JPH113727A - Sealing device for sodium-sulfur battery in reduced pressure and its manufacture - Google Patents

Sealing device for sodium-sulfur battery in reduced pressure and its manufacture

Info

Publication number
JPH113727A
JPH113727A JP9151891A JP15189197A JPH113727A JP H113727 A JPH113727 A JP H113727A JP 9151891 A JP9151891 A JP 9151891A JP 15189197 A JP15189197 A JP 15189197A JP H113727 A JPH113727 A JP H113727A
Authority
JP
Japan
Prior art keywords
cylindrical metal
welding
metal container
vacuum
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9151891A
Other languages
Japanese (ja)
Inventor
Tetsuya Sado
哲也 佐渡
Junya Monma
順也 門真
Shigeru Sakaguchi
繁 坂口
Yukihiro Umetsu
幸浩 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9151891A priority Critical patent/JPH113727A/en
Publication of JPH113727A publication Critical patent/JPH113727A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To welding seal without passing through shielding gas by moving an assembled vessel and lid, containing an active materail such as sodium sulfur into a vacuum vessel, and substituting an inert gas, argon gas, for the inside of the vacuum vessel to a predetermined reduced pressure after evacuating the vacuum vessel and the vessel in order to welding seal the same at a predetermined reduced pressure. SOLUTION: A vessel 1, formed by inserting assembling a vessel and a lid, is moved into a vacuum vessel 4, the inside of the vacuum vessel 4 is evacuated to 1.3×1<1> Pa or higher. Thereafter, in a state in which a vacuum valve 20 is closed and sealed, an argon gas valve 22 is opened so as to substitute to a predetermined reduced pressure. After the substitution, the argon valve 22 is closed, an arc is generated from an electrode 3 without shielding the gas flow, the vessel 1 is rotated at a proper rotational speed so as to welding seal the whose periphery of a vessel 1 jointing portion. Thereby, reliable welding seal can be attained at low cost, without incurring high cost, or requiring high degree vacuum device and welding machine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は容器内を真空に封止
する装置に係り、特に容器内にナトリウムや硫黄等の活
物質を密封する場合は、空気中の酸素と反応するため一
旦容器内を真空排気し不活性ガスで所定の真空度に置換
しバラツキ無く減圧封止するのに好適で安価なタングス
テン電極アルゴンガス溶接封止装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for sealing the inside of a container to a vacuum, and particularly when an active material such as sodium or sulfur is sealed in the container, the device reacts with oxygen in the air to temporarily seal the inside of the container. The present invention relates to an inexpensive tungsten electrode argon gas welding and sealing apparatus suitable for evacuating, substituting a predetermined degree of vacuum with an inert gas, and sealing under reduced pressure without variation.

【0002】[0002]

【従来の技術】従来の密封方法及び装置は、特公昭48−
35125 号に記載の様に図6の密封用容器12を予めある
程度組立て,溶接しておき密封用の脱気用細穴14を有
している容器を真空容器に入れ真空排気し容器内を所定
圧力とし、熱源に要求される真空度又は各種ガス雰囲気
中で極短時間のビームで溶塞,密封を行うものである。
2. Description of the Related Art A conventional sealing method and apparatus are disclosed in
As described in No. 35125, the container 12 for sealing shown in FIG. 6 is assembled to some extent in advance, welded, the container having the small holes 14 for deaeration for sealing is put in a vacuum container, and the container is evacuated to a predetermined pressure. The pressure is used to perform fusing and sealing with a beam for an extremely short time in a degree of vacuum required for a heat source or various gas atmospheres.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、封止
用容器に予め脱気用細孔加工を施す必要があり、各種ガ
ス雰囲気中でアークにより脱気用細孔を溶塞するための
アーク発生法について配慮がされておらず a)アーク発生の不安定化とアーク溶接時の酸化膜生成
による信頼性の低下、 b)容器に脱気用細孔を要し加工コストが高い、 c)脱気用細孔を有する部品を予め容器と溶接する工数
も必要である という問題点があった。
According to the above prior art, it is necessary to pre-process the pores for degassing in the sealing container, and to perform the arc-sealing of the pores for degassing with an arc in various gas atmospheres. No consideration has been given to the arc generation method. A) Instability of arc generation and reduction in reliability due to formation of an oxide film during arc welding. B) High processing cost due to the need for degassing pores in the container. C ) There was a problem that a man-hour for welding parts having pores for degassing to the container in advance was necessary.

【0004】即ち、図5の公知例では容器12に脱気用
細孔14を有する蓋13を予め溶接し、その後真空容器
内に移動し真空排気後アーク又はプラズマビーム又は電
子ビーム源に適した雰囲気すなわち高真空又は適当なガ
ス雰囲気にして熱源7を起動させて脱気用細孔14を溶
着し溶塞している。
That is, in the known example of FIG. 5, a lid 13 having pores 14 for deaeration is welded to a container 12 in advance, then moved into a vacuum container, evacuated, and then suitable for an arc or plasma beam or electron beam source. The heat source 7 is activated in an atmosphere, that is, a high vacuum or an appropriate gas atmosphere, and the deaeration pores 14 are welded and sealed.

【0005】しかしこの方法では a)任意ガス雰囲気だけではアーク発生させる場合、ア
ークが安定せず断続的なアーク、もしくはアーク集中性
に乏しく溶接部の信頼性に欠け更に空気中の酸素の残留
で溶接部に酸化膜を形成し溶融欠陥を発生させる恐れが
あった。
However, in this method: a) When an arc is generated only in an arbitrary gas atmosphere, the arc is not stable, the arc is intermittent, or the arc concentration is poor, the reliability of the welded portion is poor, and oxygen in the air remains. There was a possibility that an oxide film was formed on the welded portion and a melting defect was generated.

【0006】b)脱気用細孔14を有する蓋13を予め
溶接し真空容器内へ移動し真空又は各種ガス雰囲気中で
脱気用細孔14を溶着するため溶接部位が2種類となり
溶接,溶着工程が2工程必要になりコスト高である。
又、蓋13の加工コストも脱気用細孔14を加工するた
めコスト高となっている。
B) The lid 13 having the pores 14 for deaeration is welded in advance, moved into a vacuum vessel, and the pores 14 for the deaeration are welded in a vacuum or various gas atmospheres. Two welding steps are required and the cost is high.
In addition, the processing cost of the lid 13 is high because the pores 14 for deaeration are processed.

【0007】c)熱源7はタングステントーチ等のアー
ク電極又はプラズマビーム源又は電子ビーム源で、タン
グステントーチ等のアーク電極は、電極材質,電極先端
形状によりアーク発生の安定性が得られない。
C) The heat source 7 is an arc electrode such as a tungsten torch or a plasma beam source or an electron beam source, and the arc electrode such as a tungsten torch cannot obtain stable arc generation due to the electrode material and the shape of the electrode tip.

【0008】という恐れがあった。There was a fear that

【0009】[0009]

【課題を解決するための手段】アーク発生の安定化は、
真空容器の初期到達真空度を1.3×101Pa以上とし
アルゴンガス99.99% を流入置換し所定圧力で封止
することでタングステン電極アルゴンガス溶接で溶接時
酸化膜を形成すること無く安定したアークが連続で得ら
れる雰囲気とすることができ、且つ電極の材質は、トリ
ウム及びイットリウム入りタングステン電極より電子放
射能が大きいランタン入り電極を使用し電極の先端角度
を10度〜30度に形成することでアークの連続安定を
達成し更に電極と溶接部距離を0.5mm〜3.0mmの範囲
で選定しアーク発生の安定化を達成する。
The stabilization of arc generation is as follows.
The initial vacuum degree of the vacuum vessel is set to 1.3 × 10 1 Pa or more, and 99.99% of argon gas is replaced and sealed at a predetermined pressure, so that an oxide film is not formed at the time of welding by tungsten electrode argon gas welding. A stable arc can be continuously obtained, and the material of the electrode is a lanthanum-containing electrode whose electron emissivity is larger than that of thorium and yttrium-containing tungsten electrodes. By forming the arc, continuous stability of the arc is achieved, and furthermore, the distance between the electrode and the welded portion is selected in the range of 0.5 mm to 3.0 mm to achieve the stabilization of the arc generation.

【0010】アーク発生の安定化により円筒金属容器の
全周溶接を連続化するために電極トーチ部と円筒金属容
器の受け部には、冷却水を1リットル/分の流量で流し
溶接部及び装置の過熱を防止することで達成し円筒金属
容器と蓋のはめ合い部を全周連続で溶接するため予め脱
気用細孔を施した蓋を大気中で溶接し脱気用細孔を負圧
で溶接封止する2段階の工程を必要とせず脱気用細孔の
加工も不要とする事で部品の加工コストも低減できる。
[0010] In order to make the entire circumference of the cylindrical metal container continuous by stabilizing the arc generation, cooling water is flowed at a flow rate of 1 liter / min to the electrode torch portion and the receiving portion of the cylindrical metal container. Prevents overheating of the cylinder and welds the fitting of the cylindrical metal container and the lid continuously over the entire circumference. By eliminating the need for a two-step process of welding and sealing, and eliminating the need for processing the pores for degassing, the processing cost of parts can be reduced.

【0011】真空容器の開閉扉は、必要真空度に応じて
信頼性の高い確実なシール機構を選択使用できるので封
止する容器の交換毎に容器内の到達真空度及び真空封止
後の容器内真空度がバラツクことがない。容器は、容器
と蓋を挿入組立て蓋にはガス抜きを設けているので挿入
組立て隙間とガス抜き溝により真空容器の真空度に応じ
た真空度となるので、組立ては真空容器外で容易に出来
る。
The opening / closing door of the vacuum container can select and use a highly reliable and reliable sealing mechanism according to the required degree of vacuum. Therefore, each time the container to be sealed is exchanged, the ultimate vacuum degree in the container and the container after vacuum sealing are changed. The degree of internal vacuum does not vary. Since the container and the lid are inserted and assembled and the lid is provided with a gas vent, the degree of vacuum according to the degree of vacuum of the vacuum container is obtained by the insertion assembly gap and the gas vent groove, so assembly can be easily performed outside the vacuum container .

【0012】この真空容器の到達真空度を1.3×101
Pa以上とすることで真空容器内をアルゴンガスで所定
圧力に置換した雰囲気の空気中の酸素残留による溶接時
の酸化膜生成を防ぎタングステン電極アルゴンガス溶接
に適した雰囲気を得ることが出来る。タングステン電極
は、材質にランタン入り電極を使用することでアーク発
生性を確保し先端角度は、アーク発生を電極先端部より
発生させアーク長を長く確保し溶接に適したアークにす
るため鋭角な10度〜30度の範囲で選定する。先端角
度が30度より鈍角になると電極先端部からのアーク発
生分布でなく電極全体からアーク発生するため安定性に
乏しく溶接アークに適さない。
The ultimate degree of vacuum of this vacuum container is 1.3 × 10 1
By setting the pressure to Pa or more, it is possible to prevent an oxide film from being formed at the time of welding due to oxygen remaining in air in an atmosphere in which the inside of the vacuum vessel is replaced with argon gas at a predetermined pressure, thereby obtaining an atmosphere suitable for tungsten electrode argon gas welding. The tungsten electrode uses a lanthanum-containing electrode as a material to ensure arc generation, and the tip angle is set at an acute angle of 10 to ensure that the arc is generated from the electrode tip and that the arc length is long and the arc is suitable for welding. Select within the range of degrees to 30 degrees. If the tip angle is less than 30 degrees, the arc is generated not from the arc generation distribution from the electrode tip but from the entire electrode, so that it has poor stability and is not suitable for a welding arc.

【0013】電極と溶接部の距離は、0.5mm より小さ
くすると溶接部溶融金属と電極が接触しアーク発生が途
絶える可能性が高く、3.0mm 以上にするとアーク発生
するが連続性に乏しく溶接部金属が溶融しないため溶接
電流を増加すると電極が溶断する現象が発生し連続溶接
に適さないため電極と溶接部距離は、0.5mm〜3.0mm
の範囲で選定し連続溶接を可能にした。連続溶接を行う
と電極,電極トーチ部及び溶接部の温度が過熱状態とな
り溶接条件が変化し信頼性に乏しく電極トーチ部のセラ
ミックスホルダーを破損させる可能性があるため冷却水
を1リットル/分の流量で流し過熱を防止する。冷却水
は、恒温槽で温度管理されていれば望ましい状態であ
る。真空容器内は、溶接毎に真空排気,封止,アルゴン
ガス置換,溶接,大気圧への置換,溶接品の取り出し交
換を繰り返し行うため溶接時発生する溶接ヒュームの影
響による溶接選定条件に変化無く真空容器容量100リ
ットルで発熱による影響も溶接時間3分以内のため雰囲
気の温度上昇も1℃程度のため円筒金属容器内の圧力上
昇変化も許容管理出来る範囲内で信頼性の高い封止溶接
を可能にした。
If the distance between the electrode and the weld is smaller than 0.5 mm, there is a high possibility that the molten metal in contact with the weld will come into contact with the electrode and the arc will be interrupted. When the welding current is increased because the metal of the part does not melt, a phenomenon occurs in which the electrode melts and the electrode is not suitable for continuous welding, so the distance between the electrode and the welded part is 0.5 mm to 3.0 mm.
And continuous welding was made possible. When continuous welding is performed, the temperature of the electrode, the electrode torch and the weld is overheated, the welding conditions are changed, the reliability is poor, and the ceramic holder of the electrode torch may be damaged. Flow at a flow rate to prevent overheating. The cooling water is in a desirable state if the temperature is controlled in a thermostat. The interior of the vacuum vessel is repeatedly evacuated, sealed, replaced with argon gas, welded, replaced with atmospheric pressure, and removed and replaced with a welded product every time welding is performed, so there is no change in welding selection conditions due to the effect of welding fume generated during welding. Since the effect of heat generation is less than 3 minutes in a vacuum vessel capacity of 100 liters and the temperature rise of the atmosphere is also about 1 ° C, the change in pressure rise in the cylindrical metal vessel is highly reliable within a range that can be controlled. Made it possible.

【0014】[0014]

【発明の実施の形態】以下、本発明の一実施例を図1に
より説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG.

【0015】真空封止される容器1と組立て挿入隙間最
大0.2mm を有する蓋2を予め挿入組立てし真空容器4
の気密性を有する扉18より真空容器4内へ移動する。
その後回転駆動部21と受け部23に設定しタングステ
ン電極3と容器1の溶接部隙間を0.5mm〜3.0mmにす
る。真空ポンプ17で真空容器4の排気を1.3× 101
Pa 以上まで実施し、真空系バルブ20を閉じて不活
性ガスであるアルゴンガスをアルゴンガス系バルブ22
を開いて真空容器4内を4×103Pa 以上の所定の減
圧値まで置換し回転駆動部21を閉じる。この圧力を計
測するために初期到達真空度〜アルゴンガス置換後の真
空度計測用としてキャパシタンスマノメータ(GM−1
000型のアルバック製)真空計6を使用し計測管理す
る。
A container 1 to be vacuum-sealed and a lid 2 having a maximum insertion gap of 0.2 mm are previously inserted and assembled into a vacuum container 4.
From the airtight door 18 into the vacuum vessel 4.
Thereafter, the rotation drive unit 21 and the receiving unit 23 are set so that the gap between the tungsten electrode 3 and the container 1 at the welding portion is set to 0.5 mm to 3.0 mm. The vacuum pump 17 evacuates the vacuum vessel 4 to 1.3 × 10 1
The vacuum system valve 20 is closed, and argon gas, which is an inert gas, is supplied to the argon gas system valve 22.
Is opened to replace the inside of the vacuum container 4 to a predetermined reduced pressure value of 4 × 10 3 Pa or more, and the rotation drive unit 21 is closed. In order to measure this pressure, a capacitance manometer (GM-1) is used for measuring the initial vacuum degree to the vacuum degree after replacing the argon gas.
The measurement is managed using a vacuum gauge 6 (manufactured by ULVAC of type 000).

【0016】これにより容器1内は真空容器4と同圧と
なり、タングステン電極3よりアークを発生させて溶接
部が溶融し始めたら回転駆動部21をモータ15によっ
て回転させることで容器1の溶接部全周を溶接封止す
る。
As a result, the inside of the vessel 1 has the same pressure as that of the vacuum vessel 4, and when an arc is generated from the tungsten electrode 3 and the welded portion starts to melt, the rotary drive section 21 is rotated by the motor 15 so that the welded portion of the vessel 1 is welded. The entire circumference is welded and sealed.

【0017】アルゴンガスで所定圧力まで置換する前の
到達真空度は、高い方が空気中の酸素残留を少なく出来
溶接時発生する酸化膜の生成を抑制出来るが図4に示す
ようにタングステン電極アルゴンガス溶接では、1.3
×101Pa以上であれば連続的に安定したアーク発生
が得られ溶接部の酸化膜も溶融信頼性に影響を及ぼさな
い。
As for the ultimate vacuum before replacing the gas to a predetermined pressure with argon gas, the higher the degree of vacuum, the smaller the amount of oxygen remaining in the air and the less the formation of an oxide film generated during welding. However, as shown in FIG. 1.3 for gas welding
If it is × 10 1 Pa or more, stable and stable arc generation is obtained, and the oxide film of the welded portion does not affect the melting reliability.

【0018】又、この到達真空度が高ければ高いほど溶
接の信頼性は向上するが真空排気に要する時間を必要と
するため本実施例では、ロータリポンプで真空排気出来
る範囲の1.3×101Pa以上とし設備コストを抑制し
ている。
Further, the higher the ultimate vacuum degree, the higher the reliability of welding, but the time required for vacuum evacuation is required. Therefore, in this embodiment, 1.3.times.10.sup. The equipment cost is suppressed to 1 Pa or more.

【0019】図2は容器1と蓋2の組立て状態を示す。
蓋2はSUS製で塑性加工で製作し、組立て勘合部にガ
ス抜き溝2aを塑性加工により同時に加工実施している
ことで部品製作コスト低減とガス抜き溝2aにより所定
減圧値までの不活性ガス置換時間を最少にして容器1内
の封止圧力値の信頼性を確保している。
FIG. 2 shows an assembled state of the container 1 and the lid 2.
The lid 2 is made of SUS by plastic working, and the gas vent groove 2a is simultaneously processed by plastic working in the assembly fitting portion, so that the cost of parts production is reduced, and the gas vent groove 2a reduces the inert gas to a predetermined reduced pressure value. The replacement time is minimized to ensure the reliability of the sealing pressure value in the container 1.

【0020】又、タングステン電極3は、減圧雰囲気で
もアーク発生性を考慮し直径2.8mmから4.5mmの範囲
内で選定する。この実施例では直径3.2mmを使用し、
電極3は鉛筆形状に成形し先端角度を10度〜30度の
範囲内で選定し、材質はタングステンにランタン(La
の酸化物保有量が1.7%〜2.2%)の電極3を使用し
アークの安定化と連続化を達成している。溶接機19
は、日立製インバータTIG溶接機DT−NP−300
Aを使用した。
The tungsten electrode 3 is selected within a range of 2.8 mm to 4.5 mm in diameter in consideration of arc generation even in a reduced pressure atmosphere. In this embodiment, a diameter of 3.2 mm is used,
The electrode 3 is formed in a pencil shape and the tip angle is selected within a range of 10 to 30 degrees, and the material is tungsten or lanthanum (La).
(Electrode holding ratio of 1.7% to 2.2%) is used to achieve stabilization and continuity of the arc. Welding machine 19
Is a Hitachi inverter TIG welding machine DT-NP-300
A was used.

【0021】電極材質は、市販品である4種類でアーク
発生性を評価しその結果を表1に示す。
As for the electrode materials, four types of commercially available products were evaluated for arc generation, and the results are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】電極径3.2mm,先端角度15度,雰囲気
圧力4×103Pa,電極と溶接部距離1.0mm ,溶接
電流50A〜180Aの条件下でトリウム入りタングス
テン電極は、電流設定値に関係なく電極全体からアーク
放電し溶接に適さない。又、イットリウム入りタングス
テン電極は、溶接電流90A以下では、電極全体からの
アーク放電で90Aを越える電流値では、電極先端から
連続集中したアーク発生が可能であった。ランタン入り
タングステン電極は、全ての電流設定値で電極先端から
連続集中したアーク発生を得ることができた。又、この
電極径については、市販品では径が限定されるため一部
研磨で製作し電極径1.0mm〜10.0mmで評価しその結
果を図3に示す。電極径が2.8mm より小さいとアーク
発生及び連続発生は、良好であるが全周溶接終了する前
に電極が溶断する。これは、減圧下ではアークが集中し
にくく拡がるためタングステン電極の赤熱部分の長さが
増加し溶断に至ると考えられる。又、電極径が4.5mm
を越えるとアーク発生の連続性に欠け金属を溶融するま
でに至らないため電流値を増加させる必要があるが18
0A以上の電流値を必要とし溶接部以外への熱影響が発
生し装置の破損,溶融過多を招き連続溶接に適さない。
Under the conditions of an electrode diameter of 3.2 mm, a tip angle of 15 degrees, an atmospheric pressure of 4 × 10 3 Pa, a distance between the electrode and a welding portion of 1.0 mm, and a welding current of 50 A to 180 A, the thorium-containing tungsten electrode has a current set value. Irrespective of this, arc discharge occurs from the whole electrode and is not suitable for welding. Also, with the yttrium-containing tungsten electrode, when the welding current was 90 A or less, an arc discharge from the entire electrode could generate an arc continuously concentrated from the electrode tip at a current value exceeding 90 A. With the lanthanum-containing tungsten electrode, continuous concentrated arc generation from the electrode tip could be obtained at all current set values. The diameter of the electrode is limited in commercially available products, so that it is partially manufactured by polishing and evaluated with an electrode diameter of 1.0 mm to 10.0 mm. The results are shown in FIG. When the electrode diameter is smaller than 2.8 mm, arcing and continuous generation are good, but the electrode is blown before the entire circumference welding is completed. This is presumably because the arc is less likely to concentrate and spread under reduced pressure, so that the length of the glowing portion of the tungsten electrode increases, leading to fusing. The electrode diameter is 4.5mm
If the current exceeds the value, it is necessary to increase the current value because the continuity of arc generation is insufficient and the metal does not melt.
Since a current value of 0 A or more is required, thermal effects occur on portions other than the welded portion, which results in breakage of the device and excessive melting, which is not suitable for continuous welding.

【0024】容器1の連続溶接封止を実施するために回
転駆動部21には、冷却水取入れ口10よりの冷却水を
蓋2まで流路を設けて常時冷却している。冷却水は冷却
水取出し口9より取出す。又、電極3は市販の水冷式ト
ーチを使用し、冷却水取入れ口7より入れ、冷却水取出
し口8より取出し過熱を防止している。
In order to carry out the continuous welding sealing of the container 1, a cooling water from the cooling water intake 10 is provided to the lid 2 in the rotary drive unit 21 to constantly cool the cooling water by providing a flow path to the lid 2. Cooling water is taken out from a cooling water outlet 9. The electrode 3 uses a commercially available water-cooled torch, is inserted through a cooling water inlet 7 and is taken out through a cooling water outlet 8 to prevent overheating.

【0025】[0025]

【発明の効果】本発明によれば、組立て隙間を持つ容器
全体を専用の真空容器に入れて真空排気し封止後所定圧
力までアルゴンガスで置換するため容器内外を常に同圧
状態に保ちタングステン電極よりアーク発生させ円筒金
属容器を全周溶接封止するため封止及び脱気を目的とし
た専用の孔を必要とせず毎回同じ信頼性のある溶接封止
が行える。又、溶接,電極トーチ部に冷却水を流すこと
で過熱による選定溶接条件、溶接容器内の圧力変動を抑
制し連続溶接封止が出来る効果がある。
According to the present invention, the entire container having an assembly gap is put in a dedicated vacuum container, evacuated, and sealed, and replaced with argon gas to a predetermined pressure. Since the arc is generated from the electrode and the entire circumference of the cylindrical metal container is welded and sealed, the same reliable welding and sealing can be performed every time without requiring a dedicated hole for sealing and degassing. In addition, by supplying cooling water to the welding and electrode torch portion, there is an effect that the selected welding conditions due to overheating and fluctuations in pressure in the welding vessel are suppressed and continuous welding sealing can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の断面図である。FIG. 1 is a sectional view of one embodiment of the present invention.

【図2】実施例における電極形状,容器と蓋の組立て図
である。
FIG. 2 is an assembly diagram of an electrode shape, a container and a lid in the embodiment.

【図3】タングステン電極径とアーク発生の関係図であ
る。
FIG. 3 is a diagram showing a relationship between a tungsten electrode diameter and arc generation.

【図4】アルゴンガス置換前の初期到達真空度による溶
接性関係図である。
FIG. 4 is a diagram showing the weldability depending on the initial vacuum degree before argon gas replacement.

【図5】従来例の断面図である。FIG. 5 is a sectional view of a conventional example.

【図6】従来例の容器断面図である。FIG. 6 is a sectional view of a conventional container.

【符号の説明】[Explanation of symbols]

1…容器、2…蓋、3…タングステン電極、4…真空容
器、5…アルゴンガス供給管、6…真空計、7,10…
冷却水取入れ口、8,9…冷却水取出し口、11,1
2,13…Oリング、14…溶接機電源コード、15…
回転駆動モータ、16…真空排気ライン、17…真空ポ
ンプ、18…真空容器扉、19…溶接機、20…真空系
バルブ、21…回転駆動部、22…アルゴンガス系バル
ブ、23…受け部、24…ナトリウム又は硫黄等の活物
質。
DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Lid, 3 ... Tungsten electrode, 4 ... Vacuum container, 5 ... Argon gas supply pipe, 6 ... Vacuum gauge, 7, 10 ...
Cooling water inlet, 8, 9 ... Cooling water outlet, 11, 1
2, 13 ... O-ring, 14 ... Welder power cord, 15 ...
Rotary drive motor, 16: vacuum exhaust line, 17: vacuum pump, 18: vacuum container door, 19: welding machine, 20: vacuum valve, 21: rotary drive unit, 22: argon gas valve, 23: receiving unit, 24 ... Active material such as sodium or sulfur.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅津 幸浩 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yukihiro Umezu 3-1-1, Sachimachi, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Plant

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】円筒金属容器内にナトリウム又は、硫黄等
の活物質を封止する装置において真空容器内を1.3×
101Pa以上の真空にする手段とアルゴンガスパージ
により4.0×103Pa以下の一定圧に制御する手段を
有しこの中に円筒金属容器を入れてアルゴンガス雰囲気
に保ちながら円筒金属容器の全周をタングステン電極ア
ルゴンガス溶接装置により封止することを特徴とするナ
トリウム−硫黄電池の減圧封止装置。
1. An apparatus for sealing an active material such as sodium or sulfur in a cylindrical metal container, wherein the inside of the vacuum container is 1.3 ×.
It has a means for making a vacuum of 10 1 Pa or more and a means for controlling the pressure to a constant value of 4.0 × 10 3 Pa or less by purging with an argon gas. A pressure reducing sealing device for a sodium-sulfur battery, wherein the entire circumference is sealed with a tungsten electrode argon gas welding device.
【請求項2】請求項1においてタングステン電極は、
1.7%〜2.2%のランタンの酸化物を保有しかつ電極
径は、2.8mm〜4.5mm、電極先端形状は、先端角度1
0度〜30度とすると共に電極と円筒金属容器の隙間を
0.5mm〜3.0mmで溶接することを特徴とするナトリウ
ム−硫黄電池の減圧封止装置。
2. The tungsten electrode according to claim 1,
Holds 1.7% to 2.2% of lanthanum oxide, electrode diameter is 2.8mm to 4.5mm, electrode tip shape is tip angle 1
A reduced pressure sealing device for a sodium-sulfur battery, wherein the device is set to 0 to 30 degrees and the gap between the electrode and the cylindrical metal container is welded to 0.5 to 3.0 mm.
【請求項3】請求項1において電極チャック部と円筒金
属容器チャック部は、1リットル/分以上の流量を有す
る冷却水を流す過熱防止機構を持つことで連続溶接する
ことを特徴とするナトリウム−硫黄電池の減圧封止装
置。
3. The sodium welding method according to claim 1, wherein the electrode chuck portion and the cylindrical metal container chuck portion are continuously welded by having an overheating prevention mechanism for flowing cooling water having a flow rate of 1 liter / minute or more. Vacuum sealing device for sulfur batteries.
【請求項4】請求項1において円筒金属容器の回転制御
機構は、真空容器の外部に設置したモータを回転源とし
回転数0.5rpm〜5rpm で円筒金属容器全周を溶接する
ことを特徴とするナトリウム−硫黄電池の減圧封止装
置。
4. The rotation control mechanism for a cylindrical metal container according to claim 1, wherein the entire circumference of the cylindrical metal container is welded at a rotation speed of 0.5 to 5 rpm using a motor installed outside the vacuum container as a rotation source. Pressure reducing sealing device for a sodium-sulfur battery.
【請求項5】請求項1において円筒金属容器の溶接電源
は、真空容器の外部に設置した直流溶接電源で電流値5
0A〜180Aで円筒金属容器全周を溶接することを特
徴とするナトリウム−硫黄電池の減圧封止装置。
5. The welding power source for a cylindrical metal container according to claim 1, wherein the welding power source is a direct current welding power source installed outside the vacuum container and has a current value of 5 mm.
A reduced pressure sealing device for a sodium-sulfur battery, wherein the entire circumference of a cylindrical metal container is welded at 0A to 180A.
【請求項6】円筒金属容器の回転制御機構と溶接電源を
真空容器外部に置き電極の位置制御,ガス圧制御,ガス
流量制御,冷却水流量制御で自動溶接することを特徴と
するナトリウム−硫黄電池の減圧封止装置。
6. A sodium-sulphur automatic welding system in which a rotation control mechanism for a cylindrical metal container and a welding power source are placed outside the vacuum container, and electrode position control, gas pressure control, gas flow control, and cooling water flow control are performed automatically. Battery vacuum sealing device.
【請求項7】円筒金属容器内にナトリウムや硫黄等の活
物質を封止する方法において円筒金属容器内に活物質を
入れた後封止する部分が円筒金属容器に蓋をはめ込み溶
接する構造で、この円筒金属容器と蓋のはめ込み部に
は、円筒金属容器内の固形物以外の気体を真空排気する
のに必要な隙間を設けこれを真空容器内に装入して真空
排気することにより円筒金属容器内を真空にした後、真
空容器内を負圧に保ちつつアルゴンガスを導入し円筒金
属容器内を負圧アルゴンガス雰囲気にすると共に円筒金
属容器の内外を一定の負圧に制御した状態でタングステ
ン電極アルゴンガス溶接で円筒金属容器を回転させ封止
する溶接法で溶接することを特徴とするナトリウム−硫
黄電池の減圧封止方法。
7. A method for sealing an active material such as sodium or sulfur in a cylindrical metal container, wherein a portion to be sealed after the active material is charged into the cylindrical metal container is formed by fitting a lid to the cylindrical metal container and welding. In the fitting portion of the cylindrical metal container and the lid, a gap necessary for evacuating gas other than solid matter in the cylindrical metal container is provided, and the cylinder is inserted into the vacuum container and evacuated. After vacuuming the inside of the metal container, argon gas is introduced while maintaining the vacuum container at a negative pressure, the inside of the cylindrical metal container is set to a negative pressure argon gas atmosphere, and the inside and outside of the cylindrical metal container is controlled to a constant negative pressure. And welding by a welding method in which a cylindrical metal container is rotated and sealed by tungsten electrode argon gas welding.
【請求項8】円筒金属容器内に活物質を封止する請求項
1に記載の方法において円筒金属と蓋のはめ合い部に溶
接線とほぼ直角方向にスリット溝のガス抜き溝を有し円
筒金属容器に蓋をした状態で円筒金属容器内の真空排気
が短時間で出来るようにすると共に全周溶接でこのスリ
ット溝を同時に溶融し封止することを特徴とする請求項
7に記載のナトリウム−硫黄電池の減圧封止方法。
8. The method according to claim 1, wherein the active material is sealed in the cylindrical metal container. The cylindrical metal has a gas vent groove of a slit groove in a direction substantially perpendicular to a welding line at a fitting portion between the metal and the lid. 8. The sodium according to claim 7, wherein the cylindrical metal container is evacuated in a short time while the metal container is covered, and the slit groove is melted and sealed at the same time by full circumference welding. -A method of sealing the sulfur battery under reduced pressure.
JP9151891A 1997-06-10 1997-06-10 Sealing device for sodium-sulfur battery in reduced pressure and its manufacture Pending JPH113727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9151891A JPH113727A (en) 1997-06-10 1997-06-10 Sealing device for sodium-sulfur battery in reduced pressure and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9151891A JPH113727A (en) 1997-06-10 1997-06-10 Sealing device for sodium-sulfur battery in reduced pressure and its manufacture

Publications (1)

Publication Number Publication Date
JPH113727A true JPH113727A (en) 1999-01-06

Family

ID=15528468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9151891A Pending JPH113727A (en) 1997-06-10 1997-06-10 Sealing device for sodium-sulfur battery in reduced pressure and its manufacture

Country Status (1)

Country Link
JP (1) JPH113727A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785103A (en) * 2016-12-14 2017-05-31 上海电气钠硫储能技术有限公司 A kind of positive electrode of sodium-sulfur cell assembly method
CN106785104A (en) * 2016-12-21 2017-05-31 上海电气钠硫储能技术有限公司 A kind of method for packing of cathode of sodium-sulfur cell
CN109570722A (en) * 2018-11-21 2019-04-05 广西南宁胜祺安科技开发有限公司 A kind of vacuum welding equipment and its application method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106785103A (en) * 2016-12-14 2017-05-31 上海电气钠硫储能技术有限公司 A kind of positive electrode of sodium-sulfur cell assembly method
CN106785104A (en) * 2016-12-21 2017-05-31 上海电气钠硫储能技术有限公司 A kind of method for packing of cathode of sodium-sulfur cell
CN106785104B (en) * 2016-12-21 2019-03-08 上海电气钠硫储能技术有限公司 A kind of packaging method of cathode of sodium-sulfur cell
CN109570722A (en) * 2018-11-21 2019-04-05 广西南宁胜祺安科技开发有限公司 A kind of vacuum welding equipment and its application method

Similar Documents

Publication Publication Date Title
CA2544908C (en) Process for welding
KR20000029905A (en) Method of welding
JP2013534185A (en) Arc welding apparatus and method using MIG / MAG torch in combination with TIG torch
US3891824A (en) Method of plasma-MIG-welding
JP2022173300A (en) Powder feeding device, thermal spraying apparatus, powder feeding method, and thermal spraying method
JPH113727A (en) Sealing device for sodium-sulfur battery in reduced pressure and its manufacture
US3515839A (en) Plasma torch
JP2716299B2 (en) Improved gas shield for welding
GB1444880A (en) Arc welding method and apparatus
US4220844A (en) Method of and device for plasma MIG welding
WO1994022630A1 (en) Plasma arc welding method and apparatus for practising the same
JPH0452176B2 (en)
JPH0343944B2 (en)
JPH05230508A (en) Device for continuously feeding consumable electrode rod in rotary electrode-type metal powder producing device
JP2631574B2 (en) Non-consumable electrode for arc machining
US2933594A (en) Metals joining apparatus
JP2000271730A5 (en)
US3141953A (en) Electric arc torches
JPH1076363A (en) Method for improving strength of high energy density heat source weld zone
US4556778A (en) Arc welding at high part speeds
JP2922108B2 (en) Hollow cylindrical copper electrode plasma torch and method of operating the same
US3673373A (en) Weld support for welding apparatus
JPH09155565A (en) Electron beam welding method and its welding machine
JPS6123593A (en) Vaporized elements removing device for zircalloy tubes
KR100257375B1 (en) The welding system using vaccum shield