WO2020235142A1 - Spectroscopic analysis device, spectroscopic analysis method, and computer-readable medium - Google Patents

Spectroscopic analysis device, spectroscopic analysis method, and computer-readable medium Download PDF

Info

Publication number
WO2020235142A1
WO2020235142A1 PCT/JP2020/003397 JP2020003397W WO2020235142A1 WO 2020235142 A1 WO2020235142 A1 WO 2020235142A1 JP 2020003397 W JP2020003397 W JP 2020003397W WO 2020235142 A1 WO2020235142 A1 WO 2020235142A1
Authority
WO
WIPO (PCT)
Prior art keywords
sers
observation object
sers substrate
substrate material
excitation light
Prior art date
Application number
PCT/JP2020/003397
Other languages
French (fr)
Japanese (ja)
Inventor
賢司 宮崎
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2021520048A priority Critical patent/JP7143949B2/en
Publication of WO2020235142A1 publication Critical patent/WO2020235142A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present invention relates to a spectroscopic analyzer, a spectroscopic analysis method, and a computer-readable medium.
  • a spectroscopic analyzer that acquires molecular information of an observation object using surface-enhanced Raman Scattering (SERS) is known (see Patent Document 1).
  • the intensity of SERS changes depending on the degree of chemical adsorption between the metal NP and the molecule of the observation object.
  • the type of metal NP that is strongly chemically adsorbed may differ depending on the molecule. Therefore, in the measurement of the single excitation wavelength configuration using the single metal NP, if the observation object is composed of a plurality of molecules, there is a possibility that sufficient molecular information cannot be obtained by one measurement.
  • An object of the present disclosure is to provide a spectroscopic analyzer, a spectroscopic analysis method, and a computer-readable medium that solve any of the above-mentioned problems.
  • An irradiation means for irradiating an observation object composed of a plurality of molecules arranged in contact with a plurality of SERS (Surface Enhanced Raman Scattering) substrate materials by switching excitation light having a wavelength corresponding to each SERS substrate material.
  • An information acquisition means for generating a Raman spectrum based on the Raman scattered light from the SERS substrate material with respect to the excitation light and acquiring molecular information of the observation object based on the generated Raman spectrum. It is a spectroscopic analyzer characterized by being equipped with.
  • One aspect for achieving the above objectives is A process of switching and irradiating an observation object consisting of a plurality of molecules arranged in contact with a plurality of SERS (Surface Enhanced Raman Scattering) substrate materials with excitation light having a wavelength corresponding to each SERS substrate material.
  • FIG. It is a block diagram which shows the schematic system configuration of the spectroscopic analyzer which concerns on Embodiment 1.
  • FIG. It is a figure which shows the structure which a plurality of SERS substrate materials are arranged in parallel adjacent to each other. It is a figure which shows the structure which a plurality of SERS substrate materials are arranged in parallel adjacent to each other.
  • FIG. It is a block diagram which shows the schematic system configuration of the spectroscopic analyzer which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the flow of the spectroscopic analysis method which concerns on Embodiment 1.
  • the spectroscopic analyzer acquires molecular information of the observation object X by using surface-enhanced Raman Scattering (SERS).
  • the observation object X is, for example, polystyrene composed of a plurality of molecules, bacteria (Escherichia coli, Klebsiella pneumoniae, Bacillus subtilis, yeast, aspergillus, etc.).
  • FIG. 1 is a block diagram showing a schematic system configuration of the spectroscopic analyzer according to the first embodiment.
  • the spectroscopic analyzer 1 according to the first embodiment includes a laser light source unit 2 that irradiates an observation object X with excitation light, an optical system 3 that guides and concentrates the light, and a spectroscopic unit 4 that disperses Raman scattered light. It also includes an information acquisition unit 5 that acquires molecular information of the observation object X.
  • the SERS substrate material is formed in the form of fine particles on a substrate such as glass.
  • the particles are, for example, gold, silver, copper, sodium and the like.
  • the particles of the SERS substrate material are deposited, for example, on the substrate.
  • each SERS substrate material is arranged parallel to each other and adjacent to each other with a predetermined width (about several tens of ⁇ m).
  • the observation object X is arranged in contact with each SERS substrate material.
  • three types of SERS substrate materials, silver, gold, and copper, are arranged on the substrate, but the present invention is not limited to this.
  • two or four or more types of SERS substrate materials may be arranged on the substrate, and the number of types of SERS substrate materials to be arranged may be arbitrary.
  • the laser light source unit 2 is a specific example of the irradiation means.
  • the laser light source unit 2 is configured as, for example, a semiconductor laser.
  • the laser light source unit 2 irradiates the excitation light having a wavelength corresponding to each SERS substrate material by switching at predetermined time intervals.
  • each SERS substrate material is associated with excitation light having a wavelength that easily causes SERS.
  • the laser light source unit 2 alternately irradiates the excitation light of each wavelength every minute time (for example, every 100 ms). More specifically, as shown in FIG. 2A, the laser light source unit 2 irradiates the silver SERS substrate material with the first laser beam for 100 ms on the substrate. The laser light source unit 2 switches from the first laser light to the second laser light, and irradiates the gold SERS substrate material with the second laser light for 100 ms on the substrate. The laser light source unit 2 switches from the second laser light to the third laser light, and irradiates the copper SERS substrate material on the substrate with the third laser light for 100 ms. The laser light source unit 2 repeats the irradiation of the laser light.
  • the predetermined width of each SERS substrate material is as wide as several tens of ⁇ m. Therefore, the laser light source unit 2 individually irradiates each SERS substrate material with the first to third laser beams.
  • the predetermined width of each SERS substrate material may be as narrow as several tens to several hundreds nm.
  • the laser light source unit 2 may irradiate the substantially same region with the first to third laser beams.
  • each SERS substrate material has a different wavelength for surface plasmon resonance. Therefore, even if three SERS substrate materials are irradiated with laser light at the same time, the only SERS substrate material that exhibits the SERS effect is the SERS substrate material corresponding to the laser wavelength, and the SERS substrate material is chemically adsorbed. This is because the SERS light from the molecule can be obtained.
  • the optical system 3 collects the excitation light from the laser light source unit 2 and guides it to the observation object X.
  • the optical system 3 guides Raman scattered light from the SERS substrate material to the spectroscopic unit 4.
  • the optical system 3 is composed of, for example, a lens, a mirror, a dichroic mirror, and the like.
  • the spectroscopic unit 4 disperses Raman scattered light emitted from the SERS substrate material with respect to the excitation light.
  • the spectroscopic unit 4 is composed of, for example, a polychromator incorporating a diffraction grating.
  • the information acquisition unit 5 is a specific example of the information acquisition means.
  • the information acquisition unit 5 generates a Raman spectrum based on the Raman scattered light dispersed by the spectroscopic unit 4.
  • the information acquisition unit 5 acquires the molecular information of the observation object X based on the generated Raman spectrum.
  • the information acquisition unit 5 can acquire information such as the structure, crystallinity, and residual stress of each molecule constituting the observation object X, for example.
  • the information acquisition unit 5 is, for example, a memory 52 composed of a CPU (Central Processing Unit) 51 that performs arithmetic processing and the like, a ROM (Read Only Memory) and a RAM (Random Access Memory) that store arithmetic programs and the like executed by the CPU 51.
  • the hardware is configured around a microcomputer including an interface unit (I / F) 53 that inputs and outputs signals to and from the outside.
  • the CPU 51, the memory 52, and the interface unit 53 are connected to each other via a data bus or the like.
  • the observation object X is composed of a plurality of molecules, there is a possibility that sufficient molecular information cannot be obtained by one measurement.
  • the measurement is performed a plurality of times, the efficiency of the measurement work may decrease.
  • the spectroscopic analyzer 1 has a SERS substrate material for an observation object X composed of a plurality of molecules arranged in contact with the plurality of SERS substrate materials.
  • a Raman spectrum is generated based on the laser light source unit 2 that switches and irradiates the excitation light of the wavelength corresponding to the above, and the Raman scattered light from the SERS substrate material for the excitation light, and the observation object is based on the generated Raman spectrum. It includes an information acquisition unit 5 for acquiring molecular information of X.
  • FIG. 4 is a flowchart showing the flow of the spectroscopic analysis method according to the first embodiment.
  • the laser light source unit 2 irradiates the observation object X composed of a plurality of molecules with excitation light having a wavelength corresponding to each SERS substrate material (step S401).
  • the spectroscopic unit 4 disperses the Raman scattered light from the SERS substrate material with respect to the excitation light of the laser light source unit 2 (step S402).
  • the information acquisition unit 5 generates a Raman spectrum based on the Raman scattered light dispersed by the spectroscopic unit 4 (step S403).
  • the information acquisition unit 5 acquires the molecular information of the observation object X based on the generated Raman spectrum (step S404).
  • the spectroscopic analyzer 1 includes a laser light source unit 2 that switches and irradiates an observation object X composed of a plurality of molecules with excitation light having a wavelength corresponding to each SERS substrate material, and excitation. It is provided with an information acquisition unit 5 that generates a Raman spectrum based on Raman scattered light from the SERS substrate material with respect to light and acquires molecular information of the observation object X based on the generated Raman spectrum.
  • Raman scattered light for each wavelength of the excitation light can be acquired, so that the amount of information acquired for the molecular information of the observation object X can be increased. Further, since it is sufficient to prepare for the measurement of the observation object X once, the efficiency of the measurement work does not decrease. That is, it is possible to improve the efficiency of the measurement work while increasing the amount of molecular information acquired for the observation object X.
  • FIG. 5 is a schematic view showing a schematic configuration of the spectroscopic analyzer according to the second embodiment.
  • the substrate is a tape (hereinafter referred to as a substrate tape) X1 on which fine particles of the SERS substrate material are vapor-deposited.
  • a laser light source unit 2 As shown in FIG. 5, a laser light source unit 2, an optical system 3, a spectroscopic unit 4, an information acquisition unit 5, and first and second rolls 6 and 7 are arranged in the housing 8. There is.
  • the housing 8 is provided with a vent 81.
  • the vent 81 is provided with an openable / closable cover 82. When the cover 82 is opened, for example, the outside air sucked by a suction device such as a fan flows into the housing 8 through the vent 81.
  • the substrate tape X1 is made of, for example, polyester.
  • the substrate tape X1 unwound from the first roll 6 is wound around the second roll 7.
  • the observation object X such as bacteria that has flowed into the vent 81 of the housing 8 adheres to the substrate tape X1 between the first roll 6 and the second roll 7.
  • the laser light source unit 2 continuously irradiates the observation object X adhering to the substrate tape X1 between the first roll 6 and the second roll 7 with excitation light.
  • the information acquisition unit 5 continuously acquires the molecular information of the observation object X based on the Raman scattered light from the observation object X.
  • the first roll 6 feeds out the substrate tape X1 at regular time intervals, and the second roll 7 winds up the substrate tape X1.
  • the molecular information of the observation object X can be continuously acquired based on the Raman scattered light of the observation object X adhering to the substrate tape X1 over a certain period of time.
  • the substrate tape X1 to which the observation object X is attached can be wound up by the second roll 7 and stored in the housing 8.
  • the optical system 3 includes a first lens 31, first and second dichroic mirrors 32 and 33, a second lens 34, a first mirror 35, and a third lens 36.
  • the laser light source unit 2, the first lens 31, the first and second dichroic mirrors 32 and 33, and the second lens 34 are arranged on the same optical axis, for example.
  • the excitation light emitted from the laser light source unit 2 is focused by the first lens 31 and passes through the first and second dichroic mirrors 32 and 33.
  • the transmitted excitation light is focused by the second lens 34 and irradiated to the observation object X attached to the substrate tape X1.
  • the second dichroic mirror 33 deflects a part of the Raman scattered light from the observation object X by approximately 90 ° and reflects it toward the first mirror 35.
  • the first mirror 35, the spectroscopic unit 4, and the information acquisition unit 5 are arranged on the same optical axis.
  • the first mirror 35 is configured as, for example, a diffraction grating.
  • the first mirror 35 deflects the Raman scattered light from the second dichroic mirror 33 by approximately 90 ° and reflects it toward the spectroscopic unit 4.
  • the spectroscopic unit 4 is configured as, for example, a lens.
  • the spectroscopic unit 4 disperses the Raman scattered light from the first mirror 35.
  • the information acquisition unit 5 is configured as an area sensor.
  • the information acquisition unit 5 generates a Raman spectrum of Raman scattered light dispersed by the spectroscopic unit 4 and acquires molecular information of the observation object X.
  • each member can be compactly housed in the housing 8 and the spectroscopic analyzer 1 can be miniaturized.
  • Embodiment 3 In the third embodiment, the observation object X is arranged so as to be sandwiched between the SERS substrate materials.
  • silver nanoparticles R1 are vapor-deposited on the surface of the lower first substrate.
  • Gold nanoparticles R2 are deposited on the surface of the upper second substrate.
  • the observation object X is in contact with and sandwiched between the silver nanoparticles R1 of the first substrate and the gold nanoparticles R2 of the second substrate.
  • the laser light source unit 2 alternately irradiates the observation object X such as a dead grass bacterium with a red laser corresponding to gold nanoparticles R2 and a green laser corresponding to silver nanoparticles R1 every minute time. To do.
  • the information acquisition unit 5 generates each Raman spectrum based on the Raman scattered light of the red laser and the green laser, and acquires the molecular information of the observation target X.
  • the third embodiment it is possible to increase the acquisition amount of the molecular information of the observation object X and improve the efficiency of the measurement work with a simpler configuration.
  • the SERS substrate material is formed in the form of fine particles on the substrate. In this case, it may be difficult to strictly control the particle size, shape, etc. of the fine particles.
  • the SERS substrate material is configured as a substrate, and a plurality of fine concave shapes are formed on the surface of the SERS substrate material.
  • the control for forming fine concave shapes is easier than the control for forming fine particles. Therefore, fine concave shapes can be processed with higher accuracy on the surface of the SERS substrate material, and the reproducibility is excellent.
  • the concave shape is arranged in a concentric circle, a concentric polygonal shape, or a corrugated shape. Further, the concave arrangement may be changed according to the observation object X.
  • the present invention can also be realized, for example, by causing the CPU to execute a computer program for the process shown in FIG.
  • Non-temporary computer-readable media include various types of tangible storage media.
  • Examples of non-temporary computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, Includes CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory)).
  • the program may be supplied to the computer by various types of transient computer readable media.
  • Examples of temporary computer-readable media include electrical, optical, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • Spectroscopy analyzer 1 Spectroscopy analyzer 2 Laser light source unit 3 Optical system 4 Spectroscopy unit 5 Information acquisition unit 6 1st roll 7 2nd roll 8 Housing 9 Line sensor 31 1st lens 32 1st dichroic mirror 33 2nd dichroic mirror 34 2nd lens 35 1st mirror 36 3rd lens 81 Vent 82 Cover

Abstract

The present invention streamlines measurement work while increasing the amount of molecular information that is acquired about an observed object. A spectroscopic analysis device that comprises: a radiation means that radiates excitation light at an observed object that comprises a plurality of molecules and is arranged so as to contact a plurality of surface-enhanced Raman scattering (SERS) substrate materials, the wavelength of the excitation light being switched to correspond to the SERS substrate materials; and an information acquisition means that generates a Raman spectrum on the basis of excitation light that is Raman scattered by the SERS substrate materials and acquires molecular information about the observed object on the basis of the generated Raman spectrum.

Description

分光分析装置、分光分析方法及びコンピュータ可読媒体Spectroscopy, spectroscopic methods and computer-readable media
 本発明は、分光分析装置、分光分析方法及びコンピュータ可読媒体に関する。 The present invention relates to a spectroscopic analyzer, a spectroscopic analysis method, and a computer-readable medium.
 表面増強ラマン散乱分光(SERS:Surface Enhanced Raman Scattering)を利用して観測対象物の分子情報を取得する分光分析装置が知られている(特許文献1参照)。 A spectroscopic analyzer that acquires molecular information of an observation object using surface-enhanced Raman Scattering (SERS) is known (see Patent Document 1).
 例えば、SERSの強度は金属NPと観測対象物の分子との化学吸着の度合いによって変わる。しかし、分子のよって強く化学吸着する金属NPの種類が異なる場合がある。このため、単一金属NPを用いた単一励起波長構成の測定では観測対象物が複数の分子で構成されている場合、一度の測定で、十分な分子情報が得られない虞がある。 For example, the intensity of SERS changes depending on the degree of chemical adsorption between the metal NP and the molecule of the observation object. However, the type of metal NP that is strongly chemically adsorbed may differ depending on the molecule. Therefore, in the measurement of the single excitation wavelength configuration using the single metal NP, if the observation object is composed of a plurality of molecules, there is a possibility that sufficient molecular information cannot be obtained by one measurement.
特開2017-211395号公報Japanese Unexamined Patent Publication No. 2017-21395
 上記分光分析装置において、例えば、観測対象物が複数の分子で構成されている場合、一度の測定で、十分な分子情報が得られない虞がある。一方、複数回の測定を行う場合、測定作業の効率が低下する虞がある。 In the above spectroscopic analyzer, for example, when the observation object is composed of a plurality of molecules, there is a risk that sufficient molecular information cannot be obtained by one measurement. On the other hand, when the measurement is performed a plurality of times, the efficiency of the measurement work may decrease.
 本開示の目的は、上述した課題のいずれかを解決する分光分析装置、分光分析方法及びコンピュータ可読媒体を提供することにある。 An object of the present disclosure is to provide a spectroscopic analyzer, a spectroscopic analysis method, and a computer-readable medium that solve any of the above-mentioned problems.
 上記目的を達成するための一態様は、
 複数のSERS(Surface Enhanced Raman Scattering)基板材料に接して配置された複数の分子からなる観測対象物に対して、該各SERS基板材料に対応する波長の励起光を切替えて照射する照射手段と、
 該励起光に対する前記SERS基板材料からのラマン散乱光に基づいて、ラマンスペクトルを生成し、該生成したラマンスペクトルに基づいて、前記観測対象物の分子情報を取得する情報取得手段と、
 を備えることを特徴とする分光分析装置
 である。
 上記目的を達成するための一態様は、
 複数のSERS(Surface Enhanced Raman Scattering)基板材料に接して配置された複数の分子からなる観測対象物に対して、該各SERS基板材料に対応する波長の励起光を切替えて照射するステップと、
 該励起光に対する前記SERS基板材料からのラマン散乱光に基づいて、ラマンスペクトルを生成し、該生成したラマンスペクトルに基づいて、前記観測対象物の分子情報を取得するステップと、
 を含む、ことを特徴とする分光分析方法
 であってもよい。
 上記目的を達成するための一態様は、
 複数のSERS(Surface Enhanced Raman Scattering)基板材料に接して配置された複数の分子からなる観測対象物に対して、該各SERS基板材料に対応する波長の励起光を切替えて照射する処理と、
 該励起光に対する前記SERS基板材料からのラマン散乱光に基づいて、ラマンスペクトルを生成し、該生成したラマンスペクトルに基づいて、前記観測対象物の分子情報を取得する処理と、
 をコンピュータに実行させる、ことを特徴とするプログラムを格納するコンピュータ可読媒体
 であってもよい。
One aspect for achieving the above objectives is
An irradiation means for irradiating an observation object composed of a plurality of molecules arranged in contact with a plurality of SERS (Surface Enhanced Raman Scattering) substrate materials by switching excitation light having a wavelength corresponding to each SERS substrate material.
An information acquisition means for generating a Raman spectrum based on the Raman scattered light from the SERS substrate material with respect to the excitation light and acquiring molecular information of the observation object based on the generated Raman spectrum.
It is a spectroscopic analyzer characterized by being equipped with.
One aspect for achieving the above objectives is
A step of switching and irradiating an observation object consisting of a plurality of molecules arranged in contact with a plurality of SERS (Surface Enhanced Raman Scattering) substrate materials with excitation light having a wavelength corresponding to each SERS substrate material.
A step of generating a Raman spectrum based on the Raman scattered light from the SERS substrate material with respect to the excitation light, and acquiring molecular information of the observation object based on the generated Raman spectrum.
It may be a spectroscopic analysis method characterized by including.
One aspect for achieving the above objectives is
A process of switching and irradiating an observation object consisting of a plurality of molecules arranged in contact with a plurality of SERS (Surface Enhanced Raman Scattering) substrate materials with excitation light having a wavelength corresponding to each SERS substrate material.
A process of generating a Raman spectrum based on the Raman scattered light from the SERS substrate material with respect to the excitation light and acquiring molecular information of the observation object based on the generated Raman spectrum.
It may be a computer-readable medium that stores a program characterized by having a computer execute the program.
 本開示によれば、上述した課題のいずれかを解決する分光分析装置、分光分析方法及びコンピュータ可読媒体を提供することができる。 According to the present disclosure, it is possible to provide a spectroscopic analyzer, a spectroscopic analysis method, and a computer-readable medium that solve any of the above-mentioned problems.
実施形態1に係る分光分析装置の概略的なシステム構成を示すブロック図である。It is a block diagram which shows the schematic system configuration of the spectroscopic analyzer which concerns on Embodiment 1. FIG. 複数のSERS基板材料が平行に隣接して配置された構成を示す図である。It is a figure which shows the structure which a plurality of SERS substrate materials are arranged in parallel adjacent to each other. 複数のSERS基板材料が平行に隣接して配置された構成を示す図である。It is a figure which shows the structure which a plurality of SERS substrate materials are arranged in parallel adjacent to each other. 実施形態1に係る分光分析装置の概略的なシステム構成を示すブロック図である。It is a block diagram which shows the schematic system configuration of the spectroscopic analyzer which concerns on Embodiment 1. FIG. 実施形態1に係る分光分析方法のフローを示すフローチャートである。It is a flowchart which shows the flow of the spectroscopic analysis method which concerns on Embodiment 1. 実施形態2に係る分光分析装置の概略的な構成を示す概略図である。It is a schematic diagram which shows the schematic structure of the spectroscopic analyzer which concerns on Embodiment 2. 観測対象物がSERS基板材料に挟み込まれるようにして配置された構成を示す図である。It is a figure which shows the structure which arranged the observation object so that it may be sandwiched between SERS substrate materials.
 実施形態1
 以下、図面を参照して本発明の実施形態について説明する。本発明の実施形態1に係る分光分析装置は、表面増強ラマン散乱光(SERS:Surface Enhanced Raman  Scattering)を利用して観測対象物Xの分子情報を取得する。観測対象物Xは、例えば、複数の分子からなるポリスチレン、細菌(大腸菌、クレブシエラ菌、枯草菌、酵母、麹菌等)などである。
Embodiment 1
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The spectroscopic analyzer according to the first embodiment of the present invention acquires molecular information of the observation object X by using surface-enhanced Raman Scattering (SERS). The observation object X is, for example, polystyrene composed of a plurality of molecules, bacteria (Escherichia coli, Klebsiella pneumoniae, Bacillus subtilis, yeast, aspergillus, etc.).
 図1は、実施形態1に係る分光分析装置の概略的なシステム構成を示すブロック図である。本実施形態1に係る分光分析装置1は、観測対象物Xに励起光を照射するレーザ光源部2と、光を導光及び集光する光学系3と、ラマン散乱光を分光する分光部4と、観測対象物Xの分子情報を取得する情報取得部5と、を備えている。 FIG. 1 is a block diagram showing a schematic system configuration of the spectroscopic analyzer according to the first embodiment. The spectroscopic analyzer 1 according to the first embodiment includes a laser light source unit 2 that irradiates an observation object X with excitation light, an optical system 3 that guides and concentrates the light, and a spectroscopic unit 4 that disperses Raman scattered light. It also includes an information acquisition unit 5 that acquires molecular information of the observation object X.
 SERS基板材料は、ガラスなどの基質上に微粒子状に形成されている。粒子は、例えば、金、銀、銅、ナトリウムなどである。SERS基板材料の粒子は、例えば、基質上に蒸着されている。 The SERS substrate material is formed in the form of fine particles on a substrate such as glass. The particles are, for example, gold, silver, copper, sodium and the like. The particles of the SERS substrate material are deposited, for example, on the substrate.
 基質上に、図2Aに示す如く、複数のSERS基板材料が平行に隣接して配置されている。例えば、各SERS基板材料は、所定幅(数十μm程度)で相互に平行かつ隣接して配置されている。観測対象物Xは、各SERS基板材料に接して配置されている。 As shown in FIG. 2A, a plurality of SERS substrate materials are arranged in parallel and adjacent to each other on the substrate. For example, each SERS substrate material is arranged parallel to each other and adjacent to each other with a predetermined width (about several tens of μm). The observation object X is arranged in contact with each SERS substrate material.
 なお、図2Aに示す一例では、基質上に銀、金、及び銅の3種類のSERS基板材料が配置されているが、これに限定されない。例えば、基質上に2種類あるいは、4種類以上のSERS基板材料が配置されてもよく、配置されるSERS基板材料の種類数は任意でよい。 In the example shown in FIG. 2A, three types of SERS substrate materials, silver, gold, and copper, are arranged on the substrate, but the present invention is not limited to this. For example, two or four or more types of SERS substrate materials may be arranged on the substrate, and the number of types of SERS substrate materials to be arranged may be arbitrary.
 レーザ光源部2は、照射手段の一具体例である。レーザ光源部2は、例えば、半導体レーザとして構成されている。レーザ光源部2は、各SERS基板材料に対応する波長の励起光を所定時間毎に切替えて照射する。例えば、各SERS基板材料に対し、SERSを起こし易い波長の励起光が対応付けられている。 The laser light source unit 2 is a specific example of the irradiation means. The laser light source unit 2 is configured as, for example, a semiconductor laser. The laser light source unit 2 irradiates the excitation light having a wavelength corresponding to each SERS substrate material by switching at predetermined time intervals. For example, each SERS substrate material is associated with excitation light having a wavelength that easily causes SERS.
 レーザ光源部2は、各波長の励起光を、微小時間毎(例えば、100ms毎)に交互に照射する。より具体的には、図2Aに示す如く、レーザ光源部2は、基質上に銀のSERS基板材料に対し、第1レーザ光を100ms照射する。レーザ光源部2は、第1レーザ光から第2レーザ光に切替え、基質上に金のSERS基板材料に対し、第2レーザ光を100ms照射する。レーザ光源部2は、第2レーザ光から第3レーザ光に切替え、基質上に銅のSERS基板材料に対し、第3レーザ光を100ms照射する。レーザ光源部2は、上記レーザ光の照射を繰り返す。 The laser light source unit 2 alternately irradiates the excitation light of each wavelength every minute time (for example, every 100 ms). More specifically, as shown in FIG. 2A, the laser light source unit 2 irradiates the silver SERS substrate material with the first laser beam for 100 ms on the substrate. The laser light source unit 2 switches from the first laser light to the second laser light, and irradiates the gold SERS substrate material with the second laser light for 100 ms on the substrate. The laser light source unit 2 switches from the second laser light to the third laser light, and irradiates the copper SERS substrate material on the substrate with the third laser light for 100 ms. The laser light source unit 2 repeats the irradiation of the laser light.
 なお、図2Aにおいて、各SERS基板材料の所定幅は、数十μm程度と広い。このため、レーザ光源部2は、各SERS基板材料に対し、第1乃至第3レーザ光を個別に照射している。 In FIG. 2A, the predetermined width of each SERS substrate material is as wide as several tens of μm. Therefore, the laser light source unit 2 individually irradiates each SERS substrate material with the first to third laser beams.
 しかし、各SERS基板材料の所定幅は、数十~数百nm程度と狭くてもよい。この場合、図2Bに示す如く、レーザ光源部2は、第1乃至第3レーザ光を、略同一の領域に対し照射してもよい。 However, the predetermined width of each SERS substrate material may be as narrow as several tens to several hundreds nm. In this case, as shown in FIG. 2B, the laser light source unit 2 may irradiate the substantially same region with the first to third laser beams.
 上記可能となる理由として、それぞれのSERS基板材料は表面プラズモン共鳴する波長が異なる。このため、例え同時に3つのSERS基板材料にレーザ光が照射されてもSERS効果を発揮するSERS基板材料はそのレーザ波長に対応したSERS基板材料だけであり、そのSERS基板材料に化学的に吸着された分子からのSERS光が得られるからである。 The reason why the above is possible is that each SERS substrate material has a different wavelength for surface plasmon resonance. Therefore, even if three SERS substrate materials are irradiated with laser light at the same time, the only SERS substrate material that exhibits the SERS effect is the SERS substrate material corresponding to the laser wavelength, and the SERS substrate material is chemically adsorbed. This is because the SERS light from the molecule can be obtained.
 光学系3は、レーザ光源部2からの励起光を集光し、観測対象物Xへ導光する。光学系3は、SERS基板材料からのラマン散乱光を分光部4に導光する。光学系3は、例えば、レンズ、ミラー、ダイクロイックミラーなどで構成されている。 The optical system 3 collects the excitation light from the laser light source unit 2 and guides it to the observation object X. The optical system 3 guides Raman scattered light from the SERS substrate material to the spectroscopic unit 4. The optical system 3 is composed of, for example, a lens, a mirror, a dichroic mirror, and the like.
 分光部4は、励起光に対してSERS基板材料から放射されるラマン散乱光を分光する。分光部4は、例えば、回折格子を組み込んだポリクロメータなどで構成されている。 The spectroscopic unit 4 disperses Raman scattered light emitted from the SERS substrate material with respect to the excitation light. The spectroscopic unit 4 is composed of, for example, a polychromator incorporating a diffraction grating.
 情報取得部5は、情報取得手段の一具体例である。情報取得部5は、分光部4で分光されたラマン散乱光に基づいて、ラマンスペクトルを生成する。情報取得部5は、生成したラマンスペクトルに基づいて、観測対象物Xの分子情報を取得する。情報取得部5は、例えば、観測対象物Xを構成する各分子の構造、結晶性、残留応力などの情報を取得することができる。 The information acquisition unit 5 is a specific example of the information acquisition means. The information acquisition unit 5 generates a Raman spectrum based on the Raman scattered light dispersed by the spectroscopic unit 4. The information acquisition unit 5 acquires the molecular information of the observation object X based on the generated Raman spectrum. The information acquisition unit 5 can acquire information such as the structure, crystallinity, and residual stress of each molecule constituting the observation object X, for example.
 情報取得部5は、例えば、演算処理等を行うCPU(Central Processing Unit)51、CPU51によって実行される演算プログラム等が記憶されたROM(Read Only Memory)やRAM(Random Access Memory)からなるメモリ52、外部と信号の入出力を行うインターフェイス部(I/F)53、などからなるマイクロコンピュータを中心にして、ハードウェア構成されている。CPU51、メモリ52、及びインターフェイス部53は、データバスなどを介して相互に接続されている。 The information acquisition unit 5 is, for example, a memory 52 composed of a CPU (Central Processing Unit) 51 that performs arithmetic processing and the like, a ROM (Read Only Memory) and a RAM (Random Access Memory) that store arithmetic programs and the like executed by the CPU 51. The hardware is configured around a microcomputer including an interface unit (I / F) 53 that inputs and outputs signals to and from the outside. The CPU 51, the memory 52, and the interface unit 53 are connected to each other via a data bus or the like.
 ところで、観測対象物Xが複数の分子で構成されている場合、一度の測定で、十分な分子情報が得られない虞がある。一方、複数回の測定を行う場合、測定作業の効率が低下する虞がある。 By the way, when the observation object X is composed of a plurality of molecules, there is a possibility that sufficient molecular information cannot be obtained by one measurement. On the other hand, when the measurement is performed a plurality of times, the efficiency of the measurement work may decrease.
 これに対し、本実施形態1に係る分光分析装置1は、図3に示す如く、複数のSERS基板材料に接して配置された複数の分子からなる観測対象物Xに対して、各SERS基板材料に対応する波長の励起光を切替えて照射するレーザ光源部2と、励起光に対するSERS基板材料からのラマン散乱光に基づいて、ラマンスペクトルを生成し、生成したラマンスペクトルに基づいて、観測対象物Xの分子情報を取得する情報取得部5と、を備えている。 On the other hand, as shown in FIG. 3, the spectroscopic analyzer 1 according to the first embodiment has a SERS substrate material for an observation object X composed of a plurality of molecules arranged in contact with the plurality of SERS substrate materials. A Raman spectrum is generated based on the laser light source unit 2 that switches and irradiates the excitation light of the wavelength corresponding to the above, and the Raman scattered light from the SERS substrate material for the excitation light, and the observation object is based on the generated Raman spectrum. It includes an information acquisition unit 5 for acquiring molecular information of X.
 これにより、励起光の波長毎のラマン散乱光を取得できるため、観測対象物Xの分子情報の取得量を増加させることができる。また、1回の観測対象物Xの測定準備で済むため、測定作業の効率が低下することもない。
 図4は、実施形態1に係る分光分析方法のフローを示すフローチャートである。
As a result, Raman scattered light for each wavelength of the excitation light can be acquired, so that the amount of molecular information acquired for the observation object X can be increased. Further, since it is sufficient to prepare for the measurement of the observation object X once, the efficiency of the measurement work does not decrease.
FIG. 4 is a flowchart showing the flow of the spectroscopic analysis method according to the first embodiment.
 レーザ光源部2は、複数の分子からなる観測対象物Xに対して、該各SERS基板材料に対応する波長の励起光を切替えて照射する(ステップS401)。 The laser light source unit 2 irradiates the observation object X composed of a plurality of molecules with excitation light having a wavelength corresponding to each SERS substrate material (step S401).
 分光部4は、レーザ光源部2の励起光に対するSERS基板材料からのラマン散乱光を分光する(ステップS402)。 The spectroscopic unit 4 disperses the Raman scattered light from the SERS substrate material with respect to the excitation light of the laser light source unit 2 (step S402).
 情報取得部5は、分光部4により分光されたラマン散乱光に基づいて、ラマンスペクトルを生成する(ステップS403)。 The information acquisition unit 5 generates a Raman spectrum based on the Raman scattered light dispersed by the spectroscopic unit 4 (step S403).
 情報取得部5は、生成したラマンスペクトルに基づいて、観測対象物Xの分子情報を取得する(ステップS404)。 The information acquisition unit 5 acquires the molecular information of the observation object X based on the generated Raman spectrum (step S404).
 以上、本実施形態1に係る分光分析装置1は、複数の分子からなる観測対象物Xに対して、各SERS基板材料に対応する波長の励起光を切替えて照射するレーザ光源部2と、励起光に対するSERS基板材料からのラマン散乱光に基づいて、ラマンスペクトルを生成し、生成したラマンスペクトルに基づいて、観測対象物Xの分子情報を取得する情報取得部5と、を備えている。 As described above, the spectroscopic analyzer 1 according to the first embodiment includes a laser light source unit 2 that switches and irradiates an observation object X composed of a plurality of molecules with excitation light having a wavelength corresponding to each SERS substrate material, and excitation. It is provided with an information acquisition unit 5 that generates a Raman spectrum based on Raman scattered light from the SERS substrate material with respect to light and acquires molecular information of the observation object X based on the generated Raman spectrum.
 これにより、励起光の波長毎のラマン散乱光を取得できるため、観測対象物Xの分子情報の取得情報量を増加させることができる。また、1回の観測対象物Xの測定準備で済むため、測定作業の効率が低下することもない。すなわち、観測対象物Xの分子情報の取得量を増加させつつ、測定作業の効率化を図ることができる。 As a result, Raman scattered light for each wavelength of the excitation light can be acquired, so that the amount of information acquired for the molecular information of the observation object X can be increased. Further, since it is sufficient to prepare for the measurement of the observation object X once, the efficiency of the measurement work does not decrease. That is, it is possible to improve the efficiency of the measurement work while increasing the amount of molecular information acquired for the observation object X.
 実施形態2
 図5は、実施形態2に係る分光分析装置の概略的な構成を示す概略図である。本実施形態2に係る分光分析装置1において、基質は、SERS基板材料の微粒子が蒸着したテープ(以下、基質テープと称す)X1である。
Embodiment 2
FIG. 5 is a schematic view showing a schematic configuration of the spectroscopic analyzer according to the second embodiment. In the spectroscopic analyzer 1 according to the second embodiment, the substrate is a tape (hereinafter referred to as a substrate tape) X1 on which fine particles of the SERS substrate material are vapor-deposited.
 図5に示す如く、筐体8内には、レーザ光源部2と、光学系3と、分光部4と、情報取得部5と、第1及び第2ロール6、7と、が配置されている。 筐体8には通気口81が設けられている。通気口81には、開閉式のカバー82が設けられている。カバー82が開状態になると、例えば、ファンなどの吸引装置により吸引された外気が通気口81を介して、筐体8内に流入する。 As shown in FIG. 5, a laser light source unit 2, an optical system 3, a spectroscopic unit 4, an information acquisition unit 5, and first and second rolls 6 and 7 are arranged in the housing 8. There is. The housing 8 is provided with a vent 81. The vent 81 is provided with an openable / closable cover 82. When the cover 82 is opened, for example, the outside air sucked by a suction device such as a fan flows into the housing 8 through the vent 81.
 基質テープX1は、例えば、ポリエステルなどで構成されている。第1ロール6から繰り出された基質テープX1は、第2ロール7に巻き取られる。筐体8の通気口81内に流入した細菌などの観測対象物Xは、第1ロール6と第2ロール7との間の基質テープX1に付着する。 The substrate tape X1 is made of, for example, polyester. The substrate tape X1 unwound from the first roll 6 is wound around the second roll 7. The observation object X such as bacteria that has flowed into the vent 81 of the housing 8 adheres to the substrate tape X1 between the first roll 6 and the second roll 7.
 レーザ光源部2は、第1ロール6と第2ロール7との間で基質テープX1に付着した観測対象物Xに対し、励起光を連続的に照射する。情報取得部5は、観測対象物Xからのラマン散乱光に基づいて、連続的に観測対象物Xの分子情報を取得する。 The laser light source unit 2 continuously irradiates the observation object X adhering to the substrate tape X1 between the first roll 6 and the second roll 7 with excitation light. The information acquisition unit 5 continuously acquires the molecular information of the observation object X based on the Raman scattered light from the observation object X.
 例えば、第1ロール6は基質テープX1を一定の時間間隔で繰り出し、第2ロール7はその基質テープX1を巻き取る。これにより、一定時間に渡って連続的に、その基質テープX1に付着した観測対象物Xのラマン散乱光に基づいて観測対象物Xの分子情報を取得できる。また、観測対象物Xが付着した基質テープX1を第2ロール7で巻き取り、筐体8内に保管することができる。 For example, the first roll 6 feeds out the substrate tape X1 at regular time intervals, and the second roll 7 winds up the substrate tape X1. As a result, the molecular information of the observation object X can be continuously acquired based on the Raman scattered light of the observation object X adhering to the substrate tape X1 over a certain period of time. Further, the substrate tape X1 to which the observation object X is attached can be wound up by the second roll 7 and stored in the housing 8.
 光学系3は、第1レンズ31と、第1及び第2ダイクロイックミラー32、33と、第2レンズ34と、第1ミラー35と、第3レンズ36と、を有している。 The optical system 3 includes a first lens 31, first and second dichroic mirrors 32 and 33, a second lens 34, a first mirror 35, and a third lens 36.
 レーザ光源部2と、第1レンズ31と、第1及び第2ダイクロイックミラー32、33と、第2レンズ34とは、例えば、同一光軸上に配置されている。レーザ光源部2から出射された励起光は、第1レンズ31で集光され、第1及び第2ダイクロイックミラー32、33を透過する。そして、その透過した励起光は、第2レンズ34で集光されて、基質テープX1に付着した観測対象物Xに対して、照射される。 The laser light source unit 2, the first lens 31, the first and second dichroic mirrors 32 and 33, and the second lens 34 are arranged on the same optical axis, for example. The excitation light emitted from the laser light source unit 2 is focused by the first lens 31 and passes through the first and second dichroic mirrors 32 and 33. Then, the transmitted excitation light is focused by the second lens 34 and irradiated to the observation object X attached to the substrate tape X1.
 第2ダイクロイックミラー33は、観測対象物Xからのラマン散乱光の一部を、略90°偏向し、第1ミラー35に向けて反射する。第1ミラー35と、分光部4と、情報取得部5とは同一光軸上に配置されている。第1ミラー35は、例えば、回折格子(グレーティング)として構成されている。第1ミラー35は、第2ダイクロイックミラー33からのラマン散乱光を、略90°偏向し、分光部4に向けて反射する。分光部4は、例えば、レンズとして構成されている。分光部4は、第1ミラー35からのラマン散乱光を分光する。情報取得部5は、エリアセンサとして構成されている。情報取得部5は、分光部4により分光されたラマン散乱光のラマンスペクトルを生成し、観測対象物Xの分子情報を取得する。 The second dichroic mirror 33 deflects a part of the Raman scattered light from the observation object X by approximately 90 ° and reflects it toward the first mirror 35. The first mirror 35, the spectroscopic unit 4, and the information acquisition unit 5 are arranged on the same optical axis. The first mirror 35 is configured as, for example, a diffraction grating. The first mirror 35 deflects the Raman scattered light from the second dichroic mirror 33 by approximately 90 ° and reflects it toward the spectroscopic unit 4. The spectroscopic unit 4 is configured as, for example, a lens. The spectroscopic unit 4 disperses the Raman scattered light from the first mirror 35. The information acquisition unit 5 is configured as an area sensor. The information acquisition unit 5 generates a Raman spectrum of Raman scattered light dispersed by the spectroscopic unit 4 and acquires molecular information of the observation object X.
 観測対象物Xからのラマン散乱光の他部分は、第2ダイクロイックミラー33を透過する。透過した光の一部は、第1ダイクロイックミラー32で反射され、第3レンズ36で集光され、ラインセンサ9に入射する。ラインセンサ9は、観測対象物Xの位置や形状などを取得する。光学系3を上記のような構成及び配置にすることで、各部材を筐体8内にコンパクトに収納し、分光分析装置1の小型化を図ることができる。 The other part of the Raman scattered light from the observation object X passes through the second dichroic mirror 33. A part of the transmitted light is reflected by the first dichroic mirror 32, collected by the third lens 36, and incident on the line sensor 9. The line sensor 9 acquires the position and shape of the observation object X. By arranging the optical system 3 as described above, each member can be compactly housed in the housing 8 and the spectroscopic analyzer 1 can be miniaturized.
 実施形態3
 実施形態3において、観測対象物Xは、SERS基板材料に挟み込まれるようにして配置されている。
Embodiment 3
In the third embodiment, the observation object X is arranged so as to be sandwiched between the SERS substrate materials.
 例えば、図6に示す如く、下側の第1基質の表面上に銀のナノ粒子R1が蒸着されている。上側の第2基質の表面上に金のナノ粒子R2が蒸着されている。観測対象物Xは、第1基質の銀ナノ粒子R1と第2基質の金ナノ粒子R2とに接触し挟み込まれている。 For example, as shown in FIG. 6, silver nanoparticles R1 are vapor-deposited on the surface of the lower first substrate. Gold nanoparticles R2 are deposited on the surface of the upper second substrate. The observation object X is in contact with and sandwiched between the silver nanoparticles R1 of the first substrate and the gold nanoparticles R2 of the second substrate.
 レーザ光源部2は、例えば、枯草菌などの観測対象物Xに対して、金ナノ粒子R2に対応する赤レーザと、銀ナノ粒子R1に対応する緑レーザとを、微小時間毎に交互に照射する。情報取得部5は、赤レーザ及び緑レーザのラマン散乱光に基づいて、夫々のラマンスペクトルを生成し、観測対象物Xの分子情報を取得する。 The laser light source unit 2 alternately irradiates the observation object X such as a dead grass bacterium with a red laser corresponding to gold nanoparticles R2 and a green laser corresponding to silver nanoparticles R1 every minute time. To do. The information acquisition unit 5 generates each Raman spectrum based on the Raman scattered light of the red laser and the green laser, and acquires the molecular information of the observation target X.
 本実施形態3によれば、より簡易な構成で、観測対象物Xの分子情報の取得量を増加させ、測定作業の効率化を図ることができる。 According to the third embodiment, it is possible to increase the acquisition amount of the molecular information of the observation object X and improve the efficiency of the measurement work with a simpler configuration.
 実施形態4
 上記実施形態1乃至3において、SERS基板材料は、基質上に微粒子状に形成されている。この場合、微粒子の粒径、形状等を厳密に制御するのが困難となり得る。
Embodiment 4
In the above-described first to third embodiments, the SERS substrate material is formed in the form of fine particles on the substrate. In this case, it may be difficult to strictly control the particle size, shape, etc. of the fine particles.
 これに対し、本実施形態4において、SERS基板材料は基質として構成され、SERS基板材料の表面に複数の微細な凹状が形成されている。微細な凹状を成形する制御は、微粒子を成形する制御と比較して、その制御が容易である。このため、SERS基板材料の表面に微細な凹状をより高精度に加工でき、その再現性に優れている。 On the other hand, in the fourth embodiment, the SERS substrate material is configured as a substrate, and a plurality of fine concave shapes are formed on the surface of the SERS substrate material. The control for forming fine concave shapes is easier than the control for forming fine particles. Therefore, fine concave shapes can be processed with higher accuracy on the surface of the SERS substrate material, and the reproducibility is excellent.
 また、SERS基板材料上において、例えば、凹状を同心円状、同心多角形状、あるいは波型に配置するなど、任意の形状に精度よく配置できる。さらに、観測対象物Xに応じて、凹状の配置を変えてもよい。 Further, on the SERS substrate material, it can be accurately arranged in any shape, for example, the concave shape is arranged in a concentric circle, a concentric polygonal shape, or a corrugated shape. Further, the concave arrangement may be changed according to the observation object X.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他のさまざまな形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.
 本発明は、例えば、図4に示す処理を、CPUにコンピュータプログラムを実行させることにより実現することも可能である。 The present invention can also be realized, for example, by causing the CPU to execute a computer program for the process shown in FIG.
 プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。 The program can be stored and supplied to the computer using various types of non-transitory computer readable medium. Non-temporary computer-readable media include various types of tangible storage media. Examples of non-temporary computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, Includes CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory)).
 プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 この出願は、2019年5月20日に出願された日本出願特願2019-094604を基礎とする優先権を主張し、その開示の全てをここに取り込む。
The program may be supplied to the computer by various types of transient computer readable media. Examples of temporary computer-readable media include electrical, optical, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
This application claims priority on the basis of Japanese application Japanese Patent Application No. 2019-094604 filed on May 20, 2019, and incorporates all of its disclosures herein.
1 分光分析装置
2 レーザ光源部
3 光学系
4 分光部
5 情報取得部
6 第1ロール
7 第2ロール
8 筐体
9 ラインセンサ
31 第1レンズ
32 第1ダイクロイックミラー
33 第2ダイクロイックミラー
34 第2レンズ
35 第1ミラー
36 第3レンズ
81 通気口
82 カバー
1 Spectroscopy analyzer 2 Laser light source unit 3 Optical system 4 Spectroscopy unit 5 Information acquisition unit 6 1st roll 7 2nd roll 8 Housing 9 Line sensor 31 1st lens 32 1st dichroic mirror 33 2nd dichroic mirror 34 2nd lens 35 1st mirror 36 3rd lens 81 Vent 82 Cover

Claims (6)

  1.  複数のSERS(Surface Enhanced Raman Scattering)基板材料に接して配置された複数の分子からなる観測対象物に対して、該各SERS基板材料に対応する波長の励起光を切替えて照射する照射手段と、
     該励起光に対する前記SERS基板材料からのラマン散乱光に基づいて、ラマンスペクトルを生成し、該生成したラマンスペクトルに基づいて、前記観測対象物の分子情報を取得する情報取得手段と、
     を備えることを特徴とする分光分析装置。
    An irradiation means for irradiating an observation object composed of a plurality of molecules arranged in contact with a plurality of SERS (Surface Enhanced Raman Scattering) substrate materials by switching excitation light having a wavelength corresponding to each SERS substrate material.
    An information acquisition means for generating a Raman spectrum based on the Raman scattered light from the SERS substrate material with respect to the excitation light and acquiring molecular information of the observation object based on the generated Raman spectrum.
    A spectroscopic analyzer characterized by comprising.
  2.  請求項1記載の分光分析装置であって、
     前記複数のSERS基板材料は、平行に隣接して配置されており、前記観測対象物は、前記各SERS基板材料に接して配置されている、
     ことを特徴とする分光分析装置。
    The spectroscopic analyzer according to claim 1.
    The plurality of SERS substrate materials are arranged in parallel and adjacent to each other, and the observation object is arranged in contact with each of the SERS substrate materials.
    A spectroscopic analyzer characterized by this.
  3.  請求項1記載の分光分析装置であって、
     前記観測対象物は、前記SERS基板材料に挟み込まれるようにして配置されている、
     ことを特徴とする分光分析装置。
    The spectroscopic analyzer according to claim 1.
    The observation object is arranged so as to be sandwiched between the SERS substrate materials.
    A spectroscopic analyzer characterized by this.
  4.  請求項1乃至3のうちいずれか1項記載の分光分析装置であって、
     前記SERS基板材料は基質として構成され、該SERS基板材料の表面に複数の凹状が形成されている、
     ことを特徴とする分光分析装置。
    The spectroscopic analyzer according to any one of claims 1 to 3.
    The SERS substrate material is configured as a substrate, and a plurality of concave shapes are formed on the surface of the SERS substrate material.
    A spectroscopic analyzer characterized by this.
  5.  複数のSERS(Surface Enhanced Raman Scattering)基板材料に接して配置された複数の分子からなる観測対象物に対して、該各SERS基板材料に対応する波長の励起光を切替えて照射するステップと、
     該励起光に対する前記SERS基板材料からのラマン散乱光に基づいて、ラマンスペクトルを生成し、該生成したラマンスペクトルに基づいて、前記観測対象物の分子情報を取得するステップと、
     を含む、ことを特徴とする分光分析方法。
    A step of switching and irradiating an observation object consisting of a plurality of molecules arranged in contact with a plurality of SERS (Surface Enhanced Raman Scattering) substrate materials with excitation light having a wavelength corresponding to each SERS substrate material.
    A step of generating a Raman spectrum based on the Raman scattered light from the SERS substrate material with respect to the excitation light, and acquiring molecular information of the observation object based on the generated Raman spectrum.
    A spectroscopic analysis method comprising.
  6.  複数のSERS(Surface Enhanced Raman Scattering)基板材料に接して配置された複数の分子からなる観測対象物に対して、該各SERS基板材料に対応する波長の励起光を切替えて照射する処理と、
     該励起光に対する前記SERS基板材料からのラマン散乱光に基づいて、ラマンスペクトルを生成し、該生成したラマンスペクトルに基づいて、前記観測対象物の分子情報を取得する処理と、
     をコンピュータに実行させる、ことを特徴とするプログラムを格納するコンピュータ可読媒体。
    A process of switching and irradiating an observation object consisting of a plurality of molecules arranged in contact with a plurality of SERS (Surface Enhanced Raman Scattering) substrate materials with excitation light having a wavelength corresponding to each SERS substrate material.
    A process of generating a Raman spectrum based on the Raman scattered light from the SERS substrate material with respect to the excitation light and acquiring molecular information of the observation object based on the generated Raman spectrum.
    A computer-readable medium that stores a program that causes a computer to execute a program.
PCT/JP2020/003397 2019-05-20 2020-01-30 Spectroscopic analysis device, spectroscopic analysis method, and computer-readable medium WO2020235142A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021520048A JP7143949B2 (en) 2019-05-20 2020-01-30 Spectroscopic analysis device, spectroscopic analysis method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019094604 2019-05-20
JP2019-094604 2019-05-20

Publications (1)

Publication Number Publication Date
WO2020235142A1 true WO2020235142A1 (en) 2020-11-26

Family

ID=73458968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003397 WO2020235142A1 (en) 2019-05-20 2020-01-30 Spectroscopic analysis device, spectroscopic analysis method, and computer-readable medium

Country Status (2)

Country Link
JP (1) JP7143949B2 (en)
WO (1) WO2020235142A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535646A (en) * 1996-06-13 2002-10-22 アン イー. グロウ, Raman optrode process and equipment for detection of chemicals and microorganisms
JP2007524087A (en) * 2003-12-30 2007-08-23 インテル・コーポレーション Methods and apparatus for using Raman-active probe constructs to assay biological samples
JP2009293994A (en) * 2008-06-03 2009-12-17 Nano Photon Kk Optical microscope and observation method
JP2013522648A (en) * 2010-03-22 2013-06-13 キャボット セキュリティー マテリアルズ インコーポレイティド Wavelength selective SERS nanotag
JP2013536950A (en) * 2010-08-31 2013-09-26 キャボット セキュリティー マテリアルズ インコーポレイティド In-line spectroscopic reader and method
JP2013545989A (en) * 2010-12-07 2013-12-26 エコール ポリテクニーク Systems and methods for imaging by complex techniques used for chemical, biological or biochemical analysis of samples
JP2016040522A (en) * 2014-08-12 2016-03-24 セイコーエプソン株式会社 Sensor element, analyzer, and electronic equipment
WO2019035483A1 (en) * 2017-08-18 2019-02-21 ナノフォトン株式会社 Optical microscope and method of spectroscopic measurement

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277082B2 (en) * 2009-06-15 2013-08-28 株式会社日立ハイテクノロジーズ Fluorescence analysis method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535646A (en) * 1996-06-13 2002-10-22 アン イー. グロウ, Raman optrode process and equipment for detection of chemicals and microorganisms
JP2007524087A (en) * 2003-12-30 2007-08-23 インテル・コーポレーション Methods and apparatus for using Raman-active probe constructs to assay biological samples
JP2009293994A (en) * 2008-06-03 2009-12-17 Nano Photon Kk Optical microscope and observation method
JP2013522648A (en) * 2010-03-22 2013-06-13 キャボット セキュリティー マテリアルズ インコーポレイティド Wavelength selective SERS nanotag
JP2013536950A (en) * 2010-08-31 2013-09-26 キャボット セキュリティー マテリアルズ インコーポレイティド In-line spectroscopic reader and method
JP2013545989A (en) * 2010-12-07 2013-12-26 エコール ポリテクニーク Systems and methods for imaging by complex techniques used for chemical, biological or biochemical analysis of samples
JP2016040522A (en) * 2014-08-12 2016-03-24 セイコーエプソン株式会社 Sensor element, analyzer, and electronic equipment
WO2019035483A1 (en) * 2017-08-18 2019-02-21 ナノフォトン株式会社 Optical microscope and method of spectroscopic measurement

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"A sensitive, switchable and biocompatible surface enhanced Raman scattering-fluorescence dual mode probe using bipyramid gold nanocrystal-gold nanoclusters for high-throughput biodetection", ANALYTICAL METHODS, vol. 6, 29 January 2014 (2014-01-29), pages 2862 - 2869, XP055762750, DOI: 10.1039/c3ay41966e *
"SERS-Fluorescence Joint Spectral Encoding Using Organic-Metal-QD Hybrid Nanoparticles with a Huge Encoding Capacity for High-Throughput Biodetection: Putting Theory into Practice", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 134, 9 January 2012 (2012-01-09), pages 2993 - 3000, XP055762751, DOI: 10.1021/ja208154m *

Also Published As

Publication number Publication date
JP7143949B2 (en) 2022-09-29
JPWO2020235142A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
JP6148177B2 (en) Line light source for Raman or other spectroscopy systems
US9677936B2 (en) Spectro-sensor and spectrometer employing the same
US7151599B2 (en) Monolithic system and method for enhanced Raman spectroscopy
US8531661B2 (en) Optical device unit and detection apparatus
JP5560891B2 (en) Optical device and analyzer
US10416081B2 (en) Optical system and method for spectroscopy
JP6255022B2 (en) Apparatus having an arrangement of optical elements
US20130271759A1 (en) Apparatus and method for performing spectroscopy
KR20100063112A (en) Spectrometer for measuring moving sample material and the method
US8497987B2 (en) Optical device unit and detection apparatus
US20120200851A1 (en) Raman spectroscopy light amplifying structure
US20200326238A1 (en) Digital micromirror device and kinematically tunable wavelength filter-based imaging systems
US20210181391A1 (en) A Field-Enhancing Device
US10337981B2 (en) Low volume multipass cell
WO2016082804A1 (en) Device and method for obtaining raman scattering spectrum
US6952260B2 (en) Double grating three dimensional spectrograph
US7405822B2 (en) Systems and methods for detection of Raman scattered photons
JP7028335B2 (en) Microspectroscopy device and microspectroscopy method
JP5928026B2 (en) Sensor chip, manufacturing method thereof, and detection apparatus
Armas et al. Gold Nanohole Arrays Fabricated by Interference Lithography Technique as SERS Probes for Chemical Species Such As Rhodamine 6G and 4, 4′-Bipyridine
WO2020235142A1 (en) Spectroscopic analysis device, spectroscopic analysis method, and computer-readable medium
JP3101707B2 (en) Raman scattered light enhancement device
US20180275069A1 (en) Icp emission spectrophotometer
JP4397808B2 (en) Raman spectrometer
CN109556717B (en) Imaging spectrometer based on scattering effect and hyperspectral imaging method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809587

Country of ref document: EP

Kind code of ref document: A1