WO2020235379A1 - Powder cartridge and powder supply method - Google Patents

Powder cartridge and powder supply method Download PDF

Info

Publication number
WO2020235379A1
WO2020235379A1 PCT/JP2020/018850 JP2020018850W WO2020235379A1 WO 2020235379 A1 WO2020235379 A1 WO 2020235379A1 JP 2020018850 W JP2020018850 W JP 2020018850W WO 2020235379 A1 WO2020235379 A1 WO 2020235379A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
chamber
opening
feeder
closing
Prior art date
Application number
PCT/JP2020/018850
Other languages
French (fr)
Japanese (ja)
Inventor
公智 梶
直樹 吉井
克治 門沢
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2020235379A1 publication Critical patent/WO2020235379A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/06Containers or packages with special means for dispensing contents for dispensing powdered or granular material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a powder cartridge and a powder supply method.
  • a thermal spraying device in which a thermal spray material powder supplied from a container filled with an inert gas is heated and melted, and the molten powder is sprayed onto the object to form a thermal spray film on the object.
  • a thermal spray material powder supplied from a container filled with an inert gas is heated and melted, and the molten powder is sprayed onto the object to form a thermal spray film on the object.
  • a method for transporting powder a technique for transporting powder such as toner by rotationally driving a screw is known (see, for example, Patent Document 2).
  • the present disclosure provides a technique capable of quantitatively supplying powder without exposure to the atmosphere.
  • the powder cartridge according to one aspect of the present disclosure is a powder cartridge that supplies powder to the feeder, and is a housing that can be attached to and detached from the feeder, and has a first chamber that can accommodate the powder in an airtight state, and the said.
  • a housing capable of communicating with the first chamber and having a second chamber provided with at least one of a gas supply port and a gas exhaust port, and a state of communication between the first chamber and the second chamber. It is provided with an opening / closing unit for controlling.
  • the powder can be quantitatively supplied without being exposed to the atmosphere.
  • the figure for demonstrating the operation of the powder cartridge of the 3rd configuration example The figure for demonstrating the operation of the powder cartridge of the 3rd configuration example.
  • the figure for demonstrating the operation of the powder cartridge of the 3rd configuration example The figure for demonstrating the operation of the powder cartridge of the 3rd configuration example.
  • the figure for demonstrating the operation of the powder cartridge of the 3rd configuration example The figure for demonstrating the operation of the powder cartridge of the 3rd configuration example.
  • the figure which shows the powder cartridge of 4th structural example The figure which shows the powder cartridge of the 5th structural example
  • the figure which shows an example of the opening and closing part The figure which shows another example of the opening and closing part
  • the figure which shows another example of the opening and closing part The figure which shows still another example of the opening and closing part
  • the figure which shows still another example of the opening and closing part The figure which shows still another example of the opening and closing part
  • the figure which shows still another example of the opening and closing part The figure which shows still another example of the opening and closing part
  • the figure which shows still another example of the opening and closing part The figure which shows still another example of the opening and closing part
  • the figure which shows still another example of the opening and closing part The figure which shows still another example of the opening and closing part which shows still another example of the opening and closing part
  • FIG. 1 is a diagram showing a configuration example of a plasma spraying device.
  • the plasma spraying device 1 is a device that performs plasma spraying in a chamber C in which an inert gas is sealed and the atmosphere is adjusted (environmental control).
  • the powder of the thermal spraying material hereinafter referred to as “powder R1”
  • the plasma spraying apparatus 1 the powder of the thermal spraying material (hereinafter referred to as “powder R1”) is injected from the opening 11b at the tip of the nozzle 11 and melted by the heat of the plasma jet P formed by the high-speed gas to adjust the atmosphere. It is sprayed toward the surface of the base material W in the chamber C.
  • a film of the thermal spray material hereinafter referred to as “thermal spray film” F1 is formed on the surface of the base material W.
  • the plasma spraying device 1 melts the thermal spray material with low energy, the powder of the thermal spray material does not sublimate, but exists in a liquid state and can form a film. Therefore, one of the advantages of the plasma spraying apparatus 1 is that even a specific thermal spraying material such as lithium having a low melting point can be sprayed to form a film. Therefore, the plasma spraying device 1 is particularly suitable when a metal powder having a low melting point such as lithium is used as a thermal spraying material.
  • the supply unit 10 has a nozzle 11 and a feeder 20, carries the powder R1 by the plasma generating gas, and injects the powder R1 from the opening at the tip.
  • the feeder 20 supplies the powder R1 to the nozzle 11.
  • the powder R1 is supplied to the feeder 20 from the powder cartridge 90 described later.
  • the powder R1 is housed in the container 21 in the feeder 20.
  • the powder R1 is a fine powder having a central particle size of 1 ⁇ m to 500 ⁇ m, preferably a fine powder having a central particle size of 1 ⁇ m to 200 ⁇ m, and more preferably a fine powder having a central particle size of 1 ⁇ m to 20 ⁇ m.
  • the feeder 20 is provided with an actuator 22.
  • the nozzle 11 is a rod-shaped annular member, and a flow path 11a through which the powder R1 is carried is formed inside the nozzle 11.
  • the flow path 11a of the nozzle 11 and the inside of the container 21 communicate with each other.
  • the powder R1 is charged from the container 21 into the flow path 11a in the nozzle 11 by the power of the actuator 22.
  • the feeder 20 may be, for example, a bowl feeder.
  • a plasma generating gas is supplied to the nozzle 11 together with the powder R1.
  • the plasma-producing gas is a gas for generating plasma.
  • the plasma-generated gas also functions as a carrier gas that carries the powder R1 in the flow path 11a.
  • plasma generated gas is supplied from the gas supply source 41, opened / closed and flow rate controlled through a valve 46 and a mass flow controller (MFC), and a flow path in the nozzle 11 passes through a pipe 42. It is supplied to 11a.
  • a gas such as argon gas (Ar), helium gas (He), nitrogen gas (N 2 ), hydrogen gas (H 2 ), and a gas combining these various gases can be used.
  • argon gas Ar
  • He helium gas
  • N 2 nitrogen gas
  • H 2 hydrogen gas
  • the main body 12 is formed of an insulating material.
  • the main body portion 12 has a through port 12a in the central portion.
  • the front portion 11c of the nozzle 11 is inserted into the through port 12a of the main body portion 12.
  • the front portion 11c of the nozzle 11 is connected to the DC power supply 50 and also functions as an electrode (cathode) to which a current is supplied from the DC power supply 50.
  • the front portion 11c of the nozzle 11 is made of metal.
  • the plasma generation space U is a space mainly defined by the recessed portion 12b and the overhanging portion 12d of the main body portion 12, and the tip of the nozzle 11 projects into the plasma generation space U.
  • the overhanging portion 12d is connected to the metal plate 12c provided on the outer wall of the main body portion 12 at one end.
  • the metal plate 12c is connected to the DC power supply 50.
  • the metal plate 12c and the overhanging portion 12d function as electrodes (anodes).
  • the plasma generation unit 60 ionizes (decomposes) the argon gas injected from the nozzle 11 in the plasma generation space U to generate argon plasma.
  • argon gas is supplied as a swirling flow to the plasma generation space U.
  • Argon gas is supplied from the gas supply source 41, opens and closes and the flow rate is controlled through the valve 46 and the mass flow controller (MFC), flows through the main body 12 through the pipe 43, and is supplied to the plasma generation space U from the lateral direction. Will be done.
  • MFC mass flow controller
  • FIG. 1 only one supply flow path for the argon gas introduced into the plasma generation space U is shown, but the main body 12 is provided with a plurality of supply flow paths.
  • the argon gas is supplied to the plasma generation space U as a swirling flow in the lateral direction from the plurality of supply channels. Therefore, the diffusion of the generated plasma is prevented, and the plasma jet P becomes linearly deflected.
  • the plasma generation unit 60 decomposes the plasma generation gas injected from the tip of the nozzle 11 to generate a plasma jet P in which the nozzle 11 and the axis O are common.
  • the shaft core is common means that the central axis of the supply unit 10 (nozzle 11) and the central axis of the plasma jet P in the blowing direction coincide with or substantially the same direction.
  • the supply unit 10 causes the powder R1 and the argon gas to travel straight through the flow path 11a formed inside the nozzle 11, and injects the powder R1 and the argon gas into the plasma generation space U from the opening 11b at the tip.
  • the injected powder R1 is ejected toward the surface of the base material W while being melted by the heat of the plasma jet P formed by the high-speed argon gas, and forms a thermal spray film F1 on the surface of the base material W.
  • a refrigerant flow path 72 is formed inside the main body 12.
  • the refrigerant supplied from the chiller unit 70 circulates through the refrigerant pipe 71, the refrigerant flow path 72, and the refrigerant pipe 73 by opening and closing the valves 74 and 75, and returns to the chiller unit 70.
  • the main body 12 is cooled, and it is possible to prevent the main body 12 from becoming hot due to the heat of the plasma.
  • a window 82 for visually observing the inside of the chamber C is attached to the side wall of the chamber C.
  • Chamber C will be described with reference to FIG.
  • the chamber C is a cylindrical hollow container.
  • the chamber C is made of, for example, aluminum, stainless steel, quartz or the like.
  • the main body portion 12 is supported by the ceiling portion, and the supply portion 10 and the plasma generation portion 60 are closed spaces.
  • the base material W is placed on a stage 80 arranged at the bottom 81 of the chamber C.
  • the inside of the chamber C is depressurized to a predetermined pressure, for example. However, the inside of the chamber C does not necessarily have to be depressurized.
  • Some powder R1 explodes when it comes in contact with moisture, such as Li powder. Further, when the powder R1 reacts with nitrogen or oxygen like Li powder, it becomes a nitride or an oxide, and changes from an active state to a stable state. In that case, the movement of lithium ions between the positive electrode and the negative electrode reduces the function of the lithium ion battery for charging and discharging.
  • the powder R1 in a space in which each component of water, oxygen, and nitrogen is reduced as much as possible. Therefore, in the plasma spraying device 1, the supply unit 10 and the plasma generation unit 60 are closed by the chamber C, so that the chamber C including the container 21 in which the powder R1 is housed, the nozzle 11, and the plasma generation space U is included. Reduce water, oxygen, and nitrogen from the inside as much as possible.
  • the inside of the chamber C is filled with argon gas.
  • Argon gas is supplied from the gas supply source 41 through the pipe 45 into the chamber C.
  • the gas filled in the chamber C is not limited to the argon gas, and may be an inert gas.
  • the oxygen concentration inside the chamber C is reduced to about 1 ppm (10 -4 %) or less, and for example, the oxygen concentration in the Li film formed on the Cu electrode (substrate) is about 0.5%. Can be done. Therefore, according to the plasma spraying apparatus 1 according to the present embodiment, the characteristics of the film can be improved and the battery efficiency can be improved by forming the powder R1 without reacting with water, oxygen, and nitrogen.
  • FIG. 2 is a diagram showing a recovery / disposal mechanism 83 of the plasma spraying device 1 of FIG.
  • the liquid seal pump 100 sucks in the thermal spray material (hereinafter referred to as “thermal spray waste”) and argon gas that have not been used for plasma spraying inside the chamber C, and seals the sucked thermal spray waste and argon gas with the working liquid. To do.
  • thermal spray waste the thermal spray material
  • argon gas that have not been used for plasma spraying inside the chamber C
  • the liquid seal pump 100 is filled with a fluorine-based solvent or oil.
  • a fluorine-based solvent or oil In the present embodiment, water cannot be used as the working liquid used for the recovery of the sprayed waste, and a fluorine-based solvent or oil is used so that the sprayed waste does not ignite.
  • the liquid seal pump 100 is formed of a scrubber type pump capable of sucking in a gas mixed with thermal spray waste.
  • a turbo molecular pump or a dry pump is difficult to use in the present embodiment because it is assumed that the turbo molecular pump or the dry pump will break down when a gas mixed with solid sprayed waste is sucked.
  • the pump flow rate of the liquid seal pump 100 is, for example, 300 L / min to 1200 L / min.
  • the liquid seal pump 100 rotates the shaft 102 by the power of the motor 101 to rotate the impeller 103.
  • the sprayed waste and argon gas are passed from the chamber C through the exhaust pipe 84 and the open valve 85, sucked into the pump through the suction port I, and sealed with the working liquid.
  • the working liquid is sent from the discharge port J to the tank 106 through the pipe 104 in a state where the sprayed waste and the argon gas are sealed.
  • the disposal mechanism 109 has a filtration unit 110 and an incineration unit 107, and disposes of thermal sprayed waste.
  • the filtration unit 110 extracts the thermal spray waste with a filter or the like.
  • the sprayed waste extracted by the filtration unit 110 needs to be disposed of so as not to ignite due to moisture or the like.
  • the incineration unit 107 incinerates the extracted thermal spray waste and discards it.
  • the working liquid from which the sprayed waste has been removed is returned to the tank 106 through the pipe 108 and reused as the working liquid of the liquid seal pump 100.
  • the sprayed waste can be safely disposed of without being ignited by moisture or the like.
  • the heat and working liquid used for disposal can be reused.
  • the dry chamber 88 is provided adjacent to the chamber C and forms a closed space dehumidified to a predetermined humidity. Further, the dry chamber 88 is depressurized to a predetermined pressure by the exhaust device 89. However, the dry chamber 88 does not have to be decompressed.
  • the base material W after film formation is transported to the dry chamber 88 and transported to the next process.
  • the base material W after film formation is immediately carried into the dry chamber 88 from the gate valves 86 and 87 so that the sprayed film F1 does not react with nitrogen and oxygen as much as possible in the transfer step of the base material W after film formation.
  • the plasma spraying device 1 has a control unit 30.
  • the control unit 30 controls the plasma spraying device 1. Specifically, the control unit 30 controls the gas supply source 41, the feeder 20 (actuator 22), the DC power supply 50, the chiller unit 70, the collection / disposal mechanism 83, and the like.
  • the control unit 30 has a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an HDD (Hard Disk Drive).
  • the CPU selects a program (recipe) for forming a specific metal sprayed material by plasma spraying and sets it in the RAM.
  • the CPU sends a control signal to each unit based on the program stored in the RAM. As a result, the thermal spray film F1 having desired characteristics can be sprayed onto the base material W.
  • the function of the control unit 30 may be realized by using software or may be realized by using hardware.
  • FIG. 3 is a diagram showing the powder cartridge 300 of the first configuration example, and shows a state in which the powder cartridge 300 is attached to the feeder 20.
  • the powder cartridge 300 is a portable container that houses the powder R1 in an airtight state.
  • the powder R1 is filled in the powder cartridge 300 from a storage container stored in an airtight state in a dry box provided in an environment-controlled dry booth.
  • the dry booth is kept at a humidity of, for example, 2% to 4%.
  • the dry box is maintained at a humidity of, for example, 0.5% to 1.5%. This makes it possible to prevent the powder R1 before being filled in the powder cartridge 300 from reacting with water, oxygen, and nitrogen.
  • the powder R1 may be heated by a heating means such as a heater and then filled in the powder cartridge 300.
  • the housing 310 is configured to be removable from the feeder 20.
  • the housing 310 has a first chamber 311 and a second chamber 312.
  • the first chamber 311 and the second chamber 312 can communicate with each other, and the communication state is controlled by the opening / closing unit 320.
  • the first chamber 311 is configured to be able to accommodate the powder R1 in an airtight state.
  • the powder cartridge 300 can accommodate the powder R1 without reacting the powder R1 with water, nitrogen, and oxygen.
  • the second chamber 312 is configured to be connectable to the feeder 20.
  • the opening / closing unit 320 controls the communication state between the first chamber 311 and the second chamber 312.
  • the opening / closing portion 320 is a valve-type opening / closing valve having a lid portion 321 and an expansion / contraction portion 322.
  • the lid portion 321 is, for example, a plate-shaped member, and is formed in a size that blocks the communication state between the first chamber 311 and the second chamber 312 when the expansion / contraction portion 322 is extended.
  • the telescopic portion 322 is formed of an extendable member, and raises and lowers the lid portion 321.
  • the telescopic portion 322 extends by, for example, electrical control or mechanical control.
  • the lid portion 321 moves downward to communicate with the first chamber 311 and the second chamber 312, and the powder R1 inside the first chamber 311 passes through the second chamber 312. It can be supplied to the container 21 of the feeder 20.
  • the lid portion 321 moves upward to cut off the communication between the first chamber 311 and the second chamber 312, and the powder R1 inside the first chamber 311 becomes the second. Not supplied to room 312.
  • the opening / closing portion 320 When the opening / closing portion 320 is closed in this way, the first chamber 311 is in an airtight state, so that even if the powder cartridge 300 is taken out from the dry box into the atmosphere, the powder filled in the powder cartridge 300 It is possible to prevent R1 from reacting with water, oxygen, and nitrogen.
  • the gas supply port 330 is provided in the second chamber 312. As shown in FIG. 1, the gas supply port 330 is connected to the gas supply source 41 via a pipe 44 having a valve 47 interposed therebetween. Argon gas from the gas supply source 41 is filled into the second chamber 312 from the gas supply port 330 through the pipe 44. As a result, the inside of the second chamber 312 can be adjusted to an argon gas atmosphere.
  • the gas filled in the second chamber 312 is not limited to the argon gas, and may be an inert gas, for example, a helium gas. Further, the gas supply port 330 may be connected to a gas supply source provided separately from the gas supply source 41.
  • a gas exhaust port may be provided instead of the gas supply port 330.
  • the inside of the second chamber 312 can be adjusted to a vacuum atmosphere.
  • a gas exhaust port may be provided separately from the gas supply port 330.
  • the time required for purging in the second chamber 312 purge time
  • the adjustment of the atmosphere in the second chamber 312 may be performed via the connection port 370 with the feeder 20 of the powder cartridge 300.
  • the inside of the second chamber 312 may be adjusted to an inert gas atmosphere by supplying the inert gas from the feeder 20 into the second chamber 312 via the connection port 370, via the connection port 370.
  • the inside of the second chamber 312 may be exhausted.
  • the connection port 370 may function as a gas supply port 330 or a gas exhaust port.
  • FIGS. 4A to 4D an example of a powder supply method for supplying powder to the feeder 20 of the plasma spraying device 1 using the powder cartridge 300 of the first configuration example will be described with reference to FIGS. 4A to 4D.
  • the powder supply method described below may be executed by, for example, the control unit 30, or may be executed by a control unit (not shown) provided separately from the control unit 30.
  • the control unit may be detachably attached to, for example, the housing 310, and is preferably drip-proof or waterproof.
  • 4A to 4D are diagrams for explaining the operation of the powder cartridge 300 of the first configuration example.
  • the powder R1 is filled into the powder cartridge 300 from a storage container stored in an airtight state in a dry box provided in an environment-controlled dry booth.
  • the lid (not shown) provided in the first chamber 311 is opened to open the first chamber 311 of the powder cartridge 300.
  • the powder R1 is filled therein. This makes it possible to prevent the powder R1 before being filled in the powder cartridge 300 from reacting with water, oxygen, and nitrogen.
  • the lid provided in the first chamber 311 is closed, and the powder cartridge 300 is taken out from the dry box. As a result, even if the powder cartridge 300 is taken out from the dry box into the atmosphere, it is possible to prevent the powder R1 filled in the powder cartridge 300 from reacting with water, oxygen, and nitrogen.
  • the powder cartridge 300 is attached to the upper part of the feeder 20, the second chamber 312 is filled with argon gas from the gas supply port 330, and the inside of the second chamber 312 is filled with an argon gas atmosphere.
  • the atmosphere in the second chamber 312 may be an inert gas atmosphere, and may be, for example, a helium gas atmosphere or a nitrogen gas atmosphere instead of the argon gas atmosphere.
  • the filling of the argon gas from the gas supply port 330 to the second chamber 312 is stopped, the expansion / contraction portion 322 is contracted, and the lid portion 321 is lowered.
  • the first chamber 311 and the second chamber 312 communicate with each other, and the powder R1 contained in the first chamber 311 starts to be supplied into the second chamber 312.
  • the lid portion 321 is lowered below the position of the gas supply port 330.
  • the telescopic portion 322 is further contracted to further lower the lid portion 321.
  • the powder R1 in the first chamber 311 is supplied into the container 21 of the feeder 20 via the second chamber 312.
  • the amount of powder R1 supplied from the first chamber 311 to the second chamber 312 is controlled per unit time.
  • the stretchable portion 322 is stretched to raise the lid portion 321 as shown in FIG. 4D.
  • the communication state between the first chamber 311 and the second chamber 312 is cut off.
  • the powder R1 on the lid portion 321 can be removed, so that the powder R1 can be prevented from being caught between the housing 310 and the lid portion 321.
  • FIGS. 4A to 4D are repeated, and after the powder R1 contained in the first chamber 311 is exhausted, the filling of argon gas from the gas supply port 330 to the second chamber 312 is stopped, and the powder cartridge is used. Remove 300 from the feeder 20. At this time, since the communication state between the first chamber 311 and the second chamber 312 is blocked by the opening / closing portion 320, it is possible to prevent the inside of the first chamber 311 from being exposed to the atmospheric environment, and the first chamber 311 is prevented from being exposed to the atmospheric environment. It is possible to prevent the powder R1 in the chamber 311 from reacting with water, oxygen, and nitrogen.
  • the central particle size of the powder R1 is 1 ⁇ m to 20 ⁇ m, it is exposed to the atmosphere because the surface area per unit volume is larger than that of the commonly used powder having a central particle size of 50 ⁇ m to 100 ⁇ m. Is likely to react with water, oxygen, and nitrogen. Therefore, when the powder is supplied to the feeder 20 in the air, the powder R1 may react with water, oxygen, and nitrogen and aggregate. When the powder R1 aggregates, it is difficult to melt, so that the quality of the sprayed film deteriorates.
  • the environment is controlled in the feeder 20, the nozzle 11, and the chamber C, and when the powder R1 is supplied to the feeder 20 by the powder cartridge 300, the powder R1 is in the atmosphere.
  • the powder R1 is supplied to the feeder 20, deterioration of the film quality of the sprayed film due to the aggregation of the powder R1 can be prevented.
  • FIG. 5 is a diagram showing the powder cartridge 500 of the second configuration example, and shows a state in which the powder cartridge 500 is attached to the feeder 20.
  • the powder cartridge 500 of the second configuration example has the first configuration in that it has an opening / closing portion 520 which is a shutter type opening / closing valve instead of the opening / closing portion 320 which is a valve type opening / closing valve. It is different from the powder cartridge 300 of the example.
  • the other configurations may be the same as those of the powder cartridge 300. Hereinafter, the differences will be mainly described.
  • the powder cartridge 500 is removable from the top of the feeder 20.
  • the powder cartridge 500 supplies the powder R1 to the feeder 20 in a state of being attached to the upper portion of the feeder 20.
  • the powder cartridge 500 includes a housing 510, an opening / closing portion 520, and a gas supply port 530.
  • the housing 510 and the gas supply port 530 may have the same configurations as the housing 310 and the gas supply port 330 described above, respectively.
  • the opening / closing unit 520 controls the communication state between the first chamber 511 and the second chamber 512.
  • the opening / closing portion 520 is a shutter-type opening / closing valve having a lid portion 521 and a slide portion 522.
  • the lid portion 521 is, for example, a plate-shaped member, and is formed in a size that blocks communication between the first chamber 511 and the second chamber 512 when inserted into the housing 510.
  • the slide portion 522 is connected to the lid portion 521 and slides in the horizontal direction to move the lid portion 521 between the internal position and the external position of the housing 510.
  • the operation of the slide unit 522 may be performed by, for example, electrical control or mechanical control, or may be performed by, for example, a user.
  • the first chamber 511 and the second chamber 512 communicate with each other, and the powder R1 inside the first chamber 511 becomes the first. It can be supplied to the container 21 of the feeder 20 via the chamber 512 of 2.
  • the slide portion 522 is slid and the lid portion 521 moves to the internal position of the housing 510, the communication between the first chamber 511 and the second chamber 512 is cut off, and the inside of the first chamber 511 is cut off.
  • the powder R1 is not supplied to the second chamber 512.
  • the opening / closing portion 520 is closed in this way, the first chamber 511 is in an airtight state. Therefore, even if the powder cartridge 90 is taken out from the dry box into the atmosphere, the powder filled in the powder cartridge 500 It is possible to prevent R1 from reacting with water, oxygen, and nitrogen.
  • the powder cartridge 500 has a first chamber 511 and a second chamber 512 separated by an opening / closing portion 520, and a gas supply port 530 is provided in the second chamber 512. ..
  • the powder R1 can be supplied to the feeder 20 from the inside of the powder cartridge 500 while maintaining the airtight state. Therefore, the powder R1 in the powder cartridge 500 can be supplied to the container 21 of the feeder 20 without reacting with water, nitrogen, and oxygen.
  • plasma spraying is performed using the powder R1 supplied to the feeder 20
  • the stability of the film quality of the sprayed film using the powder R1 is improved.
  • the opening / closing portion 520 since the opening / closing portion 520 is provided, the amount of powder R1 supplied from the first chamber 511 to the second chamber 512 can be controlled per unit time. .. As a result, the powder can be quantitatively supplied to the feeder 20.
  • the opening / closing portion 520 is a shutter type on-off valve
  • the powder R1 is controlled by opening / closing the slide portion 522 of the opening / closing portion 520 to control the opening ratio and opening time.
  • the amount of supply can be adjusted.
  • a desired amount of powder R1 can be accurately supplied to the feeder 20.
  • cost reduction can be expected.
  • FIG. 6 is a diagram showing the powder cartridge 600 of the third configuration example, and shows a state in which the powder cartridge 600 is attached to the feeder 20.
  • the powder cartridge 600 of the third configuration example has a second chamber 612 including an intermediate portion 613 and a supply portion 614 partitioned by the second opening / closing portion 640. It is different from the powder cartridge 500 of the configuration example.
  • the other configurations may be the same as those of the powder cartridge 500. Hereinafter, the differences will be mainly described.
  • the powder cartridge 600 is removable from the top of the feeder 20.
  • the powder cartridge 600 supplies the powder R1 to the feeder 20 in a state of being attached to the upper portion of the feeder 20.
  • the powder cartridge 600 includes a housing 610, an opening / closing portion 620, a gas supply port 630, and a second opening / closing portion 640.
  • the opening / closing portion 620 may have the same configuration as the opening / closing portion 520 described above, and is a shutter-type on-off valve having a lid portion 621 and a slide portion 622.
  • the housing 610 is configured to be removable from the feeder 20.
  • the housing 610 has a first chamber 611 and a second chamber 612.
  • the first chamber 611 and the second chamber 612 can communicate with each other, and the communication state is controlled by the opening / closing unit 620.
  • the first chamber 611 is configured to be able to accommodate the powder R1 in an airtight state.
  • the powder cartridge 600 can accommodate the powder R1 without reacting the powder R1 with water, nitrogen, and oxygen.
  • the second room 612 is configured to be connectable to the feeder 20.
  • the second chamber 612 includes an intermediate section 613 and a supply section 614.
  • the intermediate portion 613 is connected to the first chamber 611 via the opening / closing portion 620.
  • the supply unit 614 is connected to the intermediate unit 613 via the second opening / closing unit 640, and is detachably connected to the feeder 20. That is, the intermediate portion 613 is provided between the first chamber 611 and the supply portion 614.
  • the gas supply port 630 is provided in the supply unit 614. As shown in FIG. 1, the gas supply port 630 is connected to the gas supply source 41 via a pipe 44 in which a valve 47 is interposed. Argon gas from the gas supply source 41 is filled into the supply unit 614 from the gas supply port 630 through the pipe 44. As a result, the inside of the supply unit 614 can be adjusted to an argon gas atmosphere.
  • the gas filled in the supply unit 614 is not limited to the argon gas, and may be an inert gas, for example, a helium gas. Further, the gas supply port 630 may be connected to a gas supply source provided separately from the gas supply source 41.
  • a gas exhaust port may be provided instead of the gas supply port 630.
  • the inside of the supply unit 614 can be adjusted to a vacuum atmosphere.
  • a gas exhaust port may be provided separately from the gas supply port 630.
  • the time required for purging in the supply unit 614 purge time
  • the adjustment of the atmosphere in the supply unit 614 may be performed via the connection port 670 with the feeder 20 of the powder cartridge 600.
  • the inside of the supply unit 614 may be adjusted to an inert gas atmosphere by supplying the inert gas from the feeder 20 to the supply unit 614 via the connection port 670, and the supply unit 614 may be adjusted to the inert gas atmosphere through the connection port 670.
  • the inside may be exhausted.
  • the connection port 670 may function as a gas supply port 630 or a gas exhaust port.
  • the second opening / closing section 640 controls the communication state between the intermediate section 613 and the supply section 614, and measures the mass of the powder R1 contained in the intermediate section 613.
  • the second opening / closing unit 640 is an on / off valve having a function as, for example, an electronic balance.
  • the operation of the second opening / closing unit 640 may be performed by, for example, electrical control or mechanical control, or may be performed by, for example, a user.
  • the second opening / closing section 640 when the second opening / closing section 640 is closed, the communication between the intermediate section 613 and the supply section 614 is cut off, and the powder R1 inside the intermediate section 613 is not supplied to the supply section 614. Further, in the state where the second opening / closing portion 640 is closed, the second opening / closing portion 640 functions as an electronic balance and measures the mass of the powder R1 contained in the intermediate portion 613. When the second opening / closing portion 640 is closed in this way, the intermediate portion 613 is in an airtight state. Therefore, even if the powder cartridge 600 is taken out from the dry box into the atmosphere, it is possible to prevent the powder R1 filled in the powder cartridge 600 from reacting with water, oxygen, and nitrogen.
  • FIGS. 7A to 7F are diagrams for explaining the operation of the powder cartridge 600 of the third configuration example.
  • the powder R1 is filled into the powder cartridge 600 from a storage container stored in an airtight state in a dry box provided in an environment-controlled dry booth.
  • the lid (not shown) provided in the first chamber 611 is opened to open the first chamber 611 of the powder cartridge 600.
  • the powder R1 is filled therein. This makes it possible to prevent the powder R1 before being filled in the powder cartridge 600 from reacting with water, oxygen, and nitrogen.
  • the lid provided in the first chamber 611 is closed, and the powder cartridge 600 is taken out from the dry box. Thereby, even if the powder cartridge 600 is taken out from the dry box into the atmosphere, it is possible to prevent the powder R1 filled in the powder cartridge 600 from reacting with water, oxygen, and nitrogen.
  • argon gas is filled into the supply unit 614 from the gas supply port 630, and the inside of the supply unit 614 is adjusted to an argon gas atmosphere.
  • the atmosphere in the supply unit 614 may be an inert gas atmosphere, and may be, for example, a helium gas atmosphere or a nitrogen gas atmosphere instead of the argon gas atmosphere.
  • the filling of argon gas from the gas supply port 630 to the supply unit 614 is stopped, the slide unit 622 is slid horizontally, and the lid unit 621 is positioned outside the housing 610. Move to.
  • the first chamber 611 and the intermediate portion 613 of the second chamber 612 communicate with each other, and the powder R1 contained in the first chamber 611 begins to be supplied into the intermediate portion 613.
  • the mass of the powder R1 supplied to the intermediate portion 613 is measured by the second opening / closing portion 640.
  • the opening / closing portion 620 is closed as shown in FIG. 7D. That is, the slide portion 622 is slid in the horizontal direction to move the lid portion 621 to the internal position of the housing 610. As a result, the supply of the powder R1 from the inside of the first chamber 611 to the intermediate portion 613 is stopped.
  • the second opening / closing part 640 is opened.
  • the powder R1 in the intermediate portion 613 measured by the second opening / closing portion 640 is supplied into the container 21 of the feeder 20 via the supply portion 614.
  • the second opening / closing portion 640 is closed.
  • the second opening / closing part 640 has a function as, for example, an electronic balance like the lid part A1 described later, and automatically rotates when the second opening / closing part 640 measures the powder R1 having a predetermined mass. It may be configured to open.
  • FIGS. 7A to 7F are repeated, and after the powder R1 contained in the first chamber 611 is exhausted, the filling of argon gas from the gas supply port 630 to the second chamber 612 is stopped, and the powder cartridge is used. Remove 600 from the feeder 20. At this time, since the communication state between the first chamber 611 and the second chamber 612 is blocked by the opening / closing portion 620, the inside of the first chamber 611 is prevented from being exposed to the atmospheric environment, and the first chamber 611 is prevented from being exposed to the air environment. It is possible to prevent the powder R1 in the chamber 611 from reacting with water, oxygen, and nitrogen.
  • the opening / closing portion 620 since the opening / closing portion 620 is provided, the amount of powder R1 supplied from the first chamber 611 to the second chamber 612 can be controlled per unit time. .. As a result, the powder can be quantitatively supplied to the feeder 20.
  • the second chamber 612 includes an intermediate portion 613 and a supply portion 614 partitioned by the second opening / closing portion 640, and the second opening / closing portion 640 is an intermediate portion. It is configured so that the mass of the powder R1 contained in 613 can be measured. As a result, the powder R1 accurately measured by the second opening / closing unit 640 can be supplied to the feeder 20 via the supply unit 614.
  • the central particle size of the powder R1 is 1 ⁇ m to 20 ⁇ m, it is exposed to the atmosphere because the surface area per unit volume is larger than that of the commonly used powder having a central particle size of 50 ⁇ m to 100 ⁇ m. Is likely to react with water, oxygen, and nitrogen. Therefore, when the powder is supplied to the feeder 20 in the air, the powder R1 may react with water, oxygen, and nitrogen and aggregate. When the powder R1 aggregates, it is difficult to melt, so that the quality of the sprayed film deteriorates.
  • the environment is controlled in the feeder 20, the nozzle 11, and the chamber C, and when the powder R1 is supplied to the feeder 20 by the powder cartridge 600, the powder R1 is in the atmosphere.
  • the powder R1 is supplied to the feeder 20, deterioration of the film quality of the sprayed film due to the aggregation of the powder R1 can be prevented.
  • the powder cartridge 800 includes a housing 810, an opening / closing section 820, a gas supply port 830, a second opening / closing section 840, and an optical sensor 850.
  • the housing 810, the opening / closing part 820, the gas supply port 830 and the second opening / closing part 840 may have the same configuration as the above-mentioned housing 610, the opening / closing part 620, the gas supply port 630 and the second opening / closing part 840. .. That is, the housing 810 has a first chamber 811 and a second chamber 812, and the second chamber 812 includes an intermediate portion 813 and a supply portion 814.
  • the opening / closing portion 820 has a lid portion 821 and a slide portion 822.
  • the second opening / closing unit 840 may be an on / off valve that does not have a function as an electronic balance.
  • the optical sensor 850 is an example of a measuring unit, which is provided in the first chamber 811 and measures the amount of powder R1 contained in the first chamber 811.
  • the optical sensor 850 is a laser displacement meter provided on the ceiling of the first chamber 811 and irradiates the laser beam LB downward to detect the reflected light reflected by the powder R1. Thereby, the height of the powder R1 is measured.
  • the optical sensor 850 may be, for example, an LED displacement meter using LED light or a displacement meter capable of detecting displacement using lamp light.
  • the powder cartridge 800 has a first chamber 811 and a second chamber 812 partitioned by an opening / closing portion 820, and a gas supply port 830 is provided in the second chamber 812. .
  • the powder R1 can be supplied to the feeder 20 from the inside of the powder cartridge 800 while maintaining the airtight state. Therefore, the powder R1 in the powder cartridge 800 can be supplied to the container 21 of the feeder 20 without reacting with water, nitrogen, and oxygen.
  • plasma spraying is performed using the powder R1 supplied to the feeder 20
  • the stability of the film quality of the sprayed film using the powder R1 is improved.
  • the opening / closing portion 820 since the opening / closing portion 820 is provided, the amount of powder R1 supplied from the first chamber 811 to the second chamber 812 can be controlled per unit time. .. As a result, the powder can be quantitatively supplied to the feeder 20.
  • the amount of powder R1 supplied from the first chamber 811 to the intermediate portion 813 of the second chamber 812 can be measured by the optical sensor 850.
  • the powder R1 measured with high accuracy can be supplied to the feeder 20 via the supply unit 814.
  • FIG. 9 is a diagram showing the powder cartridge 900 of the fifth configuration example, and shows a state in which the powder cartridge 900 is attached to the feeder 20.
  • the powder cartridge 900 of the fifth configuration example is provided in the first chamber 911 and has a scale 960 capable of measuring the amount of the powder R1 contained in the first chamber 911. Therefore, it is different from the powder cartridge 600 of the third configuration example.
  • the other configurations may be the same as those of the powder cartridge 600. Hereinafter, the differences will be mainly described.
  • the powder cartridge 900 includes a housing 910, an opening / closing portion 920, a gas supply port 930, a second opening / closing portion 940, and a scale 960.
  • the housing 910, the opening / closing section 920, the gas supply port 930, and the second opening / closing section 940 may have the same configuration as the housing 610, the opening / closing section 620, the gas supply port 630, and the second opening / closing section 840 described above. .. That is, the housing 910 has a first chamber 911 and a second chamber 912, and the second chamber 912 includes an intermediate portion 913 and a supply portion 914.
  • the opening / closing portion 920 has a lid portion 921 and a slide portion 922.
  • the second opening / closing unit 940 may be an on / off valve that does not have a function as an electronic balance.
  • the scale 960 is an example of the measuring unit, and is provided in the first chamber 911 to measure the amount of powder R1 contained in the first chamber 911.
  • the scale 960 is visible from the outside of the housing 910, and is a plurality of (for example, six) bar displays provided at intervals in the vertical direction.
  • the user can measure the amount of the powder R1 contained in the first chamber 911.
  • the amount of powder R1 supplied to the chamber 912 can be measured.
  • FIG. 9 shows an example in which the powder R1 is stored up to the position indicated by the fifth bar from the bottom.
  • the powder cartridge 900 has a first chamber 911 and a second chamber 912 partitioned by an opening / closing portion 920, and a gas supply port 930 is provided in the second chamber 912. .
  • the powder R1 can be supplied to the feeder 20 from the inside of the powder cartridge 900 while maintaining the airtight state. Therefore, the powder R1 in the powder cartridge 900 can be supplied to the container 21 of the feeder 20 without reacting with water, nitrogen, and oxygen.
  • plasma spraying is performed using the powder R1 supplied to the feeder 20
  • the stability of the film quality of the sprayed film using the powder R1 is improved.
  • the powder cartridge 900 of the fifth configuration example since the opening / closing portion 920 is provided, the amount of powder R1 supplied from the first chamber 911 to the second chamber 912 can be controlled per unit time. .. As a result, the powder can be quantitatively supplied to the feeder 20.
  • the amount of powder R1 supplied from the first chamber 911 to the intermediate portion 913 of the second chamber 912 can be measured by the scale 960, so that the cost can be reduced. It becomes.
  • FIGS. 10A to 10B, FIGS. 11A to 11B, 12A to 12E, and 13A to 13C A modified example of the opening / closing portion 320 of the powder cartridge 300 will be described with reference to FIGS. 10A to 10B, FIGS. 11A to 11B, 12A to 12E, and 13A to 13C.
  • the opening / closing part 520 of the powder cartridge 500, the opening / closing part 620 of the powder cartridge 600, the opening / closing part 820 of the powder cartridge 800, and the opening / closing part 920 of the powder cartridge 900 are also shown in FIGS. 10A to 10B and 11A to 11B. It may be replaced with the opening / closing part of FIGS. 12A to 12E and 13A to 13C.
  • the second opening / closing part 640 of the powder cartridge 600, the second opening / closing part 840 of the powder cartridge 800, and the second opening / closing part 940 of the powder cartridge 900 are also shown in FIGS. 10A to 10B and 11A to 11B.
  • 12A to 12E and 13A to 13C may be replaced with the opening / closing portion.
  • FIG. 10A and 10B are diagrams showing an example of an opening / closing portion.
  • FIG. 10A shows the side surface of the opening / closing part in the closed state
  • FIG. 10B shows the side surface of the opening / closing part in the open state.
  • the opening / closing portion V1 is configured to rotate about a rotation shaft B1 provided at one end of the lid portion A1 between the closed position shown in FIG. 10A and the open position shown in FIG. 10B.
  • the lid portion A1 has a function as, for example, an electronic balance, and is configured such that the rotation shaft B1 rotates when the lid portion A1 measures a powder R1 having a predetermined mass.
  • the rotation direction of the rotation axis B1 may be, for example, clockwise (arrow direction in FIG. 10A).
  • the rotation angle of the rotation axis B1 may be, for example, 30 degrees to 90 degrees.
  • FIG. 11A and 11B are diagrams showing another example of the opening / closing portion.
  • FIG. 11A shows the side surface of the opening / closing part in the closed state
  • FIG. 11B shows the side surface of the opening / closing part in the open state.
  • the opening / closing portion V2 is configured to rotate about the rotation shaft B2 provided at the center of the lid portion 1A as a rotation center between the closed position shown in FIG. 11A and the open position shown in FIG. 11B.
  • the lid portion A2 has a function as, for example, an electronic balance, and is configured such that the rotation shaft B2 rotates when the lid portion A2 measures a powder R1 having a predetermined mass.
  • the rotation direction of the rotation axis B2 may be, for example, clockwise (arrow direction in FIG. 11A).
  • the rotation angle of the rotation axis B2 may be, for example, 30 degrees to 90 degrees.
  • FIGS. 12C and 12D are top views and perspective views of the opening / closing portion in the open state, respectively.
  • FIG. 12E is a diagram showing a configuration example of the fan plate-shaped member.
  • the opening / closing portion V3 is formed in a conical shape having a lower apex by arranging a plurality of valve bodies A3 (16 in the illustrated example) formed in a fan plate shape in the circumferential direction. As shown in FIG. 12E, one end of the wire B3 is fixed to the tip A3a of each valve body A3.
  • the wire B3 is pulled out to the outside through the hole A3b formed in the arc portion of each valve body A3, and by pulling the wire B3, the tip A3a of each valve body A3 moves downward, and between the valve bodies A3.
  • the opening / closing portion V3 is configured to open with a gap. Further, it is preferable that the periphery of each valve body A3 is covered with a sealing member such as resin or rubber. As a result, leakage of the powder R1 from between the adjacent valve bodies A3 and between the valve body A3 and the inner side wall of the housing 310 can be suppressed.
  • 13A to 13C are views showing still another example of the opening / closing portion.
  • 13A, 13B and 13C are cross-sectional views, perspective views and side views of the opening / closing portion, respectively.
  • the on-off valve V4 is formed in a region of a cylindrical body V4a rotatably provided at a connection portion between the first chamber 311 and the second chamber 312 and a part of the cylindrical body V4a in the circumferential direction, and is predetermined in the longitudinal direction. It has a groove V4b having a length X1 of.
  • the first operation is repeated by rotating the rotating body V4a to direct the groove V4b from the upper side to the lower side and rotating the rotating body V4a to direct the groove V4b from the lower side to the upper side.
  • the powder R1 is supplied from the chamber 311 to the second chamber 312.
  • the rotating body V4a is rotated by, for example, 180 degrees with the powder R1 filled in the groove V4b, and the groove V4b is directed from the upper side to the lower side.
  • the powder R1 in the groove V4b is supplied into the second chamber 312.
  • the rotating body V4a In the operation of rotating the rotating body V4a to direct the groove V4b from the lower side to the upper side, the rotating body V4a is rotated 180 degrees and the groove V4b is directed from the lower side to the upper side, so that the empty groove V4b is filled with the powder R1 again. Will be done.
  • the supply amount of the powder R1 can be controlled by a simple operation of rotating the rotating body V4a. That is, it becomes easy to control the supply amount of the powder R1.
  • the configuration of the opening / closing portion is not limited to this, and another opening / closing portion can be used as long as the structure does not crush or twist the powder R1.
  • the second opening / closing part is the same as the opening / closing part.
  • a method of cleaning the powder cartridge 300 will be described by taking as an example a case of cleaning the powder cartridge 300 after supplying Li powder to the feeder 20 of the plasma spraying device 1.
  • the Li powder adhering to the housing 310 of the powder cartridge 300 is sufficiently oxidized. It is converted to lithium oxide and inactivated.
  • a control unit (not shown) provided separately from the control unit 30 is attached to the housing 310 of the powder cartridge 300, the control unit is removed from the housing 310. This is because if the step described later is performed with the control unit attached to the housing 310, the control unit may be damaged. If the control unit is waterproof, it is not necessary to remove the control unit from the housing 310.
  • the time for holding the powder cartridge 300 in an air environment or an oxygen gas atmosphere may be, for example, one hour. Further, since lithium oxide is carbonized and disappears during plasma spraying, even if it adheres to the inside of the housing 310, it does not affect the sprayed film.
  • the powder cartridge 300 is immersed in a container containing water to melt the Li powder adhering to the housing 310 of the powder cartridge 300.
  • the Li powder may be removed by using an air blow, a brush, or the like before immersing the powder cartridge 300 in the container containing water. preferable.
  • the powder cartridge 300 is immersed in a container containing an ethanol solution for ultrasonic cleaning.
  • the conditions for ultrasonic cleaning are appropriately determined according to the amount of Li powder and the like.
  • the powder cartridge 300 is housed in the drying furnace, and the powder cartridge 300 is dried in the drying furnace.
  • the temperature may be 100 ° C. or lower and the drying time may be 1 hour to 100 hours.
  • the example of the cleaning method of the powder cartridge 300 has been described above, but the powder cartridges 500, 600, 800, and 900 can also be cleaned by the same method as the powder cartridge 300.
  • the plasma spraying device that forms a thermal spray film on the base material W by plasma spraying has been described, but the present invention is not limited to this, and for example, the thermal spraying device that forms a thermal spray film on the base material W by arc spraying or frame spraying. It may be.
  • Control unit 300 500, 600, 800, 900 Powder cartridge 310, 510, 610, 810, 910 Housing 311, 511, 611, 811, 911 First chamber 312, 512, 612, 812, 912 Room 2 613, 813, 913 Intermediate part 614, 814, 914 Supply part 320, 520, 620, 820, 920 Opening / closing part 330, 530, 630, 830, 930 Gas supply port 640, 840, 940 Second opening / closing part 850 Optical sensor 960 Scale R1 powder

Abstract

A powder cartridge according to an embodiment of the present disclosure is a powder cartridge that supplies powder to a feeder, the powder cartridge being provided with: a housing that is attachable to and detachable from the feeder and has a first room that is capable of accommodating the powder in an airtight state and a second room that is capable of communicating with the first room and provided with at least any of a gas supply port and a gas discharge port; and an opening/closing part that controls a communication state between the first room and the second room.

Description

粉末カートリッジ及び粉末供給方法Powder cartridge and powder supply method
 本開示は、粉末カートリッジ及び粉末供給方法に関する。 This disclosure relates to a powder cartridge and a powder supply method.
 不活性ガスが充填された容器から供給される溶射材料の粉末を加熱して溶融し、溶融された粉末を被対象物に吹き付けることで被対象物に溶射膜を形成する溶射装置が知られている(例えば、特許文献1参照)。また、粉体を搬送する方法として、トナー等の粉体をスクリューの回転駆動により搬送する技術が知られている(例えば、特許文献2参照)。 A thermal spraying device is known in which a thermal spray material powder supplied from a container filled with an inert gas is heated and melted, and the molten powder is sprayed onto the object to form a thermal spray film on the object. (See, for example, Patent Document 1). Further, as a method for transporting powder, a technique for transporting powder such as toner by rotationally driving a screw is known (see, for example, Patent Document 2).
特開2014-123663号公報Japanese Unexamined Patent Publication No. 2014-123663 特開2005-195659号公報Japanese Unexamined Patent Publication No. 2005-195659
 本開示は、大気曝露させることなく粉末を定量供給できる技術を提供する。 The present disclosure provides a technique capable of quantitatively supplying powder without exposure to the atmosphere.
 本開示の一態様による粉末カートリッジは、フィーダに粉末を供給する粉末カートリッジであって、前記フィーダに着脱可能な筐体であって、気密状態で前記粉末を収容可能な第1の室と、前記第1の室と連通可能であり少なくともガス供給口及びガス排気口のいずれかが設けられた第2の室とを有する筐体と、前記第1の室と前記第2の室との連通状態を制御する開閉部と、を備える。 The powder cartridge according to one aspect of the present disclosure is a powder cartridge that supplies powder to the feeder, and is a housing that can be attached to and detached from the feeder, and has a first chamber that can accommodate the powder in an airtight state, and the said. A housing capable of communicating with the first chamber and having a second chamber provided with at least one of a gas supply port and a gas exhaust port, and a state of communication between the first chamber and the second chamber. It is provided with an opening / closing unit for controlling.
 本開示によれば、大気曝露させることなく粉末を定量供給できる。 According to the present disclosure, the powder can be quantitatively supplied without being exposed to the atmosphere.
プラズマ溶射装置の構成例を示す図The figure which shows the structural example of the plasma spraying apparatus 図1のプラズマ溶射装置の回収廃棄機構を示す図The figure which shows the recovery and disposal mechanism of the plasma spraying apparatus of FIG. 第1構成例の粉末カートリッジを示す図The figure which shows the powder cartridge of the 1st configuration example 第1構成例の粉末カートリッジの動作を説明するための図The figure for demonstrating the operation of the powder cartridge of 1st configuration example. 第1構成例の粉末カートリッジの動作を説明するための図The figure for demonstrating the operation of the powder cartridge of 1st configuration example. 第1構成例の粉末カートリッジの動作を説明するための図The figure for demonstrating the operation of the powder cartridge of 1st configuration example. 第1構成例の粉末カートリッジの動作を説明するための図The figure for demonstrating the operation of the powder cartridge of 1st configuration example. 第2構成例の粉末カートリッジを示す図The figure which shows the powder cartridge of the 2nd configuration example 第3構成例の粉末カートリッジを示す図The figure which shows the powder cartridge of the 3rd configuration example 第3構成例の粉末カートリッジの動作を説明するための図The figure for demonstrating the operation of the powder cartridge of the 3rd configuration example. 第3構成例の粉末カートリッジの動作を説明するための図The figure for demonstrating the operation of the powder cartridge of the 3rd configuration example. 第3構成例の粉末カートリッジの動作を説明するための図The figure for demonstrating the operation of the powder cartridge of the 3rd configuration example. 第3構成例の粉末カートリッジの動作を説明するための図The figure for demonstrating the operation of the powder cartridge of the 3rd configuration example. 第3構成例の粉末カートリッジの動作を説明するための図The figure for demonstrating the operation of the powder cartridge of the 3rd configuration example. 第3構成例の粉末カートリッジの動作を説明するための図The figure for demonstrating the operation of the powder cartridge of the 3rd configuration example. 第4構成例の粉末カートリッジを示す図The figure which shows the powder cartridge of 4th structural example 第5構成例の粉末カートリッジを示す図The figure which shows the powder cartridge of the 5th structural example 開閉部の一例を示す図The figure which shows an example of the opening and closing part 開閉部の一例を示す図The figure which shows an example of the opening and closing part 開閉部の別の例を示す図The figure which shows another example of the opening and closing part 開閉部の別の例を示す図The figure which shows another example of the opening and closing part 開閉部の更に別の例を示す図The figure which shows still another example of the opening and closing part 開閉部の更に別の例を示す図The figure which shows still another example of the opening and closing part 開閉部の更に別の例を示す図The figure which shows still another example of the opening and closing part 開閉部の更に別の例を示す図The figure which shows still another example of the opening and closing part 開閉部の更に別の例を示す図The figure which shows still another example of the opening and closing part 開閉部の更に別の例を示す図The figure which shows still another example of the opening and closing part 開閉部の更に別の例を示す図The figure which shows still another example of the opening and closing part 開閉部の更に別の例を示す図The figure which shows still another example of the opening and closing part
 以下、添付の図面を参照しながら、本開示の限定的でない例示の実施形態について説明する。添付の全図面中、同一又は対応する部材又は部品については、同一又は対応する参照符号を付し、重複する説明を省略する。 Hereinafter, non-limiting exemplary embodiments of the present disclosure will be described with reference to the accompanying drawings. In all the attached drawings, the same or corresponding members or parts are designated by the same or corresponding reference numerals, and duplicate description is omitted.
 〔プラズマ溶射装置〕
 粉末カートリッジが適用可能な装置の一例として、プラズマ溶射装置について説明する。以下、プラズマ溶射装置の一例として、不活性ガスを封入し雰囲気調整(環境制御)されたチャンバ内でプラズマ溶射を行う装置を説明するが、大気中でプラズマ溶射を行う装置であってもよい。
[Plasma spraying device]
A plasma spraying device will be described as an example of a device to which a powder cartridge can be applied. Hereinafter, as an example of the plasma spraying device, a device that performs plasma spraying in a chamber in which an inert gas is sealed and the atmosphere is adjusted (environmental control) will be described, but a device that performs plasma spraying in the atmosphere may also be used.
 図1は、プラズマ溶射装置の構成例を示す図である。図1に示されるように、プラズマ溶射装置1は、不活性ガスを封入し雰囲気調整(環境制御)されたチャンバC内でプラズマ溶射を行う装置である。プラズマ溶射装置1では、溶射材料の粉末(以下「粉末R1」という。)をノズル11の先端の開口11bから噴射し、高速のガスにより形成されたプラズマジェットPの熱により溶融しながら、雰囲気調整されたチャンバC内の基材Wの表面に向かって噴き出す。これにより、基材Wの表面に溶射材料の皮膜(以下「溶射膜」という。)F1が形成される。 FIG. 1 is a diagram showing a configuration example of a plasma spraying device. As shown in FIG. 1, the plasma spraying device 1 is a device that performs plasma spraying in a chamber C in which an inert gas is sealed and the atmosphere is adjusted (environmental control). In the plasma spraying apparatus 1, the powder of the thermal spraying material (hereinafter referred to as “powder R1”) is injected from the opening 11b at the tip of the nozzle 11 and melted by the heat of the plasma jet P formed by the high-speed gas to adjust the atmosphere. It is sprayed toward the surface of the base material W in the chamber C. As a result, a film of the thermal spray material (hereinafter referred to as “thermal spray film”) F1 is formed on the surface of the base material W.
 基材Wの一例としては、銅(Cu)等の電極が挙げられる。粉末R1の一例としては、リチウム(Li)の粉末が挙げられる。例えば、プラズマ溶射装置1を用いて銅の電極にリチウム粉末を完全に溶融して成膜することで、リチウム二次電池に使用される電極へのリチウムイオンのドーピングが可能になる。但し、粉末R1は、リチウムの粉末に限定されず、例えばアルミニウム(Al)、銅(Cu)、銀(Ag)、金(Au)等の粉末であってもよく、これらを混合した粉末であってもよい。 An example of the base material W is an electrode such as copper (Cu). An example of the powder R1 is a lithium (Li) powder. For example, by completely melting lithium powder on a copper electrode using a plasma spraying device 1 to form a film, it becomes possible to doping the electrode used in a lithium secondary battery with lithium ions. However, the powder R1 is not limited to the lithium powder, and may be, for example, a powder of aluminum (Al), copper (Cu), silver (Ag), gold (Au), etc., and is a powder obtained by mixing these. You may.
 プラズマ溶射装置1は、低エネルギーで溶射材料を溶融するため、溶射材料の粉末が昇華せずに、液体の状態で存在し、成膜できる。このため、プラズマ溶射装置1の利点の一つとしては、融点の低いリチウム等の特定の溶射材料であっても溶射により成膜できる点が挙げられる。よって、プラズマ溶射装置1は、特にリチウム等の融点の低い金属の粉末を溶射材料とした場合に好適である。 Since the plasma spraying device 1 melts the thermal spray material with low energy, the powder of the thermal spray material does not sublimate, but exists in a liquid state and can form a film. Therefore, one of the advantages of the plasma spraying apparatus 1 is that even a specific thermal spraying material such as lithium having a low melting point can be sprayed to form a film. Therefore, the plasma spraying device 1 is particularly suitable when a metal powder having a low melting point such as lithium is used as a thermal spraying material.
 プラズマ溶射装置1は、供給部10、制御部30、ガス供給部40、プラズマ生成部60、チャンバC、回収廃棄機構83及びドライ室88を含む。 The plasma spraying device 1 includes a supply unit 10, a control unit 30, a gas supply unit 40, a plasma generation unit 60, a chamber C, a recovery / disposal mechanism 83, and a dry chamber 88.
 供給部10は、ノズル11及びフィーダ20を有し、粉末R1をプラズマ生成ガスにより運び、先端の開口から噴射する。フィーダ20は、粉末R1をノズル11に供給する。フィーダ20には、後述する粉末カートリッジ90から粉末R1が供給される。粉末R1は、フィーダ20内の容器21に収容されている。粉末R1は、中心粒径が1μm~500μmの微粉末、好ましくは1μm~200μmの微粉末、更に好ましくは1μm~20μmの微粉末である。 The supply unit 10 has a nozzle 11 and a feeder 20, carries the powder R1 by the plasma generating gas, and injects the powder R1 from the opening at the tip. The feeder 20 supplies the powder R1 to the nozzle 11. The powder R1 is supplied to the feeder 20 from the powder cartridge 90 described later. The powder R1 is housed in the container 21 in the feeder 20. The powder R1 is a fine powder having a central particle size of 1 μm to 500 μm, preferably a fine powder having a central particle size of 1 μm to 200 μm, and more preferably a fine powder having a central particle size of 1 μm to 20 μm.
 フィーダ20には、アクチュエータ22が設けられている。ノズル11は棒状の環状部材であり、その内部に粉末R1が運ばれる流路11aが形成されている。ノズル11の流路11aと容器21内とは連通する。粉末R1は、アクチュエータ22の動力により容器21からノズル11内の流路11aに投入される。フィーダ20は、例えばボウルフィーダであってよい。 The feeder 20 is provided with an actuator 22. The nozzle 11 is a rod-shaped annular member, and a flow path 11a through which the powder R1 is carried is formed inside the nozzle 11. The flow path 11a of the nozzle 11 and the inside of the container 21 communicate with each other. The powder R1 is charged from the container 21 into the flow path 11a in the nozzle 11 by the power of the actuator 22. The feeder 20 may be, for example, a bowl feeder.
 ノズル11には、粉末R1と共にプラズマ生成ガスが供給される。プラズマ生成ガスは、プラズマを生成するためのガスである。また、プラズマ生成ガスは、流路11aにて粉末R1を運ぶキャリアガスとしても機能する。ガス供給部40では、ガス供給源41からプラズマ生成ガスが供給され、バルブ46及びマスフローコントローラ(MFC:Mass Flow Controller)を通って開閉及び流量制御され、パイプ42を通ってノズル11内の流路11aに供給される。プラズマ生成ガスとしては、アルゴンガス(Ar)、ヘリウムガス(He)、窒素ガス(N)、水素ガス(H)、これら各種ガスを組み合わせたガス等のガスが利用できる。本実施形態では、プラズマ生成ガスとしてアルゴンガスを供給する場合を例に挙げて説明する。 A plasma generating gas is supplied to the nozzle 11 together with the powder R1. The plasma-producing gas is a gas for generating plasma. The plasma-generated gas also functions as a carrier gas that carries the powder R1 in the flow path 11a. In the gas supply unit 40, plasma generated gas is supplied from the gas supply source 41, opened / closed and flow rate controlled through a valve 46 and a mass flow controller (MFC), and a flow path in the nozzle 11 passes through a pipe 42. It is supplied to 11a. As the plasma generating gas, a gas such as argon gas (Ar), helium gas (He), nitrogen gas (N 2 ), hydrogen gas (H 2 ), and a gas combining these various gases can be used. In the present embodiment, a case where argon gas is supplied as the plasma generation gas will be described as an example.
 ノズル11は、プラズマ生成部60の本体部12を貫通し、その先端がプラズマ生成空間Uに突出する。粉末R1は、プラズマ生成ガスによりノズル11の先端まで運搬され、プラズマ生成ガスと共に先端の開口11bからプラズマ生成空間Uに噴射される。 The nozzle 11 penetrates the main body 12 of the plasma generation unit 60, and its tip protrudes into the plasma generation space U. The powder R1 is transported to the tip of the nozzle 11 by the plasma generation gas, and is injected together with the plasma generation gas from the opening 11b at the tip into the plasma generation space U.
 本体部12は、絶縁材料により形成されている。本体部12は、中央部に貫通口12aを有している。ノズル11の前方部分11cは、本体部12の貫通口12aに挿入されている。ノズル11の前方部分11cは、直流電源50に接続され、直流電源50から電流が供給される電極(カソード)としても機能する。ノズル11の前方部分11cは、金属により形成されている。 The main body 12 is formed of an insulating material. The main body portion 12 has a through port 12a in the central portion. The front portion 11c of the nozzle 11 is inserted into the through port 12a of the main body portion 12. The front portion 11c of the nozzle 11 is connected to the DC power supply 50 and also functions as an electrode (cathode) to which a current is supplied from the DC power supply 50. The front portion 11c of the nozzle 11 is made of metal.
 プラズマ生成空間Uは、主に本体部12の凹み部12bと張出部12dとにより画定された空間であり、プラズマ生成空間Uにはノズル11の先端が突出している。張出部12dは、本体部12の外壁に設けられた金属板12cと一端部で連結している。金属板12cは、直流電源50に接続されている。これにより、金属板12c及び張出部12dは電極(アノード)として機能する。 The plasma generation space U is a space mainly defined by the recessed portion 12b and the overhanging portion 12d of the main body portion 12, and the tip of the nozzle 11 projects into the plasma generation space U. The overhanging portion 12d is connected to the metal plate 12c provided on the outer wall of the main body portion 12 at one end. The metal plate 12c is connected to the DC power supply 50. As a result, the metal plate 12c and the overhanging portion 12d function as electrodes (anodes).
 電極間には、直流電源50から500W~10kWの電力が供給され、ノズル11の先端と張出部12dの他端部との間で放電が生じる。これにより、プラズマ生成部60は、プラズマ生成空間Uにおいてノズル11から噴射したアルゴンガスを電離(分解)させ、アルゴンプラズマを生成する。 Power of 500 W to 10 kW is supplied from the DC power supply 50 between the electrodes, and a discharge occurs between the tip of the nozzle 11 and the other end of the overhanging portion 12d. As a result, the plasma generation unit 60 ionizes (decomposes) the argon gas injected from the nozzle 11 in the plasma generation space U to generate argon plasma.
 また、プラズマ生成空間Uには、アルゴンガスが旋回流となって供給される。アルゴンガスは、ガス供給源41から供給され、バルブ46及びマスフローコントローラ(MFC)を通って開閉及び流量制御され、パイプ43を通って本体部12内を流れ、横方向からプラズマ生成空間Uに供給される。 Further, argon gas is supplied as a swirling flow to the plasma generation space U. Argon gas is supplied from the gas supply source 41, opens and closes and the flow rate is controlled through the valve 46 and the mass flow controller (MFC), flows through the main body 12 through the pipe 43, and is supplied to the plasma generation space U from the lateral direction. Will be done.
 図1では、プラズマ生成空間Uに導入されるアルゴンガスの供給流路が1つだけ図示されているが、本体部12には複数の供給流路が設けられている。これにより、アルゴンガスは、複数の供給流路から横方向に旋回流となってプラズマ生成空間Uに供給される。このため、生成されるプラズマの拡散が防止され、プラズマジェットPが直線偏向となる。その結果、プラズマ生成部60は、ノズル11の先端から噴射したプラズマ生成ガスを分解して、ノズル11と軸芯Oが共通するプラズマジェットPを生成する。なお、「軸芯が共通する」とは、供給部10(ノズル11)の中心軸とプラズマジェットPの吹き付け方向の中心軸とが一致する又は略同一方向に一致することをいう。 In FIG. 1, only one supply flow path for the argon gas introduced into the plasma generation space U is shown, but the main body 12 is provided with a plurality of supply flow paths. As a result, the argon gas is supplied to the plasma generation space U as a swirling flow in the lateral direction from the plurality of supply channels. Therefore, the diffusion of the generated plasma is prevented, and the plasma jet P becomes linearly deflected. As a result, the plasma generation unit 60 decomposes the plasma generation gas injected from the tip of the nozzle 11 to generate a plasma jet P in which the nozzle 11 and the axis O are common. In addition, "the shaft core is common" means that the central axis of the supply unit 10 (nozzle 11) and the central axis of the plasma jet P in the blowing direction coincide with or substantially the same direction.
 係る構成により、供給部10は、ノズル11の内部に形成された流路11aに粉末R1とアルゴンガスとを直進させ、先端の開口11bからプラズマ生成空間Uに噴射する。噴射した粉末R1は、高速のアルゴンガスにより形成されたプラズマジェットPの熱により溶融しながら基材Wの表面に向かって噴き出され、基材Wの表面に溶射膜F1を形成する。 With this configuration, the supply unit 10 causes the powder R1 and the argon gas to travel straight through the flow path 11a formed inside the nozzle 11, and injects the powder R1 and the argon gas into the plasma generation space U from the opening 11b at the tip. The injected powder R1 is ejected toward the surface of the base material W while being melted by the heat of the plasma jet P formed by the high-speed argon gas, and forms a thermal spray film F1 on the surface of the base material W.
 本体部12の内部には冷媒流路72が形成されている。チラーユニット70から供給された冷媒は、バルブ74、75の開閉により冷媒管71、冷媒流路72、冷媒管73を通って循環し、チラーユニット70に戻る。これにより、本体部12は冷却され、本体部12がプラズマの熱により高温になることを防止できる。なお、チャンバCの側壁には、チャンバCの内部を目視するための窓82が付けられている。 A refrigerant flow path 72 is formed inside the main body 12. The refrigerant supplied from the chiller unit 70 circulates through the refrigerant pipe 71, the refrigerant flow path 72, and the refrigerant pipe 73 by opening and closing the valves 74 and 75, and returns to the chiller unit 70. As a result, the main body 12 is cooled, and it is possible to prevent the main body 12 from becoming hot due to the heat of the plasma. A window 82 for visually observing the inside of the chamber C is attached to the side wall of the chamber C.
 〔チャンバ〕
 チャンバCについて、図1を参照しながら説明する。図1に示されるように、チャンバCは、円柱状の中空の容器である。チャンバCは、例えばアルミニウム、ステンレス、石英等により形成されている。チャンバCは、天井部にて本体部12を支持し、供給部10及びプラズマ生成部60を閉空間とする。基材Wは、チャンバCの底部81に配置されたステージ80に載置されている。チャンバCの内部は、例えば所定の圧力に減圧されている。但し、チャンバCの内部は必ずしも減圧されなくてもよい。
[Chamber]
Chamber C will be described with reference to FIG. As shown in FIG. 1, the chamber C is a cylindrical hollow container. The chamber C is made of, for example, aluminum, stainless steel, quartz or the like. In the chamber C, the main body portion 12 is supported by the ceiling portion, and the supply portion 10 and the plasma generation portion 60 are closed spaces. The base material W is placed on a stage 80 arranged at the bottom 81 of the chamber C. The inside of the chamber C is depressurized to a predetermined pressure, for example. However, the inside of the chamber C does not necessarily have to be depressurized.
 粉末R1には、例えばLi粉末のように水分に触れると爆発するものがある。また、粉末R1は、例えばLi粉末のように窒素や酸素と反応すると、窒化物や酸化物になり、活性な状態から安定した状態になる。その場合、正極と負極との間をリチウムイオンが移動することで充電や放電を行うリチウムイオン電池の機能が低下する。 Some powder R1 explodes when it comes in contact with moisture, such as Li powder. Further, when the powder R1 reacts with nitrogen or oxygen like Li powder, it becomes a nitride or an oxide, and changes from an active state to a stable state. In that case, the movement of lithium ions between the positive electrode and the negative electrode reduces the function of the lithium ion battery for charging and discharging.
 したがって、粉末R1は、水分、酸素、窒素の各成分を極力減らした空間に置いておくことが好ましい。よって、プラズマ溶射装置1は、チャンバCにより供給部10及びプラズマ生成部60を閉空間とすることで、粉末R1が収容されている容器21内やノズル11内及びプラズマ生成空間Uを含むチャンバC内から極力、水分、酸素、及び窒素を減らす。 Therefore, it is preferable to place the powder R1 in a space in which each component of water, oxygen, and nitrogen is reduced as much as possible. Therefore, in the plasma spraying device 1, the supply unit 10 and the plasma generation unit 60 are closed by the chamber C, so that the chamber C including the container 21 in which the powder R1 is housed, the nozzle 11, and the plasma generation space U is included. Reduce water, oxygen, and nitrogen from the inside as much as possible.
 また、チャンバCの内部は、アルゴンガスにより充填されている。アルゴンガスは、ガス供給源41からパイプ45を通ってチャンバC内に供給される。但し、チャンバCの内部に充填されるガスは、アルゴンガスに限らず、不活性ガスであればよい。これにより、例えばチャンバCの内部の酸素濃度を1ppm(10-4%)程度又はそれ以下に低下させ、例えばCu電極(基板)に成膜されたLi膜中の酸素濃度を0.5%程度にできる。よって、本実施形態に係るプラズマ溶射装置1によれば、粉末R1を、水分、酸素、及び窒素と反応させずに成膜を行うことで膜の特性を向上させ、電池効率を改善できる。 Further, the inside of the chamber C is filled with argon gas. Argon gas is supplied from the gas supply source 41 through the pipe 45 into the chamber C. However, the gas filled in the chamber C is not limited to the argon gas, and may be an inert gas. As a result, for example, the oxygen concentration inside the chamber C is reduced to about 1 ppm (10 -4 %) or less, and for example, the oxygen concentration in the Li film formed on the Cu electrode (substrate) is about 0.5%. Can be done. Therefore, according to the plasma spraying apparatus 1 according to the present embodiment, the characteristics of the film can be improved and the battery efficiency can be improved by forming the powder R1 without reacting with water, oxygen, and nitrogen.
 〔回収廃棄機構〕
 回収廃棄機構83について、図2を参照しながら説明する。図2は、図1のプラズマ溶射装置1の回収廃棄機構83を示す図である。
[Collection and disposal mechanism]
The collection / disposal mechanism 83 will be described with reference to FIG. FIG. 2 is a diagram showing a recovery / disposal mechanism 83 of the plasma spraying device 1 of FIG.
 図2に示されるように、回収廃棄機構83は、バルブ85の開閉により排気管84を通ってチャンバCの内部のアルゴンガス及び粉末を吸い込み、粉末を廃棄する。回収廃棄機構83は、液体シールポンプ100、モータ101、羽根車103、配管104、タンク106、配管108、及び廃棄機構109を有する。 As shown in FIG. 2, the collection / disposal mechanism 83 sucks argon gas and powder inside the chamber C through the exhaust pipe 84 by opening / closing the valve 85, and discards the powder. The collection / disposal mechanism 83 includes a liquid seal pump 100, a motor 101, an impeller 103, a pipe 104, a tank 106, a pipe 108, and a disposal mechanism 109.
 液体シールポンプ100は、チャンバCの内部のプラズマ溶射に使用されなかった溶射材料(以下、「溶射廃棄物」という。)及びアルゴンガスを吸い込み、吸い込んだ溶射廃棄物及びアルゴンガスを作動液体によりシールする。 The liquid seal pump 100 sucks in the thermal spray material (hereinafter referred to as “thermal spray waste”) and argon gas that have not been used for plasma spraying inside the chamber C, and seals the sucked thermal spray waste and argon gas with the working liquid. To do.
 液体シールポンプ100は、内部にフッ素系溶剤やオイルを充填している。本実施形態では、溶射廃棄物の発火が発生しないように、溶射廃棄物の回収に使用する作動液体に水を使用することはできず、フッ素系溶剤やオイルを使用する。また、液体シールポンプ100は、溶射廃棄物が混入したガスを吸い込むことができるスクラバータイプのポンプで形成されている。例えば、ターボ分子ポンプやドライポンプは、固形の溶射廃棄物が混入したガスを吸い込むと故障することが想定されるため、本実施形態では使用が困難である。液体シールポンプ100のポンプ流量は、例えば300L/min~1200L/minである。 The liquid seal pump 100 is filled with a fluorine-based solvent or oil. In the present embodiment, water cannot be used as the working liquid used for the recovery of the sprayed waste, and a fluorine-based solvent or oil is used so that the sprayed waste does not ignite. Further, the liquid seal pump 100 is formed of a scrubber type pump capable of sucking in a gas mixed with thermal spray waste. For example, a turbo molecular pump or a dry pump is difficult to use in the present embodiment because it is assumed that the turbo molecular pump or the dry pump will break down when a gas mixed with solid sprayed waste is sucked. The pump flow rate of the liquid seal pump 100 is, for example, 300 L / min to 1200 L / min.
 液体シールポンプ100は、モータ101の動力によりシャフト102を回転させ、羽根車103を回転させる。これにより、チャンバCから溶射廃棄物及びアルゴンガスを排気管84及び開いたバルブ85に通し、吸込口Iからポンプ内に吸い込み、作動液体によりシールする。作動液体は、溶射廃棄物及びアルゴンガスをシールした状態で吐出口Jから配管104を通ってタンク106に送られる。 The liquid seal pump 100 rotates the shaft 102 by the power of the motor 101 to rotate the impeller 103. As a result, the sprayed waste and argon gas are passed from the chamber C through the exhaust pipe 84 and the open valve 85, sucked into the pump through the suction port I, and sealed with the working liquid. The working liquid is sent from the discharge port J to the tank 106 through the pipe 104 in a state where the sprayed waste and the argon gas are sealed.
 廃棄機構109は、濾過部110及び焼却部107を有し、溶射廃棄物を廃棄する。濾過部110は、フィルタ等により溶射廃棄物を抽出する。濾過部110にて抽出された溶射廃棄物は、水分等により発火しないように廃棄する必要がある。 The disposal mechanism 109 has a filtration unit 110 and an incineration unit 107, and disposes of thermal sprayed waste. The filtration unit 110 extracts the thermal spray waste with a filter or the like. The sprayed waste extracted by the filtration unit 110 needs to be disposed of so as not to ignite due to moisture or the like.
 そこで、焼却部107は、抽出された溶射廃棄物を焼却し、廃棄する。溶射廃棄物が除去された作動液体は、配管108を通ってタンク106に戻され、液体シールポンプ100の作動液体として再利用される。本実施形態に係る回収廃棄機構83によれば、溶射廃棄物を水分等により発火させずに安全に廃棄できる。また、廃棄に使用した熱や作動液体を再利用できる。 Therefore, the incineration unit 107 incinerates the extracted thermal spray waste and discards it. The working liquid from which the sprayed waste has been removed is returned to the tank 106 through the pipe 108 and reused as the working liquid of the liquid seal pump 100. According to the collection / disposal mechanism 83 according to the present embodiment, the sprayed waste can be safely disposed of without being ignited by moisture or the like. In addition, the heat and working liquid used for disposal can be reused.
 〔ドライ室〕
 ドライ室88は、チャンバCに隣接して設けられ、所定の湿度に除湿された閉空間を形成している。また、ドライ室88は、排気装置89により所定の圧力に減圧されている。但し、ドライ室88は、減圧されていなくてもよい。
[Dry room]
The dry chamber 88 is provided adjacent to the chamber C and forms a closed space dehumidified to a predetermined humidity. Further, the dry chamber 88 is depressurized to a predetermined pressure by the exhaust device 89. However, the dry chamber 88 does not have to be decompressed.
 成膜後の基材Wは、ドライ室88に搬送され、次工程へと運ばれる。成膜後の基材Wの搬送工程において溶射膜F1を窒素や酸素と極力反応させないように、成膜後の基材Wをゲートバルブ86、87から直ちにドライ室88に搬入する。 The base material W after film formation is transported to the dry chamber 88 and transported to the next process. The base material W after film formation is immediately carried into the dry chamber 88 from the gate valves 86 and 87 so that the sprayed film F1 does not react with nitrogen and oxygen as much as possible in the transfer step of the base material W after film formation.
 〔制御部〕
 プラズマ溶射装置1は、制御部30を有する。制御部30は、プラズマ溶射装置1を制御する。具体的には、制御部30は、ガス供給源41、フィーダ20(アクチュエータ22)、直流電源50、チラーユニット70、回収廃棄機構83等を制御する。
[Control unit]
The plasma spraying device 1 has a control unit 30. The control unit 30 controls the plasma spraying device 1. Specifically, the control unit 30 controls the gas supply source 41, the feeder 20 (actuator 22), the DC power supply 50, the chiller unit 70, the collection / disposal mechanism 83, and the like.
 制御部30は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及びHDD(Hard Disk Drive)を有する。CPUは、特定の金属の溶射材料をプラズマ溶射により成膜するためのプログラム(レシピ)を選択し、RAMに設定する。CPUは、RAMに記憶したプログラムに基づき、各部に制御信号を送る。これにより、基材Wに所望の特性の溶射膜F1を溶射できる。なお、制御部30の機能は、ソフトウエアを用いて実現されてもよく、ハードウエアを用いて実現されてもよい。 The control unit 30 has a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an HDD (Hard Disk Drive). The CPU selects a program (recipe) for forming a specific metal sprayed material by plasma spraying and sets it in the RAM. The CPU sends a control signal to each unit based on the program stored in the RAM. As a result, the thermal spray film F1 having desired characteristics can be sprayed onto the base material W. The function of the control unit 30 may be realized by using software or may be realized by using hardware.
 〔粉末カートリッジ〕
 (第1構成例)
 前述のプラズマ溶射装置1のフィーダ20に粉末を供給する粉末カートリッジ90の第1構成例について説明する。図3は、第1構成例の粉末カートリッジ300を示す図であり、フィーダ20に粉末カートリッジ300を取り付けた状態を示す。
[Powder cartridge]
(First configuration example)
A first configuration example of the powder cartridge 90 that supplies powder to the feeder 20 of the plasma spraying device 1 described above will be described. FIG. 3 is a diagram showing the powder cartridge 300 of the first configuration example, and shows a state in which the powder cartridge 300 is attached to the feeder 20.
 図3に示されるように、粉末カートリッジ300は、粉末R1を気密状態で収容する可搬性の容器である。粉末カートリッジ300内に粉末R1を収容する場合、例えば環境制御されたドライブース内に設けられたドライボックス内で、気密状態で保管されている保管容器から粉末カートリッジ300内に粉末R1を充填する。ドライブースは、例えば2%~4%の湿度に保持されている。ドライボックスは、例えば0.5%~1.5%の湿度に保持されている。これにより、粉末カートリッジ300内に充填される前の粉末R1が水分、酸素、及び窒素と反応することを防止できる。また、ドライボックス内において、ヒータ等の加熱手段により粉末R1を加熱してから粉末カートリッジ300内に充填してもよい。 As shown in FIG. 3, the powder cartridge 300 is a portable container that houses the powder R1 in an airtight state. When the powder R1 is contained in the powder cartridge 300, for example, the powder R1 is filled in the powder cartridge 300 from a storage container stored in an airtight state in a dry box provided in an environment-controlled dry booth. The dry booth is kept at a humidity of, for example, 2% to 4%. The dry box is maintained at a humidity of, for example, 0.5% to 1.5%. This makes it possible to prevent the powder R1 before being filled in the powder cartridge 300 from reacting with water, oxygen, and nitrogen. Further, in the dry box, the powder R1 may be heated by a heating means such as a heater and then filled in the powder cartridge 300.
 粉末カートリッジ300は、フィーダ20の上部に着脱可能である。粉末カートリッジ300は、フィーダ20の上部に取り付けられた状態でフィーダ20に粉末R1を供給する。粉末カートリッジ300は、筐体310と、開閉部320と、ガス供給口330と、を備える。 The powder cartridge 300 can be attached to and detached from the upper part of the feeder 20. The powder cartridge 300 supplies the powder R1 to the feeder 20 in a state of being attached to the upper portion of the feeder 20. The powder cartridge 300 includes a housing 310, an opening / closing portion 320, and a gas supply port 330.
 筐体310は、フィーダ20に着脱可能に構成されている。筐体310は、第1の室311と、第2の室312とを有する。第1の室311と第2の室312とは連通可能であり、開閉部320により連通状態が制御される。第1の室311は、気密状態で粉末R1を収容可能に構成されている。これにより、粉末カートリッジ300は、粉末R1を水分、窒素、及び酸素と反応させずに粉末R1を収容できる。第2の室312は、フィーダ20に接続可能に構成されている。 The housing 310 is configured to be removable from the feeder 20. The housing 310 has a first chamber 311 and a second chamber 312. The first chamber 311 and the second chamber 312 can communicate with each other, and the communication state is controlled by the opening / closing unit 320. The first chamber 311 is configured to be able to accommodate the powder R1 in an airtight state. As a result, the powder cartridge 300 can accommodate the powder R1 without reacting the powder R1 with water, nitrogen, and oxygen. The second chamber 312 is configured to be connectable to the feeder 20.
 開閉部320は、第1の室311と第2の室312との連通状態を制御する。開閉部320は、蓋部321と、伸縮部322と、を有するバルブ方式の開閉弁である。蓋部321は、例えば板状部材であり、伸縮部322が伸張したときに第1の室311と第2の室312との連通状態を遮断する大きさに形成されている。伸縮部322は、伸張可能な部材により形成されており、蓋部321を昇降させる。伸縮部322は、例えば電気制御や機械制御により伸長する。伸縮部322が収縮すると、蓋部321が下方に移動して第1の室311と第2の室312とが連通し、第1の室311の内部の粉末R1が第2の室312を介してフィーダ20の容器21に供給可能となる。一方、伸縮部322が伸張すると、蓋部321が上方に移動して第1の室311と第2の室312との連通が遮断され、第1の室311の内部の粉末R1は第2の室312に供給されない。このように開閉部320を閉じた状態であれば、第1の室311は気密状態であるので、粉末カートリッジ300をドライボックス内から大気中に取り出しても、粉末カートリッジ300内に充填された粉末R1が水分、酸素、及び窒素と反応することを防止できる。 The opening / closing unit 320 controls the communication state between the first chamber 311 and the second chamber 312. The opening / closing portion 320 is a valve-type opening / closing valve having a lid portion 321 and an expansion / contraction portion 322. The lid portion 321 is, for example, a plate-shaped member, and is formed in a size that blocks the communication state between the first chamber 311 and the second chamber 312 when the expansion / contraction portion 322 is extended. The telescopic portion 322 is formed of an extendable member, and raises and lowers the lid portion 321. The telescopic portion 322 extends by, for example, electrical control or mechanical control. When the telescopic portion 322 contracts, the lid portion 321 moves downward to communicate with the first chamber 311 and the second chamber 312, and the powder R1 inside the first chamber 311 passes through the second chamber 312. It can be supplied to the container 21 of the feeder 20. On the other hand, when the expansion / contraction portion 322 is expanded, the lid portion 321 moves upward to cut off the communication between the first chamber 311 and the second chamber 312, and the powder R1 inside the first chamber 311 becomes the second. Not supplied to room 312. When the opening / closing portion 320 is closed in this way, the first chamber 311 is in an airtight state, so that even if the powder cartridge 300 is taken out from the dry box into the atmosphere, the powder filled in the powder cartridge 300 It is possible to prevent R1 from reacting with water, oxygen, and nitrogen.
 ガス供給口330は、第2の室312に設けられている。ガス供給口330は、図1に示されるように、バルブ47が介設されたパイプ44を介してガス供給源41に接続される。ガス供給源41からのアルゴンガスは、パイプ44を通ってガス供給口330から第2の室312内に充填される。これにより、第2の室312内をアルゴンガス雰囲気に調整できる。なお、第2の室312内に充填されるガスは、アルゴンガスに限定されず、不活性ガスであればよく、例えばヘリウムガスであってもよい。また、ガス供給口330は、ガス供給源41とは別に設けられたガス供給源に接続されていてもよい。 The gas supply port 330 is provided in the second chamber 312. As shown in FIG. 1, the gas supply port 330 is connected to the gas supply source 41 via a pipe 44 having a valve 47 interposed therebetween. Argon gas from the gas supply source 41 is filled into the second chamber 312 from the gas supply port 330 through the pipe 44. As a result, the inside of the second chamber 312 can be adjusted to an argon gas atmosphere. The gas filled in the second chamber 312 is not limited to the argon gas, and may be an inert gas, for example, a helium gas. Further, the gas supply port 330 may be connected to a gas supply source provided separately from the gas supply source 41.
 なお、ガス供給口330に代えてガス排気口が設けられていてもよく、この場合、第2の室312内を真空雰囲気に調整できる。また、ガス供給口330とは別にガス排気口が設けられていてもよい。この場合、第2の室312内へのアルゴンガスの供給及び第2の室312内の排気の組合せ(又は切替え)により第2の室312内のパージに要する時間(パージ時間)を短縮できる。さらに、第2の室312内の雰囲気の調整は、粉末カートリッジ300のフィーダ20との接続口370を介して行われてもよい。この場合、フィーダ20から接続口370を介して第2の室312内へ不活性ガスを供給することにより第2の室312内を不活性ガス雰囲気に調整してもよく、接続口370を介して第2の室312内を排気してよい。このように、接続口370をガス供給口330又はガス排気口として機能させてもよい。 A gas exhaust port may be provided instead of the gas supply port 330. In this case, the inside of the second chamber 312 can be adjusted to a vacuum atmosphere. Further, a gas exhaust port may be provided separately from the gas supply port 330. In this case, the time required for purging in the second chamber 312 (purge time) can be shortened by combining (or switching) the supply of argon gas into the second chamber 312 and the exhaust gas in the second chamber 312. Further, the adjustment of the atmosphere in the second chamber 312 may be performed via the connection port 370 with the feeder 20 of the powder cartridge 300. In this case, the inside of the second chamber 312 may be adjusted to an inert gas atmosphere by supplying the inert gas from the feeder 20 into the second chamber 312 via the connection port 370, via the connection port 370. The inside of the second chamber 312 may be exhausted. In this way, the connection port 370 may function as a gas supply port 330 or a gas exhaust port.
 次に、第1構成例の粉末カートリッジ300を用いてプラズマ溶射装置1のフィーダ20に粉末を供給する粉末供給方法の一例について、図4A~図4Dを参照しながら説明する。以下に説明する粉末供給方法は、例えば制御部30によって実行されてもよく、制御部30とは別に設けられた制御部(図示せず)によって実行されてもよい。制御部とは別に制御部が設けられる場合、制御部は例えば筐体310に着脱可能であってよく、防滴仕様又は防水仕様であることが好ましい。図4A~図4Dは、第1構成例の粉末カートリッジ300の動作を説明するための図である。 Next, an example of a powder supply method for supplying powder to the feeder 20 of the plasma spraying device 1 using the powder cartridge 300 of the first configuration example will be described with reference to FIGS. 4A to 4D. The powder supply method described below may be executed by, for example, the control unit 30, or may be executed by a control unit (not shown) provided separately from the control unit 30. When the control unit is provided separately from the control unit, the control unit may be detachably attached to, for example, the housing 310, and is preferably drip-proof or waterproof. 4A to 4D are diagrams for explaining the operation of the powder cartridge 300 of the first configuration example.
 まず、環境制御されたドライブース内に設けられたドライボックス内で、気密状態で保管されている保管容器から粉末カートリッジ300内に粉末R1を充填する。本実施形態では、ドライボックス内で粉末カートリッジ300の開閉部320が閉じられた状態で、第1の室311に設けられた蓋(図示せず)を開いて粉末カートリッジ300の第1の室311内に粉末R1を充填する。これにより、粉末カートリッジ300内に充填される前の粉末R1が水分、酸素、及び窒素と反応することを防止できる。粉末R1の充填が完了した後に第1の室311に設けられた蓋を閉じ、粉末カートリッジ300をドライボックス内から取り出す。これにより、粉末カートリッジ300をドライボックス内から大気中に取り出しても、粉末カートリッジ300内に充填された粉末R1が水分、酸素、及び窒素と反応することを防止できる。 First, the powder R1 is filled into the powder cartridge 300 from a storage container stored in an airtight state in a dry box provided in an environment-controlled dry booth. In the present embodiment, with the opening / closing portion 320 of the powder cartridge 300 closed in the dry box, the lid (not shown) provided in the first chamber 311 is opened to open the first chamber 311 of the powder cartridge 300. The powder R1 is filled therein. This makes it possible to prevent the powder R1 before being filled in the powder cartridge 300 from reacting with water, oxygen, and nitrogen. After the filling of the powder R1 is completed, the lid provided in the first chamber 311 is closed, and the powder cartridge 300 is taken out from the dry box. As a result, even if the powder cartridge 300 is taken out from the dry box into the atmosphere, it is possible to prevent the powder R1 filled in the powder cartridge 300 from reacting with water, oxygen, and nitrogen.
 続いて、図4Aに示されるように、粉末カートリッジ300をフィーダ20の上部に取り付け、ガス供給口330から第2の室312内へアルゴンガスを充填し、第2の室312内をアルゴンガス雰囲気に調整する。なお、第2の室312内の雰囲気は不活性ガス雰囲気であればよく、アルゴンガス雰囲気に代えて、例えばヘリウムガス雰囲気、窒素ガス雰囲気であってもよい。 Subsequently, as shown in FIG. 4A, the powder cartridge 300 is attached to the upper part of the feeder 20, the second chamber 312 is filled with argon gas from the gas supply port 330, and the inside of the second chamber 312 is filled with an argon gas atmosphere. Adjust to. The atmosphere in the second chamber 312 may be an inert gas atmosphere, and may be, for example, a helium gas atmosphere or a nitrogen gas atmosphere instead of the argon gas atmosphere.
 続いて、図4Bに示されるように、ガス供給口330から第2の室312へのアルゴンガスの充填を停止させ、伸縮部322を収縮させて蓋部321を下降させる。これにより、第1の室311と第2の室312とが連通し、第1の室311内に収容された粉末R1が第2の室312内に供給され始める。このとき、蓋部321をガス供給口330の位置よりも下方まで下降させる。 Subsequently, as shown in FIG. 4B, the filling of the argon gas from the gas supply port 330 to the second chamber 312 is stopped, the expansion / contraction portion 322 is contracted, and the lid portion 321 is lowered. As a result, the first chamber 311 and the second chamber 312 communicate with each other, and the powder R1 contained in the first chamber 311 starts to be supplied into the second chamber 312. At this time, the lid portion 321 is lowered below the position of the gas supply port 330.
 続いて、図4Cに示されるように、伸縮部322を更に収縮されて蓋部321を更に下降させる。これにより、第1の室311内の粉末R1が第2の室312を介してフィーダ20の容器21内に供給される。このとき、例えば蓋部321の下降距離、蓋部321の下降時間を制御することにより、単位時間あたりに第1の室311から第2の室312に供給される粉末R1の量を制御する。 Subsequently, as shown in FIG. 4C, the telescopic portion 322 is further contracted to further lower the lid portion 321. As a result, the powder R1 in the first chamber 311 is supplied into the container 21 of the feeder 20 via the second chamber 312. At this time, for example, by controlling the lowering distance of the lid portion 321 and the lowering time of the lid portion 321, the amount of powder R1 supplied from the first chamber 311 to the second chamber 312 is controlled per unit time.
 所定質量の粉末R1をフィーダ20の容器21に供給した後、図4Dに示されるように、伸縮部322を伸張させて蓋部321を上昇させる。これにより、第1の室311と第2の室312との連通状態が遮断される。このとき、ガス供給口330から第2の室312内へアルゴンガスを充填しながら蓋部321を上昇させることが好ましい。これにより、蓋部321上の粉末R1を除去できるので、筐体310と蓋部321との間に粉末R1が挟まることを防止できる。 After supplying the powder R1 having a predetermined mass to the container 21 of the feeder 20, the stretchable portion 322 is stretched to raise the lid portion 321 as shown in FIG. 4D. As a result, the communication state between the first chamber 311 and the second chamber 312 is cut off. At this time, it is preferable to raise the lid portion 321 while filling the second chamber 312 with argon gas from the gas supply port 330. As a result, the powder R1 on the lid portion 321 can be removed, so that the powder R1 can be prevented from being caught between the housing 310 and the lid portion 321.
 図4A~図4Dの動作を繰り返し行い、第1の室311内に収容された粉末R1がなくなった後、ガス供給口330から第2の室312へのアルゴンガスの充填を停止させ、粉末カートリッジ300をフィーダ20から取り外す。このとき、第1の室311と第2の室312とは開閉部320によって連通状態が遮断されているので、第1の室311内が大気環境下に曝露させることを防止し、第1の室311内の粉末R1が水分、酸素、及び窒素と反応することを防止できる。 The operations of FIGS. 4A to 4D are repeated, and after the powder R1 contained in the first chamber 311 is exhausted, the filling of argon gas from the gas supply port 330 to the second chamber 312 is stopped, and the powder cartridge is used. Remove 300 from the feeder 20. At this time, since the communication state between the first chamber 311 and the second chamber 312 is blocked by the opening / closing portion 320, it is possible to prevent the inside of the first chamber 311 from being exposed to the atmospheric environment, and the first chamber 311 is prevented from being exposed to the atmospheric environment. It is possible to prevent the powder R1 in the chamber 311 from reacting with water, oxygen, and nitrogen.
 第1構成例の粉末カートリッジ300によれば、開閉部320によって仕切られた第1の室311と第2の室312とを有し、第2の室312にガス供給口330が設けられている。これにより、粉末カートリッジ300内から気密状態を維持してフィーダ20に粉末R1を供給できる。そのため、粉末カートリッジ300内の粉末R1を水分、窒素、及び酸素と反応させずにフィーダ20の容器21に供給できる。これにより、フィーダ20に供給された粉末R1を用いてプラズマ溶射を行う場合、粉末R1を用いた溶射膜の膜質の安定性が向上する。 According to the powder cartridge 300 of the first configuration example, the powder cartridge 300 has a first chamber 311 and a second chamber 312 partitioned by an opening / closing portion 320, and a gas supply port 330 is provided in the second chamber 312. .. As a result, the powder R1 can be supplied to the feeder 20 from the inside of the powder cartridge 300 while maintaining the airtight state. Therefore, the powder R1 in the powder cartridge 300 can be supplied to the container 21 of the feeder 20 without reacting with water, nitrogen, and oxygen. As a result, when plasma spraying is performed using the powder R1 supplied to the feeder 20, the stability of the film quality of the sprayed film using the powder R1 is improved.
 また、第1構成例の粉末カートリッジ300によれば、開閉部320が設けられているので、単位時間あたりに第1の室311から第2の室312に供給される粉末R1の量を制御できる。これにより、フィーダ20に粉末を定量供給できる。 Further, according to the powder cartridge 300 of the first configuration example, since the opening / closing portion 320 is provided, the amount of powder R1 supplied from the first chamber 311 to the second chamber 312 can be controlled per unit time. .. As a result, the powder can be quantitatively supplied to the feeder 20.
 ところで、粉末R1の中心粒径が1μm~20μmの微粉末である場合、一般に用いられる中心粒径が50μm~100μmの粉末と比較して単位体積当たりの表面積が大きいため、大気中に曝露されると水分、酸素、及び窒素との反応が生じやすい。そのため、フィーダ20への粉末の供給を大気中で行うと、粉末R1が水分、酸素、及び窒素と反応して凝集する場合がある。粉末R1が凝集すると、溶融しにくいため、溶射膜の膜質が悪化する。そこで、本実施形態のプラズマ溶射装置1では、フィーダ20内、ノズル11内、及びチャンバC内を環境制御すると共に、粉末カートリッジ300によりフィーダ20へ粉末R1を供給する際も、粉末R1が大気中に曝露されない環境を実現している。これにより、フィーダ20へ粉末R1を供給する際、粉末R1が凝集することによる溶射膜の膜質の悪化を防止できる。 By the way, when the central particle size of the powder R1 is 1 μm to 20 μm, it is exposed to the atmosphere because the surface area per unit volume is larger than that of the commonly used powder having a central particle size of 50 μm to 100 μm. Is likely to react with water, oxygen, and nitrogen. Therefore, when the powder is supplied to the feeder 20 in the air, the powder R1 may react with water, oxygen, and nitrogen and aggregate. When the powder R1 aggregates, it is difficult to melt, so that the quality of the sprayed film deteriorates. Therefore, in the plasma spraying device 1 of the present embodiment, the environment is controlled in the feeder 20, the nozzle 11, and the chamber C, and when the powder R1 is supplied to the feeder 20 by the powder cartridge 300, the powder R1 is in the atmosphere. We have realized an environment that is not exposed to plasma. As a result, when the powder R1 is supplied to the feeder 20, deterioration of the film quality of the sprayed film due to the aggregation of the powder R1 can be prevented.
 (第2構成例)
 図5は、第2構成例の粉末カートリッジ500を示す図であり、フィーダ20に粉末カートリッジ500を取り付けた状態を示す。図5に示されるように、第2構成例の粉末カートリッジ500は、バルブ方式の開閉弁である開閉部320に代えて、シャッタ方式の開閉弁である開閉部520を有する点で、第1構成例の粉末カートリッジ300と異なる。なお、その他の構成については、粉末カートリッジ300と同様の構成であってよい。以下、異なる点を中心に説明する。
(Second configuration example)
FIG. 5 is a diagram showing the powder cartridge 500 of the second configuration example, and shows a state in which the powder cartridge 500 is attached to the feeder 20. As shown in FIG. 5, the powder cartridge 500 of the second configuration example has the first configuration in that it has an opening / closing portion 520 which is a shutter type opening / closing valve instead of the opening / closing portion 320 which is a valve type opening / closing valve. It is different from the powder cartridge 300 of the example. The other configurations may be the same as those of the powder cartridge 300. Hereinafter, the differences will be mainly described.
 粉末カートリッジ500は、フィーダ20の上部に着脱可能である。粉末カートリッジ500は、フィーダ20の上部に取り付けられた状態でフィーダ20に粉末R1を供給する。粉末カートリッジ500は、筐体510と、開閉部520と、ガス供給口530とを備える。筐体510及びガス供給口530は、それぞれ前述の筐体310及びガス供給口330と同様の構成であってよい。 The powder cartridge 500 is removable from the top of the feeder 20. The powder cartridge 500 supplies the powder R1 to the feeder 20 in a state of being attached to the upper portion of the feeder 20. The powder cartridge 500 includes a housing 510, an opening / closing portion 520, and a gas supply port 530. The housing 510 and the gas supply port 530 may have the same configurations as the housing 310 and the gas supply port 330 described above, respectively.
 開閉部520は、第1の室511と第2の室512との連通状態を制御する。開閉部520は、蓋部521と、スライド部522と、を有するシャッタ方式の開閉弁である。蓋部521は、例えば板状部材であり、筐体510内に挿入されたときに第1の室511と第2の室512との連通状態を遮断する大きさに形成されている。スライド部522は、蓋部521に接続されており、水平方向にスライドすることにより、蓋部521を筐体510の内部の位置と外部の位置との間で移動させる。スライド部522の動作は、例えば電気制御や機械制御によって行われてもよく、例えばユーザによって行われてもよい。スライド部522をスライドさせて蓋部521が筐体510の外部の位置に移動すると、第1の室511と第2の室512とが連通し、第1の室511の内部の粉末R1が第2の室512を介してフィーダ20の容器21に供給可能となる。一方、スライド部522をスライドさせて蓋部521が筐体510の内部の位置に移動すると、第1の室511と第2の室512との連通が遮断され、第1の室511の内部の粉末R1は第2の室512に供給されない。このように開閉部520を閉じた状態であれば、第1の室511は気密状態であるので、粉末カートリッジ90をドライボックス内から大気中に取り出しても、粉末カートリッジ500内に充填された粉末R1が水分、酸素、及び窒素と反応することを防止できる。 The opening / closing unit 520 controls the communication state between the first chamber 511 and the second chamber 512. The opening / closing portion 520 is a shutter-type opening / closing valve having a lid portion 521 and a slide portion 522. The lid portion 521 is, for example, a plate-shaped member, and is formed in a size that blocks communication between the first chamber 511 and the second chamber 512 when inserted into the housing 510. The slide portion 522 is connected to the lid portion 521 and slides in the horizontal direction to move the lid portion 521 between the internal position and the external position of the housing 510. The operation of the slide unit 522 may be performed by, for example, electrical control or mechanical control, or may be performed by, for example, a user. When the slide portion 522 is slid and the lid portion 521 moves to a position outside the housing 510, the first chamber 511 and the second chamber 512 communicate with each other, and the powder R1 inside the first chamber 511 becomes the first. It can be supplied to the container 21 of the feeder 20 via the chamber 512 of 2. On the other hand, when the slide portion 522 is slid and the lid portion 521 moves to the internal position of the housing 510, the communication between the first chamber 511 and the second chamber 512 is cut off, and the inside of the first chamber 511 is cut off. The powder R1 is not supplied to the second chamber 512. When the opening / closing portion 520 is closed in this way, the first chamber 511 is in an airtight state. Therefore, even if the powder cartridge 90 is taken out from the dry box into the atmosphere, the powder filled in the powder cartridge 500 It is possible to prevent R1 from reacting with water, oxygen, and nitrogen.
 第2構成例の粉末カートリッジ500によれば、開閉部520によって仕切られた第1の室511と第2の室512とを有し、第2の室512にガス供給口530が設けられている。これにより、粉末カートリッジ500内から気密状態を維持してフィーダ20に粉末R1を供給できる。そのため、粉末カートリッジ500内の粉末R1を水分、窒素、及び酸素と反応させずにフィーダ20の容器21に供給できる。これにより、フィーダ20に供給された粉末R1を用いてプラズマ溶射を行う場合、粉末R1を用いた溶射膜の膜質の安定性が向上する。 According to the powder cartridge 500 of the second configuration example, the powder cartridge 500 has a first chamber 511 and a second chamber 512 separated by an opening / closing portion 520, and a gas supply port 530 is provided in the second chamber 512. .. As a result, the powder R1 can be supplied to the feeder 20 from the inside of the powder cartridge 500 while maintaining the airtight state. Therefore, the powder R1 in the powder cartridge 500 can be supplied to the container 21 of the feeder 20 without reacting with water, nitrogen, and oxygen. As a result, when plasma spraying is performed using the powder R1 supplied to the feeder 20, the stability of the film quality of the sprayed film using the powder R1 is improved.
 また、第2構成例の粉末カートリッジ500によれば、開閉部520が設けられているので、単位時間あたりに第1の室511から第2の室512に供給される粉末R1の量を制御できる。これにより、フィーダ20に粉末を定量供給できる。 Further, according to the powder cartridge 500 of the second configuration example, since the opening / closing portion 520 is provided, the amount of powder R1 supplied from the first chamber 511 to the second chamber 512 can be controlled per unit time. .. As a result, the powder can be quantitatively supplied to the feeder 20.
 特に、第2構成例の粉末カートリッジ500によれば、開閉部520がシャッタ方式の開閉弁であるので、開閉部520のスライド部522の開閉により開口率および開時間を制御することで、粉末R1の供給量を調節できる。これにより、精度よく所望の量の粉末R1をフィーダ20に供給できる。また簡易な構造で実現できるので低コスト化が見込める。 In particular, according to the powder cartridge 500 of the second configuration example, since the opening / closing portion 520 is a shutter type on-off valve, the powder R1 is controlled by opening / closing the slide portion 522 of the opening / closing portion 520 to control the opening ratio and opening time. The amount of supply can be adjusted. As a result, a desired amount of powder R1 can be accurately supplied to the feeder 20. In addition, since it can be realized with a simple structure, cost reduction can be expected.
 (第3構成例)
 図6は、第3構成例の粉末カートリッジ600を示す図であり、フィーダ20に粉末カートリッジ600を取り付けた状態を示す。図6に示されるように、第3構成例の粉末カートリッジ600は、第2の開閉部640により仕切られた中間部613と供給部614とを含む第2の室612を有する点で、第2構成例の粉末カートリッジ500と異なる。なお、その他の構成については、粉末カートリッジ500と同様の構成であってよい。以下、異なる点を中心に説明する。
(Third configuration example)
FIG. 6 is a diagram showing the powder cartridge 600 of the third configuration example, and shows a state in which the powder cartridge 600 is attached to the feeder 20. As shown in FIG. 6, the powder cartridge 600 of the third configuration example has a second chamber 612 including an intermediate portion 613 and a supply portion 614 partitioned by the second opening / closing portion 640. It is different from the powder cartridge 500 of the configuration example. The other configurations may be the same as those of the powder cartridge 500. Hereinafter, the differences will be mainly described.
 粉末カートリッジ600は、フィーダ20の上部に着脱可能である。粉末カートリッジ600は、フィーダ20の上部に取り付けられた状態でフィーダ20に粉末R1を供給する。粉末カートリッジ600は、筐体610と、開閉部620と、ガス供給口630と、第2の開閉部640とを備える。開閉部620は、前述の開閉部520と同様の構成であってよく、蓋部621と、スライド部622と、を有するシャッタ方式の開閉弁である。 The powder cartridge 600 is removable from the top of the feeder 20. The powder cartridge 600 supplies the powder R1 to the feeder 20 in a state of being attached to the upper portion of the feeder 20. The powder cartridge 600 includes a housing 610, an opening / closing portion 620, a gas supply port 630, and a second opening / closing portion 640. The opening / closing portion 620 may have the same configuration as the opening / closing portion 520 described above, and is a shutter-type on-off valve having a lid portion 621 and a slide portion 622.
 筐体610は、フィーダ20に着脱可能に構成されている。筐体610は、第1の室611と、第2の室612とを有する。第1の室611と第2の室612とは連通可能であり、開閉部620により連通状態が制御される。 The housing 610 is configured to be removable from the feeder 20. The housing 610 has a first chamber 611 and a second chamber 612. The first chamber 611 and the second chamber 612 can communicate with each other, and the communication state is controlled by the opening / closing unit 620.
 第1の室611は、気密状態で粉末R1を収容可能に構成されている。これにより、粉末カートリッジ600は、粉末R1を水分、窒素、及び酸素と反応させずに粉末R1を収容できる。 The first chamber 611 is configured to be able to accommodate the powder R1 in an airtight state. As a result, the powder cartridge 600 can accommodate the powder R1 without reacting the powder R1 with water, nitrogen, and oxygen.
 第2の室612は、フィーダ20に接続可能に構成されている。第2の室612は、中間部613と、供給部614とを含む。中間部613は、開閉部620を介して第1の室611と接続されている。供給部614は、第2の開閉部640を介して中間部613と接続され、且つフィーダ20に着脱可能に接続される。すなわち、中間部613は、第1の室611と供給部614との間に設けられている。 The second room 612 is configured to be connectable to the feeder 20. The second chamber 612 includes an intermediate section 613 and a supply section 614. The intermediate portion 613 is connected to the first chamber 611 via the opening / closing portion 620. The supply unit 614 is connected to the intermediate unit 613 via the second opening / closing unit 640, and is detachably connected to the feeder 20. That is, the intermediate portion 613 is provided between the first chamber 611 and the supply portion 614.
 ガス供給口630は、供給部614に設けられている。ガス供給口630は、図1に示されるように、バルブ47が介設されたパイプ44を介してガス供給源41に接続される。ガス供給源41からのアルゴンガスは、パイプ44を通ってガス供給口630から供給部614内に充填される。これにより、供給部614内をアルゴンガス雰囲気に調整できる。なお、供給部614内に充填されるガスは、アルゴンガスに限定されず、不活性ガスであればよく、例えばヘリウムガスであってもよい。また、ガス供給口630は、ガス供給源41とは別に設けられたガス供給源に接続されていてもよい。 The gas supply port 630 is provided in the supply unit 614. As shown in FIG. 1, the gas supply port 630 is connected to the gas supply source 41 via a pipe 44 in which a valve 47 is interposed. Argon gas from the gas supply source 41 is filled into the supply unit 614 from the gas supply port 630 through the pipe 44. As a result, the inside of the supply unit 614 can be adjusted to an argon gas atmosphere. The gas filled in the supply unit 614 is not limited to the argon gas, and may be an inert gas, for example, a helium gas. Further, the gas supply port 630 may be connected to a gas supply source provided separately from the gas supply source 41.
 なお、ガス供給口630に代えてガス排気口が設けられていてもよく、この場合、供給部614内を真空雰囲気に調整できる。また、ガス供給口630とは別にガス排気口が設けられていてもよい。この場合、供給部614内へのアルゴンガスの供給及び供給部614内の排気の組合せ(又は切替え)により供給部614内のパージに要する時間(パージ時間)を短縮できる。さらに、供給部614内の雰囲気の調整は、粉末カートリッジ600のフィーダ20との接続口670を介して行われてもよい。この場合、フィーダ20から接続口670を介して供給部614内へ不活性ガスを供給することにより供給部614内を不活性ガス雰囲気に調整してもよく、接続口670を介して供給部614内を排気してよい。このように、接続口670をガス供給口630又はガス排気口として機能させてもよい。 A gas exhaust port may be provided instead of the gas supply port 630. In this case, the inside of the supply unit 614 can be adjusted to a vacuum atmosphere. Further, a gas exhaust port may be provided separately from the gas supply port 630. In this case, the time required for purging in the supply unit 614 (purge time) can be shortened by combining (or switching) the supply of argon gas into the supply unit 614 and the exhaust gas in the supply unit 614. Further, the adjustment of the atmosphere in the supply unit 614 may be performed via the connection port 670 with the feeder 20 of the powder cartridge 600. In this case, the inside of the supply unit 614 may be adjusted to an inert gas atmosphere by supplying the inert gas from the feeder 20 to the supply unit 614 via the connection port 670, and the supply unit 614 may be adjusted to the inert gas atmosphere through the connection port 670. The inside may be exhausted. In this way, the connection port 670 may function as a gas supply port 630 or a gas exhaust port.
 第2の開閉部640は、中間部613と供給部614との連通状態を制御し、且つ中間部613に収容された粉末R1の質量を計測する。第2の開閉部640は、例えば電子天秤としての機能を有する開閉弁である。第2の開閉部640の動作は、例えば電気制御や機械制御によって行われてもよく、例えばユーザによって行われてもよい。第2の開閉部640を開くと、中間部613と供給部614とが連通し、中間部613の内部の粉末R1が供給部614を介してフィーダ20の容器21に供給可能となる。一方、第2の開閉部640を閉じると、中間部613と供給部614との連通が遮断され、中間部613の内部の粉末R1は供給部614に供給されない。また、第2の開閉部640が閉じられた状態では、第2の開閉部640は、電子天秤として機能し、中間部613に収容された粉末R1の質量を計測する。このように第2の開閉部640を閉じた状態であれば、中間部613は気密状態である。そのため、粉末カートリッジ600をドライボックス内から大気中に取り出しても、粉末カートリッジ600内に充填された粉末R1が水分、酸素、及び窒素と反応することを防止できる。 The second opening / closing section 640 controls the communication state between the intermediate section 613 and the supply section 614, and measures the mass of the powder R1 contained in the intermediate section 613. The second opening / closing unit 640 is an on / off valve having a function as, for example, an electronic balance. The operation of the second opening / closing unit 640 may be performed by, for example, electrical control or mechanical control, or may be performed by, for example, a user. When the second opening / closing section 640 is opened, the intermediate section 613 and the supply section 614 communicate with each other, and the powder R1 inside the intermediate section 613 can be supplied to the container 21 of the feeder 20 via the supply section 614. On the other hand, when the second opening / closing section 640 is closed, the communication between the intermediate section 613 and the supply section 614 is cut off, and the powder R1 inside the intermediate section 613 is not supplied to the supply section 614. Further, in the state where the second opening / closing portion 640 is closed, the second opening / closing portion 640 functions as an electronic balance and measures the mass of the powder R1 contained in the intermediate portion 613. When the second opening / closing portion 640 is closed in this way, the intermediate portion 613 is in an airtight state. Therefore, even if the powder cartridge 600 is taken out from the dry box into the atmosphere, it is possible to prevent the powder R1 filled in the powder cartridge 600 from reacting with water, oxygen, and nitrogen.
 次に、第3構成例の粉末カートリッジ600を用いてプラズマ溶射装置1のフィーダ20に粉末を供給する粉末供給方法の一例について、図7A~図7Fを参照しながら説明する。以下に説明する粉末供給方法は、例えば制御部30によって実行されてもよく、制御部30とは別に設けられた制御部(図示せず)によって実行されてもよい。制御部とは別に制御部が設けられる場合、制御部は例えば筐体610に着脱可能であってよい。図7A~図7Fは、第3構成例の粉末カートリッジ600の動作を説明するための図である。 Next, an example of a powder supply method for supplying powder to the feeder 20 of the plasma spraying device 1 using the powder cartridge 600 of the third configuration example will be described with reference to FIGS. 7A to 7F. The powder supply method described below may be executed by, for example, the control unit 30, or may be executed by a control unit (not shown) provided separately from the control unit 30. When a control unit is provided separately from the control unit, the control unit may be detachable from, for example, the housing 610. 7A to 7F are diagrams for explaining the operation of the powder cartridge 600 of the third configuration example.
 まず、環境制御されたドライブース内に設けられたドライボックス内で、気密状態で保管されている保管容器から粉末カートリッジ600内に粉末R1を充填する。本実施形態では、ドライボックス内で粉末カートリッジ600の開閉部620が閉じられた状態で、第1の室611に設けられた蓋(図示せず)を開いて粉末カートリッジ600の第1の室611内に粉末R1を充填する。これにより、粉末カートリッジ600内に充填される前の粉末R1が水分、酸素、及び窒素と反応することを防止できる。粉末R1の充填が完了した後に第1の室611に設けられた蓋を閉じ、粉末カートリッジ600をドライボックス内から取り出す。これにより、粉末カートリッジ600をドライボックス内から大気中に取り出しても、粉末カートリッジ600内に充填された粉末R1が水分、酸素、及び窒素と反応することを防止できる。 First, the powder R1 is filled into the powder cartridge 600 from a storage container stored in an airtight state in a dry box provided in an environment-controlled dry booth. In the present embodiment, with the opening / closing portion 620 of the powder cartridge 600 closed in the dry box, the lid (not shown) provided in the first chamber 611 is opened to open the first chamber 611 of the powder cartridge 600. The powder R1 is filled therein. This makes it possible to prevent the powder R1 before being filled in the powder cartridge 600 from reacting with water, oxygen, and nitrogen. After the filling of the powder R1 is completed, the lid provided in the first chamber 611 is closed, and the powder cartridge 600 is taken out from the dry box. Thereby, even if the powder cartridge 600 is taken out from the dry box into the atmosphere, it is possible to prevent the powder R1 filled in the powder cartridge 600 from reacting with water, oxygen, and nitrogen.
 続いて、図7Aに示されるように、粉末カートリッジ600をフィーダ20の上部に取り付ける。 Subsequently, as shown in FIG. 7A, the powder cartridge 600 is attached to the upper part of the feeder 20.
 続いて、図7Bに示されるように、ガス供給口630から供給部614内へアルゴンガスを充填し、供給部614内をアルゴンガス雰囲気に調整する。なお、供給部614内の雰囲気は不活性ガス雰囲気であればよく、アルゴンガス雰囲気に代えて、例えばヘリウムガス雰囲気、窒素ガス雰囲気であってもよい。 Subsequently, as shown in FIG. 7B, argon gas is filled into the supply unit 614 from the gas supply port 630, and the inside of the supply unit 614 is adjusted to an argon gas atmosphere. The atmosphere in the supply unit 614 may be an inert gas atmosphere, and may be, for example, a helium gas atmosphere or a nitrogen gas atmosphere instead of the argon gas atmosphere.
 続いて、図7Cに示されるように、ガス供給口630から供給部614へのアルゴンガスの充填を停止させ、スライド部622を水平方向にスライドさせて蓋部621を筐体610の外部の位置に移動させる。これにより、第1の室611と第2の室612の中間部613とが連通し、第1の室611内に収容された粉末R1が中間部613内に供給され始める。このとき、第2の開閉部640によって、中間部613に供給された粉末R1の質量が計測される。 Subsequently, as shown in FIG. 7C, the filling of argon gas from the gas supply port 630 to the supply unit 614 is stopped, the slide unit 622 is slid horizontally, and the lid unit 621 is positioned outside the housing 610. Move to. As a result, the first chamber 611 and the intermediate portion 613 of the second chamber 612 communicate with each other, and the powder R1 contained in the first chamber 611 begins to be supplied into the intermediate portion 613. At this time, the mass of the powder R1 supplied to the intermediate portion 613 is measured by the second opening / closing portion 640.
 中間部613に供給された粉末R1の質量が予め定めた質量に到達した後、図7Dに示されるように、開閉部620を閉じる。すなわち、スライド部622を水平方向にスライドさせて蓋部621を筐体610の内部の位置に移動させる。これにより、第1の室611内から中間部613への粉末R1の供給が停止する。 After the mass of the powder R1 supplied to the intermediate portion 613 reaches a predetermined mass, the opening / closing portion 620 is closed as shown in FIG. 7D. That is, the slide portion 622 is slid in the horizontal direction to move the lid portion 621 to the internal position of the housing 610. As a result, the supply of the powder R1 from the inside of the first chamber 611 to the intermediate portion 613 is stopped.
 続いて、図7Eに示されるように、第2の開閉部640を開く。これにより、図7E及び図7Fに示されるように、第2の開閉部640によって計測された中間部613内の粉末R1が供給部614を介してフィーダ20の容器21内に供給される。粉末R1がフィーダ20の容器21に供給された後、第2の開閉部640を閉じる。なお、第2の開閉部640は、後述する蓋部A1のように、例えば電子天秤としての機能を有し、第2の開閉部640が所定質量の粉末R1を計測したときに自動的に回転して開くように構成されていてもよい。 Subsequently, as shown in FIG. 7E, the second opening / closing part 640 is opened. As a result, as shown in FIGS. 7E and 7F, the powder R1 in the intermediate portion 613 measured by the second opening / closing portion 640 is supplied into the container 21 of the feeder 20 via the supply portion 614. After the powder R1 is supplied to the container 21 of the feeder 20, the second opening / closing portion 640 is closed. The second opening / closing part 640 has a function as, for example, an electronic balance like the lid part A1 described later, and automatically rotates when the second opening / closing part 640 measures the powder R1 having a predetermined mass. It may be configured to open.
 図7A~図7Fの動作を繰り返し行い、第1の室611内に収容された粉末R1がなくなった後、ガス供給口630から第2の室612へのアルゴンガスの充填を停止させ、粉末カートリッジ600をフィーダ20から取り外す。このとき、第1の室611と第2の室612とは開閉部620によって連通状態が遮断されているので、第1の室611内が大気環境下に曝露させることを防止し、第1の室611内の粉末R1が水分、酸素、及び窒素と反応することを防止できる。 The operations of FIGS. 7A to 7F are repeated, and after the powder R1 contained in the first chamber 611 is exhausted, the filling of argon gas from the gas supply port 630 to the second chamber 612 is stopped, and the powder cartridge is used. Remove 600 from the feeder 20. At this time, since the communication state between the first chamber 611 and the second chamber 612 is blocked by the opening / closing portion 620, the inside of the first chamber 611 is prevented from being exposed to the atmospheric environment, and the first chamber 611 is prevented from being exposed to the air environment. It is possible to prevent the powder R1 in the chamber 611 from reacting with water, oxygen, and nitrogen.
 第3構成例の粉末カートリッジ600によれば、開閉部620によって仕切られた第1の室611と第2の室612とを有し、第2の室612にガス供給口630が設けられている。これにより、粉末カートリッジ600内から気密状態を維持してフィーダ20に粉末R1を供給できる。そのため、粉末カートリッジ600内の粉末R1を水分、窒素、及び酸素と反応させずにフィーダ20の容器21に供給できる。これにより、フィーダ20に供給された粉末R1を用いてプラズマ溶射を行う場合、粉末R1を用いた溶射膜の膜質の安定性が向上する。 According to the powder cartridge 600 of the third configuration example, the powder cartridge 600 has a first chamber 611 and a second chamber 612 partitioned by an opening / closing portion 620, and a gas supply port 630 is provided in the second chamber 612. .. As a result, the powder R1 can be supplied to the feeder 20 from the inside of the powder cartridge 600 while maintaining the airtight state. Therefore, the powder R1 in the powder cartridge 600 can be supplied to the container 21 of the feeder 20 without reacting with water, nitrogen, and oxygen. As a result, when plasma spraying is performed using the powder R1 supplied to the feeder 20, the stability of the film quality of the sprayed film using the powder R1 is improved.
 また、第1構成例の粉末カートリッジ600によれば、開閉部620が設けられているので、単位時間あたりに第1の室611から第2の室612に供給される粉末R1の量を制御できる。これにより、フィーダ20に粉末を定量供給できる。 Further, according to the powder cartridge 600 of the first configuration example, since the opening / closing portion 620 is provided, the amount of powder R1 supplied from the first chamber 611 to the second chamber 612 can be controlled per unit time. .. As a result, the powder can be quantitatively supplied to the feeder 20.
 特に、第3構成例の粉末カートリッジ600によれば、第2の室612が第2の開閉部640によって仕切られた中間部613と供給部614とを含み、第2の開閉部640が中間部613に収容された粉末R1の質量を計測可能に構成されている。これにより、第2の開閉部640によって精度よく計測された粉末R1を、供給部614を介してフィーダ20に供給できる。 In particular, according to the powder cartridge 600 of the third configuration example, the second chamber 612 includes an intermediate portion 613 and a supply portion 614 partitioned by the second opening / closing portion 640, and the second opening / closing portion 640 is an intermediate portion. It is configured so that the mass of the powder R1 contained in 613 can be measured. As a result, the powder R1 accurately measured by the second opening / closing unit 640 can be supplied to the feeder 20 via the supply unit 614.
 ところで、粉末R1の中心粒径が1μm~20μmの微粉末である場合、一般に用いられる中心粒径が50μm~100μmの粉末と比較して単位体積当たりの表面積が大きいため、大気中に曝露されると水分、酸素、及び窒素との反応が生じやすい。そのため、フィーダ20への粉末の供給を大気中で行うと、粉末R1が水分、酸素、及び窒素と反応して凝集する場合がある。粉末R1が凝集すると、溶融しにくいため、溶射膜の膜質が悪化する。そこで、本実施形態のプラズマ溶射装置1では、フィーダ20内、ノズル11内、及びチャンバC内を環境制御すると共に、粉末カートリッジ600によりフィーダ20へ粉末R1を供給する際も、粉末R1が大気中に曝露されない環境を実現している。これにより、フィーダ20へ粉末R1を供給する際、粉末R1が凝集することによる溶射膜の膜質の悪化を防止できる。 By the way, when the central particle size of the powder R1 is 1 μm to 20 μm, it is exposed to the atmosphere because the surface area per unit volume is larger than that of the commonly used powder having a central particle size of 50 μm to 100 μm. Is likely to react with water, oxygen, and nitrogen. Therefore, when the powder is supplied to the feeder 20 in the air, the powder R1 may react with water, oxygen, and nitrogen and aggregate. When the powder R1 aggregates, it is difficult to melt, so that the quality of the sprayed film deteriorates. Therefore, in the plasma spraying device 1 of the present embodiment, the environment is controlled in the feeder 20, the nozzle 11, and the chamber C, and when the powder R1 is supplied to the feeder 20 by the powder cartridge 600, the powder R1 is in the atmosphere. We have realized an environment that is not exposed to plasma. As a result, when the powder R1 is supplied to the feeder 20, deterioration of the film quality of the sprayed film due to the aggregation of the powder R1 can be prevented.
 (第4構成例)
 図8は、第4構成例の粉末カートリッジ800を示す図であり、フィーダ20に粉末カートリッジ800を取り付けた状態を示す。図8に示されるように、第4構成例の粉末カートリッジ800は、第1の室811に設けられ、第1の室811内に収容された粉末R1の量を計測可能な光学センサ850を有する点で、第3構成例の粉末カートリッジ600と異なる。なお、その他の構成については、粉末カートリッジ600と同様の構成であってよい。以下、異なる点を中心に説明する。
(Fourth configuration example)
FIG. 8 is a diagram showing the powder cartridge 800 of the fourth configuration example, and shows a state in which the powder cartridge 800 is attached to the feeder 20. As shown in FIG. 8, the powder cartridge 800 of the fourth configuration example is provided in the first chamber 811 and has an optical sensor 850 capable of measuring the amount of powder R1 housed in the first chamber 811. In that respect, it differs from the powder cartridge 600 of the third configuration example. The other configurations may be the same as those of the powder cartridge 600. Hereinafter, the differences will be mainly described.
 粉末カートリッジ800は、筐体810と、開閉部820と、ガス供給口830と、第2の開閉部840と、光学センサ850とを備える。筐体810、開閉部820、ガス供給口830及び第2の開閉部840は、前述の筐体610、開閉部620、ガス供給口630及び第2の開閉部840と同様の構成であってよい。すなわち、筐体810は第1の室811と、第2の室812とを有し、第2の室812は中間部813と、供給部814とを含む。開閉部820は、蓋部821と、スライド部822とを有する。なお、第2の開閉部840は、電子天秤としての機能を有していない開閉弁であってもよい。 The powder cartridge 800 includes a housing 810, an opening / closing section 820, a gas supply port 830, a second opening / closing section 840, and an optical sensor 850. The housing 810, the opening / closing part 820, the gas supply port 830 and the second opening / closing part 840 may have the same configuration as the above-mentioned housing 610, the opening / closing part 620, the gas supply port 630 and the second opening / closing part 840. .. That is, the housing 810 has a first chamber 811 and a second chamber 812, and the second chamber 812 includes an intermediate portion 813 and a supply portion 814. The opening / closing portion 820 has a lid portion 821 and a slide portion 822. The second opening / closing unit 840 may be an on / off valve that does not have a function as an electronic balance.
 光学センサ850は、計測部の一例であり、第1の室811に設けられ、第1の室811内に収容された粉末R1の量を計測する。本実施形態では、光学センサ850は、第1の室811の天井部に設けられたレーザ変位計であり、下方に向かってレーザ光LBを照射し、粉末R1によって反射された反射光を検出することにより粉末R1の高さを計測する。これにより、開閉部820を開閉する前後における第1の室811内に収容された粉末R1の高さの差を検出することで、開閉部820を開いたときに第1の室811から第2の室812に供給された粉末R1の量を計測できる。ただし、光学センサ850は、例えばLED光を用いてLED変位計、ランプ光を用いて変位を検出可能な変位計であってもよい。 The optical sensor 850 is an example of a measuring unit, which is provided in the first chamber 811 and measures the amount of powder R1 contained in the first chamber 811. In the present embodiment, the optical sensor 850 is a laser displacement meter provided on the ceiling of the first chamber 811 and irradiates the laser beam LB downward to detect the reflected light reflected by the powder R1. Thereby, the height of the powder R1 is measured. As a result, by detecting the difference in height of the powder R1 contained in the first chamber 811 before and after opening and closing the opening / closing portion 820, the first chamber 811 to the second chamber 811 to the second when the opening / closing portion 820 is opened. The amount of powder R1 supplied to the chamber 812 can be measured. However, the optical sensor 850 may be, for example, an LED displacement meter using LED light or a displacement meter capable of detecting displacement using lamp light.
 第4構成例の粉末カートリッジ800によれば、開閉部820によって仕切られた第1の室811と第2の室812とを有し、第2の室812にガス供給口830が設けられている。これにより、粉末カートリッジ800内から気密状態を維持してフィーダ20に粉末R1を供給できる。そのため、粉末カートリッジ800内の粉末R1を水分、窒素、及び酸素と反応させずにフィーダ20の容器21に供給できる。これにより、フィーダ20に供給された粉末R1を用いてプラズマ溶射を行う場合、粉末R1を用いた溶射膜の膜質の安定性が向上する。 According to the powder cartridge 800 of the fourth configuration example, the powder cartridge 800 has a first chamber 811 and a second chamber 812 partitioned by an opening / closing portion 820, and a gas supply port 830 is provided in the second chamber 812. .. As a result, the powder R1 can be supplied to the feeder 20 from the inside of the powder cartridge 800 while maintaining the airtight state. Therefore, the powder R1 in the powder cartridge 800 can be supplied to the container 21 of the feeder 20 without reacting with water, nitrogen, and oxygen. As a result, when plasma spraying is performed using the powder R1 supplied to the feeder 20, the stability of the film quality of the sprayed film using the powder R1 is improved.
 また、第4構成例の粉末カートリッジ800によれば、開閉部820が設けられているので、単位時間あたりに第1の室811から第2の室812に供給される粉末R1の量を制御できる。これにより、フィーダ20に粉末を定量供給できる。 Further, according to the powder cartridge 800 of the fourth configuration example, since the opening / closing portion 820 is provided, the amount of powder R1 supplied from the first chamber 811 to the second chamber 812 can be controlled per unit time. .. As a result, the powder can be quantitatively supplied to the feeder 20.
 特に、第4構成例の粉末カートリッジ800によれば、光学センサ850により第1の室811から第2の室812の中間部813に供給された粉末R1の量を計測できる。これにより、精度よく計測された粉末R1を、供給部814を介してフィーダ20に供給できる。 In particular, according to the powder cartridge 800 of the fourth configuration example, the amount of powder R1 supplied from the first chamber 811 to the intermediate portion 813 of the second chamber 812 can be measured by the optical sensor 850. As a result, the powder R1 measured with high accuracy can be supplied to the feeder 20 via the supply unit 814.
 (第5構成例)
 図9は、第5構成例の粉末カートリッジ900を示す図であり、フィーダ20に粉末カートリッジ900を取り付けた状態を示す。図9に示されるように、第5構成例の粉末カートリッジ900は、第1の室911に設けられ、第1の室911内に収容された粉末R1の量を計測可能な目盛960を有する点で、第3構成例の粉末カートリッジ600と異なる。なお、その他の構成については、粉末カートリッジ600と同様の構成であってよい。以下、異なる点を中心に説明する。
(Fifth configuration example)
FIG. 9 is a diagram showing the powder cartridge 900 of the fifth configuration example, and shows a state in which the powder cartridge 900 is attached to the feeder 20. As shown in FIG. 9, the powder cartridge 900 of the fifth configuration example is provided in the first chamber 911 and has a scale 960 capable of measuring the amount of the powder R1 contained in the first chamber 911. Therefore, it is different from the powder cartridge 600 of the third configuration example. The other configurations may be the same as those of the powder cartridge 600. Hereinafter, the differences will be mainly described.
 粉末カートリッジ900は、筐体910と、開閉部920と、ガス供給口930と、第2の開閉部940と、目盛960とを備える。筐体910、開閉部920、ガス供給口930及び第2の開閉部940は、前述の筐体610、開閉部620、ガス供給口630及び第2の開閉部840と同様の構成であってよい。すなわち、筐体910は第1の室911と、第2の室912とを有し、第2の室912は中間部913と、供給部914とを含む。開閉部920は、蓋部921と、スライド部922とを有する。なお、第2の開閉部940は、電子天秤としての機能を有していない開閉弁であってもよい。 The powder cartridge 900 includes a housing 910, an opening / closing portion 920, a gas supply port 930, a second opening / closing portion 940, and a scale 960. The housing 910, the opening / closing section 920, the gas supply port 930, and the second opening / closing section 940 may have the same configuration as the housing 610, the opening / closing section 620, the gas supply port 630, and the second opening / closing section 840 described above. .. That is, the housing 910 has a first chamber 911 and a second chamber 912, and the second chamber 912 includes an intermediate portion 913 and a supply portion 914. The opening / closing portion 920 has a lid portion 921 and a slide portion 922. The second opening / closing unit 940 may be an on / off valve that does not have a function as an electronic balance.
 目盛960は、計測部の一例であり、第1の室911に設けられ、第1の室911内に収容された粉末R1の量を計測する。本実施形態では、目盛960は、筐体910の外部から視認可能であり、上下方向に間隔を有して設けられた複数(例えば6つ)のバー表示である。ユーザは、目盛960に対する粉末R1の位置を確認することで、第1の室911内に収容された粉末R1の量を計測できる。これにより、開閉部920を開閉する前後における第1の室911内に収容された粉末R1の高さの差を検出することで、開閉部920を開いたときに第1の室911から第2の室912に供給された粉末R1の量を計測できる。図9では、下方から5つ目のバー表示の位置まで粉末R1が収容されている例を示す。 The scale 960 is an example of the measuring unit, and is provided in the first chamber 911 to measure the amount of powder R1 contained in the first chamber 911. In the present embodiment, the scale 960 is visible from the outside of the housing 910, and is a plurality of (for example, six) bar displays provided at intervals in the vertical direction. By confirming the position of the powder R1 with respect to the scale 960, the user can measure the amount of the powder R1 contained in the first chamber 911. As a result, by detecting the difference in height of the powder R1 contained in the first chamber 911 before and after opening and closing the opening / closing portion 920, the first chamber 911 to the second chamber 911 to the second when the opening / closing portion 920 is opened. The amount of powder R1 supplied to the chamber 912 can be measured. FIG. 9 shows an example in which the powder R1 is stored up to the position indicated by the fifth bar from the bottom.
 第5構成例の粉末カートリッジ900によれば、開閉部920によって仕切られた第1の室911と第2の室912とを有し、第2の室912にガス供給口930が設けられている。これにより、粉末カートリッジ900内から気密状態を維持してフィーダ20に粉末R1を供給できる。そのため、粉末カートリッジ900内の粉末R1を水分、窒素、及び酸素と反応させずにフィーダ20の容器21に供給できる。これにより、フィーダ20に供給された粉末R1を用いてプラズマ溶射を行う場合、粉末R1を用いた溶射膜の膜質の安定性が向上する。 According to the powder cartridge 900 of the fifth configuration example, the powder cartridge 900 has a first chamber 911 and a second chamber 912 partitioned by an opening / closing portion 920, and a gas supply port 930 is provided in the second chamber 912. .. As a result, the powder R1 can be supplied to the feeder 20 from the inside of the powder cartridge 900 while maintaining the airtight state. Therefore, the powder R1 in the powder cartridge 900 can be supplied to the container 21 of the feeder 20 without reacting with water, nitrogen, and oxygen. As a result, when plasma spraying is performed using the powder R1 supplied to the feeder 20, the stability of the film quality of the sprayed film using the powder R1 is improved.
 また、第5構成例の粉末カートリッジ900によれば、開閉部920が設けられているので、単位時間あたりに第1の室911から第2の室912に供給される粉末R1の量を制御できる。これにより、フィーダ20に粉末を定量供給できる。 Further, according to the powder cartridge 900 of the fifth configuration example, since the opening / closing portion 920 is provided, the amount of powder R1 supplied from the first chamber 911 to the second chamber 912 can be controlled per unit time. .. As a result, the powder can be quantitatively supplied to the feeder 20.
 特に、第5構成例の粉末カートリッジ900によれば、目盛960により第1の室911から第2の室912の中間部913に供給された粉末R1の量を計測できるため、低コスト化が可能となる。 In particular, according to the powder cartridge 900 of the fifth configuration example, the amount of powder R1 supplied from the first chamber 911 to the intermediate portion 913 of the second chamber 912 can be measured by the scale 960, so that the cost can be reduced. It becomes.
 〔開閉部及び第2の開閉部〕
 粉末カートリッジ300の開閉部320の変形例について、図10A~図10B、図11A~図11B、図12A~図12E及び図13A~図13Cを参照して説明する。なお、粉末カートリッジ500の開閉部520、粉末カートリッジ600の開閉部620、粉末カートリッジ800の開閉部820、粉末カートリッジ900の開閉部920についても同様に、図10A~図10B、図11A~図11B、図12A~図12E及び図13A~図13Cの開閉部に置き換えてもよい。また、粉末カートリッジ600の第2の開閉部640、粉末カートリッジ800の第2の開閉部840、粉末カートリッジ900の第2の開閉部940についても同様に、図10A~図10B、図11A~図11B、図12A~図12E及び図13A~図13Cの開閉部に置き換えてもよい。
[Opening and closing part and second opening and closing part]
A modified example of the opening / closing portion 320 of the powder cartridge 300 will be described with reference to FIGS. 10A to 10B, FIGS. 11A to 11B, 12A to 12E, and 13A to 13C. Similarly, the opening / closing part 520 of the powder cartridge 500, the opening / closing part 620 of the powder cartridge 600, the opening / closing part 820 of the powder cartridge 800, and the opening / closing part 920 of the powder cartridge 900 are also shown in FIGS. 10A to 10B and 11A to 11B. It may be replaced with the opening / closing part of FIGS. 12A to 12E and 13A to 13C. Similarly, the second opening / closing part 640 of the powder cartridge 600, the second opening / closing part 840 of the powder cartridge 800, and the second opening / closing part 940 of the powder cartridge 900 are also shown in FIGS. 10A to 10B and 11A to 11B. , 12A to 12E and 13A to 13C may be replaced with the opening / closing portion.
 図10A及び図10Bは、開閉部の一例を示す図である。図10Aは閉じた状態の開閉部の側面を示し、図10Bは開いた状態の開閉部の側面を示す。開閉部V1は、蓋部A1の一端に設けられた回転軸B1を回転中心として、図10Aに示される閉位置と図10Bに示される開位置との間で回転するように構成されている。蓋部A1は例えば電子天秤としての機能を有し、蓋部A1が所定質量の粉末R1を計測したときに回転軸B1が回転するように構成されている。回転軸B1の回転方向は、例えば時計回り(図10Aの矢印方向)であってよい。回転軸B1の回転角度は、例えば30度~90度であってよい。 10A and 10B are diagrams showing an example of an opening / closing portion. FIG. 10A shows the side surface of the opening / closing part in the closed state, and FIG. 10B shows the side surface of the opening / closing part in the open state. The opening / closing portion V1 is configured to rotate about a rotation shaft B1 provided at one end of the lid portion A1 between the closed position shown in FIG. 10A and the open position shown in FIG. 10B. The lid portion A1 has a function as, for example, an electronic balance, and is configured such that the rotation shaft B1 rotates when the lid portion A1 measures a powder R1 having a predetermined mass. The rotation direction of the rotation axis B1 may be, for example, clockwise (arrow direction in FIG. 10A). The rotation angle of the rotation axis B1 may be, for example, 30 degrees to 90 degrees.
 図11A及び図11Bは、開閉部の別の例を示す図である。図11Aは閉じた状態の開閉部の側面を示し、図11Bは開いた状態の開閉部の側面を示す。開閉部V2は、蓋部1Aの中心に設けられた回転軸B2を回転中心として、図11Aに示される閉位置と図11Bに示される開位置との間で回転するように構成されている。蓋部A2は例えば電子天秤としての機能を有し、蓋部A2が所定質量の粉末R1を計測したときに回転軸B2が回転するように構成されている。回転軸B2の回転方向は、例えば時計回り(図11Aの矢印方向)であってよい。回転軸B2の回転角度は、例えば30度~90度であってよい。 11A and 11B are diagrams showing another example of the opening / closing portion. FIG. 11A shows the side surface of the opening / closing part in the closed state, and FIG. 11B shows the side surface of the opening / closing part in the open state. The opening / closing portion V2 is configured to rotate about the rotation shaft B2 provided at the center of the lid portion 1A as a rotation center between the closed position shown in FIG. 11A and the open position shown in FIG. 11B. The lid portion A2 has a function as, for example, an electronic balance, and is configured such that the rotation shaft B2 rotates when the lid portion A2 measures a powder R1 having a predetermined mass. The rotation direction of the rotation axis B2 may be, for example, clockwise (arrow direction in FIG. 11A). The rotation angle of the rotation axis B2 may be, for example, 30 degrees to 90 degrees.
 図12A~図12Eは、開閉部の更に別の例を示す図である。図12A及び図12Bは夫々閉じた状態の開閉部の上面図及び斜視図であり、図12C及び図12Dは夫々開いた状態の開閉部の上面図及び斜視図である。図12Eは、扇板状部材の構成例を示す図である。開閉部V3は、扇板状に形成された複数(図示の例では16個)の弁体A3が周方向に配列されることにより下方に頂点を有する円錐形状に形成されている。各弁体A3の先端A3aには、図12Eに示されるように、ワイヤB3の一端が固定されている。ワイヤB3は、各弁体A3の円弧部分に形成された孔A3bを通って外部に引き出されており、ワイヤB3を引っ張ることで各弁体A3の先端A3aが下方に移動し、弁体A3間に隙間が生じて開閉部V3が開くように構成されている。また、各弁体A3の周囲は、樹脂、ゴム等のシール部材で被覆されていることが好ましい。これにより、隣接する弁体A3間や弁体A3と筐体310の内側壁との間からの粉末R1の漏れを抑制できる。 12A to 12E are views showing still another example of the opening / closing portion. 12A and 12B are top views and perspective views of the opening / closing portion in the closed state, respectively, and FIGS. 12C and 12D are top views and perspective views of the opening / closing portion in the open state, respectively. FIG. 12E is a diagram showing a configuration example of the fan plate-shaped member. The opening / closing portion V3 is formed in a conical shape having a lower apex by arranging a plurality of valve bodies A3 (16 in the illustrated example) formed in a fan plate shape in the circumferential direction. As shown in FIG. 12E, one end of the wire B3 is fixed to the tip A3a of each valve body A3. The wire B3 is pulled out to the outside through the hole A3b formed in the arc portion of each valve body A3, and by pulling the wire B3, the tip A3a of each valve body A3 moves downward, and between the valve bodies A3. The opening / closing portion V3 is configured to open with a gap. Further, it is preferable that the periphery of each valve body A3 is covered with a sealing member such as resin or rubber. As a result, leakage of the powder R1 from between the adjacent valve bodies A3 and between the valve body A3 and the inner side wall of the housing 310 can be suppressed.
 図13A~図13Cは、開閉部の更に別の例を示す図である。図13A、図13B及び図13Cは夫々開閉部の断面図、斜視図及び側面図である。開閉弁V4は、第1の室311と第2の室312の接続部に回転可能に設けられた円筒体V4aと、円筒体V4aの周方向の一部の領域に形成され、長手方向に所定の長さX1を有する溝V4bと、を有する。係る開閉弁V4では、回転体V4aを回転させて溝V4bを上方から下方に向ける動作と、回転体V4aを回転させて溝V4bを下方から上方に向ける動作と、を繰り返すことにより、第1の室311から第2の室312に粉末R1を供給する。回転体V4aを回転させて溝V4bを上方から下方に向ける動作では、溝V4b内に粉末R1が充填された状態で回転体V4aを例えば180度回転させて溝V4bを上方から下方に向けることで、溝V4b内の粉末R1が第2の室312内に供給される。回転体V4aを回転させて溝V4bを下方から上方に向ける動作では、回転体V4aを180度回転させて溝V4bを下方から上方に向けることで、空になった溝V4bに再び粉末R1が充填される。このように、開閉弁V4では、回転体V4aを回転させるという簡単な動作で粉末R1の供給量を制御できる。すなわち、粉末R1の供給量制御が容易になる。 13A to 13C are views showing still another example of the opening / closing portion. 13A, 13B and 13C are cross-sectional views, perspective views and side views of the opening / closing portion, respectively. The on-off valve V4 is formed in a region of a cylindrical body V4a rotatably provided at a connection portion between the first chamber 311 and the second chamber 312 and a part of the cylindrical body V4a in the circumferential direction, and is predetermined in the longitudinal direction. It has a groove V4b having a length X1 of. In the on-off valve V4, the first operation is repeated by rotating the rotating body V4a to direct the groove V4b from the upper side to the lower side and rotating the rotating body V4a to direct the groove V4b from the lower side to the upper side. The powder R1 is supplied from the chamber 311 to the second chamber 312. In the operation of rotating the rotating body V4a to direct the groove V4b from the upper side to the lower side, the rotating body V4a is rotated by, for example, 180 degrees with the powder R1 filled in the groove V4b, and the groove V4b is directed from the upper side to the lower side. , The powder R1 in the groove V4b is supplied into the second chamber 312. In the operation of rotating the rotating body V4a to direct the groove V4b from the lower side to the upper side, the rotating body V4a is rotated 180 degrees and the groove V4b is directed from the lower side to the upper side, so that the empty groove V4b is filled with the powder R1 again. Will be done. As described above, in the on-off valve V4, the supply amount of the powder R1 can be controlled by a simple operation of rotating the rotating body V4a. That is, it becomes easy to control the supply amount of the powder R1.
 以上、開閉部の構成例について説明したが、開閉部の構成はこれに限定されず、粉末R1を潰したり、捻じったりしない構造であれば別の開閉部を用いることもできる。第2の開閉部についても開閉部と同様である。 Although the configuration example of the opening / closing portion has been described above, the configuration of the opening / closing portion is not limited to this, and another opening / closing portion can be used as long as the structure does not crush or twist the powder R1. The second opening / closing part is the same as the opening / closing part.
 〔粉末カートリッジの清掃方法〕
 粉末カートリッジ300の清掃方法について、プラズマ溶射装置1のフィーダ20にLi粉末を供給した後の粉末カートリッジ300を清掃する場合を例に挙げて説明する。
[How to clean the powder cartridge]
A method of cleaning the powder cartridge 300 will be described by taking as an example a case of cleaning the powder cartridge 300 after supplying Li powder to the feeder 20 of the plasma spraying device 1.
 まず、プラズマ溶射装置1のフィーダ20から取り外された粉末カートリッジ300を大気環境下又は酸素ガス雰囲気下に保持することにより、粉末カートリッジ300の筐体310内に付着したLi粉末を十分に酸化させて酸化リチウムに変化させて不活性化する。このとき、粉末カートリッジ300の筐体310に制御部30とは別に設けられた制御部(図示せず)が取り付けられている場合、筐体310から該制御部を取り外す。該制御部が筐体310に取り付けられた状態で後述する工程を行うと、該制御部が破損する場合があるためである。なお、該制御部が防水仕様である場合には、該制御部を筐体310から取り外さなくてもよい。粉末カートリッジ300を大気環境下又は酸素ガス雰囲気下に保持する時間は、例えば1時間であってよい。また、酸化リチウムは、プラズマ溶射の際に炭化して消失するため、筐体310内に付着していても溶射膜への影響はない。 First, by holding the powder cartridge 300 removed from the feeder 20 of the plasma spraying device 1 in an air environment or an oxygen gas atmosphere, the Li powder adhering to the housing 310 of the powder cartridge 300 is sufficiently oxidized. It is converted to lithium oxide and inactivated. At this time, if a control unit (not shown) provided separately from the control unit 30 is attached to the housing 310 of the powder cartridge 300, the control unit is removed from the housing 310. This is because if the step described later is performed with the control unit attached to the housing 310, the control unit may be damaged. If the control unit is waterproof, it is not necessary to remove the control unit from the housing 310. The time for holding the powder cartridge 300 in an air environment or an oxygen gas atmosphere may be, for example, one hour. Further, since lithium oxide is carbonized and disappears during plasma spraying, even if it adheres to the inside of the housing 310, it does not affect the sprayed film.
 続いて、水が入った容器内に粉末カートリッジ300を浸漬させることにより、粉末カートリッジ300の筐体310内に付着したLi粉末を溶融させる。このとき、筐体310内に多量のLi粉末が付着している場合、水が入った容器内に粉末カートリッジ300を浸漬させる前に、エアブローや刷毛等を用いてLi粉末を取り除いておくことが好ましい。 Subsequently, the powder cartridge 300 is immersed in a container containing water to melt the Li powder adhering to the housing 310 of the powder cartridge 300. At this time, if a large amount of Li powder is attached to the housing 310, the Li powder may be removed by using an air blow, a brush, or the like before immersing the powder cartridge 300 in the container containing water. preferable.
 続いて、エタノール溶液が入った容器内に粉末カートリッジ300を浸漬させて超音波洗浄を行う。超音波洗浄の条件は、Li粉末の量等に応じて適宜定められる。 Subsequently, the powder cartridge 300 is immersed in a container containing an ethanol solution for ultrasonic cleaning. The conditions for ultrasonic cleaning are appropriately determined according to the amount of Li powder and the like.
 続いて、乾燥炉内に粉末カートリッジ300を収容し、乾燥炉内にて粉末カートリッジ300を乾燥させる。乾燥条件の一例としては、温度が100℃以下、乾燥時間が1時間~100時間であってよい。 Subsequently, the powder cartridge 300 is housed in the drying furnace, and the powder cartridge 300 is dried in the drying furnace. As an example of the drying conditions, the temperature may be 100 ° C. or lower and the drying time may be 1 hour to 100 hours.
 以上、粉末カートリッジ300の清掃方法の一例について説明したが、粉末カートリッジ500、600、800、900についても、粉末カートリッジ300と同様の方法で清掃できる。 The example of the cleaning method of the powder cartridge 300 has been described above, but the powder cartridges 500, 600, 800, and 900 can also be cleaned by the same method as the powder cartridge 300.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The above-described embodiment may be omitted, replaced, or changed in various forms without departing from the scope and purpose of the appended claims.
 上記の実施形態では、プラズマ溶射により基材Wに溶射膜を形成するプラズマ溶射装置を説明したが、これに限定されず、例えばアーク溶射やフレーム溶射により基材Wに溶射膜を形成する溶射装置であってもよい。 In the above embodiment, the plasma spraying device that forms a thermal spray film on the base material W by plasma spraying has been described, but the present invention is not limited to this, and for example, the thermal spraying device that forms a thermal spray film on the base material W by arc spraying or frame spraying. It may be.
 また、上記の実施形態では、粉末カートリッジを溶射装置に適用する場合を説明したが、これに限定されない。粉末供給装置は、例えば粉末を固体の状態で被対象物の表面に噴射させて被対象物の表面処理(例えば、ブラスト処理)を行う装置にも適用可能である。また、粉末カートリッジは、例えば粉末を昇華させて気体を形成し、気体の状態で被対象物の表面に噴射させて被対象物の表面に膜を形成する装置にも適用可能である。 Further, in the above embodiment, the case where the powder cartridge is applied to the thermal spraying device has been described, but the present invention is not limited to this. The powder supply device can also be applied to, for example, a device that injects powder onto the surface of an object in a solid state to perform surface treatment (for example, blast treatment) of the object. Further, the powder cartridge can be applied to, for example, an apparatus in which powder is sublimated to form a gas and then injected into the surface of the object in a gaseous state to form a film on the surface of the object.
 本国際出願は、2019年5月22日に出願した日本国特許出願第2019-096309号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2019-096309 filed on May 22, 2019, and the entire contents of the application will be incorporated into this international application.
20  フィーダ
30  制御部
300、500、600、800、900 粉末カートリッジ
310、510、610、810、910 筐体
311、511、611、811、911 第1の室
312、512、612、812、912 第2の室
613、813、913 中間部
614、814、914 供給部
320、520、620、820、920 開閉部
330、530、630、830、930 ガス供給口
640、840、940 第2の開閉部
850 光学センサ
960 目盛
R1  粉末
20 Feeder 30 Control unit 300, 500, 600, 800, 900 Powder cartridge 310, 510, 610, 810, 910 Housing 311, 511, 611, 811, 911 First chamber 312, 512, 612, 812, 912 Room 2 613, 813, 913 Intermediate part 614, 814, 914 Supply part 320, 520, 620, 820, 920 Opening / closing part 330, 530, 630, 830, 930 Gas supply port 640, 840, 940 Second opening / closing part 850 Optical sensor 960 Scale R1 powder

Claims (11)

  1.  フィーダに粉末を供給する粉末カートリッジであって、
     前記フィーダに着脱可能な筐体であって、気密状態で前記粉末を収容可能な第1の室と、前記第1の室と連通可能であり少なくともガス供給口及びガス排気口のいずれかが設けられた第2の室とを有する筐体と、
     前記第1の室と前記第2の室との連通状態を制御する開閉部と、
     を備える、
     粉末カートリッジ。
    A powder cartridge that supplies powder to the feeder
    A housing that is removable from the feeder and can accommodate the powder in an airtight state, and at least one of a gas supply port and a gas exhaust port that can communicate with the first chamber is provided. A housing with a second chamber
    An opening / closing unit that controls the communication state between the first chamber and the second chamber,
    To prepare
    Powder cartridge.
  2.  前記第2の室は、第2の開閉部により仕切られた中間部と供給部とを有し、
     前記中間部は、前記開閉部を介して前記第1の室と接続され、
     前記供給部は、前記フィーダに着脱可能に接続される、
     請求項1に記載の粉末カートリッジ。
    The second chamber has an intermediate portion and a supply portion partitioned by a second opening / closing portion.
    The intermediate portion is connected to the first chamber via the opening / closing portion.
    The supply unit is detachably connected to the feeder.
    The powder cartridge according to claim 1.
  3.  前記第2の開閉部は、前記中間部に収容された前記粉末の質量を計測可能である、
     請求項2に記載の粉末カートリッジ。
    The second opening / closing portion can measure the mass of the powder contained in the intermediate portion.
    The powder cartridge according to claim 2.
  4.  前記第1の室に設けられ、前記第1の室内に収容された前記粉末の量を計測する計測部が設けられている、
     請求項1乃至3のいずれか一項に記載の粉末カートリッジ。
    A measuring unit provided in the first chamber and measuring the amount of the powder contained in the first chamber is provided.
    The powder cartridge according to any one of claims 1 to 3.
  5.  前記計測部は、前記第1の室内に設けられた光学センサである、
     請求項4に記載の粉末カートリッジ。
    The measuring unit is an optical sensor provided in the first room.
    The powder cartridge according to claim 4.
  6.  前記計測部は、前記第1の室に設けられた目盛である、
     請求項4に記載の粉末カートリッジ。
    The measuring unit is a scale provided in the first chamber.
    The powder cartridge according to claim 4.
  7.  前記開閉部を制御する制御部を更に備え、
     前記制御部は、前記開閉部を制御することにより、前記第1の室から前記第2の室に予め定めた量の前記粉末を供給する、
     請求項1乃至6のいずれか一項に記載の粉末カートリッジ。
    A control unit for controlling the opening / closing unit is further provided.
    By controlling the opening / closing unit, the control unit supplies a predetermined amount of the powder from the first chamber to the second chamber.
    The powder cartridge according to any one of claims 1 to 6.
  8.  前記粉末の粒径は、1μm~500μmである、
     請求項1乃至7のいずれか一項に記載の粉末カートリッジ。
    The particle size of the powder is 1 μm to 500 μm.
    The powder cartridge according to any one of claims 1 to 7.
  9.  前記粉末は、溶射材料の粉末である、
     請求項1乃至8のいずれか一項に記載の粉末カートリッジ。
    The powder is a powder of a thermal spray material,
    The powder cartridge according to any one of claims 1 to 8.
  10.  前記粉末は、リチウムの粉末である、
     請求項1乃至9のいずれか一項に記載の粉末カートリッジ。
    The powder is a lithium powder.
    The powder cartridge according to any one of claims 1 to 9.
  11.  フィーダに粉末を供給する粉末供給方法であって、
     気密状態で前記粉末を収容した第1の室と、開閉部により前記第1の室と仕切られ、少なくともガス供給口及びガス排気口のいずれかが設けられた第2の室とを有する筐体を、前記フィーダに取り付ける工程と、
     前記筐体の前記第2の室の内部を不活性ガス雰囲気又は真空雰囲気に調整する工程と、
     前記開閉部を開いて前記第1の室と前記第2の室とを連通させることにより、前記第1の室から前記第2の室に予め定めた量の前記粉末を供給する工程と、
     を有する、
     粉末供給方法。
    It is a powder supply method that supplies powder to the feeder.
    A housing having a first chamber containing the powder in an airtight state and a second chamber separated from the first chamber by an opening / closing portion and provided with at least one of a gas supply port and a gas exhaust port. With the process of attaching to the feeder
    A step of adjusting the inside of the second chamber of the housing to an inert gas atmosphere or a vacuum atmosphere, and
    A step of supplying a predetermined amount of the powder from the first chamber to the second chamber by opening the opening / closing portion to communicate the first chamber and the second chamber.
    Have,
    Powder supply method.
PCT/JP2020/018850 2019-05-22 2020-05-11 Powder cartridge and powder supply method WO2020235379A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-096309 2019-05-22
JP2019096309 2019-05-22

Publications (1)

Publication Number Publication Date
WO2020235379A1 true WO2020235379A1 (en) 2020-11-26

Family

ID=73459215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018850 WO2020235379A1 (en) 2019-05-22 2020-05-11 Powder cartridge and powder supply method

Country Status (1)

Country Link
WO (1) WO2020235379A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141767U (en) * 1980-03-28 1981-10-26
JPS63114990U (en) * 1987-01-20 1988-07-25
JPH10113928A (en) * 1996-10-15 1998-05-06 Matsushita Electric Works Ltd Hopper
JP2014176820A (en) * 2013-03-15 2014-09-25 Shinagawa Refractories Co Ltd Thermal spray coater
WO2018105700A1 (en) * 2016-12-08 2018-06-14 東京エレクトロン株式会社 Plasma spraying device and method for manufacturing battery electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141767U (en) * 1980-03-28 1981-10-26
JPS63114990U (en) * 1987-01-20 1988-07-25
JPH10113928A (en) * 1996-10-15 1998-05-06 Matsushita Electric Works Ltd Hopper
JP2014176820A (en) * 2013-03-15 2014-09-25 Shinagawa Refractories Co Ltd Thermal spray coater
WO2018105700A1 (en) * 2016-12-08 2018-06-14 東京エレクトロン株式会社 Plasma spraying device and method for manufacturing battery electrode

Similar Documents

Publication Publication Date Title
JP6745907B2 (en) Plasma spraying apparatus and method for manufacturing battery electrode
JP7391160B2 (en) Powder feeding device, thermal spraying device, powder feeding method and thermal spraying method
KR100932053B1 (en) Treatment apparatus, treatment method and plasma source
CN1792474B (en) Ceramic sprayed member-cleaning method
JP2008004722A (en) Electrode connecting method and part mounting device
CN102437001A (en) Vacuum processing apparatus, vacuum processing method, and micro-machining apparatus
JP2003173871A (en) Manufacturing method of organic electroluminescent element
WO2020235379A1 (en) Powder cartridge and powder supply method
JP6530289B2 (en) Analysis pretreatment unit
JP2005303255A (en) Low-reflectance processing method of silicon substrate for solar cells
JP2007063615A (en) Method for forming lithium or lithium alloy thin film
JP6718774B2 (en) Lithium sulfide manufacturing method and manufacturing apparatus
JP2010240595A (en) Waste gas detoxification apparatus
JP2020180339A (en) Sputtering apparatus and sputtering method
TWI652968B (en) Substrate processing apparatus and substrate processing method
JP2005252146A (en) Substrate treatment apparatus
JP4410607B2 (en) Oxygen radical generating electrode
JP2006049408A (en) Substrate cleaning device
JP2007063614A (en) Method for forming lithium or lithium alloy thin film
JPH113727A (en) Sealing device for sodium-sulfur battery in reduced pressure and its manufacture
JP2001273853A (en) Exhaust head for discharge bulb and mercury filling method into discharge bulb
JPH0114641B2 (en)
JPH0861640A (en) Plasma melting furnace for waste incineration ashes
JPH10251882A (en) Surface cleaning method by vacuum arc, and deivce therefor
JP2000090966A (en) Manufacture of sodium-sulfur battery and manufacturing device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20810045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP