then stirred at 25 ° C. for 24 hours. After completion of the reaction, the autoclave was decompressed, the reaction mixture was diluted with methylene chloride, and then 1.0 g of hydrochloric acid acidic methanol was added to stop the reaction. The reaction mixture was concentrated under reduced pressure, and 5 mL of chloroform was added to the obtained residue to dissolve it to obtain a solution. This solution was added dropwise to 100 g of methanol to precipitate a solid. The obtained solid was filtered and dried under reduced pressure to obtain 2.83 g of a precursor (yield 57%). The Mn of the obtained precursor was 21,900. From 1 H-NMR of the obtained precursor, it was found that the content of the structural unit I represented by the above formula (1) was 5.4 mol% in all the structural units.
 <実施例1c>
 50mL容のオートクレーブに,製造例1で得られたコバルト錯体8.7mg(0.011mmol)、ビス(トリフェニルホスホラニリデン)アンモニウムクロリド(PPNCl)6.2mg(0.011mmol)、2-ブロモイソ酪酸グリシジル0.32mL(2.1mmol)を仕込み、オートクレーブ内をアルゴン雰囲気に置換した。プロピレンオキシド1.5mL(21mmol)を仕込み、オートクレーブ内の圧力が1.5MPaとなるまで二酸化炭素を充填し、その後、25℃で24時間攪拌した。反応終了後、オートクレーブを脱圧し、反応混合物を塩化メチレンで希釈したのち、塩酸酸性メタノール1.0gを加えて反応を停止させた。この混合物を減圧下で濃縮し、得られた残渣をクロロホルム5mL を加えて溶解させ、この溶液をメタノール100g中に滴下して固体を析出させた。得られた固体をろ過し、減圧乾燥させて脂肪族ポリカーボネート1.27gを得た(収率45%)。得られた前駆体のMnは19100であった。得られた前駆体のH-NMRから、前記式(1)で表される構造単位Iの含有量は、全構造単位中、4.8モル%であることがわかった。
<Example 1c>
In a 50 mL autoclave, 8.7 mg (0.011 mmol) of the cobalt complex obtained in Production Example 1, 6.2 mg (0.011 mmol) of bis (triphenylphosphoranylidene) ammonium chloride (PPNCl), and 2-bromoisobutyric acid. 0.32 mL (2.1 mmol) of glycidyl was charged, and the inside of the autoclave was replaced with an argon atmosphere. 1.5 mL (21 mmol) of propylene oxide was charged, filled with carbon dioxide until the pressure in the autoclave reached 1.5 MPa, and then stirred at 25 ° C. for 24 hours. After completion of the reaction, the autoclave was decompressed, the reaction mixture was diluted with methylene chloride, and then 1.0 g of hydrochloric acid acidic methanol was added to stop the reaction. The mixture was concentrated under reduced pressure, and the obtained residue was dissolved by adding 5 mL of chloroform, and this solution was added dropwise to 100 g of methanol to precipitate a solid. The obtained solid was filtered and dried under reduced pressure to obtain 1.27 g of aliphatic polycarbonate (yield 45%). The Mn of the obtained precursor was 19100. From 1 H-NMR of the obtained precursor, it was found that the content of the structural unit I represented by the above formula (1) was 4.8 mol% in all the structural units.
 <実施例1d>
 下記式(S1-2)に示す反応スキームに従い、前駆体の合成を行った。50mL容のオートクレーブに,製造例1で得られたコバルト錯体29.1mg(0.036mmol)、ビス(トリフェニルホスホラニリデン)アンモニウムクロリド(PPNCl)20.5mg(0.036mmol)、2-クロロ-プロピオン酸グリシジル0.49mL(3.6mmol)を仕込み、オートクレーブ内をアルゴン雰囲気に置換した。プロピレンオキシド5.0mL(71mmol)を仕込み、オートクレーブ内の圧力が1.5MPaとなるまで二酸化炭素を充填し、その後、25℃で24時間攪拌した。反応終了後、オートクレーブを脱圧し、反応混合物を塩化メチレンで希釈したのち、塩酸酸性メタノール1.0gを加えて反応を停止させた。この混合物を減圧下で濃縮し、得られた残渣にクロロホルム5mLを加えて溶解させ、この溶液をメタノール100g中に滴下して固体を析出させた。得られた固体をろ過し、減圧乾燥させて脂肪族ポリカーボネート1.30gを得た(収率16%)。得られた脂肪族ポリカーボネートのMnは2900であった。
<Example 1d>
Precursors were synthesized according to the reaction scheme shown in the following formula (S1-2). In a 50 mL autoclave, 29.1 mg (0.036 mmol) of the cobalt complex obtained in Production Example 1, 20.5 mg (0.036 mmol) of bis (triphenylphosphoranylidene) ammonium chloride (PPNCl), 2-chloro- 0.49 mL (3.6 mmol) of glycidyl propionate was charged, and the inside of the autoclave was replaced with an argon atmosphere. 5.0 mL (71 mmol) of propylene oxide was charged, filled with carbon dioxide until the pressure in the autoclave reached 1.5 MPa, and then stirred at 25 ° C. for 24 hours. After completion of the reaction, the autoclave was decompressed, the reaction mixture was diluted with methylene chloride, and then 1.0 g of hydrochloric acid acidic methanol was added to stop the reaction. The mixture was concentrated under reduced pressure, 5 mL of chloroform was added to the obtained residue to dissolve it, and this solution was added dropwise to 100 g of methanol to precipitate a solid. The obtained solid was filtered and dried under reduced pressure to obtain 1.30 g of aliphatic polycarbonate (yield 16%). The Mn of the obtained aliphatic polycarbonate was 2900.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 図2は、実施例1dで得られたグラフト共重合体の前駆体のH-NMRスペクトルを示す。このH-NMRから、前記式(1)で表される構造単位Iの含有量は、全構造単位中、2.5モル%であることがわかった。 FIG. 2 shows the 1 H-NMR spectrum of the precursor of the graft copolymer obtained in Example 1d. From this 1 1 H-NMR, it was found that the content of the structural unit I represented by the above formula (1) was 2.5 mol% in the total structural units.
 (実施例:グラフト共重合体の合成)
 <実施例2a>
 下記式(S2-1)に示す反応スキームに従い、グラフト共重合体の合成を行った。磁気攪拌子を入れた30mL容のシュレンク管に、実施例1bで得られた前駆体0.20g(前記式(1)で表される構造単位Iとして0.097mmol)、臭化第一銅2.9mg(0.020mmol)、及びトリス(2-ピリジルメチル)アミン(TPMA)1.4mg(0.0048mmol)を仕込み、容器内をアルゴン雰囲気に置換した。メタクリル酸メチル(MMA)2.1mL(20mmol)を仕込み、凍結脱気を行った。その後、反応容器内を再びアルゴンで置換し、60℃で30分攪拌した。内容物に空気を吹き込み、反応を停止させた後、5mLのジクロロメタンを加え、内容物を溶解させた。有機層を1N塩酸10mLで2回洗浄し、無水硫酸ナトリウムを加えて乾燥したのち、減圧下で濃縮した。残留物を3mLのクロロホルムに溶解させ、メタノール100g中に滴下して固体を析出させた。得られた固体をろ過で回収し、減圧乾燥させ、無色のグラフト共重合体0.35gを得た。得られたグラフト共重合体のMnは34100であった。構造はH-NMRにより同定した。
(Example: Synthesis of graft copolymer)
<Example 2a>
The graft copolymer was synthesized according to the reaction scheme shown in the following formula (S2-1). 0.20 g of the precursor obtained in Example 1b (0.097 mmol as the structural unit I represented by the above formula (1)) and cuprous bromide 2 in a 30 mL Schlenk tube containing a magnetic stirrer. 9. 9 mg (0.020 mmol) and 1.4 mg (0.0048 mmol) of tris (2-pyridylmethyl) amine (TPMA) were charged, and the inside of the container was replaced with an argon atmosphere. 2.1 mL (20 mmol) of methyl methacrylate (MMA) was charged and freeze-degassed. Then, the inside of the reaction vessel was replaced with argon again, and the mixture was stirred at 60 ° C. for 30 minutes. Air was blown into the contents to stop the reaction, and then 5 mL of dichloromethane was added to dissolve the contents. The organic layer was washed twice with 10 mL of 1N hydrochloric acid, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was dissolved in 3 mL of chloroform and added dropwise to 100 g of methanol to precipitate a solid. The obtained solid was collected by filtration and dried under reduced pressure to obtain 0.35 g of a colorless graft copolymer. The Mn of the obtained graft copolymer was 34100. The structure was identified by 1 1 H-NMR.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 図3は、実施例2aで得られたグラフト共重合体のH-NMRスペクトルを示す。このH-NMRより、実施例2aで得られたグラフト共重合体のDP2/DP1=1.0であった。 FIG. 3 shows a 1 H-NMR spectrum of the graft copolymer obtained in Example 2a. From this 1 1 H-NMR, DP2 / DP1 = 1.0 of the graft copolymer obtained in Example 2a.
 <実施例2b>
 下記式(S2-2)に示す反応スキームに従い、グラフト共重合体の合成を行った。磁気攪拌子を入れた30mL容のシュレンク管に、実施例1bで得られた前駆体0.20g(前記式(1)で表される構造単位Iとして0.097mmol)、臭化第一銅2.2mg(0.015mmol)、及びトリス(2-ピリジルメチル)アミン(TPMA)1.1mg(0.0038mmol)を仕込み、容器内をアルゴン雰囲気に置換した。テトラヒドロフラン2.0mL(2.4mmol)、メタクリル酸グリシジル(GMA)2.0mL(15mmol)を仕込み、凍結脱気を行った。その後、反応容器内を再びアルゴンで置換し、30℃で1時間攪拌した。内容物に空気を吹き込み、反応を停止させた後、5mLのジクロロメタンを加え、内容物を溶解させた。有機層を1N塩酸10mLで2回洗浄し、無水硫酸ナトリウムを加えて乾燥したのち、減圧下で濃縮した。残留物を3mLのクロロホルムに溶解させ、メタノール100g中に滴下して固体を析出させた。得られた固体をろ過で回収し、減圧乾燥させ、無色のグラフト共重合体0.49gを得た。得られたグラフト共重合体のMnは42500であった。構造はH-NMRにより同定した。
<Example 2b>
The graft copolymer was synthesized according to the reaction scheme represented by the following formula (S2-2). 0.20 g of the precursor obtained in Example 1b (0.097 mmol as the structural unit I represented by the above formula (1)) and cuprous bromide 2 in a 30 mL Schlenk tube containing a magnetic stirrer. .2 mg (0.015 mmol) and 1.1 mg (0.0038 mmol) of tris (2-pyridylmethyl) amine (TPMA) were charged, and the inside of the container was replaced with an argon atmosphere. 2.0 mL (2.4 mmol) of tetrahydrofuran and 2.0 mL (15 mmol) of glycidyl methacrylate (GMA) were charged, and freeze degassing was performed. Then, the inside of the reaction vessel was replaced with argon again, and the mixture was stirred at 30 ° C. for 1 hour. Air was blown into the contents to stop the reaction, and then 5 mL of dichloromethane was added to dissolve the contents. The organic layer was washed twice with 10 mL of 1N hydrochloric acid, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was dissolved in 3 mL of chloroform and added dropwise to 100 g of methanol to precipitate a solid. The obtained solid was collected by filtration and dried under reduced pressure to obtain 0.49 g of a colorless graft copolymer. The Mn of the obtained graft copolymer was 42500. The structure was identified by 1 1 H-NMR.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 図4は、実施例2bで得られたグラフト共重合体のH-NMRスペクトルを示す。このH-NMRより、実施例2bで得られたグラフト共重合体のDP2/DP1=1.6であった。 FIG. 4 shows the 1 H-NMR spectrum of the graft copolymer obtained in Example 2b. From this 1 1 H-NMR, DP2 / DP1 = 1.6 of the graft copolymer obtained in Example 2b.
 <実施例2c>
 下記式(S2-3)に示す反応スキームに従い、グラフト共重合体の合成を行った。磁気攪拌子を入れた30mL容のシュレンク管に、実施例1bで得られた前駆体0.20g(前記式(1)で表される構造単位Iとして0.097mmol)、臭化第一銅2.9mg(0.020mmol)、及びトリス(2-ピリジルメチル)アミン(TPMA)1.5mg(0.005mmol)、N-イソプロピルアクリルアミド(NIPAM)2.3g(20mmol)を仕込み、容器内をアルゴン雰囲気に置換した。テトラヒドロフラン2.0mLを仕込み、凍結脱気を行った。その後、反応容器内を再びアルゴンで置換し、60℃で30時間攪拌した。内容物に空気を吹き込み、反応を停止させた後、5mLのジクロロメタンを加え、内容物を溶解させた。有機層をアルミナカラムに通し、減圧下で濃縮した。残留物を3mLのクロロホルムに溶解させ、メタノール100g中に滴下して固体を析出させた。得られた固体をろ過で回収し、減圧乾燥させ、無色のグラフト共重合体0.15gを得た。得られたグラフト共重合体のMnは35400であった。構造はH-NMRにより同定した。実施例2cで得られたグラフト共重合体のDP2/DP1=0.6であった。
<Example 2c>
The graft copolymer was synthesized according to the reaction scheme represented by the following formula (S2-3). 0.20 g of the precursor obtained in Example 1b (0.097 mmol as the structural unit I represented by the above formula (1)) and cuprous bromide 2 in a 30 mL Schlenk tube containing a magnetic stirrer. .9 mg (0.020 mmol), 1.5 mg (0.005 mmol) of tris (2-pyridylmethyl) amine (TPMA), and 2.3 g (20 mmol) of N-isopropylacrylamide (NIPAM) were charged, and the inside of the container was filled with an argon atmosphere. Replaced with. 2.0 mL of tetrahydrofuran was charged and freeze-deaerated. Then, the inside of the reaction vessel was replaced with argon again, and the mixture was stirred at 60 ° C. for 30 hours. Air was blown into the contents to stop the reaction, and then 5 mL of dichloromethane was added to dissolve the contents. The organic layer was passed through an alumina column and concentrated under reduced pressure. The residue was dissolved in 3 mL of chloroform and added dropwise to 100 g of methanol to precipitate a solid. The obtained solid was collected by filtration and dried under reduced pressure to obtain 0.15 g of a colorless graft copolymer. The Mn of the obtained graft copolymer was 35400. The structure was identified by 1 1 H-NMR. The graft copolymer obtained in Example 2c had DP2 / DP1 = 0.6.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 <実施例2d>
 磁気攪拌子を入れた30mL容のシュレンク管に、実施例1cで得られた脂肪族ポリカーボネート0.20g(側鎖官能基0.087mmol)、臭化第一銅2.6mg(0.018mmol)、及びトリス(2-ピリジルメチル)アミン(TPMA)1.3mg(0.005mmol)、N-イソプロピルアクリルアミド(NIPAM)2.0g(18mmol)を仕込み、容器内をアルゴン雰囲気に置換した。テトラヒドロフラン2.0mLを仕込み、凍結脱気を行った。その後、反応容器内を再びアルゴンで置換し、60℃で48時間攪拌した。内容物に空気を吹き込み、反応を停止させた後、5mLのジクロロメタンを加え、内容物を溶解させた。有機層をアルミナカラムに通し、減圧下で濃縮した。残留物を3mLのクロロホルムに溶解させ、メタノール100g中に滴下して固体を析出させた。得られた固体をろ過で回収し、減圧乾燥させ、無色のポリプロピレンカーボネート-ポリN-イソプロピルアクリルアミドグラフト共重合体0.23gを得た。得られたグラフト共重合体のMnは51000であった。
<Example 2d>
0.20 g (side chain functional group 0.087 mmol) of the aliphatic polycarbonate obtained in Example 1c, 2.6 mg (0.018 mmol) of cuprous bromide, in a 30 mL Schlenk tube containing a magnetic stir bar. And 1.3 mg (0.005 mmol) of tris (2-pyridylmethyl) amine (TPMA) and 2.0 g (18 mmol) of N-isopropylacrylamide (NIPAM) were charged, and the inside of the container was replaced with an argon atmosphere. 2.0 mL of tetrahydrofuran was charged and freeze-deaerated. Then, the inside of the reaction vessel was replaced with argon again, and the mixture was stirred at 60 ° C. for 48 hours. Air was blown into the contents to stop the reaction, and then 5 mL of dichloromethane was added to dissolve the contents. The organic layer was passed through an alumina column and concentrated under reduced pressure. The residue was dissolved in 3 mL of chloroform and added dropwise to 100 g of methanol to precipitate a solid. The obtained solid was collected by filtration and dried under reduced pressure to obtain 0.23 g of a colorless polypropylene carbonate-poly N-isopropylacrylamide graft copolymer. The Mn of the obtained graft copolymer was 51000.
 図5は、実施例2dで得られたグラフト共重合体のH-NMRスペクトルを示す。このH-NMRより、実施例2dで得られたグラフト共重合体のDP2/DP1=1.5であった。 FIG. 5 shows the 1 H-NMR spectrum of the graft copolymer obtained in Example 2d. From this 1 1 H-NMR, DP2 / DP1 = 1.5 of the graft copolymer obtained in Example 2d.
 <実施例2e>
 下記式(S2-4)に示す反応スキームに従い、グラフト共重合体の合成を行った。磁気攪拌子を入れた30mL容のシュレンク管に、実施例1dで得られた前駆体0.20g(前記式(1)で表される構造単位Iとして0.048mmol)、臭化第一銅1.8mg(0.013mmol)、及びN,N,N´,N´´,N´´-ペンタメチルジエチレントリアミン(PMDTEA)1.0mg(0.006mmol)を仕込み、容器内をアルゴン雰囲気に置換した。スチレン(St)1.3mL(11.9mmol)を仕込み、凍結脱気を行った。その後、反応容器内を再びアルゴンで置換し、90℃で24時間攪拌した。内容物に空気を吹き込み、反応を停止させた後、5mLのジクロロメタンを加え、内容物を溶解させた。有機層を1N塩酸10mLで2回洗浄し、無水硫酸ナトリウムを加えて乾燥したのち、減圧下で濃縮した。残留物を3mLのクロロホルムに溶解させ、メタノール100g中に滴下して固体を析出させた。得られた固体をろ過で回収し、減圧乾燥させ、無色のポリプロピレンカーボネート-ポリスチレングラフト共重合体0.58gを得た。得られたグラフト共重合体のMnは16600であった。構造はH-NMRにより同定した。
<Example 2e>
The graft copolymer was synthesized according to the reaction scheme represented by the following formula (S2-4). 0.20 g of the precursor obtained in Example 1d (0.048 mmol as the structural unit I represented by the above formula (1)) and cuprous bromide 1 in a 30 mL Schlenk tube containing a magnetic stirrer. .8 mg (0.013 mmol) and 1.0 mg (0.006 mmol) of N, N, N ″, N ″, N ″ -pentamethyldiethylenetriamine (PMDTEA) were charged, and the inside of the container was replaced with an argon atmosphere. 1.3 mL (11.9 mmol) of styrene (St) was charged, and freeze degassing was performed. Then, the inside of the reaction vessel was replaced with argon again, and the mixture was stirred at 90 ° C. for 24 hours. Air was blown into the contents to stop the reaction, and then 5 mL of dichloromethane was added to dissolve the contents. The organic layer was washed twice with 10 mL of 1N hydrochloric acid, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was dissolved in 3 mL of chloroform and added dropwise to 100 g of methanol to precipitate a solid. The obtained solid was collected by filtration and dried under reduced pressure to obtain 0.58 g of a colorless polypropylene carbonate-polystyrene graft copolymer. The Mn of the obtained graft copolymer was 16600. The structure was identified by 1 1 H-NMR.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 図6は、実施例2eで得られたグラフト共重合体のH-NMRスペクトルを示す。このH-NMRより、実施例2eで得られたグラフト共重合体のDP2/DP1=7.5であった。 FIG. 6 shows the 1 H-NMR spectrum of the graft copolymer obtained in Example 2e. From this 1 1 H-NMR, DP2 / DP1 = 7.5 of the graft copolymer obtained in Example 2e.
 表1は、各実施例で得られた前駆体及びグラフト共重合体の物性を示している。
Figure JPOXMLDOC01-appb-T000017
Table 1 shows the physical properties of the precursor and the graft copolymer obtained in each example.
Figure JPOXMLDOC01-appb-T000017
 以上のように、前駆体を用いた重合反応により、所望のグラフト共重合体が製造できること、また、得られた各グラフト共重合体は、H-NMRから高純度で生成していることを確認した。 As described above, it was found that a desired graft copolymer can be produced by a polymerization reaction using a precursor, and that each obtained graft copolymer is produced from 1 H-NMR with high purity. confirmed.
 本発明のグラフト共重合体は、熱分解性バインダー、分散剤、相溶化剤、樹脂改質剤、基板の表面修飾剤、接着剤、塗料、インク等の添加剤等に応用することが可能である。 The graft copolymer of the present invention can be applied to a pyrolytic binder, a dispersant, a compatibilizer, a resin modifier, a substrate surface modifier, an adhesive, a paint, an additive such as an ink, and the like. is there.

Claims (9)

  1. 幹ポリマーと、該幹ポリマーに結合した枝ポリマーを有するグラフト共重合体であって、
    前記幹ポリマーが脂肪族ポリカーボネートであり、
    前記枝ポリマーがラジカル重合性モノマーの重合体である、グラフト共重合体。
    A graft copolymer having a stem polymer and a branch polymer bonded to the stem polymer.
    The trunk polymer is an aliphatic polycarbonate,
    A graft copolymer in which the branch polymer is a polymer of a radically polymerizable monomer.
  2. 前記脂肪族ポリカーボネートが二酸化炭素とエポキシドとの共重合体である、請求項1に記載のグラフト共重合体。 The graft copolymer according to claim 1, wherein the aliphatic polycarbonate is a copolymer of carbon dioxide and epoxide.
  3. 前記ラジカル重合性モノマーがスチレン系モノマー、不飽和エステル系モノマー、及び、不飽和アミド系モノマーからなる群より選ばれる1種以上である、請求項1又は2に記載のグラフト共重合体。 The graft copolymer according to claim 1 or 2, wherein the radically polymerizable monomer is at least one selected from the group consisting of a styrene-based monomer, an unsaturated ester-based monomer, and an unsaturated amide-based monomer.
  4. 前記幹ポリマーの数平均重合度DP1と、前記枝ポリマーの数平均重合度DP2との比DP2/DP1の値が0.1以上10以下である、請求項1~3のいずれか1項に記載のグラフト共重合体。 The method according to any one of claims 1 to 3, wherein the value of the ratio DP2 / DP1 of the number average degree of polymerization DP1 of the stem polymer to the number average degree of polymerization DP2 of the branch polymer is 0.1 or more and 10 or less. Graft copolymer.
  5. グラフト共重合体の前駆体であって、
    幹ポリマーが脂肪族ポリカーボネートであり、
    前記脂肪族ポリカーボネートは、制御ラジカル重合開始能を有する官能基を含む構造単位を有する、前駆体。
    A precursor of a graft copolymer,
    The stem polymer is aliphatic polycarbonate,
    The aliphatic polycarbonate is a precursor having a structural unit containing a functional group having a controlled radical polymerization initiation ability.
  6. 前記脂肪族ポリカーボネートが二酸化炭素とエポキシドとの共重合体である、請求項5に記載の前駆体。 The precursor according to claim 5, wherein the aliphatic polycarbonate is a copolymer of carbon dioxide and epoxide.
  7. 前記制御ラジカル重合開始能を有する官能基を含む構造単位は、前記脂肪族ポリカーボネートの全構造単位中に、1モル%以上、20モル%以下含まれる、請求項5又は6に記載の前駆体。 The precursor according to claim 5 or 6, wherein the structural unit containing a functional group having a controlled radical polymerization initiation ability is contained in 1 mol% or more and 20 mol% or less in all the structural units of the aliphatic polycarbonate.
  8. 制御ラジカル重合が、原子移動ラジカル重合、可逆的付加開裂連鎖移動重合又はニトロキシド媒介ラジカル重合である、請求項5~7のいずれか1項に記載の前駆体。 The precursor according to any one of claims 5 to 7, wherein the controlled radical polymerization is atom transfer radical polymerization, reversible addition cleavage chain transfer polymerization or nitroxide-mediated radical polymerization.
  9. 請求項5~8のいずれか1項に記載の前駆体を用いて重合反応を行う工程を備える、グラフト共重合体の製造方法。 A method for producing a graft copolymer, comprising a step of carrying out a polymerization reaction using the precursor according to any one of claims 5 to 8.
PCT/JP2020/019262 2019-05-17 2020-05-14 Graft copolymer and method for producing same, and precursor for graft copolymer WO2020235442A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021520745A JPWO2020235442A1 (en) 2019-05-17 2020-05-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-093967 2019-05-17
JP2019093967 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020235442A1 true WO2020235442A1 (en) 2020-11-26

Family

ID=73459290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019262 WO2020235442A1 (en) 2019-05-17 2020-05-14 Graft copolymer and method for producing same, and precursor for graft copolymer

Country Status (3)

Country Link
JP (1) JPWO2020235442A1 (en)
TW (1) TW202104315A (en)
WO (1) WO2020235442A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112375184A (en) * 2020-12-18 2021-02-19 西北师范大学 Aliphatic polycarbonate grafted polyolefin graft polymer and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4732833B1 (en) * 1969-07-12 1972-08-22
JP2010090212A (en) * 2008-10-06 2010-04-22 Nof Corp Thermoplastic resin composition and molded article of the same
JP2013515816A (en) * 2009-12-23 2013-05-09 インターナショナル・ビジネス・マシーンズ・コーポレーション Biodegradable polymers, conjugates for gene therapy and drug delivery, and related methods
WO2015045562A1 (en) * 2013-09-30 2015-04-02 Dic株式会社 Polycarbonate-modified acrylic resin, coating, and plastic molding coated with said coating
JP2015067740A (en) * 2013-09-30 2015-04-13 Dic株式会社 Polycarbonate modified acryl resin, coating material and plastic molded article coated by the coating material
US20180334522A1 (en) * 2017-05-19 2018-11-22 Board Of Trustees Of Michigan State University Rubbery unsaturated polycarbonates
WO2019045093A1 (en) * 2017-09-04 2019-03-07 国立大学法人東京農工大学 Novel macroinitiator, production method thereof and method for producing block copolymer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4732833B1 (en) * 1969-07-12 1972-08-22
JP2010090212A (en) * 2008-10-06 2010-04-22 Nof Corp Thermoplastic resin composition and molded article of the same
JP2013515816A (en) * 2009-12-23 2013-05-09 インターナショナル・ビジネス・マシーンズ・コーポレーション Biodegradable polymers, conjugates for gene therapy and drug delivery, and related methods
WO2015045562A1 (en) * 2013-09-30 2015-04-02 Dic株式会社 Polycarbonate-modified acrylic resin, coating, and plastic molding coated with said coating
JP2015067740A (en) * 2013-09-30 2015-04-13 Dic株式会社 Polycarbonate modified acryl resin, coating material and plastic molded article coated by the coating material
US20180334522A1 (en) * 2017-05-19 2018-11-22 Board Of Trustees Of Michigan State University Rubbery unsaturated polycarbonates
WO2019045093A1 (en) * 2017-09-04 2019-03-07 国立大学法人東京農工大学 Novel macroinitiator, production method thereof and method for producing block copolymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112375184A (en) * 2020-12-18 2021-02-19 西北师范大学 Aliphatic polycarbonate grafted polyolefin graft polymer and preparation method thereof

Also Published As

Publication number Publication date
JPWO2020235442A1 (en) 2020-11-26
TW202104315A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
JP6800827B2 (en) Improved control of controlled radical polymerization processes
Pintauer et al. Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes
EP2550307B1 (en) Macro-photoinitiators and curable compositions thereof
JP2010539265A (en) Method for producing silane-modified copolymer
JP2011068881A (en) Production method of copolymer of polar group-containing allyl monomer
JP6528260B2 (en) Method for producing polymer, and living radical polymerization initiator
US20070219330A1 (en) Amide initiators
KR101512390B1 (en) Curable compositions with moisture-curable functionality clusters near the chain ends
JP6205423B2 (en) Controlled radical polymerization of (meth) acrylic monomers
WO2020235442A1 (en) Graft copolymer and method for producing same, and precursor for graft copolymer
WO2010147237A1 (en) Method for producing multicomponent aliphatic polycarbonate
CN111051357B (en) Novel polymer initiator, method for producing same, and method for producing block copolymer
JP5830020B2 (en) Carboxylate metal complexes and catalysts for olefin polymerization
US11987652B2 (en) Light as catalytic switch: metal-organic insertion/light initiated radical (MILRad) polymerization
US7994087B2 (en) Highly active catalyst for atom transfer radical polymerization
KR101466479B1 (en) Synthetic method of poly(vinyl acetate) using atom transfer radical polymerization and thㅝ product thereof
CN111491966A (en) Block copolymerization of ethylene by cobalt-mediated free radical polymerization
US6864334B2 (en) Multi-dentate late transition metal catalyst complexes and polymerization methods using those complexes
KR100828719B1 (en) Non-metallocene catalyst for ethylene polymerization and polymerizing method of ethylene using the same
JPH10130347A (en) Production of polymer
KR100843602B1 (en) Process for producing polyalkylmethacrylate with a high glass transition temperature and the produced polymer
Carlmark Atom transfer radical polymerization from multifunctional substrates
JP5448968B2 (en) Method for producing polymer
WO2022054547A1 (en) Method for producing iodine-containing compound, and iodine-containing compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520745

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809977

Country of ref document: EP

Kind code of ref document: A1