WO2020235236A1 - Floating driver - Google Patents

Floating driver Download PDF

Info

Publication number
WO2020235236A1
WO2020235236A1 PCT/JP2020/015489 JP2020015489W WO2020235236A1 WO 2020235236 A1 WO2020235236 A1 WO 2020235236A1 JP 2020015489 W JP2020015489 W JP 2020015489W WO 2020235236 A1 WO2020235236 A1 WO 2020235236A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
switching element
state
power supply
power
Prior art date
Application number
PCT/JP2020/015489
Other languages
French (fr)
Japanese (ja)
Inventor
大介 槇尾
Original Assignee
株式会社今仙電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社今仙電機製作所 filed Critical 株式会社今仙電機製作所
Publication of WO2020235236A1 publication Critical patent/WO2020235236A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters

Definitions

  • the present invention relates to a floating driver.
  • the floating driver referred to here is a drive circuit that drives a switching element by supplying electric power having a different potential.
  • the present invention relates to a drive circuit capable of supplying power to a switching element in a wide voltage range.
  • Switching elements that switch current on and off are widely used in various systems such as power supplies and motors.
  • driving a switching element composed of multiple stages it is necessary to output power with a different reference potential to each switching element, and so far, a separate power supply has been generated for each switching element. It was supplying power.
  • the switching element is composed of an N-channel power MOSFET, it is necessary for the drive circuit to output a gate voltage higher than a predetermined threshold voltage to the MOSFET for on / off switching control.
  • 6 and 7 show a circuit diagram of a conventional switching power supply for supplying a predetermined voltage.
  • FIG. 6 shows an example of a charge pump type switching power supply.
  • a charge pump type switching power supply In this circuit, two capacitors C11 and C12 are connected in parallel, electric charges are stored in each capacitor, and the capacitors are clamped by a switch means such as a Zener diode. There is.
  • a switch means such as a Zener diode.
  • Patent Document 1 discloses a charge pump for the purpose of reducing the mounting area on a printed wiring board and a power supply device using the same.
  • the circuit diagram of FIG. 7 shows an example of a bootstrap type switching power supply.
  • N-channel power MOSFETs are used for the output MOSFETs M11 and M12 forming the half bridge, and M13 to M17 are buffers.
  • the signal source for switching is VCK, and a resistor RL is connected as a load.
  • the switching power supply of FIG. 7 outputs a voltage stepped down according to the duty ratio of the signal source VCK with respect to the voltage of the power supply VDD.
  • the power for an arbitrary switching element can be charged when the reference voltage becomes 0V, but this method requires a moment when it becomes 0V at a certain timing, so it is composed of multiple stages. Not suitable for driving switching elements.
  • Patent Document 2 discloses a bootstrap circuit capable of charging a capacitor used in the bootstrap circuit even with a light load or no load.
  • the present invention has been made in view of the above problems, and an object to be solved is to provide a drive circuit capable of supplying electric power in a wide voltage range to a switching element at low cost.
  • the invention according to claim 1 relates to a floatin driver that drives a switching element by supplying electric power of different potentials.
  • the floating driver of the present invention has a power supply unit consisting of a first switch, a first capacitor, a second switch, and a drive unit consisting of a third switch and a fourth switch, which are connected to an input power supply. It is characterized by including a discharge unit including a fifth switch that supplies electric power to the switching element.
  • the floating driver of the present invention further includes a control unit for opening / closing the first switch, the second switch, the third switch, the fourth switch, and the fifth switch.
  • the control unit of the present invention embodies a charging mode in which an input power supply, a first switch in an on state, a first capacitor, and a second switch in an on state are connected in series to charge the first capacitor. To become.
  • the control unit embodies a power supply form in which a fourth switch in the on state, a first capacitor, a fifth switch in the on state, and a switching element are connected in series to supply electric power. Then, the control unit alternately switches between the charging form and the power supply form to supply electric power to the switching element.
  • the control unit of the floating driver of the present invention can switch between the charging form and the power supply form at a timing earlier than when the voltage of the switching element disappears, and can continue the power supply to the switching element without interruption.
  • control unit of the floating driver of the present invention charges the first capacitor by connecting the first switch in the on state, the first capacitor, and the second switch in the on state in series, and the fourth It is possible to embody a power cutoff mode in which the switch and the fifth switch are turned off, and the third switch in the on state and the switching element are connected in series. Further, the control unit embodies a power supply form in which a fourth switch in an on state, a first capacitor, a fifth switch in an on state, and a switching element are connected in series to supply power to the switching element. be able to. The control unit can alternately switch the switching element between the on state and the off state by alternately switching between the power cutoff mode and the power supply mode.
  • the floating driver according to the present invention can drive a drive circuit of a plurality of switching elements, which has conventionally required to generate and supply a separate power supply, by using a single input power supply.
  • the floating driver according to the present invention can drive a plurality of switching elements having different standards and a switching element composed of a plurality of stages at a lower cost than before.
  • the floating driver according to the present invention can form a circuit for driving a switching element without being limited by the conventional charge pump method and bootstrap method.
  • FIG. 1 is a circuit showing a circuit configuration of a floating driver according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram schematically showing a charging mode of the floating driver of the present invention.
  • FIG. 3 is a circuit diagram schematically showing a power supply form of the floating driver of the present invention.
  • FIG. 4 is a circuit diagram schematically showing a state of continuous power supply of the floating driver of the present invention.
  • FIG. 5 is a circuit diagram schematically showing the contents of on / off switching control imitating the PWM control of the floating driver of the present invention.
  • FIG. 6 is a circuit diagram of a conventional charge pump system.
  • FIG. 7 is a circuit diagram of a conventional bootstrap type.
  • FIG. 8 is a circuit diagram of the floating driver of the embodiment.
  • FIG. 9 is a diagram showing a time-dependent change in voltage obtained by on / off switching control that imitates PWM control of the floating driver of the embodiment.
  • FIG. 1 shows a circuit configuration of a floating driver 1 according to an embodiment of the present invention.
  • the floating driver 1 of the present embodiment includes a power supply unit including a first switch SW1, a first capacitor C1, a second switch SW2, and a third switch connected to a power supply VDD, which is a DC power supply. It includes a drive unit including SW3 and a fourth switch SW4, and a discharge unit including a fifth switch SW5 that supplies power to the switching element M1.
  • the fourth switch SW4 connects the capacitor C1 and the source side of the switching element M1
  • the fifth switch SW5 connects the first switch SW1 and the gate side of the switching element M1.
  • the third switch SW3 is installed between the gate and the source of the switching element M1.
  • the first switch SW1 to the fifth switch SW5 are electronic open / close switches and can be formed of transistors, MOS-FETs, and the like. Alternatively, the first switch SW1 and the fifth switch SW5 can be formed by a diode. Further, in the present embodiment, the switching element M1 can be formed of an FET or a transistor. For example, an insulated gate type bipolar transistor can be applied to the switching element M1.
  • the floating driver of the present embodiment further includes a control unit (not shown) that opens / closes the first switch SW1, the second switch SW2, the third switch SW3, the fourth switch SW4, and the fifth switch. ing.
  • the control unit can supply electric power of a predetermined potential to the switching element M1 by alternately switching the floating driver between the charging mode and the power supply mode.
  • FIG. 2 shows a floating driver 1 in a charging mode.
  • the control unit turns on the first switch SW1 and the second switch SW2 in order to charge the first capacitor C1.
  • the first switch SW1 is connected to the positive side of the power supply VDD
  • the second switch SW2 is connected to the negative side of the power supply VDD
  • the first capacitor C1 is the first switch SW1 and the second switch. Since it is arranged between SW2, when the first switch SW1 and the second switch SW2 are turned on, the power supply VDD, the first switch SW1, the first capacitor C1 and the second switch SW2 are activated. As shown by the thick line in the figure, they are connected in series. A current is supplied in the direction of the arrow A in the figure to charge the first capacitor C1.
  • FIG. 3 shows the floating driver 1 in the power supply form.
  • the control unit monitors the charging state of the first capacitor C1, confirms that a predetermined charge has been stored, and switches the first switch SW1, the second switch SW2, and the third switch SW3. Turn it off.
  • the fourth switch SW4 and the fifth switch SW5 are turned on.
  • the fifth switch SW5, the first capacitor being charged, the fourth switch SW4, and the switching element M1 are connected in series as shown by the thick line in the figure, and the arrow B indicates. A current flows in the direction, and a predetermined gate voltage is supplied to the switching element M1.
  • FIG. 4 shows the control performed by the control unit when continuously supplying power equal to or higher than the threshold voltage to the switching element M1.
  • the control unit alternately performs the charging mode shown on the left side of FIG. 4 and the power supply mode shown on the right side of FIG.
  • the third switch SW3 is maintained in the off state.
  • the control unit switches between the charging mode and the power supply mode at a timing earlier than the voltage of the switching element M1 becomes less than the threshold value, thereby interrupting the supply of the gate voltage equal to or higher than the threshold voltage to the switching element M1. You can continue without letting.
  • the charge pump method it is necessary to amplify the voltage of a required number of stages according to the reference voltage of the switching element.
  • the circuit as shown in FIG. 4 cannot be driven.
  • the switching element can be driven at the same cost as the charge pump method and the bootstrap method.
  • FIG. 5 schematically shows a switching state performed by the control unit when the power supplied to the switching element M1 is periodically on / off controlled.
  • the control unit alternately switches between the charging mode shown on the left side of FIG. 5 and the power cutoff mode shown on the right side of FIG.
  • the control unit controls the first switch SW1, the second switch SW2, and the third switch SW3 in the ON state, and at the same time, the fourth switch SW4 and the fifth switch. Controls SW5 and SW5 to the off state.
  • a circuit in which the third switch and the switching element are connected in series is formed, and the switching element M1 is cut off from the power supply VDD.
  • the control unit When the control unit periodically switches between the power supply mode and the power cutoff mode, the power supplied to the switching element M1 is periodically supplied and cut off, and the switching element M1 is periodically turned on. And switch to the off state. As a result, such periodic on / off control of the switching element M1 enables pulse width modulation control (PWM control) of the switching element M1.
  • PWM control pulse width modulation control
  • the same control is performed by the charge pump method, it is necessary to amplify the voltage of the required number of stages according to the reference voltage of the switching element.
  • the circuit as shown in FIG. 5 cannot be driven.
  • the switching element can be driven at the same cost as the charge pump method and the bootstrap method.
  • FIG. 8 shows a circuit diagram of the floating driver of this embodiment.
  • a DC power supply with a rating of 12 V is used for the power supply VDD.
  • a diode is used for the first switch SW1 and the fifth switch SW5.
  • An NPN driver transistor is used for the second switch SW2 and the third switch SW3.
  • a transistor for a PNP driver is used for the fourth switch SW4.
  • FIG. 9 shows a waveform diagram of the voltage output by the switching element M1 by periodically switching between the power supply mode and the power cutoff mode of the floating driver 1 of the embodiment.
  • the signal waveform indicated by the symbol Vin indicates the gate voltage input to the switching element W1 from the third switch SW3.
  • the sinusoidal curve shown by the thick line is the source voltage waveform of the switching element M1.
  • the floating driver 1 of this embodiment can supply electric power to the switching element W1 in a wide voltage range despite its simple configuration.
  • the floating driver 1 of this embodiment can be configured at a lower cost, and can stably drive the switching element W1.
  • the configuration of the floating driver described in this embodiment can be changed as appropriate.
  • the type and arrangement of the switch and the capacitor can be changed according to the required voltage of the switching element, and transistors and the like for voltage conversion and the like can be added sequentially.
  • the floating driver according to the present invention is suitably mounted on a vehicle, an electric product, or any other industrial device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Provided is a floating driver, at a low cost, which is capable of supplying, to a switching element, power with a wide range of voltages. A floating driver 1 according to the present invention is provided with: a power supply unit comprising a first switch SW1 connected to an input power supply VDD, a first capacitor C1, and a second switch SW2; a drive unit comprising a third switch SW3 and a fourth switch SW4; and a discharge unit comprising a fifth switch SW5 for supplying power to a switching element M1.

Description

フローティングドライバFloating driver
 本発明は、フローティングドライバに関する。ここでいうフローティングドライバとは、異なる電位の電力を供給してスイッチング素子を駆動する駆動回路のことである。言い換えれば、本発明は、スイッチング素子に広い電圧範囲の電源を供給することのできる駆動回路に関する。 The present invention relates to a floating driver. The floating driver referred to here is a drive circuit that drives a switching element by supplying electric power having a different potential. In other words, the present invention relates to a drive circuit capable of supplying power to a switching element in a wide voltage range.
 電源装置やモータなど様々なシステムの中で、電流のオンとオフを切り替えるスイッチング素子が広く使用されている。複数段で構成されているスイッチング素子を駆動する場合は、それぞれのスイッチング素子に対して異なる基準電位の電力を出力する必要があり、これまではそれぞれのスイッチング素子に対して別電源を生成して電力を供給していた。たとえば、スイッチング素子がNチャネルのパワーMOSFETで構成されている場合、オンとオフの切り替え制御には、駆動回路によってMOSFETに所定の閾値電圧よりも高いゲート電圧を出力する必要がある。図6および図7に所定の電圧を供給するための従来のスイッチング電源の回路図を示す。 Switching elements that switch current on and off are widely used in various systems such as power supplies and motors. When driving a switching element composed of multiple stages, it is necessary to output power with a different reference potential to each switching element, and so far, a separate power supply has been generated for each switching element. It was supplying power. For example, when the switching element is composed of an N-channel power MOSFET, it is necessary for the drive circuit to output a gate voltage higher than a predetermined threshold voltage to the MOSFET for on / off switching control. 6 and 7 show a circuit diagram of a conventional switching power supply for supplying a predetermined voltage.
 図6の回路図は、チャージポンプ方式のスイッチング電源の一例を示している。この回路は、2つのコンデンサC11,C12を並列に接続し、それぞれのコンデンサに電荷を蓄え、ツェナーダイオードのようなスイッチ手段によってクランプし、コンデンサの接続を直列にして約2倍の電圧を得ている。コンデンサの数を増やすことによって原理上は任意倍率で昇圧した電圧が得られるが、一方で、接続の段数を上げるごとに電圧降下し、またクランプで電力を消費する。このため、高い電圧を取得するのは困難になる。特許文献1には、プリント配線基板上の実装面積削減を目的としたチャージポンプとこれを用いた電源装置が開示されている。 The circuit diagram of FIG. 6 shows an example of a charge pump type switching power supply. In this circuit, two capacitors C11 and C12 are connected in parallel, electric charges are stored in each capacitor, and the capacitors are clamped by a switch means such as a Zener diode. There is. By increasing the number of capacitors, a voltage boosted at an arbitrary magnification can be obtained in principle, but on the other hand, the voltage drops as the number of connection stages is increased, and power is consumed by the clamp. Therefore, it becomes difficult to obtain a high voltage. Patent Document 1 discloses a charge pump for the purpose of reducing the mounting area on a printed wiring board and a power supply device using the same.
 図7の回路図は、ブートスストラップ方式のスイッチング電源の一例を示している。ハーフブリッジを形成している出力MOSFETのM11とM12にNチャネルのパワーMOSFETを用いており、M13からM17がバッファーである。スイッチング用の信号源はVCKで、負荷として抵抗RLを接続している。図7のスイッチング電源は、電源VDDの電圧に対して、信号源VCKのデューティ比に従って降圧した電圧を出力する。ブートストラップ方式では、基準電圧が0Vとなった時点で任意のスイッチング素子用電力を充電することができるが、この方式では、あるタイミングで0Vとなる瞬間を必要とするため、複数段で構成されるスイッチング素子の駆動には適していない。特許文献2には、軽負荷や無負荷であっても、ブートストラップ回路に用いられるコンデンサに充電が可能なブートストラップ回路が開示されている。 The circuit diagram of FIG. 7 shows an example of a bootstrap type switching power supply. N-channel power MOSFETs are used for the output MOSFETs M11 and M12 forming the half bridge, and M13 to M17 are buffers. The signal source for switching is VCK, and a resistor RL is connected as a load. The switching power supply of FIG. 7 outputs a voltage stepped down according to the duty ratio of the signal source VCK with respect to the voltage of the power supply VDD. In the bootstrap method, the power for an arbitrary switching element can be charged when the reference voltage becomes 0V, but this method requires a moment when it becomes 0V at a certain timing, so it is composed of multiple stages. Not suitable for driving switching elements. Patent Document 2 discloses a bootstrap circuit capable of charging a capacitor used in the bootstrap circuit even with a light load or no load.
 このほか、DCDCコンバータを用いてスイッチング素子の基準電圧とは異なる一定の出力電位を得る方法があるが、チャージポンプ方式やブートストラップ方式と比較して、より複雑で高コストな回路構成となる。 In addition, there is a method of obtaining a constant output potential different from the reference voltage of the switching element using a DCDC converter, but the circuit configuration is more complicated and costly than the charge pump method or bootstrap method.
特開2013-74713号公報Japanese Unexamined Patent Publication No. 2013-74713 特開2009-106115公報JP-A-2009-106115
 電位差のある回路の中で、複数のスイッチング素子に異なる電位の電力を供給する場合、従来は、回路が複雑化し、高価なものとなる傾向があった。また、安定した素子の駆動が困難となる場合があった。 In a circuit with a potential difference, when power of different potentials is supplied to a plurality of switching elements, the circuit has conventionally tended to be complicated and expensive. In addition, it may be difficult to drive the element in a stable manner.
 本発明は上記問題点に鑑みてなされたものであって、スイッチング素子に対して広い電圧範囲の電力を供給することのできる駆動回路を安価に提供することを解決すべき課題としている。 The present invention has been made in view of the above problems, and an object to be solved is to provide a drive circuit capable of supplying electric power in a wide voltage range to a switching element at low cost.
 請求項1にかかる発明は、異なる電位の電力を供給してスイッチング素子を駆動するフローティンドライバに関する。本発明のフローティングドライバは、入力電源に接続されている、第一のスイッチと、第一のコンデンサと、第二のスイッチからなる電源部と、第三のスイッチ及び第四のスイッチからなる駆動部と、スイッチング素子に電力を供給する第五のスイッチからなる放電部と、を備えていることを特徴とする。 The invention according to claim 1 relates to a floatin driver that drives a switching element by supplying electric power of different potentials. The floating driver of the present invention has a power supply unit consisting of a first switch, a first capacitor, a second switch, and a drive unit consisting of a third switch and a fourth switch, which are connected to an input power supply. It is characterized by including a discharge unit including a fifth switch that supplies electric power to the switching element.
 本発明のフローティングドライバは、第一のスイッチ、第二のスイッチ、第三のスイッチ、第四のスイッチ、および第五のスイッチの開閉操作を行う制御部をさらに備えていることが好ましい。本発明の制御部は、入力電源と、オン状態の第一のスイッチと、第一のコンデンサと、オン状態の第二のスイッチとを直列接続して第一のコンデンサを充電する充電形態を具現化する。また制御部は、オン状態の第四のスイッチと、第一のコンデンサと、オン状態の第五のスイッチと、スイッチング素子とを直列接続して電力を供給する電源供給形態を具現化する。そして制御部は、充電形態と電源供給形態とを交互に切り替えて、スイッチング素子に電力を供給する。 It is preferable that the floating driver of the present invention further includes a control unit for opening / closing the first switch, the second switch, the third switch, the fourth switch, and the fifth switch. The control unit of the present invention embodies a charging mode in which an input power supply, a first switch in an on state, a first capacitor, and a second switch in an on state are connected in series to charge the first capacitor. To become. Further, the control unit embodies a power supply form in which a fourth switch in the on state, a first capacitor, a fifth switch in the on state, and a switching element are connected in series to supply electric power. Then, the control unit alternately switches between the charging form and the power supply form to supply electric power to the switching element.
 本発明のフローティングドライバの制御部は、充電形態と電源供給形態とを、スイッチング素子の電圧がなくなるよりも早いタイミングで切り替えて、スイッチング素子への電力の供給を途切れることなく継続することができる。 The control unit of the floating driver of the present invention can switch between the charging form and the power supply form at a timing earlier than when the voltage of the switching element disappears, and can continue the power supply to the switching element without interruption.
 また、本発明のフローティングドライバの制御部は、オン状態の第一のスイッチと第一のコンデンサとオン状態の第二のスイッチとを直列接続して第一のコンデンサを充電し、且つ第四のスイッチと第五のスイッチとをオフとし、更にオン状態の第三のスイッチとスイッチング素子とを直列接続する、電源遮断形態を具現化することができる。また制御部は、オン状態の第四のスイッチと第一のコンデンサとオン状態の第五のスイッチとスイッチング素子とを直列接続してスイッチング素子に電力を供給する電源供給形態と、を具現化することができる。制御部は、電源遮断形態と電源供給形態とをを交互に切り替えることで、スイッチング素子をオン状態とオフ状態に交互に切り替えることができる。 Further, the control unit of the floating driver of the present invention charges the first capacitor by connecting the first switch in the on state, the first capacitor, and the second switch in the on state in series, and the fourth It is possible to embody a power cutoff mode in which the switch and the fifth switch are turned off, and the third switch in the on state and the switching element are connected in series. Further, the control unit embodies a power supply form in which a fourth switch in an on state, a first capacitor, a fifth switch in an on state, and a switching element are connected in series to supply power to the switching element. be able to. The control unit can alternately switch the switching element between the on state and the off state by alternately switching between the power cutoff mode and the power supply mode.
 本発明に係るフローティングドライバは、これまで別電源を生成して供給する必要があった複数のスイッチング素子の駆動回路に対して、単一の入力電源を用いて駆動することができる。 The floating driver according to the present invention can drive a drive circuit of a plurality of switching elements, which has conventionally required to generate and supply a separate power supply, by using a single input power supply.
 本発明にかかるフローティングドライバは、基準の異なる複数のスイッチング素子や、複数段で構成されるスイッチング素子を、従来よりも低コストで駆動することができる。 The floating driver according to the present invention can drive a plurality of switching elements having different standards and a switching element composed of a plurality of stages at a lower cost than before.
 本発明にかかるフローティングドライバは、従来のチャージポンプ方式やブートストラップ方式のような制限を受けることなくスイッチング素子を駆動する回路を構成することができる。 The floating driver according to the present invention can form a circuit for driving a switching element without being limited by the conventional charge pump method and bootstrap method.
図1は、本発明の実施形態に従ったフローティングドライバの回路構成を示す回路である。FIG. 1 is a circuit showing a circuit configuration of a floating driver according to an embodiment of the present invention. 図2は、本発明のフローティングドライバの充電形態を模式的に示す回路図である。FIG. 2 is a circuit diagram schematically showing a charging mode of the floating driver of the present invention. 図3は、本発明のフローティングドライバの電源供給形態を模式的に示す回路図である。FIG. 3 is a circuit diagram schematically showing a power supply form of the floating driver of the present invention. 図4は、本発明のフローティングドライバの継続的な電源供給の状態を模式的に示す回路図である。FIG. 4 is a circuit diagram schematically showing a state of continuous power supply of the floating driver of the present invention. 図5は、本発明のフローティングドライバのPWM制御を模したオンとオフの切り替え制御の内容を模式的に示す回路図である。FIG. 5 is a circuit diagram schematically showing the contents of on / off switching control imitating the PWM control of the floating driver of the present invention. 図6は、従来例のチャージポンプ方式の回路図である。FIG. 6 is a circuit diagram of a conventional charge pump system. 図7は、従来例のブートストラップ方式の回路図である。FIG. 7 is a circuit diagram of a conventional bootstrap type. 図8は、実施例のフローティングドライバの回路図である。FIG. 8 is a circuit diagram of the floating driver of the embodiment. 図9は、実施例のフローティングドライバのPWM制御を模したオンとオフの切り替え制御で得られる電圧の経時変化を示す図である。FIG. 9 is a diagram showing a time-dependent change in voltage obtained by on / off switching control that imitates PWM control of the floating driver of the embodiment.
 以下、図面を参照しつつ、本発明のフローティングドライバについて、最も好適な実施形態を説明する。図1に、本発明の一実施形態であるフローティングドライバ1の回路構成を示す。 Hereinafter, the most suitable embodiment of the floating driver of the present invention will be described with reference to the drawings. FIG. 1 shows a circuit configuration of a floating driver 1 according to an embodiment of the present invention.
 本実施形態のフローティングドライバ1は、直流電源である電源VDDに接続されている、第一のスイッチSW1と、第一のコンデンサC1と、第二のスイッチSW2からなる電源部と、第三のスイッチSW3及び第四のスイッチSW4からなる駆動部と、スイッチング素子M1に電力を供給する第五のスイッチSW5からなる放電部と、を備えている。第四のスイッチSW4はコンデンサC1とスイッチング素子M1のソース側とを接続しており、第五のスイッチSW5は、第一のスイッチSW1とスイッチング素子M1のゲート側とを接続している。また、第三のスイッチSW3は、スイッチング素子M1のゲートとソースの間に設置されている。 The floating driver 1 of the present embodiment includes a power supply unit including a first switch SW1, a first capacitor C1, a second switch SW2, and a third switch connected to a power supply VDD, which is a DC power supply. It includes a drive unit including SW3 and a fourth switch SW4, and a discharge unit including a fifth switch SW5 that supplies power to the switching element M1. The fourth switch SW4 connects the capacitor C1 and the source side of the switching element M1, and the fifth switch SW5 connects the first switch SW1 and the gate side of the switching element M1. Further, the third switch SW3 is installed between the gate and the source of the switching element M1.
 第一のスイッチSW1から第五のスイッチSW5までは、電子開閉スイッチでありトランジスタ、MOS-FET等で形成することができる。あるいは、第一のスイッチSW1と第五のスイッチSW5を、ダイオードで形成することができる。また、本実施形態において、スイッチング素子M1は、FETまたはトランジスタで形成することができる。たとえば、スイッチング素子M1に、絶縁ゲート型バイポーラートランジスタを適用することができる。 The first switch SW1 to the fifth switch SW5 are electronic open / close switches and can be formed of transistors, MOS-FETs, and the like. Alternatively, the first switch SW1 and the fifth switch SW5 can be formed by a diode. Further, in the present embodiment, the switching element M1 can be formed of an FET or a transistor. For example, an insulated gate type bipolar transistor can be applied to the switching element M1.
 本実施形態のフローティングドライバは、第一のスイッチSW1、第二のスイッチSW2、第三のスイッチSW3、第四のスイッチSW4、および第五のスイッチの開閉操作を行う、図示されない制御部をさらに備えている。制御部は、フローティングドライバを、充電形態と、電源供給形態とに交互に切り替えることによって、スイッチング素子M1に所定の電位の電力を供給することができる。 The floating driver of the present embodiment further includes a control unit (not shown) that opens / closes the first switch SW1, the second switch SW2, the third switch SW3, the fourth switch SW4, and the fifth switch. ing. The control unit can supply electric power of a predetermined potential to the switching element M1 by alternately switching the floating driver between the charging mode and the power supply mode.
 図2に、充電形態のフローティングドライバ1を示す。制御部は、第一のコンデンサC1を充電するために、第一のスイッチSW1と第二のスイッチSW2をオン状態にする。第一のスイッチSW1は電源VDDの正極側に接続されており、第二のスイッチSW2は電源VDDの負極側に接続されており、第一のコンデンサC1は第一のスイッチSW1と第二のスイッチSW2の間に配置されているので、第一のスイッチSW1と第二のスイッチSW2とがオン状態になると、電源VDDと第一のスイッチSW1と第一のコンデンサC1と第二のスイッチSW2とが図中太線で示されているように直列接続された状態となる。図中の矢印Aの方向に電流が供給されて、第一のコンデンサC1が充電される。 FIG. 2 shows a floating driver 1 in a charging mode. The control unit turns on the first switch SW1 and the second switch SW2 in order to charge the first capacitor C1. The first switch SW1 is connected to the positive side of the power supply VDD, the second switch SW2 is connected to the negative side of the power supply VDD, and the first capacitor C1 is the first switch SW1 and the second switch. Since it is arranged between SW2, when the first switch SW1 and the second switch SW2 are turned on, the power supply VDD, the first switch SW1, the first capacitor C1 and the second switch SW2 are activated. As shown by the thick line in the figure, they are connected in series. A current is supplied in the direction of the arrow A in the figure to charge the first capacitor C1.
 図3に、電源供給形態のフローティングドライバ1を示す。制御部は、第一のコンデンサC1の充電状態を監視しており、所定の電荷が保存されたことを確認し、第一のスイッチSW1と、第二のスイッチSW2と、第三のスイッチSW3をオフ状態にする。同時に、第四のスイッチSW4と第五のスイッチSW5とをオン状態にする。これにより、第五のスイッチSW5と、充電されている第一のコンデンサと、第四のスイッチSW4と、スイッチング素子M1とが図中太線で示されているように直列接続されて、矢印Bの方向に電流が流れ、スイッチング素子M1に所定のゲート電圧が供給される。 FIG. 3 shows the floating driver 1 in the power supply form. The control unit monitors the charging state of the first capacitor C1, confirms that a predetermined charge has been stored, and switches the first switch SW1, the second switch SW2, and the third switch SW3. Turn it off. At the same time, the fourth switch SW4 and the fifth switch SW5 are turned on. As a result, the fifth switch SW5, the first capacitor being charged, the fourth switch SW4, and the switching element M1 are connected in series as shown by the thick line in the figure, and the arrow B indicates. A current flows in the direction, and a predetermined gate voltage is supplied to the switching element M1.
 図4に、スイッチング素子M1に対して、しきい値電圧以上の電力を継続的に供給する場合の、制御部の行う制御を示す。制御部は、電源供給を途切れることなく継続する場合、図4左側に示す充電形態と、図4右側に示す電源供給形態とを交互に行う。このとき、第三のスイッチSW3はオフの状態に維持される。制御部は、スイッチング素子M1の電圧がしきい値未満となるよりも早いタイミングで充電形態と電源供給形態とを切り替えることで、スイッチング素子M1へのしきい値電圧以上のゲート電圧の供給を途切れさせることなく継続することができる。チャージポンプ法によってこのような継続的な電源供給を行う場合、スイッチング素子の基準電圧に応じた必要な段数の電圧増幅が必要である。また、ブートストラップ方式に基づいた場合、図4に示したような回路は駆動することができない。しかし、本発明の実施形態に基づけば、チャージポンプ方式やブートストラップ方式と同等の費用で、スイッチング素子を駆動することができる。 FIG. 4 shows the control performed by the control unit when continuously supplying power equal to or higher than the threshold voltage to the switching element M1. When the power supply is continued without interruption, the control unit alternately performs the charging mode shown on the left side of FIG. 4 and the power supply mode shown on the right side of FIG. At this time, the third switch SW3 is maintained in the off state. The control unit switches between the charging mode and the power supply mode at a timing earlier than the voltage of the switching element M1 becomes less than the threshold value, thereby interrupting the supply of the gate voltage equal to or higher than the threshold voltage to the switching element M1. You can continue without letting. When such continuous power supply is performed by the charge pump method, it is necessary to amplify the voltage of a required number of stages according to the reference voltage of the switching element. Further, when the bootstrap method is used, the circuit as shown in FIG. 4 cannot be driven. However, based on the embodiment of the present invention, the switching element can be driven at the same cost as the charge pump method and the bootstrap method.
 図5に、スイッチング素子M1に供給する電力を周期的にオンオフ制御する場合に制御部が行う切り替え状態を模式的に示す。制御部は、図5左側に示す充電形態と、図5右側に示す電源遮断形態とを交互に切り替える。電源遮断形態とするとき、制御部は、第一のスイッチSW1と、第二のスイッチSW2と、第三のスイッチSW3とをオン状態に制御し、同時に、第四のスイッチSW4と第五のスイッチSW5とをオフ状態に制御する。これにより、第一のコンデンサC1を充電すると同時に、第三のスイッチとスイッチング素子とが直列接続となった回路が形成されて、スイッチング素子M1は電源VDDから遮断される。 FIG. 5 schematically shows a switching state performed by the control unit when the power supplied to the switching element M1 is periodically on / off controlled. The control unit alternately switches between the charging mode shown on the left side of FIG. 5 and the power cutoff mode shown on the right side of FIG. In the power cutoff mode, the control unit controls the first switch SW1, the second switch SW2, and the third switch SW3 in the ON state, and at the same time, the fourth switch SW4 and the fifth switch. Controls SW5 and SW5 to the off state. As a result, at the same time as charging the first capacitor C1, a circuit in which the third switch and the switching element are connected in series is formed, and the switching element M1 is cut off from the power supply VDD.
 制御部が、電源供給形態と電源遮断形態とを周期的に切り替えることで、スイッチング素子M1に供給される電力は周期的に供給と遮断を繰り返すことになり、スイッチング素子M1が周期的にオン状態とオフ状態に切り替わる。このようなスイッチング素子M1の周期的なオンオフ制御は、結果として、スイッチング素子M1のパルス幅変調制御(PWM制御)を可能とする。同様の制御をチャージポンプ方式で行う場合、スイッチング素子の基準電圧に応じた必要な段数の電圧増幅が必要となる。またブートストラップ方式では、図5に示した様な回路は駆動できない。しかし、本発明の実施形態に基づけば、チャージポンプ方式やブートストラップ方式と同等の費用で、スイッチング素子を駆動することができる。 When the control unit periodically switches between the power supply mode and the power cutoff mode, the power supplied to the switching element M1 is periodically supplied and cut off, and the switching element M1 is periodically turned on. And switch to the off state. As a result, such periodic on / off control of the switching element M1 enables pulse width modulation control (PWM control) of the switching element M1. When the same control is performed by the charge pump method, it is necessary to amplify the voltage of the required number of stages according to the reference voltage of the switching element. Further, in the bootstrap method, the circuit as shown in FIG. 5 cannot be driven. However, based on the embodiment of the present invention, the switching element can be driven at the same cost as the charge pump method and the bootstrap method.
 本発明を具現化したフローティングドライバの実施例について説明する。図8に、本実施例のフローティングドライバの回路図を示す。本実施例では、電源VDDに、定格12Vの直流電源を用いている。第一のスイッチSW1と第五のスイッチSW5にはダイオードを用いている。第二のスイッチSW2と第三のスイッチSW3には、NPNドライバ用トランジスタを用いている。第四のスイッチSW4には、PNPドライバ用トランジスタを用いている。以上の構成により、スイッチング素子M1には、図9に示すように、電源VDDからダイオードの電圧降下を除いた電圧を示す特性を有するゲート電圧が供給される。スイッチング素子M1には、ソースドレイン間電圧―80VのMOS-FETを用いている。 An example of a floating driver embodying the present invention will be described. FIG. 8 shows a circuit diagram of the floating driver of this embodiment. In this embodiment, a DC power supply with a rating of 12 V is used for the power supply VDD. A diode is used for the first switch SW1 and the fifth switch SW5. An NPN driver transistor is used for the second switch SW2 and the third switch SW3. A transistor for a PNP driver is used for the fourth switch SW4. With the above configuration, as shown in FIG. 9, a gate voltage having a characteristic indicating a voltage obtained by removing the voltage drop of the diode from the power supply VDD is supplied to the switching element M1. A MOS-FET having a source-drain voltage of −80 V is used for the switching element M1.
 実施例のフローティングドライバ1を電源供給形態と電源遮断形態とを周期的に切り替えることで、スイッチング素子M1が出力する電圧の波形図を図9に示す。図中、符号Vinで示した信号波形は、スイッチング素子W1に第三のスイッチSW3から入力されるゲート電圧を示している。また図中、太線で示した正弦波状の曲線は、スイッチング素子M1のソース電圧波形をしている。 FIG. 9 shows a waveform diagram of the voltage output by the switching element M1 by periodically switching between the power supply mode and the power cutoff mode of the floating driver 1 of the embodiment. In the figure, the signal waveform indicated by the symbol Vin indicates the gate voltage input to the switching element W1 from the third switch SW3. Further, in the figure, the sinusoidal curve shown by the thick line is the source voltage waveform of the switching element M1.
 本実施例のフローティングドライバ1によって、簡易な構成であるにもかかわらず、スイッチング素子W1に対して広い電圧範囲で電力を供給することができる。本実施例のフローティングドライバ1は、より安価に構成することができ、しかも安定してスイッチング素子W1を駆動することができる。 The floating driver 1 of this embodiment can supply electric power to the switching element W1 in a wide voltage range despite its simple configuration. The floating driver 1 of this embodiment can be configured at a lower cost, and can stably drive the switching element W1.
 本実施例で説明したフローティングドライバの構成は、適宜変更が可能である。例えば、要求されるスイッチング素子の電圧に応じて、スイッチとコンデンサの種類および配置を変更することが可能であり、電圧の変換やのためのトランジスタ等を逐次追加することができる。 The configuration of the floating driver described in this embodiment can be changed as appropriate. For example, the type and arrangement of the switch and the capacitor can be changed according to the required voltage of the switching element, and transistors and the like for voltage conversion and the like can be added sequentially.
 本発明に係るフローティングドライバは、車両、電気製品、そのほか任意の産業用機器に好適に搭載される。 The floating driver according to the present invention is suitably mounted on a vehicle, an electric product, or any other industrial device.
1  フローティングドライバ
VDD 入力電源
SW1 第一のスイッチ
SW2 第二のスイッチ
SW3 第三のスイッチ
SW4 第四のスイッチ
SW5 第五のスイッチ
C1  第一のコンデンサ
M1  スイッチング素子
1 Floating driver VDD Input power supply SW1 First switch SW2 Second switch SW3 Third switch SW4 Fourth switch SW5 Fifth switch C1 First capacitor M1 Switching element

Claims (4)

  1.  異なる電位の電力を供給してスイッチング素子を駆動するフローティングドライバであって、
     入力電源に接続されている、第一のスイッチと、第一のコンデンサと、第二のスイッチからなる電源部と、
     第三のスイッチ及び第四のスイッチからなる駆動部と、
     前記スイッチング素子に電力を供給する第五のスイッチからなる放電部と、
    を備えていることを特徴とするフローティングドライバ。
    A floating driver that drives switching elements by supplying power of different potentials.
    The power supply unit consisting of the first switch, the first capacitor, and the second switch connected to the input power supply,
    A drive unit consisting of a third switch and a fourth switch,
    A discharge unit including a fifth switch that supplies power to the switching element,
    A floating driver characterized by being equipped with.
  2.  前記第一のスイッチ、前記第二のスイッチ、前記第三のスイッチ、前記第四のスイッチ、および前記第五のスイッチの開閉操作を行う制御部をさらに備えており、
     前記制御部が、
     入力電源にオン状態の前記第一のスイッチと前記第一のコンデンサとオン状態の前記第二のスイッチとを直列接続して前記第一のコンデンサを充電する充電形態と、
     オン状態の前記第四のスイッチと前記第一のコンデンサとオン状態の前記第五のスイッチと前記スイッチング素子とを直列接続してスイッチング素子に電力を供給する電源供給形態と、
     を交互に切り替えて、スイッチング素子に電力を供給することを特徴とする請求項1に記載のフローティングドライバ。
    It further includes a control unit for opening / closing the first switch, the second switch, the third switch, the fourth switch, and the fifth switch.
    The control unit
    A charging mode in which the first switch in the ON state, the first capacitor, and the second switch in the ON state are connected in series to the input power source to charge the first capacitor.
    A power supply form in which the fourth switch in the ON state, the first capacitor, the fifth switch in the ON state, and the switching element are connected in series to supply power to the switching element.
    The floating driver according to claim 1, wherein power is supplied to the switching element by alternately switching between the two.
  3.  前記制御部が、前記充電形態と前記電源供給形態とを、前記スイッチング素子の電圧がなくなるよりも早いタイミングで切り替えて、前記スイッチング素子への電力の供給を途切れることなく継続することを特徴とする請求項2に記載のフローティングドライバ。 The control unit switches between the charging mode and the power supply mode at a timing earlier than when the voltage of the switching element disappears, and continues to supply electric power to the switching element without interruption. The floating driver according to claim 2.
  4.  前記第一のスイッチ、前記第二のスイッチ、前記第三のスイッチ、前記第四のスイッチ、および前記第五のスイッチの開閉操作を行う制御部をさらに備えており、
     前記制御部が、
     オン状態の前記第一のスイッチと前記第一のコンデンサとオン状態の前記第二のスイッチとを直列接続して前記第一のコンデンサを充電し、且つ前記第四のスイッチと前記第五のスイッチとをオフとし、更にオン状態の前記第三のスイッチと前記スイッチング素子とを直列接続する、電源遮断形態と、
     オン状態の前記第四のスイッチと前記第一のコンデンサとオン状態の前記第五のスイッチと前記スイッチング素子とを直列接続してスイッチング素子に電力を供給する電源供給形態と、
     を交互に切り替えることで、スイッチング素子をオン状態とオフ状態に交互に切り替えることを特徴とする請求項1に記載のフローティングドライバ。
    It further includes a control unit for opening / closing the first switch, the second switch, the third switch, the fourth switch, and the fifth switch.
    The control unit
    The first switch in the ON state, the first capacitor, and the second switch in the ON state are connected in series to charge the first capacitor, and the fourth switch and the fifth switch are used. A power cutoff mode in which and is turned off and the third switch in the on state and the switching element are connected in series.
    A power supply form in which the fourth switch in the ON state, the first capacitor, the fifth switch in the ON state, and the switching element are connected in series to supply power to the switching element.
    The floating driver according to claim 1, wherein the switching element is alternately switched between an on state and an off state by alternately switching between.
PCT/JP2020/015489 2019-05-17 2020-04-06 Floating driver WO2020235236A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-093818 2019-05-17
JP2019093818A JP2020188666A (en) 2019-05-17 2019-05-17 Floating driver

Publications (1)

Publication Number Publication Date
WO2020235236A1 true WO2020235236A1 (en) 2020-11-26

Family

ID=73222989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015489 WO2020235236A1 (en) 2019-05-17 2020-04-06 Floating driver

Country Status (2)

Country Link
JP (1) JP2020188666A (en)
WO (1) WO2020235236A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007215259A (en) * 2006-02-07 2007-08-23 Matsushita Electric Ind Co Ltd Drive circuit and switching regulator using the same
JP2010199841A (en) * 2009-02-24 2010-09-09 Fujitsu Semiconductor Ltd Analog switch circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007215259A (en) * 2006-02-07 2007-08-23 Matsushita Electric Ind Co Ltd Drive circuit and switching regulator using the same
JP2010199841A (en) * 2009-02-24 2010-09-09 Fujitsu Semiconductor Ltd Analog switch circuit

Also Published As

Publication number Publication date
JP2020188666A (en) 2020-11-19

Similar Documents

Publication Publication Date Title
US7692474B2 (en) Control circuit for a high-side semiconductor switch for switching a supply voltage
US7839131B2 (en) Gate driving scheme for depletion mode devices in buck converters
US8183844B2 (en) Switching power source
JP5358082B2 (en) Source driver and liquid crystal display device using the same
KR960007352A (en) Electric Power Steering Device
JP4336941B2 (en) Load drive circuit
WO2016203691A1 (en) Switching element driving device
JP4934880B2 (en) High voltage power circuit
WO2020235236A1 (en) Floating driver
JP2013198361A (en) Motor drive circuit
JP5605263B2 (en) Load drive device
US6522557B2 (en) Inverter device
JPH1175367A (en) Dc/dc converter
WO2011052357A1 (en) Pwm limiter circuit
JP5145142B2 (en) Half bridge circuit
JP5918512B2 (en) H-type bridge circuit and motor drive device
WO2020003699A1 (en) Driving circuit of switching-element
JP6965817B2 (en) In-vehicle DC-AC inverter
JP2797338B2 (en) Gate drive circuit
US8278857B2 (en) Motor control device and controller thereof
JP6476890B2 (en) Driving device for switching element
JP6613256B2 (en) Protection circuit and load drive circuit
CN115885473A (en) Switching circuit device and power conversion device
WO2018193956A1 (en) Led drive circuit
JP5784433B2 (en) Class D amplifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20810493

Country of ref document: EP

Kind code of ref document: A1